Sun Performance Library User's Guide

Sun ${ }^{\text {TM }}$ Studio 11

Sun Microsystems, Inc.
www.sun.com

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 11
Before You Read This Book 11
How This Book Is Organized 11
What Is Not in This Book 12
Related Documents and Web Sites 12
Typographic Conventions 13
Shell Prompts 14
Supported Platforms 15
Accessing Sun Studio Software and Man Pages 15
Accessing Sun Studio Documentation 18
Accessing Related Solaris Documentation 20
Resources for Developers 20
Contacting Sun Technical Support 21
Sun Welcomes Your Comments 21

1. Introduction 23
Libraries Included With Sun Performance Library 23
Netlib 24
Sun Performance Library Features 25
Mathematical Routines 26
Compatibility With Previous LAPACK Versions 26
Getting Started With Sun Performance Library 27
Enabling Trap 6 28
2. Using Sun Performance Library 29
Improving Application Performance 29
Replacing Routines With Sun Performance Library Routines 29
Improving Performance of Other Libraries 30
Using Tools to Restructure Code 30
Fortran Interfaces 30
Fortran SUNPERF Module for Use With Fortran 95 31
Optional Arguments 33
Fortran Examples 34
C Interfaces 37
C Examples 39
3. SPARC Optimization and Parallel Processing 41
Using Sun Performance Library on SPARC Platforms 41
Compiling for SPARC Platforms 42
Compiling Code for a 64-Bit Enabled Solaris Operating Environment 43
64-Bit Integer Arguments 43
Parallel Processing on SPARC Platforms 46
Run-Time Issues 46
Degree of Parallelism 47
Synchronization Mechanisms 48
Parallel Processing Examples 49
4. Sun Performance Library for $\mathbf{x} 86$ 53
Compiling for x86 Platforms 53
5. Working With Matrices 55
Matrix Storage Schemes 55
Banded Storage 55
Packed Storage 56
Matrix Types 57
General Matrices 57
Triangular Matrices 58
Symmetric Matrices 59
Tridiagonal Matrices 60
Sparse Matrices 60
Sparse Solver Matrix Data Formats 61
Sun Performance Library Sparse BLAS 63
Naming Conventions 63
Sparse Solver Routines 65
Routine Calling Order 67
Sparse Solver Examples 67
References 77
6. Using Sun Performance Library Signal Processing Routines 79
Forward and Inverse FFT Routines 80
Linear FFT Routines 82
Two-Dimensional FFT Routines 90
Three-Dimensional FFT Routines 95
Comments 101
Cosine and Sine Transforms 102
Fast Cosine and Sine Transform Routines 103
Fast Cosine Transforms 104
Fast Sine Transforms 105
Discrete Fast Cosine and Sine Transforms and Their Inverse 105
Fast Cosine Transform Examples 110
Fast Sine Transform Examples 112
Convolution and Correlation 114
Convolution 114
Correlation 115
Sun Performance Library Convolution and Correlation Routines 116
Arguments for Convolution and Correlation Routines 117
Work Array work for Convolution and Correlation Routines 119
Sample Program: Convolution 121
References 126
7. Interval BLAS Routines 127
Introduction 127
Intervals 127
IBLAS Routine Names 128
Naming Conventions 128
Fortran Interface 129
Binding Format 130
Language Bindings 130
References 134
A. Sun Performance Library Routines 135
LAPACK Routines 136
BLAS1 Routines 151
BLAS2 Routines 152
BLAS3 Routines 153
Sparse BLAS Routines 153
Sparse Solver Routines 155
Signal Processing Library Routines 155
Miscellaneous Signal Processing Routines 159
Interval BLAS (IBLAS) Routines 160
Sort Routines 166
Index 169

Tables

TABLE 3-1	Comparison of 32-bit and 64-bit Operating Environments 41
TABLE 5-1	Netlib Sparse BLAS Naming Conventions 64
TABLE 5-2	NIST Fortran Sparse BLAS Routine Naming Conventions 65
TABLE 5-3	Sparse Solver Routines 65
TABLE 5-4	Sparse Solver Routine Calling Order 67
TABLE 6-1	FFT Routines and Their Arguments 80
TABLE 6-2	Single Precision Linear FFT Routines 83
TABLE 6-3	Single Precision Two-Dimensional FFT Routines 91
TABLE 6-4	Single Precision Three-Dimensional FFT Routines 96
TABLE 6-5	Fast Cosine and Sine Transform Routines and Their Arguments 103
TABLE 6-6	Convolution and Correlation Routines 116
TABLE 6-7	Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR 117
TABLE 6-8	Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2 118
TABLE 6-9	Arguments Affecting Minimum Work Array Size for Two-Dimensional Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2 120
TABLE 6-10	MYC_INIT and NYC_INIT Dependencies 120
TABLE 6-11	Minimum Dimensions and Data Types for work Work Array Used With Convolution and Correlation Routines 121
TABLE 7-1	IBLAS Prefixes and Matrix Types 128
TABLE 7-2	Vector Reductions 130

TABLE 7-3
TABLE 7-4
TABLE 7-5
TABLE 7-6
TABLE 7-7
TABLE 7-8
TABLE 7-9
TABLE 7-11
TABLE 7-10
TABLE 7-12
TABLE A-1
TABLE A-2
TABLE A-3
TABLE A-4
TABLE A-5
TABLE A-6

TABLE A-7
TABLE A-8
TABLE A-9
TABLE A-10
TABLE A-11
TABLE A-12

Add or Cancel Vectors 131
Vector Movements 131
Matrix-Vector Operations 131
$\mathrm{O}\left(n^{2}\right)$ Matrix Operations 132
$\mathrm{O}\left(n^{3}\right)$ Matrix Operations 132
Matrix Movements 132
Vector Set Operations 132
Vector Utilities 133
Matrix Set Operations 133
Matrix Utilities 134
LAPACK (Linear Algebra Package) Routines 136
BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines 151
BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines 152
BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines 153
Sparse BLAS Routines 153
Sparse Solver Routines 155
FFT Routines 156
Sine and Cosine Transform Routines 158
Convolution and Correlation Routines 159
Convolution and Correlation Routines 159
Interval BLAS Routines 160
Sort Routines 166

Before You Begin

This book describes how to use the Sun ${ }^{\text {TM }}$ specific extensions and features included with the Sun Performance Library ${ }^{\mathrm{TM}}$ subroutines that are supported by the Sun ${ }^{\mathrm{TM}}$ Studio Fortran 95 and C compilers.

Before You Read This Book

In order to fully use the information in this document, the reader should have a working knowledge of the Fortran or C language and some understanding of the base LAPACK and BLAS libraries available from Netlib (http://www.netlib.org).

How This Book Is Organized

This book is organized into the following chapters and appendixes:
Chapter 1 describes the benefits of using the Sun Performance Library and the features of the Sun Performance Library.

Chapter 2 describes how to use the f 95 and C interfaces provided with the Sun Performance Library.

Chapter 3 shows how to use compiler and linking options to maximize library performance for specific SPARC ${ }^{\circledR}$ instruction set architectures and different parallel processing modes.

Chapter 5 includes information on matrix storage schemes, matrix types, and sparse matrices.

Chapter 6 describes the one-dimensional, two-dimensional, and three-dimensional fast Fourier transform routines provided with the Sun Performance Library.

Chapter 7 provides an introduction to the Interval Basic Linear Algebra Subroutine (IBLAS) library provided with the Sun Performance Library.

Appendix A lists the Sun Performance Library routines organized according to name, routine, and library.

What Is Not in This Book

This book does not repeat information included in existing LAPACK books or sources on Netlib. Refer to the next section "Related Documents and Web Sites" on page 12 for a list of sources that contain reference material for the base routines upon which Sun Performance Library is based.

Related Documents and Web Sites

A number of books and web sites provide reference information on the routines in the base LAPACK and BLAS libraries upon which the Sun Performance Library is based. The LAPACK Users' Guide. 3rd ed., Anderson E. and others. SIAM, 1999, augments the material in this manual and provide essential information:

The LAPACK Users' Guide, 3rd ed. is the official reference for the base LAPACK version 3.0 routines. An online version of the LAPACK 3.0 Users' Guide is available at http://www.netlib.org/lapack/lug/, and the printed version is available from the Society for Industrial and Applied Mathematics (SIAM)
http://www.siam.org.
Sun Performance Library routines contain performance enhancements, extensions, and features not described in the LAPACK Users' Guide. However, because Sun Performance Library maintains compatibility with the base LAPACK routines, the LAPACK Users' Guide can be used as a reference for the LAPACK routines and the Fortran interfaces.

Online Resources

Online information describing the performance library routines that form the basis of the Sun Performance Library can be found at the following URLs.

LAPACK version 3.0
BLAS, levels 1 through 3
FFTPACK version 4
VFFTPACK version 2.1
Sparse BLAS
NIST (National Institute of Standards and Technology) Fortran Sparse BLAS
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://www.netlib.org/fftpack/
http://www.netlib.org/vfftpack/
http://www.netlib.org/sparseblas/index.html
http://math.nist.gov/spblas/

Note - LINPACK has been removed from the Sun Performance Library. The LINPACK libraries and documentation are still available from www.netlib.org.

Typographic Conventions

tABLE P-1 Typeface Conventions

Typeface	Meaning	Examples
AaBbCc123	The names of commands, files, and directories; on-screen computer output	Edit your . login file. Use ls -a to list all files. \% You have mail.
AaBbCc123	What you type, when contrasted with on-screen computer output	\% su Password:
$A a B b C c 123$	Book titles, new words or terms, words to be emphasized	Read Chapter 6 in the User's Guide. These are called class options. You must be superuser to do this.
$A a B b C c 123$	Command-line placeholder text; replace with a real name or value	To delete a file, type rmfilename.

table P-2 Code Conventions

Code Symbol	Meaning	Notation	Code Example
[]	Brackets contain arguments that are optional.	$\mathrm{O}[n]$	04, 0
\{ \}	Braces contain a set of choices for a required option.	$d\{y \mid n\}$	dy
।	The "pipe" or "bar" symbol separates arguments, only one of which may be chosen.	B $\{$ dynamic\|static $\}$	Bstatic
:	The colon, like the comma, is sometimes used to separate arguments.	Rdir [: dir]	R/local/libs:/U/a
\ldots	The ellipsis indicates omission in a series.	xinline=f1[,...fn]	xinline=alpha, dos

Shell Prompts

Shell	Prompt
C shell	machine-name\%
C shell superuser	machine-name\#
Bourne shell and Korn shell	$\$$
Superuser for Bourne shell and Korn shell	$\#$

Supported Platforms

This Sun Studio release supports systems that use the SPARC® and $x 86$ families of processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems for the version of the Solaris Operating System you are running are available in the hardware compatibility lists at http://www.sun.com/bigadmin/hcl. These documents cite any implementation differences between the platform types.

Accessing Sun Studio Software and Man Pages

The Sun Studio software and man pages are not installed into the /usr/bin/ and /usr/share/man directories. To access the software, you must have your PATH environment variable set correctly (see "Accessing the Software" on page 15). To access the man pages, you must have the your MANPATH environment variable set correctly (see "Accessing the Man Pages" on page 16.).

For more information about the PATH variable, see the $\operatorname{csh}(1), \operatorname{sh}(1)$, and $k \operatorname{sh}(1)$ man pages. For more information about the MANPATH variable, see the man(1) man page.

Note - The information in this section assumes that your Sun Studio software is installed in the /opt directory. If your software is not installed in the /opt directory, ask your system administrator for the equivalent path on your system.

Accessing the Software

Use the steps below to determine whether you need to change your PATH variable to access the software.

To Determine Whether You Need to Set Your PATH Environment Variable

1. Display the current value of the PATH variable by typing the following at a command prompt.
```
% echo $PATH
```

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/. If you find the path, your PATH variable is already set to access the compilers and tools. If you do not find the path, set your PATH environment variable by following the instructions in the next procedure.

To Set Your PAth Environment Variable to Enable Access to the Compilers and Tools

1. If you are using the C shell, edit your home . cshrc file. If you are using the Bourne shell or Korn shell, edit your home .profile file.
2. Add the following to your PATH environment variable. If you have Forte Developer software, Sun ONE Studio software, or another release of Sun Studio software installed,, add the following path before the paths to those installations. /opt/SUNWspro/bin

Accessing the Man Pages

Use the following steps to determine whether you need to change your MANPATH variable to access the man pages.

To Determine Whether You Need to Set Your MANPATH Environment Variable

1. Request the dbx man page by typing the following at a command prompt.
```
% man dbx
```


2. Review the output, if any.

If the $d b x(1)$ man page cannot be found or if the man page displayed is not for the current version of the software installed, follow the instructions in the next procedure for setting your MANPATH environment variable.

To Set Your MANPATH Environment Variable to Enable Access to the Man Pages

1. If you are using the C shell, edit your home . cshrc file. If you are using the Bourne shell or Korn shell, edit your home .profile file.
2. Add the following to your MANPATH environment variable.
/opt/SUNWspro/man

Accessing the Integrated Development Environment

The Sun Studio integrated development environment (IDE) provides modules for creating, editing, building, debugging, and analyzing the performance of a $\mathrm{C}, \mathrm{C}++$, or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core platform. The sunstudio command looks for the core platform in two locations:

- The command looks first in the default installation directory, / opt/netbeans/3.5V.
- If the command does not find the core platform in the default directory, it assumes that the directory that contains the IDE and the directory that contains the core platform are both installed in or mounted to the same location. For example, if the path to the directory that contains the IDE is / foo/SUNWspro, the command looks for the core platform in /foo/netbeans $/ 3.5 \mathrm{~V}$.

If the core platform is not installed or mounted to either of the locations where the sunstudio command looks for it, then each user on a client system must set the environment variable SPRO_NETBEANS_HOME to the location where the core platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their \$PATH in front of the path to any other release of Forte Developer software, Sun ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the user's \$PATH.

Accessing Sun Studio Documentation

You can access the documentation at the following locations:

- The documentation is available from the documentation index that is installed with the software on your local system or network at file:/opt/SUNWspro/docs/index.html.
If your software is not installed in the / opt directory, ask your system administrator for the equivalent path on your system.
- Most manuals are available from the docs.sun. $\mathrm{com}^{\mathrm{sm}}$ web site. The following titles are available through your installed software only:
- Standard C++ Library Class Reference
- Standard C++ Library User's Guide
- Tools.h++ Class Library Reference
- Tools.h++ User's Guide
- The release notes are available from the docs.sun.com web site.
- Online help for all components of the IDE is available through the Help menu, as well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun. com web site (http://docs.sun.com) enables you to read, print, and buy Sun Microsystems manuals through the Internet. If you cannot find a manual, see the documentation index that is installed with the software on your local system or network.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this document. Sun does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Sun will not be responsible or liable for any actual or alleged damage or loss caused by or in connection with use of or reliance on any such content, goods, or services available on or through any such sites or resources.

Documentation in Accessible Formats

The documentation is provided in accessible formats that are readable by assistive technologies for users with disabilities. You can find accessible versions of documentation as described in the following table. If your software is not installed in the / opt directory, ask your system administrator for the equivalent path on your system.

Type of Documentation	Format and Location of Accessible Version
Manuals (except third-party manuals)	HTML at http: / / docs. sun.com
Third-party manuals: - Standard C++ Library Class Reference - Standard C++ Library User's Guide - Tools.h++ Class Library Reference - Tools.h++ User's Guide	HTML in the installed software through the documentation index at file:/opt/SUNWspro/docs/index.html
Readmes and man pages	HTML in the installed software through the documentation index at file:/opt/SUNWspro/docs/index.html
Online help	HTML available through the Help menu in the IDE
Release notes	HTML at http: / / docs.sun.com

Related Compilers and Tools Documentation

The following table describes related documentation that is available at file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your software is not installed in the /opt directory, ask your system administrator for the equivalent path on your system.

Document Title	Description
Numerical Computation Guide	Describes issues regarding the numerical accuracy of floating-point computations.

Accessing Related Solaris Documentation

The following table describes related documentation that is available through the docs.sun.com web site.
\(\left.$$
\begin{array}{lll}\hline \text { Document Collection } & \text { Document Title } & \text { Description } \\
\hline \begin{array}{l}\text { Solaris Reference Manual } \\
\text { Collection }\end{array} & \begin{array}{l}\text { See the titles of man page } \\
\text { sections. }\end{array} & \begin{array}{l}\text { Provides information about the } \\
\text { Solaris operating environment. }\end{array} \\
\begin{array}{ll}\text { Solaris Software Developer } \\
\text { Collection }\end{array} & \text { Linker and Libraries Guide }\end{array}
$$ \quad \begin{array}{l}Describes the operations of the

Solaris link-editor and runtime

linker.\end{array}\right]\)| Solaris Software Developer | |
| :--- | :--- |
| Collection | Multithreaded Programming
 Guide |
| | |
| Covers the POSIX and Solaris
 threads APIs, programming
 with synchronization objects,
 compiling multithreaded
 programs, and finding tools for
 multithreaded programs. | |

Resources for Developers

Visit http://developers.sun.com/sunstudio to find these frequently updated resources:

- Articles on programming techniques and best practices
- A knowledge base of short programming tips
- Documentation of compilers and tools components, as well as corrections to the documentation that is installed with your software
- Information on support levels
- User forums
- Downloadable code samples
- New technology previews

You can find additional resources for developers at http://developers.sun.com.

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this document, go to:
http://www.sun.com/service/contacting

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and suggestions. Submit your comments to Sun at this URL
http://www.sun.com/hwdocs / feedback
Please include the title and part number of your document with your feedback:
Sun Performance Library User's Guide, part number 819-3692-10.

Introduction

Sun Performance Library is a set of optimized, high-speed mathematical subroutines for solving linear algebra and other numerically intensive problems. Sun Performance Library is based on a collection of public domain applications available from Netlib at http://www.netlib.org. Sun has enhanced these public domain applications and bundled them as the Sun Performance Library.

The Sun Performance Library User's Guide explains the Sun-specific enhancements to the base applications available from Netlib. Reference material describing the base routines is available from Netlib and the Society for Industrial and Applied Mathematics (SIAM).

Libraries Included With Sun Performance Library

Sun Performance Library contains enhanced versions of the following standard

 libraries:- LAPACK version 3.0 - For solving linear algebra problems.
- BLAS1 (Basic Linear Algebra Subprograms) - For performing vector-vector operations.
- BLAS2 - For performing matrix-vector operations.
- BLAS3 - For performing matrix-matrix operations.

The BLAS1, BLAS2, and BLAS3 libraries do not have version numbers. There has been only one version of the BLAS routines on Netlib.

Note - LINPACK has been removed from Sun Performance Library. LAPACK version 3.0 supersedes LINPACK and all previous versions of LAPACK. If the LINPACK routines are still needed, the LINPACK library and documentation can be obtained from http://www.netlib.org.

Sun Performance Library is available in both static and dynamic library versions optimized for the V8, V8+, and V9 architectures. Sun Performance Library supports static and shared libraries on Solaris 7, Solaris 8 , and Solaris 9 and adds support for multiple processors.

Sun Performance Library LAPACK routines have been compiled with a Fortran 95 compiler and remain compatible with the Netlib LAPACK version 3.0 library. The Sun Performance Library versions of these routines perform the same operations as the Fortran callable routines and have the same interface as the standard Netlib versions.

LAPACK contains driver, computational, and auxiliary routines. Sun Performance Library does not support the auxiliary routines, because auxiliary routines can change or be removed from LAPACK without notice. Because the auxiliary routines are not supported, they are not documented in the Sun Performance Library User's Guide or the section 3P man pages.

Many auxiliary routines contain LA as the second and third characters in the routine name; however, some do not. Appendix B of the LAPACK Users' Guide contains a list of auxiliary routines.

Auxiliary routines are available in the shared (dynamic) libraries and the static libraries. However, there is no guarantee that auxiliary routines will continue to be available in any form in future versions of the Sun Performance Library.

Netlib

Netlib is an online repository of mathematical software, papers, and databases maintained by AT\&T Bell Laboratories, the University of Tennessee, Oak Ridge National Laboratory, and professionals from around the world.

Netlib provides many libraries, in addition to the libraries used in Sun Performance Library. While some of these libraries can appear similar to libraries used with Sun Performance Library, they can be different from, and incompatible with Sun Performance Library.

Using routines from other libraries can produce compatibility problems, not only with Sun Performance Library routines, but also with the base Netlib LAPACK routines. When using routines from other libraries, refer to the documentation provided with those libraries.

For example, Netlib provides a CLAPACK library, but the CLAPACK interfaces differ from the C interfaces included with Sun Performance Library. A LAPACK 90 library package is also available on Netlib. The LAPACK 90 library contains interfaces that differ from the Sun Performance Library Fortran 95 interfaces and the Netlib LAPACK version 3.0 interfaces. If using LAPACK 90, refer to the documentation provided with that library.

For the base libraries supported by Sun Performance Library, Netlib provides detailed information that can supplement this user's guide. The LAPACK 3.0 Users' Guide describes LAPACK algorithms and how to use the routines, but it does not describe the Sun Performance Library extensions made to the base routines.

Sun Performance Library Features

Sun Performance Library routines can increase application performance on both serial and MP platforms, because the serial speed of many Sun Performance Library routines has been increased, and, for SPARC, many routines have been parallelized that might be serial in other products. Sun Performance Library routines also have SPARC® specific optimizations that are not present in the base Netlib libraries.

Sun Performance Library provides the following optimizations and extensions to the base Netlib libraries:

- Extensions that support Fortran 95 and C language interfaces
- Fortran 95 language features, including type independence, compile time checking, and optional arguments.
- Consistent API across the different libraries in Sun Performance Library
- Compatibility with LAPACK 1, LAPACK 2.0, and LAPACK 3.0 libraries
- Increased performance, and in some cases, greater accuracy
- Optimizations for specific SPARC instruction set architectures
- Support for 64-bit enabled Solaris operating environment
- Support for parallel processing compiler options for SPARC
- Support for multiple processor hardware options

Mathematical Routines

The Sun Performance Library routines are used to solve the following types of linear algebra and numerical problems:

- Elementary vector and matrix operations - Vector and matrix products; plane rotations; 1, 2-, and infinity-norms; rank-1, 2, k, and 2 k updates
- Linear systems - Solve full-rank systems, compute error bounds, solve Sylvester equations, refine a computed solution, equilibrate a coefficient matrix
- Least squares - Full-rank, generalized linear regression, rank-deficient, linear equality constrained
- Eigenproblems - Eigenvalues, generalized eigenvalues, eigenvectors, generalized eigenvectors, Schur vectors, generalized Schur vectors
- Matrix factorizations or decompositions - SVD, generalized SVD, QL and LQ, QR and RQ, Cholesky, LU, Schur, LDL ${ }^{\text {T }}$ and UDU ${ }^{T}$
- Support operations - Condition number, in-place or out-of-place transpose, inverse, determinant, inertia
- Sparse matrices - Solve symmetric, structurally symmetric, and unsymmetric coefficient matrices using direct methods and a choice of fill-reducing ordering algorithms, and user-specified orderings
- Convolution and correlation in one and two dimensions
- Fast Fourier transforms, Fourier synthesis, cosine and quarter-wave cosine transforms, cosine and quarter-wave sine transforms
- Complex vector FFTs and FFTs in two and three dimensions

Compatibility With Previous LAPACK Versions

The Sun Performance Library routines that are based on LAPACK support the expanded capabilities and improved algorithms in LAPACK 3.0, but are completely compatible with both LAPACK 1 and LAPACK 2.0. Maintaining compatibility with previous LAPACK versions:

- Reduces linking errors due to changes in subroutine names or argument lists.
- Ensures results are consistent with results generated with previous LAPACK versions.
- Minimizes programs terminating due to differences between argument lists.

Getting Started With Sun Performance Library

This section shows the most basic compiler options used to compile an application that uses the Sun Performance Library routines.

To use the Sun Performance Library, type one of the following commands.

```
my_system% f95 -dalign my_file.f -xlic_lib=sunperf
```

or

```
my_system% cc -dalign my_file.c -xlic_lib=sunperf
```

Because Sun Performance Library routines are compiled with -dalign, the -dalign option should be used for compilation of all files if any routine in the program makes a Sun Performance Library call. If -dalign cannot be used, enabling Trap 6, described in the section "Enabling Trap 6" on page 28, is a lowperformance workaround that allows misaligned data.

Sun Performance Library is linked into an application with the -xlic_lib switch rather than the -1 switch that is used to link in other libraries. The -xlic_lib switch gives the same effect as if -1 was used to specify the Sun Performance Library and added -1 switches for all of the supporting libraries that Sun Performance Library requires.

To summarize, use the following:

- -dalign on all files at compile time or enable trap 6
- The same command line options for compiling and linking
- -xlic_lib=sunperf

Additional compiler options exist that optimize application performance for the following:

- Specific SPARC instruction set architectures, as described in "Compiling for SPARC Platforms" on page 42.
- Parallel processing for SPARC platforms, as described in "Parallel Processing on SPARC Platforms" on page 46.

Enabling Trap 6

If an application cannot be compiled using -dalign, enable trap 6 to provide a handler for misaligned data. To enable trap 6 on SPARC, do the following:

1. Place this assembly code in a file called trap6_handler.s.
```
    .global trap6_handler_
    .text
    .align 4
trap6_handler_:
    retl
    ta 6
```

2. Assemble trap6_handler.s.
```
my_system% fbe trap6_handler.s
```

The first parallelizable subroutine invoked from Sun Performance Library will call a routine named trap6_handler_. If a trap6_handler_ is not specified, Sun Performance Library will call a default handler that does nothing. Not supplying a handler for any misaligned data will cause a trap that will be fatal. (fbe (1) is the Solaris assembler for SPARC platforms.)
3. Include trap6_handler.o on the command line.

```
my_system% f95 any.f trap6_handler.o -xlic_lib=sunperf
```


Using Sun Performance Library

This chapter describes using the Sun Performance Library to improve the execution speed of applications written in Fortran 95 or C. The performance of many applications can be increased by using Sun Performance Library without making source code changes or recompiling. However, some modifications to applications might be required to gain peak performance with Sun Performance Library.

Improving Application Performance

The following sections describe ways of using Sun Performance Library routines without making source code changes or recompiling.

Replacing Routines With Sun Performance Library Routines

Many applications use one or more of the base Netlib libraries, such as LAPACK or BLAS. Because Sun Performance Library maintains the same interfaces and functionality of these libraries, base Netlib routines can be replaced with Sun Performance Library routines. Application performance is increased, because Sun Performance Library routines can be faster than the corresponding Netlib routines or similar routines provided by other vendors.

Improving Performance of Other Libraries

Many commercial math libraries are built around a core of generic BLAS and LAPACK routines. When an application has a dependency on proprietary interfaces in another library that prevents the library from being completely replaced, the BLAS and LAPACK routines used in that library can be replaced with the Sun Performance Library BLAS and LAPACK routines. Because replacing the core routines does not require any code changes, the proprietary library features can still be used, and the other routines in the library can remain unchanged.

Using Tools to Restructure Code

Some libraries that do not directly use Sun Performance Library routines can be modified by using automatic code restructuring tools that replace existing code with Sun Performance Library code. For example, a source- to- source conversion tool can replace existing BLAS code structures with calls to the Sun Performance Library BLAS routines. These conversion tools can also recognize many user written matrix multiplications and replace them with calls to the matrix multiplication subroutine in Sun Performance Library.

Fortran Interfaces

Sun Performance Library contains f95 interfaces and legacy $f 77$ interfaces for maintaining compatibility with the standard LAPACK and BLAS libraries and existing codes. Sun Performance Library f 95 and legacy $£ 77$ interfaces use the following conventions:

- All arguments are passed by reference.
- Types of arguments must be consistent within a call (For example, do not mix REAL* 8 and REAL*4 parameters in the same call.
- Arrays are stored columnwise.
- Indices are based at one, in keeping with standard Fortran practice.

When calling Sun Performance Library routines:

- Do not prototype the subroutines with the Fortran 95 INTERFACE statement. Use the USE SUNPERF statement instead.
- Do not use -ext_names=plain to compile routines that call routines from Sun Performance Library.

Fortran SUNPERF Module for Use With Fortran 95

Sun Performance Library provides a Fortran module for additional ease-of-use features with Fortran 95 programs. To use this module, include the following line in Fortran 95 codes.

USE SUNPERF
USE statements must precede all other statements in the code, except for the PROGRAM or SUBROUTINE statement.

