
Programmer’s Guide
iPlanetTM Directory Server

Access Management Edition

Version 5.0

December 2001

Copyright © 2001 Sun Microsystems, Inc. Some preexisting portions Copyright © 2001 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Netscape and the Netscape N logo are registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other Netscape
logos, product names, and service names are also trademarks of Netscape Communications Corporation, which may be registered in other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the product
or this document may be reproduced in any form by any means without prior written authorization of the Sun-Netscape Alliance and its licensors, if
any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

__

Copyright © 2001 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2001 Netscape Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, et le logo Sun sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays.
Netscape et le logo Netscape N sont des marques déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos,
les noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape Communications Corporation dans certains autres
pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la distribution et la
décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans
l’autorisation écrite préalable de l’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES REPRÉSENTATIONS
ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À UN BUT PARTICULIER OU DE NON
CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About this Guide . 15
Who Should Use This Book . 15
What You Are Expected to Know . 15
How This Book Is Organized . 16
The iPlanet Directory Server Access Management Edition Documentation Set 17
Documentation Conventions Used in This Manual . 17

Typographic Conventions . 18
Terminology . 18

Related Information . 19

Chapter 1 DSAME Programmer’s Overview . 21
Extending iPlanet Directory Server Access Management Edition . 23

Which APIs, SPIs, and XML Interfaces You Can Customize . 24
Overview of Service Development Process When Extending DSAME Interfaces 25

Chapter 2 Pluggable Authentication SPI . 27
Overview of Pluggable Authentication SPI 27
Authentication Process Overview . 29

Client Interface (Authentication Service using HTML/HTTP) . 29
Authentication Service Provided as HTML over HTTP(s) Interface . 30
Authentication Framework . 31
Authentication Plug-In Module Interfaces (SPI) . 32

Overview of Integrating Authentication Modules in DSAME . 32
Where to find the Public Javadocs for Authentication SPIs . 33
Classes and Methods you must Implement when creating a custom Authentication Service . 34
Do You need to create a Service XML for your custom Authentication Service 34
Core Authentication Service Defines Configuration for all Authentication Services 36

4 iPlanet DSAME Programmer’s Guide • December 2001

Understanding the screen.properties File . 36
Product Directories where .properties and Sample .java Files are Located 41
Use an existing service XML file to create your Custom Authentication XML 41
amAuth.xml is Used for General Authentication Configuration . 42

Writing and Integrating a Pluggable Authentication Module . 42
Requirements and Recommendations . 42

Recommendations . 44
Compiling the Authentication Sample . 44

Set Environment Variables . 44
Run the Make Command . 45

Integrating the Authentication Sample program . 45
Running the Authentication Sample program . 47
Sample Code . 49

Sample Properties File . 49
Sample Authentication Module Source . 50
Sample XML Files . 54

Resource Bundle .properties File . 54

Chapter 3 HTML Templates . 57
Setting up Login Pages for Different Organizations 57

How Authentication Templates Work . 57
Templates for Customizing the Authentication Pages . 58

Chapter 4 Single Sign-On . 63
Introduction to the Single Sign-On Solution . 63
How SSO Uses Cookies . 64
How SSO Uses Tokens . 65
Overview of Web-Based Single Sign On (SSO) APIs . 65

Overview of SSO Classes/Interfaces . 66
SSO Feature Intended for SSO Client Applications . 68

Public SSO Classes/Interfaces . 69
Using the SSO Samples . 74

Compiling and Running the SSO Sample Application . 74
SSOTokenSampleServlet.java File . 76
SampleTokenListener.java . 79
SSOTokenSampleServlet.java File . 80

Chapter 5 Understanding DSAME XMLs and DTDs . 85
Understanding DSAME Services 86
Things to Consider about DSAME Services . 87

Internal Services vs. External Services . 88
Service Schema defines service attributes and optionally default values . 89

5

What Happens When you Register a Service . 90
Overview of Services Management in DSAME . 90

Services Management Module in DSAME . 91
Global Attributes . 92
Organization Attributes . 93
Dynamic Attributes . 93
Policy Attributes . 94
User Attributes . 94
Defining and Adding Services to DSAME . 95

Adding a Custom Service to DSAME . 95
When You Create a Service XML, Attributes Must be Defined (Default Values are Optional, but
Recommended) . 96
Attribute value in schema provides a default value for administrators and users 97
Defining an empty attribute value in Schema . 97
Using DSAME to manage attributes in your existing DIT . 98
When Adding a new Service or Application, You must Define Schema (Object classes and
attributes) in Directory Server . 98
Adding an Existing Application to DSAME . 98
Enabling a Service for an Organization or Role in DSAME console . 98

Defining Global Attribute Types in a Service . 99
Defining Organization Attributes in a Service . 100
Defining Dynamic Attributes in a Service . 101

Organizations and Dynamic Attributes . 102
Defining Dynamic and Policy Attributes . 102
Roles in DSAME . 103

What Happens when a User is Assigned to a Role . 103
Overview of Roles in DSAME . 103
How DSAME uses Roles . 104

Roles . 105
CoS . 105
CoSQualifiers used by DSAME . 105
Organizations and CoS . 105
Registering a Service Creates a CoS Definition and CoS Template . 105
Roles in DSAME are at a higher level of abstraction than Directory server roles 106
How Organizations and Roles use Dynamic Attributes . 106
How Dynamic Attributes are used in Roles . 107
How Dynamic Attributes are used in Organizations and Roles . 107
How DSAME Dynamic and Policy Attributes Use CoS . 107
Roles and Dynamic Attributes . 108
Conflicts with multiple organizations or roles . 109
Conflicts and Dynamic (or Policy) Attributes . 109

Roles . 110
Organizations and CoS . 110

6 iPlanet DSAME Programmer’s Guide • December 2001

Roles and CoS . 112
Roles and ACIs . 113

Defining Policy Attributes in a Service . 116
Policy Attributes . 116

Administrators can assign policies to organizations or roles in DSAME console 117
Policy Service XML . 117
Roles and Policy (Aggregation) . 117

Overview of User Management Module . 118
Adding User Attributes to DSAME . 119
Defining User Attributes in a Service . 121

User is considered a Service in DSAME . 121
Customizing User Pages . 121

Extending what DSAME displays on the User Page in DSAME console . 122
How the "any" Attribute can be used in Service XML Files . 122
Extending the amEntrySpecific.xml File . 125

Adding attributes Common to all Users to the User Service in DSAME . 125
Customizing Organization Pages . 126

Purpose of amEntrySpecific.xml File . 128
any Attribute . 128
Type Attribute . 129

Cases where Service Developers must Modify the ums.xml Configuration File 130
What DSAME Supports in the Service Registration DTD . 130

Service Schema Definitions Supported by DSAME 5.0 . 132
Attributes and Elements that DSAME Supports . 134

Purpose of an XML DTD . 134
Where you can find Further Information on XML and DTDs . 134

Description of sms.dtd Elements and Attributes . 135
ServicesConfiguration Element . 135
Schema Element . 135
Service Element . 136
Service Name and Version Attribute List . 136
Service Name Attribute . 137
i18nFileName Attribute . 137
i18nKey Attribute . 137
i18NKey Attribute and i18NFileName Attribute . 138
Global Attributes . 139
Organization Attributes . 141
Dynamic Attributes . 142
Policy Elements . 142
User attributes . 143
Global Element, AttributeSchema and SubSchema Sub-elements . 143
Attribute Schema Sub-Element . 144
Service Sub-Schema Element . 145

7

AttributeSchema Element, ChoiceValues, BooleanValues, and DefaultValues Sub-elements 146
AttributeSchema Attribute, name Attribute . 146
AttributeSchema Element, Type Attribute . 147
AttributeSchema Element, Syntax Attribute . 147
Syntax Attribute, boolean value . 147
Syntax Attribute, string value . 148
AttributeSchema syntax Attribute, password value . 148
AttributeSchema Element, ChoiceValues Sub-element . 148
AttributeSchema Element, syntax Attribute, boolean value . 149
AttributeSchema Element, CoSQualifier Attribute . 150
AttributeSchema Element, any Attribute . 150
Organization Element . 151
Dynamic Element . 151
Policy Element . 152
User Element . 152

Policy Management Module . 153
Overview of Some Policy Concepts and Terms in DSAME . 153

Policy Schema . 153
Named Policy and Assigned Policy . 153

Adding a Custom Service . 155
High Level Flow for Creating and Registering Services . 157
Some Things to Consider When Creating a New Service . 159

Description of sampleMailService Files . 160
sampleMailServiceSchema.ldif File . 161
sampleMailService.xml File . 163
sampleMailService.properties File . 164
Explanation of Policy Schema Definitions in sampleMailService.xml . 168

Policy Schema must be defined before Policy Template can be Created in DSAME Console . . . 170
amAdmin.dtd Used when Performing Batch Updates to DIT . 170

Batch Operations you can perform using the amAdmin.dtd . 170
Files Used to perform Batch Updates to DIT . 171

Description of amAdmin.dtd . 172
Requests Element . 173
OrganizationRequests Element . 174
CreateSubOrganization Element . 175
CreateGroup Element . 176
CreateRole Element . 176
CreatePolicy Element . 176
Rule Element with ServiceName, ResourceName?, and AttributeValuePair+ Sub-Elements 177
GetSubOrganizations Element . 178
GetPeopleContainers, GetGroups, and GetRoles Elements . 179
GetUsers Element . 180
RegisterServices and UnregisterServices Elements . 180

8 iPlanet DSAME Programmer’s Guide • December 2001

ActivateServices and DeactivateServices Elements . 181
GetActivatedServiceNames, GetRegisteredServiceNames, and GetNumberofServices Elements
181
DeleteSubOrganizations Element . 182
DeletePeopleContainers Element . 182
DeleteGroups Element . 183
DeleteRoles Element . 183
DeletePolicy Element . 183
PolicyName Element . 184
ContainerRequests Element . 184

Sample File (createRequests.xml) to Perform batch Updates to DIT . 188

Chapter 6 Using the Command Line Interface . 191
Overview of the amadmin Command Line Interface Tool . 191
How the amadmin CLI Tool Works . 193

Service schema definition in XML and registration . 193
Data creation in Directory Server DIT (or populating the Directory Server DIT): 193

What you can use the amadmin tool for . 194
Requirements to run amadmin CLI Tool . 194
Installation/Setup . 195

Syntax for using the amadmin Tool . 195
Syntax Description for the amadmin Command Line Interface Tool . 195

Registering Services in DSAME . 197
Registering and Unregistering a Service for an Organization . 197

Unregistering a service . 198
Get Number Of Services . 198

Guidelines for Loading Services into DSAME . 198
Make Sure you have the Necessary Files before Loading a Service . 198
Extend the Service Schema by Loading the .ldif File . 200
Restart the Directory Server . 202
Specify pathname for sampleMailService.properties in jvm12.conf File . 202
Start the Servers (Web and Directory Server) . 203
Import the Service XML File(s) . 203
Register the Service . 204

Sample .ldif file that shows the objectclass of a service added to a user entry 204
Add the sampleMailService to the Service Hierarchy . 206

Administration Service Attribute (iplanet-am-admin-console-service-hierarchy) 207
Assign Policies to the Sample Mail Service . 209
View the Policy Profile for a Service that has been added to DSAME . 210
View the Profile for an Added Service . 211

Guidelines on Performing Batch Updates to User Objects in Directory Server 211
List of Sample XML Files for Performing Batch Updates to DIT . 212

Steps to Perform Batch Updates to DIT . 213

9

Define user objects in createRequests.xml File . 213
Changes to make if the DSAME product is installed in Compliant mode (iPlanet DIT and schema
mode) . 213
Load the Batch Update Defined in the XML File into DSAME . 214
Verifying that the DIT has been Populated Correctly . 215

Verification Caution . 215
View the .ldif File to Ensure that the objects were created in the Directory server 216

Tips when running amadmin Tool . 216
Using ldapmodify versus the DSAME amadmin Tool . 216
Benefits of using CLI and XML Files . 217
How to Determine Attribute/Value Pairs to Provide in the XML Files . 217
Which XML Files are Used for DSAME User Management . 218
Explanation on Defining GetUsers in amAdmin.dtd . 218
All Files Input with the amadmin Tool must be XML Files . 219
Using amadmin vs. DSAME’s Admin Console . 219
Service Registration XML DTD . 220

Deleting a Service that has been Registered and Configured . 220
You should not delete the DAI Service (ums.xml configuration file) . 220

10 iPlanet DSAME Programmer’s Guide • December 2001

11

List of Code Examples

Code Example 2-1 Sample Screen calling an HTML file . 37

Code Example 2-2 Sample.properties File . 40

Code Example 2-3 Excerpt from amAuth.xml File . 45

Code Example 2-4 AuthenticationSample.properties File . 49

Code Example 2-5 Sample Java Module—AuthenticationSample.java . 50

Code Example 2-6 AuthenticationSampleAuthenticationModuleFactory.java 52

Code Example 2-7 amAuthLDAP.properties File . 54

Code Example 4-1 SSO Code Sample To Determine If User Is Already Authenticated 70

Code Example 4-2 Code Sample To Get SSO Token If SSO Token ID Is Passed To Applications .
72

Code Example 4-3 Code Sample To Register For SSOToken Events . 73

Code Example 4-4 Code Sample Showing SampleTokenListener Class Defined 73

Code Example 4-5 Lines that register Sample servlet to be added to web.xml File 76

Code Example 4-6 SSOTokenSampleServlet.java File . 77

Code Example 4-7 SampleTokenListener.java File . 79

Code Example 4-8 SSOTokenSample.java File . 81

Code Example 5-1 Global Schema definition with default values from sampleMailService.xml
File 89

Code Example 5-2 Excerpt showing an empty attribute value in schema 97

Code Example 5-3 Organization Example with default CoS Role and One Service Enabled . . 111

Code Example 5-4 Example of Role "Eng" and User with the "Eng" Role 112

Code Example 5-5 Attribute Schema Definition to Add to amUser.xml File 119

Code Example 5-6 Excerpt defining the any attribute in the amUser.xml File 123

Code Example 5-7 SubSchema for Organization entry type in amEntrySpecific.xml 127

Code Example 5-8 Excerpt from sampleMailService.xml showing global attribute definitions . .
132

Code Example 5-9 ServicesConfiguration Element . 135

12 DSAME Programmer’s Guide • December 2001

Code Example 5-10 Schema Element definition . 136

Code Example 5-11 Service Element Definition . 136

Code Example 5-12 Service Element Definition from sampleMailService.xml 137

Code Example 5-13 Excerpt showing the i18NKey Attribute Definitions in sampleMailService.xml
 138

Code Example 5-14 i18NKey and i18FileName Attribute Definitions in sampleMailService.xml
File 139

Code Example 5-15 A Global Attribute Schema Definition in sampleMailService.xml 140

Code Example 5-16 Excerpt from amPolicy.xml defining a policy element 142

Code Example 5-17 Global Element Definition in sms.dtd . 144

Code Example 5-18 AttributeSchema Element Definition (with Sub-Elements defined) 144

Code Example 5-19 Excerpt from sampleMailService.xml File showing AttributeSchema name
specification 146

Code Example 5-20 Excerpt from sampleMailService.xml showing boolean syntax specification . .
147

Code Example 5-21 Excerpt from sampleMailService.xml showing syntax attribute with string
value 148

Code Example 5-22 amAuthLDAP.xml showing syntax attribute with value of password . . . 148

Code Example 5-23 Excerpt from sampleMailService.xml showing type attribute with
single_choice value 149

Code Example 5-24 Attribute Schema Element Specification with boolean syntax specified . . 149

Code Example 5-25 Organization Element in sms.dtd . 151

Code Example 5-26 amSession.xml File showing some attributes specified as Dynamic 151

Code Example 5-27 Policy element 152

Code Example 5-28 Excerpts from amUser.xml showing User Attributes specified 152

Code Example 5-29 Excerpt showing policy schema definition in amWebAgent.xml File 154

Code Example 5-30 sampleMailServiceSchema.ldif File . 162

Code Example 5-31 sampleMailService.properties File . 164

Code Example 5-32 Excerpt from sampleMailService.properties File . 165

Code Example 5-33 Excerpt from sampleMailService.xml File . 166

Code Example 5-34 Excerpt showing dynamic attribute definitions in sampleMailService.xml File
166

Code Example 5-35 Excerpt from sampleMailService.xml defining Policy Schema 169

Code Example 5-36 Requests Element and Requests Sub-Elements . 173

Code Example 5-37 OrganizationRequests Element . 174

Code Example 5-38 DN Attribute of OrganizationRequests Element . 175

Code Example 5-39 CreateSubOrganization Element . 175

Code Example 5-40 CreatePeopleContainer, CreateGroup, and CreateRole Elements 176

List of Code Examples 13

Code Example 5-41 Create Policy Element . 177

Code Example 5-42 Rule Element with Sub-Elements . 177

Code Example 5-43 GetSubOrganizations Element . 178

Code Example 5-44 GetPeopleContainers, GetGroups, and GetRoles Elements 179

Code Example 5-45 GetUsers Element . 180

Code Example 5-46 RegisterServices and UnregisterServices Elements . 180

Code Example 5-47 ActivateServices and DeactivateServices Elements . 181

Code Example 5-48 GetActivatedServiceNames, GetRegisteredServicesNames, and Get
GetNumberOfServices Elements 182

Code Example 5-49 DeleteSubOrganizations Element . 182

Code Example 5-50 DeletePeopleContainers Element . 183

Code Example 5-51 DeleteGroups Element . 183

Code Example 5-52 DeleteRoles element . 183

Code Example 5-53 DeletePolicy Element . 184

Code Example 5-54 PolicyName Element . 184

Code Example 5-55 ContainerRequests Element . 185

Code Example 5-56 createRequests.xml File . 189

Code Example 6-1 ldapmodify Command Example Used to Extend the Schema 200

Code Example 6-2 ldapsearch Command Example to Ensure that Schema has been Created .
201

Code Example 6-3 Result of ldapsearch Command if Schema was Created 201

Code Example 6-4 Message display after loaded sampleMailService.xml File 204

Code Example 6-5 Command to register sampleMailService . 204

Code Example 6-6 Sample .ldif code that shows objectclass of
iplanet-am-sample-mail-service service added to user entry 205

Code Example 6-7 ldapmodify Command Example . 205

Code Example 6-8 amadmin Command to load Batch Update to DIT file (createRequests.xml) .
215

Code Example 6-9 GetUsers Element in amAdmin.dtd . 218

14 DSAME Programmer’s Guide • December 2001

15

About this Guide

This Programmer’s Guide provides information on how to customize the public
interfaces in iPlanet Directory Server Access Management Edition.

This preface contains the following sections:

• Who Should Use This Book

• What You Are Expected to Know

• How This Book Is Organized

• The iPlanet Directory Server Access Management Edition Documentation Set

• Documentation Conventions Used in This Manual

• Related Information

Who Should Use This Book
This document is intended for service developers or programmers who want to
create customized services by using the public interfaces in the iPlanet Directory
Server Access Management Edition(DSAME) 5.0 product. (The term “public
interfaces” or “exposed interfaces” throughout this book refers to any APIs, SPIs,
XML over HTTP, or HTML over HTTP interfaces that can be used to create custom
services or applications.)

What You Are Expected to Know
This book is intended for use by service developers or programmers who want to
create custom services or applications to work with iPlanet™ Directory Server
Access Management Edition. It’s essential that you understand directory
technologies and have some experience with Java and XML programming

How This Book Is Organized

16 iPlanet DSAME Programmer’s Guide • December 2001

languages in order to customize the Single Sign-On APIs to create a custom SSO
solution, the Pluggable Authentication Service Provider Interfaces (SPIs) to create a
custom pluggable authentication service, or to import custom service XMLs or
batch update XML files into DSAME.

You will get the most out of this guide if you are familiar with directory servers
and Lightweight Directory Access Protocol (LDAP). Particularly, you should be
familiar with iPlanet Directory Server and the documentation provided with that
product.

Refer to the Directory Server Access Management Edition Installation and
Configuration Guide for conceptual information on DSAME and how it can be used
in your network, and for information on installing and configuring DSAME in
your networked environment. Also refer to the Directory Server Access Management
Edition Administration Guide for information on how to manage and customize
services in your network.

How This Book Is Organized
This book contains the following chapters and appendices:

Overview of the Programmatic Interfaces in DSAME provides an introduction to
some of the tools available.

Pluggable Authentication SPI describes requirements for writing a supplemental
authentication module, and provides information about customizing the
authentication pages.

HTML Templates provides information for a service developer or programmer to
change the authentication (login, logout, and timeout) pages for different
organizations.

Single Sign-On provides information on how to customize the public Single
Sign-On APIs to create a custom Single Sign-On solution.

Understanding XMLs and DTDs provides information on DSAME service XMLs,
and attributes and elements supported by the Services Management Services DTD
(sms.dtd); and information on the batch update XML files and the attributes and
elements supported by the batch update XML DTD (amAdmin.dtd).

Using the Command Line Interface describes the command-line interface
(amadmin), how to write and import custom service XML files (such as a custom
pluggable authentication service or module) into DSAME, and how to write and
import batch XML files to update various user objects (such as organizations, users,
roles, people containers, groups, etc.) in the Directory Information Tree (DIT).

The iPlanet Directory Server Access Management Edition Documentation Set

About this Guide 17

The iPlanet Directory Server Access
Management Edition Documentation Set

The DSAME documentation set contains the following titles:

• Installation and Configuration Guide describes DSAME and provides details on
how to plan and install DSAME on Solaris systems.

• Administration Guide documents how to manage user and service data in an
iPlanet Directory Server Access Management Edition system once it has been
installed.

• Programmer’s Guide documents how to customize DSAME interfaces.

• The Release Notes file gathers an assortment of information, including a
description of what is new in this release, last minute installation notes, known
problems and limitations, and how to report problems.

• Online help for users and online help for system administrators

m http://yourserver:port/docs/en_US/javadocs

In the installed version of the product, the Javadocs can be found in:

m DSAME_root/web-apps/services/docs/en_US/javadocs

It is recommended that you also refer to the iPlanet Directory Server 5.1
documentation for information on iPlanet Directory Server:

m http://yourserver:port/docs/en_US/javadocs

Documentation Conventions Used in This Manual
In the iPlanet Directory Server Access Management Edition documentation (such
as this guide) there are certain typographic and terminology conventions used to
simplify discussion and to help you better understand the material. These
conventions are described below.

NOTE Be sure to check the Directory Server Access Management Edition
documentation web site for updates to the release notes and for
revisions to the guides.

http://docs.iplanet.com

Documentation Conventions Used in This Manual

18 iPlanet DSAME Programmer’s Guide • December 2001

Typographic Conventions
This book uses the following typographic conventions:

• Italic type is used within text for book titles, new terminology, emphasis, and
words used in the literal sense.

• Monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), filenames, pathnames,
directory names, HTML tags, and any text that must be typed on the screen.

• Italic serif font is used within code and code fragments to indicate variable
placeholders. For example, the following command uses filename as a variable
placeholder for an argument to the gunzip command:

gunzip -d filename.tar.gz

Terminology
Below is a list of the general terms that are used in the iPlanet Directory Server
Access Management Edition documentation set:

• DSAME refers to iPlanet Directory Server Access Management Edition and any
installed instances of the iPlanet Directory Server Access Management Edition
software.

• Policy and Management services refers to the collective set of iPlanet Directory
Server Access Management Edition components and software that are installed
and running on a dedicated Web Server. The dedicated Web Server is installed
for you automatically when you install the Police and Management Services.

• Web Server that runs DSAME refers to the dedicated Web Server where the
Policy and Management services are installed.

• Directory Server refers to an installed instance of iPlanet Directory Server or
Netscape™ Directory Server.

• DSAME_root is a variable placeholder for the home directory where you have
installed iPlanet Directory Server Access Management Edition.

• Directory_Server_root is a variable placeholder for the home directory where
you have installed iPlanet Directory Server.

• Web_Server_root is a variable placeholder for the home directory where you
have installed iPlanet Web Server.

Related Information

About this Guide 19

Related Information
In addition to the documentation provided with iPlanet Directory Server Access
Management Edition, you should be familiar with several other sets of
documentation. Of particular interest are the iPlanet Directory Server, iPlanet Web
Server, iPlanet Proxy Server, and iPlanet Certificate Management System
documentation sets.

This sections lists additional sources of information that can be used with iPlanet
Directory Server Access Management Edition.

iPlanet Directory Server Documentation
You can find the iPlanet Directory Server documentation at the following site:

http://docs.iplanet.com/docs/manuals/directory.html

iPlanet Web Server Documentation
You can find the iPlanet Web Server documentation at the following site:

http://docs.iplanet.com/docs/manuals/enterprise.html

iPlanet Certificate Management System Documentation
You can find the iPlanet Certificate Management System documentation at the
following site:

http://docs.iplanet.com/docs/manuals/cms.html

iPlanet Proxy Server Documentation
You can find the iPlanet Proxy Server documentation at the following site:

http://docs.iplanet.com/docs/manuals/proxy.html

Directory Server Developer Information
In addition to the Directory Server documentation, you can find information on
Directory Server Access Management Edition, LDAP, the iPlanet Directory Server,
and associated technologies at the following iPlanet developer sites:

http://developer.iplanet.com/tech/directory/

http://www.iplanet.com/downloads/developer/

Other iPlanet Product Documentation
Documentation for all iPlanet and Netscape servers and technologies can be found
at the following web site:

http://docs.iplanet.com/docs/manuals/

Related Information

20 iPlanet DSAME Programmer’s Guide • December 2001

iPlanet Technical Support
You can contact iPlanet Technical Support through the following location:

http://www.iplanet.com/support/

21

Chapter 1

DSAME Programmer’s Overview

The Directory Server Access Management Edition Programmer’s Guide describes how
service developers and programmers can customize the following public interfaces
in DSAME 5.0:

• the Java client Application Programming Interfaces (APIs) that enable service
developers to customize the Single Sign-On solution;

• the Java Pluggable Authentication Service Provider Interfaces (SPIs) which
allow service developers to create a custom pluggable authentication service;

• the client Authentication Service interfaces which allow service developers to
customize the authentication login, logout, and timeout screens by modifying
the HTML templates;

• the command line interface (amadmin tool) which enables service developers
and customization engineers to import custom service XML files, and batch
update XML files to perform operations such as creates, deletes, and gets on
various directory objects in the DIT (such as users, groups, roles, people
containers, etc.).

This chapter contains the following sections:

• Extending iPlanet Directory Server Access Management Edition

• Which APIs, SPIs, and XML over HTTP Interfaces you can customize

• Overview of Service Development Process when extending DSAME Interfaces

The Programmer’s Guide provides information for programmers customizing
iPlanet Directory Server Access Management Edition (DSAME) software. It
documents the public Java application programming interfaces (APIs) and service
provider interfaces (SPIs) that are included in the iPlanet Directory Server Access

22 DSAME Programmer’s Guide • December 2001

Management Edition product, as well as documents the exposed HTTP over XML
interfaces. For example, you can use the Single Sign-On APIs and the
Authentication SPIs to integrate the application with the iPlanet Directory Server
Access Management Edition software and use single sign-on capabilities.

The Pluggable Authentication SPIs and Single Sign-On SPIs are for authenticating
users and issuing a single-sign-on (SSO) token. The SSO APIs provides Java
interfaces that validate the SSO tokens and maintain authentication credentials for
the user. The SSO APIs can be used to provide a mechanism by which users need to
authenticate only once, and then can access multiple we-based applications
without having to re-authenticate. Additionally, it provides interfaces for
applications to store generic key-value pairs and to register callback listeners,
which will be invoked when the SSO token is destroyed.

DSAME’s single-sign-on solution is primarily intended for web-based applications;
however, service developers can use the Single Sign-On APIs to write Java-based
services.

The Single Sign-On APIs provide methods to:

• get the SSO token from its string representation (token ID)

• validate or invalidate the SSO token

• get the principal name of the authenticated user

• get the token ID

• get the authentication type

• get the authentication level

• get the hostname of the client that sent the SSO token

• method to get the value of a property stored in the SSO token

• add a listener that will be called when the token is destroyed, or has reached its
maximum idle timeout, or has reached its maximum session timeout.

• get the SSO token in a string format

• check if two SSO tokens are equal.

• get the SSO token from its string representation that is provided by the token
ID.

• notify applications when the SSO token expires.

• get the time when the token expired.

• get the cause for the token to expire.

Extending iPlanet Directory Server Access Management Edition

Chapter 1 DSAME Programmer’s Overview 23

The third major interface that can be customized by programmers is the HTML
templates. Service developers or programmers can modify the HTML templates to
create custom authentication login, logout, and timeout pages for different
organizations in DSAME console.

The fourth customizable interface in DSAME 5.0 is the XML interface. Service
developers can use the amadmin CLI tool to import custom service XML files such
as when creating a custom pluggable authentication service. Also, they can use the
amadmin tool to import batch update XML files that update objects in the DIT (such
as creating, reading, and deleting roles, users, organizations, groups, people
containers, and services). Developers writing programs that will communicate
with the exposed XML over HTTP interface to iPlanet Directory Server Access
Management Edition need to understand and be able to use eXtensible Markup
Language (XML) and HTTP.

Extending iPlanet Directory Server Access
Management Edition

DSAME can be extended in several ways, which is described in this section. If
additional authentication capabilities are needed, use the public Java Pluggable
Authentication SPIs to create them. To add Java-based services that can make use
of the single sign-on solution, use the Single Sign-On APIs and the Authentication
SPIs to integrate them into the iPlanet Directory Server Access Management
Edition framework. (Note that the Single Sign-On solution is primarily a
web-based solution, but can be extended using the Java APIs.)

DSAME can be extended by adding new or custom services or applications, such as
authentication plugin modules or custom single sign-on solutions. Typically, for
most services, DSAME and Directory Server must be updated with any new
objectclasses and attributes that an application or service will use, in order for
DSAME to manage those service attributes. (For general information on the
necessity of updating the schema in Directory server when adding a service, see
Chapter 5, “Understanding DSAME XMLs and DTDs.” For information on
updating schema when adding a custom authentication module, or a single
sign-on solution, see Chapter 2, “Pluggable Authentication SPI” and Chapter 6,
“Using the Command Line Interface,” respectively.)

NOTE Detailed information on the public APIs and SPIs in DSAME 5.0
(Single Sign-On and Authentication) is available in the Javadocs.
(The Javadocs are located in
<dsame_root>/web-apps/services/docs/en_USjavadocs.

Extending iPlanet Directory Server Access Management Edition

24 DSAME Programmer’s Guide • December 2001

Which APIs, SPIs, and XML Interfaces You Can
Customize
This section gives brief descriptions of which interfaces are customizable by
programmers in the DSAME 5.0 release:

• Authentication SPI — Java interfaces for creating custom pluggable
authentication services. You can use the exposed Java Service Provider
Interfaces (SPIs) and classes to create a server-side plug-in authentication
module.

• Single Sign-On Client APIs — Single Sign-On component provides Java
interfaces so that applications can participate in the SSO solution. These APIs
are intended primarily for web-based applications, but they can be extended to
any Java-based applications.

• amadmin CLI tool — The amadmin CLI tool is considered a declarative
interface. The two primary purposes of the amadmin command line interface
tool are to import service schema and configuration data into DSAME, and to
perform batch updates to the Directory Server (such as creating, getting, and
deleting roles, users, organizations, groups, people containers, and services).

The iPlanet Directory Server Access Management Edition APIs, SPIs, and XML
over HTTP interfaces that are customizable in the DSAME 5.0 release fall into
several broad categories:

To do: Use these APIs/SPIs/XML over HTTP Interfaces

Single Sign-On Single Sign-On APIs are programmatically
customizable. Customers can use the seven public
single sign-on APIs to create custom services.

Authentication
Extension

Three Authentication service provider interfaces (SPIs)
are public in this release so customers can write their
own supplemental authentication module
(SPI—service provider interface) to plug into iPlanet
Directory Server Access Management Edition.

Overview of Service Development Process When Extending DSAME Interfaces

Chapter 1 DSAME Programmer’s Overview 25

Overview of Service Development Process When
Extending DSAME Interfaces

This section describes the development process (at a high level) when extending
the public DSAME APIs, SPIs, and/or XML interfaces to create a custom service to
integrate into the iPlanet Directory Server Access Management Edition product.

The following main steps outline the process:

1. Define high-level application requirements.

2. Determine which iPlanet Directory Server Access Management Edition APIs,
SPIs, or service XMLs (Authentication, etc.) support the high-level
requirements.

3. Define the iPlanet Directory Server Access Management Edition attributes.

4. Define the privileges that determine the policy for the service. Create an XML
file to define the service attributes as they will display, and thus be manageable
from, the DSAME console.

5. Import the XML file to the DSAME server with the amadmin CLI tool.

6. Configure and modify the services through the DSAME console.

For more detailed information on creating services to integrate into DSAME, see
the section “High Level Flow for Creating and Registering Services,” on page 157
of this guide.

Service XML and Bulk
Updates XML Files

Service developers and/or customization engineers
can extend the service XMLs to create their own
custom services or applications to integrate into
DSAME. Additionally, they can use the bulk
operations XMLs to create, get, and delete user objects
in the DIT (Directory Information Tree) such as roles,
users, organizations, groups, people containers, and
services.

To do: Use these APIs/SPIs/XML over HTTP Interfaces

Overview of Service Development Process When Extending DSAME Interfaces

26 DSAME Programmer’s Guide • December 2001

Each XML DTD specifies the content and format of the information that can be sent
to and received from the iPlanet Directory Server Access Management Edition
services. (See Chapter 5, “Understanding DSAME XMLs and DTDs” and Chapter
6, “Using the Command Line Interface” for information on the service XML and
batch update XML files used in DSAME, and how to use the command line
interface to import the service XMLs and the batch updates XML files into
DSAME.)

27

Chapter 2

Pluggable Authentication SPI

DSAME provides an Authentication and Single Sign-On (SSO) framework with a
plug-in architecture. The authentication mechanisms supported in DSAME 5.0 are:

• LDAP—Authenticates a user using LDAP (Lightweight Directory Access
Protocol).

• Certification-based—Authenticates a user using a Personal Digital Certificate
(PDC).

• RADIUS—Authenticates a user through an external RADIUS server.

• Membership (Self-registration)—For new user self-registration and login.

• Anonymous—Any user can log into DSAME as an anonymous user with
limited access. Anyone can access it without providing a bind DN or
password.

The plug-in framework for authentication provides a way for customers to plug in
their own authentication mechanisms. The SSO solution provided by DSAME is
primarily for web-based applications. This solution provides a mechanism by
which end users need to authenticate only once, and then can access multiple
web-based applications without having to re-authenticate. (See “Authentication
Process Overview” on page 29 for information on authentication architecture and
how authentication interacts with the SSO feature.)

Overview of Pluggable Authentication SPI
This chapter describes requirements for writing a supplemental authentication
module (SPI—service provider interface) to plug into iPlanet DSAME and provides
information on customizing the authentication pages.

Overview of Pluggable Authentication SPI

28 DSAME Programmer’s Guide • December 2001

The section “Authentication Process Overview” on page 29 describes the
architecture of the authentication component and its public interfaces. The Section
“Writing and Integrating a Pluggable Authentication Module” on page 42 gives
information on how to write and integrate a pluggable authentication service
(module). See Table 2-1 on page 28 for a list of common tasks related to
customizing pluggable authentication modules, and where to find information on
them.

For additional authentication capabilities, use the information in this chapter to
write a custom authentication module and integrate it into the iPlanet Directory
Server Management Access Edition product.

Table 2-1 Tasks to Customize Authentication

If you want to Do

Change login prompts Edit the .properties file associated with the login screen
that you want to change. See “Understanding the
screen.properties File,” on page 36.

Add authentication
capability

• Create a “screen”.properties file for the authentication
module you write and intend to integrate into DSAME.
See “Understanding the screen.properties File,” on
page 36.

• Write and integrate an auth module.“Writing and
Integrating a Pluggable Authentication Module,” on
page 42.

Selectively enable or
disable auth modules

Refer to DSAME Administration Guide

Customize prompts and
appearance for specific
organizations or
sub-organizations

Refer to DSAME Administration Guide.

TIP Before beginning to write authentication modules, contact the
iPlanet Solutions sales representative to find out if the module
needed has already been written and is available from internal
resources.

Authentication Process Overview

Chapter 2 Pluggable Authentication SPI 29

Authentication Process Overview
The architecture of DSAME’s authentication is shown in Figure 2-1 on page 30. It
has three layers:

• client interface (Authentication Service) using HTML/HTTP

• framework

• authentication module interfaces (plug-in SPIs)

Each of these layers is discussed in the following paragraphs.

Client Interface (Authentication Service using
HTML/HTTP)
DSAME authentication provides two client interfaces, only one of which is exposed
in DSAME 5.0—the Authentication Service which provides an HTML over HTTP
interface. (A “public” or “exposed” interface is one that customers can customize to
create their own service or module.) Application developers can customize the
HTML templates to create new authentication login, logout, and timeout screens.
(For more information, see Chapter 3, “HTML Templates".)

Although there are two client interfaces, both use the same underlying
authentication framework and authentication modules. Figure 2-1 on page 30
shows the different authentication components and how they interact within the
authentication architecture.

Authentication Process Overview

30 DSAME Programmer’s Guide • December 2001

Figure 2-1 Authentication Architecture

Authentication Service Provided as HTML over HTTP(s) Interface
The Authentication Service is provided as a service within a servlet container using
the Java Servlet SDK. Thus, the authentication service can be deployed in an
iPlanet Web Server or an iPlanet Application Server that supports a servlet
container. As shown in Code Example 2-7 on page 54, the client interface provided
by the Authentication Service is HTML over HTTP(s), which makes it convenient
to use with a Web browser.

In a typical scenario, the Authentication service (which is a URL) would be a login
page for an organization or a service, or users would be re-directed to the
authentication service URL when they access a resource that is protected. The
authentication service would then guide the user through a series of one or more
screens in the process of gathering credentials (such as user name, password,
employee number, etc.), based on the requirements of the authentication modules
that were configured. For simple authentication modules like LDAP, the required
credentials would be user name and password and could be obtained in one
screen. However, for complicated challenge-response type authentication
algorithms, more login screens might be required. (For information on customizing
the login, logout, and timeout screens, see Chapter 2, “Pluggable Authentication
SPI".)

Web Browser

Web Server (iWS) with

Authentication Service

Authentication Framework

Servlet & JSP Engine

Authentication Modules Interfaces (SPIs)

HTML/HTTP(s)

Authentication
Configuration

DataStore
(LDAP)

LDAP
Authentication

Certificate
Authentication

Java Application APIs

Java Application

API calls

Provided by DSAME

(Login Servlet)

. . .

(not public in DSAME 5.0)

Authentication Process Overview

Chapter 2 Pluggable Authentication SPI 31

After the user has provided the required credentials, the authentication service
relies on the framework to determine if the user has been successfully
authenticated. If the authentication process is successful, the user is re-directed to
an organization or service home page (URL). If the authentication process fails, the
user is re-directed to an error page (URL). Both the re-direction URLs can be
configured by the administrator. (For information, see the iPlanet Directory Server
Administrator’s Guide.)

After a user has been authenticated successfully, he or she is issued an encrypted
SSO token identity using the cookie. This SSO token can be used to access different
applications without having to re-authenticate. (The SSO token identity can be
thought of as similar to a session identity). Also associated with the SSO token
identity are attribute-value pairs, which would have information about the user’s
name, authentication level, authentications performed, etc. The SSO token identity
can also be configured by an administrator to expire based on timeouts. (For
information, see the iPlanet Directory Server Administrator’s Guide.)

Authentication Service Features
The features provided by the Authentication Service (HTML over HTTPs) are:

• presentation using HTML and can be accessed through any Web browser

• integration with SSO by setting the SSO cookie

• configurable support to re-direct users with successful authentication

• configurable support to handle authentication failures

• support for authentication timeout, if users do not respond with credentials
within specified time.

Authentication Framework
This is the middle tier of DSAME’s authentication component which connects the
client interfaces to the authentication modules. Features provided by
authentication framework are:

• configuration of authentication modules based on organization, role, or user

• chaining of authentication modules

The authentication component uses the Service Management Services DTD
(sms.dtd) to represent its configuration in a XML file. (See Chapter 5,
“Understanding DSAME XMLs and DTDs" for information on service XMLs.)

Overview of Integrating Authentication Modules in DSAME

32 DSAME Programmer’s Guide • December 2001

Authentication Plug-In Module Interfaces (SPI)
The authentication component provides a pluggable authentication framework
allowing customers to plug in their authentication mechanism.

The authentication mechanisms supported in DSAME 5.0 are:

• LDAP

• Certificate (PKI)

• RADIUS

• Membership (self-registration)

• Anonymous

• Core—Core authentication provides configuration for the authentication
service itself. This Core authentication configuration is used by all other
authentication modules.

All authentication services require that the Core authentication service be
configured; it must always be configured in Admin Console. The Core
authentication service is a key internal DSAME service, like Session, Logging,
etc. and has its own profile. The Core authentication service can be considered
the “driver” of the other authentication services. The Core authentication can
call any of the other configured authentication services (LDAP, RADIUS, etc.)

The Core authentication service lets you select which authentication modules
users will see in Admin Console when they go to an organization, and lets you
select when a user gets redirected to another login page, which page (URL), etc.
The other authentication services do things like validate credentials.

Overview of Integrating Authentication Modules in
DSAME

Every authentication service in DSAME has the following components it needs and
interacts with:

Overview of Integrating Authentication Modules in DSAME

Chapter 2 Pluggable Authentication SPI 33

• a screen .properties configuration file; for example, LDAP.properties or
AuthenticationSample.properties;

The authentication framework loads these properties into the display, and
passes your input to the authentication module. It displays each screen one at a
time, as part of the authentication process. Your customized authentication
plug-in module can similarly read and display input and display it on the
screen as part of the authentication process. The HTML for the authentication
states is dynamically generated based on the parameters set in the
.properties configuration file for the authentication module developed.

• an I18N .properties file, sometimes also called a “resource bundle” .properties
file; for example, LDAP.properties. This file holds all the key/value pairs for
the I18N key defined in the Java and XML files.

• one factory class that implements
com.iplanet.authentication.spi.AuthenticationModuleFactory

• one module class that extends
com.iplanet.authentication.spi.AuthenticationModule

• the amAuth.xml file, which is used by all the internal authentication modules,
and an XML file for your customized authentication module or service (for
example, <your_custom_auth_module>.xml file).

After the authentication module has been written and integrated, an administrator
must configure it from Admin Console so that the module knows where to retrieve
this information. For information on configuring authentication modules, see the
iPlanet Directory Server Access Management Edition Installation Guide.

Where to find the Public Javadocs for Authentication SPIs
The Javadocs for the following three public authentication interfaces

• com.iplanet.authentication.spi.AuthenticationModuleFactory

• com.iplanet.authentication.spi.AuthenticationModule

• com.iplanet.authentication.spi.AuthenticationException

can be found in the javadocs directory of the product build, or at

NOTE The HTML that is dynamically generated can be overridden. See the
“Understanding the screen.properties File,” on page 36 for more
information.

Overview of Integrating Authentication Modules in DSAME

34 DSAME Programmer’s Guide • December 2001

http://yourserver:port/docs/en_US/javadocs

Classes and Methods you must Implement when creating a custom
Authentication Service
The following sections provide information on the classes and methods you must
implement in the sample authentication module, or when writing your own
custom authentication service.

AuthenticationModuleFactory Methods that must be Implemented
The DSAME authentication framework implements the factory model for the
pluggable authentication modules. You must implement the

• com.iplanet.authentication.spi.AuthenticationModuleFactory class.

• newAuthenticationModule() method—This method will create a new instance
for the pluggable module you implemented.

AuthenticationModule Methods that must be Implemented
You must implement the following three methods when writing a new pluggable
authentication module:

• The init() method which reads the hostname, password, etc.

• The second method you need to override is validate(). This is how you
control the flow of screen. The validate method validates the user. This method
is called by the authentication framework.

• The third method you must override is getUserTokenId(). It gets the user
token ID. The getUserTokenId() method tells the authentication framework
who the user (who has just authenticated) is.

The authentication framework controls the entire login process and which
authentication module(s) are used to authenticate users.

Do You need to create a Service XML for your custom Authentication
Service
Writing a service XML file is optional, whether it is for a service other than
authentication, or for a custom authentication service. The only case where service
developers need to write a service XML file (such as for a custom authentication
service) is when he/she wants certain configuration parameters (attributes) to be
manageable from the DSAME Console. The primary purpose of the service XML
files is for specifying any attributes (configuration parameters) that service

Overview of Integrating Authentication Modules in DSAME

Chapter 2 Pluggable Authentication SPI 35

developers want users and administrators to be able to configure from the DSAME
Admin Console. The primary purpose of the service XML files is to feed in
configuration parameters with default values set, to make them configurable from
Admin Console. The APIs handle everything else behind the scenes.

It is important to note that in DSAME 5.0, because much of the DSAME SDK is not
public and customizable, you cannot manage the global and organization
attribute/value pairs through your external application (you cannot read and write
them). The global and organization attributes are not public in this release, relative
to writing customized external services.

However, when defining custom authentication service XMLs, you would
typically only use the global and organization attribute types, in the DSAME 5.0
release.

Determining when an authentication service XML is necessary
To determine whether you even need to write a service XML file for your
authentication service, a service developer must determine whether your
authentication service has custom attributes, whether it has configuration
parameters that should be configurable from the DSAME Admin Console, such as
port_number, server names, etc. And if it does, does he/she want that data to be
manageable and retrievable through the DSAME Admin Console. For example, do
you want administrators and users to be able to go to the Authentication menu,
and configure their server per organization, or port per organization, or is it a
configuration parameter (attribute) that does not need to be configurable through
Admin Console.

If it is determined that the configuration parameters do not need to be manageable
(settable and gettable) through the DSAME Admin Console, then the service
developer only needs to write a custom authentication service, but he/she would
not need to create a service XML file for the authentication module.

The only reason for authentication service XMLs is to make various configuration
parameters configurable from the DSAME Admin Console. (This does not
necessarily apply to all service XMLs, because you can group some attributes and
put them into a service to make them manageable by administrators and users
through DSAME Admin Console.)

The service XML file is a way to let service developers define attributes
(configuration parameters) to be configurable from Admin Console, upon which
administrators and users can set and get the values. It is up to the application or
service to interpret the behavior of the attribute/value pairs specified in the service
XML files.

Understanding the screen.properties File

36 DSAME Programmer’s Guide • December 2001

When writing a custom authentication service, only global and organization
attributes are used
When defining a service XML file for a custom authentication service, you typically
only use “global” and “organization” attributes in DSAME 5.0. Global and
organization attribute/value pairs can be read and gotten through the pluggable
authentication APIs, which has methods to read and get their attribute values.
Authentication service is configured only on a per-organization basis.

When writing custom authentication service, you don’t need to update
Directory server schema
Because you are defining attributes of type “global” or “organization”, you do not
need to update the Directory server schema. The global and organization attributes
are stored in Directory server as static blobs of data in Directory server; they are not
read or stored as LDAP entries.

For the DSAME 5.0 release, because the global and organization attributes are not
public in this release, service developers don’t have to update the LDAP schema in
Directory server if they want to run a custom authentication service. This is
because the authentication service uses an exposed pluggable Authentication API
that can read and get your authentication service’s configuration.

Core Authentication Service Defines Configuration for all
Authentication Services
The amAuth.xml file is used by the Core authentication service for its
configuration. It can be thought of as a “general” or “parent” authentication service
XML file for the all of the authentication services (whether internal to DSAME or
external authentication applications). This file must be in the
<dsame_root>/web-apps/services/WEB-INF/config/xml directory for the
authentication modules to work. Each authentication service must also have its
own service XML file, for example, amAuthLDAP.xml, amAuthRADIUS.xml, etc.
Similarly, when writing a custom pluggable authentication service, you must
create a new service XML file, for example, <your_custom_auth_module>.xml
(in addition to making modifications to the Core authentication service).

Understanding the screen.properties File
The screen .properties file is the configuration file for an authentication
module. Each authentication module must have a screen .properties
configuration file. The file specifies the text, tokens, and password prompts for the
login pages associated with the authentication module.

Understanding the screen.properties File

Chapter 2 Pluggable Authentication SPI 37

The HTML for the authentication states is dynamically generated based on the
parameters set in the .properties configuration file for the authentication module
developed. The HTML that is dynamically generated can be overridden with an
HTML tag in the .properties file. For example, if a screen in a .properties file has the
tag “HTML”, the authentication service will read in the entire HTML file specified
and display that unmodified instead of dynamically generating the HTML. For
example, the screen in Code Example 2-1 on page 37 wold display
“mycustomhtml.html” instead of generating the HTML.

The authentication module’s .properties file name must be named using the
base class name of the authentication module (no package name) and the
extension .properties. There is a sample .properties configuration provided
in the <dsame_root>/SUNWam/samples/authentication/providers directory
called AuthenticationSample.properties. There must be a .properties
configuration file with the name of the class (no package name) and the extension
.properties; for example, LDAP.properties or
AuthenticationSample.properties, or
<your_custom_auth_module>.properties.

When deploying your customized pluggable authentication module, you must
make sure that the .properties file is copied or located in
<DSAME_root>/SUNWam/web-apps/services/WEB-INF/config/auth
/default directory, or the auth/locale directory. The authentication service will
look for its configuration files in the
<DSAME_root>/SUNWam/web-apps/services/WEB-INF/config/auth
/default directory, by default. If the files are organization-specific, then it will in
the <DSAME_root>/SUNWam/web-apps/services/WEB-INF/config/auth
/orgname directory. If the files are organization and locale-specific, the
authentication service will look for its configuration files in the
<DSAME_root>/SUNWam/web-apps/services/WEB-INF/config/auth
/orgname/locale directory.

Table 2-2 discusses the directives that can be included in a .properties file.

Code Example 2-1 Sample Screen calling an HTML file

SCREEN
TIMEOUT 120
TEXT LDAP Authentication
TOKEN Enter UserId
PASSWORD Enter Password
HTML mycustomhtml.html

Understanding the screen.properties File

38 DSAME Programmer’s Guide • December 2001

Table 2-2 The .properties File Directives

Directive Description

SCREEN Each SCREEN entry corresponds to one authentication state
(authentication HTML page). The authentication module can
set which screen is next, or it can allow the iPlanet Portal
Server’s auth servlet progress through the screens
sequentially.

TIMEOUT n The TIMEOUT directive is used to ensure that users respond
in a timely manner. If the time between when the page is sent
and the user submits his response is greater than “n” seconds,
a time-out page is sent.

TEXT The TEXT directive is similar to a title for the page, and the
text <xxx> appears at the top of the screen area provided for
the auth module. Only one TEXT directive per SCREEN
should be specified. If more than one is provided, then the last
one is displayed.

TOKEN yyy The TOKEN directive equates to the following HTML:

<P>yyy
<INPUT TYPE=TEXT
NAME=TOKEN0>

The input field's name starts at TOKEN0 and increments with
each TOKEN or PASSWORD directive specified per SCREEN.

PASSWORD zzz The PASSWORD directive equates to the following HTML:

<P>yyy
<INPUT
TYPE=”PASSWORD” NAME=TOKEN0>

The input field's name starts at TOKEN0 and increments with
each PASSWORD or TOKEN directive specified per SCREEN.

IMAGE image-path The optional IMAGE directive allows authentication module
writers to display a custom background image on each page.

HTML The HTML parameter allows the module writer to use a
custom HTML page for the authentication screens.

<REPLACE> The REPLACE tag allows a module writer to substitute
dynamic text for the accompanying text descriptions. This
allows a module writer to dynamically generate challenges or
passwords.

Used in conjunction with the setReplaceText() method.

Understanding the screen.properties File

Chapter 2 Pluggable Authentication SPI 39

The specific directives included will depend on the requirements of the
authentication method and the extent of customizing the appearance of the
prompts and displays through the authentication process.

Each SCREEN entry corresponds to one authentication state or authentication
HTML page. When an authentication session is invoked, one HTML page is sent
for each state. The first state sends an HTML page asking the users to enter a token
and a password. (Your authentication module can control the order; by default, it is
sequential.) When the users submit the token and the password, the validate()
method is called. The module gets the tokens, validates them, and returns them.
The second page is then sent and the validate() method is again called.

If the module throws a LoginException, an authentication failed page is sent to
the user. If no exception is thrown, which implies successful completion, the users
are redirected to their default page. The TIMEOUT directive is used to ensure that
the users respond in a timely manner. If the time between sending the page and the
response is greater than the TIMEOUT value, a time-out page is sent.

When multiple pages are sent to the user, the tokens from a previous page may be
retrieved by using the getTokenForState methods. Each page is referred to as a
state. The underlying authentication module keeps the tokens from the previous
states until the authentication is completed.

Each authentication session creates a new instance of the authentication Java class.
The reference to the class is released once the authentication session has either
succeeded or failed.

NOTE Any static data or reference to any static data in the authentication module
must be thread-safe.

Understanding the screen.properties File

40 DSAME Programmer’s Guide • December 2001

The .properties file (for example, for the LDAP authentication module, see
LDAP.properties in Code Example 2-7 on page 54) interacts with the
authentication program, and displays a screen or multiple screens to a user in the
process of authenticating the user. This might be a multi-step process for the user
to authenticate, which may prompt the user for multiple inputs. Each screen
corresponds to a step in the user authentication process. For example, when a user
logs into the LDAP authentication module, it is the .properties file that provides the
fields and text that appear on the authentication screens. For example, the
LDAP.properties file describes text fields that describes the screen (such as
“LDAP Authentication”), tokens (fields) that prompt the user to enter his/her
userid, password prompt text, and timeout settings (for example, “120” might give
the user 120 seconds to authenticate, after which it times out).

When writing a pluggable authentication module, you must follow the format
specified for the .properties file. For example, the “TEXT” field specifies the title of
the authentication HTML page. The “TOKEN” field (or keyword) specifies what
displays on the authentication HTML screen or page. The “PASSWORD” field or
keyword specifies what is displayed on the authentication HTML page. The
“HTML” field or keyword can be used to specify that an entire HTML file be read
in and displayed unmodified, instead of dynamically generating the HTML. (See
Section “Understanding the screen.properties File” on page 36.)

Code Example 2-2 Sample.properties File

SCREEN
TEXT This is a sample login page
TOKEN First Name
TOKEN Last Name

SCREEN
TIMEOUT 30
TEXT You made it to page 2
PASSWORD Just enter any password

SCREEN
TIMEOUT 60

TEXT You made it past the first page
TOKEN Enter <REPLACE>’s favorite beer
PASSWORD Enter <REPLACE>’s favorite wine

SCREEN
TEXT 4th page
PASSWORD any password
TOKEN anything here

Understanding the screen.properties File

Chapter 2 Pluggable Authentication SPI 41

Product Directories where .properties and
Sample .java Files are Located
To see a sample .properties file and some sample authentication programs (.java
files), go to the <server_root>/samples/authentication/providers
directory.) The .properties files for the supported authentication modules (LDAP,
Certificate-based, RADIUS, Membership, and Anonymous) are located in the
<DSAME_root>/SUNWam/web-apps/services/WEB_INF/classes
directory.

Every authentication module (for example, LDAP, RADIUS, Certificate-based,
Membership (Self-registration), and Anonymous) has a .properties file. After a
customization engineer creates a new application or service, he or she must copy
the .properties file to the
<DSAME_root/web-apps/services/WEB-INF/config/auth/default directory.
(See Section “Writing and Integrating a Pluggable Authentication Module” on
page 42 for information on how to integrate a custom authentication service.)

Use an existing service XML file to create your
Custom Authentication XML
When writing a custom authentication service, you could typically use one of the
existing internal authentication service XML files (for example, amAuthLDAP.xml)
which is provided in DSAME, and create a copy which you can then customize
with your custom authentication service’s attributes. After loading in this new
service XML file using the amadmin CLI tool, make sure you rename the XML file
with the name of your custom authentication module.

NOTE A TOKEN in a .properties file is like a keyword or field; it has no relation to
an SSO token.

Writing and Integrating a Pluggable Authentication Module

42 DSAME Programmer’s Guide • December 2001

amAuth.xml is Used for General Authentication
Configuration
The amAuth.xml file defines the Core authentication service, which is the overall
configuration file for authentication. It defines attributes that are used by the Core
authentication service (which defines the overall authentication configuration).

When creating a custom authentication service, customization engineers must
modify the amAuth.xml file to include their custom authentication module .class
file (com.iplanet.authentication.spi.AuthenticationSample.class, for
example) in the Authentication menu choices and in the Authenticator’s list. (See
Section “Writing and Integrating a Pluggable Authentication Module” on page
42.)

For some information on when a service developer would need to write a custom
authentication service XML, see the Section “Do You need to create a Service XML
for your custom Authentication Service” on page 34.

For information on configuring the various authentication modules supported, see
the iPlanet Directory Server Access Management Edition Administration Guide.

Writing and Integrating a Pluggable
Authentication Module

The following sections discuss the requirements and recommendations to follow
when writing a new authentication module.

Requirements and Recommendations
A pluggable authentication module for iPlanet DSAME must override certain
methods in the AuthenticationModule class and the
AuthenticationModuleFactory interface and should adhere to specific
naming conventions and standards for easy integration.

NOTE The Core authentication service (defined in amAuth.xml) defines overall
authentication configuration. The administrator must always configure the
Core authentication module in DSAME Console.

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 43

• Write your authentication module class which extends and subclasses methods
in com.iplanet.authentication.spi.AuthenticationModule

• Override the validate(), init(), and getUserTokenId() methods

The validate method replaces the input gathering method. Each time the user
submits an HTML page, the validate() method will be called. In the
method, authentication-specific routines are called. At any point in this
method, if the authentication has failed, the module must throw a
LoginException. If desired, the reason for failure can be an argument to the
exception. This reason will be logged in the iPlanet Portal Server authentication
log.

init() should be used if the class has any specific initialization such as
loading a JNI library.
init() is called once for each instance of the class. Every authentication
session creates a new instance of the class. Once a login session is completed
the reference to the class is released.

getUserTokenId() is called once at the end of a successful authentication
session by the iPlanet Portal Server authentication server. This is the string the
authenticated user will be known as in the iPlanet Portal Server environment.
A login session is deemed successful when all pages in the .properties file
have been sent and the module has not thrown an exception.

• Write your authentication module factory class which implements the
com.iplanet.authentication.spi.AuthenticationModuleFactory
interface

You must also implement the AuthenticationModuleFactory interface when
creating a pluggable authentication module. The
AuthenticationModuleFactory interface defines a factory API which enables
the authentication framework to obtain an instance of the corresponding
authentication module. It creates a new instance of an AuthenticationModule
object for an authentication module.This could be implemented by calling the
corresponding constructor of your pluggable authentication module.

NOTE For a list and description of the methods used to write the authentication
module, see the JavaDocs at

http://yourserver:port/docs/en_US/javadocs

NOTE • The newAuthenticationModule method is not synchronized.

Writing and Integrating a Pluggable Authentication Module

44 DSAME Programmer’s Guide • December 2001

The implementation of your pluggable authentication module should be
thread-safe.

Recommendations
Naming the authentication module and factory classes you write in the following
way allows (and forces) the module’s class file to be installed with the other
authentication modules provided with the iPlanet DSAME software:

If your authentication module class is named <your_custom_auth_module>.java,
then name your authentication module factory class
<your_custom_auth_module>AuthenticationModuleFactory.java

Compiling the Authentication Sample
Do the following to compile the Authentication Sample program (or a pluggable
authentication module that you write at your site). The Authentication Sample is
provided in the <dsame_root>/samples/authentication/providers
directory:

Set Environment Variables
1. Set the following environment variables.

These variables are used to run the gmake command. You can also set these
variables in the makefile. The Makefile is located in the same directory
(<dsame_root>/SUNWam/samples/authentication/providers) as the
Authentication Sample program files.

a. JAVA_HOME —Set this variable to the directory pathname where your
JDK is installed. The JDK should be newer than JDK 1.2.2.

b. CLASSPATH—Set this variable to the location of the dai.jar file, which is
located in
<dsame_root>/SUNWam/web-apps/services/WEB-INF/lib

c. BASE_CLASS_DIR—Set this variable to the directory where all the sample
compiled classes are located.

d. JAR_DIR—Set this variable to the directory where the JAR files (.jar) of the
Sample compiled classes will be created.

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 45

Run the Make Command
1. Go to the

<dsame_root>/SUNWam/samples/authentication/providers
directory and run

make

Integrating the Authentication Sample program
Do the following to integrate, or deploy, the AuthenticationSample program (or a
pluggable authentication module that you write):

1. Copy <your_custom_auth_module>.jar from the <JAR-DIR> directory to:

<dsame_root>/SUNWam/web-apps/services/WEB-INF/lib

2. Copy <your_custom_auth_module>.properties file (or the
AuthenticationSample.properties file if you using the sample files) to:

<dsame-root>/SUNWam/web-apps/services/WEB-INF/config/auth/
default

3. Modify
<dsame-root>/SUNWam/web-apps/services/WEB-INF/config/xml/
amAuth.xml to include your custom sample (or the AuthenticationSample)
in the Authentication menu choices and in the Authenticators list in DSAME
Admin Console as follows:

NOTE The .properties filename should be similarly named as
<your_custom_auth_module>.properties; for example,
AuthenticationSample.properties.

Code Example 2-3 Excerpt from amAuth.xml File

 <AttributeSchema name="iplanet-am-auth-menu"
 type="multiple_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <Value>LDAP</Value>
 <Value>Radius</Value>
 <Value>Membership</Value>
 <Value>Anonymous</Value>

Writing and Integrating a Pluggable Authentication Module

46 DSAME Programmer’s Guide • December 2001

4. In addition to modifying the amAuth.xml file, you might need to create a
new service XML file for your custom authentication module.

5. Back up the iPlanetAMAuthService by using db2ldif:

a. cd <directory_install_root>/slapd-<hostname>

b. ./db2ldif -n userRoot -s
"ou=iPlanetAMAuthService,ou=services,<root_suffix>"

6. Delete the iPlanetAMAuthService entry using amadmin:

 <Value>Cert</Value>
 <Value>AuthenticationSample</Value>
 </ChoiceValues>
 <DefaultValues>
 <Value>LDAP</Value>
 </DefaultValues>
 </AttributeSchema>

 <AttributeSchema name="iplanet-am-auth-authenticators"
 type="list"
 syntax="string"
 i18nKey="a17">
 <DefaultValues>

<Value>com.iplanet.authentication.modules.radius.Radius</Value>

<Value>com.iplanet.authentication.modules.ldap.LDAP</Value>

<Value>com.iplanet.authentication.modules.membership.Membership<
/Value>

<Value>com.iplanet.authentication.modules.anonymous.Anonymous</V
alue>

<Value>com.iplanet.authentication.modules.cert.Cert</Value>

<Value>com.iplanet.authentication.modules.application.Applicatio
n</Value>

<Value>com.iplanet.am.samples.authentication.providers.Authentic
ationSample</Value>
 </DefaultValues>
 </AttributeSchema>

Code Example 2-3 Excerpt from amAuth.xml File

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 47

a. /etc/init.d/amserver stop

b. cd <install-root>/SUNWam/web-apps/services/WEB-INF/bin

c. ./amadmin -runAsDN
uid=amAdmin,ou=People,<default_org>,<root_suffix>
--password <password> --deleteService
iPlanetAMAuthService

7. Import the (modified) amAuth.xml file using the amadmin CLI tool:

a. ./amadmin -runAsDN
uid=amAdmin,ou=People,<default_org>,<root_suffix>
--password <password> --schema amAuth.xml

8. Import the new service XML file for the pluggable authentication module that
you have written, using amadmin:

a. ./amadmin -runAsDN
uid=amAdmin,ou=People,<default_org>,<root_suffix>
--password <password> --schema
<your_custom_auth_module>.xml

9. Add <your_custom_auth_module>.jar file pathname (or the
AuthenticationSample.jar file pathname) to the Web server JVM
classpath:

cd <install-root>/SUNWam/servers/https-<host>.<domain>/config

10. Modify the jvm12.conf file to add
<install-root>/SUNWam/web-apps/services/WEB-INF/lib/Authen
ticationSample.jar path to the JVM classpath.

Running the Authentication Sample program
Do the following steps to run the AuthenticationSample program:

NOTE The new service XML file should include only the attributes to be updated.

Also, the authentication module does not have to have a service XML file
unless it has configuration attributes that will need to be manageable
through the DSAME Admin Console. An example of configuration
attributes that would need to be manageable through Admin Console are
port numbers, defaults, and server locations.

Writing and Integrating a Pluggable Authentication Module

48 DSAME Programmer’s Guide • December 2001

1. Restart the DSAME server:

<install-root>/SUNWam/web-apps/services/WEB-INF/bin/
amserver start

2. Log in to the DSAME console by entering the URL

http://<host>.<domain>:<port>/amserver/console

3. Select the User Management view.

4. Select your organization and select Services from the Show menu.

5. Click on DSAME Core Authentication properties.

6. Add AuthenticationSample from the Authentication menu.

When you log in, you can choose either LDAP or your custom authentication
module.

7. Click Submit to save changes and log out

8. Enter the URL

http://<host>.<domain>:<port>/amserver/login

and select your custom authentication module (or the AuthenticationSample)
from the Authentication menu.

or

Enter the URL

http://<host>.<domain>:<port>/login?module=
your_custom_auth_module

NOTE Do not de-select LDAP.

NOTE If you select your new authentication module and it keeps returning to the
Authentication menu, check that your CLASSPATH variable setting is
correct in the jvm12.conf file. Also check the package.classname in
amAuth.xml file; make sure they match.

Also check the amAuth debug file for errors.

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 49

Sample Code
The following samples show the form and content of the files associated with an
authentication module:

• Sample Properties File

• Sample Authentication Module Source

• Sample Authentication XML File

Sample Properties File
There is a Sample.properties provided, which should be copied from:

<DSAME_root>/SUNWam/samples/authentication/providers

to

<DSAME_root>/SUNWam/web-apps/services/WEB-INF/config/auth/
default

where /opt is the directory in which it is installed by default.

Code Example 2-4 AuthenticationSample.properties File

SCREEN
TEXT This is a sample login page
TOKEN First Name
TOKEN Last Name

SCREEN
TIMEOUT 30
TEXT You made it to page 2
PASSWORD Just enter any password

SCREEN
TIMEOUT 60
TEXT You made it past the first page
TOKEN Enter <REPLACE>’s favorite beer
PASSWORD Enter <REPLACE>’s favorite wine

SCREEN
TEXT 4th page
PASSWORD who cares
TOKEN anything here

Writing and Integrating a Pluggable Authentication Module

50 DSAME Programmer’s Guide • December 2001

Sample Authentication Module Source
The following samples are located in files named
AuthenticationSample.java and
AuthenticationModuleFactory.java which are located in:

<DSAME_root>/SUNWam/samples/authentication/providers

Code Example 2-5 Sample Java Module—AuthenticationSample.java

/*
* "$Id: AuthenticationSample.java,v 1.1 2001/08/21 02:16:21 uchil
Exp $"
* Copyright $Date: 2001/08/21 02:16:21 $ Sun Microsystems, Inc.
All Rights Reserved.
*
* Some preexisting portions Copyright C 2000 Netscape
Communications
* Corporation. All rights reserved.
*
* Sun, Sun Microsystems, and the Sun logo are trademarks or
registered
* trademarks of Sun Microsystems, Inc. in the United States and
other
* countries. Netscape and the Netscape N logo are registered
trademarks of
* Netscape Communications Corporation in the U.S. and other
countries. Other
* Netscape logos, product names, and service names are also
trademarks of
* Netscape Communications Corporation, which may be registered in
other
* countries.
*
* Federal Acquisitions: Commercial Software--Government Users
Subject to
* Standard License Terms and Conditions
*
* The product described in this document is distributed under
licenses
* restricting its use, copying, distribution, and decompilation.
No part of
* the product or this document may be reproduced in any form by
any means
* without prior written authorization of the Sun-Netscape
Alliance and its
* licensors, if any.
*
* THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR
IMPLIED

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 51

* CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT,
* ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE
* LEGALLY INVALID.
*/

package com.iplanet.am.samples.authentication.providers;

import java.util.*;
import com.iplanet.authentication.spi.*;

public class AuthenticationSample extends AuthenticationModule {

 private String userTokenId;
 private String firstName;
 private String lastName;

 public AuthenticationSample() throws AuthenticationException{
System.out.println("AuthenticationSample()");

 }

 public void init() throws AuthenticationException {
System.out.println("AuthenticationSample initialization");

 }

 public void validate() throws AuthenticationException {

int currentState = getCurrentState();

if (currentState == 1) {
 firstName = getToken(1);
 lastName = getToken(2);
 if (firstName.equals("") || lastName.equals("")) {
throw new AuthenticationException("names must not be empty");
 }
 return;
}
else if (currentState == 2) {
 String pass = getToken(1);
 System.out.println("Replace TExt first: " + firstName + "

last: " + lastName);
 setReplaceText(1, firstName);
 setReplaceText(2, lastName);
 return;
}
else if (currentState == 3) {
 String[] tokens = getAllTokens();
 for (int i=0; i<getNumberOfTokens(); i++) {
System.out.println("Token-> " + tokens[i]);
 }
 return;

Code Example 2-5 Sample Java Module—AuthenticationSample.java (Continued)

Writing and Integrating a Pluggable Authentication Module

52 DSAME Programmer’s Guide • December 2001

}
else if (currentState == 4) {
 String[] tokens = getAllTokensForState(1);
 for (int i=0; i<getNumberOfTokensForState(1); i++) {
System.out.println("Token-> " + tokens[i]);
 }
}

userTokenId = firstName;
 }

 public String getUserTokenId() {
return userTokenId;

 }

 private static final String sccsID = "$Id:
AuthenticationSample.java,v 1.1 2001/08/21 02:16:21 uchil Exp $
Sun Microsystems, Inc.";
}

Code Example 2-6 AuthenticationSampleAuthenticationModuleFactory.java

/*
* "$Id: AuthenticationSampleAuthenticationModuleFactory.java,v
1.1 2001/08/21 02:17:46 uchil Exp $"
* Copyright $Date: 2001/08/21 02:17:46 $ Sun Microsystems, Inc.
All Rights Reserved.
*
* Some preexisting portions Copyright C 2000 Netscape
Communications
* Corporation. All rights reserved.
*
* Sun, Sun Microsystems, and the Sun logo are trademarks or
registered
* trademarks of Sun Microsystems, Inc. in the United States and
other
* countries. Netscape and the Netscape N logo are registered
trademarks of
* Netscape Communications Corporation in the U.S. and other
countries. Other
* Netscape logos, product names, and service names are also
trademarks of
* Netscape Communications Corporation, which may be registered in
other
* countries.
*

Code Example 2-5 Sample Java Module—AuthenticationSample.java (Continued)

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 53

* Federal Acquisitions: Commercial Software--Government Users
Subject to
* Standard License Terms and Conditions
*
* The product described in this document is distributed under
licenses
* restricting its use, copying, distribution, and decompilation.
No part of
* the product or this document may be reproduced in any form by
any means
* without prior written authorization of the Sun-Netscape
Alliance and its
* licensors, if any.
*
* THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR
IMPLIED
* CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT,
* ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE
* LEGALLY INVALID.
*/

package com.iplanet.am.samples.authentication.providers;

import com.iplanet.authentication.spi.*;

/*
 * Defines the Authentication Sample module factory
 */
public class AuthenticationSampleAuthenticationModuleFactory
 implements AuthenticationModuleFactory
{
 /*
 * Returns an Authentication Sample module instance
 */
 public AuthenticationModule newAuthenticationModule()
 throws AuthenticationException
 {
 return (AuthenticationModule) new AuthenticationSample();
 }
}

Code Example 2-6 AuthenticationSampleAuthenticationModuleFactory.java

Writing and Integrating a Pluggable Authentication Module

54 DSAME Programmer’s Guide • December 2001

Sample XML Files
When creating a new service XML file, you can copy an existing authentication
service XML file, and alter it as needed for your new customized authentication
service. For information on writing a new service, see Chapter 5, “Understanding
DSAME XMLs and DTDs".

When creating a new service, you must modify the amAuth.xml file (Core
authentication) as described in Section “amAuth.xml is Used for General
Authentication Configuration” on page 42.

Resource Bundle .properties File
Every service in DSAME has a corresponding resource bundle .properties file (for
an example, see Code Example 2-7 on page 54).

Each service in DSAME (for example, the LDAP authentication service—described
in dpAuthLDAP.xml) knows the name of its properties file. The properties in each
service’s resource bundle properties file are retrieved using the ResourceBundle
class. Note that every service’s resource bundle .properties file contains keys (such
as “a1”, “a2”, etc.) which map to the actual fields as they will display on each
service’s page in Admin Console. These index, or localization, keys are described in
each service’s XML file (for example, amAuthLDAP.xml, etc.)

For example, for LDAP Authentication, all of these localization keys, or index keys,
are defined in the amAuthLDAP.xml file, and similarly for each internal DSAME
service (logging, session, authentication, etc.) and each external new service that a
customization engineer might add to DSAME.

NOTE The resource bundle .properties file is different from the screen
.properties file. Typically, each service in DSAME, whether internal
or external, must have a resource bundle .properties file, and a
screen .properties file.

Code Example 2-7 amAuthLDAP.properties File

LDAPex=Unknown LDAP Exception
UPerror=Both UserId and Password Required
classpathError=Cannot find the Class, check classpath
InvalidUP=Invalid userId and password, please try again.
NoUser=Cannot find userId
NoServer=cannot contact server
Naming=naming error

Writing and Integrating a Pluggable Authentication Module

Chapter 2 Pluggable Authentication SPI 55

iplanet-am-auth-ldap-service-description=LDAP
PasswordExp=Password Expires In
PasswdMismatch=New Passwords don’t match Reenter
UPsame=username and password are same
PInvalid=Cureent Password Entered Is Invalid
PasswdSame=Password should not be same
PasswdMinChars=Password should be atleast 8 characters
a1=LDAP Server and Port
a2=DN to Start User Search
a3=DN for Root User bind
a4=Password for Root User Bind
a5=Search Filter
a6=User Entry Naming Attribute
a7=Search Scope
a8=Enable SSL to LDAP Server
a9=Authentication Level

Code Example 2-7 amAuthLDAP.properties File

Writing and Integrating a Pluggable Authentication Module

56 DSAME Programmer’s Guide • December 2001

57

Chapter 3

HTML Templates

This chapter provides information on how to customize the authentication login,
logout, and timeout pages for different organizations in DSAME console, and gives
some information on how authentication templates work.

Setting up Login Pages for Different
Organizations

You can edit HTML templates to make substantive changes to the layout or design
of pages, or to add extra functionality, beyond the services possible through the
DSAME console.

How Authentication Templates Work
HTML template files control the layout of the iPlanet Directory Server
Management Access Edition console pages and of the other screens that users see.
The templates are located on the iPlanet Directory Server Management Access
Edition in the directory:

NOTE Strong HTML skills as well as a thorough understanding of Web servers
are required to edit the template files.

It is recommended that you make backups of the templates files before
making modifications to them; then you can restore your files from the
backups.

Alternatively, if a template file is corrupted, you can restore the original
files from the iPlanet Directory Server Access Management Edition
CD-ROM to recover and gain access to the system.

Setting up Login Pages for Different Organizations

58 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

dsame_root/SUNWam/web-apps/services/WEB-INF/config/auth/default

Templates for Customizing the Authentication Pages
These templates allow you to customize the login, logout, and time-out screens.

In the DSAME_root/SUNWam/web-apps/services/WEB-INF/config/auth/
default directory, there are .html files that control the overall appearance and
.properties files that control the sequence of prompts and the exchange of
information between the user and the authentication module.

The login pages come from a set of template HTML files. The default set of these is
located at DSAME_root/SUNWam/web-apps/services/WEB-INF/config/
auth/defaults directory.

To Customize a Login for Different Organizations:
1. Go to the server machine (do the same to all server machines if there are

multiple servers).

cd DSAME_root/SUNWam/web-apps/services/WEB-INF/config/auth

2. Create a directory with the name of the organization; this should be a DN
(distinguished name), and should be the same name that appears in the
DSAME console.

3. Copy all the .properties and .html files (and .gif files, if they exist) into
that directory.

4. Customize the files in that directory for that organization.

Any organization that does not have its own directory of templates will use the
default set in:

DSAME_root/SUNWam/web-apps/services/WEB-INF/config/
auth/default

For example, if there are three organizations—org1, org2, org3—and you are
customizing the login for org1, the directories will look like this:

DSAME_root/SUNWam/web-apps/services/WEB-INF/config/auth/
default

DSAME_root/SUNWam/web-apps/services/WEB-INF/config/auth/
org1

Setting up Login Pages for Different Organizations

Chapter 3 HTML Templates 59

Both would contain a full set of the properties, html and gif files. The login to
org1 would use the set in
DSAME_root/SUNWam/web-apps/services/WEB-INF/config/auth/
org1/, and the other organizations would use the default set in
DSAME_root/SUNWam/web-apps/services/WEB-INF/config/auth/
default

The HTML template files are described in Table 3-1.

Table 3-1 HTML Template Files

File Name Description

login_menu.html Is sent when more than one authentication module is configured. This
gives the iPlanet Directory Server Access Management Edition end user a
choice of which module to use for authentication. The text <subst
data="rows">No menu?</subst> must be somewhere in the
document. It generates a list of URLS to the authentication modules.

login_fail_template.ht
ml

Is sent when authentication has failed. This page contains no required
sections.

login_reauth_menu.html Is sent when a DSAME end user’s session has been inactive for the time set
in the DSAME console. It contains a link for re-authentication. Do not
change the Javascript in this page.

login_template.html Is sent for individual authentication modules such as RADIUS. The seven
subset text segments must remain after modification. This page is also sent
when logging in to the iPlanet Directory Server Access Management
Edition Administration Console.

logout.html Is called after the DSAME end user selects the logout link on the DSAME
DSAME console. it contains no required sections.

login_timeout_template
.html

Is called during an authentication session if the iPlanet Directory Server
Access Management Edition end user does not submit the login form
within the specified time. It has no required sections.

invalidPassword.html Error page for invalid password length in self-registration page.

login_denied.html Error page if user does not have a profile entry in this DSAME installation.

login_fail_admin.html Login to DSAME console failed.

login_menu.html Template used to display user login page when multiple authentication
modules are enabled for an organization.

Setting up Login Pages for Different Organizations

60 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

login_menu_modules.htm
l

Used for single authentication module within login_menu.html

login_prompt.html When user-based authentication is enabled, this page is used to ask for
user login id

login_reauth_admin.htm
l

Administration Console session has expired.

login_template.html Template for the login page

login_timeout_admin.ht
ml

Timeout page for login to DSAME console

login_timeout_template
.html

Login timeout template

Table 3-1 HTML Template Files

File Name Description

Setting up Login Pages for Different Organizations

Chapter 3 HTML Templates 61

logout_admin.html User logout from DSAME console

membership.html Self-registration login page

missingReqField.html Error page when user is not allowed to use this authentication module.

module_denied.html Error page when user is not allowed to use this authentication module

noConfirmation.html Error page if no confirmation password entered in self-registration page

noPassword.html Error page if no password entered in self-registration page

noUserName.html Error page if no user name entered in self-registration pgae

noUserProfile.html Error page if no matching user found when using self-registration to log
in.

org_inactive.html Error page if the matching user found when using self-registration to log
in

password_mismatch.html Error page if confirmation password does not match in self-registration
page

register.html Self-registration page

session_timeout.html Error page if user session times out

userExists.html Error page when trying to register a user that already exists in
self-registration module

userPasswordSame.html Error page when user enters a password that is the same as user ID in
self-registration page

user_inactive.html Error page if user login is disabled (not allowed to login)

wrongPassword.html Error page if user enters invalid password when using self-registration
module to log in

Table 3-1 HTML Template Files

File Name Description

Setting up Login Pages for Different Organizations

62 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Introduction to the Single Sign-On Solution

Chapter 4 Single Sign-On 63

Chapter 4

Single Sign-On

This chapter describes how to use the public Single Sign-On APIs to create a
custom single sign-on solution. It contains the following sections:

• How SSO Uses Cookies

• How SSO Uses Tokens

• Overview of Web-Based Single Sign On (SSO) APIs

• Using the SSO Samples

• SSOTokenSampleServlet.java File

• SampleTokenListener.java

• SSOTokenSampleServlet.java File

Introduction to the Single Sign-On Solution
Every business has resources and services that the business wants to protect. When
users want to access these resources, they must authenticate themselves to get
access to those resources. The user could be a human being or a service itself
accessing a different service. If the users authenticate successfully, and if they are
authorized to access those resources, the users are given access to those resources.
When a user accesses several resources protected by authentication and
authorization policies, it is necessary that a user authenticate every time a
protected resource is accessed. The Single Sign-On feature is a solution that
enables a user from having to repeatedly authenticate himself or herself to access

How SSO Uses Cookies

64 DSAME Programmer’s Guide • December 2001

multiple applications and services. Providing an SSO solution means that the user
will have to authenticate once only. This means that successive attempts by a user
to access protected resources will not require the user to provide authentication
information to get access to each resource.

Web users are typically required to use a separate password to authenticate
themselves to each server they need to access during the course of their work.
Multiple passwords are an ongoing headache for both users and system
administrators. Users have difficulty keeping track of different passwords, tend to
choose poor ones, and tend to write them down in obvious places. Administrators
must keep track of a separate password database on each server and deal with
potential security problems related to the fact that passwords are sent over the
network routinely and frequently.

Solving this problem requires some way for a user to log in only once using a single
password, and then get authenticated access to all servers that user is authorized to
use—without sending any passwords over the network. This capability is known
as Single Sign-On (SSO).

The Web-based Single Sign-On feature in DSAME 5.0 provides or enables the
following:

• The Single Sign-On component or module provides Java interfaces for
applications to participate in the Single Sign-On (SSO) solution.

• The SSO interfaces also include provisions for applications to register callback
listeners, which can be invoked when an SSO token is destroyed

• An adapter servlet may be necessary to integrate non-web applications into
DSAME Single Sign-On.

• Single Sign-On and Authentication support authentication levels.