The SUNPERF module contains interfaces that simplify the calling sequences and provides the following features:

- Type Independence - Sun Performance Library supports interfaces where the type of the data arguments will automatically be recognized, eliminating the need for type-dependent prefixes (S, D, C, or Z). In the FORTRAN 77 routines, the type must be specified as part of the routine name. For example, DGEMM is a double precision matrix multiply and SGEMM is a single precision matrix multiply. When calling GEMM with the Fortran 95 interfaces, Fortran will infer the type from the arguments that are passed. Passing single-precision arguments to GEMM gets results that are equivalent to specifying SGEMM, and passing double-precision arguments gets results that are equivalent to DGEMM. For example, CALL DSCAL $(20,5.26 \mathrm{D} 0, \mathrm{X}, 1)$ could be changed to CALL $\operatorname{SCAL}(20,5.26 \mathrm{D} 0, \mathrm{X}, 1)$.
- Compile-Time Checking - In FORTRAN 77, it is generally impossible for the compiler to determine what arguments should be passed to a particular routine. In Fortran 95, the USE SUNPERF statement allows the compiler to determine the number, type, size, and shape of each argument to each Sun Performance Library routine. It can check the calls against the expected value and display errors during compilation.
- Optional Arguments - Sun Performance Library supports interfaces where some arguments are optional. In FORTRAN 77, all arguments must be specified in the order determined by the interface for all routines. All interfaces will support $£ 95$ style OPTIONAL attributes on arguments that are not required. Using routines with optional arguments, such as GEMM, are useful for new development.
Specifically named routines, such as DGEMM, are maintained to support legacy code. To determine the optional arguments for a routine, refer to the section 3P man pages. In the section 3P man pages, optional arguments are enclosed in square brackets [].
- 64-bit Integer Support- When using the 64 -bit interfaces provided with Sun Performance Library, integer arguments need to be promoted to 64 -bits, and the routine name needs to be modified by appending _64 to the routine name. With
the SUNPERF module, 64-bit integers will automatically be recognized, which eliminates the need for appending _64 to the routine name, as shown in the following code example.

```
SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)
! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL DAXPY(N,ALPHA, X,1_8,Y,1_8)
```

END

When using Sun Performance Library routines with optional arguments, the _64 suffix is required for 64 -bit integers, as shown in the following code example.

```
SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)
! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL AXPY_64(ALPHA=ALPHA, X=X,Y=Y)
```

END

For a detailed description of using the Sun Performance Library 64-bit interfaces, see "Compiling Code for a 64-Bit Enabled Solaris Operating Environment" on page 43.

Because the sunperf.mod file is compiled with -dalign, any code that contains the USE SUNPERF statement must be compiled with -dalign. The following error occurs if the code is not compiled with -dalign.

```
use sunperf
    "test_code.f", Line = 2, Column = 11: ERROR: Procedure "SUNPERF"
and this compilation must both be compiled with -a dalign, or
without -a dalign.
```


Optional Arguments

Sun Performance Library routines support Fortran 95 optional arguments, where argument values that can be inferred from other arguments can be omitted. For example, the SAXPY routine is defined as follows in the man page.

```
SUBROUTINE SAXPY([N], ALPHA, X, [INCX], Y, [INCY])
REAL ALPHA
INTEGER INCX, INCY, N
REAL X(*), Y(*)
```

The N, INCX, and INCY arguments are optional. Note the square bracket notation in the man pages that denotes the optional arguments.

Suppose the user tries to call the SAXPY routine with the following arguments.

```
USE SUNPERF
COMPLEX ALPHA
REAL X(100), Y(100), XA(100,100), RALPHA
INTEGER INCX, INCY
```

If mismatches in the type, shape, or number of arguments occur, the compiler would issue the following error message:

```
ERROR: No specific match can be found for the generic subprogram call
```

"AXPY".

Using the arguments defined above, the following examples show incorrect calls to the SAXPY routine due type, shape, or number mismatches.

- Incorrect type of the arguments-If SAXPY is called as follows:

```
CALL AXPY(100, ALPHA, X, INCX, Y, INCY)
```

A compiler error occurs because mixing parameter types, such as COMPLEX ALPHA and REAL X, is not supported.

- Incorrect shape of the arguments- If SAXPY is called as follows:

CALL AXPY(N, RALPHA, XA, INCX, Y, INCY)

A compiler error occurs because the XA argument is two dimensional, but the interface is expecting a one-dimensional argument.

- Incorrect number of arguments- If SAXPY is called as follows:

CALL AXPY(RALPHA, X, INCX, Y)

A compiler error occurs because the compiler cannot find a routine in the AXPY interface group that takes four arguments of the following form.

```
AXPY(REAL, REAL 1-D ARRAY, INTEGER, REAL 1-D ARRAY)
```

In the following example, the $f 95$ keyword parameter passing capability can allow a user to make essentially the same call using that capability.

```
CALL AXPY(ALPHA=RALPHA,X=X,INCX=INCX,Y=Y)
```

This is a valid call to the AXPY interface. It is necessary to use keyword parameter passing on any parameter that appears in the list after the first OPTIONAL parameter is omitted.

The following calls to the AXPY interface are valid.

```
CALL AXPY(N,RALPHA,X,Y=Y,INCY=INCY)
CALL AXPY(N,RALPHA,X,INCX,Y)
CALL AXPY(N,RALPHA, X,Y=Y)
CALL AXPY(ALPHA=RALPHA,X=X,Y=Y)
```


Fortran Examples

To increase the performance of single processor applications, identify code constructs in an application that can be replaced by calls to Sun Performance Library routines. Performance of multiprocessor applications on SPARC platforms can be increased by identifying opportunities for parallelization.

To increase application performance by modifying code to use Sun Performance Library routines, identify blocks of code that exactly duplicate the capability of a Sun Performance Library routine. The following code example is the matrix-vector product $\mathrm{y} \leftarrow \mathrm{Ax}+\mathrm{y}$, which can be replaced with the DGEMV subroutine.,

```
DO I = 1, N
    DO J = 1, N
        Y(I) = Y(I) + A(I,J) * X(J)
    END DO
END DO
```

In other cases, a block of code can be equivalent to several Sun Performance Library calls or contain portions of code that can be replaced with calls to Sun Performance Library routines. Consider the following code example.

```
DO I = 1, N
    IF (V2(I,K) .LT. O.O) THEN
        V2(I,K) = 0.0
    ELSE
        DO J = 1, M
            X(J,I) = X(J,I) + Vl(J,K) * V2(I,K)
        END DO
    END IF
END DO
```

The code example can be rewritten to use the Sun Performance Library routine DGER, as shown here.

```
DO I = 1, N
    IF (V2(I,K) .LT. 0.0) THEN
        V2(I,K) = 0.0
    END IF
END DO
CALL DGER (M, N, 1.0D0, X, LDX, Vl(1,K), 1, V2(1,K), 1)
```

The same code example can also be rewritten using Fortran 95 specific statements, as shown here.

```
WHERE (V(1:N,K) .LT. 0.0) THEN
    V(1:N,K) = 0.0
END WHERE
CALL DGER (M, N, 1.0D0, X, LDX, V1(1,K), 1, V2(1,K), 1)
```

Because the code to replace negative numbers with zero in V 2 has no natural analog in Sun Performance Library, that code is pulled out of the outer loop. With that code removed to its own loop, the rest of the loop is a rank- 1 update of the general matrix x that can be replaced with the DGER routine from BLAS.

The amount of performance increase can also depend on the data the Sun Performance Library routine uses. For example, if V2 contains many negative or zero values, the majority of the time might not be spent in the rank- 1 update. In this case, replacing the code with a call to DGER might not increase performance.

Evaluating other loop indexes can affect the Sun Performance Library routine used. For example, if the reference to K is a loop index, the loops in the code sample shown above might be part of a larger code structure, where the loops over DGEMV or DGER could be converted to some form of matrix multiplication. If so, a single call to a matrix multiplication routine can increase performance more than using a loop with calls to DGER.

Because all Sun Performance Library routines are MT-safe (multithread safe), using the auto-parallelizing compiler to parallelize loops that contain calls to Sun Performance Library routines can increase performance on SPARC MP platforms.

An example of combining a Sun Performance Library routine with an auto-parallelizing compiler parallelization directive is shown in the following code example.

```
C$PAR DOALL
DO I = 1, N
            CALL DGBMV ('No transpose', N, N, ALPHA, A, LDA,
$ B(l,I), 1, BETA, C(l,I), 1)
END DO
```

Sun Performance Library contains a routine named DGBMV to multiply a banded matrix by a vector. By putting this routine into a properly constructed loop, Sun Performance Library routines can be used to multiply a banded matrix by a matrix. The compiler will not parallelize this loop by default, because the presence of subroutine calls in a loop inhibits parallelization. However, Sun Performance Library routines are MT-safe, so a user can use parallelization directives that instruct the compiler to parallelize this loop.

Compiler directives can also be used to parallelize a loop with a subroutine call that ordinarily would not be parallelizable. For example, it is ordinarily not possible to parallelize a loop containing a call to some of the linear system solvers, because some vendors have implemented those routines using code that is not MT-safe. Loops containing calls to the expert drivers of the linear system solvers (routines whose names end in SVX) are usually not parallelizable with other implementations
of LAPACK. Because the implementation of LAPACK in Sun Performance Library allows parallelization of loops containing such calls, users of SPARC MP platforms can get additional performance by parallelizing these loops.

C Interfaces

The Sun Performance Library routines can be called from within a FORTRAN 77, Fortran 95, or C program. However, C programs must still use the FORTRAN 77 calling sequence.

Sun Performance Library contains native C interfaces for each of the routines contained in LAPACK, BLAS, FFTPACK, VFFTPACK, and SPARSE BLAS. The Sun Performance Library C interfaces have the following features:

- Function names have C names
- Function interfaces follow C conventions
- C functions do not contain redundant or unnecessary arguments for a C function

The following example compares the standard LAPACK Fortran interface and the Sun Performance Library C interfaces for the DGBCON routine.

```
CALL DGBCON (NORM, N, NSUB, NSUPER, DA, LDA, IPIVOT, DANORM,
    DRCOND, DWORK, IWORK2, INFO)
void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
    int lda, int *ipivot, double danorm, double drcond,
    int *info)
```

Note that the names of the arguments are the same and that arguments with the same name have the same base type. Scalar arguments that are used only as input values, such as NORM and N, are passed by value in the C version. Arrays and scalars that will be used to return values are passed by reference.

The Sun Performance Library C interfaces improve on CLAPACK, available on Netlib, which is an $£ 2 \mathrm{c}$ translation of the standard libraries. For example, all of the CLAPACK routines are followed by a trailing underscore to maintain compatibility with Fortran compilers, which often postfix routine names in the object (.o) file with an underscore. The Sun Performance Library C interfaces do not require a trailing underscore.

Sun Performance Library C interfaces use the following conventions:

- Input-only scalars are passed by value rather than by reference. Complex and double complex arguments are not considered scalars because they are not implemented as a scalar type by C .
- Complex scalars can be passed as either structures or arrays of length 2.
- Types of arguments must match even after C does type conversion. For example, be careful when passing a single precision real value, because a C compiler can automatically promote the argument to double precision.
- Arrays are stored columnwise. For Fortran programmers, this is the natural order in which arrays are stored. For C programmers, this is the transpose of the order in which they usually work. References in the documentation and man pages to rows refer to columns and vice versa.
- Array indices are based at one, in conformance with Fortran conventions, rather than being zero as in C .
For example, the Fortran interface to IDAMAX, which C programs access as idamax_, would return a 1 to indicate the first element in a vector. The C interface to idamax, which C programs access as idamax, would also return a 1 , to indicate the first element of a vector. This convention is observed in function return values, permutation vectors, and anywhere else that vector or array indices are used.

Note - Some Sun Performance Library routines use malloc internally, so user codes that make calls to Sun Performance Library and to sbrk might not work correctly.

Sun Performance Library uses global integer registers $\% g 2, \% g 3$, and $\% g 4$ in 32-bit mode and $\% \mathrm{~g} 2$ through $\% \mathrm{~g} 5$ in 64-bit mode as scratch registers. User code should not use these registers for temporary storage, and then call a Sun Performance Library routine. The data will be overwritten when the Sun Performance Library routine uses these registers.

C Examples

Transforming user-written code sequences into calls to Sun Performance Library routines increases application performance. The following code example adapted from LAPACK shows one example.

```
int i;
float a[n], b[n], largest;
largest = a[0];
for (i = 0; i < n; i++)
{
if (a[i] > largest)
    largest = a[i];
    if (b[i] > largest
    largest = b[i];
}
```

No Sun Performance Library routine exactly replicates the functionality of this code example. However, the code can be accelerated by replacing it with several calls to the Sun Performance Library routine isamax, as shown in the following code example.

```
int i, large_index;
float a[n], b[n], largest;
large_index = isamax (n, a, l) - 1;
largest = a[large_index];
large_index = isamax (n, b, l) - 1;
if (b[large_index] > largest)
    largest = b[large_index];
```

Compare the differences between calling the native C isamax routine in Sun Performance Library, shown in the previous code example, with calling the isamax routine in CLAPACK, shown in the following code example.

```
/* 1. Declare scratch variable to allow 1 to be passed by value */
int one = l;
/* 2. Append underscore to conform to FORTRAN naming system */
/* 3. Pass all arguments, even scalar input-only, by reference */
/* 4. Subtract one to convert from FORTRAN indexing conventions */
large_index = isamax_ (&n, a, &one) - l;
largest = a[large_index]; large_index = isamax_ (&n, b, &one) - l;
if (b[large_index] > largest)
    largest = b[large_index];
```


SPARC Optimization and Parallel Processing

This chapter describes how to use compiler and linking options to optimize applications for:

- Specific SPARC® instruction set architectures
- 64-bit enabled Solaris operating environment
- Parallel processing on SPARC platforms

TABLE 3-1 shows a comparison of the 32-bit and 64 -bit operating environments. These items are described in greater detail in the following sections.

TABLE 3-1 Comparison of 32-bit and 64-bit Operating Environments

	32-bit (ILP 32)	64-bit (LP64)
-xarch	v8, v8plusa, v8plusb	v9, v9a, v9b
Fortran Integers	INTEGER, INTEGER*4	INTEGER*8
C Integers	int	long
Floating-point	S/D/C/Z	S/D/C/Z
API	Names of routines	Names of routines with_64 suffix

Using Sun Performance Library on SPARC Platforms

The Sun Performance Library was compiled using the f 95 compiler provided with this release. The Sun Performance Library routines were compiled using -dalign, -xparallel, and -xarch set to v8, v8plusa, or v9a.

When linking the program, use -dalign, -xlic_lib=sunperf, and the same command line options that were used when compiling. If -dalign cannot be used in the program, supply a trap 6 handler as described in "Getting Started With Sun Performance Library" on page 27. If compiling with a value of -xarch that is not one of [v8|v8plusa|v9a], the compiler driver will select the closest match.

Sun Performance Library is linked into an application with the -xlic_lib switch rather than the -1 switch that is used to link in other libraries, as shown here.

```
my_system% f95 -dalign my_file.f -xlic_lib=sunperf
```


Compiling for SPARC Platforms

Applications using Sun Performance Library can be optimized for specific SPARC instruction set architectures and for a 64-bit enabled Solaris operating environment. The optimization for each architecture is targeted at one implementation of that architecture and includes optimizations for other architectures when it does not degrade the performance of the primary target.

Compile with the most appropriate -xarch= option for best performance. At link time, use the same -xarch= option that was used at compile time to select the version of the Sun Performance Library optimized for a specific SPARC instruction set architecture.

Note - Using SPARC-specific optimization options increases application performance on the selected instruction set architecture, but limits code portability. When using these optimization options, the resulting code can be run only on systems using the specific SPARC chip from Sun Microsystems and, in some cases, a specific Solaris operating environment (32-bit or 64-bit Solaris 7, Solaris 8, or Solaris 9).

The SunOS ${ }^{\text {TM }}$ command isalist(1) can be used to display a list of the native instruction sets executable on a particular platform. The names output by isalist are space-separated and are ordered in the sense of best performance.

For a detailed description of the different -xarch options, refer to the Fortran User's Guide or the C User's Guide.

Use the following command line options to compile for 32-bit addressing in a 32-bit enabled Solaris operating environment:

- UltraSPARC I^{TM} or UltraSPARC II $^{\mathrm{TM}}$ systems. Use -xarch=v8plus or -xarch= v8plusa.
- UltraSPARC III $^{\text {TM }}$ systems. Use -xarch=v8plus or -xarch=v8plusb.

Use the following command line options to compile for 64-bit addressing in a 64-bit enabled Solaris operating environment.

- UltraSPARC I or UltraSPARC II systems. Use -xarch=v9 or -xarch=v9a.
- UltraSPARC III systems. Use -xarch=v9 or -xarch=v9b.

Compiling Code for a 64-Bit Enabled Solaris Operating Environment

To compile code for a 64-bit enabled Solaris operating environment, use -xarch= v9 [a|b] and convert all integer arguments to 64-bit arguments. 64-bit routines require the use of 64 -bit integers.

Sun Performance Library provides 32 -bit and 64 -bit interfaces. To use the 64 -bit interfaces:

- Modify the Sun Performance Library routine name. For C and Fortran 95 code, append _64 to the names of Sun Performance Library routines (for example, rfftf_64 or CFFTB_64). For Fortran 95 code with the USE SUNPERF statement, the _64 suffix is not strictly required for specific interfaces, such as DGEMM. The _64 suffix is still required for the generic interfaces, such as GEMM.
- Promote integers to 64 bits. Double precision variables and the real and imaginary parts of double complex variables are already 64 bits. Only the integers are promoted to 64 bits.

64-Bit Integer Arguments

These additional 64-bit-integer interfaces are available only in the v9, v9a, and v9b libraries. Codes compiled for 32-bit operating environments (-xarch set to v8plusa or v8plusb) can not call the 64 -bit-integer interfaces.

To call the 64-bit-integer interfaces directly, append the suffix _ 64 to the standard library name. For example, use daxpy_64() in place of daxpy ().

However, if calling the 64 -bit integer interfaces indirectly, do not append _64 to the name of the Sun Performance Library routine. Calls to the Sun Performance Library routine will access a 32 -bit wrapper that promotes the 32 -bit integers to 64 -bit integers, calls the 64 -bit routine, and then demotes the 64 -bit integers to 32 -bit integers.

For best performance, call the routine directly by appending _64 to the routine name.

For C programs, use long instead of int arguments. The following code example shows calling the 64-bit integer interfaces directly.

```
#include <sunperf.h>
long n, incx, incy;
double alpha, *x, *y;
daxpy_64(n, alpha, x, incx, y, incy);
```

The following code example shows calling the 64-bit integer interfaces indirectly.

```
#include <sunperf.h>
int n, incx, incy;
double alpha, *x, *y;
daxpy (n, alpha, x, incx, y, incy);
```

For Fortran programs, use 64-bit integers for all integer arguments. The following methods can be used to convert integer arguments to 64-bits:

- To promote all default integers (integers declared without explicit byte sizes) and literal integer constants from 32 bits to 64 bits, compile with -xtypemap= integer: 64 .
- To promote specific integer declarations, change INTEGER or INTEGER*4 to INTEGER*8.
- To promote integer literal constants, append _ 8 to the constant.

Consider the following code example.

```
INTEGER*8 N
REAL*8 ALPHA, X(N), Y(N)
! _64 SUFFIX: N AND 1_8 ARE 64-BIT INTEGERS
CALL DAXPY_64(N,ALPHA, X,1_8,Y,1_8)
```

INTEGER* 8 arguments cannot be used in a 32-bit environment. Routines in the 32bit libraries, v8, v8plusa, v8plusb, cannot be called with 64 -bit arguments. However, the 64 -bit routines can be called with 32-bit arguments.

When passing constants in Fortran 95 code that have not been compiled with -xtypemap, append _ 8 to literal constants to effect the promotion. For example, when using Fortran 95, change CALL DSCAL $(20,5.26 \mathrm{D} 0, \mathrm{X}, 1)$ to CALL DSCAL (20_8,5.26D0, X,1_8). This example assumes USE SUNPERF is included in the code, because the _ 64 has not been appended to the routine name.

The following code example shows calling CAXPY from Fortran 95 using 32-bit arguments.

```
PROGRAM TEST
COMPLEX ALPHA
INTEGER INCX, INCY, N
COMPLEX X(*), Y(*)
CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)
```

The following code example shows calling CAXPY from Fortran 95 (without the USE SUNPERF statement) using 64-bit arguments.

```
PROGRAM TEST
COMPLEX ALPHA
INTEGER*8 INCX, INCY, N
COMPLEX X(*), Y(*)
CALL CAXPY_64(N, ALPHA, X, INCX, Y, INCY)
```

When using 64-bit arguments, the _64 must be appended to the routine name if the USE SUNPERF statement is not used.

The following Fortran 95 code example shows calling CAXPY using 64-bit arguments.

```
PROGRAM TEST
USE SUNPERF
.
.
COMPLEX ALPHA
INTEGER*8 INCX, INCY, N
COMPLEX X(*), Y(*)
CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)
```

In C routines, the size of long is 32 bits when compiling for V8 or V8plus and 64 bits when compiling for V9. The following code example shows calling the dgbcon routine using 32-bit arguments.

```
void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
    int lda, int *ipivot, double danorm, double drcond,
    int *info)
```

The following code example shows calling the dgbcon routine using 64-bit arguments.

```
void dgbcon_64 (char norm, long n, long nsub, long nsuper,
    double *da, long lda, long *ipivot, double danorm,
    double *drcond, long *info)
```


Parallel Processing on SPARC Platforms

To enable parallel processing for the Sun Performance Library routines, use one of the parallelization options (-xparallel,-xexplicitpar, or -xautopar) at link time, as shown in the following examples.

```
% cc -dalign -xarch=... -xparallel a.c -xlic_lib=sunperf
```

or

```
% f95 -dalign -xarch=... -xparallel a.f95 -xlic_lib=sunperf
```


Run-Time Issues

At run time, if running with compiler parallelization, Sun Performance Library uses the same pool of threads that the compiler does. The per-thread stack size must be set to at least 4 Mbytes with the STACKSIZE environment variable, as follows:

```
% setenv STACKSIZE 4000
```

Setting the STACKSIZE environment variable is not required for programs running with POSIX or Solaris threads. In this case, user created threads that call Sun Performance Library routines must have a stack size of at least 4 Mbytes. Failure to supply an adequate stack size for the Sun Performance Library routines might result in stack overflow problems. Symptoms of stack overflow problems include runtime failures that could be difficult to diagnose. For more information on setting the stack size of user created threads, see the pthread_create(3THR), pthread_attr_init(3THR) and pthread_attr_setstacksize(3THR) man pages for POSIX threads or the thr_create(3THR) for Solaris threads.

Degree of Parallelism

Sun Performance Library will attempt to parallelize each Sun Performance Library call according to the user's parallelization model by using either explicit threads or loop-based compiler multithreading.

The number of threads Sun Performance Library routines will attempt to use is set at run time by the user with the PARALLEL environment variable. The PARALLEL environment variable can be overridden by calls to the Sun Performance Library USE_THREADS routine.

For example, if user programs with POSIX or Solaris-thread codes are linked with -xparallel, -xexplicitpar, or -xautopar, each Sun Performance Library call will produce PARALLEL threads. The code will oversubscribe the machine if:

- One bound thread per CPU is created
- Each thread makes a Sun Performance Library call
- PARALLEL is set to a value greater than one

For codes using compiler parallelization, Sun Performance Library routines are parallelized with loop-based compiler directives. Because nested parallelism is not supported, Sun Performance Library calls made from a parallel region will not be further parallelized.

In the following code example, none of the calls to DGEMM is parallelized, because the loop is parallelized and only one level of parallelization is supported.

```
!$<some parallelization directive>
DO I = 1, N
    CALL DGEMM(...)
END DO
```

The loop consists of many DGEMM instances running in parallel with one another, but each DGEMM instance uses only one thread.

In the following code example, the loop is not parallelized.

```
DO I = 1, N
    CALL DGEMM(...)
END DO
```

If the code is linked for parallelization with -xparallel, -xexplicitpar, or -xautopar, the individual calls to DGEMM will be parallelized. The number of threads used by each DGEMM call will be taken from the run-time value of the environment variable PARALLEL. However, if a higher-level loop has already parallelized this region, no further parallelization would be performed.

The number of OpenMP threads can be set by a variety of means. For example, by setting the OMP_NUM_THREADS environment variable or by setting the OMP_SET_NUM_THREADS () run-time call. If both environment variables are set, they must be set to the same value. If the run-time function is called, it overrides any environment variable setting.

The degree of parallelization within a pure-OpenMP code can be set with the OMP_NUM_THREADS environment variable. The Sun Performance Library USE_THREADS () routine can also be used to set the degree of parallelism for Sun Performance Library calls, which overrides the OMP_NUM_THREADS value.

In the following code example, each DGEMM call would be parallelized.

```
!$PAR DOSERIAL*
DO I = 1, N
    CALL DGEMM(...)
END DO
```

Note that the DOSERIAL * directive suppresses parallelization, but only for the loop nest within the same subroutine and it is overridden by any other directive within that nest. The DOSERIAL* directive does not impact parallelization within Sun Performance Library.

In the following code example, there will be at most two-way parallelism, regardless of the setting of the number of OpenMP threads.

```
!$OMP PARALLEL SECTIONS
    !$OMP SECTION
DO I = 1, N / 2
    CALL DGEMM(...)
END DO
    !$OMP SECTION
DO I = N / 2 + 1, N
    CALL DGEMM(...)
END DO
    !$OMP END PARALLEL SECTIONS
```

Only one level of parallelism exists, which are the two sections. Further parallelism within a DGEMM () call is suppressed.

Synchronization Mechanisms

The underlying parallelization model determines the Sun Performance Library behavior.

The two basic modes of multithreading, compiler parallelization and POSIX or Solaris threads, use two different types of synchronization mechanisms. Compiler parallelized code uses spin waits, which produce the most responsive synchronization operations, but aggressively consume CPU cycles. Compiler parallelized code produces optimal performance when each thread has a dedicated CPU, but wastes resources when other jobs or threads are also competing for CPUs.

However, codes that explicitly use POSIX or Solaris threads use synchronization functions from libthread. These synchronization functions are less responsive, but they relinquish the CPU when the thread is idle, providing good throughput and resource usage in a shared (oversubscribed) environment.

With compiler parallelization, the environment variable SUNW_MP_THR_IDLE can be used at run time to alter the spin-wait characteristics of the threads. Legal settings of SUNW_MP_THR_IDLE are as follows.

```
% setenv SUNW_MP_THR_IDLE spin
% setenv SUNW_MP_THR_IDLE 2s
% setenv SUNW_MP_THR_IDLE 100ms
```

These settings would cause threads to spin wait (default behavior), spin for 2 seconds before sleeping, or spin for 100 milliseconds before sleeping, respectively.

The link-time option -xlic_lib=sunperf links in Sun Performance Library functions that employ the same parallelization model as the user code, as indicated by the -xparallel, -xexplicitpar, or -xautopar compiler-parallelization option. Using Sun Performance Library routines does not change the spin-wait behavior of the code.

Parallel Processing Examples

The following sections demonstrate using the PARALLEL environment variable and the compile and linking options for creating code that supports using:

- A single processor
- Multiple processors

Using a Single Processor

To use a single processor:

1. Call one or more of the routines.
2. Link with -xlic_lib=sunperf specified at the end of the command line.

Do not compile or link with -xparallel, -xexplicitpar, or -xautopar.
3. Make sure the PARALLEL environment variable is unset or set equal to 1.

The following example shows how to compile and link with libsunperf.so.

```
cc -dalign -xarch=... any.c -xlic_lib=sunperf
```

or

```
f95 -dalign -xarch=... any.f95 -xlic_lib=sunperf
```


Using Multiple Processors

To compile for multiple processors:

- Use the same parallelization option for the compiling and linking commands.
- Specify the number of processors at runtime with the PARALLEL environment variable before running the executable.

For example, to use 24 processors, type the following commands.

```
my_system% f95 -dalign -xparallel my_app.f -xlic_lib=sunperf
my_system% setenv PARALLEL 24
my_system% ./a.out
```

The previous example allows Sun Performance Library routines to run in parallel, but no part of the user code my_app. $£$ will run in parallel. For the compiler to attempt to parallelize my_app. $£$, either -xparallel or -explicitpar is required on the compile line.

> Note - Parallel processing options require using either the -dalign command-line option or establishing a trap 6 handler, as described in "Enabling Trap 6" on page 28. When using C, do not use -misalign.

To use multiple processors:

1. Call one or more of the routines.
2. Link with -xlic_lib=sunperf specified at the end of the command line.

Compile and link with -xparallel, -xexplicitpar, or -xautopar.

3. Set Parallel to the number of available processors.

The following example shows how to compile and link with libsunperf to enable parallel operation on multiple processor systems.

```
cc -dalign -xarch=... -xparallel any.c -xlic_lib=sunperf
```

or

```
f95 -dalign -xarch=... -xparallel any.f95 -xlic_lib=sunperf
```


Sun Performance Library for x86

This chapter describes the differences between the SPARC and x86 versions of the Sun Performance Library, and how to use compiler and linking options for SSE2enabled machines and for generic x86 machines that are not SSE2-enabled.

This release of Sun Performance Library includes libraries for the Solaris/x86 platform. Two versions are available:

- A high-performance version utilizing SSE2 instructions for systems that support that instruction set.
- A compatibility version suitable for systems that do not support SSE2.

The x86 version of Sun Performance Library is functionally identical to the SPARC version, with the following exceptions:

- Quad-precision routines (dqdoti, dqdota) are not available
- Interval BLAS routines are not available
- The x86 libraries are single-threaded
- Only 32-bit addressing is available
- The Portable Library Performance feature is not available on Solaris/x86

Compiling for x86 Platforms

The following versions of Solaris/x86 are required for SSE2 support:

- Solaris 10 build 48
- Solaris 9 build 6 update 5

As with the SPARC version, the Sun Performance Library is linked into the application using the -xlic_lib=sunperf flag. ${ }^{1}$

[^0]Use the -xarch flag to select between the SSE2 and compatibility versions of the Sun Performance Library. Setting -xarch=sse2 or -xtarget=pentium4 will build the SSE2 version of the library. Also, if building on a Pentium 4 machine running Solaris 9 update 6 or Solaris 10, setting -xarch=native or -xtarget= native or -fast will build the SSE2 version of the library. Any other link settings will build the compatibility version of the library. ${ }^{2}$

Examples:
The following compile and link settings will build the compatibility version of the Sun Performance Library:

```
f95 -xarch=generic -xlic_lib=sunperf example.f -o example
```

The following compile and link settings will build the SSE2 version of the Sun Performance Library:

```
f95 -xarch=sse2 -xlic_lib=sunperf example.f -o example
```

The following compile and link settings will build the SSE2 version of the Sun Performance Library if built on a Pentium 4 machine running Solaris 9 update 6, or build the compatibility on other platforms:

```
f95 -fast -xlic_lib=sunperf example.f -o example
```

Caution - Programs that are compiled with -xarch=sse2 to run on Solaris x86 must be run only on platforms that are SSE2 enabled. Running such programs on platforms that are not SSE2-enabled could result in segmentation faults or incorrect results occurring without any explicit warning messages.

[^1]
Working With Matrices

Most matrices can be stored in ways that save both storage space and computation time. Sun Performance Library uses the following storage schemes:

- Banded storage
- Packed storage

The Sun Performance Library processes matrices that are in one of four forms:

- General
- Triangular
- Symmetric
- Tridiagonal

Storage schemes and matrix types are described in the following sections.

Matrix Storage Schemes

Some Sun Performance Library routines that work with arrays stored normally have corresponding routines that take advantage of these special storage forms. For example, DGBMV will form the product of a general matrix in banded storage and a vector, and DTPMV will form the product of a triangular matrix in packed storage and a vector.

Banded Storage

A banded matrix is stored so the j th column of the matrix corresponds to the j th column of the Fortran array.

The following code copies a banded general matrix in a general array into banded storage mode.

```
C Copy the matrix A from the array AG to the array AB. The
C matrix is stored in general storage mode in AG and it will
C be stored in banded storage mode in AB. The code to copy
C from general to banded storage mode is taken from the
C comment block in the original DGBFA by Cleve Moler.
C
NSUB = 1
NSUPER = 2
NDIAG = NSUB + 1 + NSUPER
DO ICOL = 1, N
    I1 = MAXO (1, ICOL - NSUPER)
    I2 = MINO (N, ICOL + NSUB)
    DO IROW = I1, I2
        IROWB = IROW - ICOL + NDIAG
        AB(IROWB,ICOL) = AG(IROW,ICOL)
    END DO
END DO
```

Note that this method of storing banded matrices is compatible with the storage method used by LAPACK, BLAS, and LINPACK, but is inconsistent with the method used by EISPACK.

Packed Storage

A packed vector is an alternate representation for a triangular, symmetric, or Hermitian matrix. An array is packed into a vector by storing the elements sequentially column by column into the vector. Space for the diagonal elements is always reserved, even if the values of the diagonal elements are known, such as in a unit diagonal matrix.

An upper triangular matrix or a symmetric matrix whose upper triangle is stored in general storage in the array A, can be transferred to packed storage in the array AP as shown below. This code comes from the comment block of the LAPACK routine DTPTRI.

```
JC = 1
DO J = 1, N
    DO I = 1, J
        AP(JC+I-1) = A(I,J)
    END DO
    JC = JC + J
END DO
```

Similarly, a lower triangular matrix or a symmetric matrix whose lower triangle is stored in general storage in the array A, can be transferred to packed storage in the array AP as shown below:

```
JC = 1
DO J = 1, N
    DO I = J, N
        AP(JC+I-1) = A(I,J)
    END DO
    JC = JC + N - J + 1
END DO
```


Matrix Types

The general matrix form is the most common matrix, and most operations performed by the Sun Performance Library can be done on general arrays. In many cases, there are routines that will work with the other forms of the arrays. For example, DGEMM will form the product of two general matrices and DTRMM will form the product of a triangular and a general matrix.

General Matrices

A general matrix is stored so that there is a one-to-one correspondence between the elements of the matrix and the elements of the array. Element $A_{i j}$ of a matrix A is stored in element $A(I, J)$ of the corresponding array A. The general form is the
most common form. A general matrix, because it is dense, has no special storage scheme. In a general banded matrix, however, the diagonal of the matrix is stored in the row below the upper diagonals.

For example, as shown below, the general banded matrix can be represented with banded storage. Elements shown with the symbol \times are never accessed by routines that process banded arrays.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & a_{24} & 0 \\
0 & a_{32} & a_{33} & a_{34} & a_{35} \\
0 & 0 & a_{43} & a_{44} & a_{45} \\
0 & 0 & 0 & a_{54} & a_{55}
\end{array}\right] \quad\left[\begin{array}{ccccc}
\times & \times & a_{13} & a_{24} & a_{35} \\
\times & a_{12} & a_{23} & a_{34} & a_{45} \\
a_{11} & a_{22} & a_{33} & a_{44} & a_{55} \\
a_{21} & a_{32} & a_{43} & a_{54} & \times
\end{array}\right]
$$

Triangular Matrices

A triangular matrix is stored so that there is a one-to-one correspondence between the nonzero elements of the matrix and the elements of the array, but the elements of the array corresponding to the zero elements of the matrix are never accessed by routines that process triangular arrays.

A triangular matrix can be stored using packed storage.

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$\left[\begin{array}{l}a_{11} \\ a_{21} \\ a_{31} \\ a_{22} \\ a_{32} \\ a_{33}\end{array}\right]$

A triangular banded matrix can be stored using banded storage as shown below. Elements shown with the symbol \times are never accessed by routines that process banded arrays.

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \quad\left[\begin{array}{lll}
a_{11} & a_{22} & a_{33} \\
a_{21} & a_{32} & \times
\end{array}\right]
$$

Triangular Banded Matrix
Triangular Banded Array in Banded Storage

Symmetric Matrices

A symmetric matrix is similar to a triangular matrix in that the data in either the upper or lower triangle corresponds to the elements of the array. The contents of the other elements in the array are assumed and those array elements are never accessed by routines that process symmetric or Hermitian arrays.

A symmetric matrix can be stored using packed storage.

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31} \\
a_{22} \\
a_{32} \\
a_{33}
\end{array}\right]
$$

A symmetric banded matrix can be stored using banded storage as shown below. Elements shown with the symbol \times are never accessed by routines that process banded arrays.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{43} & a_{44}
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
\times & a_{12} & a_{23} & a_{34} \\
a_{11} & a_{22} & a_{33} & a_{44} \\
a_{21} & a_{32} & a_{43} & \times
\end{array}\right]
$$

Tridiagonal Matrices

A tridiagonal matrix has elements only on the main diagonal, the first superdiagonal, and the first subdiagonal. It is stored using three 1-dimensional arrays.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{43} & a_{44}
\end{array}\right] \quad\left[\begin{array}{l}
a_{21} \\
a_{32} \\
a_{43}
\end{array}\right] \quad\left[\begin{array}{l}
a_{11} \\
a_{22} \\
a_{33} \\
a_{44}
\end{array}\right] \quad\left[\begin{array}{l}
a_{12} \\
a_{23} \\
a_{34}
\end{array}\right]
$$

Sparse Matrices

The Sun Performance Library sparse solver package is a collection of routines that efficiently factor and solve sparse linear systems of equations. Use the sparse solver package to:

- Solve symmetric, structurally symmetric, and unsymmetric coefficient matrices
- Specify a choice of ordering methods, including user-specified orderings

The sparse solver package contains interfaces for FORTRAN 77. Fortran 95 and C interfaces are not currently provided. To use the sparse solver routines from Fortran 95, use the FORTRAN 77 interfaces. To use the sparse solver routines with C, append an underscore to the routine name (dgssin_(), dgssor_(), and so on), pass arguments by reference, and use 1-based array indexing.

Sparse Solver Matrix Data Formats

Sparse matrices are usually represented in formats that minimize storage requirements. By taking advantage of the sparsity and not storing zeros, considerable storage space can be saved. The storage format used by the general sparse solver is the compressed sparse column (CSC) format (also called the Harwell-Boeing format).

The CSC format represents a sparse matrix with two integer arrays and one floating point array. The integer arrays (colptr and rowind) specify the location of the nonzeros of the sparse matrix, and the floating point array (values) is used for the nonzero values.

The column pointer (colptr) array consists of $n+1$ elements where colptr (i) points to the beginning of the i th column, and colptr(i+1)-1 points to the end of the i th column. The row indices (rowind) array contains the row indices of the nonzero values. The values arrays contains the corresponding nonzero numerical values.

The following matrix data formats exist for a sparse matrix of neqns equations and nnz nonzeros:

- Symmetric
- Structurally symmetric
- Unsymmetric

The most efficient data representation often depends on the specific problem. The following sections show examples of sparse matrix data formats.

Symmetric Sparse Matrices

A symmetric sparse matrix is a matrix where $\mathrm{a}(i, j)=\mathrm{a}(j, i)$ for all i and j. Because of this symmetry, only the lower triangular values need to be passed to the solver routines. The upper triangle can be determined from the lower triangle.

An example of a symmetric matrix is shown below. This example is derived from A. George and J. W-H. Liu. "Computer Solution of Large Sparse Positive Definite Systems."
$A=\left[\begin{array}{ccccc}4.0 & 1.0 & 2.0 & 0.5 & 2.0 \\ 1.0 & 0.5 & 0.0 & 0.0 & 0.0 \\ 2.0 & 0.0 & 3.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.0 & 0.625 & 0.0 \\ 2.0 & 0.0 & 0.0 & 0.0 & 16.0\end{array}\right]$

To represent A in CSC format:

- colptr: $1,6,7,8,9,10$

■ rowind: $1,2,3,4,5,2,3,4,5$

- values: $4.0,1.0,2.0,0.5,2.0,0.5,3.0,0.625,16.0$

Structurally Symmetric Sparse Matrices

A structurally symmetric sparse matrix has nonzero values with the property that if $\mathrm{a}(i, j) \neq 0$, then $\mathrm{a}(j, i) \neq 0$ for all i and j. When solving a structurally symmetric system, the entire matrix must be passed to the solver routines.

An example of a structurally symmetric matrix is shown below.
$A=\left[\begin{array}{llll}1.0 & 3.0 & 0.0 & 0.0 \\ 2.0 & 4.0 & 0.0 & 7.0 \\ 0.0 & 0.0 & 6.0 & 0.0 \\ 0.0 & 5.0 & 0.0 & 8.0\end{array}\right]$
To represent A in CSC format:

- colptr: $1,3,6,7,9$
- rowind: $1,2,1,2,4,3,2,4$

■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

Unsymmetric Sparse Matrices

An unsymmetric sparse matrix does not have $\mathrm{a}(i, j)=\mathrm{a}(j, i)$ for all i and j. The structure of the matrix does not have an apparent pattern. When solving an unsymmetric system, the entire matrix must be passed to the solver routines. An example of an unsymmetric matrix is shown below.
$A=\left[\begin{array}{ccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2.0 & 6.0 & 0.0 & 0.0 & 9.0 \\ 3.0 & 0.0 & 7.0 & 0.0 & 0.0 \\ 4.0 & 0.0 & 0.0 & 8.0 & 0.0 \\ 5.0 & 0.0 & 0.0 & 0.0 & 10.0\end{array}\right]$

To represent A in CSC format:

- colptr: $1,6,7,8,9,11$
- rowind: $1,2,3,4,5,2,3,4,2,5$
- values: $1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0$

Sun Performance Library Sparse BLAS

The Sun Performance Library sparse BLAS package is based on the following two packages:

- Netlib Sparse BLAS package, by Dodson, Grimes, and Lewis consists of sparse extensions to the Basic Linear Algebra Subroutines that operate on sparse vectors.
- NIST (National Institute of Standards and Technology) Fortran Sparse BLAS Library consists of routines that perform matrix products and solution of triangular systems for sparse matrices in a variety of storage formats.

Refer to the following sources for additional sparse BLAS information.

- For information on the Sun Performance Library Sparse BLAS routines, refer to the section 3P man pages for the individual routines.
- For more information on the Netlib Sparse BLAS package refer to http://www.netlib. org/sparse-blas/index.html.
- For more information on the NIST Fortran Sparse BLAS routines, refer to http://math.nist.gov/spblas/

Naming Conventions

The Netlib Sparse BLAS and NIST Fortran Sparse BLAS Library routines each use their own naming conventions, as described in the following two sections.

Netlib Sparse BLAS

Each Netlib Sparse BLAS routine has a name of the form Prefix-Root-Suffix where the:

- Prefix represents the data type.
- Root represents the operation.
- Suffix represents whether or not the routine is a direct extension of an existing dense BLAS routine.

TABLE 5-1 lists the naming conventions for the Netlib Sparse BLAS vector routines.
table 5-1 Netlib Sparse BLAS Naming Conventions

Operation	Root of Name	Prefix	and Su					
Dot product	-DOT-	$S-I$	D-I	C-UI	Z-UI	C-CI	$\mathrm{Z}-\mathrm{CI}$	
Scalar times a vector added to a vector	-AXPY-	S-I	D-I	$\mathrm{C}-\mathrm{I}$	Z-I			
Apply Givens rotation	-ROT-	S-I	D-I					
Gather x into y	-GTHR-	S-	D-	C-	Z-	S-Z	D-Z	$\mathrm{C}-\mathrm{Z} \mathrm{Z}-\mathrm{Z}$
Scatter x into y	-SCTR-	S-	D-	C-	Z-			

The prefix can be one of the following data types:

- S: SINGLE

■ D: DOUBLE

- C: COMPLEX

■ Z: COMPLEX*16 or DOUBLE COMPLEX
The I, CI, and UI suffixes denote sparse BLAS routines that are direct extensions to dense BLAS routines.

NIST Fortran Sparse BLAS

Each NIST Fortran Sparse BLAS routine has a six-character name of the form $X Y Y Y Z Z$ where:

- X represents the data type.
- $Y Y Y$ represents the sparse storage format.
- ZZ represents the operation.

TABLE 5-2 shows the values for X, Y, and Z.
table 5-2 NIST Fortran Sparse BLAS Routine Naming Conventions

X: Data Type

$X \quad$ S: single precision
D: double precision
C: complex
Z: double complex
YYY: Sparse Storage Format
YYY Single entry formats: COO: coordinate
CSC: compressed sparse column
CSR: compressed sparse row
DIA: diagonal
ELL: ellpack
JAD: jagged diagonal
SKY: skyline
Block entry formats: BCO: block coordinate
BSC: block compressed sparse column
BSR: block compressed sparse row
BDI: block diagonal
BEL: block ellpack
VBR: block compressed sparse row

ZZ: Operation

ZZ MM:matrix-matrix product
SM:solution of triangular system (supported for all formats except COO)
RP: right permutation (for JAD format only)

Sparse Solver Routines

The Sun Performance Library sparse solver package contains the routines listed in TABLE 5-3.
table 5-3 Sparse Solver Routines

Routine	Function
$\operatorname{DGSSFS}()$	One call interface to sparse solver
$\operatorname{DGSSIN}()$	Sparse solver initialization
$\operatorname{DGSSOR}()$	Fill reducing ordering and symbolic factorization

table 5-3 Sparse Solver Routines (Continued)

DGSSFA ()	Matrix value input and numeric factorization
DGSSSL ()	Triangular solve
Utility Routine	Function
DGSSUO ()	Sets user-specified ordering permutation.
DGSSRP ()	Returns permutation used by solver.
DGSSCO ()	Returns condition number estimate of coefficient matrix.
DGSSDA ()	De-allocates sparse solver.
DGSSPS ()	Prints solver statistics.

Use the regular interface to solve multiple matrices with the same structure, but different numerical values, as shown below:

```
call dgssin() ! {initialization, input coefficient matrix
    ! structure}
call dgssor() ! {fill-reducing ordering, symbolic factorization}
do m = 1, number_of_structurally_identical_matrices
    call dgssfa() ! {input coefficient matrix values, numeric
            ! factorization}
    do r = 1, number_of_right_hand_sides
        call dgsssl() ! {triangular solve}
    enddo
enddo
```

The one-call interface is not as flexible as the regular interface, but it covers the most common case of factoring a single matrix and solving some number right-hand sides. Additional calls to dgsssl () are allowed to solve for additional right-hand sides, as shown in the following example.

```
call dgssfs() ! {initialization, input coefficient matrix
    ! structure}
    ! {fill-reducing ordering, symbolic factorization}
    {input coefficient matrix values, numeric
    factorization}
    ! {triangular solve}
do r = 1, number_of_right_hand_sides
    call dgsssl() ! {triangular solve}
enddo
```


Routine Calling Order

To solve problems with the sparse solver package, use the sparse solver routines in the order shown in TABLE 5-4.

table 5-4 Sparse Solver Routine Calling Order

One Call Interface: For solving single matrix
Start
DGSSFS () Initialize, order, factor, solve
DGSSSL () Additional solves (optional): repeat dgsssl () as needed
DGSSDA () Deallocate working storage
Finish
End of One-Call Interface
Regular Interface: For solving multiple matrices with the same structure
Start
DGSSIN() Initialize

DGSSOR() Order
DGSSFA () Factor
DGSSSL () Solve: repeat dgssfa() or dgsssl() as needed
DGSSDA () Deallocate working storage
Finish
End of Regular Interface

Sparse Solver Examples

CODE EXAMPLE $5-1$ shows solving a symmetric system using the one-call interface, and CODE EXAMPLE 5-2 shows solving a symmetric system using the regular interface.

CODE EXAMPLE 5-1 Solving a Symmetric System-One-Call Interface

```
my_system% cat example_1call.f
    program example_1call
C
c This program is an example driver that calls the sparse solver.
```

CODE EXAMPLE 5-1 Solving a Symmetric System-One-Call Interface (Continued)

```
c It factors and solves a symmetric system, by calling the
c one-call interface.
C
    implicit none
    integer neqns, ier, msglvl, outunt, ldrhs, nrhs
        character mtxtyp*2, pivot*1, ordmthd*3
        double precision handle(150)
        integer colstr(6), rowind(9)
        double precision values(9), rhs(5), xexpct(5)
        integer i
C
c Sparse matrix structure and value arrays. From George and Liu,
c page 3.
c Ax = b, (solve for x) where:
C
C 4.0 1.0 2.0 0.5 2.0 2.0
C 1.0 0.5 0.0 0.0 0.0 2.0 2.0 3.0
c A = 2.0 0.0 3.0 0.0 0.0 x = 1.0 b = 7.0
c 0.5 0.0 0.0 0.625 0.0 0.0 -8.0 
c 2.0 0.0 0.0 0.0 16.0 
C
    data colstr / 1, 6, 7, 8, 9, 10 /
        data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /
        data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0, 3.0d0,
        & 0.625d0, 16.0d0 /
            data rhs / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /
            data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /
C
c set calling parameters
C
    mtxtyp= 'ss'
    pivot = 'n'
    neqns = 5
    nrhs = 1
    ldrhs = 5
    outunt = 6
    msglvl = 0
    ordmthd = 'mmd'
```

```
c call single call interface
C
    call dgssfs ( mtxtyp, pivot, neqns , colstr, rowind,
        & values, nrhs , rhs, ldrhs , ordmthd,
        & outunt, msglvl, handle, ier )
            if ( ier .ne. 0 ) goto 110
C
c deallocate sparse solver storage
C
        call dgssda ( handle, ier )
        if ( ier .ne. 0 ) goto 110
C
c print values of sol
C
        write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'
        do i = 1, neqns
            write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))
        enddo
        stop
    1 1 0 ~ c o n t i n u e
C
c call to sparse solver returns an error
C
        write ( 6 , 400 )
        & ' example: FAILED sparse solver error number = ', ier
        stop
    200 format(a5,3a20)
    300 format(i5,3d20.12) ! i/sol/xexpct values
    400 format(a60,i20) ! fail message, sparse solver error number
        end
```

CODE EXAMPLE 5-1 Solving a Symmetric System-One-Call Interface (Continued)

```
my_system% f95 -dalign example_1call.f -xlic_lib=sunperf
my_sytem% a.out
\begin{tabular}{rrrr} 
i & rhs(i) & expected rhs(i) & error \\
1 & \(0.200000000000 \mathrm{D}+01\) & \(0.200000000000 \mathrm{D}+01\) & \(-0.528466159722 \mathrm{D}-13\) \\
2 & \(0.200000000000 \mathrm{D}+01\) & \(0.200000000000 \mathrm{D}+01\) & \(0.105249142734 \mathrm{D}-12\) \\
3 & \(0.100000000000 \mathrm{D}+01\) & \(0.100000000000 \mathrm{D}+01\) & \(0.350830475782 \mathrm{D}-13\) \\
4 & \(-0.800000000000 \mathrm{D}+01\) & \(-0.800000000000 \mathrm{D}+01\) & \(0.426325641456 \mathrm{D}-13\) \\
5 & \(-0.500000000000 \mathrm{D}+00\) & \(-0.500000000000 \mathrm{D}+00\) & \(0.660582699652 \mathrm{D}-14\)
\end{tabular}
```

CODE EXAMPLE 5-2 Solving a Symmetric System-Regular Interface

```
my_system% cat example_ss.f
    program example_ss
C
c This program is an example driver that calls the sparse solver.
c It factors and solves a symmetric system.
    implicit none
    integer neqns, ier, msglvl, outunt, ldrhs, nrhs
    character mtxtyp*2, pivot*1, ordmthd*3
    double precision handle(150)
    integer colstr(6), rowind(9)
    double precision values(9), rhs(5), xexpct(5)
    integer i
C
c Sparse matrix structure and value arrays. From George and Liu,
c page 3.
c Ax = b, (solve for x) where:
C
C 4.0 1.0 2.0 0.5 2.0 2.0 2.0
C 1.0 0.5 0.0 0.0 0.0 2.0 2.0
c A = 2.0 0.0 3.0 0.0 0.0 x = 1.0 b = 7.0
c 0.5 0.0 0.0 0.625 0.0 0.0 -8.0 
C 2.0 0.0 0.0 0.0 16.0 
C
    data colstr / 1, 6, 7, 8, 9, 10 /
    data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /
    data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0,
        & 3.0d0, 0.625d0, 16.0d0 /
```

CODE EXAMPLE 5-2 Solving a Symmetric System-Regular Interface (Continued)

```
    data rhs / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /
    data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /
C
c initialize solver
C
    mtxtyp= 'ss'
    pivot = 'n'
    neqns = 5
    outunt = 6
    msglvl = 0
C
c call regular interface
C
        call dgssin ( mtxtyp, pivot, neqns , colstr, rowind,
    & outunt, msglvl, handle, ier )
        if ( ier .ne. 0 ) goto 110
C
c ordering and symbolic factorization
C
    ordmthd = 'mmd'
    call dgssor ( ordmthd, handle, ier )
    if ( ier .ne. 0 ) goto 110
C
c numeric factorization
C
    call dgssfa ( neqns, colstr, rowind, values, handle, ier )
    if ( ier .ne. 0 ) goto 110
C
c solution
C
    nrhs = 1
    ldrhs = 5
    call dgsssl ( nrhs, rhs, ldrhs, handle, ier )
    if ( ier .ne. 0 ) goto 110
C
c deallocate sparse solver storage
C
    call dgssda ( handle, ier )
    if ( ier .ne. 0 ) goto 110
C
c print values of sol
```

CODE EXAMPLE 5-2 Solving a Symmetric System-Regular Interface (Continued)

```
C
    write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'
    do i = 1, neqns
    write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))
    enddo
    stop
    1 1 0 ~ c o n t i n u e
C
c call to sparse solver returns an error
C
    write ( 6 , 400 )
        & ' example: FAILED sparse solver error number = ', ier
        stop
    200 format(a5,3a20)
    300 format(i5,3d20.12) ! i/sol/xexpct values
    400 format(a60,i20) ! fail message, sparse solver error number
        end
my_system% f95 -dalign example_ss.f -xlic_lib=sunperf
my_sytem% a.out
    i rhs(i) expected rhs(i) error
    1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13
    2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12
    3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13
    4-0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13
    5-0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14
```

CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric ValuesRegular Interface

```
my_system% cat example_su.f
    program example_su
C
c This program is an example driver that calls the sparse solver.
c It factors and solves a structurally symmetric system
c (w/unsymmetric values).
```

```
C
    implicit none
    integer neqns, ier, msglvl, outunt, ldrhs, nrhs
    character
    double precision
    integer
    double precision
integer
    mtxtyp*2, pivot*1, ordmthd*3
    handle(150)
    colstr(5), rowind(8)
    values(8), rhs(4), xexpct(4)
    i
c
c Sparse matrix structure and value arrays. Coefficient matrix
c has a symmetric structure and unsymmetric values.
c Ax = b, (solve for x) where:
c
C 1.0 3.0 0.0 0.0 1.0 1.0 7.0
C 2.0 4.0 0.0 7.0 2.0.0 2.0
A = 0.0 0.0 6.0 0.0 x = 3.0 b = 18.0
c 0.0 5.0 0.0 8.0 4.0 42.0
C
    data colstr / 1, 3, 6, 7, 9 /
    data rowind / 1, 2, 1, 2, 4, 3, 2, 4 /
    data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,
    & 8.0d0 /
            data rhs / 7.0d0, 38.0d0, 18.0d0, 42.0d0 /
            data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0 /
C
c initialize solver
C
    mtxtyp= 'su'
    pivot = 'n'
    neqns = 4
    outunt = 6
    msglvl = 0
C
c call regular interface
C
    call dgssin ( mtxtyp, pivot, neqns , colstr, rowind,
    & outunt, msglvl, handle, ier
    if ( ier .ne. 0 ) goto 110
```

CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric ValuesRegular Interface (Continued)

```
C
c ordering and symbolic factorization
C
        ordmthd = 'mmd'
        call dgssor ( ordmthd, handle, ier )
        if ( ier .ne. 0 ) goto 110
C
c numeric factorization
C
    call dgssfa ( neqns, colstr, rowind, values, handle, ier )
        if ( ier .ne. 0 ) goto 110
C
c solution
C
    nrhs = 1
        ldrhs = 4
        call dgsssl ( nrhs, rhs, ldrhs, handle, ier )
        if ( ier .ne. 0 ) goto 110
C
c deallocate sparse solver storage
C
    call dgssda ( handle, ier )
    if ( ier .ne. 0 ) goto 110
C
c print values of sol
C
        write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'
        do i = 1, neqns
            write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))
            enddo
        stop
    1 1 0 ~ c o n t i n u e
C
c call to sparse solver returns an error
C
    write ( 6 , 400 )
    & ' example: FAILED sparse solver error number = ', ier
        stop
200 format(a5,3a20)
```


CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric Values-

 Regular Interface (Continued)```
 300 format(i5,3d20.12) ! i/sol/xexpct values
 400 format(a60,i20) ! fail message, sparse solver error number
 end
my_system% f95 -dalign example_su.f -xlic_lib=sunperf
my_system% a.out
 i rhs(i) expected rhs(i) error
 1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00
 2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00
 3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00
 4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00
```

CODE EXAMPLE 5-4 Solving an Unsymmetric System-Regular Interface

```
my_system% cat example_uu.f
 program example_uu
C
This program is an example driver that calls the sparse solver.
c It factors and solves an unsymmetric system.
C
 implicit none
 integer neqns, ier, msglvl, outunt, ldrhs, nrhs
 character mtxtyp*2, pivot*1, ordmthd*3
 double precision handle(150)
 integer colstr(6), rowind(10)
 double precision values(10), rhs(5), xexpct(5)
 integer i
C
Sparse matrix structure and value arrays. Unsummetric matrix A.
 Ax = b, (solve for x) where:
C
C 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
C 2.0 6.0 0.0 0.0 9.0 5.0
C A = 3.0 0.0 7.0 0.0 0.0 x = 3.0 b = 24.0
C 4.0 0.0 0.0 8.0 0.0 4.0
C 5.0 0.0 0.0 0.0 10.0 5.0 55.0
```

CODE EXAMPLE 5-4 Solving an Unsymmetric System-Regular Interface (Continued)

```
C
 data colstr / 1, 6, 7, 8, 9, 11 /
 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 2, 5 /
 data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,
 & 8.0d0, 9.0d0, 10.0d0 /
 data rhs / 1.0d0, 59.0d0, 24.0d0, 36.0d0, 55.0d0 /
 data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0 /
C
 initialize solver
 mtxtyp= 'uu'
 pivot = 'n'
 neqns = 5
 outunt = 6
 msglvl = 3
 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,
 & outunt, msglvl, handle, ier)
 if (ier .ne. 0) goto 110
C
 ordering and symbolic factorization
 ordmthd = 'mmd'
 call dgssor (ordmthd, handle, ier)
 if (ier .ne. 0) goto 110
C
numeric factorization
 call dgssfa (neqns, colstr, rowind, values, handle, ier)
 if (ier .ne. 0) goto 110
C
 solution
 nrhs = 1
 ldrhs = 5
 call dgsssl (nrhs, rhs, ldrhs, handle, ier)
 if (ier .ne. 0) goto 110
C
 deallocate sparse solver storage
 call dgssda (handle, ier)
 if (ier .ne. 0) goto 110
```