How SSO Uses Cookies
An encrypted cookie is an information packet generated by the Web Server. Note
that a cookie cannot cross domains. (This is a security requirement.) For example, a
cookie generated for amazon.com cannot be used for another domain such as
fatbrain.com.

A cookie maintains information regarding a user. However, having a cookie does
not necessarily imply that the user is authenticated.

How SSO Uses Tokens

Chapter 4 Single Sign-On 65

The Single Sign-On service and the Authentication service can be thought of as part
of the Web Server. In the DSAME 5.0 implementation, the cookie is generated by
the Single Sign-On service and set by the Authentication service which, again, is
part of the Web server.

How SSO Uses Tokens
The SSO service generates an SSO token using a secure random number generator,
then sends it to the Authentication component. The Authentication component
then requests a token from the Session component. In DSAME 5.0, an SSO token is
inserted into a cookie and sent back to the web browser by the Authentication
service. You could consider that a valid SSO token represents an authenticated
user.

The SSO APIs in DSAME 5.0 can be used to create SSO tokens after authentication
to DSAME has been performed. Multiple tokens created using the SSO API for a
single user will point to the same data internally.

Overview of Web-Based Single Sign On (SSO)
APIs

DSAME provides a Single Sign-On solution primarily for web-based applications,
although it can be extended to any Java-based application, as well as non-Java
applications. The SSO solution provides a mechanism by which users need to
authenticate only once, and then can access multiple web-based applications
without having to re-authenticate. Additionally, it provides interfaces for
applications to store generic key-value pairs and to register callback listeners
which will be invoked when the SSO token is destroyed.

After a user has been authenticated, it is possible to get an SSO token (either
through Java interfaces, or from HTTP headers). This SSO token is the basis for
providing a Single Sign-On solution. All DSAME’s services and interfaces (except
for authentication) need a valid SSO token to process the request. Other
applications wishing to participate in the SSO solution must use the SSO token to
validate the user’s identity.

DSAME’s SSO component mainly provides Java interfaces (that is, Java SDK) for
applications to participate in the SSO solution. The SSO provides a federated
architecture by which different single-sign-on solutions can be plugged in. Figure
Figure 4-1 on page 66 shows the Java SDK architecture of SSO.

Overview of Web-Based Single Sign On (SSO) APIs

66 DSAME Programmer’s Guide • December 2001

Figure 4-1 SSO SDK Architecture

Overview of SSO Classes/Interfaces
This section provides some overview information of the SSO classes and interfaces.
Some of the SSO classes discussed are shown in Figure 4-1 on page 66.

The main class is SSOTokenManager, which is also the only concrete class in the
Single Sign-On component. It provides methods to create, get, and validate SSO
tokens. It is a final class and is a singleton. Other classes SSOToken, SSOTokenID,
and SSOProvider are Java interfaces. Additionally, the SSO SDK provides
SSOTokenListener and SSOTokenEvent to support notification when SSO tokens are
invalidated.

Java Application

SSOTokenManager

DSAME SSOToken

DSAME SSOProvider

validate

SSO
Attributes

SSOToken

validate/create
SSOToken

Provided by DPro

Web Browser

Web Server

Authentication
Service

Custom

Service

(iWS)

DSAME SSOToken

SSO
Attributes

create
SSOToken

validate SSOToken

validate
validate

SSOToken
SSOToken

http(s) http(s)

Java APIs

SSOTokenID
SSOTokenID

Overview of Web-Based Single Sign On (SSO) APIs

Chapter 4 Single Sign-On 67

The SSOTokenManager maintains a configuration database of the valid SSO
providers (that is, valid implementations for SSOProvider, SSOToken and
SSOTokenID).

The SSOTokenManager constructor will try to find the provider JAR files, load
them, then find the provider mainclass, instantiate it, and store it in the provider
(SSOProvider). Providers can be configured using the providerimplclass Java
property (which is stored in the
<dsame_root>/web-apps/services/WEB-INF/classes/
SSOConfig.properties file). This property must be set to the complete (absolute)
package name of the main class of the provider. The main class MUST implement
the com.iplanet.sso.SSOProvider interface and MUST have a public no-arg
default constructor.

A request to SSOTokenManager gets delegated to one of the providers
(SSOProvider). Thus, the SSOProvider class performs the bulk of the function of
SSOTokenManager. The SSOTokenID is a string representation of SSOToken.

The SSOToken class represents a “single sign-on” (SSO) token. It contains SSO
token-related information such as authentication method used for authentication,
authentication level of the authentication method, hostname of the client that sent
the request (browser). It also contains session-related information such as
maximum session time, maximum session idle time and session idle time.

The SSOTokenID class is used to identify an SSOToken object. Additionally, the
SSOToken ID string contains a random number, an SSO server host, and an SSO
server port. The random string in the SSOTokenID is unique on a given server.

In the case of services written using a servlet container, the SSOTokenID (not the
SSO token object) can be communicated from one servlet to another in one of the
following ways:

• as a cookie in http header; or

• SSOTokenListener interface needs to be implemented by the applications to
receive SSO token events.

The SSOTokenEvent class represents an SSO token event. A token is granted when
a change in the state of the token occurs. The SSO token event represents a change
in SSOToken. The following are possible SSO token event types:
SSO_TOKEN_IDLE_TIMEOUT, SSO_TOKEN_MAX_TIMEOUT, and
SSO_TOKEN_DESTROY.

NOTE. In DSAME 5.0, you cannot integrate your own SSO provider. This
may be supported in a future release.

Overview of Web-Based Single Sign On (SSO) APIs

68 DSAME Programmer’s Guide • December 2001

The SSO token provides a listener mechanism for applications that need
notification when the SSO token expires. The SSO token could expire because it
could have reached its maximum session time, or idle time, or an administrator
could have terminated the session. Applications wishing to be notified must
register a callback object (which implements the SSOTokenListener interface) with
the SSO token. The callback object will be invoked when the SSO token expires.
Using the SSOTokenEvent (provided through the callback), applications can
determine the time, and the cause for the SSO token to expire.

The SSOException class is thrown when there are errors related to SSOToken
operations.

For detailed information on the public Single Sign-On APIs in this release, see the
Javadocs, which are located in the
/opt/SUNWam/web-apps/services/docs/en_USjavadocs directory. (The
directory name may vary, depending on the language version that has been
installed.)

SSO Feature Intended for SSO Client
Applications
The primary purpose of the SSO APIs provided in DSAME 5.0 is for SSO client
applications. SSO client applications can include any service or application that a
service or application developer wants to make use of the Single Sign-On feature.
These SSO client applications use the SSO token to validate Single Sign-On.

The SSO service generates the SSOToken for a user after the user is authenticated.
Once the token is generated, it is carried along with the user as the user moves
around the web. When that user tries to access any application or service (that is
“SSO-aware” or “SSO-enabled”), such applications or services use the token to
validate that user has already signed in.

You can use the the SSO service in DSAME 5.0 without any configuration or
customization.

NOTE The DSAME 5.0 SSO APIs cannot be used in a multi-JVM
environment, such as for iPlanet Application Server.

Overview of Web-Based Single Sign On (SSO) APIs

Chapter 4 Single Sign-On 69

Public SSO Classes/Interfaces
The following is a list of the public SSO interfaces that you can use to create and
customize your applications and services. Refer to the Javadocs for more
information on functionality and how to use these interfaces to implement your
own SSO client applications and services in DSAME 5.0. (The Javadocs are located
in the /opt/SUNWam/web-apps/services/docs/en_US/javadocs directory. (The
directory name may vary, depending on the language version that has been
installed.)

• SSOTokenManager

• SSOToken

• SSOTokenListener

• SSOTokenEvent

• SSOTokenID

• SSOException

Implementing an SSO Solution
To implement an SSO solution (Single Sign-On service or application) there must
be a way to keep track of user identification after the user is authenticated. The user
identification will contain information such as:

• user's name

• authentication method by which the user is authenticated

• authentication level of the authentication method used

You can use this information to get the identity of the user and to give seamless
access to the protected web resources.

DSAME provides a set of SSO Java API for the purpose of implementing your own
SSO solution. Using these APIs, you can obtain the identity of the user and get
authentication information related to the user. The applications can use this
information to determine whether to provide access to a resource that a user or
device requests access to. For overview information, see “Overview of SSO
Classes/Interfaces,” on page 66. Also refer to the Javadocs for the SSO APIs. The
Javadocs are located in the
/opt/SUNWam/web-apps/services/docs/en_USjavadocs directory. (The
directory name may vary, depending on the language version that has been
installed.)

Overview of Web-Based Single Sign On (SSO) APIs

70 DSAME Programmer’s Guide • December 2001

For example, say a user authenticates to a site http://www.sun.com/SunStore
successfully. The user can later access another protected page
http://www.sun.com/UpdateMyInfo. The UpdateMyInfo application will need to
authenticate the user again to verify the identity of the user. Instead, this
application can use the SSO APIs to determine if the user accessing the
UpdateMyInfo application is already authenticated or not. If the SSO API methods
indicate that the user is valid and has been authenticated already, then access to
this page can be given directly without the user needing to authenticate again.
Otherwise, the user may be prompted to authenticate again.

As an example, service developers can use the SSO Java APIs in the following way
to determine if the user is already authenticated. (Additionally, the SSO APIs can
be used to do things like perform a query on the token for information such as
hostname, IP address, idle time, etc.) Refer to Code Example 4-1 on page 70.

Code Example 4-1 SSO Code Sample To Determine If User Is Already Authenticated

 try {
 ServletOutputStream out = response.getOutputStream();

 /* create the sso token from http requeest */
 SSOTokenManager manager = SSOTokenManager.getInstance();
 SSOToken token = manager.createSSOToken(request);

 /* use isValid to method to check if the token is valid or not
 * this method retuns true for valid token, false otherise
 */
 if (manager.isValidToken(token)) {
 /* let us get all the values from the token */

 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();
 out.println("SSOToken host name: " + host);
 out.println("SSOToken Principal name: " + principal.getName());
 out.println("Authentication type used: " + authType);
 out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());
 }
 /* let us try to validate the token again, with another method
 * if token is invalid, this method throws excpetion
 */
 manager.validateToken(token);

 /* let us get the SSOTokenID associated with the token */
 SSOTokenID tokenId = token.getTokenID();

Overview of Web-Based Single Sign On (SSO) APIs

Chapter 4 Single Sign-On 71

In some cases, you might find it more efficient and convenient to use
SSOTokenManager.validateToken(token) than
SSOTokenManager.isValidToken(token).
SSOTokenManager.validToken(token) throws an SSOException when the
token is invalid, thus terminating the method execution right away.

The SSO Java APIs can be used only for Web-based SSO. The APIs are not intended
to be used in standalone existing non-Web applications to provide single-sign-on
functionality. For example, you cannot use the SSO functions to modify an existing
standalone Java application to participate in SSO.

It is also possible to get the SSO token if the SSO token ID string is passed to the
applications. The example in that case would be something like this:

 String id = tokenId.toString();

 /* print the string representation of the token */

 out.println("The token id is " + id);

 /* let us set some properties in the token. We can get the values
 * of set properties later
 */
 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 out.println("Property: Company is - " + name);
 out.println("Property: Country is - " + country);

 out.println("SSO Token Validation test Succeeded");
 /* let us add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the listener will
 * get called.
 */
 SSOTokenListener myListener = new SampleTokenListener();

 token.addSSOTokenListener(myListener);
 out.flush();
 } catch (Exception e) {
 System.out.println("Exception Message: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

Code Example 4-1 SSO Code Sample To Determine If User Is Already Authenticated (Continued)

Overview of Web-Based Single Sign On (SSO) APIs

72 DSAME Programmer’s Guide • December 2001

The applications may also listen for SSO Token events. It is possible that while a
user is using an application, an SSO Token may become invalid. There may be
several reasons why this may happen. The user’s access time out because of the
maximum time limit for a user’s continuous access of resources. It could become
invalid if the user fails to log out of an application and the idle time-out has
expired. The application must be informed of such events so that it can terminate
the user’s access to the application when the tokens become invalid.

Code Example 4-2 Code Sample To Get SSO Token If SSO Token ID Is Passed To Applications

 try {
 /* create the sso token from SSO Token Id string */
 SSOTokenManager manager=SSOTokenManager.getInstance();
 SSOToken token = manager.CreateSSOToken(tokenString);
 * let us get the SSOTokenID associated with the token */
 SSOTokenID id = token.getTokenID();

 String tokenId = id.toString();

 /* print the string representation of the token */

 System.out.println("The token ID is " + tokenId);

 /* let us set some properties in the token. We can get the values
 * of set properties later
 */
 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 System.out.println("Property: Company is - " + name);
 System.out.println("Property: Country is - " + country);

 System.out.println("SSO Token Validation test Succeeded");
 /* let us add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the listener will
 * get called.
 */
 SSOTokenListener myListener = new SampleTokenListener();

 token.addSSOTokenListener(myListener);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 SSOTokenManager manager=SSOTokenManager.getInstance();
 SSOToken token = manager.CreateSSOToken(tokenString);
 }
 }

Overview of Web-Based Single Sign On (SSO) APIs

Chapter 4 Single Sign-On 73

The SSO APIs can be used in the following way to get the SSO Token events.

where SampleTokenListener is a class defined as follows:

Code Example 4-3 Code Sample To Register For SSOToken Events

SSOTokenListener myListener = new SampleTokenListener();
token.addSSOTokenListener(myListener);

Code Example 4-4 Code Sample Showing SampleTokenListener Class Defined

public class SampleTokenListener implements SSOTokenListener {

 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();

 SSOTokenID id = token.getTokenID();

 System.out.println("Token id is: " + id.toString());

 if (SSOTokenManager.getInstance().isValidToken(token)) {
 System.out.println("Token is Valid");
 } else {
 System.out.println("Token is Invalid");
 }

 switch(type) {
 case SSOTokenEvent.SSO_TOKEN_IDLE_TIMEOUT:
 System.out.println("Token Idel Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_MAX_TIMEOUT:
 System.out.println("Token Max Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_DESTROY:
 System.out.println("Token Destroyed event");
 break;
 default:
 System.out.println("Unknown Token event");
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

Using the SSO Samples

74 DSAME Programmer’s Guide • December 2001

After the application registers for SSO token events using addSSOTokenListener,
any SSO token events will invoke the ssoTokenChanged() method. The application
can take a suitable action in this method. See “Overview of SSO
Classes/Interfaces,” on page 66 for information on the SSO classes and interfaces’
behavior in this release.

Also see the SSO Javadocs for more details on the SSO APIs provided in the
DSAME 5.0 release. The Javadocs are located in the
/opt/SUNWam/web-apps/services/docs/en_USjavadocs directory. (The
directory name may vary, depending on the language version that has been
installed.)

Using the SSO Samples
A Readme file and some SSO samples are provided to assist service or application
developers in writing, compiling, and running an SSO sample service. Also, there
is a Readme.html which provides some information on how to compile and run the
SSO sample application:

• <dsame_root>/samples/sso/Readme.html

• <dsame_root>/samples/sso/SSOTokenSample.java

• <dsame_root>/samples/sso/SSOTokenSampleServlet.java

• <dsame_root>/samples/sso/SampleTokenListener.java

See the information in this section for information on writing and integrating the
SSO sample application.

Compiling and Running the SSO Sample
Application
This section provides some information on how to use the SSO sample files
provided to write, compile, and run an SSO sample application or service.

Additionally, there is a Readme.html file in the <dsame_root>/samples/sso
directory that provides some instructions on how to compile and run the SSO
sample applications provided. The following three SSO sample files are provided:

• SSOTokenSample.java

• SSOTokenSampleServlet.java

Using the SSO Samples

Chapter 4 Single Sign-On 75

• SampleTokenListener.java

Follow the steps and information in these sections to set environment variables,
compile the sample programs, and restart the iPlanet DS and Web servers.

Setting Environment Variables for SSO Sample Programs
1. Set the following environment variables.

These environment variables are used to run the make command. You can also
set these variables in the Makefile. This Makefile is located in the same
directory as the sample files (<dsame_root>/samples/sso).

a. CLASSPATH—Reference to all the JAR files located in the
<dsame_root>/SUNWam/web-apps/services/WEB-INF/lib directory.

b. JAVA_HOME —Set this variable to the directory where your JDK is
installed.

c. BASE_CLASS_DIR—Directory where all the Sample compiled classes will
be located.

d. JAR_DIR—Directory where the JAR files of the sample classes will be
created.

Run the gmake Command to Compile the Sample Programs
1. Go to the directory

<dsame_root>/SUNWam/samples/sso

then run:

 gmake

2. Go to the directory that the JAR_DIR variable is set to. Copy the
SSOSample.jar file to the
<dsame_root>/SUNWam/web-apps/services/WEB-INF/lib directory.

NOTE It is not necessary that you use the iPlanet Web Server version of
JDK/JRE. You can use any version of JDK, provided that it is newer
than version 1.2.2.

SSOTokenSampleServlet.java File

76 DSAME Programmer’s Guide • December 2001

Register the Sample Servlet
1. Register the Sample servlet. To do this, insert the lines below at the end of the

file:

<dsame_root>/SUNWam/web-apps/services/WEB-INF/web.xml

Restart the DSAME server (and iDS and Web servers)
1. Restart the server:

amserver start

This restarts the DSAME server, the Directory server, and the Web server.

2. Assign a policy to the SSOTokenSampleServlet; otherwise, you will get an
"access denied" page. (You can do this through Admin Console.)

3. Log in to the DSAME console by typing in the browser:

 <protocol>://<host>:<port>/SSOTokenSampleServlet

You may have to add a deployment prefix "amserver".

Your sample program should display the output in the browser. In the URL shown
in Step 3 above <host> must be a fully-qualified name; for example,
salida10.red.iplanet.com.

SSOTokenSampleServlet.java File
The SSOTokenSampleServlet.java file is for creating an SSOToken from an HTTP
request object.

Code Example 4-5 Lines that register Sample servlet to be added to web.xml File

 <servlet>
 <description>SSOTokenSampleServlet</description>
 <servlet-name>SSOTokenSampleServlet</servlet-name>

<servlet-class>com.iplanet.am.samples.sso.SSOTokenSampleServlet</servlet-class
>
 </servlet>
 <servlet-mapping>
 <servlet-name>SSOTokenSampleServlet</servlet-name>
 <url-pattern>/SSOTokenSampleServlet</url-pattern>
 </servlet-mapping>

SSOTokenSampleServlet.java File

Chapter 4 Single Sign-On 77

Following is the SSOTokenSampleServlet.java file. Refer to “Overview of SSO
Classes/Interfaces,” on page 66 for some information on the SSO classes and
interfaces’ behavior. Also refer to the Javadocs, which are located in the
/opt/SUNWam/web-apps/services/docs/en_USjavadocs directory. (The
directory name may vary, depending on the language version that has been
installed.)

Code Example 4-6 SSOTokenSampleServlet.java File

/**
 * $Id: SSOTokenSampleServlet.java,v 1.2 2001/10/25 00:56:19 jfn Exp $
 * Copyright 2001 Sun Microsystems, Inc. Some preexisting
 * portions Copyright 2001 Netscape Communications Corp.
 * All rights reserved. Use of this product is subject to
 * license terms. Federal Acquisitions: Commercial Software --
 * Government Users Subject to Standard License Terms and
 * Conditions.
 *
 * Sun, Sun Microsystems, the Sun logo, and iPlanet are
 * trademarks or registered trademarks of Sun Microsystems, Inc.
 * in the United States and other countries. Netscape and the
 * Netscape N logo are registered trademarks of Netscape
 * Communications Corporation in the U.S. and other countries.
 * Other Netscape logos, product names, and service names are
 * also trademarks of Netscape Communications Corporation,
 * which may be registered in other countries.
 */

package com.iplanet.am.samples.sso;

import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.iplanet.sso.*;

/**
 * This Sample serves as a basis for using SSO API. It demonstrates creating
 * a SSO Token, calling various methods from the token, setting up event
 * listeners and getting called on event listeners. For detailed info refer to
the
 * Readme.txt
 *
 * @see com.iplanet.sso.SSOToken
 * @see com.iplanet.sso.SSOTokenID
 * @see com.iplanet.sso.SSOTokenManager
 * @see com.iplanet.sso.SSOTokenEvent
 * @see com.iplanet.sso.SSOTokenListener
 */

public class SSOTokenSampleServlet extends HttpServlet {

 public void init() throws ServletException {
 }

SSOTokenSampleServlet.java File

78 DSAME Programmer’s Guide • December 2001

 public void doGet(HttpServletRequest request, HttpServletResponse
response){

 try {
 ServletOutputStream out = response.getOutputStream();

 /* create the sso token from http requeest */
 SSOTokenManager manager = SSOTokenManager.getInstance();
 SSOToken token = manager.createSSOToken(request);

 /* use isValid to method to check if the token is valid or not
 * this method retuns true for valid token, false otherise
 */
 if (manager.isValidToken(token)) {
 /* let us get all the values from the token */

 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();
 out.println("SSOToken host name: " + host);
 out.println("SSOToken Principal name: " + principal.getName());
 out.println("Authentication type used: " + authType);
 out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());
 }
 /* let us try to validate the token again, with another method
 * if token is invalid, this method throws excpetion
 */
 manager.validateToken(token);

 /* let us get the SSOTokenID associated with the token */
 SSOTokenID tokenId = token.getTokenID();

 String id = tokenId.toString();

 /* print the string representation of the token */

 out.println("The token id is " + id);

 /* let us set some properties in the token. We can get the values
 * of set properties later
 */
 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 out.println("Property: Company is - " + name);
 out.println("Property: Country is - " + country);

Code Example 4-6 SSOTokenSampleServlet.java File

SampleTokenListener.java

Chapter 4 Single Sign-On 79

SampleTokenListener.java
Following is the SampleTokenListener.java file. Refer to “Overview of SSO
Classes/Interfaces,” on page 66 for some information on the SSO APIs’ behavior;
also refer to the Javadocs for more information. (The Javadocs are located in the
/opt/SUNWam/web-apps/services/docs/en_USjavadocs directory. (The
directory name may vary, depending on the language version that has been
installed.)

 out.println("SSO Token Validation test Succeeded");
 /* let us add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the listener will
 * get called.
 */
 SSOTokenListener myListener = new SampleTokenListener();

 token.addSSOTokenListener(myListener);
 out.flush();
 } catch (Exception e) {
 System.out.println("Exception Message: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

Code Example 4-7 SampleTokenListener.java File

/**
 * $Id: SampleTokenListener.java,v 1.2 2001/10/25 00:56:19 jfn Exp $
 * Copyright 2001 Sun Microsystems, Inc. Some preexisting
 * portions Copyright 2001 Netscape Communications Corp.
 * All rights reserved. Use of this product is subject to
 * license terms. Federal Acquisitions: Commercial Software --
 * Government Users Subject to Standard License Terms and
 * Conditions.
 *
 * Sun, Sun Microsystems, the Sun logo, and iPlanet are
 * trademarks or registered trademarks of Sun Microsystems, Inc.
 * in the United States and other countries. Netscape and the
 * Netscape N logo are registered trademarks of Netscape
 * Communications Corporation in the U.S. and other countries.
 * Other Netscape logos, product names, and service names are
 * also trademarks of Netscape Communications Corporation,
 * which may be registered in other countries.
 */

package com.iplanet.am.samples.sso;

Code Example 4-6 SSOTokenSampleServlet.java File

SSOTokenSampleServlet.java File

80 DSAME Programmer’s Guide • December 2001

SSOTokenSampleServlet.java File
The SSOTokenSampleServlet.java file can be used to create an SSOToken from an
SSOTokenID string.

import com.iplanet.sso.*;

/**
 * This is the SSO token listener class to listen for sso token events.
 * Token events are received when the token state changes. The ssoTokenChanged
 * is the method that gets called when the event arrives.
 */
public class SampleTokenListener implements SSOTokenListener {

 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();

 SSOTokenID id = token.getTokenID();

 System.out.println("Token id is: " + id.toString());

 if (SSOTokenManager.getInstance().isValidToken(token)) {
 System.out.println("Token is Valid");
 } else {
 System.out.println("Token is Invalid");
 }

 switch(type) {
 case SSOTokenEvent.SSO_TOKEN_IDLE_TIMEOUT:
 System.out.println("Token Idel Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_MAX_TIMEOUT:
 System.out.println("Token Max Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_DESTROY:
 System.out.println("Token Destroyed event");
 break;
 default:
 System.out.println("Unknown Token event");
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

Code Example 4-7 SampleTokenListener.java File (Continued)

SSOTokenSampleServlet.java File

Chapter 4 Single Sign-On 81

Following is the SSOTokenSample.java file. Refer to earlier in this chapter for some
brief explanations on how part of this sample code works; also refer to the Javadocs
for more information.

NOTE A sample .java file is provided to create an SSOToken sample servlet
in the DSAME 5.0 release. You should note, however, that the
Single Sign-On feature in DSAME 5.0 is primarily web-based.

Code Example 4-8 SSOTokenSample.java File

/**
 * $Id: SSOTokenSample.java,v 1.2 2001/10/25 00:56:19 jfn Exp $
 * Copyright 2001 Sun Microsystems, Inc. Some preexisting
 * portions Copyright 2001 Netscape Communications Corp.
 * All rights reserved. Use of this product is subject to
 * license terms. Federal Acquisitions: Commercial Software --
 * Government Users Subject to Standard License Terms and
 * Conditions.
 *
 * Sun, Sun Microsystems, the Sun logo, and iPlanet are
 * trademarks or registered trademarks of Sun Microsystems, Inc.
 * in the United States and other countries. Netscape and the
 * Netscape N logo are registered trademarks of Netscape
 * Communications Corporation in the U.S. and other countries.
 * Other Netscape logos, product names, and service names are
 * also trademarks of Netscape Communications Corporation,
 * which may be registered in other countries.
 */

package com.iplanet.am.samples.sso;

import java.net.*;
import com.iplanet.sso.*;

/**
 * This sample serves as a basis for using SSO API. It demonstrates creating
 * a SSO Token, calling various methods from the token, setting up event
 * listeners and getting called on event listeners. Refer to the Readme.txt for
 * detailed info on how to use this sample.
 *
 * @see com.iplanet.sso.SSOToken
 * @see com.iplanet.sso.SSOTokenID
 * @see com.iplanet.sso.SSOTokenManager
 * @see com.iplanet.sso.SSOTokenEvent
 * @see com.iplanet.sso.SSOTokenListener
 */

public class SSOTokenSample {
 public static void main(String[] args) {

 try {

SSOTokenSampleServlet.java File

82 DSAME Programmer’s Guide • December 2001

 SSOTokenManager manager = SSOTokenManager.getInstance();

 SSOToken token = manager.createSSOToken(args[0]);

 /* use isValid method to check if the token is valid or not
 * this method retuns true for valid token, false otherise
 */
 if (manager.isValidToken(token)) {
 /* let us get all the values from the token */

 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();
 System.out.println("SSOToken host name: " + host);
 System.out.println("SSOToken Principal name: " +
 principal.getName());
 System.out.println("Authentication type used: " + authType);
 System.out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());
 }
 /* let us try to validate the token again, with another method
 * if token is invalid, this method throws an excpetion
 */
 manager.validateToken(token);

 /* let us get the SSOTokenID associated with the token */
 SSOTokenID id = token.getTokenID();

 String tokenId = id.toString();

 /* print the string representation of the token */

 System.out.println("The token ID is " + tokenId);

 /* let us set some properties in the token. We can get the values
 * of set properties later
 */
 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 System.out.println("Property: Company is - " + name);
 System.out.println("Property: Country is - " + country);

 System.out.println("SSO Token Validation test Succeeded");
 /* let us add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the listener will
 * get called.
 */

Code Example 4-8 SSOTokenSample.java File

SSOTokenSampleServlet.java File

Chapter 4 Single Sign-On 83

 SSOTokenListener myListener = new SampleTokenListener();

 token.addSSOTokenListener(myListener);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

Code Example 4-8 SSOTokenSample.java File

SSOTokenSampleServlet.java File

84 DSAME Programmer’s Guide • December 2001

85

Chapter 5

Understanding DSAME XMLs and
DTDs

This chapter provides information on the two types of XMLs and DTD files used in
DSAME, and how they can be used to create custom services. The two major types
of XML and DTDs are:

• service XML files that are defined per the sms.dtd (Services Management
Service) Document Type Definition

• batch update XML files are defined per the amAdmin.dtd. (These batch update
XML files are used to perform creates, gets and deletes on various objects
(users, groups, roles, people containers, organizations, etc.) in the Directory
server tree

The service XMLs are used to define DSAME internal services and custom or
external services. These are defined according to the rules defined in an XML DTD
(called sms.dtd) in DSAME. Service XMLs and the service DTD is described in this
chapter.

The other type of XML and DTD in DSAME is the batch updates XML files and
DTD (amAdmin.dtd). These batch update XML files can be used by an
administrator or customization engineer to perform batch updates to the Directory
server DIT, such as create, get, or delete users, roles, groups, organizations, people
containers, etc. This chapter provides some information on the batch update XML
file, the amAdmin.dtd which defines rules by which to perform the batch updates to
the DIT. Also refer to Chapter 6, “Using the Command Line Interface for
information on using the amadmin CLI tool, which administrators and service
developers must use to load the service XMLs into DSAME, and to load the batch
update XML files.

This chapter provides the following sections:

• Understanding DSAME Services

Understanding DSAME Services

86 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

• Things to Consider about DSAME Services

• What Happens When you Register a Service

• Overview of Services Management in DSAME

• Defining Global Attribute Types in a Service

• Defining Organization Attributes in a Service

• Defining Dynamic Attributes in a Service

• Defining Dynamic and Policy Attributes

• Roles in DSAME

• Defining Policy Attributes in a Service

• Overview of User Management Module

• Adding User Attributes to DSAME

• Defining User Attributes in a Service

• Customizing User Pages

• Customizing Organization Pages

• Cases where Service Developers must Modify the ums.xml Configuration File

• What DSAME Supports in the Service Registration DTD

• Policy Management Module

• Adding a Custom Service

• Description of sampleMailService Files

• amAdmin.dtd Used when Performing Batch Updates to DIT

• Description of amAdmin.dtd

Understanding DSAME Services
In DSAME, a service is a group of similar attributes defined under a common
name. The common name is the service name. The attributes for a service can be
attributes from an external service or application like Calendar or they can be from
a internal service within DSAME such as authentication, session, logging, or URL
policy agent. A service can also be a random set of attributes that a customer might
want to group together and manage as a service.

Things to Consider about DSAME Services

Chapter 5 Understanding DSAME XMLs and DTDs 87

A service can have attributes (user and service) and policy (privilege)
attribute/value pairs which are described in service XML files. Attributes are
simply configuration parameters with default values assigned to them. A service
can contain policy attributes (which define privileges). After services are defined,
they can be loaded (imported) into the Directory server using the amadmin CLI tool.
Adding the service to DSAME enables an administrator to manage and configure
the attribute values in iDS.

A service in DSAME is a set of attributes that are grouped together so that they can
be manageable from the DSAME console. This service could be something like
“Ford Car Parts”, into which you could add 30 attributes, and they could then be
managed as a service within DSAME. The DSAME console lets you set and get
these attributes; it does not interpret the behavior. Interpreting the behavior is
performed by the client application that reads attributes from Directory server.

In DSAME, each service can be modelled as an Directory server auxiliary class with
the attributes specified in the XML. Service metadata and default values taken from
the XML are stored in a service config branch of the DIT:
ou=services,<rootsuffix>, for example, ou=services,o=iplanet.com.
(<root_suffix> represents the top of the Directory server tree, for example,
o=sun.com or ibm=sun.com or o=iplanet.com.

All the service XML files in DSAME (whether internal or external services that
customers might write and integrate) must adhere to the sms.dtd which is located
in the <dsame_root>/SUNWam/web-apps/services/dtd directory. Service XML
files describing each DSAME (internal) service can be found in
<dsame_root>/SUNWam/web-apps/services/WEB-INF/config/xml directory.

Things to Consider about DSAME Services
As mentioned previously, a service in DSAME is a grouping of like attributes
defined under a common name. The common name is the service name, for example,
“bronze_engineering_mail_service”. The attributes for a service can be attributes
from an external application like Calendar or they can be from one of the internal
services within DSAME such as Authentication, Session, Logging, or URL Policy
Agent.

A service can also be a random set of attributes that you might want to group
together and manage as a service. For example, a customer might have an auxiliary
object class with 10 attributes that are common to all user entries in their Directory
server. To manage these attributes through DSAME, they must be described in a
service within DSAME. One option would be to add them to the
iPlanetAMUserService service. (You can add these attributes through DSAME

Things to Consider about DSAME Services

88 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

console or by modifying the amUser.xml file.) This is the service within DSAME
that, by default, includes many common attributes from the inetOrgPerson and
inetUser objectclasses. This service could be extended to include the attributes in
the customer’s object class, or the customer might choose to create a new service to
manage these attributes. Whether you are extending an existing service or creating
a new service, the attributes, after being imported or loaded with the amadmin CLI
tool, would be manageable through the DSAME console.

It is important to understand that adding a service to DSAME enables DSAME to
manage the attribute values in iPlanet Directory Server (iDS). It does not
implement any behavior behind those attributes or dynamically generate any code
to interpret the attributes. This means that DSAME can set and get the values, but it
is up to an external application to interpret and use these values.

Continuing with the example above, if attributes common to all users were added,
an administrator can then set those values or add them to roles or organizations
through the DSAME console. For example, a Calendar or phonebook application
might typically read those values from the Directory server. An administrator
could add new users, setting those new attributes through the DSAME console, but
the phone book application would be reading those attributes from the Directory
server when querying for specific users.

Internal Services vs. External Services
Note that in the DSAME console under Services that there are many DSAME
services shipped with the product—Logging, Naming, Session, URL Policy Agent,
etc. These services are managed in the same way as external services. The
difference is that DSAME provides code implementations that use these internal
services’ attributes.

A good example of this is the DSAME URL Policy Agent service. This service
defines three attributes that are used by the web agents to check user access to
URLs. The DSAME console allows the administrator to configure these attribute
values, but the web agent is the external DSAME application that is using those
attributes. The core DSAME features (such as logging, authentication, session
services, etc.) are each described and managed as any external service would be
managed. You can view the XML files that describe each DSAME service in the xml
directory under /SUNWam/web-apps/services/WEB-INF/config/xml. This
is good place to start when describing or adding a service to DSAME.

Things to Consider about DSAME Services

Chapter 5 Understanding DSAME XMLs and DTDs 89

Service Schema defines service attributes and
optionally default values
A service in a DSAME XML file contains a schema definition section and optionally
default values defined within the schema section. Note that in DSAME, the internal
services and the sampleMailService files provided in the sampleMailService
directory in the DSAME product have only schema definitions sections, where
default values are defined. (These defaults appear in DSAME console after the
services are loaded into DSAME.)

The schema section of an XML file defines attributes (also called configuration
parameters), and optionally default values for each attribute schema defined in the
service schema section. The schema section of a service XML file is where a service
developer or customization engineer defines configuration parameters for a service
and some default values (optional). Note the global schema definition from the
sampleMailService.xml file in Code Example 5-1 on page 89 which defines a
global schema attribute and some default values.

In the case of the sampleMailService.xml provided in the
<dsame_root>/samples/admin/cli/sampleMailService directory and the other
internal DSAME service XMLs provided in the DSAME product, the schema is
defined along with any default values that the service developer wants to define
for that service’s attribute. This way, these default values display in DSAME
console, and speed the process of creating service templates for administrators.

Code Example 5-1 Global Schema definition with default values from sampleMailService.xml File

<ServicesConfiguration>
 <Service name="sampleMailService" version="1.0">
 <Schema
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">

<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 </DefaultValues>
 </AttributeSchema>

</Global>

What Happens When you Register a Service

90 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

What Happens When you Register a Service
To register a service, the absolute requirement is that you must define schema in a
service XML. Optionally, a service developer can define default values for the
attributes within each attribute schema definition. (See Code Example 5-1 on page
89 for an example of an attribute schema definition with some default values
defined.) If you do not define default values for the attributes defined in the
schema, then no default values will display in the attribute fields for the service in
DSAME console.

After registering a service (either through amadmin or DSAME console), the
configuration data (which is the attribute schema definitions with any default
values) is uploaded for that particular service. Then the administrator or
customization engineer can change the configuration parameters’ values from the
default values, if they exist, through the DSAME console. The configuration data is
what the administrator sees displayed in the DSAME console after the service XML
schema and configuration data is imported using amadmin.

Overview of Services Management in DSAME
This section provides some information on the types of service management
provided by DSAME. DSAME enables different types of administrators perform
three types of management:

• Services and User management—The Services Management module (comprised
of services and user management) provides a solution for registering services
and managing service and user attributes. The Services Management service
(module) is also comprised of user management, which deals with managing
the structure of a customer’s directory. This includes creating, deleting, and
getting organizations, sub-organizations, groups, roles, and users.

• Policy management—The Policy Service provides solutions for managing
(defining, modifying, and removing) policies for resources, and to determine
users’ privileges to resources. It deals with the creation of policies and how
they are applied to a role or an organization.

In the iPlanet DSAME product, there are 17 services (including DSAME console,
Logging, Session, six Authentication services (such as LDAP, Radius, Certificate,
Anonymous, Self-registration (Membership)), URL Policy Agent, Naming, etc.)
that get installed by default when the product is installed. (These DSAME services
are sometimes referred to as "internal" services, as distinguished from "external", or
customized services that customers may add to DSAME.) If customization
engineers or service developers want to add new services that are external to

Overview of Services Management in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 91

DSAME, they must write service XML files and load them into DSAME, for
DSAME to be able to recognize and manage the service’s attributes. Service
developers must write service XML files when creating a custom service if you
want a service’s attribute/value pairs to be manageable through DSAME console.
For example, if creating a custom pluggable authentication service in DSAME 5.0,
you must create a new service XML for your custom service and load it into
DSAME using the amadmin CLI tool. (See Chapter 6, “Using the Command Line
Interface for information in using the amadmin CLI tool to load services.)

Services Management Module in DSAME
DSAME’s service management component provides a mechanism for services to
define and manage their configuration data. It is during the development stage that
service schema and configuration parameters get defined (typically by a
customization engineer or service developer), and it is during the deployment
stage that these parameters get configured (typically by an deployment engineer or
administrator). Consider, as an example, the implementation of a mail service. It is
during its development that configuration parameters such as cache size, mail
quota, and mail servers get defined, typically by a service developer who is
developing a service or application. Then, during deployment, administrators
and/or users typically configure these service attributes, also called “configuration
parameters.”

DSAME’s service component provides a mechanism for service developers to
define their configuration parameters and optionally provide default values. The
mechanism is through multiple service XML files that must adhere to the DTD
defined by DSAME (sms.dtd). The DTD and some sample service XML files are
described later in this chapter. The definition of the configuration parameters and
optional default values in the service XML file is called the "service schema" and
sometimes referred to as "configuration data."

Services typically have different kinds of configuration parameters. For example,
certain parameters are applicable to an entire DSAME installation (such as port
number and server name), and some are applicable to users (such as mail quota).
These different kinds of configuration parameters are stored and managed
differently. The services management services component in DSAME provides the
following service attribute categories for applying and differentiating control
parameter definitions.

In DSAME, all the service attributes you define in service XML files must be one of
the following five types of service attributes:

• global

Overview of Services Management in DSAME

92 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

• organization

• dynamic

• policy

• user

These service attribute types are described in more detail later in this chapter,
along with examples of each type of service attributes, and when a service
developer would use them when defining a custom service.

The following sections provide brief descriptions of the five attributes used by
DSAME 5.0.

Global Attributes
The following apply for global attributes:

• Global: parameters that are common across a DSAME configuration for all
services, and for the entire DSAME installation. Changes to these parameters
would affect the entire service.

Examples: A port number or a security algorithm that must be used by all
servers. Cache size and maximum number of threads.

Global parameters or attributes are only manageable from the DSAME console
Services page. They cannot be configured for an organization, user, or role.

• Cannot be configured for organizations, roles, or users.

• They are global across a DSAME configuration.

• Values of these attributes can be modified using the Service Management page
in DSAME console.

In DSAME 5.0, organization and global attribute data cannot be accessed from an
external application. This is because these attributes are not stored as LDAP objects
in the Directory server; they are stored as static blobs of data, thus they are not
accessible by using LDAP commands. The global and organization attribute types
can be considered private in DSAME 5.0, except for when creating custom
authentication services.

Overview of Services Management in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 93

Organization Attributes
• Organization: parameters that can be configured differently for various

organizations. Changes to these parameters would affect only the
organization. An organization attribute does not use CoS. In DSAME, all the
internal authentication services are defined at the organization level.

Example: Authentication services used by an organization.

When defining a custom authentication service XML in DSAME 5.0, you use
global and organization attributes only.

Dynamic Attributes
The following apply for dynamic attributes:

• These attributes can be assigned to roles or organizations which are then
inherited by users that possess the role or belong to an organization.

• Default values can be specified.

• When service attributes are assigned to more than one role or organization, a
conflict can arise. In such cases, there could be two possible behaviors, attribute
aggregation (merge-schemes) or single value based on template priority
(default).

• Uses CoS (class of service). (For details on CoS, see the Directory server
documentation.) A dynamic attribute/value pair set at the organization level
will be inherited by all subentries including users. For example, a dynamic
attribute set in a role will be inherited by any user that possesses that role.