```
c print values of sol
C
 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'
 do i = 1, neqns
 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))
 enddo
 stop
 1 1 0 ~ c o n t i n u e
C
c call to sparse solver returns an error
C
 write (6 , 400)
 & ' example: FAILED sparse solver error number = ', ier
 stop
 200 format(a5,3a20)
 300 format(i5,3d20.12) ! i/sol/xexpct values
 400 format(a60,i20) ! fail message, sparse solver error number
 end
my_system% f95 -dalign example_uu.f -xlic_lib=sunperf
my_system% a.out
 i rhs(i) expected rhs(i) error
 1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00
 2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00
 3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00
 4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00
 5 0.500000000000D+01 0.500000000000D+01 0.000000000000D+00
```


## References

The following books and papers provide additional information for the sparse BLAS and sparse solver routines.

- Dodson, D.S, R.G. Grimes, and J.G. Lewis. "Sparse Extensions to the Fortran Basic Linear Algebra Subprograms." ACM Transactions on Mathematical Software, June 1991, Vol 17, No. 2.
- A. George and J. W-H. Liu. "Computer Solution of Large Sparse Positive Definite Systems." Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.
- E. Ng and B. W. Peyton. "Block Sparse Cholesky Algorithms on Advanced Uniprocessor Computers." SIAM M. Sci Comput., 14:1034-1056, 1993.
- Ian S. Duff, Roger G. Grimes and John G. Lewis, "User's Guide for the HarwellBoeing Sparse Matrix Collection (Release I)," Technical Report TR/PA/92/86, CERFACS, Lyon, France, October 1992.


# Using Sun Performance Library Signal Processing Routines 

The discrete Fourier transform (DFT) has always been an important analytical tool in many areas in science and engineering. However, it was not until the development of the fast Fourier transform (FFT) that the DFT became widely used. This is because the DFT requires $\mathrm{O}\left(\mathrm{N}^{2}\right)$ computations, while the FFT only requires $\mathrm{O}\left(\mathrm{Nlog}_{2} \mathrm{~N}\right)$ operations.

Sun Performance Library contains a set of routines that computes the FFT, related FFT operations, such as convolution and correlation, and trigonometric transforms.

This chapter is divided into the following three sections.

- Forward and Inverse FFT Routines
- Sine and Cosine Transforms
- Convolution and Correlation

Each section includes examples that show how the routines might be used.
For information on the Fortran 95 and C interfaces and types of arguments used in each routine, see the section 3P man pages for the individual routines. For example, to display the man page for the SFFTC routine, type man -s 3 P sfftc. Routine names must be lowercase. For an overview of the FFT routines, type man -s 3P fft.

## Forward and Inverse FFT Routines

TABLE 6-1 lists the names of the FFT routines and their calling sequence. Double precision routine names are in square brackets. See the individual man pages for detailed information on the data type and size of the arguments.
table 6-1 FFT Routines and Their Arguments

## Routine Name

Arguments
Linear Routines

```
CFFTS [ZFFTD] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)
SFFTC [DFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)
CFFTSM [ZFFTDM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 WORK, LWORK, ERR)
SFFTCM [DFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 WORK, LWORK, ERR)
CFFTC [ZFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)
CFFTCM [ZFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 WORK, LWORK, ERR)
```


## Two-Dimensional Routines

```
CFFTS2 [ZFFTD2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 WORK, LWORK, ERR)
SFFTC2 [DFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 WORK, LWORK, ERR)
CFFTC2 [ZFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 WORK, LWORK, ERR)
```


## Three-Dimensional Routines

```
CFFTS3 [ZFFTD3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
 TRIGS, IFAC, WORK, LWORK, ERR)
SFFTC3 [DFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
 TRIGS, IFAC, WORK, LWORK, ERR)
CFFTC3 [ZFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
 TRIGS, IFAC, WORK, LWORK, ERR)
```

Sun Performance Library FFT routines use the following arguments.

- OPT: Flag indicating whether the routine is called to initialize or to compute the transform.
- N1, N2, N3: Problem dimensions for one, two, and three dimensional transforms.
- X : Input array where X is of type COMPLEX if the routine is a complex-to-complex transform or a complex-to-real tranform. X is of type REAL for a real-to-complex transform.
- $Y$ : Output array where $Y$ is of type COMPLEX if the routine is a complex-tocomplex transform or a real-to-complex tranform. Y is of type REAL for a complex-to-real transform.
- LDX1, LDX2 and LDY1, LDY2: LDX1 and LDX2 are the leading dimensions of the input array, and LDY1 and LDY2 are the leading dimensions of the output array. The FFT routines allow the output to overwrite the input, which is an in-place transform, or to be stored in a separate array apart from the input array, which is an out-of-place transform. In complex-to-complex tranforms, the input data is of the same size as the output data. However, real-to-complex and complex-to-real transforms have different memory requirements for input and output data. Care must be taken to ensure that the input array is large enough to acommodate the transform results when computing an in-place tranform.
- TRIGS: Array containing the trigonometric weights.
- IFAC: Array containing factors of the problem dimensions. The problem sizes are as follows:
- Linear FFT: Problem size of dimension N1
- Two-dimensional FFT: Problem size of dimensions N1 and N2
- Three-dimensional FFT: Problem size of dimensions N1, N2, and N3

While N1, N2, and N3 can be of any size, a real-to-complex or a complex-to-real transform can be computed most efficiently when

$$
N 1, N 2, N 3=2^{p} \times 3^{q} \times 4^{r} \times 5^{s}
$$

and a complex-to-complex transform can be computed most efficiently when

$$
N 1, N 2, N 3=2^{p} \times 3^{q} \times 4^{r} \times 5^{s} \times 7^{t} \times 11^{u} \times 13^{v}
$$

where $p, q, r, s, t, u$, and $v$ are integers and $p, q, r, s, t, u, v \geq 0$.

- WORK: Workspace whose size depends on the routine and the number of threads that are being used to compute the transform if the routine is parallelized.
- LWORK: Size of workspace. If LWORK is zero, the routine will allocate a workspace with the required size.
- SCALE: A scalar with which the output is scaled. Occasionally in literature, the inverse transform is defined with a scaling factor of $1 / N 1$ for one-dimensional transforms, ' $(1 /(N 1 \times N 2)$ for two-dimensional transforms, and $1 /(N 1 \times N 2 \times N 3)$ for three-dimensional transforms. In such case, the inverse transform is said to be normalized. If a normalized FFT is followed by its inverse FFT, the result is the original input data. The Sun Performance Library FFT routines are not normalized. However, normalization can be done easily by calling the inverse FFT routine with the appropriate scaling factor stored in SCALE.
- ERR: A flag returning a nonzero value if an error is encountered in the routine and zero otherwise.


## Linear FFT Routines

Linear FFT routines compute the FFT of real or complex data in one dimension only. The data can be one or more complex or real sequences. For a single sequence, the data is stored in a vector. If more than one sequence is being transformed, the sequences are stored column-wise in a two-dimensional array and a onedimensional FFT is computed for each sequence along the column direction. The linear forward FFT routines compute

$$
X(k)=\sum_{n=0}^{N 1-1} x(n) e^{\frac{-2 \pi i n k}{N 1}}, \quad k=0, \ldots, N 1-1,
$$

where $i=\sqrt{-1}$, or expressed in polar form,

$$
X(k)=\sum_{n=0}^{N 1-1} x(n)\left(\cos \left(\frac{2 \pi n k}{N 1}\right)-i \sin \left(\frac{2 \pi n k}{N 1}\right)\right), \quad k=0, \ldots, N 1-1 .
$$

The inverse FFT routines compute

$$
x(n)=\sum_{k=0}^{N 1-1} X(k) e^{\frac{2 \pi i n k}{N 1}}, \quad n=0, \ldots, N 1-1
$$

or in polar form,

$$
x(n)=\sum_{n=0}^{N 1-1} X(k)\left(\cos \left(\frac{2 \pi n k}{N 1}\right)+i \sin \left(\frac{2 \pi n k}{N 1}\right)\right), \quad n=0, \ldots, N 1-1
$$

With the forward transform, if the input is one or more complex sequences of size $N 1$, the result will be one or more complex sequences, each consisting of $N 1$ unrelated data points. However, if the input is one or more real sequences, each containing $N 1$ real data points, the result will be one or more complex sequences that are conjugate symmetric. That is,

$$
X(k)=X^{*}(N 1-k), \quad k=\frac{N 1}{2}+1, \ldots, N 1-1 .
$$

The imaginary part of $X(0)$ is always zero. If $N 1$ is even, the imaginary part of $X\left(\frac{N 1}{2}\right)$ is also zero. Both zeros are stored explicitly. Because the second half of each sequence can be derived from the first half, only $\frac{N 1}{2}+1$ complex data points are computed and stored in the output array. Here and elsewhere in this chapter, integer division is rounded down.

With the inverse transform, if an N1-point complex-to-complex transform is being computed, then $N 1$ unrelated data points are expected in each input sequence and N1 data points will be returned in the output array. However, if an N1-point complex-to-real transform is being computed, only the first $\frac{N 1}{2}+1$ complex data points of each conjugate symmetric input sequence are expected in the input, and the routine will return $N 1$ real data points in each output sequence.

For each value of $N 1$, either the forward or the inverse routine must be called to compute the factors of $N 1$ and the trigonometric weights associated with those factors before computing the actual FFT. The factors and trigonometric weights can be reused in subsequent transforms as long as $N 1$ remains unchanged.

TABLE 6-2 lists the single precision linear FFT routines and their purposes. For routines that have two-dimensional arrays as input and output, TABLE 6-2 also lists the leading dimension requirements. The same information applies to the corresponding double precision routines except that their data types are double precision and double complex. See TABLE $6-2$ for the mapping. See the individual man pages for a complete description of the routines and their arguments.
table 6-2 Single Precision Linear FFT Routines

| Name | Purpose | Size and Type of Input | Size and Type of Output | Leading Dimension Requirements |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | In-place | Out-of-Place |
| SFFTC | OPT $=0$ initialization |  |  |  |  |
|  | OPT $=-1$ real-tocomplex forward linear FFT of a single vector | N1, <br> Real | $\frac{N 1}{2}+1$ <br> Complex |  |  |
| SFFTC | OPT $=0$ initialization |  |  |  |  |
|  | $\mathrm{OPT}=1$ complex-toreal inverse linear FFT of single vector | $\frac{N 1}{2}+1$ <br> Complex | N1 <br> Real |  |  |
| CFFTC | OPT $=0$ initialization |  |  |  |  |
|  | OPT $=-1$ complex-tocomplex forward linear FFT of a single vector | $N 1,$ <br> Complex | N1, <br> Complex |  |  |

table 6-2 Single Precision Linear FFT Routines (Continued)

| Name | Purpose | Size and Type of Input | Size and Type of Output | Leading Dimension Requirements |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | In-place | Out-of-Place |
| SFFTCM | OPT = 1 complex-tocomplex inverse linear FFT of a single vector | N1, Complex | N1, Complex |  |  |
|  | $\mathrm{OPT}=0$ initialization <br> OPT $=-1$ real-to- <br> complex forward linear <br> FFT of M vectors | $N 1 \times M$ <br> Real | $\left(\frac{N 1}{2}+1\right) \times M$ <br> Complex | $\begin{aligned} & \operatorname{LDX1}=2 \times \\ & \text { LDY1 } \end{aligned}$ | LDX1 $\geq$ N1 |
| CFFTSM | OPT $=0$ initialization <br> $\mathrm{OPT}=1$ complex-to- <br> real inverse linear FFT <br> of M vectors | $\left(\frac{N 1}{2}+1\right) \times M$ <br> Complex | $N 1 \times M$ <br> Real | $\begin{aligned} & \mathrm{LDX1} \geq \frac{N 1}{2}+1 \\ & \mathrm{LDY} 1=2 \times \mathrm{LDX} 1 \end{aligned}$ | $\begin{aligned} & \text { LDX1 } \geq \frac{N 1}{2}+1 \\ & \text { LDY1 } \geq N 1 \end{aligned}$ |
| CFFTCM | OPT $=0$ initialization <br> OPT $=-1$ complex-tocomplex forward linear FFT of M vectors | $N 1 \times M$ <br> Complex | $N 1 \times M$ <br> Complex | $\begin{aligned} & L D X 1 \geq N 1 \\ & L D Y 1 \geq N 1 \end{aligned}$ | $\begin{aligned} & \text { LDX1 } \geq N 1 \\ & \text { LDY1 } \geq N 1 \end{aligned}$ |
|  | $\begin{aligned} & \text { OPT = } 1 \text { complex-to- } \\ & \text { complex inverse linear } \\ & \text { FFT of } \mathrm{M} \text { vectors } \end{aligned}$ | $N 1 \times M$ <br> Complex | $N 1 \times M$ <br> Complex | $\begin{aligned} & \mathrm{LDX1} \geq N 1 \\ & \mathrm{LDY} 1 \geq N 1 \end{aligned}$ | $\begin{aligned} & \mathrm{LDX1} \geq N 1 \\ & \mathrm{LDY1} \geq N 1 \end{aligned}$ |

TABLE 6-2 Notes.

- LDX1 is the leading dimension of the input array.
- LDY1 is the leading dimension of the output array.
- N1 is the first dimension of the FFT problem.
- N2 is the second dimension of the FFT problem.
- When calling routines with $O P T=0$ to initialize the routine, the only error checking that is done is to determine if $N 1<0$

CODE EXAMPLE 6-1 shows how to compute the linear real-to-complex and complex-to-real FFT of a set of sequences.

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT

```
my_system% cat testscm.f
 PROGRAM TESTSCM
 IMPLICIT NONE
 INTEGER :: LW, IERR, I, J, K, LDX, LDC
```


## CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)

```
INTEGER, PARAMETER : : N1 = 3, N2 = 2, LDZ = N1,
\$ LDC \(=N 1, \operatorname{LDX}=2 *\) LDC
INTEGER, DIMENSION(:) : : IFAC(128)
REAL : : SCALE
REAL, PARAMETER : : ONE = 1.0
REAL, DIMENSION(:) : : SW(N1), TRIGS (2*N1)
REAL, DIMENSION(0:LDX-1,0:N2-1) : : X, V, Y
COMPLEX, DIMENSION(0:LDZ-1, 0:N2-1) : : Z
```

* workspace size LW = N1 SCALE = ONE/N1
WRITE(*,*) \$ 'Linear complex-to-real and real-to-complex FFT of a sequence'
WRITE (*,*)
$\mathrm{X}=\mathrm{RESHAPE}(\operatorname{SOURCE}=(/ .1, .2, .3,0.0,0.0,0.0,7 ., 8 ., 9 .$,
\$ $\quad 0.0,0.0,0.0 /), \operatorname{SHAPE}=(/ 6,2 /)) \mathrm{V}=\mathrm{X}$
WRITE(*,*) 'X = '
DO I = 0,N1-1
WRITE(*,'(2(F4.1,2x))') (X(I,J), J = 0, N2-1)
END DO
WRITE (*,*)
* intialize trig table and compute factors of N1
CALL SFFTCM(0, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,
\$ SW, LW, IERR)
IF (IERR . NE. 0) THEN
PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
STOP
END IF
* Compute out-of-place forward linear FFT.
* Let FFT routine allocate memory.
CALL SFFTCM(-1, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,
\$ SW, 0, IERR)
IF (IERR .NE. 0) THEN
PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
STOP
END IF
WRITE(*,*) 'out-of-place forward FFT of $\mathrm{x}:$ '
WRITE (*,*)'Z ='
DO I $=0, \mathrm{~N} 1 / 2$
WRITE(*,'(2(A1, F4.1,A1,F4.1,A1,2x))') ('(', REAL(Z (I, J)),
\$ ', ', AIMAG (Z (I, J)), ')', J = 0, N2-1)
END DO
WRITE (*,*)
* Compute in-place forward linear FFT.
* X must be large enough to store $\mathrm{N} 1 / 2+1$ complex values
CALL $\operatorname{SFFTCM}(-1, ~ N 1, ~ N 2, ~ O N E, ~ X, ~ L D X, ~ X, ~ L D C, ~ T R I G S, ~ I F A C, ~$
\$ SW, LW, IERR)
IF (IERR .NE. 0) THEN

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)

```
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'in-place forward FFT of X:'
 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, X, LDC, N2)
 WRITE(*,*)
* Compute out-of-place inverse linear FFT.
 CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, X, LDX, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'out-of-place inverse FFT of Z:'
 DO I = 0, N1-1
 WRITE(*,'(2(F4.1,2X))') (X(I,J), J = 0, N2-1)
 END DO
 WRITE(*,*)
* Compute in-place inverse linear FFT.
 CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, Z, LDZ*2, TRIGS,
$ IFAC, SW, 0, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'in-place inverse FFT of z:'
 CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Z, LDZ*2, N2)
 WRITE(*,*)
 END PROGRAM TESTSCM
 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 REAL A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F4.1,2X))') (A(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 COMPLEX A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(A1, F4.1,A1,F4.1,A1,2X))') ('(', REAL(A(I,J,K)),
```

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)

```
 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
my_system% f95 -dalign testscm.f -xlic_lib=sunperf
my_system% a.out
Linear complex-to-real and real-to-complex FFT of a sequence
X =
0.1 7.0
0.2 8.0
0.3 9.0
out-of-place forward FFT of X:
Z =
(0.6, 0.0) (24.0, 0.0)
(-0.2, 0.1) (-1.5, 0.9)
in-place forward FFT of X:
(0.6, 0.0) (24.0, 0.0)
(-0.2, 0.1) (-1.5, 0.9)
out-of-place inverse FFT of z:
0.1 7.0
0.2 8.0
0.3 9.0
in-place inverse FFT of z:
0.1 7.0
0.2 8.0
0.3 9.0
```

CODE EXAMPLE 6-1 Notes:
The forward FFT of $X$ is actually

|  | $(0.6,0.0)$ | $(24.0,0.0)$ |
| :--- | :--- | :--- |
| $Z=$ | $(-0.2,0.1)$ | $(-1.5,0.9)$ |
|  | $(-0.2,-0.1)$ | $(-1.5,-0.9)$ |

Because of symmetry, $Z(2)$ is the complex conjugate of $Z(1)$, and therefore only the first two $\frac{N 1}{2}+1=2$ complex values are stored. For the in-place forward transform, SFFTCM is called with real array $X$ as the input and output. Because SFFTCM expects the output array to be of type COMPLEX, the leading dimension of $X$ as an output array must be as if $X$ were complex. Since the leading dimension of real array $X$ is $\mathrm{LDX}=2 \times \mathrm{LDC}$, the leading dimension of $X$ as a complex output array must be LDC. Similarly, in the in-place inverse transform, CFFTSM is called with complex array $Z$
as the input and output. Because CFFTSM expects the output array to be of type REAL, the leading dimension of $Z$ as an output array must be as if $Z$ were real. Since the leading dimension of complex array Z is LDZ , the leading dimension of Z as a real output array must be $L D Z \times 2$.

CODE EXAMPLE $6-2$ shows how to compute the linear complex-to-complex FFT of a set of sequences.

## CODE EXAMPLE 6-2 Linear Complex-to-Complex FFT

```
my_system% cat testccm.f
 PROGRAM TESTCCM
 IMPLICIT NONE
 INTEGER :: LDX1, LDY1, LW, IERR, I, J, K, LDZ1, NCPUS,
 $ USING_THREADS, IFAC(128)
 INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1, LDZ1 = N1,
 $ LDY1 = N1+2
 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/N1
 COMPLEX :: Z(0:LDZ1-1,0:N2-1), X(0:LDX1-1,0:N2-1),
 $ Y(0:LDY1-1,0:N2-1)
 REAL :: TRIGS(2*N1)
 REAL, DIMENSION(:), ALLOCATABLE :: SW
* get number of threads
 NCPUS = USING_THREADS()
* workspace size
 LW = 2 * N1 * NCPUS
 WRITE(*,*)'Linear complex-to-complex FFT of one or more sequences'
 WRITE(*,*)
 ALLOCATE (SW(LW))
 X = RESHAPE(SOURCE = (/ (.1,.2), (.3,.4), (.5,.6), (.7,.8),(.9,1.0),
 $ (1.1.1.2),(1.3,1.4),(1.5,1.6),(1.7.1.8),(1.9.2.0),(2.1.2.2),
 $ (1.2,2.0)/), SHAPE=(/LDX1,N2/))
 Z = X
 WRITE(*,*) 'X = '
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(X(I,J)),
 $ ',',AIMAG(X(I,J)),')', J = 0, N2-1)
 END DO WRITE(*,*)
* intialize trig table and compute factors of N1
 CALL CFFTCM(0, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. O) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
* Compute out-of-place forward linear FFT.
```

```
 Let FFT routine allocate memory.
 CALL CFFTCM(-1, N1, N2, ONE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 $ SW, 0, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
* Compute in-place forward linear FFT. LDZ1 must equal LDX1
 CALL CFFTCM(-1, N1, N2, ONE, Z, LDX1, Z, LDZ1, TRIGS,
 $ IFAC, SW, 0, IERR)
 WRITE(*,*) 'in-place forward FFT of X:'
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Z(I,J)),
 $ ',',AIMAG(Z(I,J)),')', J = 0, N2-1)
 END DO
 WRITE(*,*)
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*) 'Y ='
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),
 $ ',',AIMAG(Y(I,J)),')', J = 0, N2-1)
 END DO
 WRITE(*,*)
* Compute in-place inverse linear FFT.
 CALL CFFTCM(1, N1, N2, SCALE, Y, LDY1, Y, LDY1, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'in-place inverse FFT of Y:'
 WRITE(*,*) 'Y ='
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(', REAL(Y(I,J)),
 $ ',',AIMAG(Y(I,J)),')', J = 0, N2-1)
 END DO
 DEALLOCATE (SW)
 END PROGRAM TESTCCM
my_system% f95 -dalign testccm.f -xlic_lib=sunperf
my_system% a.out
Linear complex-to-complex FFT of one or more sequences
X =
(0.1, 0.2) (0.7, 0.8) (1.3, 1.4) (1.9, 2.0)
(0.3, 0.4) (0.9, 1.0) (1.5, 1.6) (2.1, 2.2)
(0.5, 0.6)(1.1, 1.2) (1.7, 1.8) (1.2, 2.0)
```

CODE EXAMPLE 6-2 Linear Complex-to-Complex FFT (Continued)

```
in-place forward FFT of X:
(0.9, 1.2) (2.7, 3.0) (4.5, 4.8) (5.2, 6.2)
(-0.5,-0.1) (-0.5, -0.1) (-0.5, -0.1) (0.4, -0.9)
(-0.1, -0.5) (-0.1, -0.5) (-0.1, -0.5) (0.1, 0.7)
out-of-place forward FFT of X:
Y =
(0.9, 1.2) (2.7, 3.0) (4.5, 4.8) (5.2, 6.2)
(-0.5,-0.1) (-0.5, -0.1) (-0.5, -0.1) (0.4, -0.9)
(-0.1, -0.5) (-0.1, -0.5) (-0.1, -0.5) (0.1, 0.7)
in-place inverse FFT of Y:
Y =
(0.1, 0.2) (0.7, 0.8) (1.3, 1.4) (1.9, 2.0)
(0.3, 0.4)(0.9, 1.0) (1.5, 1.6) (2.1, 2.2)
(0.5, 0.6)(1.1, 1.2) (1.7, 1.8) (1.2, 2.0)
```


## Two-Dimensional FFT Routines

For the linear FFT routines, when the input is a two-dimensional array, the FFT is computed along one dimension only, namely, along the columns of the array. The two-dimensional FFT routines take a two-dimensional array as input and compute the FFT along both the column and row dimensions. Specifically, the forward twodimensional FFT routines compute

$$
X(k, n)=\sum_{l=0}^{N 2-1} \sum_{j=0}^{N 1-1} x(j, l) e^{\frac{-2 \pi i l n}{N 2}} e^{\frac{-2 \pi i j k}{N 1}}, \quad k=0, \ldots, N 1-1, n=0, \ldots, N 2-1
$$

and the inverse two-dimensional FFT routines compute

$$
x(j, l)=\sum_{n=0}^{N 2-1} \sum_{k=0}^{N 1-1} X(k, n) e^{\frac{2 \pi i l n}{N 2}} e^{\frac{2 \pi i j k}{N 1}}, \quad j=0, \ldots, N 1-1, l=0, \ldots, N 2-1 .
$$

For both the forward and inverse two-dimensional transforms, a complex-tocomplex transform where the input problem is $N 1 \times N 2$ will yield a complex array that is also $N 1 \times N 2$.

When computing a real-to-complex two-dimensional transform (forward FFT), if the real input array is of dimensions $N 1 \times N 2$, the result will be a complex array of dimensions $\left(\frac{N 1}{2}+1\right) \times N 2$. Conversely, when computing a complex-to-real transform (inverse FFT) of dimensions $\mathrm{N} 1 \times \mathrm{N} 2$, an $\left(\frac{N 1}{2}+1\right) \times N 2$ complex array is required as input. As with the real-to-complex and complex-to-real linear FFT, because of
conjugate symmetry, only the first $\frac{N 1}{2}+1$ complex data points need to be stored in the input or output array along the first dimension. The complex subarray $X\left(\frac{N 1}{2}+1: N 1-1,:\right)$ can be obtained from $X\left(0: \frac{N 1}{2},:\right)$ as follows:

$$
\begin{aligned}
X(k, n) & =X^{*}(N 1-k, n), \\
k & =\frac{N 1}{2}+1, \ldots, N 1-1 \\
n & =0, \ldots, N 2-1
\end{aligned}
$$

To compute a two-dimensional transform, an FFT routine must be called twice. One call initializes the routine and the second call actually computes the transform. The initialization includes computing the factors of $N 1$ and $N 2$ and the trigonometric weights associated with those factors. In subsequent forward or inverse transforms, initialization is not necessary as long as $N 1$ and $N 2$ remain unchanged.

IMPORTANT: Upon returning from a two-dimensional FFT routine, $Y(0: N-1,:)$ contains the transform results and the original contents of $Y(N:$ LDY-1, :) is overwritten. Here, $N=N 1$ in the complex-to-complex and complex-to-real transforms and $N=\frac{N 1}{2}+1$ in the real-to-complex transform.

TABLE 6-3 lists the single precision two-dimensional FFT routines and their purposes. The same information applies to the corresponding double precision routines except that their data types are double precision and double complex. See TABLE 6-3 for the mapping. Refer to the individual man pages for a complete description of the routines and their arguments.
table 6-3 Single Precision Two-Dimensional FFT Routines

| Name | Purpose | Size, Type of <br> Input | Size, Type of <br> Output | Leading Dimension Requirements |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Out-of-Place |  |  |  |  |

table 6-3 Single Precision Two-Dimensional FFT Routines

| Name | Purpose | Size, Type of Input | Size, Type of Output | Leading Dimension Requirements |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | In-place | Out-of-Place |
| CFFTC2 | OPT $=0$ initialization |  |  |  |  |
|  | OPT $=-1$ complex-to- | $N 1 \times N 2,$ | $N 1 \times N 2$, | LDX1 $\geq$ N1 | LDX1 $\geq$ N1 |
|  | complex forward twodimensional FFT | Complex | Complex | LDY1 $=$ LDX1 | LDY1 $\geq$ N1 |
|  | OPT = 1 complex-to- | $N 1 \times N 2$, | N1 × N2, | LDX1 $\geq$ N1 | LDX1 $\geq$ N1 |
|  | complex inverse twodimensional FFT | Complex | Complex | LDY1 $=$ LDX1 | LDY1 = LDX1 |

TABLE 6-3 Notes:

- LDX1 is leading dimension of input array.
- LDY1 is leading dimension of output array.
- N1 is first dimension of the FFT problem.
- N2 is second dimension of the FFT problem.
- When calling routines with OPT $=0$ to initialize the routine, the only error checking that is done is to determine if $N 1, N 2<0$.

The following example shows how to compute a two-dimensional real-to-complex FFT and complex-to-real FFT of a two-dimensional array.
code example 6-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a TwoDimensional Array

```
my_system% cat testsc2.f
 PROGRAM TESTSC2
 IMPLICIT NONE
 INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1,
 $ LDY1 = N1/2+1, LDR1 = 2*(N1/2+1)
 INTEGER LW, IERR, I, J, K, IFAC(128*2)
 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2)
 REAL :: V(LDR1,N2), X(LDX1, N2), Z(LDR1,N2),
 $ SW(2*N2), TRIGS(2*(N1+N2))
 COMPLEX :: Y(LDY1,N2)
 WRITE(*,*) $'Two-dimensional complex-to-real and real-to-complex FFT'
 WRITE(*,*)
 X = RESHAPE (SOURCE = (/.1, . 2, . 3, .4, . 5, . 6, . 7, . 8,
 $ 2.0.1.0, 1.1, 1.2/), SHAPE=(/LDX1,N2/))
 DO I = 1, N2
 V(1:N1,I) = X(1:N1,I)
 END DO
```

```
 WRITE(*,*) 'X ='
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (X(I,J), J = 1, N2)
 END DO
 WRITE(*,*)
* Initialize trig table and get factors of N1, N2
 CALL SFFTC2(0,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,
 $ IFAC,SW,0,IERR)
* Compute 2-dimensional out-of-place forward FFT.
* Let FFT routine allocate memory.
* cannot do an in-place transform in X because LDX1 < 2*(N1/2+1)
 CALL SFFTC2(-1,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*)'Y ='
 DO I = 1, N1/2+1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(', REAL(Y(I,J)),
 $ ',',AIMAG(Y(I,J)),')', J = 1, N2)
 END DO
 WRITE(*,*)
* Compute 2-dimensional in-place forward FFT.
* Use workspace already allocated.
* V which is real array containing input data is also
* used to store complex results; as a complex array, its first
* leading dimension is LDR1/2.
 CALL SFFTC2(-1,N1,N2,ONE,V,LDR1,V,LDR1/2,TRIGS,
 $ IFAC,SW,LW,IERR)
 WRITE(*,*) 'in-place forward FFT of X:'
 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, V, LDR1/2, N2)
* Compute 2-dimensional out-of-place inverse FFT.
* Leading dimension of Z must be even
 CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1, Z,LDR1,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place inverse FFT of Y:'
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (Z(I,J), J = 1, N2)
 END DO
 WRITE(*,*)
* Compute 2-dimensional in-place inverse FFT.
* Y which is complex array containing input data is also
* used to store real results; as a real array, its first
* leading dimension is 2*LDY1.
 CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Y,2*LDY1,
 $ TRIGS,IFAC,SW,0,IERR)
```

code example 6-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a TwoDimensional Array (Continued)

```
WRITE(*,*) 'in-place inverse FFT of Y:
CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Y, 2*LDY1, N2)
END PROGRAM TESTSC2
SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
INTEGER N1, N2, N3, I, J, K
REAL A(LD1, LD2, *)
DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
END DO
END
SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
INTEGER N1, N2, N3, I, J, K
COMPLEX A(LD1, LD2, *)
DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(', REAL(A (I,J,K)),
$
 ,',AIMAG(A(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
END DO
END
```

my_system\% f95 -dalign testsc2.f -xlic_lib=sunperf
my_system\% a.out
Two-dimensional complex-to-real and real-to-complex FFT
$\mathrm{x}=$
$\begin{array}{llll}0.1 & 0.4 & 0.7 & 1.0\end{array}$
$0.2 \quad 0.5 \quad 0.8 \quad 1.1$
0.30 .62 .01 .2
out-of-place forward FFT of X :
Y =
$(8.9,0.0)(-2.9,1.8)(-0.7,0.0)(-2.9,-1.8)$
( $-1.2,1.3$ ) ( 0.5, -1.0) ( $-0.5,1.0$ ) ( 0.5, -1.0)
in-place forward FFT of X :
( 8.9, 0.0) ( $-2.9,1.8$ ) ( $-0.7,0.0)(-2.9,-1.8)$
( $-1.2,1.3$ ) ( $0.5,-1.0)(-0.5,1.0)(0.5,-1.0)$
out-of-place inverse FFT of $Y$ :
$0.1 \quad 0.4 \quad 0.71 .0$
$\begin{array}{llll}0.2 & 0.5 & 0.8 & 1.1\end{array}$
0.30 .62 .01 .2
in-place inverse FFT of $Y$ :

```
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2
```


## Three-Dimensional FFT Routines

Sun Performance Library includes routines that compute three-dimensional FFT. In this case, the FFT is computed along all three dimensions of a three-dimensional array. The forward FFT computes

$$
\begin{aligned}
& X(k, n, m)=\sum_{h=0}^{N 3-1} \sum_{l=0}^{N 2-1} \sum_{j=0}^{N 1-1} x(j, l, h) e^{\frac{-2 \pi i h m}{N 3}} e^{\frac{-2 \pi i l n}{N 2}} e^{\frac{-2 \pi i j k}{N 1}}, \\
& k=0, \ldots, N 1-1 \\
& n=0, \ldots, N 2-1 \\
& m=0, \ldots, N 3-1
\end{aligned}
$$

and the inverse FFT computes

$$
\begin{aligned}
& x(j, l, h)=\sum_{m=0}^{N 3-1} \sum_{n=0}^{N 2-1} \sum_{k=0}^{N 1-1} X(k, n, m) e^{\frac{2 \pi i h m}{N 3}} e^{\frac{2 \pi i l n}{N 2}} e^{\frac{2 \pi i j k}{N 1}}, \\
& j=0, \ldots, N 1-1 \\
& l=0, \ldots, N 2-1 \\
& h=0, \ldots, N 3-1
\end{aligned}
$$

In the complex-to-complex transform, if the input problem is $N 1 \times N 2 \times N 3$, a threedimensional transform will yield a complex array that is also $N 1 \times N 2 \times N 3$. When computing a real-to-complex three-dimensional transform, if the real input array is of dimensions $N 1 \times N 2 \times N 3$, the result will be a complex array of dimensions $\left(\frac{N 1}{2}+1\right) \times N 2 \times N 3$. Conversely, when computing a complex-to-real FFT of dimensions $N 1 \times N 2 \times N 3$, an $\left(\frac{N 1}{2}+1\right) \times N 2 \times N 3$ complex array is required as input. As with the real-to-complex and complex-to-real linear FFT, because of conjugate symmetry, only the first $\frac{N 1}{2}+1$ complex data points need to be stored along the first dimension. The complex subarray $X\left(\frac{N 1}{2}+1: N 1-1,:,:\right)$ can be obtained from $X\left(0: \frac{N 1}{2},:,:\right)$ as follows:

$$
\begin{aligned}
X(k, n, m) & =X^{*}(N 1-k, n, m), \\
k & =\frac{N 1}{2}+1, \ldots N 1-1 \\
n & =0, \ldots, N 2-1 \\
m & =0, \ldots, N 3-1
\end{aligned}
$$

To compute a three-dimensional transform, an FFT routine must be called twice: Once to initialize and once more to actually compute the transform. The initialization includes computing the factors of $N 1, N 2$, and $N 3$ and the trigonometric weights associated with those factors. In subsequent forward or inverse transforms, initialization is not necessary as long as $N 1, N 2$, and $N 3$ remain unchanged.

IMPORTANT: Upon returning from a three-dimensional FFT routine, $Y(0: N-1,:,:$ ) contains the transform results and the original contents of $Y$ ( $N: L D Y 1-1,:,:$ ) is overwritten. Here, $N=N 1$ in the complex-to-complex and complex-to-real transforms and $N=\frac{N 1}{2}+1$ in the real-to-complex transform.

TABLE 6-4 lists the single precision three-dimensional FFT routines and their purposes. The same information applies to the corresponding double precision routines except that their data types are double precision and double complex. See TABLE $6-4$ for the mapping. See the individual man pages for a complete description of the routines and their arguments.
table 6-4 Single Precision Three-Dimensional FFT Routines

| Name | Purpose | Size, Type of Input | Size, Type of Output | Leading Dimension Requirements <br> In-place | Out-of-Place |
| :--- | :--- | :--- | :--- | :--- | :--- |

table 6-4 Single Precision Three-Dimensional FFT Routines (Continued)

| Name | Purpose | Size, Type of Input | Size, Type of Output | Leading Dimension Requirements |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | In-place | Out-of-Place |
| CFFTC3 | $\mathrm{OPT}=0$ <br> initialization |  |  |  |  |
|  | OPT $=-1$ <br> complex-to- <br> complex forward <br> three- <br> dimensional FFT | $N 1 \times N 2 \times N 3$ Complex | $N 1 \times N 2 \times N 3$ Complex | $\begin{aligned} & \text { LDX1 } \geq N 1 \\ & \text { LDX2 } \geq N 2 \\ & \text { LDY1=LDX1 } \\ & \text { LDY2=LDX2 } \end{aligned}$ | $\begin{aligned} & \text { LDX1 } \geq N 1 \\ & \text { LDX2 } \geq N 2 \\ & \text { LDY1 } \geq N 1 \\ & \text { LDY2 } \geq N 2 \end{aligned}$ |
|  | OPT = 1 complex-to-complex inverse threedimensional FFT | $N 1 \times N 2 \times N 3$ <br> Complex | $N 1 \times N 2 \times N 3$ Complex | $\begin{aligned} & \text { LDX1 } \geq N 1 \\ & \text { LDX2 } \geq N 2 \\ & \text { LDY1=LDX1 } \\ & \text { LDY2=LDX2 } \end{aligned}$ | $\begin{aligned} & \text { LDX1 } \geq N 1 \\ & \text { LDX2 } \geq N 2 \\ & \text { LDY1 } \geq N 1 \\ & \text { LDY2 } \geq N 2 \end{aligned}$ |

## TABLE 6-4 Notes:

- LDX1 is first leading dimension of input array.
- LDX2 is the second leading dimension of the input array.
- LDY1 is the first leading dimension of the output array.
- LDY2 is the second leading dimension of the output array.
- N1 is the first dimension of the FFT problem.
- N2 is the second dimension of the FFT problem.
- N3 is the third dimension of the FFT problem.
- When calling routines with $O P T=0$ to initialize the routine, the only error checking that is done is to determine if $N 1, N 2, N 3<0$.

CODE EXAMPLE 6-4 shows how to compute the three-dimensional real-to-complex FFT and complex-to-real FFT of a three-dimensional array.
code example 6-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a ThreeDimensional Array

```
my_system% cat testsc3.f
 PROGRAM TESTSC3
 IMPLICIT NONE
 INTEGER LW, NCPUS, IERR, I, J, K, USING_THREADS, IFAC(128*3)
 INTEGER, PARAMETER : : N1 = 3, N2 = 4, N3 = 2, LDX1 = N1,
 $ LDX2 = N2, LDY1 = N1/2+1, LDY2 = N2,
 $ LDR1 = 2*(N1/2+1), LDR2 = N2
 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2*N3)
```

```
 REAL :: V(LDR1,LDR2,N3), X(LDX1,LDX2,N3), Z(LDR1,LDR2,N3),
 $ TRIGS(2*(N1+N2+N3))
 REAL, DIMENSION(:), ALLOCATABLE :: SW
 COMPLEX :: Y(LDY1,LDY2,N3)
 WRITE(*,*) $'Three-dimensional complex-to-real and real-to-complex FFT'
 WRITE(*,*)
* get number of threads
 NCPUS = USING_THREADS()
* compute workspace size required
 LW = (MAX(MAX(N1,2*N2),2*N3) + 16*N3) * NCPUS
 ALLOCATE (SW (LW))
 X = RESHAPE(SOURCE =
 $ (/ .1, .2, .3, .4, . 5, .6, .7, . 8, .9,1.0,1.1,1.2,
 $ 4.1,1.2,2.3,3.4,6.5,1.6,2.7,4.8,7.9,1.0,3.1,2.2/),
 $ SHAPE= (/LDX1,LDX2,N3 /)
 V = RESHAPE (SOURCE =
 $ (/.1,.2,.3,0.,.4,.5,.6,0.,.7,.8,.9,0.,1.0,1.1,1.2,0.,
 $ 4.1,1.2,2.3,0.,3.4,6.5,1.6,0.,2.7,4.8,7.9,0.,
 $ 1.0,3.1,2.2,0./), SHAPE=(/LDR1,LDR2,N3/))
 WRITE(*,*) 'X ='
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (X(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
* Initialize trig table and get factors of N1, N2 and N3
 CALL SFFTC3(0,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,
 $
 IFAC,SW,0,IERR)
* Compute 3-dimensional out-of-place forward FFT.
* Let FFT routine allocate memory.
* cannot do an in-place transform because LDX1 < 2*(N1/2+1)
 CALL SFFTC3(-1,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*)'Y ='
 DO K = 1, N3
 DO I = 1, N1/2+1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J,K)),
 $
 ',',AIMAG(Y(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
``` Dimensional Array (Continued)
```

* Compute 3-dimensional in-place forward FFT.
* Use workspace already allocated.
* V which is real array containing input data is also
* used to store complex results; as a complex array, its first
* leading dimension is LDR1/2.
CALL SFFTC3(-1,N1,N2,N3,ONE,V,LDR1,LDR2,V,LDR1/2,LDR2,TRIGS,
\$ IFAC,SW,LW,IERR)
WRITE(*,*) 'in-place forward FFT of X:'
CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, N3, V, LDR1/2, LDR2)
* Compute 3-dimensional out-of-place inverse FFT.
* First leading dimension of Z (LDR1) must be even
CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2, Z,LDR1,LDR2,TRIGS,
\$ IFAC,SW,0,IERR)
WRITE(*,*) 'out-of-place inverse FFT of Y:'
DO K = 1, N3
DO I = 1, N1
WRITE(*,'(5(F5.1,2X))') (Z(I,J,K), J = 1, N2)
END DO
WRITE(*,*)
END DO
* Compute 3-dimensional in-place inverse FFT.
* Y which is complex array containing input data is also
* used to store real results; as a real array, its first
* leading dimension is 2*LDY1.
CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Y,2*LDY1,LDY2,
\$ TRIGS,IFAC,SW,LW,IERR)
WRITE(*,*) 'in-place inverse FFT of Y:'
CALL PRINT_COMPLEX_AS_REAL(N1, N2, N3, Y, 2*LDY1, LDY2)
DEALLOCATE (SW)
END PROGRAM TESTSC3
SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
INTEGER N1, N2, N3, I, J, K
REAL A(LD1, LD2, *)
DO K = 1, N3
DO I = 1, N1
WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)
END DO
WRITE(*,*)
END DO
END
SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
INTEGER N1, N2, N3, I, J, K COMPLEX A(LD1, LD2, *)

```

CODE EXAMPLE 6-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a ThreeDimensional Array (Continued)
```

 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(', REAL(A(I,J,K)),
 \$
',',AIMAG(A(I,J,K)),')', J = 1, N2)
END DO
WRITE(*,*)
END DO
END
my_system% f95 -dalign testsc3.f -xlic_lib=sunperf
my_system% a.out
Three-dimensional complex-to-real and real-to-complex FFT
X =
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2
out-of-place forward FFT of X:
Y =
(48.6, 0.0) (-9.6, -3.4) (3.4, 0.0) (-9.6, 3.4)
(-4.2, -1.0) (2.5, -2.7) (1.0, 8.7) (9.5, -0.7)
(-33.0, 0.0) (6.0, 7.0) (-7.0, 0.0) (6.0, -7.0)
(3.0, 1.7) (-2.5, 2.7) (-1.0, -8.7) (-9.5, 0.7)
in-place forward FFT of X:
(48.6, 0.0) (-9.6, -3.4) (3.4, 0.0) (-9.6, 3.4)
(-4.2, -1.0) (2.5, -2.7) (1.0, 8.7) (9.5, -0.7)
(-33.0, 0.0) (6.0, 7.0) (-7.0, 0.0) (6.0, -7.0)
(3.0, 1.7) (-2.5, 2.7) (-1.0, -8.7) (-9.5, 0.7)
out-of-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2
in-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2

```

\section*{Comments}

When doing an in-place real-to-complex or complex-to-real transform, care must be taken to ensure the size of the input array is large enough to hold the results. For example, if the input is of type complex stored in a complex array with first leading dimension \(N\), then to use the same array to store the real results, its first leading dimension as a real output array would be \(2 \times N\). Conversely, if the input is of type real stored in a real array with first leading dimension \(2 \times N\), then to use the same array to store the complex results, its first leading dimension as a complex output array would be \(N\). Leading dimension requirements for in-place and out-of-place transforms can be found in TABLE 6-2, TABLE 6-3, and TABLE 6-4.

In the linear and multi-dimensional FFT, the transform between real and complex data through a real-to-complex or complex-to-real transform can be confusing because \(N 1\) real data points correspond to \(\frac{N 1}{2}+1\) complex data points. \(N 1\) real data points do map to \(N 1\) complex data points, but because there is conjugate symmetry in the complex data, only \(\frac{N 1}{2}+1\) data points need to be stored as input in the complex-to-real transform and as output in the real-to-complex transform. In the multi-dimensional FFT, symmetry exists along all the dimensions, not just in the first. However, the two-dimensional and three-dimensional FFT routines store the complex data of the second and third dimensions in their entirety.

While the FFT routines accept any size of N1, N2 and N3, FFTs can be computed most efficiently when values of N1, N2 and N3 can be decomposed into relatively small primes. A real-to-complex or a complex-to-real transform can be computed most efficiently when
\[
N 1, N 2, N 3=2^{p} \times 3^{q} \times 4^{r} \times 5^{s},
\]
and a complex-to-complex transform can be computed most efficiently when
\[
N 1, N 2, N 3=2^{p} \times 3^{q} \times 4^{r} \times 5^{s} \times 7^{t} \times 11^{u} \times 13^{v},
\]
where \(p, q, r, s, t, u\), and \(v\) are integers and \(p, q, r, s, t, u, v \geq 0\).

The function \(x\) FFTOPT can be used to determine the optimal sequence length, as shown in CODE EXAMPLE 6-5.

CODE EXAMPLE 6-5 RFFTOPT Example
```

my_system% cat fft_ex01.f
PROGRAM TEST
INTEGER N, N1, N2, N3, RFFTOPT
C
N = 1024
N1 = 1019
N2 = 71
N3 = 49
C
PRINT *, 'N Original N Suggested'
PRINT '(I5, I12)', (N, RFFTOPT(N))
PRINT '(I5, I12)', (N1, RFFTOPT(N1))
PRINT '(I5, I12)', (N2, RFFTOPT(N2))
PRINT '(I5, I12)', (N3, RFFTOPT(N3))
END
my_system% f95 -dalign fft_ex01.f -xlic_lib=sunperf
my_system% a.out
N Original N Suggested
1024 1024
1019 1024
71 72
49 49

```

\section*{Cosine and Sine Transforms}

Input to the DFT that possess special symmetries occur in various applications. A transform that exploits symmetry usually saves in storage and computational count, such as with the real-to-complex and complex-to-real FFT transforms. The Sun Performance Library cosine and sine transforms are special cases of FFT routines that take advantage of the symmetry properties found in even and odd functions.

Note - Sun Performance Library sine and cosine transform routines are based on the routines contained in FFTPACK (http://www.netlib.org/fftpack/). Routines with a V prefix are vectorized routines that are based on the routines contained in VFFTPACK (http://www.netlib.org/vfftpack/).

\section*{Fast Cosine and Sine Transform Routines}

TABLE 6-5 lists the Sun Performance Library fast cosine and sine transforms. Names of double precision routines are in square brackets. Routines whose name begins with ' \(v\) ' can compute the transform of one or more sequences simultaneously. Those whose name ends with ' \(I\) ' are initialization routines.
table 6-5 Fast Cosine and Sine Transform Routines and Their Arguments
\begin{tabular}{ll}
\hline Name & Arguments \\
\hline Fast Cosine Transforms for Even Sequences \\
COST [DCOST] & (LEN+1, X, WORK) \\
COSTI [DCOSTI] & (LEN+1, WORK) \\
VCOST [VDCOST] & (M, LEN+1, X, WORK, LD, TABLE) \\
VCOSTI [VDCOSTI] & (LEN+1, TABLE)
\end{tabular}

Fast Cosine Transforms for Quarter-Wave Even Sequences
\begin{tabular}{ll} 
COSQF [DCOSQF] & (LEN, X, WORK) \\
COSQB [DCOSQB] & (LEN, X, WORK) \\
COSQI [DCOSQI] & (LEN, WORK) \\
VCOSQF [VDCOSQF] & (M, LEN, X, WORK, LD, TABLE) \\
VCOSQB [VDCOSQB] & \((M, L E N, X, W O R K, ~ L D, ~ T A B L E) ~\) \\
VCOSQI [VDCOSQI] & (LEN, TABLE)
\end{tabular}

Fast Sine Transforms for Odd Sequences
\begin{tabular}{ll} 
SINT [DSINT] & (LEN-1, X, WORK) \\
SINTI [DSINTI] & (LEN-1, WORK) \\
VSINT [VDSINT] & (M, LEN-1, X, WORK, LD, TABLE) \\
VSINTI [VDSINTI] & (LEN-1, TABLE)
\end{tabular}

Fast Sine Transforms for Quarter-Wave Odd Sequences
SINQF [DSINQF] (LEN, X, WORK)
table 6-5 Fast Cosine and Sine Transform Routines and Their Arguments
\begin{tabular}{ll}
\hline Name & Arguments \\
\hline SINQB [DSINQB] & (LEN, X, WORK) \\
SINQI [DSINQI] & (LEN, WORK) \\
VSINQF [VDSINQF] & (M, LEN, X, WORK, LD, TABLE) \\
VSINQB [VDSINQB] & (M, LEN, X, WORK, LD, TABLE) \\
VSINQI [VDSINQI] & (LEN, TABLE) \\
\hline
\end{tabular}

TABLE 6-5 Notes:
- M: Number of sequences to be transformed.
- LEN, LEN-1, LEN+1: Length of the input sequence or sequences.
- X : A real array which contains the sequence or sequences to be transformed. On output, the real transform results are stored in \(X\).
- TABLE: Array of constants particular to a transform size that is required by the transform routine. The constants are computed by the initialization routine.
- WORK: Workspace required by the transform routine. In routines that operate on a single sequence, WORK also contains constants computed by the initialization routine.

\section*{Fast Cosine Transforms}

A special form of the FFT that operates on real even sequences is the fast cosine transform (FCT). A real sequence \(x\) is said to have even symmetry if \(x(n)=x(-n)\) where \(n=-N+1, \ldots, 0, \ldots, N\). An FCT of a sequence of length \(2 N\) requires \(N+1\) input data points and produces a sequence of size \(N+1\). Routine COST computes the FCT of a single real even sequence while VCOST computes the FCT of one or more sequences. Before calling [V]COST, [V] COSTI must be called to compute trigonometric constants and factors associated with input length \(N+1\). The FCT is its own inverse transform. Calling VCOST twice will result in the original \(N+1\) data points. Calling COST twice will result in the original \(N+1\) data points multiplied by \(2 N\).

An even sequence \(x\) with symmetry such that \(x(n)=x(-n-1)\) where \(n=\) \(-N+1, \ldots, 0, \ldots, N\) is said to have quarter-wave even symmetry. COSQF and COSQB compute the FCT and its inverse, respectively, of a single real quarter-wave even sequence. VCOSQF and VCOSQB operate on one or more sequences. The results of [V] COSQB are unormalized, and if scaled by \(\frac{1}{4 N}\), the original sequences are obtained. An FCT of a real sequence of length \(2 N\) that has quarter-wave even symmetry requires \(N\) input data points and produces an \(N\)-point resulting sequence. Initialization is required before calling the transform routines by calling [V] COSQI.

\section*{Fast Sine Transforms}

Another type of symmetry that is commonly encountered is the odd symmetry where \(x(n)=-x(-n)\) for \(n=-N+1, \ldots, 0, \ldots, N\). As in the case of the fast cosine transform, the fast sine transform (FST) takes advantage of the odd symmetry to save memory and computation. For a real odd sequence \(x\), symmetry implies that \(x(0)=-x(0)=0\). Therefore, if \(x\) is of length \(2 N\) then only \(N=1\) values of \(x\) are required to compute the FST. Routine SINT computes the FST of a single real odd sequence while VSINT computes the FST of one or more sequences. Before calling [V]SINT, [V]SINTI must be called to compute trigonometric constants and factors associated with input length \(N-1\). The FST is its own inverse transform. Calling VSINT twice will result in the original \(N-1\) data points. Calling SINT twice will result in the original N-1 data points multiplied by \(2 N\).

An odd sequence with symmetry such that \(x(n)=-x(-n-1)\), where \(n=-N+1, \ldots, 0, \ldots, N\) is said to have quarter-wave odd symmetry. SINQF and SINQB compute the FST and its inverse, respectively, of a single real quarter-wave odd sequence while VSINQF and VSINQB operate on one or more sequences. SINQB is unnormalized, so using the results of SINQF as input in SINQB produces the original sequence scaled by a factor of \(4 N\). However, VSINQB is normalized, so a call to VSINQF followed by a call to VSINQB will produce the original sequence. An FST of a real sequence of length \(2 N\) that has quarter-wave odd symmetry requires \(N\) input data points and produces an N -point resulting sequence. Initialization is required before calling the transform routines by calling [V] SINQI.

\section*{Discrete Fast Cosine and Sine Transforms and Their Inverse}

Sun Performance Library routines use the equations in the following sections to compute the fast cosine and sine transforms and inverse transforms.

\section*{[D] COST: Forward and Inverse Fast Cosine Transform (FCT) of a Sequence}

The forward and inverse FCT of a sequence is computed as
\[
X(k)=x(0)+2 \sum_{n=1}^{N-1} x(n) \cos \left(\frac{\pi n k}{N}\right)+x(N) \cos (\pi k), \quad k=0, \ldots, N .
\]

\section*{[D] COST Notes:}
- \(N+1\) values are needed to compute the FCT of an \(N\)-point sequence.
- [D] COST also computes the inverse transform. When [D] COST is called twice, the result will be the original sequence scaled by \(\frac{1}{2 N}\).

\section*{V [D] COST: Forward and Inverse Fast Cosine Transforms of Multiple Sequences (VFCT)}

The forward and inverse FCTs of multiple sequences are computed as
For \(i=0, M-1\)
\[
\begin{aligned}
& \quad X(i, k)=\frac{x(i, 0)}{2 N}+\frac{1}{N} \sum_{n=1}^{N-1} x(i, n) \cos \left(\frac{\pi n k}{N}\right)+\frac{x(i, N)}{2 N} \cos (\pi k), \quad k=0, \ldots, N . \\
& \mathrm{V}[\mathrm{D}] \text { COST Notes }
\end{aligned}
\]
- \(M \times(N+1)\) values are needed to compute the VFCT of \(M N\)-point sequences.
- The input and output sequences are stored row-wise.
- V [D] COST is normalized and is its own inverse. When V [D] COST is called twice, the result will be the original data.

\section*{[D] COSQF: Forward FCT of a Quarter-Wave Even Sequence}

The forward FCT of a quarter-wave even sequence is computed as
\[
X(k)=x(0)+2 \sum_{n=1}^{N-1} x(n) \cos \left(\frac{\pi n(2 k+1)}{2 N}\right), \quad k=0, \ldots, N-1 .
\]
\(N\) values are needed to compute the forward FCT of an \(N\)-point quarter-wave even sequence.

\section*{[D] COSQB: Inverse FCT of a Quarter-Wave Even Sequence}

The inverse FCT of a quarter-wave even sequence is computed as
\[
x(n)=\sum_{k=0}^{N-1} X(k) \cos \left(\frac{\pi n(2 k+1)}{2 N}\right), \quad n=0, \ldots, N-1
\]

Calling the forward and inverse routines will result in the original input scaled by \(\frac{1}{4 N}\).

\section*{V [D] COSQF: Forward FCT of One or More Quarter-Wave Even Sequences}

The forward FCT of one or more quarter-wave even sequences is computed as
For \(i=0, M-1\)
\[
X(i, k)=\frac{1}{N}\left[x(i, 0)+2 \sum_{n=1}^{N-1} x(i, n) \cos \left(\frac{\pi n(2 k+1)}{2 N}\right)\right], \quad k=0, \ldots, N-1 .
\]

V[D]COSQF Notes:
- The input and output sequences are stored row-wise.
- The transform is normalized so that if the inverse routine V [D] COSQB is called immediately after calling \(V[D] C O S Q F\), the original data is obtained.

\section*{V [D] COSQB: Inverse FCT of One or More Quarter-Wave Even Sequences}

The inverse FCT of one or more quarter-wave even sequences is computed as
\[
\text { For } i=0, M-1
\]
\[
x(i, n)=\sum_{k=0}^{N-1} X(i, k) \cos \left(\frac{\pi n(2 k+1)}{2 N}\right), \quad n=0, \ldots, N-1
\]

V[D]cosQB Notes:
- The input and output sequences are stored row-wise.
- The transform is normalized so that if V[D] COSQB is called immediately after calling \(V[D] C O S Q F\), the original data is obtained.

\section*{[D] SINT: Forward and Inverse Fast Sine Transform (FST) of a Sequence}

The forward and inverse FST of a sequence is computed as
\[
X(k)=2 \sum_{n=0}^{N-2} x(n) \sin \left(\frac{\pi(n+1)(k+1)}{N}\right), \quad k=0, \ldots, N-2 .
\]

\section*{[D] SINT Notes:}
- N -1 values are needed to compute the FST of an N -point sequence.
- [D] SINT also computes the inverse transform. When [D] SINT is called twice, the result will be the original sequence scaled by \(\frac{1}{2 N}\).

\section*{V [D] SINT: Forward and Inverse Fast Sine Transforms of Multiple Sequences (VFST)}

The forward and inverse fast sine transforms of multiple sequences are computed as
For \(i=0, M-1\)
\[
X(i, k)=\frac{2}{\sqrt{2 N}} \sum_{n=0}^{N-2} x(i, n) \sin \left(\frac{\pi(n+1)(k+1)}{N}\right), \quad k=0, \ldots, N-2 .
\]

\section*{V[D]SINT Notes:}
- \(M \times(N-1)\) values are needed to compute the VFST of \(M\)-point sequences.
- The input and output sequences are stored row-wise.
- V[D]SINT is normalized and is its own inverse. Calling V[D]SINT twice yields the original data.

\section*{[D] SINQF: Forward FST of a Quarter-Wave Odd Sequence}

The forward FST of a quarter-wave odd sequence is computed as
\[
X(k)=2 \sum_{n=0}^{N-2} x(n) \sin \left(\frac{\pi(n+1)(2 k+1)}{2 N}\right)+x(N-1) \cos (\pi k), \quad k=0, \ldots, N-1
\]
\(N\) values are needed to compute the forward FST of an \(N\)-point quarter-wave odd sequence.

\section*{[D] SINQB: Inverse FST of a Quarter-Wave Odd Sequence}

The inverse FST of a quarter-wave odd sequence is computed as
\[
x(n)=2 \sum_{k=0}^{N-1} X(k) \sin \left(\frac{\pi(n+1)(2 k+1)}{2 N}\right), \quad n=0, \ldots, N-1 .
\]

Calling the forward and inverse routines will result in the original input scaled by \(\frac{1}{4 N}\).

\section*{V[D] SINQF: Forward FST of One or More Quarter-Wave Odd Sequences}

The forward FST of one or more quarter-wave odd sequences is computed as
For \(i=0, M-1\)
\(X(i, k)=\frac{1}{\sqrt{4 N}}\left[2 \sum_{n=0}^{N-2} x(n, i) \sin \left(\frac{\pi(n+1)(2 k+1)}{2 N}\right)+x(N-1, i) \cos \pi k\right], \quad k=0, \ldots, N-1\).

\section*{V[D] SINQF Notes:}
- The input and output sequences are stored row-wise.
- The transform is normalized so that if the inverse routine V[D]SINQB is called immediately after calling V[D] SINQF, the original data is obtained.

\section*{V[D] SINQB: Inverse FST of One or More Quarter-Wave Odd Sequences}

The inverse FST of one or more quarter-wave odd sequences is computed as
For \(i=0, M-1\)
\[
x(n, i)=\frac{4}{\sqrt{4 N}} \sum_{k=0}^{N-1} X(k, i) \sin \left(\frac{\pi(n+1)(2 k+1)}{2 N}\right), \quad n=0, \ldots, N-1 .
\]

\section*{V[D] SINQB Notes:}
- The input and output sequences are stored row-wise.
- The transform is normalized, so that if V[D] SINQB is called immediately after calling \(V[D]\) SINQF, the original data is obtained.

\section*{Fast Cosine Transform Examples}

CODE EXAMPLE 6-6 calls COST to compute the FCT and the inverse transform of a real even sequence. If the real sequence is of length \(2 N\), only \(N+1\) input data points need to be stored and the number of resulting data points is also \(N+1\). The results are stored in the input array.
code example 6-6 Compute FCT and Inverse FCT of Single Real Even Sequence
```