• Parameters that apply to all user objects. Changes made to these parameters
would affect all the user objects.

Examples: Organization’s address; mail servers; company name; manager’s
name.

Dynamic service attributes are modelled using CoS (Class of Service). A
dynamic attribute set at the organization level will be inherited by all
subentries including users. A dynamic attribute set in a role will be inherited
by any user that possesses that role. (Dynamic attributes function and are used
internally the same as policy attributes.)

Overview of Services Management in DSAME

94 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Policy Attributes
The following apply to policy attributes:

• Policy attributes are a special type of dynamic attribute. Policy attributes
function identically to dynamic attributes in DSAME. Policy attributes are used
specifically only when defining policy objects.

• Used to create named policies under an organization.

• There is no support for default values.

• Currently, DSAME has only one service with policy attributes—URL Policy
Agent.

• Attributes for URL Policy Agent use the CoSQualifier aggregation option. The
default is aggregation. (CoSQualifier has two settings: aggregation (default)
or merge-schemes.)

• Policy (and dynamic) attributes can be retrieved and accessed using LDAP
commands; they are stored as LDAP objects in the Directory server.

• Policy attributes are parameters that define the privileges provided by the
service.

Example: A web server defining the URL access privileges through either GET
or POST.

Administrators can manage policy attributes only from the Policy page in DSAME
console. You cannot set policy attributes at the user level—only the organization
and role level.

Policy or named policy objects are not manageable by LDAP; they are stored as
static blobs of data in Directory server.

User Attributes
The following apply to user attributes:

• Attributes that will only be part of the user entry, and that different for each
user entry.

Overview of Services Management in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 95

• User attributes are parameters that are specific to a user. Changes to these
parameters would affect a particular user. Configuration information that can
only be set in a specific user entry; it cannot be set at the role and organization
level.

Example: A user’s locale. Another example of a user attribute would be
password.

Administrators can only set user attributes in a user entry—not in a role or an
organization entry.

Although the service management module provides support for storing and
managing the schema for the service, it manages schema data only for global and
organization types. The user and dynamic configuration data is managed by the user
management module, and policy configuration is managed by the policy
management module. However, both user management and policy rely on service
management for service schema management. The elements and attributes in the
DTD (sms.dtd) that are supported in DSAME 5.0 are described later in this
chapter. Service developers can use the supported elements and attributes to
described later in this chapter in their custom services.

The service schema and any default values defined within the schema section in a
service XML file are stored in the Directory Server. (Note, however, that global and
organization attribute data is stored as static blobs of data, thus global and
organization attribute data is not accessible through LDAP commands. Also, they
should be used only when writing custom authentication services in DSAME 5.0.

Defining and Adding Services to DSAME
This section provides some information to consider when using existing
applications whose attributes you want to be manageable from DSAME console, as
well as when creating new services to be manageable by DSAME console.

Adding a Custom Service to DSAME
If you are writing an application or if you have an existing application that already
has attributes in the Directory server, and you want that application’s attribute
data to be manageable from DSAME console, then you need to define a service
XML using the elements and attributes that DSAME 5.0 supports. (See the sections
in this chapter that describe the supported elements and attributes for defining
services in DSAME 5.0.)

Overview of Services Management in DSAME

96 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

If an application already uses certain Directory server attributes, DSAME should
be able to manage these attributes with little customization required. You might
need to change some of the attributes so that the application can get certain
attribute values from the user.

Typically, you could model user and dynamic attributes and the application would
work and you could manage the attributes through DSAME console. For example,
for an existing customer application “BronzeMailService1”, a customization
engineer could create a service XML file for that mail service called
“BronzeMailService1.xml”, define some attributes in it, then run the amadmin tool
to load the service and its attribute/value pairs into DSAME, modify certain
configuration files, and then the attributes will be manageable from the DSAME
console, and will be readable and writable by Directory server.

When a service developer or customization engineer is configuring DSAME,
he/she configures attribute schema and default values within the schema section
in the service XML files. Later, when an administrator enables a service for an
organization in DSAME console, the attribute schema and default values that were
specified previously in the service XML file will display, thus be manageable, in
DSAME console. For example, when an administrator enables Authentication
under the Services page, you would see the runtime defaults that were configured
at installation time when DSAME loaded in the service schema for all the attributes
for that service, along with default values for the attributes, from all the service
XML files.

When You Create a Service XML, Attributes Must be Defined
(Default Values are Optional, but Recommended)
When the service is first created, however, its attributes and default values are
defined in the XML files. Service XML files are loaded into DSAME through the
amadmin CLI tool. When an administrator changes the default values in DSAME
console, he/she can change those attribute values, then click Submit to create a
modified service template for an organization or a role.

Remember that you only need to define a service XML if you want that service’s
attributes to be manageable from DSAME console; otherwise, there is no need to
define a service XML.

NOTE There can be only one default value for a particular Global attribute
(configuration parameter) for the entire platform. These attribute values
are defined in the service XML files with “global” schema attribute types.

Overview of Services Management in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 97

You must model any new services in service XML files if you want that service’s
attributes to be manageable from DSAME console.

Attribute value in schema provides a default value for administrators
and users
The attribute value a service developer defines in a schema section of a service
XML file provides a default value for that attribute or configuration parameter. The
administrator can always change the default value to some other value in DSAME
console.

After importing a service schema with attribute/value pairs defined using
amadmin, then the administrator can change the values from the defaults on an
as-needed basis, then click Submit to create a new template, which creates a new
configuration template.

DSAME’s service XML files provide default values for service attributes
DSAME has the notion of default values for service attributes. When describing an
attribute for a service in XML, the default value(s) can be set. The defaults specified
in the service XML files are used when adding the service attributes to a role or
organization. At the time an administrator configures the attributes for a role or
organization in DSAME console, a page is displayed with the default values.
Administrators can change the defaults or the submit the service template using
the defaults. Or, the default values can be set in the service management pages in
DSAME console. These defaults are global and can not be set per organization.

Defining an empty attribute value in Schema
A service developer could also define an empty field in the schema definition with
double quotes. For example, you could define " " as one of the attribute values.

Code Example 5-2 Excerpt showing an empty attribute value in schema

<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 </DefaultValues>
 </AttributeSchema>

</Global>

Overview of Services Management in DSAME

98 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Using DSAME to manage attributes in your existing DIT
You may want to use DSAME to manage attributes in your existing DIT. Your
existing DIT might happen to have a lot of customized user attributes. In this case,
you could define all your attributes to be User attribute types in either a User
service XML file (defined in the amUser.xml) or a service XML file (which could
be a customized service XML file you add to DSAME, called an “external” service
XML file).

When Adding a new Service or Application, You must Define Schema
(Object classes and attributes) in Directory Server
If a service or application’s attributes do not already exist in the Directory server’s
schema, you need to define the schema (object classes and attributes) in Directory
server. You would need to add object classes for every new attribute that the
Directory server does not already have in its schema so that DSAME and Directory
server can manage those attributes.

One way to define new service attributes in DSAME
A customer could also define new service attributes. To add attributes to the
Directory server schema, one way is to go to Configuration/Schema page in
Directory Server console which contains the schema for the Directory server.

Adding an Existing Application to DSAME
Typically, if a customer is using an existing application, and wants its attributes to
be manageable by DSAME, the schema is probably already defined and has been
loaded into Directory server, so that Directory server already knows what
attributes and object classes that application uses.

If Directory server does not already have your existing application’s attributes and
object classes loaded into it, then you need to update the Directory server with the
new or modified objectclasses and attributes using the ldapmodify command or by
using Directory Server Console.

Enabling a Service for an Organization or Role in DSAME console
In the DSAME console, you assign service attributes to an organization or a role by
enabling that service for the organization or role, then creating a service template
and modifying the attributes for that service. After you have created the template
and set the values, all users under that organization will inherit those service
attributes.

Defining Global Attribute Types in a Service

Chapter 5 Understanding DSAME XMLs and DTDs 99

To assign the service attributes to a role, you must first register the service in the
role’s parent organization. Then the administrator could configure the service for
the role and set the values. When a user is assigned to the role, he or she will inherit
the attributes from that role, provided that the attributes defined at the
organization or role are defined as dynamic attributes. A user can have multiple
roles thus would inherit attribute values from multiple parent organizations.

Defining Global Attribute Types in a Service
You could also define or have attributes in a service that are “global”. For example,
an application might use a global attribute such as “port number”, and it also
might have an attribute such as User phone number, which is always specific to a
user. A User attribute is one that would not make sense for it to be applied to the
entire organization, for example, but would apply only to a specific user, for
example, FirstName and Last Name, or EmployeePhoneNumber. The DSAME
console shows a User attribute only in the context of a specific user; it does not
apply to the organization or role level.

Global attributes are attributes that cannot be applied to organizations, roles or
users. They are global across a DSAME configuration. They are typically used for
things like ports, protocols, and server names. Global attributes are settable in the
DSAME console under Service Management.

NOTE For every node or object underneath that organization or that role will
inherit that service’s attribute/value pairs only if dynamic attributes have
been assigned at the organization level or the role level.)

NOTE In DSAME 5.0, attributes defined as Global (and Organization) can only be
accessed using the DSAME SDK. Global and organization attributes are
stored as static blobs of data in the Directory server, and are not accessible
by using LDAP commands such as ldapsearch.

Because the DSAME SDK is not public (not exposed to customers for
customization purposes) in DSAME 5.0, when customizing or creating
external services, you should not use the Global or Organization attribute
type (except for Authentication services). The global (and organization)
attributes are the only attributes that you should use for your custom
authentication services in DSAME 5.0.

Defining Organization Attributes in a Service

100 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Global attributes are platform-wide attributes that are global across an entire
configuration, for example, server_host or port_number. The values of these
attributes can be modified through the Service Management page in DSAME
console.

Global attributes are typically applicable to things such as protocol, host name,
server name, and port number. Global applies to attributes that apply across the
entire platform or DSAME installation. Global attributes are attributes that
everyone using that platform configuration will get by default. After an
administrator configures a service for a particular organization or role in DSAME
console, he/she could customize that service and its attributes thus creating a new
service template, and then assign that service template to an organization or a role.

Typically, authentication modules in DSAME use only global and organization
attributes.)

The Services page in DSAME console displays the default attribute/value pairs for
each service that has been previously loaded into DSAME. For example, global
attributes can be managed by administrators through the Services page. A global
attribute might be platform locale. Whenever DSAME performs logging, it
logs to the platform locale; it should be logged on one platform locale. The
parameters loginUrl and logoutUrl also apply to the entire platform, thus
are defined as global attributes. Naming service attributes are typically also
defined as global attribute types.

Global attributes cannot be applied to organizations, roles, or users.

DSAME allows you to manage and change attribute values, either through XML
files or by modifying default values for attributes, then creating a new service
template.

When you display a role or an organization for a service, you get a generic Edit
page. All that Edit page does is grab all the attribute values and types from the
service XML and displays them; it does not interpret the attribute/value pairs and
behavior.

Defining Organization Attributes in a Service
Authentication attributes are a good example of Organization attributes. Because
authentication would apply on a per-organization basis, it would not make sense
for the attributes to be dynamic since all users would inherit those attributes. All
Authentication service attributes in DSAME are defined as Organization type.

Defining Dynamic Attributes in a Service

Chapter 5 Understanding DSAME XMLs and DTDs 101

Organization attributes are attributes that only apply to organization entries and
when it is not desired that users inherit those attributes, as would happen if they
were defined as dynamic attributes.

Defining Dynamic Attributes in a Service
Dynamic attributes are attributes that can be assigned to roles or organizations
which are then inherited by users that possess the role or belong to the
organization. Dynamic attributes promote ease of administration and scalability by
allowing attributes to be assigned to roles or organizations instead of setting these
attributes in each user’s entry. (See Section “Adding attributes Common to all
Users to the User Service in DSAME” on page 125.) When these attributes change,
the administrators only have to change them in the role or organization instead of
in every user entry. Also, by setting the attributes in a top level or suborganization
they can be used as defaults unless overridden by roles or suborganization
attributes that have a higher priority.

An example of a Dynamic attribute might be a mail server. Typically, an entire
building might have a common mail server, so each user would have a mail server
attribute in their entry. If the mail server ever changed, every user attribute would
have to be updated. If the attribute was in a role that each user in the building
possessed, then only the attribute in the role would have to be modified. That, of
course, is a very simple example, but a role or organization may have many
attributes from different services assigned to it.

NOTE In DSAME 5.0, attributes defined as Organization (and Global) attributes
can only be accessed using the DSAME SDK. Global and organization
attributes are stored as static blobs of data in the Directory server, and are
not accessible by using LDAP commands such as ldapsearch.

Because the DSAME SDK is not public (not exposed to customers for
customization purposes) in DSAME 5.0, when customizing or creating
external services, you should not use the Global or Organization attribute
type (except for Authentication services). The only service in DSAME 5.0
that global (and organization) attributes can be used for are when creating a
custom pluggable authentication service.

However, global and organization attributes are used by the DSAME
internal services, such as session, naming, logging, authentication, etc.

Defining Dynamic and Policy Attributes

102 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Dynamic attributes are attributes that are modelled using class of service (CoS in
Directory server). (Dynamic attributes in DSAME use the iPlanet Directory Server
CoS and roles feature. For more information on how CoS works in Directory
server, refer to the Directory server 5.0 documentation.) A dynamic attribute that is
set at the organization level in DSAME console will be inherited by all subentries
including users. A dynamic attribute set in a role will be inherited by any user that
possesses that role.

Organizations and Dynamic Attributes
The following things apply to organizations and dynamic attributes:

• Multiple services can be registered per organization or sub-organization.

• Attribute and policy values of an activated service are customizable per
organization.

• After service activation, all the entries in the sub-tree of the organization
inherit the service attributes.

Defining Dynamic and Policy Attributes
Because DSAME uses CoS, the service definitions typically need to be defined at
the organization level. So, if an entry has a certain CoS entry, it gets a CoS
definition. Roles know that based on this filter, all these users have this role. It is
done differently for regular roles for users; they just have a pointer to that role.

Dynamic attributes can be defined for an organization, for an organizational unit
(ou), and they can be defined for a role. It depends on how people want to manage
their users. You do not even have to use roles at all; you could use organizational
unit (ou’s) instead.

In the example discussed previously, where you have a manager and an employee,
it would be better to have one role that is for a manager and an employee, instead
of one role for a manager and one role for an employee and then aggregate it.

Or another way is just to aggregate in all the other attributes. What DSAME does is
it performs a get operation on the User object, and then based on this schema data,
it can tell what service it’s from. DSAME can distinguish among different types of
attributes, for example, it can determine which are your authentication attributes,
which are your session attributes, etc.

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 103

Roles in DSAME
Roles in DSAME don’t have anything to do with ACIs, at least within the context of
looking at roles from the DSAME console. A role is just a way to group some
attributes for services which you can then apply to a user, based on whether that
user possesses that role or not. Internally, DSAME uses roles for administrator
permissions based on ACIs. Roles in DSAME are just a group of service-related
attributes, which are viewable from the DSAME console.

In DSAME, a role uses the nsrole attribute. An administrator can add or assign
services and attributes to roles. In Directory server, roles are primarily a way to
group users. However, in Directory server, it is recommended that if you are
creating a new DIT, you should use roles instead of groups because they are more
efficient. In Directory server, a role is an entry grouping mechanism that allows
applications to locate the role of an entry, rather than select a group and browse the
members list.

For example, for inheritance to work, you could define a role that is located within
an organization that has a role filter of objectclass=*. What that means is that it's a
filtered role which means that if you pass this filter, the entry's got that role. Thus,
objectclasses with an asterisk at this level means that every subentry has that role.

What Happens when a User is Assigned to a
Role
When a user is assigned to a role, that user inherits the attributes from that role. A
user can have multiple roles and inherit attribute values from multiple parent
organizations. DSAME has the notion of default values for service attributes. When
describing an attribute for a service in XML, the default value can be set. The
defaults are used when adding the service attributes to a role or organization. At
the time an administrator configures the attributes for a role or organization, a
page displays with the default values. The administrator can change these defaults
and submit a newly-created template, or submit the template using the defaults.
The default values can be set in the service management pages. The defaults are
global (that is, they apply to the entire DSAME installation or platform, and may
not be set per organization.)

Overview of Roles in DSAME
This section provides some information on how DSAME uses roles, ACIs, and CoS
(Class of Service).

Roles in DSAME

104 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

In the DSAME 5.0 release, there is no notion of an “administrator” or “admin” in
the DSAME console; that is, administrator roles or admin roles are not
distinguished from other roles.

The admin roles are not differentiated from other roles that might be created by
administrators in DSAME console. For example, when you are at an organization
level in the DSAME console, for example, o=sun.com, and you go to the Roles
page, you can view all the roles. These roles could be administrator roles, such as
HelpDeskAdminRole, or a Policy_role, a mail_role, an OrgAdminRole, etc. All the
roles are listed on the same page. If you have 100 roles, you see a list of 100 roles.

When you sit at the organization level, you get an entire list of roles. Say, you
wanted to find the admin for PeopleContainer, which may be down another level.
You have to go to the organization level, then look for the role based on the name,
click on that, then add the user to the role.

When you are at the Organization level, and click on suborganization, you see all
the roles—administrator-type roles (TopLevelHelpDeskAdmin Role,
HelpDeskAdminRole, OrgAdmin, OrgHelpDeskAdmin, etc.) and other types of
roles created by administrators. These could be termed "access control roles", as
they are roles that define a user’s access. There could also be some "service roles",
for example, "mail_service_role" or "authentication_service_role".

You can no longer go to the PeopleContainer, for example, and view your roles
there. You must go up the Organization level and then view the roles there.

The notion of a role represents access control. The point of a role is to get service
attributes and policy attributes. Within DSAME console, an administrator can
assign a service to a role.

How DSAME uses Roles
This section gives some information on how DSAME uses roles and CoS.

• Multiple roles can be created for each organization or sub-organization.

• A role can be enabled with any number of services with customized attributes
and policy.

• By adding a service to a role, any user with that role will inherit the service
attributes and policy from that role. Users can have any number of roles.

DSAME uses Classic CoS and role templates. (For information on Classic CoS, see
the iDS 5.0 documentation.)

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 105

Roles
Roles are a new entry grouping mechanism in iDS 5.0 that unify the static and
dynamic groups. Roles are designed to be more efficient and easier to use for
applications. For example, an application can locate the role of an entry, rather than
select a group and browse the members list.

CoS
Class of Service (CoS) allows you to share attributes between entries in a way that
is transparent to applications. CoS simplifies entry management and reduces
storage requirements.

CoSQualifiers used by DSAME
• DSAME supports default and merge-schemes CoS qualifiers. The qualifier can be

specified in the XML (service schema description) file when describing the
manageable attribute of the service.

• If no CoS qualifier is specified, default is assumed.

As an example, the URL Policy Agent uses merge-schemes to obtain aggregated
values for Allow, Deny, and Not Enforced attributes.

Organizations and CoS
• Multiple services can be registered per organization or sub-organization.

• Attribute and policy values of an activated service are customizable per
organization.

• After service activation, all the entries in the sub-tree of the organization
inherit the service attributes.

Registering a Service Creates a CoS Definition and CoS Template
Registering a service for a particular organization creates a COS definition for that
service.

A class of service (COS) allows you to share attributes between entries in a way
that is transparent to applications. COS simplifies entry management and reduces
storage requirements.

There are three COS definitions:

• Indirect COS Definition

• Direct/Classic COS Definition.

Roles in DSAME

106 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

• Pointer COS Definition.

When an imported service gets registered for an organization, a Direct/Classic
COS Definition is created for that service based on the policy template type and
non-policy template type.

A classic COS identifies the template entry by both its DN and the value of one of
the target entry's attributes.

This service must have been imported by using the amadmin CLI tool for that
particular organization.

Roles in DSAME are at a higher level of abstraction than Directory
server roles
Roles are a new entry grouping mechanism in Directory Server 5.0 that unify the
static and dynamic groups. Roles are designed to be more efficient and easier to use
for applications. For example, an application can locate the role of an entry, rather
than select a group and browse the members list.

Roles in DSAME do not function in the same way as Directory server roles. They
are a higher level of abstraction. DSAME roles are an abstraction of Directory
server roles.

Access control in DSAME is implemented using Directory Server roles. Users in
DSAME inherit the directory access permissions using directory roles. ACIs are not
created using the groupdn as the subject.

When DSAME is installed, eight different administrator role types are created.
Administrators can create new admin roles and modify them through DSAME
console.

Default ACIs for the roles are stored in a global configuration attribute in the
iplanet-am-admin-console-default-acis attribute. This attribute is
defined in the iPlanetAMAdminConsole service XML profile. Default ACIs can be
modified through the DSAME console.

How Organizations and Roles use Dynamic Attributes
Organizations and roles in DSAME frequently use dynamic attributes. Dynamic
attributes would typically be used when you want to define a role at the
organization level and have all the users inherit that role and its attribute/value
pairs.

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 107

One way to Add new attributes to user entries
If an administrator does not care about defining a role at the organization level and
having all the users inherit a particular attribute and its values, then the
customization engineer could define all the attribute types as User. For example,
you might have 50 auxiliary classes that all users possess. To manage those 50
auxiliary classes, you might define one service XML file that defines all these
auxiliary classes, then load them into DSAME using amadmin. Those attributes
would then appear in the DSAME console.

If you have an existing DIT, you may not care about using dynamic attributes. You
may not care if it’s time-consuming to change one attribute for 50 users. One way a
customization engineer might make these changes is to just modify or add the
attributes for the 50 users through Directory Server Console.

How Dynamic Attributes are used in Roles
For example, you might decide to create a contractors role which has attributes
from the session service and the URL Policy Agent service. Then, when new
contractors start, the administrator could just assign them a single role instead of
setting all the attributes in the contractors entry. If the contractor were to become a
full-time employee, the administrator could just assign them a different role.

How Dynamic Attributes are used in Organizations and Roles
In the DSAME console, you assign service attributes to an organization by enabling
that service for the organization, then creating a service template and modifying
the attributes for that service, then assigning the service to an organization or a
role. (Creating a template typically consists of changing some default values for a
service in DSAME console, then clicking Submit to create the template. You can
also create a template without changing any of the default values.) After you have
created the template and set the values, all users under that organization will
inherit those service attributes (only for dynamic attributes that are assigned to an
organization).

How DSAME Dynamic and Policy Attributes Use CoS
Both dynamic and policy attributes uses CoS. Class of service (CoS) allows you to
share attributes among entries in a way that is transparent to applications. CoS
simplifies entry management and reduces storage requirements. For specific
information on how CoS works, see the Directory server 5.0 documentation on
advanced entry management.

Roles in DSAME

108 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Clients of the Directory server read the attributes on a user’s entry. With CoS, some
attribute values may not be stored with the entry itself. Instead, they are generated
by Class of Service logic as the entry is sent to the client. Each dynamic (and policy)
entry is comprised of the following two entries in your Directory server:

• CoS Definition Entry—the CoS definition entry identifies the type of CoS you
are using.

• Template Entry—The template entry contains a list of the shared attribute
values. Changes to the template entry attribute values are automatically
applied to all the entries sharing the attribute.

The CoS definition entry and template entry interact to provide attribute
information to their target entries, which is any entry within the scope of the CoS.

Dynamic attributes in DSAME work in such a way that any subentry under o=sun,
and all the way down the tree, if that entry is gotten directly (for example, if you do
an LDAP search against the entry), you get back the attributes for that entry plus
anything that is in the CoS template. This means that all the users are going to
automatically get these values. For example, you might have your locale set by
default. The top of your tree might be o=sun, and you might have two regions: east
and west. For example, you could set the division attribute so that all users would
get it. That way, if you move a user around, they automatically get the new
attributes. With dynamic attributes (and for policy attributes also), you do not have
to modify that user’s entry. Or if you create a new user, you don't have to set those
attributes; they automatically get those attributes by inheriting them from the
organization level (because the attribute has been defined as a dynamic attribute,
and assigned to that organization). It is also possible for users to inherit attributes
from the role level.

Also, dynamic attributes save space in the DIT. For example, if you have 2 million
users and you have 70 attributes, you would have to store that entry 70 times 2
million users. By putting this entry into a dynamic attribute, the Directory server
only needs to take up the size of one entry. This typically applies at the
organization or role level.

There are two important notes about dynamic (inheritable) attributes. They work at
both the role and organization levels (that is, also at sub-organizations and
organizational unit levels). In DSAME, organizations or sub-organizations
(organizationalUnits) are viewed and handled similarly.

Roles and Dynamic Attributes
The following things apply to roles and dynamic attributes:

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 109

• Multiple managed roles can be created for each organization or
sub-organization.

• A managed role can be enabled with any number of services with customized
attributes and policy.

• By adding a service to a role, any user with that role will inherit the service
attributes and policy from that role.User can have any number of roles.

DSAME uses Classic CoS and role templates.

Conflicts with multiple organizations or roles
There is the possibility that a dynamic or policy attribute could be assigned to more
than one role or organization, thus creating a possible conflict. When this happens,
there are two possible behaviors—attribute aggregation or single value based on
template priority. When the attribute is described in the service XML, the
CoSqualifier attribute can be set to one of the following:

• default

• merge-schemes

default—If CoSqualifier is set to "default" or is missing, then the template with
the highest priority is returned. When a template is created for an organization
or role in DSAME console, a priority can be set for the template.

merge-schemes—tells Directory server that when the attribute appears in more
than one organization or role, the values should all be aggregated and returned
as a multi-valued attribute.

Conflicts and Dynamic (or Policy) Attributes
DSAME supports the CoS qualifiers "default" and "merge-schemes" settings. The
qualifier can be specified in the service schema definition in the XML file when
describing the attribute for the service that you want to be manageable from
DSAME console.

If no CoS qualifier is specified, default is assumed.

DSAME out of the box has only one service with policy attributes—the URL Policy
Agent. For example, the URL Policy Agent service in DSAME uses the CosQualifier
merge-schemes setting to obtain aggregated values for the Allow, Deny and Not
Enforced attributes. This means that all policies from multiple roles or
organizations will be aggregated. For example, if the "Employee Role" says that
you can access

 */employee.html

Roles in DSAME

110 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

and the "HR Role" says you can access

 */hr.html

then when my access is returned to the URL Policy Agent, it will get both

*/employee.hml

*/hr.html

If the URL Policy Agent attributes were defined as priority, you would get the list
of URLs from the named policy with the higher priority. See the advanced entry
management sections in the Directory server 5.0 documentation for detailed
information on CoS.

Roles
This section provides some information on how DSAME uses the Directory server
5.0 Roles and CoS features.

DSAME provides for the dynamic configuration and management of users,
services and policy. The basic building blocks of DSAME are organizations,
groups, roles, CoS, services, and users.

A service is comprised of attributes and policy (privilege attributes) described in
XML and loaded into the Directory server using the amadmin tool. Service
attributes can be tagged as either global, organization, dynamic, policy, or
user. Global attributes are service configuration attributes that are only modifiable
on a platform-wide basis. User attributes can only be set for a particular specified
user. Dynamic and policy attributes can be set at the organization,
sub-organization, and role levels and are inheritable by sub-entries based on the
iDS CoS feature. Organization attributes can be set for a particular organization, for
example, mail servers used by an organization, or an authentication service (such
as LDAP or RADIUS). Each service is modeled as an auxiliary class with the
attributes specified in the XML. Service metadata and default values taken from the
XML are stored in a service config branch of the DIT—ou=services,<rootsuffix>;
for example, ou=services,o=iplanet.com.

Organizations and CoS
Any number of services can be enabled for an organization or sub-organization.
When a service is enabled, the attribute and policy values can then be customized
specifically for that organization. By enabling a service for an organization, all
entries in the sub-tree will inherit the service attributes (provided they are defined
as “dynamic” attributes) unless overridden with a lower CoS priority. To

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 111

accomplish this, DSAME uses classic CoS and role templates. There is a default
filtered role with nsRoleFilter set to (objectClass=*) for each organization. DSAME
uses the CoS template of that default filtered role to define default service
attributes for all entries in the organization’s sub tree.

The following is an example of an organization, its default CoS role and one service
enabled.

Code Example 5-3 Organization Example with default CoS Role and One Service Enabled

dn: o=iplanet.com,o=isp
objectClass: top
objectClass: organization
dn: cn=ContainerDefaultTemplateRole,o=iplanet.com,o=isp
objectClass: top
objectClass: nscomplexroledefinition
objectClass: nsfilteredroledefinition
objectClass: nsroledefinition
objectClass: ldapsubentry
nsRoleFilter: (objectclass=*)
cn: ContainerDefaultTemplateRole

dn: cn=iPlanetAMAuthService,o=iplanet.com,o=isp
CoSspecifier: nsrole
objectClass: CoSclassicdefinition
objectClass: top
objectClass: CoSsuperdefinition
objectClass: ldapsubentry
CoStemplatedn: cn=iPlanetAMAuthService,o=iplanet.com,o=isp
CoSAttribute: iplanet-am-auth-menu
CoSAttribute: iplanet-am-auth-profile-required
CoSAttribute: iplanet-am-auth-admin-module
CoSAttribute: iplanet-am-auth-authenticators
CoSAttribute: iplanet-am-auth-login-workers

dn:
cn="cn=ContainerDefaultTemplateRole,o=iplanet.com,o=isp",cn=iPlanetAMAuthServi
ce,o=iplanet.com,o=isp
cn: "cn=ContainerDefaultTemplateRole,o=iplanet.com,o=isp"
cn: cn=ContainerDefaultTemplateRole,o=iplanet.com,o=isp
objectClass: CoStemplate
objectClass: top
objectClass: extensibleObject
objectClass: ldapsubentry
iplanet-am-auth-menu: LDAP
iplanet-am-auth-profile-required: false
iplanet-am-auth-authenticators: com.iplanet.dpro.auth.module.ldap.LDAP
iplanet-am-auth-login-workers: com.iplanet.dpro.auth.server.HTMLLoginWorker

Roles in DSAME

112 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Roles and CoS
Any number of managed roles may be created for each organization or sub
organization. A managed role may be enabled with any number of services with
customized attributes and policy. By adding a service to a role any user with that
role will inherit the service attributes and policy from that role. Users may have
any number of roles. To accomplish this DSAME uses classic CoS and role
templates. The following is an example of a role with the name eng, the
authentication service enabled and customized for the eng role, and a user with the
eng role.

Access to Directory server is through proxy authentication
All access to the directory is through proxy authentication. A proxy user is created
at installation time and all access is through that user proxying as the requesting
user.

Code Example 5-4 Example of Role "Eng" and User with the "Eng" Role

dn: cn=eng,o=iplanet.com,o=isp
objectClass: nsmanagedroledefinition
objectClass: nssimpleroledefinition
objectClass: top
objectClass: nsroledefinition
objectClass: ldapsubentry

dn: cn="cn=eng,o=iplanet.com,o=isp",cn=iPlanetAMAuthService,o=iplanet.com,o=is
objectClass: CoStemplate
objectClass: top
objectClass: extensibleObject
CoSPriority: 10
preferredLocale: en_US
preferredTimezone: pacific

dn: uid=jamie,ou=People,o=iplanet.com,o=isp
cn: jamie nelson
sn: jamie
objectClass: iplanetPreferences
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetUser
objectClass: inetOrgPerson
nsRoleDN: cn=eng,o=iplanet.com,o=isp

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 113

Roles and ACIs
Note the following with regard to how roles and ACIs are used by DSAME:

• Access control for DSAME is implemented using iDS roles.

• Users in DSAME inherit the Directory access permissions using directory roles.
ACIs are not created using the groupdn as the subject.

• DSAME, when installed, creates eight (8) different admin role types.

• New Admin roles can be dynamically created and modified using DSAME
console.

• Default ACIs for the roles are stored in a global configuration attribute in the
iplanet-am-admin-console-default-acis attribute. This attribute is
defined in the iPlanetAMAdminConsole service XML profile
(amAdminConsole.xml).

• Default ACIs can be modified.

Access control for DSAME is implemented using iDS roles. Before Directory server
5.x, access control would have typically used a similar design, but with groups
instead of roles. Users would inherit directory access permissions based on group
membership. Users in DSAME inherit the same types of directory access
permissions using Directory server roles. DSAME does not create any ACIs using
the groupdn as the subject.

When the iPlanet DSAME product is installed, nine administrator role types are
created. Those types are Top Level Admin, Top Level Help Desk Admin, Org
Admin, Org Help Desk Admin, OrgUnit Admin, OrgUnit Help Desk Admin,
Group Admin, Group Help Desk Admin, and People Container Admin. These role
types have a set of default ACIs that get set when each role is created by the
DSAME SDK. The default ACIs are stored in a global configuration attribute—the
iplanet-am-admin-console-default-acis attribute. This attribute is defined in
the iPlanetAMAdminConsole service XML profile, and can be configured by an
administrator or customization engineer by using the amadmin tool, ldapmodify
or through the DSAME console service pages.

Because the default behavior of the product is to dynamically create the above
administrator roles when the corresponding entry type is created, the DSAME SDK
depends on these default role permissions to be present when creating the entries.
For example, when an organization is created, the DSAME SDK creates an Org
Admin role and an Org Help Desk Admin role. After creating these roles, the SDK
gets the default permissions (ACIs) from the

Roles in DSAME

114 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

iplanet-am-admin-console-dynamic-aci-list attribute and sets them in the
specified entries. This allows customers to modify the default permissions for the
dynamic roles. It is important to note that these default permissions are not types,
they are, in fact, just defaults.

After the role is created, the ACIs for that role are stored in the role itself, so
changing the default permissions in the
iplanet-am-admin-console-dynamic-aci-list attribute after the role is created
will not affect that role, but only affect roles created after the modification has been
made.

If a modification to any role permission is desired, you must modify the
iplanet-am-role-aci-list attribute for the role through the DSAME console or
through Directory server Console. (The iplanet-am-role-aci-list attribute
holds all the ACIs in string format for that role.)

The iplanet-am-admin-console-role-default-acis attribute are the
permissions (ACIs) displayed in the role’s Create window of DSAME console. If
you want to add more default permissions, add them to the
iplanet-am-admin-console-role-default-acis attribute.

When a role is created in DSAME, it will have the auxiliary class
iplanet-am-managed-role with the following attribute:

iplanet-am-role-type

This will be one of the following three values:

• 1 for top level admin

• 2 for general admin

• 3 for user

This attribute is used only by the DSAME console for display purposes. After
authentication, the DSAME console gets the user's roles and checks the types of
each role. If a user has no administrator roles, the User profile page will displays. If
they have any admin type of roles, the DSAME console will make an
DPStoreConnection.getTopLevelContainers() SDK call and start the user at
the top-most view in the entry hierarchy. There is a catchall attribute
iplanet-am-user-start-dn that can be set to override the starting point for
the administrator. This attribute is needed because an administrator’s desired
starting point in the DSAME console user interface might be something other than
what is dictated by the ACIs. This attribute can be set in conjunction with a role.

Roles in DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 115

For example, if a group administrator happens to have read access to the top level
organization, he or she might still want their starting point in the DSAME console
to be the group they are managing. If the console went by the entries returned by
the SDK based on ACIs, the admin would start at the top-level organization.

iplanet-am-role-description—The text description for the role. An
administrator or user enters the description is entered through the user interface
when creating a new role. The description for the dynamically-created roles is
based on the names in the localization files.

iplanet-am-role-aci-description—The text description for the access
permissions. The intent of this description is to describe what the ACIs for this role
provide in an easy to understand format. This attribute can be set when creating
the role. There is also a default description for the default ACIs that is used when
roles are dynamically created or when a predefined permission is selected in the
role creation pages of the DSAME console.

iplanet-am-role-aci-list—The list of ACIs that will be set when a role with
this permission name is created through the DSAME console or by the SDK. The
format of this attribute is the following:

permissionName | ACI Description | DN:ACI ## DN:ACI ## DN:ACI

permissionName—The name of the default permission

ACI Description—The readable (by people) description of the access these ACIs
allow. The creator of these entries should assume that the reader of this description
does not understand ACIs or even Directory server concepts.

DN:ACI—There may be any number of DN:ACI separated by the "##". The SDK
will set each ACI in the DN entry. This format also supports tags which will be
dynamically substituted when the role is created. Without these tags, the DN and
ACI would be hard-coded to specific organizations in the DIT which would make
them unusable as defaults.

For example, if you have a default set of ACIs for every Org Admin, you would not
want to hardcode the organization name in the default ACIs for the Org Admin.
The supported tags are ROLENAME, ORGANIZATION, GROUPNAME, and
PCNAME. These tags will be substituted with the DN of the entry in the SDK
create method when the corresponding entry type is created.

If there are duplicate ACIs within the default permissions, the SDK will not fail, but
it will print a debug message (not an error message). This will be a common
occurrence when macro ACIs are used.

Defining Policy Attributes in a Service

116 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Defining Policy Attributes in a Service
Policy attributes are a special type of dynamic attribute. They behave and follow the
same basic design as Dynamic attributes, and function internally the same as
dynamic attributes.

Describing an attribute as policy allows the DSAME console to distinguish between
policy and dynamic attributes. The main difference between them is that policy
attributes from one service can be used to create named policies under an
organization. The named policies can then be assigned to roles or organizations.

With dynamic attributes, you can directly assign attributes from a service to an
organization or role. There are no named service objects. In the DSAME console,
there is a separate pulldown for policy management. This is where the
organization administrator can define the named policy objects which can be later
assigned to organizations and roles under the user management pulldown pages.
For example, an organization administrator might define the following named
policies: "Admin URL Access", "HR URL Access", "Contractor URL Access", and
"Employee Access".

In the user management pages, these named policies can be assigned to roles or
organizations. The administrator might assign the "Employee Access" policy to the
organization so that all employees in the organization inherit the policy. Then the
administrator might assign the "HR URL Access" policy to the "HR Role". This way,
all users in HR will get those policies along with any policies from the organization
level.

There are no default values supported for named policy objects. This means that
administrators must create named policies from scratch in the DSAME console.
When a new named policy is created,there are no defaults as in the service
management pages.

Policy Attributes
Policy attributes provide a way to control access to resources, and to determine
users’ privileges to resources.

NOTE The policy component in DSAME uses the configuration definition section
in a service XML, but it creates the configurations through SMS APIs, not
through XML files.

Defining Policy Attributes in a Service

Chapter 5 Understanding DSAME XMLs and DTDs 117

Administrators can assign policies to organizations or roles in
DSAME console
In the DSAME console there is a separate pull-down for policy management. This
is where the organization administrator defines the named policy objects which
can be assigned later to organizations and roles under the User Management
pulldown pages. For example, an organization administrator might define named
policies called "Admin URL Access", "HR URL Access", "Contractor URL Access",
and "Employee Access". In the User Management pages, an administrator could
assign these named policies to roles or organizations. The administrator might do
the following:

1. Assign the "Employee Access" policy to the organization so that all employees
in that organization inherit the policy.

2. Assign the "HR URL Access" to the "HR Role".

This way all users in HR will get those policies along with any policies from the
organization level. When an administrator creates a new named policy, there
are no defaults as in the Service Management pages. (There are no default
values supported for named policy objects.)

Policy Service XML
In DSAME 5.0, the policy schema and default values should be defined by service
developers in a service XML file. A sample policy schema definition is provided in
the sampleMailService.xml provided in the DSAME product in the
<dsame_root>/SUNWam/samples/admin/cli/sampleMailService. (See Section
“Description of sampleMailService Files” on page 160 for some information and an
example of how policy schema would be defined in a service XML file.

In DSAME 5.0, the policy.xml and policy.dtd are not public, thus should not be
used to define policy schema and configuration data for a service.

Roles and Policy (Aggregation)
There is also an option for aggregation. For example, you could have three roles:
Eng_role, Manager_role, and Pubs_role. They could all have different policies.
When users possess multiple roles, the roles’ privileges must be aggregated and
returned to the user who possesses all those roles, so that the user gets an
aggregation of that role’s privileges.

If an administrator goes to a role, and enables a service for the role, he or she could
pick any one of the services, configure different values for the service’s attributes,
submit the new configuration, and then gets a CoS template. An administrator
could create multiple services, and then assign a particular user a role or multiple
roles. When DSAME gets this entry, the way CoS and roles works is that the

Overview of User Management Module

118 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Directory server finds the role, sees that it has a CoS entry, and adds that to the
attributes that get returned to the user. If there are any priority conflicts, it will look
at the priorities for each one, and gets the priorities based on the CoS attributes for
the group.

The service template is a set of attributes. For instance, if the highest priority was a
set that was assigned to your role, that group of attributes is what you would get.

Overview of User Management Module
The User Management module is one of three modules, or components, within
Services Management in DSAME 5.0. It is contained, along with the Policy
Management module, the Service Management Module, under a grouping of
services called Services Management.

The User Management component of DSAME provides interfaces for creating and
managing user-related objects in Directory server. All of the user objects that
DSAME can read, get and store are:

• Organization

• Sub-Organization

• Organization Unit

• People Container

• Group

• Role

• User

The generic management functions that can be performed are create, delete, get,
add, modify, and remove attributes on these objects, in addition to object-specific
operations.

For information on when and how you can customize the ums.xml configuration
file, refer to the section Section “Cases where Service Developers must Modify the
ums.xml Configuration File” on page 130, and to the section on installing against a
legacy DIT in the iPlanet Directory Server Access Management Edition Installation and
Configuration Guide.