my_system% cat cost.f
program cost
implicit none
integer,parameter :: len=4
real x(0:len),work(3*(len+1)+15), z(0:len), scale
integer i
scale = 1.0/(2.0*len)
call RANDOM_NUMBER(x(0:len))
z(0:len) = x(0:len)
write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',
\$ len,' requires ', len+1,' data points'
write(*,'(5(f8.3,2x),/)')(x(i),i=0,len)
call costi(len+1, work)
call cost(len+1, z, work)
write(*,*)'Forward fast cosine transform'
write(*,'(5(f8.3,2x),/)')(z(i),i=0,len)
call cost(len+1, z, work)
write(*,*)
\$ 'Inverse fast cosine transform (results scaled by 1/2*N)'
write(*,'(5(f8.3,2x),/)')(z(i)*scale,i=0,len)
end
my_system% f95 -dalign cost.f -xlic_lib=sunperf
my_system% a.out
Input sequence of length 4 requires 5 data points
0.557 0.603 0.210 0.352 0.867
Forward fast cosine transform
3.753 0.046 1.004 -0.666 -0.066
Inverse fast cosine transform (results scaled by 1/2*N)
0.557 0.603 0.210 0.352 0.867

```

CODE EXAMPLE 6-7 calls VCOSQF and VCOSQB to compute the FCT and the inverse FCT, respectively, of two real quarter-wave even sequences. If the real sequences are of length \(2 N\), only \(N\) input data points need to be stored, and the number of resulting data points is also \(N\). The results are stored in the input array.

CODE EXAMPLE 6-7 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences
```

my_system% cat vcosq.f
program vcosq
implicit none
integer,parameter :: len=4, m = 2, ld = m+1
real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)
integer i, j
call RANDOM_NUMBER(x)
z = x
write(*,'(a27,i1)')' Input sequences of length ',len
do j = 1,m
write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
\$ 'seq',j,' = (',(x(j,i),i=1,len),')'
end do
call vcosqi(len, work)
call vcosqf(m,len, z, xt, ld, work)
write(*,*)
\$ 'Forward fast cosine transform for quarter-wave even sequences'
do j = 1,m
write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
\$
end do
call vcosqb(m,len, z, xt, ld, work)
write(*,*)
\$ 'Inverse fast cosine transform for quarter-wave even sequences'
write(*,*)'(results are normalized)'
do j = 1,m
write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
'seq',j,' = (',(z(j,i),i=1,len),')'
end do
end

```

CODE EXAMPLE 6-7 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences
```

my_system% f95 -dalign vcosq.f -xlic_lib=sunperf
my_system% a.out
Input sequences of length 4
seq1 =(0.557 0.352 0.990 0.539)
seq2 =(0.603 0.867 0.417 0.156)
Forward fast cosine transform for quarter-wave even sequences
seq1 = (0.755 -. 392 -.029 0.224)
seq2 = (0.729 0.097 -.091 -. 132)
Inverse fast cosine transform for quarter-wave even sequences
(results are normalized)
seq1 =(0.557 0.352 0.990 0.539)
seq2 =(0.603 0.867 0.417 0.156)

```

\section*{Fast Sine Transform Examples}

In CODE EXAMPLE 6-8, SINT is called to compute the FST and the inverse transform of a real odd sequence. If the real sequence is of length \(2 N\), only N-1 input data points need to be stored and the number of resulting data points is also \(N-1\). The results are stored in the input array.
code example 6-8 Compute FST and the Inverse FST of a Real Odd Sequence
```

my_system% cat sint.f
program sint
implicit none
integer,parameter :: len=4
real x(0:len-2),work(3*(len-1)+15), z(0:len-2), scale
integer i
call RANDOM_NUMBER(x(0:len-2))
z(0:len-2) = x(0:len-2)
scale = 1.0/(2.0*len)
write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',
\$ len,' requires ', len-1,' data points'
write(*,'(3(f8.3,2x),/)')(x(i),i=0,len-2)
call sinti(len-1, work)
call sint(len-1, z, work)
write(*,*)'Forward fast sine transform'
write(*,'(3(f8.3,2x),/)')(z(i),i=0,len-2)

```

\section*{code example 6-8 Compute FST and the Inverse FST of a Real Odd Sequence (Continued)}
```

 call sint(len-1, z, work)
 write(*,*) $ 'Inverse fast sine transform (results scaled by 1/2*N)'
 write(*,'(3(f8.3,2x),/)')(z(i)*scale,i=0,len-2)
 end
 my_system% f95 -dalign sint.f -xlic_lib=sunperf
my_system% a.out
Input sequence of length 4 requires 3 data points
0.557 0.603 0.210
Forward fast sine transform
2.291 0.694 -0.122
Inverse fast sine transform (results scaled by 1/2*N)
0.557 0.603 0.210

```

In CODE EXAMPLE 6-9 VSINQF and VSINQB are called to compute the FST and inverse FST, respectively, of two real quarter-wave odd sequences. If the real sequence is of length \(2 N\), only \(N\) input data points need to be stored and the number of resulting data points is also \(N\). The results are stored in the input array.
code example 6-9 Compute FST and Inverse FST of Two Real Quarter-Wave Odd Sequences
```

my_system% cat vsinq.f
program vsing
implicit none
integer,parameter :: len=4, m = 2, ld = m+1
real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)
integer i, j
call RANDOM_NUMBER(x)
z = x
write(*,'(a27,i1)')' Input sequences of length ',len
do j = 1,m
write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
\$ 'seq',j,' = (',(x(j,i),i=1,len),')'
end do
call vsinqi(len, work)
call vsinqf(m,len, z, xt, ld, work)
write(*,*)
\$ 'Forward fast sine transform for quarter-wave odd sequences'
do j = 1,m
write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
\$ 'seq',j,' = (',(z(j,i),i=1,len),')'
end do

```

\section*{code example 6-9 Compute FST and Inverse FST of Two Real Quarter-Wave Odd Sequences (Continued)}
```

 call vsinqb(m,len, z, xt, ld, work)
 write(*,*)
 \$ 'Inverse fast sine transform for quarter-wave odd sequences'
write(*,*)'(results are normalized)'
do j = 1,m
write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
\$ 'seq',j,' = (',(z(j,i),i=1,len),')'
end do
end
my_system% f95 vsinq.f -xlic_lib=sunperf
my_system% a.out
Input sequences of length 4
seq1 =(0.557 0.352 0.990 0.539)
seq2 =(0.603 0.867 0.417 0.156)
Forward fast sine transform for quarter-wave odd sequences
seq1 = (0.823 0.057 0.078 0.305)
seq2 = (0.654 0.466 -.069 -.037)
Inverse fast sine transform for quarter-wave odd sequences
(results are normalized)
seq1 =(0.557 0.352 0.990 0.539)
seq2 =(0.603 0.867 0.417 0.156)

```

\section*{Convolution and Correlation}

Two applications of the FFT that are frequently encountered especially in the signal processing area are the discrete convolution and discrete correlation operations.

\section*{Convolution}

Given two functions \(x(t)\) and \(y(t)\), the Fourier transform of the convolution of \(x(t)\) and \(y(t)\), denoted as \(x^{\star} y\), is the product of their individual Fourier transforms: \(\operatorname{DFT}(\mathrm{x} \star \mathrm{y})=X \odot Y\) where \(\star\) denotes the convolution operation and \(\odot\) denotes pointwise multiplication.

Typically, \(x(t)\) is a continuous and periodic signal that is represented discretely by a set of N data points \(x_{i}, j=0, \ldots, N-1\), sampled over a finite duration, usually for one period of \(x(t)\) at equal intervals. \(y(t)\) is usually a response that starts out as zero, peaks to a maximum value, and then returns to zero. Discretizing \(y(t)\) at equal
intervals produces a set of \(N\) data points, \(y_{k^{\prime}}, k=0, \ldots, N-1\). If the actual number of samplings in \(y_{k}\) is less than \(N\), the data can be padded with zeros. The discrete convolution can then be defined as
\[
(x \star y)_{j} \equiv \sum_{k=\frac{-N}{2}+1}^{\frac{N}{2}} x_{j-k} y_{k}, \quad j=0, \ldots, N-1 .
\]

The values of \(y_{k}, k=\frac{-N}{2}+1, \ldots, \frac{N}{2}\), are the same as those of \(k=0, \ldots, N-1\) but in the wrap-around order.

The Sun Performance Library routines allow the user to compute the convolution by using the definition above with \(k=0, \ldots, N-1\), or by using the FFT. If the FFT is used to compute the convolution of two sequences, the following steps are performed:
- Compute \(X=\) forward FFT of \(x\)
- Compute \(Y=\) forward FFT of y
- Compute \(Z=X \odot Y \Leftrightarrow \operatorname{DFT}(x \star y)\)
- Compute \(z=\) inverse FFT of \(Z ; z=(x \star y)\)

One interesting characteristic of convolution is that the product of two polynomials is actually a convolution. A product of an m-term polynomial
\[
a(x)=a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}
\]
and an \(n\)-term polynomial
\[
b(x)=b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}
\]
has \(m+n-1\) coefficients that can be obtained by
\[
c_{k}=\sum_{j=\max ((k-(m-1)), 0)}^{\min (k, n-1)} a_{j} b_{k-j}
\]
where \(k=0, \ldots, m+n-2\).

\section*{Correlation}

Closely related to convolution is the correlation operation. It computes the correlation of two sequences directly superposed or when one is shifted relative to the other. As with convolution, we can compute the correlation of two sequences efficiently as follows using the FFT:
- Compute the FFT of the two input sequences.
- Compute the pointwise product of the resulting transform of one sequence and the complex conjugate of the transform of the other sequence.
- Compute the inverse FFT of the product.

The routines in the Performance Library also allow correlation to be computed by the following definition:
\[
\operatorname{Corr}(x, y)_{j} \equiv \sum_{k=0}^{N-1} x_{j+k} y_{k}, \quad j=0, \ldots, N-1 .
\]

There are various ways to interpret the sampled input data of the convolution and correlation operations. The argument list of the convolution and correlation routines contain parameters to handle cases in which
- The signal and/or response function can start at different sampling time
- The user might want only part of the signal to contribute to the output
- The signal and/or response function can begin with one or more zeros that are not explicitly stored.

\section*{Sun Performance Library Convolution and Correlation Routines}

Sun Performance Library contains the convolution routines shown in TABLE 6-6.
table 6-6 Convolution and Correlation Routines
\begin{tabular}{|c|c|c|}
\hline Routine & Arguments & Function \\
\hline SCNVCOR, DCNVCOR, CCNVCOR, ZCNVCOR & CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y, IFY, INC1Y, INC2Y,NZ, K, Z, IFZ,INC1Z, INC2Z,WORK, LWORK & Convolution or correlation of a filter with one or more vectors \\
\hline \begin{tabular}{l}
SCNVCOR2, \\
DCNVCOR2, \\
CCNVCOR2, \\
ZCNVCOR2
\end{tabular} & CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY, SCRATCHY, MX, NX, X, LDX, MY , NY , MPRE, NPRE, Y, LDY, MZ, NZ, Z, LDZ, WORKIN, LWORK & Two-dimensional convolution or correlation of two matrices \\
\hline SWIENER, DWIENER & \begin{tabular}{l}
N_POINTS, ACOR, XCOR, \\
FLTR, EROP, ISW, IERR
\end{tabular} & Wiener deconvolution of two signals \\
\hline
\end{tabular}

The [S,D, C, Z] CNVCOR routines are used to compute the convolution or correlation of a filter with one or more input vectors. The [ \(\mathrm{S}, \mathrm{D}, \mathrm{C}, \mathrm{z}\) ] CNVCOR2 routines are used to compute the two-dimensional convolution or correlation of two matrices.

\section*{Arguments for Convolution and Correlation Routines}

The one-dimensional convolution and correlation routines use the arguments shown in TABLE 6-7.
\begin{tabular}{ll} 
table 6-7 & Arguments for One-Dimensional Convolution and Correlation Routines \\
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR
\end{tabular}
\begin{tabular}{|c|c|}
\hline Argument & Definition \\
\hline CNVCOR & \begin{tabular}{l}
' V ' or ' V ' specifies that convolution is computed. \\
' \(R\) ' or ' \(r\) ' specifies that correlation is computed.
\end{tabular} \\
\hline FOUR & ' \(T\) ' or ' \(t\) ' specifies that the Fourier transform method is used. ' \(D\) ' or ' \(d\) ' specifies that the direct method is used, where the convolution or correlation is computed from the definition of convolution and correlation. \\
\hline NX & Length of filter vector, where \(N X \geq 0\). \\
\hline X & Filter vector \\
\hline IFX & Index of first element of X , where \(\mathrm{NX} \geq\) IFX \(\geq 1\) \\
\hline INCX & Stride between elements of the vector in X , where INCX \(>0\). \\
\hline NY & Length of input vectors, where \(N Y \geq 0\). \\
\hline NPRE & Number of implicit zeros prefixed to the Y vectors, where NPRE \(\geq 0\). \\
\hline M & Number of input vectors, where \(\mathrm{M} \geq 0\). \\
\hline Y & Input vectors. \\
\hline IFY & Index of the first element of \(Y\), where NY \(\geq\) IFY \(\geq 1\) \\
\hline INC1Y & Stride between elements of the input vectors in \(Y\), where INC1Y \(>0\). \\
\hline INC2Y & Stride between input vectors in Y , where INC2Y \(>0\). \\
\hline NZ & Length of the output vectors, where NZ \(\geq 0\). \\
\hline K & Number of \(Z\) vectors, where \(K \geq 0\). If \(K<M\), only the first \(K\) vectors will be processed. If \(K>M\), all input vectors will be processed and the last \(M-K\) output vectors will be set to zero on exit. \\
\hline Z & Result vectors \\
\hline IFZ & Index of the first element of \(Z\), where NZ \(\geq\) IFZ \(\geq 1\) \\
\hline INC1Z & Stride between elements of the output vectors in Z, where INCYZ > 0 . \\
\hline
\end{tabular}
table 6-7 Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR (Continued)
\begin{tabular}{ll}
\hline Argument & Definition \\
\hline INC2Z & Stride between output vectors in Z, where INC2Z \(>0\). \\
WORK & Work array \\
LWORK & Length of work array \\
\hline
\end{tabular}
* When the lengths of the two sequences to be convolved are similar, the FFT method is faster than the direct method. However, when one sequence is much larger than the other, such as when convolving a large timeseries signal with a small filter, the direct method performs faster than the FFT-based method.

The two-dimensional convolution and correlation routines use the arguments shown in TABLE 6-8.
table 6-8 Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2
\begin{tabular}{|c|c|}
\hline Argument & Definition \\
\hline CNVCOR & \begin{tabular}{l}
' \(V\) ' or ' V ' specifies that convolution is computed. \\
' \(R\) ' or ' \(r\) ' specifies that correlation is computed.
\end{tabular} \\
\hline METHOD & ' \(T\) ' or ' \(t\) ' specifies that the Fourier transform method is used. ' \(D\) ' or ' \(d\) ' specifies that the direct method is used, where the convolution or correlation is computed from the definition of convolution and correlation. * \\
\hline TRANSX & \begin{tabular}{l}
' \(N\) ' or ' \(n\) ' specifies that \(X\) is the filter matrix \\
' \(T\) ' or ' \(t\) ' specifies that the transpose of \(X\) is the filter matrix
\end{tabular} \\
\hline SCRATCHX & \begin{tabular}{l}
' \(N\) ' or ' \(n\) ' specifies that \(X\) must be preserved \\
' \(S\) ' or ' \(s\) ' specifies that \(X\) can be used for scratch space. The contents of X are undefined after returning from a call where X is used for scratch space.
\end{tabular} \\
\hline TRANSY & \begin{tabular}{l}
' \(N\) ' or ' \(n\) ' specifies that \(Y\) is the input matrix \\
' T ' or ' \(t\) ' specifies that the transpose of Y is the input matrix
\end{tabular} \\
\hline SCRATCHY & \begin{tabular}{l}
' \(N\) ' or ' \(n\) ' specifies that \(Y\) must be preserved \\
' \(S\) ' or ' \(s\) ' specifies that \(Y\) can be used for scratch space. The contents of \(X\) are undefined after returning from a call where \(Y\) is used for scratch space.
\end{tabular} \\
\hline MX & Number of rows in the filter matrix X , where MX \(\geq 0\) \\
\hline NX & Number of columns in the filter matrix X , where \(\mathrm{NX} \geq 0\) \\
\hline X & Filter matrix. \(X\) is unchanged on exit when SCRATCHX is ' \(N\) ' or ' \(n\) ' and undefined on exit when SCRATCHX is ' \(S\) ' or ' \(S\) '. \\
\hline LDX & Leading dimension of array containing the filter matrix X . \\
\hline MY & Number of rows in the input matrix Y, where MY \(\geq 0\). \\
\hline
\end{tabular}

TABLE 6-8 Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2 (Continued)
\begin{tabular}{|c|c|}
\hline Argument & Definition \\
\hline NY & Number of columns in the input matrix Y, where NY \(\geq 0\) \\
\hline MPRE & Number of implicit zeros prefixed to each row of the input matrix \(Y\) vectors, where MPRE \(\geq 0\). \\
\hline NPRE & Number of implicit zeros prefixed to each column of the input matrix \(Y\), where NPRE \(\geq 0\). \\
\hline Y & Input matrix. \(Y\) is unchanged on exit when SCRATCHY is ' \(N\) ' or ' \(n\) ' and undefined on exit when SCRATCHY is ' \(S\) ' or ' \(s\) '. \\
\hline LDY & Leading dimension of array containing the input matrix Y . \\
\hline MZ & Number of output vectors, where MZ \(\geq 0\). \\
\hline NZ & Length of output vectors, where \(\mathrm{NZ} \geq 0\). \\
\hline Z & Result vectors \\
\hline LDZ & Leading dimension of the array containing the result matrix Z , where LDZ \(\geq\) MAX ( \(1, \mathrm{MZ}\) ). \\
\hline WORKIN & Work array \\
\hline LWORK & Length of work array \\
\hline
\end{tabular}
* When the sizes of the two matrices to be convolved are similar, the FFT method is faster than the direct method. However, when one sequence is much larger than the other, such as when convolving a large data set with a small filter, the direct method performs faster than the FFT-based method.

\section*{Work Array WORK for Convolution and Correlation Routines}

The minimum dimensions for the WORK work arrays used with the one-dimensional and two-dimensional convolution and correlation routines are shown in TABLE 6-11. The minimum dimensions for one-dimensional convolution and correlation routines depend upon the values of the arguments NPRE, NX, NY, and NZ.

The minimum dimensions for two-dimensional convolution and correlation routines depend upon the values of the arguments shown TABLE 6-9.
table 6-9 Arguments Affecting Minimum Work Array Size for Two-Dimensional Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2
\begin{tabular}{ll}
\hline Argument & Definition \\
\hline MX & Number of rows in the filter matrix \\
MY & Number of rows in the input matrix \\
MZ & \begin{tabular}{l} 
Number of output vectors
\end{tabular} \\
NX & \begin{tabular}{l} 
Number of columns in the filter matrix
\end{tabular} \\
NY & \begin{tabular}{l} 
Number of columns in the input matrix
\end{tabular} \\
NZ & \begin{tabular}{l} 
Number of implicit zeros prefixed to each row of the input \\
matrix
\end{tabular} \\
MPRE & \begin{tabular}{l} 
Number of implicit zeros prefixed to each column of the input \\
matrix
\end{tabular} \\
NPRE & MAX (0, MZ-MYC) \\
MPOST & MAX (0, NZ-NYC) \\
NPOST & \begin{tabular}{l} 
MPRE + MPOST + MYC_INIT, where MYC_INIT depends upon \\
filter and input matrices, as shown in TABLE 6-10
\end{tabular} \\
MYC & \begin{tabular}{l} 
NPRE + NPOST + NYC_INIT, where NYC_INIT depends upon \\
filter and input matrices, as shown in TABLE 6-10
\end{tabular} \\
NYC &
\end{tabular}

MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix and \(Y\) is the input matrix.

TABLE 6-10 MYC_INIT and NYC_INIT Dependencies
\begin{tabular}{l|ll|ll}
\hline & \(\mathbf{Y}\) & & Transpose(Y) & \\
\hline & \(\mathbf{X}\) & Transpose(X) & \(\mathbf{X}\) & Transpose(X) \\
\hline MYC_INIT & MAX (MX, MY) & MAX (NX, MY) & MAX (MX,NY) & MAX (NX, NY) \\
NYC_INIT & MAX (NX, NY) & MAX (MX, NY) & MAX (NX, MY) & MAX (MX,MY) \\
\hline
\end{tabular}

The values assigned to the minimum work array size is shown in TABLE 6-11.
table 6-11 Minimum Dimensions and Data Types for work Work Array Used With Convolution and Correlation Routines
\begin{tabular}{|c|c|c|}
\hline Routine & Minimum Work Array Size (Work) & Type \\
\hline SCNVCOR, DCNVCOR & \[
\begin{aligned}
& 4^{*}(\text { MAX (NX,NPRE+NY) }+ \\
& \text { MAX }(0, N Z-N Y))
\end{aligned}
\] & REAL, REAL*8 \\
\hline CCNVCOR, ZCNVCOR & \[
\begin{aligned}
& 2 *(\text { MAX (NX,NPRE+NY) }+ \\
& \text { MAX }(0, N Z-N Y)))
\end{aligned}
\] & COMPLEX, COMPLEX*16 \\
\hline SCNVCOR2*, DCNVCOR2 \({ }^{1}\) & MY + NY + 30 & COMPLEX, COMPLEX*16 \\
\hline CCNVCOR2 \({ }^{1}\), ZCNVCOR2 \(^{1}\) & \begin{tabular}{l}
If MY = NY: MYC +8 \\
If MY \(\neq\) NY: \(\quad\) MYC \(+N Y C+16\)
\end{tabular} & COMPLEX, COMPLEX*16 \\
\hline
\end{tabular}
* Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

\section*{Sample Program: Convolution}

CODE EXAMPLE 6-10 uses CCNVCOR to perform FFT convolution of two complex vectors.

\section*{CODE EXAMPLE 6-10 One-Dimensional Convolution Using Fourier Transform Method and COMPLEX Data}
```

my_system% cat con_ex20.f
PROGRAM TEST
C
INTEGER LWORK
INTEGER N
PARAMETER (N = 3)
PARAMETER (LWORK = 4 * N + 15)
COMPLEX P1(N), P2(N), P3 (2*N-1), WORK(LWORK)
DATA P1 / 1, 2, 3 /, P2 / 4, 5, 6 /
C
EXTERNAL CCNVCOR
C
PRINT *, 'P1:'
PRINT 1000, P1
PRINT *, 'P2:'
PRINT 1000, P2

```

Code example 6-10 One-Dimensional Convolution Using Fourier Transform Method and COMPLEX Data (Continued)
```