Adding User Attributes to DSAME

Chapter 5 Understanding DSAME XMLs and DTDs 119

Adding User Attributes to DSAME
Any attribute that can be in the User entry can be managed through the User page
in DSAME. To do this, you need to add the new user attribute to the amUser.xml
file. Following is an example how to add the nsaccountlock attribute to the User
profile.

Following are steps to do this:

1. Add the following to
/opt/SUNWam/web-apps/services/WEB-INF/config/xml/amUser.xm
l

under the <SubSchema name=”User”> element, add the following attribute
schema definition:

2. In the User schema definition section, add the following:

<AttributeValuePair>
<Attribute name="nsaccountlock"/>
<Value>false</Value>

</AttributeValuePair>

This will be the default value.

NOTE You can take this same approach to set many attributes for the user. In this
case, you could also group the attributes into a service. If you grouped
attributes into a service, you would need to create a new XML service file.
However, the simplest way to add an attribute is just to extend the
amUser.xml file.

Code Example 5-5 Attribute Schema Definition to Add to amUser.xml File

<AttributeSchema name=nsaccountlock
type="single_choice"
syntax="string"
any="filter|display"
<ChoiceValues>
<Value>true</Value>
<Value>false</Value>
</ChoiceValues>

</AttributeSchema>

Adding User Attributes to DSAME

120 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

3. Also update the following file

/opt/SUNWam/web-apps/services/WEB-INF/classes/amUser.properties

with the new i18n tag “u13”.

u13=User Account Locked

or whatever text you want displayed on the User Properties page in DSAME
console.

4. Then go to the Directory Server Console and remove the following
OrganizationalUnit entry:

ou=iPlanetAMUserService,ou=services,dc=sun,dc=com

and its subentries.

5. Delete the user service using the amadmin tool.

amadmin --runasdn
"uid=amadmin,ou=people,o=iplanet.com,dc=sun,dc=com" --password
11111111 --deleteservice amUser.xml

Then reload the user schema using the --schema option of amadmin:

amadmin --runasdn
"uid=amadmin,ou=people,o=iplanet.com,dc=sun,dc=com" --password
11111111 --schema amUser.xml

6. Restart the amserver.

Now when you go to the User profile in DSAME console you will be able to set
this attribute and lock the user out.

NOTE In the DSAME 5.0 release, you can use the amadmin CLI tool to remove a
service schema; you can also remove a service schema by using Directory
Console.

Defining User Attributes in a Service

Chapter 5 Understanding DSAME XMLs and DTDs 121

Defining User Attributes in a Service
User attributes are attributes that will only be part of the user entry. User attributes
are not inherited from the role, organization, or sub-organization levels. A user
attribute is any attribute that is typically different for every user or for which it
does not make sense to put into a role or organization. If you define an attribute as
type "User", it cannot be set in a role or organization and then inherited by the
users who possess that role or who are in that organization.

Examples of user type attributes are:

• userid

• employee number

• passwords

There are no global defaults for User attributes.

User is considered a Service in DSAME
DSAME has several services, one of which is a User service. The User service is a
group of attributes that are defined for and pertain only to a specific user.

A user attribute is any attribute that will show up on the User profile page.

There are no global defaults for User attribute types.

Customizing User Pages
To customize user pages in DSAME console, you would need to modify the
amUser.xml file. This file is where user attributes are described. This file
describes the User Service for DSAME.

When displaying a user's attributes, the DSAME console gets all attributes from all
services that are of SubSchema type User and displays them. For example, a few
attributes from the sun-user object class are added so that a new service need not
be created. You can just modify (or extend) the amUser service.

NOTE Any service can describe an attribute that is for a user only. This file is just
the default placeholder for user attributes that are not tied to a particular
service.

Customizing User Pages

122 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Extending what DSAME displays on the User
Page in DSAME console
The User page and what it displays will vary, depending on what the
administrator wants the users to see. By default, you can see a list of several
attributes, which are retrieved from the amUser.xml file. Every attribute in the
amUser.xml file that has an i18N display tag and the any attribute is set to display
(that is, any=display) would display in DSAME console.

For example, you could have a hundred attributes in your profile, but if you only
have seven attributes defined in a service XML file that have the any attribute set
to display (any=display), you’ll see just those seven attributes displayed in
DSAME console. What that means is that if somebody adds their own auxiliary
classes to the User service XML (amUser.xml), and they want them to display in
DSAME console, they would have to update that XML file (amUser.xml). This is
one way to extend what DSAME displays in the DSAME console.

The second option is to show the User attributes. In every service XML that is
defined, if the attribute is specified to be User, such as in the mail service, then
what the DSAME console does is display the User profile. If two of the attributes
are not specified to display on the Create pages (with the any=display setting in
the service XML file), it will display the attributes that are in the User profile, plus
it will display the ones that are in all the other user service attributes, or tags. This
provides the administrator with several options.

The DSAME console has a list of all the services and all the meta-data. When it gets
all the attributes from the user profile (because it's CoS-related, it’s getting them all
in one call); it matches them and then it puts them into service categories. These are
the attributes that are in the User XML (amUser.xml), which are attributes defined
just for the user.

You could group all your attributes and then add them to the user and say, "these
are the ones I want to display in DSAME console."

How the "any" Attribute can be used in Service XML Files
The any attribute and how it can used in service XML files is described in this
section.

As a service developer, you not want to have administrators and users have to fill
in all the fields to create a user. To specify which attributes will display in the
Create, Properties, and Search pages in DSAME console, the "any" attribute can be
specified for each attribute in a service XML file. For example, currently, in LDAP,

Customizing User Pages

Chapter 5 Understanding DSAME XMLs and DTDs 123

you have object classes. There are mandatory attributes with which to create
objects in Directory server. You can specify when you create a class that certain
attributes are required, that is, the administrator must enter a value for that
attribute in DSAME console.

Specifying the "any" attribute in a service XML file is a way for the service
developer to specify what he or she wants to display on the Create page (and
Properties and Search pages) in DSAME console when a user is created. If you have
75 attributes in your entry, you might not want to type in all 75 attribute values.
You may just want to enter username and password. So by adding this the
"display" keyword to your attribute (any=display), when the Create window
displays, this attribute will display. So—uid, password, fullname, last name—those
have required attribute types. As long as they're defined in the schema, you can
just put "required" and they’ll display on the Create page.

The "any" attribute can be set to:

• required—attribute displays on Create page, and is a required attribute

• optional—attribute displays on Create page, but it is not a required attribute

• filter—attribute will display in the Filter pages

• display—attribute will display in the Create page

If the "any" attribute is set to a value of "required," then it shows up on the Create
(user) page. For example, when you create a user, the Create page shows up with a
number of fields to fill in. DSAME gets those fields (attributes) from the User XML
(amUser.xml) file, and if the any attribute has a value or string, and "any =
required," it displays on the Create page.

The any attribute is typically used in the any User type attribute, for example, in
the amUser.xml or some other service XML file in a user schema definition. You
typically would only see the any attribute in a User schema definition for any user
service, for example, a mail service. See the Code Example 5-6 on page 123 for an
example of the any attribute setting.

Code Example 5-6 Excerpt defining the any attribute in the amUser.xml File

 <Dynamic>
 <AttributeSchema name="preferredlanguage"

 type="single"
 syntax="string"
 any="display"
 i18nKey="d1">

 <DefaultValues>
 <Value>en</Value>

 </DefaultValues>

Customizing User Pages

124 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

The any attribute has four possible values:

• any=required|optional|display|filter

The required and display can be specified together with a pipe symbol separating
the two keywords (any=required|display), and the optional and display keywords
can be specified together (any=optional|display).

The required and optional settings relate to the Create pages in DSAME console. If
the any attribute is set to either required or optional, then when a user entry or
organization, for example, is created, DSAME displays that attribute on the Create
page. If the any attribute is set to required (any=required), an asterisk will display
in that attribute’s field, and a value must be entered for the object to be created.

If the any attribute is set to optional (any=optional), it will display on the Create
page, but users are not required to enter a value; it’s optional.

If the any attribute is set to display (any=display), then when the properties are
display for the Create page, this attribute is displayed.

If the any attribute is set to filter (any=filter), when you go to the User page, and
click Search, the attributes display for the filter. The any=filter setting lets service
developers specify if this attribute should appear on this page. For example, if a
service developer wanted to add employee_name, or manager_name to the default
Filter page for the user, he/she would specify that attribute in the user service or
any User schema definition in any service XML file as "any=filter". Then this
attribute would display on the Filter page.

The any=display attribute type simply indicates whether DSAME should display
that attribute or not (any=display), and whether the user must enter a value for the
attribute (required), or if it is an optional attribute (optional), or whether that
attribute should appear on the Filter page in DSAME console (filter).

</AttributeSchema>
 <AttributeSchema name="preferredtimezone"

 type="single"
 syntax="string"
 any="display"
 i18nKey="d2">

</AttributeSchema>

Code Example 5-6 Excerpt defining the any attribute in the amUser.xml File

Customizing User Pages

Chapter 5 Understanding DSAME XMLs and DTDs 125

The any attribute gives service developers some control over which attributes to
display in the DSAME console. It is not necessary to display every attribute in all of
the service XMLs on the DSAME console. Also, depending on the level of
permissions you have, or whether the level of administrator you have access to
may not allow you to see certain attributes on certain pages.

If you had an attribute that you didn’t want users to see in the DSAME console, but
it was still in their profile, you could the any attribute for that attribute to
any=display. Or you could make it blank or empty (“ “), and no attribute would
display on the Create page.

In summary, the any attribute is useful if you want to extend the User page with
additional attributes. Any time a service developer adds a new or custom service,
he/she might be adding some new or modified objectclasses and attributes. In this
case, he/she would probably want some of these new or modified attributes to
appear on the User page. Use the any attribute in the service XML files to do this.

Extending the amEntrySpecific.xml File
These same rules apply for the amEntrySpecific.xml file for any of the DSAME
abstract types, such as organization, organizational unit (ou), group, etc. This is the
only other place you will see the any attributes used. The any attribute is used for
creation and filter purposes, and it applies to any attribute in a User schema
definition, either in the amUser.xml file or some other User schema definition in a
service XML file.

Adding attributes Common to all Users to the
User Service in DSAME
One way you can customize the User service in DSAME, for example, is to add any
additional object classes with attributes to all user entries in the Directory server.
This can be done through ldapmodify or through Directory Console.

For example, you might have an auxiliary object class with 10 attributes common to
all user entries in their Directory server. To manage these attributes through
DSAME they must be described in a service within DSAME. One option would be
to add them to the iPlanetAMUserService (amUser.xml) service. This is the service
within DSAME that, by default, includes many common attributes from the
inetOrgPerson and inetUser object classes. This User service can be extended to
include the attributes in the customer’s object class or, alternatively, the customer
might choose to create a new service to manage these attributes. Whether an
existing service is extended or a new service is created, the attributes, after being
imported would be manageable through the DSAME console.

Customizing Organization Pages

126 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

It is important to understand that adding a service to DSAME enables DSAME to
manage the attribute values from the DSAME console. It does not implement any
behavior behind those attributes or dynamically generate any code to interpret the
attributes. This means that DSAME can set and get the values; however, it is up to
an external application to interpret or use these values. Continuing with the
example above, if attributes common to all users were added, an administrator
would be able to get or set those values or add them to roles or organizations. For
example, one of the applications that would use DSAME might be a phonebook
application that is reading those values from the Directory server. An
administrator might create users, and set those new attributes through the DSAME
console, but the phonebook application would be reading those attributes when
querying for specific users.

Take note that in the DSAME console under Service Management there are several
DSAME (internal) services shipped with the product. These services are managed
in the same way as external services; the difference is that DSAME provides code
implementations that use the service attributes. A good example of this is the
DSAME URL Policy Agent service. This service defines three attributes that are
used by the URL Policy Agent service (web agents) to check user access to URLs.
The DSAME console allows the administrator to configure these attribute values,
but the web agent is the external DSAME application using those attributes. The
core DSAME features are each described and managed as any external service
would be managed. You can view the service XML file that describes each DSAME
service in the XML directory under
/SUNWam/web-apps/services/WEB-INF/config/xml. This is a good place to start
when describing or adding a service to DSAME.

Customizing Organization Pages
If customization engineers or service developers wanted to customize the
organization pages, or pages for any of the other DSAME abstract types (such as
organization units, people containers, static groups, filter groups, assigning
dynamic groups, they would need to make modifications to the Entry-Specific
service (specified by amEntrySpecific.xml).

The attributes in the amEntrySpecific.xml file are for console display purposes.
This service (defined in the amEntrySpecific.xml file) is used by the DSAME
console when customizing the display for specific DSAME abstract types, which
are:

• organization

• container (organizational units)

Customizing Organization Pages

Chapter 5 Understanding DSAME XMLs and DTDs 127

• people container

• Static Group

• Filtered Group

• Assignable Dynamic Group

The DSAME types are manageable entities which are identified by the existence of
DSAME marker object classes in directory entries. The marker object classes allow
DSAME to manage most directory structures, regardless of the object classes and
naming attributes deployed. For example, a directory may use only
organizationUnits for their first level structure. By adding the DSAME
Organization marker object class to these organizationalUnits, DSAME will
manage them as DSAME organizations. Or user entries in the directory may
contain only customer-specific object classes. By adding the DSAME User marker
object classes, DSAME can manage these users. For more detailed information on
the DSAME entry types and their marker object classes, refer to information on
DSAME entry types and markers in the iPlanet Directory Server Access Management
Edition Installation and Configuration Guide.

Each DSAME entry type will appear on the DSAME console in three places where
this service is used:

• create page

• properties page

• search page

Each DSAME entry can have its own subSchema in the amEntrySpecific.xml
file. If the DSAME type does not appear in the XML, the defaults will be used for
the type. The default means that only the name of the entry will appear on the
Properties display, the Create window, and the Filter window in the DSAME
console. For example, the Organization type has the following XML subSchema.

Code Example 5-7 SubSchema for Organization entry type in amEntrySpecific.xml

<SubSchema name="Organization">
 <AttributeSchema name="inetdomainstatus"
 type="single_choice"
 syntax="string"
 any="optional|filter"
 i18nKey="o2">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 </ChoiceValues>

Customizing Organization Pages

128 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Purpose of amEntrySpecific.xml File
 When an object of one of the above (abstract) types is displayed in the DSAME
console, the XML (amEntrySpecific.xml) describes which attributes will display on
the Properties page, Create page, and Search page, if applicable.

If your DIT had customized the OrgUnit, Group, Role, or People Container user
objects, you would have to add or modify their schemas also in the
amEntrySpecific.xml file.

Note that the User is not configured here but in its own amUser.xml.

All the attributes listed in the schema are displayed when the organization pages
(or pages for some other DSAME abstract entry such as organizational unit, static
group, filtered group, managed group, people container, and role) are displayed. If
the attribute is not listed in the schema definition in the amEntrySpecific.xml
file, the DSAME console will not display the attribute.

any Attribute
The any attribute can have two of the four possible values:

• display, and

• required, or

• optional, and/or

• filter

For example, required | filter or optional | filter can be specified.

The required and optional values tell the DSAME console whether the attribute
should be on the create page. If its keyword is required, it must have a value or
the DSAME console will not allow the creation to occur. The filter tells the console
whether to use this attribute in the search page or organizations. For example, if
you wanted both attributes to be displayed on the Organization page, both are
required for creation, and only the attribute will be used in the search page.

 </AttributeSchema>
 </SubSchema>

Code Example 5-7 SubSchema for Organization entry type in amEntrySpecific.xml

Customizing Organization Pages

Chapter 5 Understanding DSAME XMLs and DTDs 129

The filter keyword tells the DSAME console whether to use this attribute on the
Search page or on the Organization pages. In the example above, it is desired to
have both attributes display on the organization page. Both are required for
creation, and only the attribute will be used on the Search page.

Type Attribute
The type attribute may be one of string, string list, single_choice, multiple_choice,
or boolean. The type attribute specifies the format of values that this attribute can
have. This can be one of the following types:

• string

• string list

• single choice

• multiple choice, or

• boolean

For example if the sun-org-city attribute can only be one of Concord, San
Francisco, or Palo Alto, you would make this attribute a single choice and the cities
above would be the choices. The DSAME console would display this as a list with
only those cities.

If multiple cities were allowed, the attribute could be a multiple choice.

The purpose of this file is to display DSAME abstract entries, such as Organization
pages (or organization unit, group, role, or people container). Typically, a service
developer would be customizing the organization pages, however.

The DSAME console uses the data in this file for display purposes. Each DSAME
abstract entry can have a schema definition in this XML file. For this example, you
only need to modify the Organization schema. If a service developer or
customization engineer had customized the OrgUnit, Group, Role or People
Container in the DIT, he/she would have had to add or modify their schemas also.

Note that User is not configured here but in its own amUser.xml.

All the attributes listed in the subschema are displayed when the organization is
displayed. If the attribute is not listed the console will not display the attribute.

Cases where Service Developers must Modify the ums.xml Configuration File

130 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Cases where Service Developers must Modify
the ums.xml Configuration File

The ums.xml configuration file contains all the user (and service and policy) objects
that are stored in Directory server. The ums.xml is called the DAI service in
Directory server. Generally speaking, service developers or customization
engineers will not need to know about or modify the ums.xml configuration file;
only service developers or customization engineers with a good understanding of
this file should make any modifications to it. Information on when and how to
modify the ums.xml configuration file is covered in the section on installing against
a legacy DIT in the iPlanet Directory Server Access Management Edition Installation
and Configuration Guide.

The only cases where customization engineers or service developers will need to
know about and modify this file are:

• when adding new objectclasses to users or organizations.

• if service developers do not want the default organizations or roles, and want
to change them.

• if service developers want to change the naming attribute for an attribute.

What DSAME Supports in the Service
Registration DTD

DSAME 5.0 only supports a limited subset of elements and attributes from the
sms.dtd (Services Management Service Document Type Definition). The sms.dtd
should not be modified, as the XML parser uses this file exactly as is; this file is
meant to be used as a guide when writing service XML files. Additionally, the
sms.dtd enforces certain rules when writing service XML files to be used by
DSAME. This section lists the elements and attributes that DSAME 5.0 supports.

In DSAME, there are five support schema types:

• global

• organization

• dynamic

• policy

• user

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 131

In your service XMLs, service developers must describe the service attributes to be
one of these types. For each schema type, you must define an attribute or attributes.
The schema for each attribute can define the following attributes and keywords
defined in this section:

• name

• syntax—The syntax attribute specifies the syntax of the attribute value.
Currently supported syntaxes are:

m boolean

m string

m password

m number

m any

m i18NKey

m DefaultValues element

m ChoiceValue element

Each service also has three global attributes that are defined:

• i18NFileName

• i18nKey

• optionally may have service objectclasses;

Within each of the schema attribute types (global, org, dynamic, policy, and user),
you will define your attribute schema, and one or more attributes. For each
attribute, you need to define the type, syntax, i18Nkey, default values or choice
values, if it’s a type of single or multiple choice, and possibly the "any" attribute.

Globally for the service, you need to define the name of the service, and the version
(which should be the same). The i18NFileName attribute is used to pick up the
properties and all its indexes, or keys; then the key itself for the name of the service
(i18Nkey for the name of the service). Optionally, a service developer could define
one global attribute that describes the LDAP object class. (This LDAP objectclass
would only need to be specified when the attribute is of the type dynamic or
policy. If the attribute is global or organization, then specifying the LDAP
objectclass is optional; this is because the global and organization attributes are
private data, and are not stored in Directory server as LDAP attributes.)

What DSAME Supports in the Service Registration DTD

132 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

The rest of the sms.dtd elements and attributes are reserved for future use by
DSAME.

Service Schema Definitions Supported by
DSAME 5.0
This section provides brief definitions of the schema attributes and elements in the
sms.dtd that are supported by DSAME 5.0. Services that require their configuration
information to be managed through the interfaces provided by the DSAME SDK
and the DSAME console must organize this information using the DTD (sms.dtd)
described in this chapter.

The following attributes and elements in the sms.dtd are supported and used by
DSAME 5.0:

• i18nFileName which gives the name of the .properties file (for example,
dpAuth.properties).

• i18nKey which gives the I18N index key that describes the service for a given
locale.

Code Example 5-8 Excerpt from sampleMailService.xml showing global attribute definitions

<ServicesConfiguration>
 <Service name="sampleMailService" version="1.0">
 <Schema
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">

<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 </DefaultValues>
 </AttributeSchema>

NOTE Only a small percentage of the elements and attributes in the sms.dtd are
supported by DSAME 5.0. This chapter provides some information on the
elements and attributes used by DSAME 5.0.

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 133

The element AttributeSchema defines the schema of a configuration parameter.
Using the AttributeSchema element, service developers can define the XML schema
for configuration parameters by having multiple AttributeSchema elements. The
service registration DTD (sms.dtd) provides several attributes to describe the
schema for the attribute:

• name: specifies the name for the attribute (for example, mailQuota).

• type: specifies the format of values that this attribute can have. Currently-
supported formats are:

m single which specifies that the attribute can have only a single value;

m list which specifies that the attribute can have multiple values;

m single_choice which specifies that the attribute can have a single choice that
must be selected from a choice list;

m multiple_choice which specifies that the attribute can have multiple values
from which one choice must be selected from the choice list. The default
value for type is list.

• syntax: specifies the syntax of the attribute value. Currently-supported
syntaxes are:

m boolean

m string

m password

m number

• any: has four possible settings—required, optional, display, and filter. Used to
determine how to display a user entry or organization or some other type of
entry on the Create, Properties, and Search pages in DSAME console.

In addition to the above attributes for the element AttributeSchema, it supports the
following elements:

• DefaultValues: provides the default values for the configuration parameter.

• ChoiceValues: provides the possible choice values for the configuration
parameter if its type is either single_choice or multiple_choice.

What DSAME Supports in the Service Registration DTD

134 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Attributes and Elements that DSAME Supports
This section lists the elements and attributes that DSAME 5.0 supports and uses.
Note that in DSAME 5.0, only a subset of the elements and attributes in the sms.dtd
are supported. The rest are reserved for future use. These are all the attributes and
elements that service developers and customization engineers can use when
defining service XMLs.

Purpose of an XML DTD
The purpose of a DTD is to define the legal building blocks of an XML document. It
defines the document structure with a list of legal elements. A DTD can be declared
inline in your XML document, or as an external reference.

XML attributes are normally used to describe XML elements, or to provide
additional information about elements.

The Services Management Services DTD is designed specifically for use with
DSAME product, and other Sun service management products. It should not be
altered; otherwise, DSAME service attributes may not be read and written correctly
by iPlanet Directory server.

Where you can find Further Information on XML and DTDs
Here are a couple of sites that have information on XML and DTDs:

http://www.xml101.com

NOTE Custom pluggable authentication services that you can write and plug into
DSAME will typically only use global and organization service attributes in
their service XML files. Service XML files only need to be written and
imported for custom pluggable authentication services if you have
attribute/value pairs that you want to be manageable from DSAME
console; otherwise, it is not necessary to write and import a service XML
file. (See Chapter 2, “Pluggable Authentication SPI for detailed information
on writing a custom pluggable authentication service and integrating it into
DSAME.)

NOTE Default values specified in the service schema section of a service XML file
will display for that attribute or configuration parameter in DSAME
console, which the administrator can then change when creating a service
template.

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 135

Additionally, there are several books and web site sources on XML (Extensible
Markup Language) which explain standard XML terms, such as elements,
attributes, and other XML keywords such as CDATA and NMTOKEN. These can
be found by using any standard search engine.

Description of sms.dtd Elements and Attributes
The sms.dtd is a Document Type Definition that defines a set of rules that all
service XML (Extensible Markup Language) file in DSAME must follow. It explains
data structures that are used by all services in DSAME (whether internal to
DSAME, that is, services that exist when you install DSAME; or external, that is,
those services or applications that customers would integrate into DSAME).

A DTD (Document Type Definition) defines schema that will be used by services to
define their configuration data. In other words, it’s a sort of “schema for schema”.
The sms.dtd defines the schema that will be used by services to define their
configuration data, and is specific to DSAME.

ServicesConfiguration Element
ServicesConfiguration is the root node for all services’ configuration parameters and
tasks in the entire XML document. You can describe and register multiple services
in a single XML file. Within the ServicesConfiguration element you can define
service schema for one or more services.

Schema Element
Before describing each attribute type, a schema element definition should be
included in the service XML.

Code Example 5-9 ServicesConfiguration Element

<!ELEMENT ServicesConfiguration (Service)+ >
<!ATTLIST ServicesConfiguration

version NMTOKEN "1.0"

What DSAME Supports in the Service Registration DTD

136 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Service Element
The Service element defines a service-specific task, configuration parameters’
schema, and/or configuration data. Examples of services (or components) are
Authentication, Session, Logging, User, URL Policy Agent, etc. (The word service
and component are used interchangeably.) The attribute name gives the name of
the product (can be a service, component, application, etc.) and version specifies
the version of the product.

Service Name and Version Attribute List
For the Service element definition, you can define one or more schema, and 0 or
more configurations. The attribute list gives the service name, and version.

Note that when writing a custom service, you should define only one service per
XML file.

Code Example 5-10 Schema Element definition

<!-- Schema defines the schema for the configuration parameters
of the service. The sub-elements provide configuration
parameters’ schema for the respective parameter grouping. The
attributes provide information for I18N, that is, properties file
name and the URL of the jar file which contains the properties
file. -->
<!ELEMENT Schema (Global?, Organization?, Dynamic?, Policy?,
User?) >
<!ATTLIST Schema i18nJarURL CDATA #IMPLIED

i18nFileName CDATA #IMPLIED
%i18nIndex; >

Code Example 5-11 Service Element Definition

<!ELEMENT Service (Schema?, Configuration?) >
<!--Name and version of the service -->
<!ATTLIST Service name NMTOKEN #REQUIRED

version NMTOKEN #REQUIRED >

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 137

The attribute list (ATTLIST) defines the Service name and version. (See the Service
name and version definitions in the excerpt from the SampleMailService.xml file
in Code Example 5-14 on page 139.) It defines the service’s name and version of
that service.

The version number does not need to correspond to the version number of the
product. For example, the product version could be DSAME 5.0, and the Service
name and version could be "DSAME" and "2.0", respectively, for example. The
service version specified in the sms.dtd and the product version do not
necessarily correspond to each other.

Service Name Attribute
This is a required attribute; you must define this in a service XML.

The "Service name" attribute for the Service element defines the name of the service
being defined. For example, in the sampleMailService.xml file, the service name is
"sampleMailService".

i18nFileName Attribute
This is a required attribute; you must define this in a service XML.

The i18nFileName attribute defines the localization filename to be used; the
i18nFileName is also called the localization .properties filename. In the
sampleMailService.xml file, the i18nFileName attribute is defined as
"sampleMailService". In the case of the sampleMailService, the i18nFileName is
defined as sampleMailService.properties.

i18nKey Attribute
This is a required attribute; you must define this in a service XML.

The i18nKey attribute defines the index key, or the "localization key" which
displays the service name. In the sampleMailService.xml file, the i18nKey attribute
defines the service name that will display in the DSAME console—
"iplanet-am-sample-mail-service-description".

Code Example 5-12 Service Element Definition from sampleMailService.xml

<ServicesConfiguration>
 <Service name="sampleMailService" version="1.0">
 <Schema

What DSAME Supports in the Service Registration DTD

138 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

When looking at a service XML file, you can see that the service name is iPlanet
logging service. When looking at the service schema definition section for the
logging service, you can see that each attribute description of an i18n description
key. These i18nkey attributes are localization keys (for example, "a1", "a2", "a3",
etc.), and correspond to actual fields in each service’s properties files. These fields
are picked up and displayed by the DSAME console or some administrative
application, based on the locale for that platform. Every attribute must be
displayed in a particular locale for that platform language, for example, American
English, Japanese, German, etc. In the resource bundle .properties file for every
service (for example, amAuthLDAP.properties and amLogging.properties files).
You can look at the services’ .properties file to get the name of the actual attribute
as it will display in DSAME console. This key corresponds to the actual attribute
that needs to be changed on the server.

i18NKey Attribute and i18NFileName Attribute
The i18N key is a localization key, or index key, that maps to the localization file to
be used. i18N is the localization file, for example, i18NFileName for the user, for
example, i18nFileName="amUser". The DSAME console retrieves an i18N key,
for example, “u1”, and opens the file amUser.properties, for example. See Code
Example 5-13 on page 138 for a sample i18NKey definition. Also, when adding
new attributes, you need to define an i18N key. If there is no description or a blank
(that is, “ “), that tells the DSAME console not to display the attribute.

Code Example 5-13 Excerpt showing the i18NKey Attribute Definitions in sampleMailService.xml

 <Dynamic>
 <AttributeSchema name="iplanet-am-sample-mail-service-status"
 type="single_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 <ChoiceValue>Deleted</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>
 </AttributeSchema>

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 139

Note that the values you specify for the i18Nkey attributes in service XMLs
determine the order in which the fields are displayed on a service page in DSAME
console. To cause the attributes to display in alphabetical order, give the i18NKey
attribute values "a1", "a2", and "b1" and "b2", and so forth. For example, if you add
a new attribute and you want it to display at the top of the services page, make sure
you give the i18NKey a value of "a1".

The i18n attribute points to a Java.properties file. Calls are made to the resource
bundle and Java classes. It is defined in the class path, and then DSAME loads it.
Depending on what locale is passed to it, DSAME will look in the right directory.
Depending on what locale the customization engineer has set, the correct resource
bundle is passed to it.

See Code Example 5-14 on page 139 for an example of the i18N key and
i18FileName attribute definitions in the sampleMailService.xml file.

Global Attributes
A service developer typically must define the following global attribute types in a
service XML file:

• name of service

• version of service

• i18NFileName

• i18NKey

Code Example 5-14 i18NKey and i18FileName Attribute Definitions in sampleMailService.xml File

<ServicesConfiguration>
 <Service name="sampleMailService" version="1.0">
 <Schema
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">

<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 </DefaultValues>
 </AttributeSchema>

</Global>

What DSAME Supports in the Service Registration DTD

140 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

• service objectclasses (optional)

These are tagged as global attributes in the service XML, but it is important to note
that these attribute definitions apply to and describe the service itself.

In the sampleMailService.xml file, there is a global attribute schema defined as
"serviceObjectClasses". In on page 140, the service object classes specified under
that attribute schema’s values are given to any new user that gets created in
DSAME (and Directory server). These are the object classes for the
sampleMailService, which are given to any new user that is created, and the value
of the global attribute is iplanet.am.sample.mail.service which will be added
to all every user entry that inherits the service attributes for the sampleMailService.

For dynamic and policy and user attributes, the serviceObjectClasses attribute
schema definition, if used, must correspond to Directory server attributes. Unlike
global and organization attributes, you must have an objectclass definition for
dynamic, policy, and user attributes. (Defining the serviceObjectClasses schema
attribute for global and organization is optional.) This means that you must define
the name of that objectclass under this attribute serviceObjectClass. The reason
behind this is that when your service is registered for an organization, when you
go to create a user underneath that node, those objectclasses are automatically put
into that user object for you. The three attribute types dynamic, policy, and user
map one to one to their attributes in Directory server.

If adding a new service, a customization engineer must update the Directory server
schema with any new objectclasses and attributes that the new service has, if they
are not already in Directory server. (This is typically done through Directory
Console, or by loading in the schema definition in the form of an .ldif file that
contains the new object classes and attributes.)

Also, note that you can define multiple values for the attribute schema name
serviceObjectClasses in a service XML file; for example, you could define multiple
objectclass values in addition to iplanet-am-sample-mail-service.

For example, after a new service has been added to DSAME and Directory server,
any new users that are created in DSAME will automatically get those new
objectclasses and attributes; however, you must modify the already-existing users
in the DIT so that they can use the new objectclasses and attributes. It does not
matter whether a user belongs to that service or not; the objectclass is added. The
user can be created through DSAME console or through amadmin.

Code Example 5-15 A Global Attribute Schema Definition in sampleMailService.xml

<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 141

There can be more than one global attribute schema definition in a service XML
file. A global attribute schema definition could define port number, cache size,
number of threads, or any attribute that applies across an entire DSAME
configuration or instance, thus to all services and users for that DSAME
installation.

Note that global (and organization) attributes are internal to DSAME, and should
not be used in any custom or external services in DSAME 5.0, except in custom
pluggable authentication services. Global and organization attribute data are
stored in Directory server as blobs of data, but cannot be retrieved through LDAP
commands in DSAME 5.0. (Global and organization attributes can be used in
DSAME 5.0 in custom pluggable authentication modules, however,

Organization Attributes
Different organizations in a web hosting environment, for example, "coke" and
"pepsi" would have different configuration data defined for each organization. In
this scenario, a service developer would need to define different configuration data
for each of the organizations. A typical organization attribute could define the
location for log files.

An example of a custom service where you would use organization attributes
would be a custom pluggable authentication service. In DSAME 5.0, the only
custom service that can use organization and global attributes is a custom
pluggable authentication service.

For example, a service developer might specify an authentication module such as
an LDAP authentication service or a RADIUS authentication service as an
organization attribute type in a service XML. Something like an authentication
service would typically apply at an organization level.

Organization attributes can only be used when writing custom pluggable
authentication services; they cannot be used by external services in DSAME 5.0.
Global and organization attribute data are privately stored in Directory server as
blobs of data, and are not retrieveable using LDAP commands.

 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 </DefaultValues>
 </AttributeSchema>

</Global>

Code Example 5-15 A Global Attribute Schema Definition in sampleMailService.xml

What DSAME Supports in the Service Registration DTD

142 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

The only attribute types that are stored as LDAP objects in Directory server are
dynamic and policy and user. The global and organization attribute types could also
be stored in a flat file implementation, as they are not stored in Directory server as
LDAP entries.)

Dynamic Attributes
The dynamic attribute type can be used for any attribute that should be assigned
to roles or organizations, or inherited by users, that is, any attribute that is
applicable to all user objects, with respect to the service. These attributes are
usually implemented as Class of Service, which is functionality provided by iDS
5.0. Examples of dynamic attributes would be status attributes, mail address, etc.

Typical dynamic attributes would be session attributes; for example, a dynamic
attribute defined in a mail service would get picked up by all users that use that
mail service. And, based on the role that a particular user may possess, they would
pick up these new attribute/values.

Dynamic attributes use the Directory Server CoS and roles feature. (See the
Directory server 5.0 documentation on advanced entry management for details on
how Class of Service works.)

Policy Elements
Policy element types are intended to provide a group of actions (or privileges) that
are specific to the service. Examples of actions are canForwardEmailAddress,
canChangeSalaryInformation, etc. The schema of the configuration parameters is
provided by AttributeSchema. The element ResourceName specifies if the service
has resources associated with it, for example, URLs in the case of URL Policy Agent
service.

Code Example 5-16 Excerpt from amPolicy.xml defining a policy element

<ServicesConfiguration>
 <Service name="iPlanetPolicyService" version="5.0">

<Schema>
 <Organization>

<SubSchema name="Policies">
 <SubSchema name="NamedPolicy"

inheritance="multiple">
<AttributeSchema
 name="xmlpolicy"
 type="single"
 syntax="string" />

 </SubSchema>
</SubSchema>

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 143

You can create a policy, delete a policy, and assign a policy to roles by using the
amadmin CLI tool. Policy schema definitions in sms.dtd use Class of Service (CoS).

Dynamic attributes are typically used for roles. All users belonging to a particular
role will inherit all the attributes associated with that role. Every time DSAME goes
to get a user object from the Directory server, if that user is part of a particular role
defined as a "dynamic" attribute, that user inherits all the attributes associated with
that role that he/she belongs to. By default, the user gets all these objectclasses and
attributes.

User attributes
A user attribute type is for attributes that will be physically present in the user
entry. User attributes are not inherited by roles or organizations. Examples of
User attributes are password and employee ID.

Global Element, AttributeSchema and SubSchema Sub-elements
You can specify a Global element, which has two sub-element definitions—
AttributeSchema and SubSchema, for which you can specify 0 or more definitions.

<SubSchema name="Resources">
 <SubSchema name="ServiceType"

inheritance="multiple">
<AttributeSchema
 name="xmlresources"
 type="single"
 syntax="string" />

 </SubSchema>
</SubSchema>

Code Example 5-16 Excerpt from amPolicy.xml defining a policy element

What DSAME Supports in the Service Registration DTD

144 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Attribute Schema Sub-Element
AttributeSchema sub-elements enable a service developer to define a specific
attribute schema, or configuration parameter. See Code Example 5-18 on page 144.

Code Example 5-17 Global Element Definition in sms.dtd

<!-- Global element provides grouping of configuration
parameters that are globally applicable to all instances of
its service. In the case of services that are grouped, these
configuration parameters are global to that group. The schema
of the configuration parameters is provided by
AttributeSchema, and if there is any necessity to sub-group
additional configuration parameters, they can be grouped using
the SubSchema element. -->
<!ELEMENT Global (AttributeSchema*, SubSchema*) >

Code Example 5-18 AttributeSchema Element Definition (with Sub-Elements defined)

<!-- AttributeSchema defines a single configuration parameter for
a service. The attribute name gives the name for the configurable
parameter, type specifies whether the parameter is single-valued,
multi-valued, single-valued choice or multi-valued choice type;
syntax defines whether the parameter is boolean, string, numeric
or dn; rangeStart and rangeEnd provide the starting and ending
values for attribute syntax decimal_range and number range,
respectively; and any provides means for service developers to
add service-specific information. The elements IsOptional,
IsServiceIdentifier, IsStatusAttribute represent whether the
attribute is optional, a service identifier (CoS specifier) or
status attribute, respectievely. The elements DefaultValues
provides the default values for the parameter and ChoiceValues
provides the possible values for the parameter if it is of choice
type. The element Condition, if present, specifies boolean
operations, which determine if the attribute is valid based on
the current configuration data. If multiple Condition elements
are present, it is sufficient if at least one of them satisfy the
requirement (this provides OR implementation). -->
<!ELEMENT AttributeSchema (IsOptional?, IsServiceIdentifier?,
IsStatusAttribute?,

ChoiceValues?, BooleanValues?, DefaultValues?) >
<!ATTLIST AttributeSchema name NMTOKEN #REQUIRED

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 145

For the syntax attribute, the password type will encrypt and decrypt when stored
or retrieved in Directory server. Because encryption is private in DSAME 5.0, the
syntax attribute specified as password should only be used for DSAME internal
services, and should not be used by external services. In DSAME 5.0, this syntax
attribute keyword should only be used for custom pluggable authentication
services.

Only the syntax types of boolean, string, and password are enforced in DSAME 5.0;
all other syntax types (such as dn, email, url, numeric, percent, number,
decimal_number, number_range, and decimal_range) are treated as strings. For
example, if you put in a number as a string, DSAME will accept it.

Note that the CoSQualifier operationalal keyword is not supported in DSAME 5.0.

Service Sub-Schema Element
The service sub-schema element is only used in the amEntrySpecific.xml file in
DSAME 5.0. This sub-schema element is private in DSAME 5.0, thus should not be
used in any external service XML files in DSAME 5.0.

Service sub-schema can specify a subschema, for example, global information. It
could define multiple sub-schemas, such as for a particular application that is
defined. For example, logging for a Calendar application could be a separate
sub-schema. Each application could therefore define its own way of logging. A
netmail application could define a sub-schema, where there could be multiple
instances of subschema, and define what attributes that sub-schema should use.
For example, for different logging levels, a customization engineer could define
choice values for different logging levels. For logging type, you could also define
some choice values, for example, to specify output that goes to a file, JDBC, or some
other LDAP output mechanism.

type (single | list | single_choice | multiple_choice)
"list"

syntax (boolean | string | password "string"

CoSQualifier(default | override |
 | merge-schemes)"default"

rangeStart CDATA #IMPLIED
rangeEnd CDATA #IMPLIED
any CDATA #IMPLIED
%i18nIndex; >

Code Example 5-18 AttributeSchema Element Definition (with Sub-Elements defined)

What DSAME Supports in the Service Registration DTD

146 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

The attribute multiple_choice represents a list of choice values. The choice values
could represent multiple values, so that if the attribute values do not contain
multiple choice values, then the SMS parsing would fail.

AttributeSchema Element, ChoiceValues, BooleanValues, and
DefaultValues Sub-elements
The fourth, fifth and sixth sub-elements are ChoiceValues, BooleanValues, and
DefaultValues. These are elements for which specific attributes can have either a
multiple choice list of values from which the user can choose several values, a
Yes/No (boolean) list to choose from, and some default values from which to
choose. The attributes and values specified generate actual values that will appear
on the DSAME console. See the amAuth.xml file for examples of these element
types defined in a DSAME service XML.

AttributeSchema Attribute, name Attribute
The attribute schema defines the attribute schema name, which is NMTOKEN. The
AttributeSchema name attribute is required. This attribute schema name specifies
the name of the attribute, for example, port_number or logfile_name, for the
configuration data.

Code Example 5-19 Excerpt from sampleMailService.xml File showing AttributeSchema
name specification

 <AttributeSchema name="iplanet-am-sample-mail-service-status"
 type="single_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 <ChoiceValue>Deleted</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 147

AttributeSchema Element, Type Attribute
The attribute type can be a single attribute, a list of attributes, a single_choice
attribute, or a multiple_choice list. In Code Example 5-19 on page 146, note that
type is specified as single_choice, and the choice values are specified as active,
inactivate, and deleted. Given this service schema and configuration data
specification in the service XML file, the administrator or user must then choose
one of those values for the "iplanet-am-sample-mail-service-status" on the DSAME
console.

If the attribute is of the type multiple_choice, then the administrator or user can
pick multiple choices (more than one) on the DSAME console for that attribute.

For the type attribute, you can specify different keywords: single, which specifies
that the user can only specify one value; specifying list lets the user choose from a
list of values; single_choice allows the user to pick one choice from a list of
values; multiple_choice allows the user to pick several choices from a multiple
choice list.

AttributeSchema Element, Syntax Attribute
For the syntax attribute, if boolean is specified, users can pick between
(true/false) for that attribute in the DSAME console.

The syntax attribute lets you specify from among a list of 12 keywords:

Syntax Attribute, boolean value
Specifies that user or administrator must select True/False for the attribute.

Code Example 5-20 Excerpt from sampleMailService.xml showing boolean syntax
specification

<ActionSchema
name="iplanet-am-sample-mail-can-save-address-book-on-server"
 type="single"
 syntax="boolean"
 i18nKey="p3">
 <DefaultValues>
 <Value>false</Value>
 </DefaultValues>
 </ActionSchema>

What DSAME Supports in the Service Registration DTD

148 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Syntax Attribute, string value
Specifies that user can specify any string value for that attribute.

AttributeSchema syntax Attribute, password value
Specifies that user must enter a password, which will be encrypted.

AttributeSchema Element, ChoiceValues Sub-element
If the ChoiceValues sub-element is defined in the AttributeSchema, then it is valid,
provided the type attribute is specified as either single_choice or
multiple_choice. The administrator or user must choose either a single choice or
from a multiple choice list for that attribute in the DSAME console.

Code Example 5-21 Excerpt from sampleMailService.xml showing syntax attribute with
string value

 <AttributeSchema
name="iplanet-am-sample-mail-sentmessages-folder"
 type="single"
 syntax="string"
 i18nKey="a3">
 <DefaultValues>
 <Value>MailSent</Value>
 </DefaultValues>
 </AttributeSchema>

Code Example 5-22 amAuthLDAP.xml showing syntax attribute with value of
password

 <AttributeSchema name="iplanet-am-auth-ldap-bind-passwd"
 type="single"
 syntax="password"
 i18nKey="a4">

 <DefaultValues>

<Value>AQAAKh7ai3zuzP8VryBzcPnXdRA9ukTY2gX6</Value>

 </DefaultValues>
 </AttributeSchema>

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 149

AttributeSchema Element, syntax Attribute, boolean value
If the syntax attribute is specified as boolean, then the administrator or user must
select either True/False or Yes/No for that attribute in the DSAME console. In the
Code Example 5-24 on page 149, note that the syntax attribute is specified with a
"boolean" value.

Note that the default values specified in the AttributeSchema element definitions
in the service XML files are the values that will display in the DSAME console for
each attribute specified. In the Code Example 5-24 on page 149, for example, on the
LDAP Authentication service page, the "Enable SSL to LDAP Server" field (as
specified in the corresponding localization .properties file
(amAuthLDAP.properties) will give a default value of false. The administrator can
change this value when creating a new service template with different values, if
desired.

Code Example 5-23 Excerpt from sampleMailService.xml showing type attribute with
single_choice value

<AttributeSchema name="iplanet-am-sample-mail-service-status"
 type="single_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 <ChoiceValue>Deleted</ChoiceValue>
 </ChoiceValues>

Code Example 5-24 Attribute Schema Element Specification with boolean syntax
specified

<AttributeSchema name="iplanet-am-auth-ldap-ssl-enabled"
 type="single"
 syntax="boolean"
 i18nKey="a8">

 <DefaultValues>
 <Value>false</Value>

 </DefaultValues>

What DSAME Supports in the Service Registration DTD

150 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

AttributeSchema Element, CoSQualifier Attribute
There are different values that a service developer can specify for CoSQualifier
attributes:

• default

• override

• merge-schemes

If the default value is specified, then the default value for the CoSQualifier
attribute indicates that if there are two conflicting CoSQualifier attributes assigned
to the same user object, the one with the lowest priority takes precedence. The
lowest number, or 0, has the highest priority, or takes precedence.

If the override value is specified for the CoSQualifier attribute, then CoS overrides
the user value. (The default behavior is for the user entry value to override the
value for CoS.)

The operational value is not supported in DSAME 5.0.

If the merge-schemes value is specified, if there are two CoS templates assigned to
the same user, then the CoS templates get merged so that the values get added
together; then the user gets an aggregation of the CoS templates, or a union of
them.

For example, if there is an attribute "A" with a value of "10" in one template, and
another template "B" has a value of 20, the user would get both values 10 and 20 for
the attribute "A".

AttributeSchema Element, any Attribute
Specifies a wildcard that can be used by services to declare additional
configuration information. All the attributes listed in the subschema are displayed
when the organization is displayed. If the attribute is not listed, the DSAME
console will not display the attribute. For more information on the "any" attribute,
see Section “How the "any" Attribute can be used in Service XML Files” on page
122.

The any attribute can have four possible values:

• display, and

• required, or

• optional, and/or

• filter

What DSAME Supports in the Service Registration DTD

Chapter 5 Understanding DSAME XMLs and DTDs 151

The required and optional keywords tell the console whether the attribute
should be on the Create page. If its keyword is required, it must have a value or
the DSAME console will not allow the create to occur. The filter keyword tells
the DSAME console whether to use this attribute on the Search page or on the
organization pages.

Organization Element
Organization element is used to specify configuration parameters for things like an
organization’s authentication. You can specify AttributeSchema and SubSchema
elements.

Dynamic Element
Lets service developer provide a grouping of configuration parameters that all
users would inherit. Dynamic elements use CoS (Class of Service) as implemented
by iDS 5.1. Examples of dynamic configuration parameters, or attributes, are status
attributes or mail address, etc.

Code Example 5-25 Organization Element in sms.dtd

<!-- Organization element provides a grouping of configuration parameters that
can be configured differently for various organizations. Examples are
parameters like organization’s authentication mechanisms, logging information,
etc. The schema of the configuration parameters is provided by AttributeSchema
and if there is any necessity to sub-group additional configuration parameters
they can be grouped using the SubSchema element. -->
<!ELEMENT Organization (AttributeSchema*, SubSchema*) >

Code Example 5-26 amSession.xml File showing some attributes specified as Dynamic

 <Dynamic>
 <AttributeSchema name="iplanet-am-session-max-session-time"
 type="single"
 syntax="number"
 i18nKey="a1">

 <DefaultValues>
<Value>120</Value>

 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-session-max-idle-time"
 type="single"
 syntax="number"
 i18nKey="a2">

 <DefaultValues>

What DSAME Supports in the Service Registration DTD

152 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Policy Element
The Policy element lets service developer specify policy privileges or action names
(with ActionSchema element). Examples of actions (or privileges) are
canForwardEmailAddress, or can Change SalaryInformation. Privileges are get,
post, and put. The element Resource Name specifies if the service has resources
associated with it, for example, URLs in the case of the URL Policy Agent service.

User Element
The User element lets service developer specify a group of configuration
parameters that are applicable to user objects, only, with respect to the service.
Examples are things specific only to a particular user, such as social security
number, email address, etc. The User element uses the AttributeSchema
sub-element, but does not use the SubSchema element.

 <Value>30</Value>
 </DefaultValues>

Code Example 5-27 Policy element

<!-- Policy element provides grouping of actions (or privileges) that are
specific to the service. Examples of actions are canForwardEmailAddress,
canChangeSalaryInformation, etc. The schema of the configuration parameters is
provided by AttributeSchema. The element HasResourceNames specifies if the
service has resources associated with it, for example, URLs in the case of Web
Agent Service. -->
<!ELEMENT Policy (ActionSchema*) >

Code Example 5-28 Excerpts from amUser.xml showing User Attributes specified

 <User>
 <AttributeSchema name="uid"
 type="single"
 syntax="string"
 any="required|filter"
 i18nKey="u1">

</AttributeSchema>
 <AttributeSchema name="givenname"
 type="single"

Code Example 5-26 amSession.xml File showing some attributes specified as Dynamic (Continued)

Policy Management Module

Chapter 5 Understanding DSAME XMLs and DTDs 153

Policy Management Module
The Policy Management module is one of three modules (along with User
Management and Service Management module) that comprise the Management
Services.

Overview of Some Policy Concepts and Terms
in DSAME
Policy management deals with creating policies for services and how they are
applied to a role or an organization.

Policy Schema
Policy schema is a set of all valid privileges and possibly optional default values for
each of the privileges in the set. Policy schema can also contain information about
the service itself. Each service that enforces policy must have a policy schema
defined for it.

Named Policy and Assigned Policy
Policy constitutes a set of one or more pairs of {privileges, privilege settings}. For
example, {mailboxQuota, 100MB} is a policy. {allowURLList, “*.red.iplanet.com,
*.eng.sun.com”} is another policy. When a user or administrator creates a policy on
the Policy page, that is called a "named policy".

 syntax="string"
 any="optional|filter|display"
 i18nKey="u2">

</AttributeSchema>
.
.
.

 </DefaultValues>
 </AttributeSchema>
 </User>

Code Example 5-28 Excerpts from amUser.xml showing User Attributes specified (Continued)

Policy Management Module

154 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Policy is the result of changing or setting the default values for privileges in the
Policy schema. Administrators or service developers of DSAME use the policy
schema to create policy for the relevant service by modifying any default values for
the privileges in the policy schema and applying the resulting policy to a role, a
user, an organization or an organizationalUnit. When a user or administrator takes
that named policy, and assigns it to an organization or a role, then it can be called
an “assigned policy”.

Policies are unlike service schema; there are no named service objects. However,
there are named policy objects.

From the same policy schema, the administrator can generate different policies to
apply at different levels, such as role, user, organization, etc. Policy schemas can be
viewed as metadata for the privileges of any given service. Using policy schemas, an
administrator knows the valid set of privileges for any given service.

For example, you could compare the policy schema with the schemas in the XML,
LDAP, and RDBMS worlds. Before you create an XML document, you define the
XML schema. Before you create relational tables, you define the database schema.
Before you create LDAP entries, you define the LDAP schema for DIT entries.
Similarly, before you create policies, you need to create the Policy schema for the
service.

For example, a Policy schema definition is shown in the amWebAgent.xml file in
Code Example 5-29 on page 154.

Code Example 5-29 Excerpt showing policy schema definition in amWebAgent.xml File

 <Policy>
 <ActionSchema name="permission"
 type="single_choice"
 cosQualifier="merge-schemes"
 i18nKey="p1">
 <ActionValue i18nKey="a1">
 <Value>iplanet-am-web-agent-access-allow-list</Value>
 <ResourceName/>
 </ActionValue>
 <ActionValue i18nKey="a2">
 <Value>iplanet-am-web-agent-access-deny-list</Value>
 <ResourceName/>
 </ActionValue>
 <ActionValue i18nKey="a3">

<Value>iplanet-am-web-agent-access-not-enforced-list</Value>
 <ResourceName/>
 </ActionValue>
 </ActionSchema>
 </Policy>
 </Schema>

Adding a Custom Service

Chapter 5 Understanding DSAME XMLs and DTDs 155

The policy schema elements and attributes are not public in DSAME 5.0. However,
note that in the DSAME 5.0 release, no external services can define and use policy
schema definitions. So, an example from the amWebAgent.xml file is included here
to provide some overview information on how to define policy schema.

Note that there is a difference between a Policy schema and a policy. Policy schema
must declare all the valid privileges (or attributes) for the service. Policy need not
declare all the valid privileges.

Scoping of Policies
Because policies for any service can be associated at the role, organizational Unit
(ou) and/or organization levels, there could be cases when there will be conflicting
policies for the specified service for a given user. Therefore, priority levels are
associated with policies. Policies with higher priority take precedence over
templates with lower priority. If conflicting policies have the same priority, the
scoping results will be undefined.

Adding a Custom Service
After installing DSAME, you can add new, or custom, services to it later. However,
you must add the new objectclasses and attributes manually to Directory server, by
using ldapmodify or adding the new objectclasses and attributes through the
Directory Console.

Note that in DSAME 5.0, you are limited to writing custom pluggable
authentication services (which must use only the global and organization attributes
in their schema definitions), and external services (other than custom pluggable
authentication services) which must use only the dynamic and user attributes.
LDAP can be used to retrieve data from the dynamic and user attributes in the user
entry. In the case of the custom pluggable authentication service, there are methods
in the pluggable authentication SPI that allow the retrieving of organization-based
data.

 </Service>
</ServicesConfiguration>

Code Example 5-29 Excerpt showing policy schema definition in amWebAgent.xml File

Adding a Custom Service

156 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

So if you define a custom application or service (other than a pluggable
authentication service) such as a phonebook application which has dynamic and
user attributes defined in its schema, a service developer could import this custom
service into DSAME using the amadmin CLI tool, configure the service in DSAME
console, assign the service to an organization or a role, and then the phonebook
application would use LDAP directly to read user attributes.

Following are some things to keep in mind when adding a new service:

• If a customer wants to add a new service, he/she may need to modify a
schema definition in the ums.xml file, and then may need to modify a couple of
other files (amUser.xml and/or amEntrySpecific.xml file). If you want to
add an additional service that was not there are installation time, then you
need to just add the objectclasses and attributes to the ums.xml file to enable
user creation. (Refer to the Section “Cases where Service Developers must
Modify the ums.xml Configuration File” on page 130 for some information.
Also see the iPlanet Directory Server Access Management Edition Installation and
Configuration Guide for information on modifying the ums.xml configuration
file when installing against a legacy DIT.

• The User Management Services component in DSAME is considered a service.
Default attribute/value pairs are provided for all of the user management
services attributes in the ums.xml and umsCompliant.xml files. These are
loaded into the Directory server when DSAME is installed.

• Whenever a customer adds a new service or modifies an attribute, the
ums.xml file must be modified and reloaded into Directory server.

• When a customer installs the the DSAME product, the ums.xml schema and
configuration data gets saved in the Directory server. If DSAME were to be
un-installed, then the user management services schema and configuration
information previously stored in Directory server would not get un-installed. If
you were to reinstall DSAME, the user management services components
would already be in the Directory server.

• Whenever you reinstall the DSAME product, then the ums.xml file gets saved
in the Directory server. The ums.xml file is saved in the Directory Server
Console as the DAI service.

• Once the ums.xml configuration file (called DAI service in the Directory server)
has been loaded at installation time, it can only be modified using Directory
server Console. You cannot reimport using the amadmin CLI tool.

• When adding a service (such as sampleMailService.xml), you must update the
DSAME console hierarchy service attribute to get it to display in the service
tree. For information on updating the service hierarchy attribute, see Section
“Add the sampleMailService to the Service Hierarchy” on page 206.)

Adding a Custom Service

Chapter 5 Understanding DSAME XMLs and DTDs 157

If creating a custom service, a service developer or customization engineer would
typically do the following:

High Level Flow for Creating and Registering
Services
Following is a set of high level steps to create, register, and activate services:

1. Write the custom service or application, for example, a Calendar application or
an authentication service.

(For specific information on creating custom pluggable authentication
modules, see the Pluggable Authentication chapter. For specific information on
creating a customized single sign-on solution to work with your existing
services and applications, see the Single Sign-On chapter.)

2. First create the service XML file for the service, which must conform to the
DTD (sms.dtd). See Section “Attributes and Elements that DSAME Supports”
on page 134 more information on the DSAME service management services
DTD (sms.dtd).

3. Update the amEntrySpecific.xml file, if necessary, for any abstract DSAME
entries that you want to be displayed on the DSAME console’s Create,
Properties, or Search pages. (See Section “Attributes and Elements that
DSAME Supports” on page 134 for information.)

4. Update the amUser.xml file, if necessary. (See Section “Attributes and
Elements that DSAME Supports” on page 134 for information.)

5. Use Directory Console to add any new or modified schema (objectclasses or
attributes) to Directory server so that DSAME can manage those new
attributes. To do this, you could use either ldapmodify to update the
Directory server schema, or modify the .ldif file directly.

NOTE You can customize the existing internal DSAME services by adding new
service attributes, modifying existing attributes, or you could create new
services to work with DSAME.

Adding a Custom Service

158 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

6. Make a copy of one of the resource bundle .properties files, for example,
amAuthLDAP.properties, and modify it for your custom application or
service. It should be located in the classes subdirectory. (See the Pluggable
Authentication SPI or Single Sign-On chapters, respectively, for information on
creating and integrating custom authentication and single sign-on solutions.)

7. Copy the new or modified .properties file for your service into the following
directory:

dsame_root/web-apps/services/WEB-INF/classes

(For more details on loading and registering services, see Section “Guidelines
for Loading Services into DSAME” on page 198.)

8. Import the service XML file into DSAME by using the amadmin CLI tool. After
loading or importing a service XML into DSAME, all the services are loaded
into a separate branch in iDS (under the ou=services branch).

9. Update the DSAME service hierarchy attribute. (See Section “Add the
sampleMailService to the Service Hierarchy” on page 206 for information on
how to do this.)

10. After you have imported or loaded the service(s) into DSAME, each
organization can then register the service through the DSAME console. You
can do this by going to the organization, selecting the service, clicking Add,
then select the service that you want to register, then click Submit.

The service is now registered in DSAME. Administrators can then create
different service templates for role, sub-organizations, etc. through the DSAME
console.

11. Activate the service in DSAME console. (Alternatively, you can activate the
service by importing the activateRequests.xml file by using the amadmin
tool.)

For more detailed information on importing, registering, and activating service
XML files into DSAME, see Chapter 6, “Using the Command Line Interface.

Adding a Custom Service

Chapter 5 Understanding DSAME XMLs and DTDs 159

Some Things to Consider When Creating a New
Service
For example, say you want to define a custom authentication service. You would
need to define the service XML file for the custom authentication application or
service per the sms.dtd. The things that the authentication service typically would
need are logging, i18n information, and session information. Each one of these
(logging, session, and authentication) is a service. They must define what each
service will need, what all the attributes are, and what service configuration the
application will need.

For example, logging contains a subset of these values, and could contain
maximum log size file, location of log file, etc. The customer would need to define
their schema based on schema format. One of the attributes they would need to
define is where the log file will be stored, and similarly to define another service
template for authentication. This information, when uploaded into DSAME, is
passed to the SMS APIs, and the SMS APIs uploads the information into iDS.

The default values for each service attribute defined in the schema should be
included within each schema definition. The default values, along with the schema
definition, can also be referred to as the "configuration data".

At the customer site, an administrator could change the default values set in the
XML files to new values, then create a new service template that uses those new
values. For example, say you wanted to change your log file location to another
location. An administrator or user could do this in the DSAME console, then save
the new service template, and then assign it to an organization or role.

In DSAME 5.0, you cannot create Directory server schema dynamically through the
amadmin CLI tool. You must always create or extend the Directory server (LDAP)
schema by using the ldapmodify command for each service being created in
DSAME (see the section on sampleMailService example), or by creating an .ldif file
in the Configuration/Schema page in Directory Server Console.

After a service has been created, registered and activated for an organization, if a
new user is added to that organization, it automatically inherits all the
organization’s CoS/template values for the global and policy attributes of the
service (for example, through a role association).

The SDK adds the object class for the registered services to the user entry when it is
created. The object class is defined in the service XML file. Note this only happens
if the user is created through the SDK.

On the other hand, if a new service is instantiated, existing users for the
organization do not inherit the attribute values for that service.

Description of sampleMailService Files

160 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

If services are added after the user is added, the user entries must be updated some
other way (for example, through using the ldapmodify or by creating or modifying
an .ldif file in Configuration/Schema page in Directory Server Console. The
SDK will not update them if services are added after the user has been added.

The solution is to add the objectclass or attributes of the new service to each
existing user through an ldapmodify command (as you would do when using the
sampleMailService example), or by creating or modifying an.ldif file through the
Config/Schema page in Directory Server Console. Alternatively, you could use the
migration scripts provided in DSAME 5.0 to update the user objects in the DIT with
the new objectclasses and attributes.) For information, see the section on migration
scripts in the iPlanet Directory Server Access Management Edition Installation and
Configuration Guide.)

You do not need to restart the LDAP server when extending the schema to add or
modify users/services/organizations/roles, either directly through the .ldif file or
Directory Server Console, or by using the amadmin CLI tool.

For new services being imported to DSAME, you need to restart the amserver to
add any i18nKey resource bundles (if required) to its classpath.

Description of sampleMailService Files
This section provides a description of the following sample mail service files that
are provided with the DSAME 5.0 product:

• sampleMailService.ldif

• sampleMailService.xml

• sampleMailService.properties

The files are located in the <dsame_root>/samples/sampleMailService directory
in the DSAME product. These sample files are provided so that you can use them
as guidelines when creating your own custom services and applications.

There are several sampleMailServices files provided—an .ldif file to show some
sample objectclasses and attributes to add to Directory server; an .xml file to show
how a sample service could be written; and a sample .properties file to show
how localization keys point to the the actual fields that display on DSAME console
would be created.

Description of sampleMailService Files

Chapter 5 Understanding DSAME XMLs and DTDs 161

In on page 165, the iplanet-am-sample-mail-service-status attribute is
specified as a dynamic attribute, with a type of "single_choice", a syntax of "string",
a list of choice values (Active, Inactive, and Deleted), and a default value of Active.
On the DSAME console, after this service is loaded using amadmin, users and
administrators will see this list of choice values for the
iplanet-am-sample-mail-service-status attribute, and the default value of
Active. The i18nKey value of "a1" points to an actual field defined in the resource
bundle .properties file for the service. (In this example, the file would be
sampleMailService.properties). The value for the "a1" definition in the
sampleMailService.properties file is the actual field that displays for the
iplanet-am-sample-mail-service-status attribute. In this case, the "a1" index
key, or localization key, is "Mail Status", which is the field that displays for the
iplanet-am-sample-mail-service-status attribute on the sampleMailService
service page in DSAME console.

Excerpts of the sampleMailService sample files are given in this section.

sampleMailServiceSchema.ldif File
Typically, the customization engineer or deployment engineer will need to modify
the necessary .ldif file or update the objectclasses and attributes in iDS Console
directly before loading the modified or created service XML.

Following is the sampleMailServiceSchema.ldif file, which is located in the
<dsame_root>/samples/cli/sampleMailService directory. It is provided so that
you can use it as a sample, to create the LDAP schema for a service. You would
typically need to extend the schema first by using the .ldif file as input to the
ldapmodify command.

This is an example of an .ldif file, which a customization engineer could create,
either manually, or by adding any new schema objects (objectclasses and
attributes) by using Directory Console, then generating an .ldif file by using the
db2ldif command. Another option is to load the .ldif file, with the new
objectclasses and attributes (for a new service, or a modified service, for example)
into DSAME and Directory server by using ldapmodify to modify the existing iDS
schema.

NOTE If Directory server already knows about the objectclasses and attributes that
are in your service, you do not need to update Directory server. If any of
your service or application’s objectclasses and attributes are not already
up-to-date in Directory server, then you must extend the schema, either by
modifying the .ldif file, or by updating the schema manually in Directory
Console directory.

Description of sampleMailService Files

162 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Refer to the Directory server 5.0 documentation for specifics on using ldapmodify
and how to add objectclasses and attributes to the Directory server.

Code Example 5-30 sampleMailServiceSchema.ldif File

dn: cn=schema
changetype:modify
add:attributeTypes
attributeTypes: (iplanet-am-sample-mail-service-status-oid NAME
’iplanet-am-sample-mail-service-status’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-root-folder-oid NAME
’iplanet-am-sample-mail-root-folder’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-sentmessages-folder-oid NAME
’iplanet-am-sample-mail-sentmessages-folder’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-indent-prefix-oid NAME
’iplanet-am-sample-mail-indent-prefix’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-initial-headers-oid NAME
’iplanet-am-sample-mail-initial-headers’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-inactivity-interval-oid NAME
’iplanet-am-sample-mail-inactivity-interval’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-auto-load-oid NAME
’iplanet-am-sample-mail-auto-load’ DESC ’iPlanet SampleMailService Attribute’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory Pro’)
attributeTypes: (iplanet-am-sample-mail-headers-perpage-oid NAME
’iplanet-am-sample-mail-headers-perpage’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)
attributeTypes: (iplanet-am-sample-mail-quota-oid NAME
’iplanet-am-sample-mail-quota’ DESC ’iPlanet SampleMailService Attribute’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory Pro’)
attributeTypes: (iplanet-am-sample-mail-max-attach-len-oid NAME
’iplanet-am-sample-mail-max-attach-len’ DESC ’iPlanet SampleMailService
Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’iPlanet Directory
Pro’)

Description of sampleMailService Files

Chapter 5 Understanding DSAME XMLs and DTDs 163

sampleMailService.xml File
Following is the sampleMailService.xml file, which is located in the
<dsame_root>/samples/cli/sampleMailService directory. See the Code
Example 5-31 on page 164 for an excerpt from the sampleMailService.xml file
which defines some dynamic attributes.

This section gives some information on the sampleMailService.xml file. This file
can be used as guidelines when creating a service XML file. Refer to the
sampleMailService.xml file in the sampleMailService directory when reading
information in this section.

The "iplanet-am-sample-mail-root-folder" attribute is also specified as a dynamic
attribute. The attribute schema is specified with a type of "single", a syntax of
"string", and a default value of "Mail", which is the default name for the
iplanet-am-sample-mail-root-folder attribute. The i18nKey value is "a2", which
maps to "Root Folder", which is the field that displays on the DSAME console for
the "iplanet-am-sample-mail-root-folder" attribute. The syntax of "string" means
that the user (or administrator) can enter whatever he/she wants to enter in the
"Root Folder" field on the sampleMailService service page, in place of the default
value of "Mail".

attributeTypes: (iplanet-am-sample-mail-can-save-address-book-on-server-oid
NAME ’iplanet-am-sample-mail-can-save-address-book-on-server’ DESC ’iPlanet
SampleMailService Attribute’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN
’iPlanet Directory Pro’)

dn: cn=schema
changetype:modify
add:objectClasses
objectClasses: (iplanet-am-sample-mail-service-oid NAME
’iplanet-am-sample-mail-service’ DESC ’iPlanet dpro SampleMail Service’ SUP
top AUXILIARY MAY (iplanet-am-sample-mail-service-status $
iplanet-am-sample-mail-root-folder $
iplanet-am-sample-mail-sentmessages-folder $
iplanet-am-sample-mail-indent-prefix $ iplanet-am-sample-mail-initial-headers
$ iplanet-am-sample-mail-inactivity-interval $
iplanet-am-sample-mail-auto-load $ iplanet-am-sample-mail-headers-perpage $
iplanet-am-sample-mail-quota $ iplanet-am-sample-mail-max-attach-len $
iplanet-am-sample-mail-can-save-address-book-on-server) X-ORIGIN ’iPlanet
Directory Pro’)

Code Example 5-30 sampleMailServiceSchema.ldif File

Description of sampleMailService Files

164 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

The "iplanet-am-sample-mail-inactivity-interval" attribute is specified as a dynamic
attribute. The attribute schema is specified with a type of "single", syntax of
"number", i18nKey value of "a6", and a default value of 5. This means that for the
"iplanet-am-sample-mail-inactivity-interval" attribute on the sampleMailService
service page, the localization field that displays is "Check New Mail Interval
(minutes)" will display, and users and administrators will be able to enter a single,
number value in this field when creating a modified or new service template.

Several other attributes in the sampleMailService.xml file are specified with
attribute types of "single", syntax of "number, and given default values. For
example, the "iplanet-am-sample-mail-headers-perpage" attribute is specified as a
single type, default value of 10, and given an i18nKey value of "a8", which maps to
the "Headers per page" field in the sampleMailService.properties file. This means
that for the Headers page page field on the sampleMailService service page in
DSAME console, users and administrators can specify any single number in place
of the default value given, which is 10.

sampleMailService.properties File
Following is the sampleMailService.properties file, which is located in the
<dsame_root>/samples/cli/sampleMailService directory.

Code Example 5-31 sampleMailService.properties File

#
PROPRIETARY/CONFIDENTIAL/ Use of this product is subject
to license terms. Copyright 2001 Sun Microsystems Inc.
Some preexisting portions Copyright 2001 Netscape
Communications Corp. All rights reserved.
#

iplanet-am-sample-mail-service-description=Sample Mail Service Profile
a1=Mail Status
a2=Root Folder
a3=Sent Messages Folder
a4=Reply Prefix
a5=Initial Headers to Load
a6=Check New Mail Interval (minutes)
a7=Automatic Message Load at Disconnect
a8=Headers Per Page
p1=Mail Quota
p2=Auto-download Maximum Attachment Length
p3=Save Address Book on Server

Description of sampleMailService Files

Chapter 5 Understanding DSAME XMLs and DTDs 165

Every service that you register with DSAME must have a corresponding
.properties file. All the .properties files for DSAME are located in the
following directory:

<DSAME_root>/web-apps/services/WEB-INF/classes/*.properties

Each service in DSAME has a corresponding XML (.xml) file and a corresponding
.properties file. The XML file defines the attributes for each service. For each
attribute in the service’s XML file, there is an ‘i18nKey” field, for which the value is
used as a key to retrieve the actual display message from the service’s
corresponding .properties file. The DSAME console displays the attributes in
alphabetical order according to the i18Nkey definitions in the service XML. For
example, if you want two of the attributes to display at the top of the page in
DSAME console, give the attributes’ i18Nkey definitions values of "a1" and "a2",
respectively, and then “b1” and “b2”, and so forth, to order the attributes on the
Services page. There is a one-to-one mapping between the i18nKey in the XML file
and the key in the .properties file.

All the index keys listed in a .properties file (for example, “a1”, “p1”, etc.) are
values for multiple descI18n index keys specified in the service’s XML file. When
you write a custom service XML and .properties file, you must provide files with
all attributes and values that you want to display in DSAME console.

Each service must first be imported with the amadmin tool. Then the administrator
or user can log into DSAME console and go to the organization he/she wants to
register the service for. For each service you add, you must update the DSAME
console service hierarchy attribute to get it to display in the service tree. (See
Section “Add the sampleMailService to the Service Hierarchy” on page 206 for
information on adding a service to the service hierarchy.) At that point, the
administrator can log out, log back in, and the service displays for the organization.
Then he/she can register and activate the service in DSAME console.
(Alternatively, after importing the service, you could use the
registerRequests.xml to register a service for an existing organization, then
activate the service by importing an activateRequests.xml to activate the service
for an existing organization.)

Below is an excerpt from the sampleMailService.properties file that shows the “a1”
and “a2” index key values that are specified in the service’s XML file.

Code Example 5-32 Excerpt from sampleMailService.properties File

iplanet-am-sample-mail-service-description=Sample Mail Service Profile
a1=Mail Status
a2=Root Folder

Description of sampleMailService Files

166 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Every service imported into DSAME using amadmin must have a corresponding
and .properties file for it. Also, the relevant .properties filename must be defined in
the i18NFileName attribute in the sampleMailService.xml file. In the excerpt
from the sampleMailService.xml file below, note that the i18nFileName
attribute points to the ‘sampleMailService’ file.

Also, note that each i18nKey for every attribute schema definition in the XML file
points to, or is “equal to” a value such as “a1”, “a2”, or “p1” or “p2” and so forth.
These i18nKey values are in the corresponding .properties file for the service (for
example, the ‘sampleMailService.properties’ file for the ‘sampleMailService.xml’
file). Note that in the sampleMailService.properties file, there is a list of i18nKey
fields (also called “localization keys” or “indexes” or “index keys”), which contain
the field exactly as it will display on that service page in the DSAME console. For
example, using the excerpted sample below, “a1” will display the field “Mail
Status” and “a2” displays the field “Root Folder” on the Sample Mail Service
Profile page in DSAME console.

Code Example 5-33 Excerpt from sampleMailService.xml File

ServicesConfiguration>
 <Service name="sampleMailService" version="1.0">
 <Schema
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">

<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 </DefaultValues>
 </AttributeSchema>

</Global>

Code Example 5-34 Excerpt showing dynamic attribute definitions in sampleMailService.xml File

 <Dynamic>
 <AttributeSchema name="iplanet-am-sample-mail-service-status"
 type="single_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 <ChoiceValue>Deleted</ChoiceValue>

Description of sampleMailService Files

Chapter 5 Understanding DSAME XMLs and DTDs 167

 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-root-folder"
 type="single"
 syntax="string"
 i18nKey="a2">
 <DefaultValues>
 <Value>Mail</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-sentmessages-folder"
 type="single"
 syntax="string"
 i18nKey="a3">
 <DefaultValues>
 <Value>MailSent</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-indent-prefix"
 type="single"
 syntax="string"
 i18nKey="a4">
 <DefaultValues>
 <Value>|</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-initial-headers"
 type="single"
 syntax="number"
 i18nKey="a5">
 <DefaultValues>
 <Value>10</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-inactivity-interval"
 type="single"
 syntax="number"
 i18nKey="a6">
 <DefaultValues>
 <Value>5</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-auto-load"
 type="single"
 syntax="number"
 i18nKey="a7">
 <DefaultValues>
 <Value>0</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema name="iplanet-am-sample-mail-headers-perpage"
 type="single"

Code Example 5-34 Excerpt showing dynamic attribute definitions in sampleMailService.xml File

Description of sampleMailService Files

168 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Explanation of Policy Schema Definitions in sampleMailService.xml
The sampleMailService.xml file gives a brief sample of some policy attributes.

See Section “Overview of Some Policy Concepts and Terms in DSAME” on page
153 and Section “Policy Management Module” on page 153 for information on
policy concepts and terms. Section “Attributes and Elements that DSAME
Supports” on page 134 for some information of the SMS elements and attributes
that use policy (for example, Policy, ActionSchema, ActionValue and
ResourceName elements) in the sms.dtd.

In Code Example 5-35 on page 169, the Policy element defines a grouping of
actions (or privileges) that are specific to the service. Examples of actions are
canForwardEmailAddress, canChangeSalaryInformation, etc. These action names
define a set of permissions, or privileges; for example,

The ActionSchema element defines a single action (or privilege) for a service. The
attribute name in the first policy element definition is:

name="iplanet-am-sample-mail-quota"

The first ActionSchema element name "iplanet-am-sample-mail-quota" defines a
single action or privilege for a service, in this case, it defines a mail quota for the
sampleMailService of 1000000 kilobytes, or 1 MB, which is defined to be a type of
single choice on the DSAME console, syntax of "number", which means that
administrators or users must enter a number when creating a new service template,
and the default value given for administrators is 1000000 (KB). The i18nKey="p1"
definition means that the localization, or index, key points to the "p1" index or key
in the sampleMailService.properties file, which maps to the field Mail Quota,
which will display for the iplanet-am-sample-mail-quota attribute on the DSAME
console services page.

The next ActionSchema element definition in the sampleMailService.xml file is:

ActionSchema name="iplanet-am-sample-mail-max-attach-len"

 syntax="number"
 i18nKey="a8">
 <DefaultValues>
 <Value>10</Value>
 </DefaultValues>
 </AttributeSchema>
 </Dynamic>

Code Example 5-34 Excerpt showing dynamic attribute definitions in sampleMailService.xml File

Description of sampleMailService Files

Chapter 5 Understanding DSAME XMLs and DTDs 169

Similarly, the "iplanet-am-sample-mail-quota" Action name defines a set of
permissions or privileges, which will appear as "single" type choice on the service
page in DSAME console, which means that administrators and users can specify a
single type value, which must have be a number. The i18nKey value maps to "p2",
which maps to the Auto-download Maximum Attachment Length field, which is
the exact field that will display for the "ipalent-am-sample-mail-max-attach-len"
atttribute on the sampleMailService services page in DSAME console

p2=Auto-download Maximum Attachment Length

The "iplanet-am-sample-mail-max-attach-len" attribute is given a default value of
100000 which will display on the sampleMailServices page in DSAME console,
which administrators can change, provided the value they enter matches the
ActionSchema definition.

NOTE DSAME 5.0 does not support default values for policy schema definitions.

Code Example 5-35 Excerpt from sampleMailService.xml defining Policy Schema

 <Policy>
 <ActionSchema name="iplanet-am-sample-mail-quota"
 type="single"
 syntax="number"
 i18nKey="p1">
 </ActionSchema>
 <ActionSchema name="iplanet-am-sample-mail-max-attach-len"
 type="single"
 syntax="number"
 i18nKey="p2">
 </ActionSchema>
 <ActionSchema
name="iplanet-am-sample-mail-can-save-address-book-on-server"
 type="single"
 syntax="boolean"
 i18nKey="p3">
 </ActionSchema>
 </Policy>
 </Schema>
 </Service>
</ServicesConfiguration>

amAdmin.dtd Used when Performing Batch Updates to DIT

170 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Policy Schema must be defined before Policy
Template can be Created in DSAME Console
It is important to note that you must add services (import the service using the
amadmin tool) that have policy subschema defined for the organization before you
can create a policy template. Once the service with policy schema defined has been
imported into DSAME, then you can create a policy template within DSAME
console.

If the DSAME console detects that an organization does not have any services
defined for that organization, it will not create a policy template, and will give an
error.

amAdmin.dtd Used when Performing Batch
Updates to DIT

The amAdmin.dtd is the DTD that is used by DSAME when you perform batch
operations on the DIT (such as creations, deletions, gets on user objects such as
roles, organizations, users, people containers, and groups). When writing XML
files that perform batch operations on the DIT, administrators or customization
engineers must follow the document structure defined in this DTD.

Batch Operations you can perform using the
amAdmin.dtd
The purpose of the amAdmin.dtd is to enable you to perform the following
command line operations on DSAME. Using the amadmin tool with the --data
option enables an administrator or customization engineer to:

• Create roles, users, organizations, groups, people containers and services.

• Create users, suborganizations, roles, groups, sub-containers, people
containers, sub-people containers, sub-groups.

NOTE The XML files that define services use a different DTD—the sms.dtd. The
XML files that perform batch updates on the Directory server use the
amAdmin.dtd.

amAdmin.dtd Used when Performing Batch Updates to DIT

Chapter 5 Understanding DSAME XMLs and DTDs 171

• Delete roles, users, organizations, groups, people containers and services.

• Read roles, users, organizations, groups, people containers and services.

• Get roles, people containers, and users.

• Get the number of users for groups, people containers, and roles.

• Import services.

• Register a service for an existing organization.

• Unregister a service from an existing organization.

• Get registered service names from an existing organization.

• Get activated service names from an existing organization.

• Get the total number of registered and activated services for an existing
organization.

• Execute requests in multiple XML files together on the amadmin command
line. (The order is important that the batch update XML files are imported is
important. For example, you must register a service before it can be activated;
similarly, a service must be deactivated before it can be unregistered.)

Files Used to perform Batch Updates to DIT
There are several sample files provided in the following directory, which enable
you to perform the operations described in Section “Batch Operations you can
perform using the amAdmin.dtd” on page 170:

<dsame_root>/samples/admin/cli/bulk-ops

The sample files provided for you to perform batch operations are:

• createRequests.xml

• activateRequests.xml

• deactivateRequests.xml

• deleteGroupRequests.xml

• deleteOrgRequests.xml

• deletePCRequests.xml

• deletePolicyRequests.xml

Description of amAdmin.dtd

172 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

• getActivatedServices.xml

• getNumOfServices.xml

• getRegisteredServices.xml

• getRequests.xml

• registerRequests.xml

• unregisterRequests.xml

See the Section “Sample File (createRequests.xml) to Perform batch Updates to
DIT” on page 188 for a brief explanation of the createRequests.xml file, and refer to
Chapter 6, “Using the Command Line Interface for information on how to import
batch operations sample files into the DIT.

Description of amAdmin.dtd
This section provides some information on the amAdmin.dtd which defines some
rules that must be adhered to, when writing and using batch operations XML files
in DSAME.

The amAdmin.dtd uses standard XML (Extensible Markup Language) syntax,
elements, and attributes. The amAdmin.dtd has been written specifically for use
with the DSAME product, and the attributes are specific to DSAME and Directory
server. For explanations of standard XML elements, syntax, and attributes, refer to
any of the numerous XML books or web sites available, or go to the following
URL:

http://xml101.com

The amAdmin.dtd reflects the structure of the DSAME SDK. The amAdmin.dtd
follows a request-based paradigm. Neither the amAdmin.dtd nor the amadmin
CLI tool are meant to fully duplicate the DSAME console (GUI) functionality
available through the amadmin CLI tool.

The following sections provide brief explanations of the batch update tasks you can
perform on the DIT, such as creating, deleting, and reading roles, users,
organizations, groups, people containers, and services from the Directory server
tree (DIT). The administrator or customization engineer must configure some
sample batch update XML files per the rules defined in the amAdmin.dtd. Some
sample batch operations XML files are located in the following directory:

<dsame_root>/samples/admin/cli/bulk-ops

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 173

Note that there are descriptions of the various amAdmin.dtd elements and
attributes used when performing batch operations on the DIT is provided in the
amAdmin.dtd file itself.