 CALL CCNVCOR ('V', 'T', N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,
 $ 2 * N - 1, 1, P3, 1, 1, 1, WORK, LWORK)
 C
PRINT *, 'P3:'
PRINT 1000, P3
C
1000 FORMAT (1X, 100(F4.1,' +',F4.1,'i '))
C
END
my_system% f95 -dalign con_ex20.f -xlic_lib=sunperf
my_system% a.out
P1:
1.0 + 0.0i 2.0 + 0.0i 3.0 + 0.0i
P2:
4.0 + 0.0i 5.0 + 0.0i 6.0 + 0.0i
P3:
4.0 + 0.0i 13.0 + 0.0i 28.0 + 0.0i 27.0 + 0.0i 18.0 + 0.0i

```

If any vector overlaps a writable vector, either because of argument aliasing or illchosen values of the various INC arguments, the results are undefined and can vary from one run to the next.

The most common form of the computation, and the case that executes fastest, is applying a filter vector X to a series of vectors stored in the columns of Y with the result placed into the columns of Z . In that case, \(\operatorname{INCX}=1, \operatorname{INC} 1 \mathrm{Y}=1, \operatorname{INC} 2 \mathrm{Y} \geq\) NY, \(\operatorname{INC} 1 Z=1, \operatorname{INC} 2 \mathrm{Z} \geq \mathrm{NZ}\). Another common form is applying a filter vector X to a series of vectors stored in the rows of \(Y\) and store the result in the row of \(Z\), in which case \(\operatorname{INCX}=1\), INC1Y \(\geq\) NY, \(\operatorname{INC} 2 Y=1\), INC1Z \(\geq N Z\), and INC2Z \(=1\).

Convolution can be used to compute the products of polynomials.
CODE EXAMPLE 6-11 uses SCNVCOR to compute the product of \(1+2 x+3 x^{2}\) and \(4+5 x+6 x^{2}\).

\section*{code example 6-11 One-Dimensional Convolution Using Fourier Transform Method and REAL Data}
```

my_system% cat con_ex21.f
PROGRAM TEST
INTEGER LWORK, NX, NY, NZ
PARAMETER (NX = 3)
PARAMETER (NY = NX)
PARAMETER (NZ = 2*NY-1)
PARAMETER (LWORK = 4*NZ+32)
REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)
C
DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /
C
PRINT 1000, 'X'
PRINT 1010, X
PRINT 1000, 'Y'
PRINT 1010, Y
CALL SCNVCOR ('V', 'T', NX, X, 1, 1,
\$NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1, WORK, LWORK)
PRINT 1020, 'Z'
PRINT 1010, Z
1000 FORMAT (1X, 'Input vector ', A1)
1010 FORMAT (1X, 300F5.0)
1020 FORMAT (1X, 'Output vector ', A1)
END
my_system% f95 -dalign con_ex21.f -xlic_lib=sunperf
my_system% a.out
Input vector X
1. 2. 3.
Input vector Y
4. 5. 6.
Output vector Z
4. 13. 28. 27. 18.

```

Making the output vector longer than the input vectors, as in the example above, implicitly adds zeros to the end of the input. No zeros are actually required in any of the vectors, and none are used in the example, but the padding provided by the implied zeros has the effect of an end-off shift rather than an end-around shift of the input vectors.

CODE EXAMPLE \(6-12\) will compute the product between the vector [ \(1,2,3\) ] and the circulant matrix defined by the initial column vector [ 4, 5, 6 ].

Code example 6-12 Convolution Used to Compute the Product of a Vector and Circulant Matrix
```

my_system% cat con_ex22.f
PROGRAM TEST
C
INTEGER LWORK, NX, NY, NZ
PARAMETER (NX = 3)
PARAMETER (NY = NX)
PARAMETER (NZ = NY)
PARAMETER (LWORK = 4*NZ+32)
REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)
C
DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /
C
PRINT 1000, 'X'
PRINT 1010, X
PRINT 1000, 'Y'
PRINT 1010, Y
CALL SCNVCOR ('V', 'T', NX, X, 1, 1,
\$NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1,
\$WORK, LWORK)
PRINT 1020, 'Z'
PRINT 1010, Z
C
1000 FORMAT (1X, 'Input vector ', A1)
1010 FORMAT (1X, 300F5.0)
1020 FORMAT (1X, 'Output vector ', A1)
END
my_system% f95 -dalign con_ex22.f -xlic_lib=sunperf
my_system% a.out
Input vector X
1. 2. 3.
Input vector Y
4. 5. 6.
Output vector Z
31. 31. 28.

```

The difference between this example and the previous example is that the length of the output vector is the same as the length of the input vectors, so there are no implied zeros on the end of the input vectors. With no implied zeros to shift into, the effect of an end-off shift from the previous example does not occur and the endaround shift results in a circulant matrix product.
code example 6-13 Two-Dimensional Convolution Using Direct Method
```

my_system% cat con_ex23.f
PROGRAM TEST
C
INTEGER M, N
PARAMETER (M = 2)
PARAMETER (}\textrm{N}=3
C
INTEGER I, J
COMPLEX P1 (M,N), P2 (M,N), P3 (M,N)
DATA P1 / 1, -2, 3, -4, 5, -6 /, P2 / -1, 2, -3, 4, -5, 6 /
EXTERNAL CCNVCOR2
C
PRINT *, 'P1:'
PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)
PRINT *, 'P2:'
PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)
C
CALL CCNVCOR2 ('V', 'Direct', 'No Transpose X', 'No Overwrite X',
\$ 'No Transpose Y', 'No Overwrite Y', M, N, P1, M,
\$ M, N, O, O, P2, M, M, N, P3, M, 0, 0)
C
PRINT *, 'P3:'
PRINT 1000, ((P3 (I,J), J = 1, N), I = 1, M)
C
1000 FORMAT (3(F5.1,' +',F5.1,'i '))
C
END
my_system% f95 -dalign con_ex23.f -xlic_lib=sunperf
my_system% a.out
P1:
1.0 + 0.0i 3.0 + 0.0i 5.0 + 0.0i
-2.0 + 0.0i -4.0 + 0.0i -6.0 + 0.0i
P2:
-1.0 + 0.0i -3.0 + 0.0i -5.0 + 0.0i
2.0 + 0.0i 4.0 + 0.0i 6.0 + 0.0i
P3:
-83.0 + 0.0i -83.0 + 0.0i -59.0 + 0.0i
80.0 + 0.0i 80.0 + 0.0i 56.0 + 0.0i

```

\section*{References}

For additional information on the DFT or FFT, see the following sources.
Briggs, William L., and Henson, Van Emden. The DFT: An Owner's Manual for the Discrete Fourier Transform. Philadelphia, PA: SIAM, 1995.

Brigham, E. Oran. The Fast Fourier Transform and Its Applications. Upper Saddle River, NJ: Prentice Hall, 1988.

Chu, Eleanor, and George, Alan. Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. Boca Raton, FL: CRC Press, 2000.

Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P. Numerical Recipes in C: The Art of Scientific Computing. 2 ed. Cambridge, United Kingdom: Cambridge University Press, 1992.

Ramirez, Robert W. The FFT: Fundamentals and Concepts. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Swartzrauber, Paul N. Vectorizing the FFTs. In Rodrigue, Garry ed. Parallel Computations. New York: Academic Press, Inc., 1982.

Strang, Gilbert. Linear Algebra and Its Applications. 3 ed. Orlando, FL: Harcourt Brace \& Company, 1988.

Van Loan, Charles. Computational Frameworks for the Fast Fourier Transform. Philadelphia, PA: SIAM, 1992.

Walker, James S. Fast Fourier Transforms. Boca Raton, FL: CRC Press, 1991.

\section*{Interval BLAS Routines}

\section*{Introduction}

This chapter provides a brief overview of an interval Fortran 95 version of the basic linear algebra subroutine (BLAS) library. The interval BLAS version is referred to as the IBLAS library. For a more complete description of the IBLAS library routines, see the white paper Interval Version of the Basic Linear Algebra Subprograms (IBLAS).

For information on the Fortran 95 interfaces and types of arguments used in each IBLAS routine, see the section 3P man pages for the individual routines. For example, to display the man page for the SFFTC routine, type man -s 3 P sfftc. Routine names must be lowercase.

For more information on the non-interval version of the BLAS library, see the document Basic Linear Algebra Subprogram Technical (BLAST) Forum Standard, available at http://www.netlib.org/blas/blast-forum/.

Note - For the Sun Studio Fortran 95 IBLAS routines, information contained in the Interval Version of the Basic Linear Algebra Subprograms (IBLAS) white paper supersedes interval information contained in the Basic Linear Algebra Subprogram Technical (BLAST) Forum Standard document that is available from NetLib.

\section*{Intervals}

Intervals have a dual identity as intervals of numbers and as sets of numbers. The empty interval \(\varnothing\) contains no members and is the same as the empty set in the theory of sets. In computer input and output, the empty interval is denoted
[empty]. For more information on intrinsic Fortran 95 compiler support for interval data types, see the Fortran 95 Interval Arithmetic Programming Reference and the interval white papers referenced therein.

\section*{IBLAS Routine Names}

This section summarizes IBLAS naming conventions derived from the BLAS specification. "Language Bindings" on page 130 contains a list of IBLAS routine names organized into the following groups. For the corresponding detailed Fortran language bindings, see the IBLAS man pages or the IBLAS white paper.

As in the BLAS, mathematical operations and routines are grouped into:
- Vector Operations Tables, listed in TABLE 7-2 through TABLE 7-4.
- Matrix-Vector Operations Table, listed in TABLE 7-5.
- Matrix Operations Tables, listed in TABLE 7-6 through TABLE 7-8.

New interval-specific routines are grouped into:
- Set Operations on Vectors, listed in Table 7-9.
- Set Operations on Matrices, listed in TABLE 7-10.
- Utility Functions of Vectors, listed in TABLE 7-11.
- Utility Functions of Matrices, listed in Table 7-12.

\section*{Naming Conventions}

Except that the suffix _I or _i is added, IBLAS routines are named the same as the corresponding BLAS routines described in (ref BLAST Standard). IBLAS routine names have the same prefixes as the BLAS routines. Routines with prefixes identify the matrix type. TABLE 7-1 lists the IBLAS prefixes and matrix types.
table 7-1 IBLAS Prefixes and Matrix Types
\begin{tabular}{ll}
\hline Prefix & Matrix Type \\
GE & General \\
\hline GB & General Banded \\
SY & Symmetric \\
SB & Symmetric Banded \\
SP & Symmetric Packed \\
\hline
\end{tabular}
table 7-1 IBLAS Prefixes and Matrix Types (Continued)
\begin{tabular}{ll}
\hline Prefix & Matrix Type \\
GE & General \\
\hline TR & Triangular \\
TB & Triangular Banded \\
TP & Triangular Packed \\
\hline
\end{tabular}

As in the BLAS, sparse or complex interval matrices are not treated.
A number of interval-specific, set, and utility IBLAS routines are given new BLASstyle names. See TABLE 7-9 through TABLE 7-12.

\section*{Fortran Interface}

The IBLAS Fortran bindings are implemented in a module. Its interface block defines the default interval data type to be TYPE (INTERVAL).

Interval BLAS routines are consistent with regard to:
- Generic interfaces
- Precision
- Rank
- Assumed-shape arrays
- Derived types
- Operator arguments.

Error handling is described in the Basic Linear Algebra Subprogram Technical (BLAST) Forum Standard and in the IBLAS white paper.

Numeric error handling is not required because exceptions are not possible in the closed interval system implemented in the Sun Studio 995 compiler. Argument inconsistency errors are handled as described in IBLAS white paper, the IBLAS man pages, and the BLAST standard.

In general, actual argument shape inconsistencies cause IBLAS routines to return the largest impossible value of -1 for integer indices, a default NaN for REAL values, and the interval \(\mathfrak{R}^{*}=[-\infty,+\infty]\) for computed intervals. The normal BLAS error handling mechanism is also used to communicate actual-parameter errors.

\section*{Binding Format}

Each interface is summarized as a SUBROUTINE or FUNCTION statement, in which all the required and optional arguments appear. Optional arguments are grouped in square brackets after the required arguments. Binding format is illustrated with the Scaled Vector Sum Update (AXPBY_I) routine.
```

SUBROUTINE axpby_i(x, y [, alpha] [,beta])
TYPE(INTERVAL) (<wp>), INTENT (IN) :: x (:)
TYPE(INTERVAL) (<wp>), INTENT (INOUT) :: y (:)
TYPE(INTERVAL) (<wp>), INTENT (IN), OPTIONAL :: alpha, beta

```

Because generic interfaces are used, the working precision, denoted \(\langle w p\rangle\) is implicitly defined by the following actual arguments:
```