Requests Element
The Requests element is the root element of the input XML document to amadmin.
It must contain at least on child element. The child elements are designe dto follow
an object-oriented model where the actual requests are performed on the high level
DSAME objects such as Organization, Container, People Container, Role, and
Group. To enable batch processing, the root element can accept more than one set
of requests.

The Requests element defines all the directory objects that can be performed on the
Directory server DIT:

• Organization

• Container

• People Container

• Role

• Group

See Code Example 5-36 on page 173 for a sample Requests Element and Requests
sub-element.

NOTE You should not modify the amAdmin.dtd in any way. It contains rules and
definitions that control the way batch operations are performed on the
Directory Information Tree (DIT), and must not be modified; otherwise,
errors could be introduced into your Directory server DIT, or the batch
operations will not work correctly.

Code Example 5-36 Requests Element and Requests Sub-Elements

<!ELEMENT Requests (
 OrganizationRequests |
 ContainerRequests |
 PeopleContainerRequests |
 RoleRequests |
 GroupRequests)+
>

Description of amAdmin.dtd

174 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

OrganizationRequests Element
The OrganizationRequests element combines all the requests that are to be
performed on Organization type objects. To enable batch processing, this element
can have one or more child elements. The child elements, as suggested by their
intuitive names, represent the various requests. Note that all the child elements
perform their operations on the same instance of Organization object. If you want
to manipulate different Organization objects, you can include different
OrganizationRequests elements in the root element Requests.

All the organization requests are shown in the on page 174 (for example, create
suborganizations, get roles, unregsiter services, delete sub-organizations, etc.)

The DN attribute of the element OrganizationRequests specifies the DN
(Distinguished Name, for example,
"uid=amAdmin,ou=People,o=iplanet.com,o=isp") of the Organization element, on
which all of the requests (specified by the child elements) will be performed.

Note that the DN attribute is a required attribute; the service developer or
customization engineer must supply a DN on the amadmin command line when
performing the batch operation.

Code Example 5-37 OrganizationRequests Element

<!ELEMENT OrganizationRequests (
 (CreateSubOrganization)*,
 (CreatePeopleContainer)*,
 (CreateRole)*,
 (CreateGroup)*,
 (CreatePolicy)?,
 (GetSubOrganizations)?,
 (GetPeopleContainers)?,
 (GetRoles)?,
 (GetGroups)?,
 (GetUsers)?,
 (RegisterServices)?,
 (UnregisterServices)?,
 (ActivateServices)?,
 (DeactivateServices)?,
 (GetActivatedServiceNames)?,
 (GetRegisteredServiceNames)?,
 (GetNumberOfServices)?,
 (DeleteRoles)?,
 (DeleteGroups)?,
 (DeletePolicy)?,
 (DeletePeopleContainers)?,
 (DeleteSubOrganizations)?)
>

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 175

CreateSubOrganization Element
The CreateSubOrganization element can have zero or more AttributeValuePairs.

The Attribute element must be all one word without spaces, thus, it is specified as
NMTOKEN in the amAdmin.dtd. (See on page 175.)

CreatePeopleContainer Element

The CreatePeopleContainer element lets you create an attribute/value pair on the
specified people container in the DIT. You must specify a "createDN" attribute.

Code Example 5-38 DN Attribute of OrganizationRequests Element

<!-- The DN attribute of the element, OrganizationRequests, specifies
the DN of the Organization object on which all of the requests
(specified by the child elements) shall be made.
-->

<!ATTLIST OrganizationRequests
 DN CDATA #REQUIRED
>

Code Example 5-39 CreateSubOrganization Element

<!-- Note that CreateSubOrganization element can have zero or more
AttributeValuePairs.
-->

<!ELEMENT CreateSubOrganization (AttributeValuePair)* >
<!ATTLIST CreateSubOrganization
 createDN CDATA #REQUIRED
>
<!ELEMENT AttributeValuePair (Attribute, (Value)+) >
<!ELEMENT Attribute EMPTY >

<!-- Attribute must be all one word without spaces. Hence, it is
indicated as NMTOKEN below.
-->

<!ATTLIST Attribute
 name NMTOKEN #REQUIRED
>
<!ELEMENT Value (#PCDATA) >

Description of amAdmin.dtd

176 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

CreateGroup Element
The CreateGroup Element lets you create a specified group in the DIT. You must
specify a "createDN" attribute.

CreateRole Element
The CreateRole element lets you create a specified role in the DIT, and specify
attribute/value pairs also. You must specify a "createDN" attribute. (See on page
176.)

CreatePolicy Element
The CreatePolicy element lets you create one or more policy objects in the DIT.
Policy is the root element that defines a named policy. The attribute "name"
specifies the policy name. "serviceName" attribute identifies the service name to
which the named policy applies.

The Policy element can have one or more rules specified for it (specified by Rule+).

Code Example 5-40 CreatePeopleContainer, CreateGroup, and CreateRole Elements

<!ELEMENT CreatePeopleContainer (AttributeValuePair)* >
<!ATTLIST CreatePeopleContainer
 createDN CDATA #REQUIRED
>

<!-- __ -->

<!ELEMENT CreateGroup EMPTY >
<!ATTLIST CreateGroup
 createDN CDATA #REQUIRED
>

<!-- __ -->

<!ELEMENT CreateRole (AttributeValuePair)* >
<!ATTLIST CreateRole
 createDN CDATA #REQUIRED
>

<!-- __ -->

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 177

Rule Element with ServiceName, ResourceName?, and
AttributeValuePair+ Sub-Elements
The Rule element defines a policy rule that contains a service name, resource name,
and its action names and corresponding values. The "name" attribute provides a
user-friendly name for the rule. The sub-element "ServiceName" gives the name of
the service; the sub-element "ResourceName" gives the resource name, and the
"AttributeValuePair" provides the action names and corresponding action values.

The sub-element "ServiceName" provides the name of the service for which a rule
has been created. The attribute "name" provides the service name.

The sub-element "ResourceName" provides the name of the reource for which a
rule has been created. If the service does not have a resource, this element will not
be there for the rule. The "name" attribute provides the resource name. (See on
page 177.)

Code Example 5-41 Create Policy Element

<!ELEMENT CreatePolicy (Policy)+ >
<!ATTLIST CreatePolicy
 createDN CDATA #REQUIRED
>

<!-- Policy is the root element that defines a named policy.
The attribute "name" provides the policy name.
"serviceName" identifies the service name for which the policy is
applicable.
The policy element can have one or more rules (Rule).
-->

<!ELEMENT Policy (Rule+) >
<!ATTLIST Policy
 name CDATA #REQUIRED
 serviceName NMTOKEN #IMPLIED
>

Code Example 5-42 Rule Element with Sub-Elements

<!ELEMENT Rule (ServiceName, ResourceName?,
 AttributeValuePair+) >
<!ATTLIST Rule
 name CDATA #REQUIRED
>

<!-- ServiceName provides the name of the service for which a
rule has been created. The attribute "name" provides the service
name.

Description of amAdmin.dtd

178 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

GetSubOrganizations Element
For the GetSubOrganizations element, for those objects that have LDAP attributes,
all get operations in the amAdmin.dtd follow the same design pattern. If the
element has an XML attribute "DNsOnly" set to true, or does not have the
"DNsOnly" attribute, only the DNs of the corresponding DSAME objects will be
returned. If DNsOnly="false", the entire object (with the LDAP attribute value
pairs) will be returned. However, the behavior of DNsOnly is valid ONLY if there
are no child elements (DNs) specified; if the DNs are specified, the entire object will
always be returned. (See on page 178.)

-->

<!ELEMENT ServiceName EMPTY>
<!ATTLIST ServiceName
 name CDATA #REQUIRED
>

<!-- ResourceName provides the name of the resource for which
a rule has been created. If the service does not have resource,
this element will not be there for the rule. The attribute "name"
provides the resource name.
-->

<!ELEMENT ResourceName EMPTY>
<!ATTLIST ResourceName
 name CDATA #REQUIRED
>

Code Example 5-43 GetSubOrganizations Element

<!ELEMENT GetSubOrganizations (DN)* >

<!-- For those objects that may have LDAP attributes, all get operations in
this DTD follow the same design pattern: If the element has an XML
attribute DNsOnly set to true or doesn’t have that XML attribute, only
the DNs of the corresponding DSAME objects shall be
returned. If DNsOnly="false", the entire object (with the LDAP
attribute value pairs) shall be returned.
However, the behavior of DNsOnly is valid ONLY if there are no child
elements (DNs) specified; if the DNs are specified, the entire
object shall always be returned.
-->

<!ATTLIST GetSubOrganizations

Code Example 5-42 Rule Element with Sub-Elements

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 179

GetPeopleContainers, GetGroups, and GetRoles Elements
For the GetPeopleContainers element, if there are no child elements (no DNs)
specified, then ALL PeopleContainers at all levels within the specified
Organization will be returned.

For the GetGroups element, you must specify a "level" attribute, or node, for which
you want to get the groups returned. You can specify "ONE_LEVEL" to get just the
groups at that node level, or you can specify a "SUB-TREE" attribute, which gets all
the groups for at that node’s level and all the nodes underneath that node.

For the GetRoles element, you must specify a "level" attribute, or node, for which
you want to get the roles returned. You can specify "ONE_LEVEL" to get just the
roles at that node level, or you can specify a "SUB-TREE" attribute, which gets all
the roles for at that node’s level and all the nodes underneath that node.

 DNsOnly (true | false) "true"
>

Code Example 5-44 GetPeopleContainers, GetGroups, and GetRoles Elements

<!ELEMENT GetPeopleContainers (DN)* >
<!ATTLIST GetPeopleContainers
 DNsOnly (true | false) "true"
>

<!-- __ -->

<!ELEMENT GetGroups EMPTY >
<!ATTLIST GetGroups
 level (ONE_LEVEL | SUB_TREE) "SUB_TREE"
>

<!-- __ -->

<!ELEMENT GetRoles EMPTY >
<!ATTLIST GetRoles
 level (ONE_LEVEL | SUB_TREE) "SUB_TREE"
>

Code Example 5-43 GetSubOrganizations Element

Description of amAdmin.dtd

180 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

GetUsers Element
For the GetUsers element, if there are no child elements (no DNs) specified, then
ALL users at all levels within this object are returned. You must specify a true or
false value for the GetUser element; the default is true.

RegisterServices and UnregisterServices Elements
For the RegisterServices element, the service schema for the service must have been
loaded by using the amadmin CLI tool before a service can be registered. Multiple
services can be registered using this tag. One or more Service_Name sub-elements
can be specified on which to register services.

For the UnregisterServices element, it can be ued to unregister a
previously-registered service. If the service was not previously registered, the
request is simply ignored for that service. Multiple services can be unregistered
using this tag. If no Service_Name tag is specified, then no registered service will
be unregistered, the request is simply ignored.

Code Example 5-45 GetUsers Element

<!ELEMENT GetUsers (DN)* >
<!ATTLIST GetUsers
 DNsOnly (true | false) "true"
>

Code Example 5-46 RegisterServices and UnregisterServices Elements

<!-- Before a service is registered, the service schema for the service must
have been loaded using the CLI. Multiple services can be registered using this
tag.
-->

<!ELEMENT RegisterServices (Service_Name)+ >
<!ELEMENT Service_Name (#PCDATA) >

<!-- __ -->

<!-- Unregister a previously registered service. If the service was not
previously registered, the request is simply ignored for that service. Multiple
services can be unregistered using this tag. If no Service_Name tag is
specified, then no registered service will be unregistered, the request is
simply ignored.
-->

<!ELEMENT UnregisterServices (Service_Name)* >

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 181

ActivateServices and DeactivateServices Elements
For the ActivateServices element, a service must have been registered before it can
be activated. Before a service is registered, the service schema must have been
loaded using the amadmin CLI tool. If no Service_Name tag is specified, then no
registered service will be activated, the request is simply ignored.

For the DeactivateServices element, a service must have been registered and
activated before it can be deactivated. Before a service is registered, the service
schema must have been loaded using the amadmin CLI tool. If the service was not
previously registered and/or activated, the request is ignored for that service.
Multiple services can be deactivated using this tag. If no Service_Name tag is
specified, then no registered service will be deactivated, the request is simply
ignored.

GetActivatedServiceNames, GetRegisteredServiceNames, and
GetNumberofServices Elements
For the GetActivatedServiceNames element, all activated services within this object
are returned.

For the GetRegisteredServiceNames element, all registered services within this
object are returned.

For the GetNumberOfServices element, the total number of services within this
object are returned.

Code Example 5-47 ActivateServices and DeactivateServices Elements

<!ELEMENT ActivateServices (Service_Name)* >

<!-- __ -->

<!-- A service must have been registered and activated before it can be
deactivated. Before a service is registered, the service schema must have been
loaded using the CLI. If the service was not previously registered and/or
activated, the request is simply ignored for that service. Multiple services
can be deactivated using this tag. If no Service_Name tag is specified, then
no registered service will be deactivated, the request is simply ignored.
-->

<!ELEMENT DeactivateServices (Service_Name)* >

<!-- __ -->

<!-- ALL activated services within this object are returned.
-->

Description of amAdmin.dtd

182 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

DeleteSubOrganizations Element
For those objects that have children objects (such as containers, organizations,
people containers), all delete operations in the amAdmin.dtd follow the same
design pattern: If deleteRecursively=”false”, then accidental deleting entire
subtrees is avoided. It could be disastrous if deleteRecursively=”true”. To avoid
accidental and unintentional deletions, the default value is “false”.

DeletePeopleContainers Element
For those objects that have children objects (such as containers, organizations,
people containers), all delete operations in this DTD follow the same design
pattern: If deleteRecursively=”false”, then accidentally deleting entire subtrees is
avoided.

Code Example 5-48 GetActivatedServiceNames, GetRegisteredServicesNames, and Get
GetNumberOfServices Elements

<!-- ALL activated services within this object are returned.
-->

<!ELEMENT GetActivatedServiceNames EMPTY >

<!-- __ -->

<!-- ALL registered services within this object are returned.
-->

<!ELEMENT GetRegisteredServiceNames EMPTY >

<!-- __ -->

<!-- Total number of services within this object are returned.
-->

<!ELEMENT GetNumberOfServices EMPTY >

Code Example 5-49 DeleteSubOrganizations Element

<!ELEMENT DeleteSubOrganizations (DN)+ >
<!ATTLIST DeleteSubOrganizations
 deleteRecursively (true | false) "false"
>

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 183

DeleteGroups Element
For those objects that might have children objects (such as containers,
organizations, people containers), all delete operations in this DTD follow the same
design pattern: If deleteRecursively=”false”, then accidentally deleting entire
subtrees is avoided. It can be disastrous if deleteRecursively=”true”. The default
value is ‘false’ to avoid accidental and unintentional deletions.

DeleteRoles Element
The DeleteRoles element deletes roles, based on the DN.

DeletePolicy Element
The DeletePolicy element deletes the policy applicable to a service, given the DN.

Code Example 5-50 DeletePeopleContainers Element

<!ELEMENT DeletePeopleContainers (DN)+ >
<!ATTLIST DeletePeopleContainers
 deleteRecursively (true | false) "false"
>

Code Example 5-51 DeleteGroups Element

<!ELEMENT DeleteGroups (DN)+ >
<!ATTLIST DeleteGroups
 deleteRecursively (true | false) "false"
>

Code Example 5-52 DeleteRoles element

<!ELEMENT DeleteRoles (DN)+ >

Description of amAdmin.dtd

184 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

PolicyName Element
The PolicyName element gives the name of the policy applicable to a service.

ContainerRequests Element
The ContainerRequests element aggregates all the requests that are to be
performed on Container type objects. To enable batch processing, this element can
have one or more child elements. The child elements, as suggested by their
intuitive names, represent the various requests. Note that all the child elements
operate on the same instance of Container object. If different Container objects are
to be manipulated, different ContainerRequests elements can be included in the
root element Requests.

See Code Example 5-55 on page 185 for a list of the types of container requests you
can perform on the DIT in a batch operation; for exame, you can create roles,
groups, policies, activate and deactivate services, delete roles and groups, and
other requests on objects in the DIT.

Note that you can when you create roles in the DIT, you can specify
attribute/value pairs. You can create sub-containers with attribute/value pairs,
create sub-people-containers with attribute/value pairs, and create users with
attribute/value pairs.

Code Example 5-53 DeletePolicy Element

<!ELEMENT DeletePolicy (PolicyName)+ >
<!ATTLIST DeletePolicy
 deleteDN CDATA #REQUIRED
>

Code Example 5-54 PolicyName Element

<!ELEMENT PolicyName EMPTY>
<!ATTLIST PolicyName
 name CDATA #REQUIRED
>

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 185

Code Example 5-55 ContainerRequests Element

<!ELEMENT ContainerRequests (
 (CreateSubContainer)*,
 (CreatePeopleContainer)*,
 (CreateRole)*,
 (CreateGroup)*,
 (CreatePolicy)?,
 (GetSubContainers)?,
 (GetPeopleContainers)?,
 (GetRoles)?,
 (GetGroups)?,
 (GetUsers)?,
 (RegisterServices)?,
 (UnregisterServices)?,
 (ActivateServices)?,
 (DeactivateServices)?,
 (GetActivatedServiceNames)?,
 (GetRegisteredServiceNames)?,
 (GetNumberOfServices)?,
 (DeleteRoles)?,
 (DeleteGroups)?,
 (DeletePolicy)?,
 (DeletePeopleContainers)?,
 (DeleteSubContainers)?)
>

<!-- The DN attribute of the element, ContainerRequests, specifies
the DN of the Container object on which all of the requests
(specified by the child elements) shall be made.
-->

<!ATTLIST ContainerRequests
 DN CDATA #REQUIRED
>

<!-- __ -->

<!-- Note that CreateSubContainer element can have zero or more
AttributeValuePairs.
-->

<!ELEMENT CreateSubContainer (AttributeValuePair)* >
<!ATTLIST CreateSubContainer
 createDN CDATA #REQUIRED
>

<!-- __ -->

<!-- If there are no child elements (no DNs) specified, then ALL
subContainers at all levels within this Container are returned.
-->

<!ELEMENT GetSubContainers (DN)* >

<!-- For those objects that may have LDAP attributes, all get operations in

Description of amAdmin.dtd

186 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

this DTD follow the same design pattern: If the element has an XML
attribute DNsOnly set to true or doesn’t have that XML attribute, only
the DNs of the corresponding DSAME objects shall be
returned. If DNsOnly="false", the entire object (with the LDAP
attribute value pairs) shall be returned.
However, the behavior of DNsOnly is valid ONLY if there are no child
elements (DNs) specified; if the DNs are specified, the entire
object shall always be returned.
-->

<!ATTLIST GetSubContainers
 DNsOnly (true | false) "true"
>

<!-- __ -->

<!-- For those objects that may have children objects (such as containers,
organizations, people containers), all delete operations
in this DTD follow the same design pattern: If deleteRecursively="false",
then accidental deletion of entire subtrees is avoided.
It can be disastrous if deleteRecursively="true". The default value is ’false’
to avoid accidental and unintentional deletions.
-->

<!ELEMENT DeleteSubContainers (DN)+ >
<!ATTLIST DeleteSubContainers
 deleteRecursively (true | false) "false"
>

<!-- ======================== PeopleContainerRequests =================== -->

<!ELEMENT PeopleContainerRequests (
 (CreateSubPeopleContainer)*,
 (CreateUser)*,
 (GetNumberOfUsers)?,
 (GetUsers)?,
 (GetSubPeopleContainers)?,
 (DeleteUsers)?,
 (DeleteSubPeopleContainers)?)
>

<!-- The DN attribute of the element, PeopleContainerRequests, specifies
the DN of the PeopleContainerRequests object on which all of the requests
(specified by the child elements) shall be made.
-->

<!ATTLIST PeopleContainerRequests
 DN CDATA #REQUIRED
>

<!ELEMENT CreateSubPeopleContainer (AttributeValuePair)* >
<!ATTLIST CreateSubPeopleContainer
 createDN CDATA #REQUIRED
>

Code Example 5-55 ContainerRequests Element

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 187

<!ELEMENT CreateUser (AttributeValuePair)* >
<!ATTLIST CreateUser
 createDN CDATA #REQUIRED
>

<!-- For those objects that may have children objects (such as containers,
organizations, people containers), all delete operations
in this DTD follow the same design pattern: If deleteRecursively="false",
then accidental deletion of entire subtrees is avoided.
It can be disastrous if deleteRecursively="true". The default value is ’false’
to avoid accidental and unintentional deletions.
-->

<!ELEMENT DeleteSubPeopleContainers (DN)+ >
<!ATTLIST DeleteSubPeopleContainers
 deleteRecursively (true | false) "false"
>

<!ELEMENT DeleteUsers (DN)+ >

<!ELEMENT GetSubPeopleContainers (DN)* >
<!ATTLIST GetSubPeopleContainers
 level (ONE_LEVEL | SUB_TREE) "SUB_TREE"
 DNsOnly (true | false) "true"
>

<!-- ======================== RoleRequests =================== -->

<!ELEMENT RoleRequests (
 (GetNumberOfUsers)?,
 (GetUsers)?,
 (AddUsers)?
)
>

<!-- The DN attribute of the element, RoleRequests, specifies
the DN of the RoleRequests object on which all of the requests
(specified by the child elements) shall be made.
-->

<!ATTLIST RoleRequests
 DN CDATA #REQUIRED
>

<!ELEMENT GetNumberOfUsers EMPTY >

<!ELEMENT AddUsers (DN)+ >
<!ELEMENT DN (#PCDATA) >

<!-- ======================== GroupRequests =================== -->

<!ELEMENT GroupRequests (
 (CreateSubGroup)*,
 (GetSubGroups)?,
 (GetNumberOfUsers)?,

Code Example 5-55 ContainerRequests Element

Description of amAdmin.dtd

188 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

Sample File (createRequests.xml) to Perform
batch Updates to DIT
Below is one of the sample XML files provided in the
<dsame_install_dir/SUNWam/samples/admin/cli/bulk-ops directory. For
example, you would use the createRequests.xml file to create various objects such
as users, roles, people containers, groups, etc. in the DIT.

 (GetUsers)?,
 (AddUsers)?,
 (DeleteSubGroups)?)
>

<!-- The DN attribute of the element, GroupRequests, specifies
the DN of the GroupRequests object on which all of the requests
(specified by the child elements) shall be made.
-->

<!ATTLIST GroupRequests
 DN CDATA #REQUIRED
>

<!ELEMENT GetSubGroups (DN)* >
<!ATTLIST GetSubGroups
 level (ONE_LEVEL | SUB_TREE) "SUB_TREE"
 DNsOnly (true | false) "true"
>

<!ELEMENT CreateSubGroup (AttributeValuePair)* >
<!ATTLIST CreateSubGroup
 createDN CDATA #REQUIRED
>

<!-- For those objects that may have children objects (such as containers,
organizations, people containers), all delete operations
in this DTD follow the same design pattern: If deleteRecursively="false",
then accidental deletion of entire subtrees is avoided.
It can be disastrous if deleteRecursively="true". The default value is ’false’
to avoid accidental and unintentional deletions.
-->

<!ELEMENT DeleteSubGroups (DN)+ >
<!ATTLIST DeleteSubGroups
 deleteRecursively (true | false) "false"
>

Code Example 5-55 ContainerRequests Element

Description of amAdmin.dtd

Chapter 5 Understanding DSAME XMLs and DTDs 189

Code Example 5-56 createRequests.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Requests
 PUBLIC "-//iPlanet//DSAME 5.0 Admin CLI DTD//EN"
 "file:/opt/SUNWam/web-apps/services/dtd/amAdmin.dtd"
>

<!-- CREATE REQUESTS -->

<Requests>
<OrganizationRequests DN="o=isp">

 <CreateSubOrganization createDN="sun.com"/>

 <CreatePeopleContainer createDN="People1,o=sun.com"/>

 <CreateRole createDN="ManagerRole,o=sun.com"/>

 <CreateRole createDN="EmployeeRole,o=sun.com"/>

 <CreateGroup createDN="ContractorsGroup,o=sun.com"/>

 <CreateGroup createDN="EmployeesGroup,o=sun.com"/>

 <CreatePolicy createDN="o=sun.com,o=isp">
 <Policy name="ManagerPolicy"
 serviceName="sampleMailService">
 <Rule name="Manager Rule">
 <ServiceName name="sampleMailService"/>
 <ResourceName name="sampleMailService"/>

 <AttributeValuePair>
 <Attribute name="iplanet-am-sample-mail-quota"/>
 <Value>1000000</Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="iplanet-am-sample-mail-max-attach-len"/>
 <Value>100000</Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute

name="iplanet-am-sample-mail-can-save-address-book-on-server"/>
 <Value>false</Value>
 </AttributeValuePair>

 </Rule>
 </Policy>
 </CreatePolicy>

</OrganizationRequests>

<PeopleContainerRequests DN="ou=People1,o=sun.com,o=isp">

<CreateSubPeopleContainer createDN="SubPeople1">
<AttributeValuePair>

Description of amAdmin.dtd

190 iPlanet Directory Server Access Management Edition Installation and Configuration Guide • November 2001

 <Attribute name="description"/>
 <Value>SubPeople description</Value>
</AttributeValuePair>
</CreateSubPeopleContainer>

 <CreateUser createDN="amUser">
 <AttributeValuePair>
 <Attribute name="cn"/>
 <Value>amUser</Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="sn"/>
 <Value>amUser </Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="userPassword"/>
 <Value>12345678</Value>
 </AttributeValuePair>
 </CreateUser>

</PeopleContainerRequests>

<RoleRequests DN="cn=ManagerRole,o=sun.com,o=isp">

<AddUsers>
 <DN>uid=amUser,ou=People1,o=sun.com,o=isp</DN>
</AddUsers>

</RoleRequests>

<GroupRequests DN="cn=ContractorsGroup,o=sun.com,o=isp">

<CreateSubGroup createDN="SubContractorsGroup">
<AttributeValuePair>

 <Attribute name="uniquemember"/>
 <Value>uid=amUser,ou=People1,o=sun.com,o=isp</Value>

</AttributeValuePair>
</CreateSubGroup>

<AddUsers>
 <DN>uid=amUser,ou=People1,o=sun.com,o=isp</DN>
</AddUsers>

</GroupRequests>

Code Example 5-56 createRequests.xml File (Continued)

191

Chapter 6

Using the Command Line Interface

This chapter describes how you can use the amadmin command line interface tool.
It contains the following sections:

• Overview of the amadmin Command Line Interface Tool

• How the amadmin CLI Tool Works

• Guidelines for Loading Services into DSAME

• Guidelines on Performing Batch Updates to User Objects in Directory Server

• Steps to Perform Batch Updates to DIT

• Tips when running amadmin Tool

Overview of the amadmin Command Line
Interface Tool

This chapter describes the command-line interface (amadmin) available for iPlanet
Directory Server Access Management Edition administration. The primary
purpose of the amadmin tool is to help an administrator perform batch
administrative tasks on the Directory Server, for example, create, register, and
activate new services; and create, delete, and read (get) organizations, people
containers, groups, roles, and users.

The primary purposes of the amadmin CLI tool in this release are to:

• Load service schema definitions in XML files. This lets DSAME administrators
load their services into DSAME (and iPlanet Directory Server) in XML file
format using the amadmin CLI tool, and then implement the service based on
the schema. In this release of DSAME, you MUST load all services into DSAME
(and Directory Server) by using the amadmin tool; you cannot load or import

Overview of the amadmin Command Line Interface Tool

192 DSAME Programmer’s Guide • December 2001

services through DSAME’s Administration Console.

To register a service through the amadmin CLI tool, you first define the service
schema and configuration data in XML file(s), and then import the XML file(s)
using the amadmin CLI tool.

• Perform batch operations (such as creating, deleting, and reading user objects
in the Directory server, such as users, organizations, groups, people containers,
roles, etc.) For example, if an administrator wants to create 1000 organizations,
people containers, users, and groups, he/she can do this in one attempt by
putting all the requests in one or multiple XML files for performing batch
operations (such as <dsame_root>/samples/admin/cli/bulk-ops/
createRequests.xml and
<dsame_root>/samples/admin/cli/bulk-ops/deleteRequests.xml files)
and run the amadmin tool once. Otherwise, an administrator has to create
these objects in Directory Server one at a time in DSAME Administration
Console.

The amadmin CLI tool takes one or more XML files as input. Then it reads all the
requests described in the XML file(s) and submits these requests to Directory
Server through the DSAME SDK. Such requests include those for creating, getting
and deleting various directory objects, as mentioned above.

There are two DTDs that the XML files should adhere to:

sms.dtd—All the service XML files (for example, all the service XML files
located in the <dsame_root>/SUNWam/web-apps/services/dtd directory)
must adhere to the Service Management Services) sms.dtd file.

amAdmin.dtd—All the XML files that perform batch updates to the Directory
Information Tree (or DIT), which are located in the
<dsame_root>/web-apps/services/amAdmin.dtd directory, must
adhere to the document type definition rules defined in the amAdmin.dtd file.

In this chapter, there are some sample XML files (one for loading a service, and one
for performing a batch load operation such as a create requests operation to create
some user objects in the DIT, two DTDs (an sms.dtd and an amAdmin.dtd), and
how to load the service into DSAME. The sample XML files provided with this
build are located in:

The DTD files (sms.dtd and amAdmin.dtd) are located in:

<dsame_root>/SUNWam/web-apps/services/dtd

How the amadmin CLI Tool Works

Chapter 6 Using the Command Line Interface 193

They set up rules for how the XML files should be written, how an administrator
would perform batch operations on the DIT, for example, adding new users and
roles to the Directory server in batch mode. An administrator may want to perform
a large number of operations on the DIT, and could use the sample XML files
provided to perform creates, deletes, and gets on the Directory server.

The amadmin CLI tool is not intended to be a replacement for Admin Console Tool,
which has a GUI interface. The amadmin CLI tool does not support all the features
that can be executed from DSAME’s Admin Console. It is recommended that you
use Admin Console GUI for any incremental administrative tasks while you use
the amadmin CLI tool for any batch administrative tasks.

How the amadmin CLI Tool Works
The primary function of amadmin CLI tool comprises two different phases:

Service schema definition in XML and registration
To define the metadata (what type of attributes the service will have, how many
attributes the service will have, what kind of policy attributes the service will have,
what the attribute names are, etc.)

Data creation in Directory Server DIT (or populating the Directory
Server DIT):
To actually create the DIT entries such as organization, group, people container,
user, and role, the attributes defined in these entries will use the schema defined in
the service XML file. For example, if an attribute A in the “user” entry is from some
service X, the type (metadata/schema) of the attribute (string, boolean, integer, or
some other attribute type) is determined using the schema defined in the service
schema definition in the service XML file (for example, amAdminConsole.xml).

NOTE When loading services and when performing batch updates on the
Directory server, two different dtds are used; services use the sms.dtd;
batch updates to the DIT use the amAdmin.dtd.

How the amadmin CLI Tool Works

194 DSAME Programmer’s Guide • December 2001

What you can use the amadmin tool for
The amadmin CLI tool provides a way for you to perform the following actions on
the Directory server:

1. Import services.

2. Create roles, users, organizations, groups, people containers, and services.

3. Delete roles, users, organizations, groups, people containers, and services.

4. Read (get) roles, users, organizations, groups, people containers, and services.

5. Read (get) roles, people containers, users.

6. Read (get) number of users for groups, people containers, roles.

7. Register a service for an existing organization.

8. Unregister a service from an existing organization.

9. Activate a service for an existing organization.

10. Deactivate a service from an existing organization.

11. Get registered service names from an existing organization.

12. Get activated service names from an existing organization.

13. Get the total number of registered and activated services for an existing
organization.

14. Execute requests in multiple XML files together.

File pathnames follow UNIX filesystem conventions. <dsame_root> refers to the
installation directory where the Directory Server (iPlanet Directory Server) is
installed, and is /usr/iplanet/servers by default.
<dsame_root> refers to the installation directory where DSAME services and
agents are installed and is /opt/SUNWam by default.

Requirements to run amadmin CLI Tool
To perform batch updates on the Directory Server (DIT), you will need a sample
XML file conforming to the DTD. This DTD is located in

<dsame_root>/web-apps/services/dtd/amAdmin.dtd

To load services, you will need to use one of the sample XML files provided for
defining service schema and configuration data, or you can use one of these to
create your own service XML. Refer to the DTD provided for when loading
services. This DTD is located in

How the amadmin CLI Tool Works

Chapter 6 Using the Command Line Interface 195

<dsame_root>/web-apps/services/dtd/sms.dtd

The <dsame_root> by default is /opt/SUNWam. If you install DSAME using the
default DSAME installation directory, this is where the DSAME build will be
installed.

Installation/Setup
When DSAME 5.0 is installed, the amAdmin CLI tool also gets installed along with
the server. The amserver is located in
<dsame_root>/web-apps/services/WEB-INF/bin,
and the amAdmin CLI tool is installed in the
<dsame_root>/web-apps/services/WEB-INF/bin directory. The amadmin
CLI tool is a shell script wrapper around the actual Java class, which is the actual
implementation of this CLI.

Syntax for using the amadmin Tool
The syntax for using the amadmin tool follows:

amadmin --runAsDN <dnname> --password <password>
[--locale <localename>][--verbose|--debug]--data
xmlfile1 [xmlfile2 ...]

 amadmin --runAsDN <dnname> --password <password> [--locale localename]
[--verbose|--debug]--schema xmlfile1 [xmlfile2 ...]

 amadmin --runAsDN <dnname> --password <password> [--locale localename]
[--verbose|--debug]--deleteService <serviceName> [<serviceName2> ...]

amadmin --help

amadmin --version

Detailed descriptions of all the above-mentioned arguments is in the next
sub-section.

Syntax Description for the amadmin Command Line Interface Tool
Following are syntax descriptions for the amadmin command:

NOTE You must enter two hyphens (not one) exactly as shown in the
command lines instructions in this section.

How the amadmin CLI Tool Works

196 DSAME Programmer’s Guide • December 2001

--runAsDN

is a mandatory argument and its value is <dnname>. Replace <dnname> with
your own DN. <dnname> is the DN of the authorized user who is running the
amadmin. It is used to authenticate to the LDAP server. For example:

--runAsDN uid=amAdmin,ou=People,o=iplanet.com,o=isp

or you can insert spaces between the different domain components of the DN, and
double quote the entire DN:

--runAsDN "uid=amAdmin, ou=People, o=iplanet.com, o=isp"

--password’ is a mandatory argument and its value is <password>. Replace
<password> with your own password, which should correspond to the DN
(Distinguished Name) name provided.

--locale is an optional argument and its value is ’localename’. Replace
’localename’ by your own ’localename’. This argument is used for the
customization of the message language. If this argument is not provided then
default is used. Default locale is ’en_US’, which is US English.

--debug is an optional argument. When used, this option writes messages to the
file amAdmin which is created under the
/var/{BASE_DIR}/SUNWam/web-apps/services/debug directory. These
messages are more detailed in technical terms. However, the messages written in
the amAdmin file are not i18n-compliant.

--verbose is an optional argument. When used, this option does not print
detailed information; instead, it prints the overall progress of the amadmin
command on the screen. All the messages output on the command line are i18n-
compliant.

--data option creates, deletes and reads the various directory objects such as
roles, groups, organizations, and containers, which are detailed in the XML input
files. The --data option also registers, unregisters, activates, and deactivates a
service; and gets the number of activated and registered services, and registered
and activated service names for an existing organization. You can specify multiple
XML files or just specify one XML filename (such as createRequests.xml or
deleteRequests.xml) for this option. You must provide either the --data or --schema
option depending on whether you are performing batch updates to the DIT, or
loading service schema and configuration data.

--schema option loads (imports) service schema and metadata (configuration
data), which is detailed in the XML input files. When loading service schema
information, you can also specify multiple XML filenames, in addition to a single
XML filename (such as sampleMailService.xml). You must provide either the
--data’ or --schema option depending on whether you are performing batch

How the amadmin CLI Tool Works

Chapter 6 Using the Command Line Interface 197

updates to the DIT, or loading service schema and configuration data.
<xmlfiles1> is not an argument. <xmlfiles1> is the name of a single XML
filename or multiple XML filenames to be loaded or imported into the DSAME
(and Directory server).

--deleteService argument is for deleting a service—its schema only. This
service must have been imported previously by using the amadmin CLI tool’s
--schema option.

--serviceName1 is the ServiceName which is under the <ServiceName=...> tag
of the serivce XML file.

--help displays the command syntax for the amadmin command.

--version argument displays the utility name, product name, product version
and legal notice.

Registering Services in DSAME
1. First step for any service in its lifecycle is to load its schema into DSAME.

2. At this point, no organization has yet registered for this service. So the second
step would be to register the service for the organization so that the
organization has access to (or can avail of) that service. For example, in a
hosted environment, different orgs may purchase (register) different sets of
services.

The service should display in the available Services list in the Admin Console GUI
under the User management page.

Registering and Unregistering a Service for an
Organization
This section provides some information on registering and unregistering a service
for an organization. After importing, or loading, service schema and configuration
information into DSAME using the amadmin CLI tool, you must first register the
service (using the registerRequests.xml file), then you must activate the service
(using an activateRequests.xml). Similarly, when deactivating a service, you must
first deactivate the service, then unregister the service, in that order.

You use the amadmin CLI tool’s -schema option to import (load) a service. After
importing the service, the service is created in the “config” (configuration) area of
the DIT for a particular organization.

Guidelines for Loading Services into DSAME

198 DSAME Programmer’s Guide • December 2001

Unregistering a service
Unregistering a service for a particular organization removes the COS definition of
the service. This service must have been imported using the amadmin CLI for that
particular organization.

Get Number Of Services
To get all services registered for an organization (all active and deactivated), use
the getNumOfServices.xml file.

Guidelines for Loading Services into DSAME
This chapter provides an overview of service management in DSAME, and
includes information on how to write service XML files per the DTD (sms.dtd).
Also refer to the Readme.html file which is located in the following directory:

<dsame_root>/samples/admin/cli

for more information on how to use the amadmin CLI tool to load services and
perform batch updates to the DIT.

Make Sure you have the Necessary Files before
Loading a Service
See Chapter 5, “Understanding DSAME XMLs and DTDs" for information on the
sample mail service files: sampleMailService.xml, sampleMailService.properties,
and sampleMailService.ldif files.

There is a sample mail service located in the
<dsame_root>/samples/admin/cli/sampleMailService directory, along with
an .ldif file and .properties file, which you can use to practice loading a service
into DSAME. Following are brief descriptions of what you can do with these
sample files:

• sampleMailServiceSchema.ldif—The .ldif file contains the LDAP schema for
the sampleMailService, which contains the necessary LDAP schema
corresponding to the LDAP object classes and LDAP attribute names. You
need to load the .ldif file for the service (such as
sampleMailServiceSchema.ldif) into Directory Server using the ldapmodify
command. If an administrator wanted to create a policy based on the sample
policy schema defined in this file, for example, he or she would need to create

Guidelines for Loading Services into DSAME

Chapter 6 Using the Command Line Interface 199

the LDAP schema corresponding to the LDAP object classes and LDAP
attribute names. For the sampleMailService, a sample .ldif file is provided in
the <dsame_root>/samples/admin/cli/
sampleMailService directory.

m In the sampleMailService.ldif file, the OIDs follow the standard convention
of <attributename>-oid. When writing your own .ldif files to load the
schema, you should use the read OIDs and get them registered before
deploying DSAME. For more information about OIDs, or to request a
prefix for your enterprise, send mail to the IANA (Internet Assigned
Number Authority) at iana@iana.org or visit the IANA website at:
http://www.iana.org/iana/.

• sampleMailService.xml—You need to have a service xml file, which defines the
necessary service schema and configuration data for your service per the rules
defined in the sms.dtd file (for example, the sampleMailService.xml file
already contains the necessary schema and configuration data). The service
XML file (for example, sampleMailService.xml) defines attributes and object
classes, among them i18Nkeys, also called localization keys, which map one for
one to corresponding fields in the .properties files.

If writing a new service, you will need to update an existing schema and
configuration data (in an XML file) with the necessary attributes and object
classes. You can use this sampleMailService.xml as is, and load using
amadmin.

• sampleMailService.properties—The sampleMailService.properties
provides a sample .properties file, which defines the object class for the service
profile, and the index keys that are defined in the service XML file (for
example, i18nKey="a1" defines the localization key in the
sampleMailService.xml file, which tells Admin Console to display that
corresponding field on that service’s page in Admin Console (in this case, it
displays the field “Mail Status” on the Sample Mail Service Profile page in
Admin Console).

Note on sampleService.properties File

The sampleMailService.properties file is used to display the sample services,
attributes, etc. on the Admin Console when a user displays that service’s page
in the Admin Console.

When a user or administrator brings up 'Service Management' in Admin
Console, the Admin Console code looks for the sampleMailService.properties
and gets the appropriate value for the key given and displays all information
for that service on the Admin Console screen in the respective language
specified.

Guidelines for Loading Services into DSAME

200 DSAME Programmer’s Guide • December 2001

The path for this .properties file should be set correctly as described in “Specify
pathname for sampleMailService.properties in jvm12.conf File,” on page 202.

Extend the Service Schema by Loading the .ldif
File
Before creating any specific policies, you must extend the schema by using the
ldapmodify command, which takes the .ldif file as input. (Also see the Directory
server 5.0 documentation for information on updating schema.)

Go to the install directory of Directory Server:

cd <DS_INSTALL_DIR>/shared/bin

and run:

By default, the “<userid to manage DS>” would be "cn=Directory Manager".

If the schema was created, the result of the previous command would be:

Code Example 6-1 ldapmodify Command Example Used to Extend the Schema

<dsame_root>/SUNWam/web-apps/services/WEB-INF/bin/ldapmodify -a -h
"<hostname>" -p <DS portnumber> -D "<userid to manage DS>" -w "<password>" -f
"<dsame_root>/SUNWam/samples/admin/cli/sampleMailService/
sampleMailServiceSchema.ldif"

Modifying entry cn=schema

Guidelines for Loading Services into DSAME

Chapter 6 Using the Command Line Interface 201

To make sure that the schema has been created, use the ldapsearch command as
shown below.

If the schema was created, the result of the previous command would be:

Code Example 6-2 ldapsearch Command Example to Ensure that Schema has been Created

<dsame_root>/SUNWam/bin/ldapsearch -h "<hostname>" -p <DS portnumber> -b
"cn=schema" -s base -D "<userid to manage DS>" -w "<password>"
"(objectclass=*)" | grep -i "iplanet-am-sample-mail-service"

Code Example 6-3 Result of ldapsearch Command if Schema was Created

objectClasses=(1.2.3.888.23 NAME ’iplanet-am-sample-mail-service’ DESC
’iPlanet dpro SampleMail Service’ SUP top
AUXILIARY MAY (iplanet-am-sample-mail-service-status $
iplanet-am-sample-mail-root-folder $
 iplanet-am-sample-mail-sentmessages-folder $
iplanet-am-sample-mail-indent-prefix $
 iplanet-am-sample-mail-initial-headers $
iplanet-am-sample-mail-inactivity-interval $ iplanet-am-sample-mail-auto-load
$
 iplanet-am-sample-mail-headers-perpage $ iplanet-am-sample-mail-quota $
iplanet-am-sample-mail-max-attach-len $
 iplanet-am-sample-mail-can-save-address-book-on-server) X-ORIGIN (
’iPlanet Directory Pro’ ’user defined’))
 attributeTypes=(11.24.1.996.1 NAME
’iplanet-am-sample-mail-service-status’ DESC ’iPlanet SampleMailService
Attribute’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN (’iPlanet Directory Pro’ ’user
defined’))

Guidelines for Loading Services into DSAME

202 DSAME Programmer’s Guide • December 2001

Restart the Directory Server
Restart the Directory Server, which is located in the
/<DS_INSTALL_DIR>/slapd-<hostname> directory.

1. Go to the directory where the Directory Server is installed:

cd /<DS_INSTALL_DIR>/slapd-<hostname>

2. Restart the Directory Server with:

./restart-slapd

Specify pathname for
sampleMailService.properties in jvm12.conf File
1. Next, modify the jvm12.conf file under the path

<dsame_root>/servers/https-<fully-qualified-hostname>/config

and add the following directory pathname:

<dsame_root>/samples/admin/cli/sampleMailService

to the entry jvm.classpath=

All the .properties files should be located in the
<dsame_root>/web-apps/services/WEB-INF/classes directory, by
default.

or

Alternatively, you can copy the .properties file into the following directory:

NOTE The order in which you extend the schema (that is, run ldapmodify and
ldapsearch) and then use the amAdmin CLI tool is not important. You
can run the amAdmin CLI tool first, then load the schema.

However, after registering a service using the amadmin CLI tool, you
should always run ldapmodify so that the objectclass of the service will be
added to all the user entries. (See “Sample .ldif file that shows the
objectclass of a service added to a user entry,” on page 204.) Or you can
refer to the Directory server 5.0 documentation sections on extending
schema for information.

Guidelines for Loading Services into DSAME

Chapter 6 Using the Command Line Interface 203

<dsame_root>/web-apps/services/WEB-INF/classes

If you copy the .properties file to the classes directory, then you do not need to
restart the Web and Directory servers (which is covered in “Start the Servers (Web
and Directory Server),” on page 203).

Start the Servers (Web and Directory Server)

Restart all servers.

1. Go to <dsame_root>/web-apps/services/WEB-INF/bin

2. Start the DSAME server in a terminal window:

./amserver start

Import the Service XML File(s)
Next, import the service’s XML file, for example, “sampleMailService.xml”.

If the product has been installed in <dsame_root>/SUNWam, and Directory Server
has been installed in <iDS_root_dir>, then after the product has been installed,
follow the steps below to import the service XML file.

1. cd <dsame_root>/web-apps/services/WEB-INF/bin

2. ./amadmin -runAsDN
uid=amAdmin,ou=People,o=iplanet.com,o=isp -password
passwordvalue -verbose -schema
<dsame_root>/samples/admin/cli/sampleMailService/
sampleMailService.xml"

After the sampleMailService.xml is loaded successfully, a message similar to
the one below displays:

NOTE This step is necessary only if changed the classpath (described in
“Specify pathname for sampleMailService.properties in jvm12.conf
File,” on page 202.)

Guidelines for Loading Services into DSAME

204 DSAME Programmer’s Guide • December 2001

Register the Service
Next you must register the service. The preferred way to register a service is to go
DSAME console and register the service. Or you could use a command similar to
the following to register the sampleMailService (using the sampleMailService.xml).

Sample .ldif file that shows the objectclass of a service added to a
user entry
You only need to perform this step if users already exist.

Code Example 6-4 Message display after loaded sampleMailService.xml File

Entering ldapAuthenticate method!
No Exceptions! LDAP Authentication success!
Calling SSO method!
Calling SCHEMA MANAGER
XML file to
import:/opt/SUNWam/samples/admin/cli/sampleMailService/sampleMailService.xml

Loading Service Schema XML
/opt/SUNWam/samples/admin/cli/sampleMailService/sampleMailService.xml
Calling the constructor ServiceManager!
Reading schema file
:/opt/SUNWam/samples/admin/cli/sampleMailService/sampleMailService.xml
Done loading Service Schema XML:
/opt/SUNWam/samples/admin/cli/sampleMailService/sampleMailService.xml
Successfully completed.

Code Example 6-5 Command to register sampleMailService

<dsame_root>/SUNWam/web-apps/services/WEB-INF/bin/amadmin
-runasdn uid=amadmin,ou=people,o=iplanet.com,o=isp
-password netscape
-debug
-data <dsame_root>/SUNWam/samples/admin/cli/bulk-ops/registerRequests.xml

Guidelines for Loading Services into DSAME

Chapter 6 Using the Command Line Interface 205

If you create users after the service has been loaded, you can skip this step. (This
step provides information on what to do if users already exist, and you must add
the objectclass to the users. If users do not exist, and you create after you have
loaded the service, then this is done automatically for you, and you do not have to
add the objectclasses.

If you have to perform batch updates to user objects in the DIT, you can use the
migration scripts provided in DSAME 5.0. These migration scripts are described in
the iPlanet Directory Server Access Management Edition Installation and Configuration
Guide.

Below shows some sample ldif that shows the objectclass of the service
“iplanet-am-sample-mail-service” added to a user entry, specifically “shiva”, after
the schema has been extended. For example, you might create an .ldif file named
xyz.ldif with the entries below:

Then run the ldapmodify command as shown here:

Code Example 6-6 Sample .ldif code that shows objectclass of iplanet-am-sample-mail-service
service added to user entry

dn:cn=shiva,ou=People,o=iplanet.com,o=isp
 changetype:modify
 add:objectclass
 objectclass:iplanet-am-sample-mail-service

Code Example 6-7 ldapmodify Command Example

<dsame_install_dir>/SUNWam/web-apps/services/WEB-INF/bin/ldapmodify -a -h
"<hostname>" -p <Directory Server portnumber> -D "<userid to manage DS>" -w
"<password>" -f " <path of the xyz.ldif file>/xyz.ldif"

Guidelines for Loading Services into DSAME

206 DSAME Programmer’s Guide • December 2001

Add the sampleMailService to the Service
Hierarchy
The Admin Console displays only DSAME-related services. If you are adding new
(customized) services, then you must add them to the service hierarchy so you can
view them on the Admin Console’s Service Management page.

To display the sampleMailService in the Admin Console, you need to add the
sampleMailService to the service hierarchy so that it will display under Other
Configuration on the Service Management page. To do this, do the following steps:

1. Bring up the DSAME Admin Console by entering the URL into a web browser,
for example,

http://sparkie10.red.iplanet.com:8080/console

and logging into DSAME Admin Console as amadmin (as the top level
administrator or Super-administrator).

2. In Admin Console, select Service Management.

3. Select the arrow for Administration under DSAME Configuration.

4. Scroll down to Service Hierarchy which is under Administration - Global.

5. Enter

other.configuration|sampleMailService

into the textfield and click Add.

6. Click Submit.

7. Log out of Admin Console.

8. Log into Admin Console again.

9. Go to the Service Management page, and view the sampleMailService and its
profile on the ServiceManagement page.

NOTE The SampleMailService samples provided are for instructional purposes
only to learn how to create a service and load it into DSAME (and update
the DireTctory server with any new/modified objectclasses). In the DSAME
5.0 release, you cannot integrate your iPlanet Messenger service. This will
be supported, however, in a future release.

Guidelines for Loading Services into DSAME

Chapter 6 Using the Command Line Interface 207

After you have done all the above procedures (that is, modify the jvm12.conf file,
import the service, then register and activate the service), you should be able to
create templates through the Admin Console, and then add new roles and users,
and assign policy attributes to them.

Administration Service Attribute
(iplanet-am-admin-console-service-hierarchy)
This section explains what the iplanet-am-admin-console-service-hierarchy
attribute is used for. The part about DSAME services would be for DSAME
developers or someone like an ISV who would adding an external or custom
service that would be considered part of DSAME. A good example of this would be
an authentication service. An authentication service is actually an addition to the
services of DSAME, even though it is not shipped with DSAME. (This might also
be referred to as an "external service", which means that it is not shipped as an
internal service with DSAME, such as Logging, Session, and Naming services.)

If the new service is something that is not an internal DSAME service (that is,
shipped with DSAME), then it would go under Other services. An example of
this would be something like a Calendar application or Mail service.

The first method could be used if someone loaded an XML service using amadmin
and then needs to add it to the hierarchy. They would use the Admin Console to
add their service to the hierarchy.

After making modifications to the amAdminConsole.xml, run

amadmin -deleteService amAdminConsole

amadmin -schema amAdminConsole.xml

This is also an option as with any service. Customization engineers or
administrators can make their modifications through the Admin Console or
command line. Note that this is only for the default values. Other XML components
like type, syntax, and i18n keys must be modified using the amadmin CLI tool.
Typically, customization engineers and administrators will only do this during
installation by using the amadmin CLI tool.

There are two ways to have a new service shown in a hierarchical manner.

First (preferred) method
Go to the DSAME Admin Console, click on the Service Management view, click on
Administration Service and look for the Service Hierarchy list. Update the list
according to the format described in the section “Second Method (Alternative),” on
page 208.

Guidelines for Loading Services into DSAME

208 DSAME Programmer’s Guide • December 2001

The second method allows you to import the service hierarchical information to
Directory Server upon installation. The first method allows you to change the
hierarchical information after you have imported, or loaded, the service into
DSAME.

Second Method (Alternative)
This method is only applicable if you are installing DSAME for the first time. Only
use this method if you have not changed the defaults for the Admin Console
service (amAdminConsole.xml), or if you have reverted back to the installation
defaults.

Only use the first method if you know that you have not changed the
amAdminConsole.xml service. The reason for this is because at installation time,
defaults are loaded. Then the administrator can change some parameters for the
service, which modifies the schema in the XML in the Directory server. Then if you
were to reload this service, you would overwrite all those changes that had been
made previously to the XML in the Directory server.

After adding an entry to the:

com/iplanet/dpro/admin/xml/amAdminConsole.xml

under the Configuration tag iplanet-am-admin-console-service-hierarchy
attribute, if it is a DSAME service, it will be:

 dsame.configuration|<serviceName>

<Value>dsame.configuration|iPlanetAMAdminConsoleService</Value>

If it is a DSAME authentication service, it will be

 dsame.configuration|authentication|<serviceName>

<Value>dsame.configuration|authentication|iPlanetAMAuthAnonymous
Service</Value>

If it is a third party service (versus being an "internal DSAME server", such as
Naming service, Session service, or Logging service), it will be:

other.configuration|<serviceName>

For example:

<Value>other.configuration|XYZService</Value>

Guidelines for Loading Services into DSAME

Chapter 6 Using the Command Line Interface 209

Assign Policies to the Sample Mail Service
The following steps give some information on how you would assign policies to a
service after loading it into DSAME Admin Console.

1. Log in to the Admin Console as amadmin, if you are not already logged into
Directory Server Admin Console.

2. Go to the Policy Management page for o=iplanet.com.

3. Press the Create button.

4. On the Properties page for the Sample Mail Service Profile, select the value of
the priority to higher, and the mail quota to 8888.

5. Create the service in the o=iplanet.com organization.

6. Go to the User Management page for o=iplanet.com.

7. Create a new role as “role1”.

8. Create a new user as “user1”.

9. Assign user “user1” to the role of “role1”.

10. Select roles, select role1, then select Services.

11. Click on Properties for the sampleMailService to create a template.

12. Go to the Policy Management page.

13. Go to the organization o=iplanet.com.

14. Select role “role1”.

15. Select services.

16. Click on the “sampleMailService” properties.

17. Create a policy template, and change the value of the priority to "highest" and
the mail quota to 6666.

18. Do an ldapsearch for “user1”. To do this, go to the directory
/<DS_INSTALL_DIR>/shared/bin/ and run:

./ldapsearch -h localhost -p 389 -b
"uid=user1,ou=People,o=iplanet.com,o=isp -D "cn=Directory
Manager" -w password "(objectclass=*)"

19. Check that the attributes of the “sampleMailService” are present and that the
mail quota = 6666.

Guidelines for Loading Services into DSAME

210 DSAME Programmer’s Guide • December 2001

View the Policy Profile for a Service that has
been added to DSAME
This section gives a procedure on how to view the policy profile of an added
service for an organization on the Admin Console’s Policy Management page.

If you did not create Policy through the amadmin CLI tool, do the following:
After importing the service using amadmin, then creating user management objects
amadmin, then registering and activating the service through amadmin:

1. Log into the DSAME Admin Console by entering the URL into a web browser,
for example,

http://sparkie10.red.iplanet.com:8080/console

and logging into DSAME Admin Console as amadmin (as the top level
administrator or Super-administrator).

2. Click Policy Management.

3. Select the organization.

4. Click Policies.

5. Choose the service from the choice box.

6. Type in the policy name and then select Create.

The policy template displays.

7. Make your changes to the policy template and click Submit, if needed.

8. Log out of the Admin Console.

Log in and then repeat Step 2 through Step 4.

9. Choose the policy you have created and view its profile.

If you created Policy through the amadmin CLI tool, do the following:
After importing the service using amadmin, then creating user management objects
amadmin, then registering and activating the service through amadmin:

1. Log into the DSAME Admin Console by entering the URL into a web browser,
for example,

http://sparkie10.red.iplanet.com:8080/console

and logging into DSAME Admin Console as amadmin (as the top level
administrator or Super-administrator).

Guidelines on Performing Batch Updates to User Objects in Directory Server

Chapter 6 Using the Command Line Interface 211

2. Click Policy Management.

3. Select the organization.

4. Click Policies.

5. Choose the policy you have created and view its profile.

View the Profile for an Added Service
This section gives information on how to view the profile for an added service for
an organization in the Admin Console’s User Management page

After importing, registering, and activating the service, log into the Admin
Console.

1. Select User Management.

2. Select the organization for which the service is registered.

3. Select Services.

4. Click the service for which you want to view the profile.

The message ‘There is no template for this service’ displays.

5. Press Create to create the template.

6. Log out of Admin Console.

7. Log in again and repeat steps Step 1 through Step 4.

The dynamic attributes and the profile for the added service for that
organization displays.

Guidelines on Performing Batch Updates to User
Objects in Directory Server

This section provides an overview how you typically would perform batch updates
on user objects (such as groups, users, roles, people containers, etc.) in the
Directory Server. You can use the sample XML files provided in the following
directory:

<dsame_install_dir>/SUNWam/samples/admin/cli/bulk-ops/CreateRequests.xml
GetRequests.xml
Requests.xml

Guidelines on Performing Batch Updates to User Objects in Directory Server

212 DSAME Programmer’s Guide • December 2001

deleteOrgRequests.xml
deletePCRequests.xml
deleteGroupRequests.xml
registerRequests.xml
unregisterRequests.xml
activateRequests.xml
deactivateRequests.xml
getActivatedServices.xml
getRegisteredServices.xml
getNumOfServices.xml

List of Sample XML Files for Performing Batch
Updates to DIT
Sample XML input files for -data option are provided in the following directory:

<dsame_root>/SUNWam/samples/admin/cli/bulk-ops/

The xml files and brief descriptions of their purpose follows:

createRequests.xml—Creates all the objects in the Directory Server.

getRequests.xml—Gets information about all objects (previously created by
createRequests.xml).

deleteOrgRequests.xml—Deletes all objects (previously created by
createRequests.xml) under the Organization.

deletePCRequests.xml—Deletes all objects (previously created by
createRequests.xml) under the People Container.

deleteGroupRequests.xml—To delete all objects (created by createRequests.xml)
under Group.

registerRequests.xml—Registers a service for an existing organization. This service
must have been imported using the amadmin tool.

unregisterRequests.xml—Unregisters a service for an existing organization. This
service must have been imported using the amadmin tool. (If a service has been
registered, then activated, it must first be deactivated, then unregistered.)

activateRequests.xml—Activates a service for an existing organization. This service
must have been previously imported and registered by using the amadmin tool.

NOTE Be aware that creations of roles, groups, and organizations is a
time-intensive operation.

Steps to Perform Batch Updates to DIT

Chapter 6 Using the Command Line Interface 213

deactivateRequests.xml—Deactivates a service for an existing organization. This
service must have been imported and registered using the amadmin tool.

getActivatedServices.xml—Gets the list of activated service names for an
organization.

getRegisteredServices.xml—Gets the list of registered service names for an
organization.

getNumOfServices.xml—Gets the total number of registered and activated services
for an existing organization.

Steps to Perform Batch Updates to DIT
Following is a list of high level steps and things to do when performing batch
operations on Directory Server through DSAME’s amadmin tool.

Define user objects in createRequests.xml File
1. First define the user objects you want to create in Directory Server in the

createRequests.xml file, provided in the following directory:

<dsame_root>/samples/admin/cli/bulk-ops

The createRequests.xml file creates groups in the default mode (non-compliant
DIT and schema).

Changes to make if the DSAME product is
installed in Compliant mode (iPlanet DIT and
schema mode)
There are now two modes for the product:

NOTE All of these xml files perform operations on the dit, in that they create,
delete, or get attribute information on user objects, such as organizations,
roles, groups, people containers, or users.

Steps to Perform Batch Updates to DIT

214 DSAME Programmer’s Guide • December 2001

1. iPlanet DIT and schema mode (compliant)

If you have installed in the “Compliant mode” (that is, iPlanet DIT and schema
mode) you must modify the createRequests.xml file to create the groups under
ou=Groups,o=sun.com. (Replace the actual organization name for sun.com,
shown in this example.)

<CreateGroups>

 <DN>ContractorsGroup,ou=Groups,o=sun.com</DN>

 <DN>EmployeesGroup,ou=Groups,o=sun.com</DN>

 </CreateGroups>

iPlanet DIT and schema (Compliant) mode dictates that o=ISP be a child of the
root suffix, which must be entered during the installation process. All orgs will
then be created under o=ISP,<root suffix>.

2. Default mode (non-compliant)

In default mode ,the 'ou=Groups' is not created. 'ou=Groups' is created only
when running in the iPlanet DIT and schema (Compliant) mode. The
createRequests.xml file in the samples/admin/cli/bulk-ops directory
shows the sample XML format for creating groups in the default mode (that is,
non-compliant mode).

Therefore, you must modify all related 'o=isp' in the sample XML files as
'o=ISP,o=xyz', with 'xyz' being the root suffix entered by the administrator
during installation of DSAME in iPlanet DIT and schema (compliant) mode.

Load the Batch Update Defined in the XML File
into DSAME
To load an XML file that defines some batch operations such as creating, deleting,
or getting (reading) user objects (such as organizations, people containers, roles,
users, groups) in the DIT, run the amadmin command with the -data option.

1. Go to the following directory:

<dsame_root>/SUNWam/web-apps/services/WEB-INF/bin

This directory contains the amadmin executable.

2. Run the following command:

Steps to Perform Batch Updates to DIT

Chapter 6 Using the Command Line Interface 215

Verifying that the DIT has been Populated
Correctly
If you want to verify that the DIT has been populated correctly in Directory Server
, do the following steps:

1. cd /<DS_INSTALL_DIR>/slapd-<hostname>

2. Export the Directory Server contents into an .ldif file.

db2ldif -s o=isp

This would result in displaying the name of the ldif file stored under

 /<DS_INSTALL_DIR>/slapd-<hostname>/ldif

View that file to ensure that all the objects (described in the
createRequests.xml file) with their attributes and values were created.

Verification Caution
Typically, when you use amadmin to perform batch operations on Directory Server.
Even without the additional verification, such operations may sometimes takes
hours, and in extreme cases, even days.

So you should be careful that the additional verification will only add additional
hours or even days, depending on the amount of data.

Also, when you perform a verification, you should start the dump on the
appropriate subtree instead of on the entire tree, which would take longer, and be
unnecessary.

When performing a verification action, be aware that When amAdmin CLI tool is
normally used, it is for batch operations. Even without the additional verification,
such operations may sometimes takes hours and in extreme cases, even days.

Code Example 6-8 amadmin Command to load Batch Update to DIT file (createRequests.xml)

./amadmin -runAsDN uid=amadmin,ou=People,o=iplanet.com,o=isp -password
<password> -verbose -data
<dsame_root>/SUNWam/samples/admin/cli/bulk-ops/createRequests.xml

Tips when running amadmin Tool

216 DSAME Programmer’s Guide • December 2001

Be careful that the additional verification operation will only add additional hours
or even days, depending on the amount of data. Also, when you verify, you should
start the dump on the appropriate subtree rather than the entire tree.

View the .ldif File to Ensure that the objects were
created in the Directory server
View the .ldif file in <DS_INSTALL_DIR>/slapd-<hostname>/ldif directory to
ensure that all the objects (described in createRequests.xml file) with their
attributes and values were created. You can do this with any text editor or viewer.

Tips when running amadmin Tool
Following is some useful general information that involves using the amadmin CLI
tool.

Using ldapmodify versus the DSAME amadmin
Tool
Both ldapmodify and the amadmin CLI tool "eventually” end up using LDAP
SDK/JDK to communicate with Directory server. So, in theory, whatever you can
do with the amadmin CLI tool can be done with ldapmodify (not the other way
round). Primarily, the benefits of CLI are ease-of-use, higher-level abstraction and
XML-compliance. Other than creating users, it is not recommended that you use
ldapmodify to create entries for DSAME.

NOTE You cannot set ACIs through the amAdmin CLI tool.

Tips when running amadmin Tool

Chapter 6 Using the Command Line Interface 217

Benefits of using CLI and XML Files
When creating certain higher-level DSAME abstractions (such as policies, service
management), you do not have to learn or know how these abstractions are
"implemented" or "mapped" to the DIT. Not all DSAME abstrations map 1-1 with
Directory Server entries. For example, there may be more than one Directory
Server entry manipulated as a result of some higher-level user operation. So users
also don’t have to know the "inter-dependencies" between different entries.

The CLI tool will ease such tasks by avoiding any problems with inconsistent
updates of Directory Server using ldapmodify. With ldapmodify, customers may
have to know and list all the LDAP object classes and relevant LDAP attribute
names. DSAME CLI hides most of the low-level details of LDAP by allowing the
customer focus on tasks such as creating users, adding users to roles/groups, etc.

Most customers (developers) are more familiar with XML syntax than with the ldif
syntax. For such customers who are comfortable with XML, they can continue to
use XML instead of learning a new/one-more syntax. The availability of XML
editors "sometimes" helps customers write XML files and validate the syntax right
away.

How to Determine Attribute/Value Pairs to
Provide in the XML Files
When creating user objects in the Directory, such as organizations and people
containers, it may be difficult to determine what attribute/value pairs to give in the
XML files. You can set or specify any attributes that are specified in the DSAME
configuration file’s CreationTemplates. (Currently, the DSAME configuration file is
called ums.xml or umsCompliant.xml, and is located in
<dsame_root>/SUNWam/config/ums.xml.) Every entry that DSAME creates must
have a corresponding CreationTemplate, which instructs the User Management
component of how to create that entry. It specifies what objectclasses and attributes
are mandatory and optional and what default values should be set, if any.

If a deployment engineer or customization developer wanted to add customized
object classes to DSAME, they would need to modify the templates in the DSAME
configuration file (ums.xml or umsCompliant.xml) so that both DSAME and
Directory Server can read and recognize the new object classes and attributes.
Then, to manage them from the DSAME Admin Console, these new object classes
and attributes have to be defined and “modelled” in the XML format, then
imported into DSAME using the procedures described in this chapter.

Tips when running amadmin Tool

218 DSAME Programmer’s Guide • December 2001

Which XML Files are Used for DSAME User
Management
Any attribute/value pairs that Directory Server must know about, that is, read,
store, or perform some operation on, must be defined in the ums.xml file. Any
attribute/value pair that is to be displayed in DSAME Admin Console’s User page
must also be defined in the dpUser.xml file. The attribute/value pairs defined in
the ums.xml file defines all the possible user objects that Directory server can
create, read, and search on. For the attribute to be displayed in Admin Console,
you must define those in the “user” subschema in the dpUser.xml file. Also, a
corresponding .properties file must be created, with accurate i18nKey fields (called
"localization keys" or "index keys") which point to actual field names to be
displayed on that User server page in Admin Console.

Explanation on Defining GetUsers in
amAdmin.dtd
This section provides information when performing batch updates to the DIT.

To give an example and description of what DNsOnly=true|false means, for those
objects that may have LDAP attributes, all 'get' operations follow the same design
pattern which is given below:

If the element has an XML attribute 'DNsOnly' set to true or doesn't have that XML
attribute, only the DNs of the corresponding DSAME objects shall be returned.

If DNsOnly="false", the entire object (with the LDAP attribute value pairs) shall be
returned.

However, the behavior of DNsOnly is valid ONLY if there are no child elements
(DNs) specified.

If the DNs are specified, the entire object shall always be returned.

Additionally, say if an administrator or user wanted to list two users, syntax for
'GetUsers' in amAdmin dtd is the following:

Code Example 6-9 GetUsers Element in amAdmin.dtd

<!ELEMENT GetUsers (DN)* >
<!ATTLIST GetUsers
 DNsOnly (true | false) "true"
>

Tips when running amadmin Tool

Chapter 6 Using the Command Line Interface 219

All Files Input with the amadmin Tool must be
XML Files
You cannot use the amadmin CLI tool with anything other than XML input files.
All requests (commands) to the amadmin tool are imported or fed into DSAME
through XML input files. Thus the amadmin CLI tool is not involved in any
operations that do NOT involve XML files. If an administrator wants to populate
the DIT in Directory Server with user objects (create roles, groups, people
containers, etc.), or perform batch reads (gets) or deletes on the Directory server
DIT, then he or she must be able to write the necessary XML input files based on
the amadmin data DTD or SMS schema DTD.

Using amadmin vs. DSAME’s Admin Console
The primary purpose of the amadmin CLI tool is to enable administrators to
perform batch operations possible for the case where users want to import a
significant amount of data into the database. This is very time-consuming if Admin
Console is used. You would have to perform each creation, deletion, or read
operation one at a time.

The amadmin tool only supports a subset of features that Admin Console supports.

You can only perform service registration (that includes importing service schema
and configuration data through XML input files) through the amadmin tool.

You should mention or list the DN’s between the opening and
closing tag for GetUsers. Thus you would specify in the XML file
something like the following:
<OrganizationRequests DN="o=isp">
 <GetUsers DNsOnly="true">
 <DN>uid=amAdmin,ou=People,o=iplanet.com,o=isp</DN>
 <DN>uid=dpUser,ou=People,o=iplanet.com,o=isp</DN>
 </GetUsers>
</OrganizationRequests>

CAUTION This process may take hours if the number of users is large.

Code Example 6-9 GetUsers Element in amAdmin.dtd

Tips when running amadmin Tool

220 DSAME Programmer’s Guide • December 2001

Service Registration XML DTD
For information on the service registration XML DTD, see Chapter 5,
“Understanding DSAME XMLs and DTDs". It provides some information on the
sms.dtd elements and attributes that DSAME uses, and describes how you would
use the supported attributes types to create a custom service.

When importing or loading any new or customized services to DSAME, you must
write a service XML containing service schema and configuration data that
corresponds to this DTD.

This DTD is located in the following directory:

<dsame_install_dir>/SUNWam/web-apps/services/dtd

Deleting a Service that has been Registered and Configured
If a service (having dynamic attributes) has been registered and configured in
Admin Console for several organizations and roles, and it is in use, an
administrator can delete this service. It can be deleted through Admin Console or
by using the --deleteService option of amadmin tool.

You should not delete the DAI Service (ums.xml configuration file)
To modify the ums.xml configuration file after installation of DSAME, use the
Directory server Console.

DSAME does not support deleting the DAI service (ums.xml configuration file).
The way to modify the DAI service (ums.xml) is either through LDAP (modifying
an .ldif file directly) ro through the Directory Server Console. The reason that
deleting and reloading this file through the amadmin CLI tool is not supported is
that if the smallest error introduced into this file when making modifications may
cause the DSAME platform to not initialize.

You may, however, delete the ums.xml configuration through the Directory Server
Console (it’s called DAI service) and then reimport the file using amadmin.

NOTE When performing service registration through amadmin, the
sms.dtd is used, along with the service XML files, for example,
sampleMailService.xml. When performing batch updates to the
DIT, the amAdmin.dtd is used, along with the batch update XML
files, such as createRequests.xml file.

Tips when running amadmin Tool

Chapter 6 Using the Command Line Interface 221

It is recommended that any modifications made to the ums.xml configuration file
be done through the Directory Server Console, as this method is less error-prone
than modifying the ums.xml file directly.

Basedn for DAI Service Tree
Following is the location and basedn for the DAI service tree in Directory Server:

ou=DAI,ou=services,<install root suffix>

Location in Directory Server for User creation template for adding service
object classes
Following is the location in Directory Server for the User creation template (for
when adding service object classes):

ou=BasicUser,ou=CreationTemplates,ou=templates,ou=1.0,ou=DAI,
ou=services,<install root suffix>

Location in Directory Server for Organization creation template for different
org object classes and naming attributes
Following is the location in Directory Server for the Organization creation template
(for when adding different organization objectclasses and naming attributes):

ou=BasicOrganization,ou=CreationTemplates,ou=templates,ou=1.0,
ou=DAI,ou=services,<install root suffix>

Tips when running amadmin Tool

222 DSAME Programmer’s Guide • December 2001

	Programmer’s Guide
	List of Code Examples
	About this Guide
	Who Should Use This Book
	What You Are Expected to Know
	How This Book Is Organized
	The iPlanet Directory Server Access Management Edition Documentation Set
	Documentation Conventions Used in This Manual
	Typographic Conventions
	Terminology

	Related Information

	DSAME Programmer’s Overview
	Extending iPlanet Directory Server Access Management Edition
	Which APIs, SPIs, and XML Interfaces You Can Customize

	Overview of Service Development Process When Extending DSAME Interfaces

	Pluggable Authentication SPI
	Overview of Pluggable Authentication SPI
	Authentication Process Overview
	Client Interface (Authentication Service using HTML/HTTP)
	Authentication Service Provided as HTML over HTTP(s) Interface
	Authentication Framework
	Authentication Plug-In Module Interfaces (SPI)

	Overview of Integrating Authentication Modules in DSAME
	Where to find the Public Javadocs for Authentication SPIs
	Classes and Methods you must Implement when creating a custom Authentication Service
	Do You need to create a Service XML for your custom Authentication Service
	Core Authentication Service Defines Configuration for all Authentication Services

	Understanding the screen.properties File
	Product Directories where .properties and Sample .java Files are Located
	Use an existing service XML file to create your Custom Authentication XML
	amAuth.xml is Used for General Authentication Configuration

	Writing and Integrating a Pluggable Authentication Module
	Requirements and Recommendations
	Recommendations

	Compiling the Authentication Sample
	Set Environment Variables
	Run the Make Command

	Integrating the Authentication Sample program
	Running the Authentication Sample program
	Sample Code
	Sample Properties File
	Sample Authentication Module Source
	Sample XML Files

	Resource Bundle .properties File

	HTML Templates
	Setting up Login Pages for Different Organizations
	How Authentication Templates Work
	Templates for Customizing the Authentication Pages

	Single Sign-On
	Introduction to the Single Sign-On Solution
	How SSO Uses Cookies
	How SSO Uses Tokens
	Overview of Web-Based Single Sign On (SSO) APIs
	Overview of SSO Classes/Interfaces
	SSO Feature Intended for SSO Client Applications
	Public SSO Classes/Interfaces
	Implementing an SSO Solution

	Using the SSO Samples
	Compiling and Running the SSO Sample Application
	Setting Environment Variables for SSO Sample Programs
	Run the gmake Command to Compile the Sample Programs
	Register the Sample Servlet
	Restart the DSAME server (and iDS and Web servers)

	SSOTokenSampleServlet.java File
	SampleTokenListener.java
	SSOTokenSampleServlet.java File

	Understanding DSAME XMLs and DTDs
	Understanding DSAME Services
	Things to Consider about DSAME Services
	Internal Services vs. External Services
	Service Schema defines service attributes and optionally default values

	What Happens When you Register a Service
	Overview of Services Management in DSAME
	Services Management Module in DSAME
	Global Attributes
	Organization Attributes
	Dynamic Attributes
	Policy Attributes
	User Attributes
	Defining and Adding Services to DSAME
	Adding a Custom Service to DSAME
	When You Create a Service XML, Attributes Must be Defined (Default Values are Optional, but Recom...
	Attribute value in schema provides a default value for administrators and users
	Defining an empty attribute value in Schema
	Using DSAME to manage attributes in your existing DIT
	When Adding a new Service or Application, You must Define Schema (Object classes and attributes) ...
	Adding an Existing Application to DSAME
	Enabling a Service for an Organization or Role in DSAME console

	Defining Global Attribute Types in a Service
	Defining Organization Attributes in a Service
	Defining Dynamic Attributes in a Service
	Organizations and Dynamic Attributes

	Defining Dynamic and Policy Attributes
	Roles in DSAME
	What Happens when a User is Assigned to a Role
	Overview of Roles in DSAME
	How DSAME uses Roles
	Roles
	CoS
	CoSQualifiers used by DSAME
	Organizations and CoS
	Registering a Service Creates a CoS Definition and CoS Template
	Roles in DSAME are at a higher level of abstraction than Directory server roles
	How Organizations and Roles use Dynamic Attributes
	How Dynamic Attributes are used in Roles
	How Dynamic Attributes are used in Organizations and Roles
	How DSAME Dynamic and Policy Attributes Use CoS
	Roles and Dynamic Attributes
	Conflicts with multiple organizations or roles
	Conflicts and Dynamic (or Policy) Attributes

	Roles
	Organizations and CoS
	Roles and CoS

	Roles and ACIs

	Defining Policy Attributes in a Service
	Policy Attributes
	Administrators can assign policies to organizations or roles in DSAME console
	Policy Service XML
	Roles and Policy (Aggregation)

	Overview of User Management Module
	Adding User Attributes to DSAME
	Defining User Attributes in a Service
	User is considered a Service in DSAME

	Customizing User Pages
	Extending what DSAME displays on the User Page in DSAME console
	How the "any" Attribute can be used in Service XML Files
	Extending the amEntrySpecific.xml File

	Adding attributes Common to all Users to the User Service in DSAME

	Customizing Organization Pages
	Purpose of amEntrySpecific.xml File
	any Attribute
	Type Attribute

	Cases where Service Developers must Modify the ums.xml Configuration File
	What DSAME Supports in the Service Registration DTD
	Service Schema Definitions Supported by DSAME 5.0
	Attributes and Elements that DSAME Supports
	Purpose of an XML DTD
	Where you can find Further Information on XML and DTDs

	Description of sms.dtd Elements and Attributes
	ServicesConfiguration Element
	Schema Element
	Service Element
	Service Name and Version Attribute List
	Service Name Attribute
	i18nFileName Attribute
	i18nKey Attribute
	i18NKey Attribute and i18NFileName Attribute
	Global Attributes
	Organization Attributes
	Dynamic Attributes
	Policy Elements
	User attributes
	Global Element, AttributeSchema and SubSchema Sub-elements
	Attribute Schema Sub-Element
	Service Sub-Schema Element
	AttributeSchema Element, ChoiceValues, BooleanValues, and DefaultValues Sub-elements
	AttributeSchema Attribute, name Attribute
	AttributeSchema Element, Type Attribute
	AttributeSchema Element, Syntax Attribute
	Syntax Attribute, boolean value
	Syntax Attribute, string value
	AttributeSchema syntax Attribute, password value
	AttributeSchema Element, ChoiceValues Sub-element
	AttributeSchema Element, syntax Attribute, boolean value
	AttributeSchema Element, CoSQualifier Attribute
	AttributeSchema Element, any Attribute
	Organization Element
	Dynamic Element
	Policy Element
	User Element

	Policy Management Module
	Overview of Some Policy Concepts and Terms in DSAME
	Policy Schema
	Named Policy and Assigned Policy

	Adding a Custom Service
	High Level Flow for Creating and Registering Services
	Some Things to Consider When Creating a New Service

	Description of sampleMailService Files
	sampleMailServiceSchema.ldif File
	sampleMailService.xml File
	sampleMailService.properties File
	Explanation of Policy Schema Definitions in sampleMailService.xml
	Policy Schema must be defined before Policy Template can be Created in DSAME Console

	amAdmin.dtd Used when Performing Batch Updates to DIT
	Batch Operations you can perform using the amAdmin.dtd
	Files Used to perform Batch Updates to DIT

	Description of amAdmin.dtd
	Requests Element
	OrganizationRequests Element
	CreateSubOrganization Element
	CreateGroup Element
	CreateRole Element
	CreatePolicy Element
	Rule Element with ServiceName, ResourceName?, and AttributeValuePair+ Sub-Elements
	GetSubOrganizations Element
	GetPeopleContainers, GetGroups, and GetRoles Elements
	GetUsers Element
	RegisterServices and UnregisterServices Elements
	ActivateServices and DeactivateServices Elements
	GetActivatedServiceNames, GetRegisteredServiceNames, and GetNumberofServices Elements
	DeleteSubOrganizations Element
	DeletePeopleContainers Element
	DeleteGroups Element
	DeleteRoles Element
	DeletePolicy Element
	PolicyName Element
	ContainerRequests Element
	Sample File (createRequests.xml) to Perform batch Updates to DIT

	Using the Command Line Interface
	Overview of the amadmin Command Line Interface Tool
	How the amadmin CLI Tool Works
	Service schema definition in XML and registration
	Data creation in Directory Server DIT (or populating the Directory Server DIT):
	What you can use the amadmin tool for
	Requirements to run amadmin CLI Tool
	Installation/Setup

	Syntax for using the amadmin Tool
	Syntax Description for the amadmin Command Line Interface Tool

	Registering Services in DSAME
	Registering and Unregistering a Service for an Organization
	Unregistering a service
	Get Number Of Services

	Guidelines for Loading Services into DSAME
	Make Sure you have the Necessary Files before Loading a Service
	Extend the Service Schema by Loading the .ldif File
	Restart the Directory Server
	Specify pathname for sampleMailService.properties in jvm12.conf File
	Start the Servers (Web and Directory Server)
	Import the Service XML File(s)
	Register the Service
	Sample .ldif file that shows the objectclass of a service added to a user entry

	Add the sampleMailService to the Service Hierarchy
	Administration Service Attribute (iplanet-am-admin-console-service-hierarchy)

	Assign Policies to the Sample Mail Service
	View the Policy Profile for a Service that has been added to DSAME
	View the Profile for an Added Service

	Guidelines on Performing Batch Updates to User Objects in Directory Server
	List of Sample XML Files for Performing Batch Updates to DIT

	Steps to Perform Batch Updates to DIT
	Define user objects in createRequests.xml File
	Changes to make if the DSAME product is installed in Compliant mode (iPlanet DIT and schema mode)
	Load the Batch Update Defined in the XML File into DSAME
	Verifying that the DIT has been Populated Correctly
	Verification Caution

	View the .ldif File to Ensure that the objects were created in the Directory server

	Tips when running amadmin Tool
	Using ldapmodify versus the DSAME amadmin Tool
	Benefits of using CLI and XML Files
	How to Determine Attribute/Value Pairs to Provide in the XML Files
	Which XML Files are Used for DSAME User Management
	Explanation on Defining GetUsers in amAdmin.dtd
	All Files Input with the amadmin Tool must be XML Files
	Using amadmin vs. DSAME’s Admin Console
	Service Registration XML DTD
	Deleting a Service that has been Registered and Configured
	You should not delete the DAI Service (ums.xml configuration file)