<wp> ::= KIND(4) | KIND(8) | KIND(16)

```

Variables in IBLAS routines are INTEGER, REAL, or TYPE (INTERVAL). See the IBLAS man pages or the IBLAS white pager for individual routine bindings.

\section*{Language Bindings}

This section is a brief overview of the IBLAS Fortran routine names and their function. With the one exception of the CANCEL routines, which perform the same operation as the .DSUB. operator in f95, vector and set reductions and operations are the same as in the BLAS. The CANCEL routines and all the vector and matrix set operations and utilities are interval-specific. For interval-specific routines, the \(£ 95\) equivalent scalar routines are also shown in TABLE 7-3 and TABLE 7-9 through TABLE 7-12. For clarity, lowercase and uppercase Fortran variable names are used to distinguish point from interval types. See TABLE A-11 for an alphabetical list of all the IBLAS routines.
table 7-2 Vector Reductions
\begin{tabular}{ll}
\hline Name & Function \\
\hline DOT_I & Dot Product \\
NORM_I & Vector Norms \\
SUM_I & Sum \\
AMIN_VAL_I & Minimum Absolute Value and Location \\
AMAX_VAL_I & Maximum Absolute Value and Location \\
SUMSQ_I & Scaled Sum of Squares and Update \\
\hline
\end{tabular}
table 7-3 Add or Cancel Vectors
\begin{tabular}{lll}
\hline Name & Operation & £95 Equivalent \\
\hline RSCALE_I & Reciprocally Scale Vector & \\
AXPBY_I & Add Scaled Vectors and Update & \\
WAXPBY_I & Add Scaled Vectors & \\
CANCEL_I & Cancel Scaled Vectors and Update & \(Y=a * X \quad . D S U B . \quad b * Y\) \\
WCANCEL_I & Cancel Scaled Vectors & \(W=a * X . D S U B . \quad b * Y\) \\
SUMSQ_I & Scaled Sum of Squares and Update & \\
\hline
\end{tabular}
table 7-4 Vector Movements
\begin{tabular}{ll}
\hline Name & Operation \\
\hline COPY_I & Vector Copy \\
SWAP_I & Vector Swap \\
PERMUTE_I & Permute Vector and Update \\
\hline
\end{tabular}
table 7-5 Matrix-Vector Operations
\begin{tabular}{ll}
\hline Name & Operation \\
\hline\(\{G E, G B\}\) MV_I & General Matrix-Vector Product and Update \\
\(\{S Y\), SB, SP \}MV_I & Symmetric Matrix-Vector Product and Update \\
\(\{T R, T B, T P\} M V \_I\) & Triangular Matrix-Vector Product and Update \\
\(\{T R, T B, T P\} S V \_I\) & Triangular Matrix Solve and Update \\
GER_I & General-Matrix Rank-One Update \\
\(\{S Y, S P\} R \_I\) & Symmetric-Matrix Rank-One Update \\
\hline
\end{tabular}
table 7-6 \(\mathrm{O}\left(n^{2}\right)\) Matrix Operations
\begin{tabular}{ll}
\hline Name & Operation \\
\hline\(\{G E, G B, S Y, S B, S P, T R, T B, T P\} \_N O R M \_I\) & Matrix Norms \\
\(\{G E, G B\} \_D I A G \_S C A L E \_I\) & \begin{tabular}{l} 
Scale General Matrix Rows or Columns \\
and Update
\end{tabular} \\
\(\{G E, G B\} \_L R S C A L E \_I\) & \begin{tabular}{l} 
Scale General Matrix Rows and Columns \\
and Update
\end{tabular} \\
\(\{S Y, S B, S P\} \_L R S C A L E \_I\) & \begin{tabular}{l} 
Scale Symmetric Matrix Rows and \\
Columns and Update
\end{tabular} \\
\(\{G E, G B, S Y, S B, S P, T R, T B, T P\} \_A C C \_I\) & Add Scaled Matrices and Update \\
\(\{G E, G B, S Y, S B, S P, T R, T B, T P\} \_A D D \_I\) & Add Scaled Matrices
\end{tabular}
table 7-7 \(\mathrm{O}\left(n^{3}\right)\) Matrix Operations
\begin{tabular}{ll}
\hline Name & Operation \\
\hline GEMM_I & General Matrix-Matrix Product and Update \\
SYMM_I & Symmetric-General Matrix-Matrix Product and Update \\
TRMM_I & Triangular-General Matrix-Matrix Product and Update \\
TRSM_I & Triangular Matrix Solve \\
\hline
\end{tabular}
table 7-8 Matrix Movements
\begin{tabular}{ll}
\hline Name & Operation \\
\hline\(\{\mathrm{GE}, \mathrm{GB}, \mathrm{SY}, \mathrm{SB}, \mathrm{SP}, \mathrm{TR}, \mathrm{TB}, \mathrm{TP}\} \_\mathrm{COPY} \_\mathrm{I}\) & Copy Matrix \\
GE_TRANS_I & Transpose Matrix \\
GE_PERMUTE_I & Permute Matrix \\
\hline
\end{tabular}
table 7-9 Vector Set Operations
\begin{tabular}{lll}
\hline Name & Operation & £95 Equivalent \\
\hline ENCLOSEV_I & Enclose Vector Test & X.SB.Y \\
INTERIORV_I & Vector Interior Test & X.INT.Y \\
DISJOINTV_I & Disjoint Vector Test & X.DJ.Y \\
\hline
\end{tabular}
table 7-9 Vector Set Operations (Continued)
\begin{tabular}{llc}
\hline Name & Operation & f95 Equivalent \\
\hline INTERSECTV_I & Intersect Vectors and Update & \(\mathrm{Y}=\mathrm{X}\). IX.Y \\
WINTERSECTV_I & Intersect Vectors & \(\mathrm{W}=\mathrm{X}\). IX.Y \\
HULLV_I & Hull of Vectors and Update & \(\mathrm{Y}=\mathrm{X}\). IH.Y \\
WHULLV_I & Hull of Vectors & \(\mathrm{W}=\mathrm{X}\). IH.Y \\
\hline
\end{tabular}
table 7-10 Matrix Set Operations
\begin{tabular}{llll}
\hline Prefix & Name & Operation & f95 Equivalent \\
\hline & ENCLOSEM_I & Enclose Matrix Test & A.SB.B \\
& INTERIORM_I & Matrix Interior Test & A.INT.B \\
\{GE, GB, SY, SB, SP, TR, TB, TP \(\}_{-}\) & INTERSECTM_I & Intersect Matrices and Update & B \(=\)X.IX.B \\
& DISJOINTM_I & Disjoint Matrix Test & A.DJ.B \\
& WULLM_I & Hull of Matrices and Update & B \(=\)X.IH.B \\
& WHULLM_I & Hull of Matrices & W \(=\)X.IH.B \\
\hline
\end{tabular}

Note: Prefix depends upon matrix type and applies to all routine names in this table.

TABLE 7-11 Vector Utilities
\begin{tabular}{lll}
\hline Name & Operation & f95 Equivalent \\
\hline EMPTYV_I & Empty Vector Element Test and Location & ISEMPTY (X) \\
INFV_I & Vector Infimum & \(\mathrm{V}=\mathrm{INF}(\mathrm{X})\) \\
SUPV_I & Vector Supremum & \(\mathrm{V}=\mathrm{SUP}(\mathrm{X})\) \\
MIDV_I & Vector Midpoint & \(\mathrm{V}=\mathrm{MID}(\mathrm{X})\) \\
WIDTHV_I & Vector Width & \(\mathrm{V}=\mathrm{WID}(\mathrm{X})\) \\
INTERVALV_I & Vector Type Conversion to Interval & \(\mathrm{X}=\operatorname{INTERVAL}(\mathrm{u}, \mathrm{v})\) \\
\hline
\end{tabular}
table 7-12 Matrix Utilities
\begin{tabular}{llll}
\hline Prefix & Name & Operation & f95 Equivalent \\
\hline & EMPTYM_I & \begin{tabular}{l} 
Empty Matrix Element Test \\
and Location
\end{tabular} & ISEMPTY(A) \\
\{GE, GB, SY, SB, SP, TR, TB, TP\}_ & SUPM_I & Matrix Infimum & Matrix Supremum \\
& INFM_I & MIDM_I & Matrix Midpoint \(=\) SUP (A) \\
& WIDTHM_I & Matrix Width & \(C=\) MID (A) \\
& INTERVALM_I & \begin{tabular}{l} 
Matrix Type Conversion to \\
Interval
\end{tabular} & A \(=\) INTERVAL (b, C)
\end{tabular}

Note: Prefix depends upon matrix type and applies to all routine names in this table.

\section*{References}

The following white paper is available online. See the Interval Arithmetic readme for the location of this file.
"Interval Version of the Basic Linear Algebra Subprograms Standard (IBLAS)," derived by G.W. Walster from the draft INTERVAL BLAS Chapter 5 prepared by Chenyi Hu, et. al., to be included in the Basic Linear Algebra Subprogram Technical (BLAST) Forum Standard.

\section*{Sun Performance Library Routines}

This appendix lists the Sun Performance Library routines by library, routine name, and function.

For a description of the function and a listing of the Fortran and \(C\) interfaces, refer to the section 3P man pages for the individual routines. For example, to display the man page for the \(S B D S Q R\) routine, type man -s \(3 P\) sbdsqr. The man page routine names use lowercase letters.

For many routines, separate routines exist that operate on different data types. Rather than list each routine separately, a lowercase \(x\) is used in a routine name to denote single, double, complex, and double complex data types. For example, the routine \(x B D S Q R\) is available as four routines that operate with the following data types:
- SBDSQR - Single data type
- BBDSQR - Double data type
- CBDSQR - Complex data type
- ZBDSQR - Double complex data type

If a routine name is not available for \(\mathrm{S}, \mathrm{B}, \mathrm{C}\), and Z , the \(x\) prefix will not be used and each routine name will be listed.

\section*{LAPACK Routines}

TABLE A-1 lists the Sun Performance Library LAPACK routines. (P) denotes routines that are parallelized..
table A-1 LAPACK (Linear Algebra Package) Routines
\begin{tabular}{ll}
\hline Routine & Function \\
\hline Bidiagonal Matrix & \\
\hline \begin{tabular}{ll} 
SBDSDC or & \begin{tabular}{l} 
Computes the singular value decomposition (SVD) of a bidirectional \\
matrix, using a divide and conquer method.
\end{tabular} \\
\(x\) BDSQR & \begin{tabular}{l} 
Computes SVD of real upper or lower bidiagonal matrix, using the \\
bidirectional QR algorithm.
\end{tabular} \\
\hline Diagonal Matrix & \begin{tabular}{l} 
Computes the reciprocal condition numbers for eigenvectors of real \\
symmetric or complex Hermitian matrix.
\end{tabular} \\
\hline SDISNA or &
\end{tabular}.
\end{tabular}

General Band Matrix
\(x\) GBBRD \(\quad\) Reduces real or complex general band matrix to upper bidiagonal form.
\(x G B C O N \quad\) Estimates the reciprocal of the condition number of general band matrix using LU factorization.
\(x\) GBEQU \(\quad\) Computes row and column scalings to equilibrate a general band matrix and reduce its condition number.
\(x\) GBRFS \(\quad\) Refines solution to general banded system of linear equations.
\(x\) GBSV Solves a general banded system of linear equations (simple driver).
\(x\) GBSVX \(\quad\) Solves a general banded system of linear equations (expert driver).
\(x\) GBTRF \(\quad\) LU factorization of a general band matrix using partial pivoting with row interchanges.
\(x\) GBTRS (P) Solves a general banded system of linear equations, using the factorization computed by \(x\) GBTRF.

\section*{General Matrix (Unsymmetric or Rectangular)}
\(x\) GEBAK \(\quad\) Forms the right or left eigenvectors of a general matrix by backward transformation on the computed eigenvectors of the balanced matrix output by \(x\) GEBAL .
\(x\) GEBAL \(\quad\) Balances a general matrix.
\(x\) GEBRD \(\quad\) Reduces a general matrix to upper or lower bidiagonal form by an orthogonal transformation.
\(x\) GECON Estimates the reciprocal of the condition number of a general matrix, using the factorization computed by \(x\) GETRF.
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline \(x\) GEEQU & Computes row and column scalings intended to equilibrate a general rectangular matrix and reduce its condition number. \\
\hline \(x\) GEES & Computes the eigenvalues and Schur factorization of a general matrix (simple driver). \\
\hline \(x\) GEESX & Computes the eigenvalues and Schur factorization of a general matrix (expert driver). \\
\hline \(x\) GEEV & Computes the eigenvalues and left and right eigenvectors of a general matrix (simple driver). \\
\hline \(x\) GEEVX & Computes the eigenvalues and left and right eigenvectors of a general matrix (expert driver). \\
\hline \(x\) GEGS & Depreciated routine replaced by \(x\) GGES. \\
\hline \(x\) GEGV & Depreciated routine replaced by \(x\) GGEV. \\
\hline \(x\) GEHRD & Reduces a general matrix to upper Hessenberg form by an orthogonal similarity transformation. \\
\hline \(x\) GELQF (P) & Computes LQ factorization of a general rectangular matrix. \\
\hline \(x\) GELS & Computes the least squares solution to an over-determined system of linear equations using a QR or LQ factorization of \(A\). \\
\hline \(x\) GELSD & Computes the least squares solution to an over-determined system of linear equations using a divide and conquer method using a QR or LQ factorization of A . \\
\hline \(x\) GELSS & Computes the minimum-norm solution to a linear least squares problem by using the SVD of a general rectangular matrix (simple driver). \\
\hline \(x\) GELSX & Depreciated routine replaced by \(x\) SELSY. \\
\hline \(x\) GELSY & Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization. \\
\hline \(x\) GEQLF (P) & Computes QL factorization of a general rectangular matrix. \\
\hline \(x\) GEQP3 & Computes QR factorization of general rectangular matrix using Level 3 BLAS. \\
\hline \(x\) GEQPF & Depreciated routine replaced by \(x \mathrm{GEQP} 3\). \\
\hline \(x \mathrm{GEQRF}\) (P) & Computes QR factorization of a general rectangular matrix. \\
\hline \(x\) GERFS & Refines solution to a system of linear equations. \\
\hline \(x\) GERQF (P) & Computes RQ factorization of a general rectangular matrix. \\
\hline \(x\) GESDD & Computes SVD of general rectangular matrix using a divide and conquer method. \\
\hline \(x \mathrm{GESV}\) & Solves a general system of linear equations (simple driver). \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline \(x\) GESVX & Solves a general system of linear equations (expert driver). \\
\hline \(x\) GESVD & Computes SVD of general rectangular matrix. \\
\hline \(x\) GETRF (P) & Computes an LU factorization of a general rectangular matrix using partial pivoting with row interchanges. \\
\hline \(x\) GETRI & Computes inverse of a general matrix using the factorization computed by \(x\) GETRF. \\
\hline \(x\) GETRS (P) & Solves a general system of linear equations using the factorization computed by \(x\) GETRF . \\
\hline \multicolumn{2}{|l|}{General Matrix-Generalized Problem (Pair of General Matrices)} \\
\hline \(x\) GGBAK & Forms the right or left eigenvectors of a generalized eigenvalue problem based on the output by \(x\) GGBAL . \\
\hline \(x\) GGBAL & Balances a pair of general matrices for the generalized eigenvalue problem. \\
\hline \(x\) GGES & Computes the generalized eigenvalues, Schur form, and left and/or right Schur vectors for two nonsymmetric matrices. \\
\hline \(x\) GGESX & Computes the generalized eigenvalues, Schur form, and left and/or right Schur vectors. \\
\hline \(x\) GGEV & Computes the generalized eigenvalues and the left and/or right generalized eigenvalues for two nonsymmetric matrices. \\
\hline \(x\) GGEVX & Computes the generalized eigenvalues and the left and/or right generalized eigenvectors. \\
\hline \(x\) GGGLM & Solves the GLM (Generalized Linear Regression Model) using the GQR (Generalized QR) factorization. \\
\hline \(x\) GGHRD & Reduces two matrices to generalized upper Hessenberg form using orthogonal transformations. \\
\hline \(x\) GGLSE & Solves the LSE (Constrained Linear Least Squares Problem) using the GRQ (Generalized RQ) factorization. \\
\hline \(x\) GGQRF & Computes generalized QR factorization of two matrices. \\
\hline \(x\) GGRQF & Computes generalized RQ factorization of two matrices. \\
\hline \(x\) GGSVD & Computes the generalized singular value decomposition. \\
\hline \(x\) GGSVP & Computes an orthogonal or unitary matrix as a preprocessing step for calculating the generalized singular value decomposition. \\
\hline \multicolumn{2}{|l|}{General Tridiagonal Matrix} \\
\hline \(x\) GTCON & Estimates the reciprocal of the condition number of a tridiagonal matrix, using the LU factorization as computed by \(x\) GTTRF. \\
\hline \(x\) GTRFS & Refines solution to a general tridiagonal system of linear equations. \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline\(x\) GTSV & Solves a general tridiagonal system of linear equations (simple driver). \\
\(x\) GTSVX & Solves a general tridiagonal system of linear equations (expert driver). \\
\(x\) GTTRF & \begin{tabular}{l} 
Computes an LU factorization of a general tridiagonal matrix using \\
partial pivoting and row exchanges.
\end{tabular} \\
\(x\) GTTRS (P) & \begin{tabular}{l} 
Solves general tridiagonal system of linear equations using the \\
factorization computed by \(x\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Hermitian Band Matrix}
\(\left.\begin{array}{ll}\hline \text { CHBEV or } & \begin{array}{l}\text { (Replacement with newer version CHBEVD or ZHBEVD suggested) } \\
\text { ZHBEV }\end{array} \\
\text { Computes all eigenvalues and eigenvectors of a Hermitian band matrix. }\end{array}\right]\)\begin{tabular}{ll} 
CHBEVD or & \begin{tabular}{l} 
Computes all eigenvalues and eigenvectors of a Hermitian band matrix \\
and uses a divide and conquer method to calculate eigenvectors.
\end{tabular} \\
CHBEVX or & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a Hermitian band \\
matrix.
\end{tabular} \\
CHBEVX & \begin{tabular}{l} 
Reduces Hermitian-definite banded generalized eigenproblem to \\
standard form.
\end{tabular} \\
ZHBGST or & \begin{tabular}{l} 
(Replacement with newer version CHBGVD or zHBGVD suggested) \\
Computes all eigenvalues and eigenvectors of a generalized Hermitian- \\
definite banded eigenproblem.
\end{tabular} \\
ZHBGV or & \begin{tabular}{l} 
Computes all eigenvalues and eigenvectors of generalized Hermitian- \\
definite banded eigenproblem and uses a divide and conquer method to \\
calculate eigenvectors.
\end{tabular} \\
ZHBGVD or & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a generalized
\end{tabular} \\
CHBGVX or & \begin{tabular}{l} 
Hermitian-definite banded eigenproblem.
\end{tabular} \\
ZHBGVX & \begin{tabular}{l} 
Reduces Hermitian band matrix to real symmetric tridiagonal form by \\
using a unitary similarity transform.
\end{tabular} \\
CHBTRD or &
\end{tabular}

Hermitian Matrix
\begin{tabular}{ll}
\hline CHECON or & \begin{tabular}{l} 
Estimates the reciprocal of the condition number of a Hermitian matrix \\
using the factorization computed by CHETRF or ZHETRF.
\end{tabular} \\
ZHECON & \begin{tabular}{l} 
(Replacement with newer version CHEEVR or ZHEEVR suggested) \\
CHEEV or \\
ZHEEV
\end{tabular} \\
\begin{tabular}{l} 
Computes all eigenvalues and eigenvectors of a Hermitian matrix (simple \\
driver).
\end{tabular} \\
CHEEVD or & \begin{tabular}{l} 
(Replacement with newer version CHEEVR or ZHEEVR suggested) \\
ZHEEVD
\end{tabular} \\
\begin{tabular}{l} 
Computes all eigenvalues and eigenvectors of a Hermitian matrix and \\
uses a divide and conquer method to calculate eigenvectors.
\end{tabular} \\
CHEEVR or & \begin{tabular}{l} 
Computes selected eigenvalues and the eigenvectors of a complex \\
ZHEEVR
\end{tabular} \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline CHEEVX or & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a Hermitian matrix \\
(expert driver).
\end{tabular} \\
ZHEEVX & Reduces a Hermitian-definite generalized eigenproblem to standard form \\
CHEGST or & \begin{tabular}{l} 
using the factorization computed by CPOTRF or zPOTRF.
\end{tabular} \\
ZHEGST & (Replacement with newer version CHEGVD or ZHEGVD suggested) \\
CHEGV or & \begin{tabular}{l} 
Computes all the eigenvalues and eigenvectors of a complex generalized \\
ZHEGV
\end{tabular} \\
Hermitian-definite eigenproblem.
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline CHPGST or ZHPGST & Reduces a Hermitian-definite generalized eigenproblem to standard form where the coefficient matrices are in packed storage and uses the factorization computed by CPPTRF or ZPPTRF. \\
\hline CHPGV or ZHPGV & (Replacement with newer version CHPGVD or ZHPGVD suggested) Computes all the eigenvalues and eigenvectors of a generalized Hermitian-definite eigenproblem where the coefficient matrices are in packed storage (simple driver). \\
\hline CHPGVX or ZHPGVX & Computes selected eigenvalues and eigenvectors of a generalized Hermitian-definite eigenproblem where the coefficient matrices are in packed storage (expert driver). \\
\hline CHPGVD or ZHPGVD & Computes all the eigenvalues and eigenvectors of a generalized Hermitian-definite eigenproblem where the coefficient matrices are in packed storage, and uses a divide and conquer method to calculate eigenvectors. \\
\hline CHPRFS or ZHPRFS & Improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite in packed storage. \\
\hline CHPSV or ZHPSV & Computes the solution to a complex system of linear equations where the coefficient matrix is Hermitian in packed storage (simple driver). \\
\hline CHPSVX or ZHPSVX & Uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations where the coefficient matrix is Hermitian in packed storage (expert driver). \\
\hline CHPTRD or ZHPTRD & Reduces a complex Hermitian matrix stored in packed form to real symmetric tridiagonal form. \\
\hline CHPTRF or ZHPTRF & Computes the factorization of a complex Hermitian indefinite matrix in packed storage, using the diagonal pivoting method. \\
\hline CHPTRI or ZHPTRI & Computes the inverse of a complex Hermitian indefinite matrix in packed storage using the factorization computed by CHPTRF or ZHPTRF. \\
\hline CHPTRS (P) or ZHPTRS (P) & Solves a complex Hermitian indefinite matrix in packed storage, using the factorization computed by CHPTRF or ZHPTRF. \\
\hline \multicolumn{2}{|l|}{Upper Hessenberg Matrix} \\
\hline \(x\) HSEIN & Computes right and/or left eigenvectors of upper Hessenberg matrix using inverse iteration. \\
\hline \(x \mathrm{HSEQR}\) & Computes eigenvectors and Shur factorization of upper Hessenberg matrix using multishift QR algorithm. \\
\hline \multicolumn{2}{|l|}{Upper Hessenberg Matrix-Generalized Problem (Hessenberg and Triangular Matrix)} \\
\hline \(x\) HGEQZ & Implements single-/double-shift version of QZ method for finding the generalized eigenvalues of the equation \(\operatorname{det}(A-w(i) * B)=0\). \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline Real Orthogonal Matrix in Packed Storage \\
\hline \begin{tabular}{ll} 
SOPGTR or & \begin{tabular}{l} 
Generates an orthogonal transformation matrix from a tridiagonal matrix \\
dOPGTR
\end{tabular} \\
\begin{tabular}{ll} 
determined by SSPTRD or DSPTRD.
\end{tabular} \\
\begin{tabular}{ll} 
SOPMTR or & \begin{tabular}{l} 
Multiplies a general matrix by the orthogonal transformation matrix \\
reduced to tridiagonal form by SSPTRD or DSPTRD.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
redin
\end{tabular} \\
\hline
\end{tabular}

\section*{Real Orthogonal Matrix}
\begin{tabular}{|c|c|}
\hline SORGBR or DORGBR & Generates the orthogonal transformation matrices from reduction to bidiagonal form, as determined by SGEBRD or DGEBRD. \\
\hline SORGHR or DORGHR & Generates the orthogonal transformation matrix reduced to Hessenberg form, as determined by SGEHRD or DGEHRD. \\
\hline SORGLQ or DORGLQ & Generates an orthogonal matrix \(Q\) from an \(L Q\) factorization, as returned by SGELQF or DGELQF. \\
\hline SORGQL or DORGQL & Generates an orthogonal matrix Q from a QL factorization, as returned by SGEQLF or DGEQLF. \\
\hline SORGQR or DORGQR & Generates an orthogonal matrix \(Q\) from a \(Q R\) factorization, as returned by SGEQRF or DGEQRF. \\
\hline SORGRQ or DORGRQ & Generates orthogonal matrix \(Q\) from an \(R Q\) factorization, as returned by SGERQF or DGERQF. \\
\hline SORGTR or DORGTR & Generates an orthogonal matrix reduced to tridiagonal form by SSYTRD or DSYTRD. \\
\hline SORMBR or DORMBR & Multiplies a general matrix with the orthogonal matrix reduced to bidiagonal form, as determined by SGEBRD or DGEBRD. \\
\hline SORMHR or DORMHR & Multiplies a general matrix by the orthogonal matrix reduced to Hessenberg form by SGEHRD or DGEHRD. \\
\hline SORMLQ (P) or DORMLQ (P) & Multiplies a general matrix by the orthogonal matrix from an LQ factorization, as returned by SGELQF or DGELQF. \\
\hline SORMQL (P) or DORMQL (P) & Multiplies a general matrix by the orthogonal matrix from a QL factorization, as returned by SGEQLF or DGEQLF. \\
\hline SORMQR (P) or DORMQR (P) & Multiplies a general matrix by the orthogonal matrix from a QR factorization, as returned by SGEQRF or DGEQRF. \\
\hline SORMR3 or DORMR3 & Multiplies a general matrix by the orthogonal matrix returned by STZRZF or DTZRZF. \\
\hline SORMRQ (P) or DORMRQ (P) & Multiplies a general matrix by the orthogonal matrix from an RQ factorization returned by SGERQF or DGERQF. \\
\hline SORMRZ or DORMRZ & Multiplies a general matrix by the orthogonal matrix from an RZ factorization, as returned by STZRZF or DTZRZF. \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline SORMTR or & \begin{tabular}{l} 
Multiplies a general matrix by the orthogonal transformation matrix \\
reduced to tridiagonal form by SSYTRD or DSYTRD.
\end{tabular} \\
\hline SORMTR & \begin{tabular}{l} 
Estimates the reciprocal of the condition number of a symmetric or \\
Hermitian positive definite band matrix, using the Cholesky factorization \\
returned by \(x\) PBTRF.
\end{tabular} \\
\hline\(x\) PBCON & \begin{tabular}{l} 
Computes equilibration scale factors for a symmetric or Hermitian \\
positive definite band matrix.
\end{tabular} \\
\(x\) Refines solution to a symmetric or Hermitian positive definite banded
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\(\left.\left.\begin{array}{ll}\hline \text { Routine } & \text { Function } \\
\hline x \text { POTRS (P) } & \begin{array}{l}\text { Solves a symmetric or Hermitian positive definite system of linear } \\
\text { equations, using the Cholesky factorization returned by } x \text { POTRF. }\end{array} \\
\hline \text { Symmetric or Hermitian Positive Definite Matrix in Packed Storage }\end{array}\right] \begin{array}{ll}\text { Reciprocal condition number of a Cholesky-factored symmetric positive } \\
\text { definite matrix in packed storage. }\end{array}\right]\)\begin{tabular}{l} 
Computes equilibration scale factors for a symmetric or Hermitian \\
positive definite matrix in packed storage. \\
\(x\) RPEQU \\
\(x\) Refines solution to a linear system in a Cholesky-factored symmetric or \\
\(x\) Hermitian positive definite matrix in packed storage.
\end{tabular}
\begin{tabular}{ll} 
Symmetric or Hermitian Positive Definite Tridiagonal Matrix \\
\hline\(x\) PTCON & \begin{tabular}{l} 
Estimates the reciprocal of the condition number of a symmetric or \\
Hermitian positive definite tridiagonal matrix using the Cholesky \\
factorization returned by \(x\) PTTRF.
\end{tabular} \\
\(x\) PTEQR & \begin{tabular}{l} 
Computes all eigenvectors and eigenvalues of a real symmetric or \\
Hermitian positive definite system of linear equations.
\end{tabular} \\
\(x\) PTRFS & \begin{tabular}{l} 
Refines solution to a symmetric or Hermitian positive definite tridiagonal \\
system of linear equations.
\end{tabular} \\
\(x\) STSV & \begin{tabular}{l} 
Solves a symmetric or Hermitian positive definite tridiagonal system of \\
linear equations (simple driver).
\end{tabular} \\
\(x\) PTSVX & \begin{tabular}{l} 
Solves a symmetric or Hermitian positive definite tridiagonal system of \\
linear equations (expert driver).
\end{tabular} \\
\(x\) CTTRF & \begin{tabular}{l} 
Computes the LDL \\
definite tridiagonal matrix.
\end{tabular} \\
\(x\) fTTRS (P) & \begin{tabular}{l} 
Solves a symmetric or Hermitian positive definite tridiagonal system of a symmetric or Hermitian positive \\
linear equations using the LDL
\end{tabular} \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline Real Symmetric Band Matrix
\end{tabular} \begin{tabular}{ll} 
SSBEV or & \begin{tabular}{l} 
(Replacement with newer version SSBEVD or DSBEVD suggested) \\
Computes all eigenvalues and eigenvectors of a symmetric band matrix.
\end{tabular} \\
DSBEV & \begin{tabular}{l} 
Computes all eigenvalues and eigenvectors of a symmetric band matrix \\
and uses a divide and conquer method to calculate eigenvectors.
\end{tabular} \\
DSBEVD or & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a symmetric band \\
matrix.
\end{tabular} \\
SSBEVX or & \begin{tabular}{l} 
Reduces symmetric-definite banded generalized eigenproblem to
\end{tabular} \\
DSBEVX & \begin{tabular}{l} 
standard form.
\end{tabular} \\
SSBGST or \\
DSBGST
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline SSPGV or & (Replacement with newer version SSPGVD or DSPGVD suggested) \\
\hline DSPGV & Computes all the eigenvalues and eigenvectors of a real generalized symmetric-definite eigenproblem where the coefficient matrices are in packed storage (simple driver). \\
\hline SSPGVX or DSPGVX & Computes selected eigenvalues and eigenvectors of a real generalized symmetric-definite eigenproblem where the coefficient matrices are in packed storage (expert driver). \\
\hline \(x\) SPRFS & Improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite in packed storage. \\
\hline \(x\) SPSV & Computes the solution to a system of linear equations where the coefficient matrix is a symmetric matrix in packed storage (simple driver). \\
\hline \(x\) SPSVX & Uses the diagonal pivoting factorization to compute the solution to a system of linear equations where the coefficient matrix is a symmetric matrix in packed storage (expert driver). \\
\hline SSPTRD or DSPTRD & Reduces a real symmetric matrix stored in packed form to real symmetric tridiagonal form using an orthogonal similarity transform. \\
\hline \(x\) SPTRF & Computes the factorization of a symmetric packed matrix using the Bunch-Kaufman diagonal pivoting method. \\
\hline \(x\) SPTRI & Computes the inverse of a symmetric indefinite matrix in packed storage using the factorization computed by xSPTRF. \\
\hline \(x\) SPTRS (P) & Solves a system of linear equations by the symmetric matrix stored in packed format using the factorization computed by xSPTRF. \\
\hline
\end{tabular}

\section*{Real Symmetric Tridiagonal Matrix}
\begin{tabular}{ll}
\begin{tabular}{l} 
SSTEBZ or \\
DSTEBZ
\end{tabular} & \begin{tabular}{l} 
Computes the eigenvalues of a real symmetric tridiagonal matrix.
\end{tabular} \\
\(x\) STEDC & \begin{tabular}{l} 
Computes all the eigenvalues and eigenvectors of a symmetric \\
tridiagonal matrix using a divide and conquer method.
\end{tabular} \\
\(x\) STEGR & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a real symmetric \\
tridiagonal matrix using Relatively Robust Representations.
\end{tabular} \\
\(x\) CTEIN & \begin{tabular}{l} 
Computes selected eigenvectors of a real symmetric tridiagonal matrix \\
using inverse iteration.
\end{tabular} \\
\(x\) CTEQR & \begin{tabular}{l} 
Computes all the eigenvalues and eigenvectors of a real symmetric \\
tridiagonal matrix using the implicit QL or QR algorithm.
\end{tabular} \\
SSTERF or & \begin{tabular}{l} 
Computes all the eigenvalues and eigenvectors of a real symmetric \\
tridiagonal matrix using a root-free QL or QR algorithm variant.
\end{tabular} \\
DSTERF & \begin{tabular}{l} 
(Replacement with newer version SSTEVR or DSTEVR suggested)
\end{tabular} \\
SSTEV or & \begin{tabular}{l} 
Computes all eigenvalues and eigenvectors of a real symmetric \\
tridiagonal matrix (simple driver).
\end{tabular} \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline SSTEVX or & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a real symmetric \\
tridiagonal matrix (expert driver).
\end{tabular} \\
DSTEVX & \begin{tabular}{l} 
(Replacement with newer version SSTEVR or DSTEVR suggested) \\
SSTEVD or \\
DSTEVD \\
tridiagonal matrix using a divide and conquer method.
\end{tabular} \\
SSTEVR or & \begin{tabular}{l} 
Computes selected eigenvalues and eigenvectors of a real symmetric \\
tridiagonal matrix using Relatively Robust Representations.
\end{tabular} \\
DSTEVR & \begin{tabular}{l} 
Computes the solution to a system of linear equations where the
\end{tabular} \\
\(x\) coefficient matrix is a symmetric tridiagonal matrix.
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline\(x\) SYSVX & \begin{tabular}{l} 
Solves a real symmetric indefinite system of linear equations (expert \\
driver).
\end{tabular} \\
\begin{tabular}{ll} 
SSYTRD or \\
DSYTRD & \begin{tabular}{l} 
Reduces a symmetric matrix to real symmetric tridiagonal form by using \\
a orthogonal similarity transformation.
\end{tabular} \\
\(x\) SYTRF & \begin{tabular}{l} 
Computes the factorization of a real symmetric indefinite matrix using \\
the diagonal pivoting method.
\end{tabular} \\
\(x\) SYTRI & \begin{tabular}{l} 
Computes the inverse of a symmetric indefinite matrix using the \\
factorization computed by \(x\) SYTRF.
\end{tabular} \\
\(x\) SYTRS (P) & \begin{tabular}{l} 
Solves a system of linear equations by the symmetric matrix using the \\
factorization computed by \(x\) SYTRF.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}

\section*{Triangular Band Matrix}
\(x \mathrm{TBCON} \quad\) Estimates the reciprocal condition number of a triangular band matrix.
\(x\) TBRFS \(\quad\) Determines error bounds and estimates for solving a triangular banded system of linear equations.
\(x\) TBTRS (P) Solves a triangular banded system of linear equations.
Triangular Matrix-Generalized Problem (Pair of Triangular Matrices)
\(x\) TGEVC Computes right and/or left generalized eigenvectors of two upper triangular matrices.
\(x\) TGEXC Reorders the generalized Schur decomposition of a real or complex matrix pair using an orthogonal or unitary equivalence transformation.
\(x\) TGSEN Reorders the generalized real-Schur or Schur decomposition of two matrixes and computes the generalized eigenvalues.
\(x\) TGSJA Computes the generalized SVD from two upper triangular matrices obtained from \(x\) GGSVP.
\(x\) TGSNA Estimates reciprocal condition numbers for specified eigenvalues and eigenvectors of two matrices in real-Schur or Schur canonical form.
\(x\) TGSYL Solves the generalized Sylvester equation.
\begin{tabular}{ll} 
Triangular Matrix in Packed Storage \\
\(x\) TPCON & \begin{tabular}{l} 
Estimates the reciprocal or the condition number of a triangular matrix in \\
packed storage.
\end{tabular} \\
\(x\) TPRFS & \begin{tabular}{l} 
Determines error bounds and estimates for solving a triangular system of \\
linear equations where the coefficient matrix is in packed storage.
\end{tabular} \\
\(x\) TPTRI & \begin{tabular}{l} 
Computes the inverse of a triangular matrix in packed storage.
\end{tabular} \\
\(x\) TPTRS (P) & \begin{tabular}{l} 
Solves a triangular system of linear equations where the coefficient matrix \\
is in packed storage.
\end{tabular}
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline \multicolumn{2}{|l|}{Triangular Matrix} \\
\hline \(x\) TRCON & Estimates the reciprocal or the condition number of a triangular matrix. \\
\hline \(x\) TREVC & Computes right and/or left eigenvectors of an upper triangular matrix. \\
\hline \(x\) TREXC & Reorders Schur factorization of matrix using an orthogonal or unitary similarity transformation. \\
\hline \(x\) TRRFS & Determines error bounds and estimates for triangular system of a linear equations. \\
\hline \(x\) TRSEN & Reorders Schur factorization of matrix to group selected cluster of eigenvalues in the leading positions on the diagonal of the upper triangular matrix T and the leading columns of Q form an orthonormal basis of the corresponding right invariant subspace. \\
\hline \(x\) TRSNA & Estimates the reciprocal condition numbers of selected eigenvalues and eigenvectors of an upper quasi-triangular matrix. \\
\hline \(x\) TRSYL & Solves Sylvester matrix equation. \\
\hline \(x\) TRTRI & Computes the inverse of a triangular matrix. \\
\hline \(x\) TRTRS (P) & Solves a triangular system of linear equations. \\
\hline \multicolumn{2}{|l|}{Trapezoidal Matrix} \\
\hline \(x\) TZRQF & Depreciated routine replaced by routine \(x\) TZRZF. \\
\hline \(x\) TZRZF & Reduces a rectangular upper trapezoidal matrix to upper triangular form by means of orthogonal transformations. \\
\hline \multicolumn{2}{|l|}{Unitary Matrix} \\
\hline CUNGBR or ZUNGBR & Generates the unitary transformation matrices from reduction to bidiagonal form, as determined by CGEBRD or ZGEBRD. \\
\hline CUNGHR or ZUNGHR & Generates the orthogonal transformation matrix reduced to Hessenberg form, as determined by CGEHRD or ZGEHRD. \\
\hline CUNGLQ or ZUNGLQ & Generates a unitary matrix \(Q\) from an \(L Q\) factorization, as returned by CGELQF or ZGELQF. \\
\hline CUNGQL or ZUNGQL & Generates a unitary matrix Q from a QL factorization, as returned by CGEQLF or ZGEQLF. \\
\hline CUNGQR or ZUNGQR & Generates a unitary matrix \(Q\) from a QR factorization, as returned by CGEQRF or ZGEQRF. \\
\hline CUNGRQ or ZUNGRQ & Generates a unitary matrix \(Q\) from an \(R Q\) factorization, as returned by CGERQF or ZGERQF. \\
\hline CUNGTR or ZUNGTR & Generates a unitary matrix reduced to tridiagonal form, by CHETRD or ZHETRD. \\
\hline
\end{tabular}
table A-1 LAPACK (Linear Algebra Package) Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline CUNMBR or ZUNMBR & Multiplies a general matrix with the unitary transformation matrix reduced to bidiagonal form, as determined by CGEBRD or ZGEBRD. \\
\hline CUNMHR or ZUNMHR & Multiplies a general matrix by the unitary matrix reduced to Hessenberg form by CGEHRD or ZGEHRD. \\
\hline CUNMLQ (P) or ZUNMLQ (P) & Multiplies a general matrix by the unitary matrix from an LQ factorization, as returned by CGELQF or ZGELQF. \\
\hline CUNMQL (P) or ZUNMQL (P) & Multiplies a general matrix by the unitary matrix from a QL factorization, as returned by CGEQLF or ZGEQLF. \\
\hline CUNMQR (P) or ZUNMQR (P) & Multiplies a general matrix by the unitary matrix from a QR factorization, as returned by CGEQRF or ZGEQRF. \\
\hline CUNMRQ (P) or ZUNMRQ (P) & Multiplies a general matrix by the unitary matrix from an RQ factorization, as returned by CGERQF or ZGERQF. \\
\hline CUNMRZ or ZUNMRZ & Multiplies a general matrix by the unitary matrix from an RZ factorization, as returned by CTZRZF or ZTZRZF. \\
\hline CUNMTR or ZUNMTR & Multiplies a general matrix by the unitary transformation matrix reduced to tridiagonal form by CHETRD or ZHETRD. \\
\hline \multicolumn{2}{|l|}{Unitary Matrix in Packed Storage} \\
\hline CUPGTR or ZUPGTR & Generates the unitary transformation matrix from a tridiagonal matrix determined by CHPTRD or ZHPTRD. \\
\hline CUPMTR or ZUPMTR & Multiplies a general matrix by the unitary transformation matrix reduced to tridiagonal form by CHPTRD or ZHPTRD. \\
\hline
\end{tabular}

\section*{BLAS1 Routines}

TABLE A-2 lists the Sun Performance Library BLAS1 routines. No Sun Performance Library BLAS1 routines are currently parallelized.
table A-2 BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines
\begin{tabular}{ll}
\hline Routine & Function \\
\hline \begin{tabular}{l} 
SASUM, DASUM, \\
SCASUM, DZASUM
\end{tabular} & Sum of the absolute values of a vector \\
XAXPY & Product of a scalar and vector plus a vector \\
\(x\) COPY & Copy a vector \\
\begin{tabular}{l} 
SDOT, DDOT, DSDOT, \\
SDSDOT, CDOTU, \\
ZDOTU, DQDOTA,
\end{tabular} & Dot product (inner product) \\
DQDOTI & \\
CDOTC, ZDOTC & Dot product conjugating first vector \\
SNRM2, DNRM2, & Euclidean norm of a vector \\
SCNRM2, DZNRM2 & Set up Givens plane rotation \\
\(x\) ROTG & Apply Given's plane rotation \\
\(x\) ROT, CSROT, ZDROT & Set up modified Given's plane rotation \\
SROTMG, DROTMG & Apply modified Given's rotation \\
SROTM, DROTM & Index of element with maximum absolute value \\
ISAMAX, DAMAX, & Scale a vector \\
ICAMAX, IZAMAX & Swap two vectors \\
\(x\) SCAL, CSSCAL, & Compute scaled product of complex vectors \\
ZDSCAL &
\end{tabular}

\section*{BLAS2 Routines}

TABLE A-3 lists the Sun Performance Library BLAS2 routines. (P) denotes routines that are parallelized.
table A-3 BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline \(x\) GBMV & Product of a matrix in banded storage and a vector \\
\hline \(x\) GEMV (P) & Product of a general matrix and a vector \\
\hline SGER (P), DGER (P), CGERC (P), ZGERC (P), CGERU (P), zGERU (P) & Rank-1 update to a general matrix \\
\hline CHBMV, zHBMV & Product of a Hermitian matrix in banded storage and a vector \\
\hline CHEMV (P), zHEMV (P) & Product of a Hermitian matrix and a vector \\
\hline CHER (P), ZHER (P) & Rank-1 update to a Hermitian matrix \\
\hline CHER2, ZHER2 & Rank-2 update to a Hermitian matrix \\
\hline ChPmV (P), zHPMV (P) & Product of a Hermitian matrix in packed storage and a vector \\
\hline CHPR, ZHPR & Rank-1 update to a Hermitian matrix in packed storage \\
\hline CHPR2, ZHPR2 & Rank-2 update to a Hermitian matrix in packed storage \\
\hline SSBMV, DSBMV & Product of a symmetric matrix in banded storage and a vector \\
\hline SSPMV (P), DSPMV (P) & Product of a Symmetric matrix in packed storage and a vector \\
\hline SSPR, DSPR & Rank-1 update to a real symmetric matrix in packed storage \\
\hline SSPR2 (P), DSPR2 (P) & Rank-2 update to a real symmetric matrix in packed storage \\
\hline SSYMV, (P) DSYMV (P) & Product of a symmetric matrix and a vector \\
\hline SSYR (P), DSYR (P) & Rank-1 update to a real symmetric matrix \\
\hline SSYR2 (P), DSYR2 (P) & Rank-2 update to a real symmetric matrix \\
\hline \(x\) TBMV & Product of a triangular matrix in banded storage and a vector \\
\hline \(x\) TBSV & Solution to a triangular system in banded storage of linear equations \\
\hline \(x\) TPMV & Product of a triangular matrix in packed storage and a vector \\
\hline \(x\) TPSV & Solution to a triangular system of linear equations in packed storage \\
\hline \(x\) TRMV (P) & Product of a triangular matrix and a vector \\
\hline \(x\) TRSV (P) & Solution to a triangular system of linear equations \\
\hline
\end{tabular}

\section*{BLAS3 Routines}

TABLE A-4 lists the Sun Performance Library BLAS3 routines. (P) denotes routines that are parallelized.
table A-4 BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines
\begin{tabular}{ll}
\hline Routine & Function \\
\hline\(x\) GEMM (P) & Product of two general matrices \\
CHEMM (P) or & Product of a Hermitian matrix and a general matrix \\
ZHEMM (P) & \\
CHERK (P) or & Rank-k update of a Hermitian matrix \\
ZHERK (P) & \\
CHER2K (P) or & Rank-2k update of a Hermitian matrix \\
ZHER2K (P) & \\
\(x\) SYMM (P) & Product of a symmetric matrix and a general matrix \\
\(x\) SYRK (P) & Rank-k update of a symmetric matrix \\
\(x\) SYR2K (P) & Rank-2k update of a symmetric matrix \\
\(x\) TRMM (P) & Product of a triangular matrix and a general matrix \\
\(x\) TRSM (P) & Solution for a triangular system of equations \\
\hline
\end{tabular}

\section*{Sparse BLAS Routines}

TABLE A-5 lists the Sun Performance Library sparse BLAS routines. (P) denotes routines that are parallelized.
table A-5 Sparse BLAS Routines
\begin{tabular}{ll}
\hline Routines & Function \\
\hline\(x\) AXPYI & Adds a scalar multiple of a sparse vector X to a full vector \(Y\). \\
\(x\) BCOMM (P) & Block coordinate matrix-matrix multiply. \\
\(x\) BDIMM (P) & Block diagonal format matrix-matrix multiply. \\
\(x\) BDISM (P) & Block Diagonal format triangular solve. \\
\(x\) BELMM (P) & Block Ellpack format matrix-matrix multiply. \\
\(x\) BELSM (P) & Block Ellpack format triangular solve. \\
\(x\) BSCMM \((\mathrm{P})\) & Block compressed sparse column format matrix-matrix multiply. \\
\(x\) BSCSM \((\mathrm{P})\) & Block compressed sparse column format triangular solve. \\
\hline
\end{tabular}
table A-5 Sparse BLAS Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routines & Function \\
\hline \(x\) BSRMM (P) & Block compressed sparse row format matrix-matrix multiply. \\
\hline \(x \mathrm{BSRSM}(\mathrm{P})\) & Block compressed sparse row format triangular solve. \\
\hline \(x\) COOMM (P) & Coordinate format matrix-matrix multiply. \\
\hline \(x\) CSCMM (P) & Compressed sparse column format matrix-matrix multiply \\
\hline \(x \operatorname{CSCSM}(\mathrm{P})\) & Compressed sparse column format triangular solve \\
\hline \(x\) CSRMM (P) & Compressed sparse row format matrix-matrix multiply. \\
\hline \(x\) CSRSM (P) & Compressed sparse row format triangular solve. \\
\hline \(x\) DIAMM (P) & Diagonal format matrix-matrix multiply. \\
\hline \(x\) DIASM (P) & Diagonal format triangular solve. \\
\hline SDOTI, DDOTI, CDOTUI, or ZDOTUI & Computes the dot product of a sparse vector and a full vector. \\
\hline CDOTCI, or ZDOTCI & Computes the conjugate dot product of a sparse vector and a full vector. \\
\hline \(x\) ELLMM (P) & Ellpack format matrix-matrix multiply. \\
\hline \(x\) ELLSM (P) & Ellpack format triangular solve. \\
\hline \(x\) CGTHR & Given a full vector, creates a sparse vector and corresponding index vector. \\
\hline \(x\) CGTHRZ & Given a full vector, creates a sparse vector and corresponding index vector and zeros the full vector. \\
\hline \(x \mathrm{JADMM} \mathrm{(P)}\) & Jagged diagonal matrix-matrix multiply. \\
\hline SJADRP or DJADRP & Right permutation of a jagged diagonal matrix. \\
\hline \(x \mathrm{JADSM}(\mathrm{P})\) & Jagged diagonal triangular solve. \\
\hline SROTI or DROTI & Applies a Givens rotation to a sparse vector and a full vector. \\
\hline \(x\) CSCTR & Given a sparse vector and corresponding index vector, puts those elements into a full vector. \\
\hline \(x\) SKYMM (P) & Skyline format matrix-matrix multiply. \\
\hline \(x\) SKYSM (P) & Skyline format triangular solve. \\
\hline \(x\) VBRMM (P) & Variable block sparse row format matrix-matrix multiply. \\
\hline \(x\) VBRSM (P) & Variable block sparse row format triangular solve. \\
\hline
\end{tabular}

\section*{Sparse Solver Routines}

TABLE A-6 lists the Sun Performance Library sparse solver routines. (P) denotes routines that are parallelized.
table A-6 Sparse Solver Routines
\begin{tabular}{|c|c|}
\hline Routines & Function \\
\hline SGSSFS (P), DGSSFS (P), CGSSFS (P), or ZGSSFS (P) & One call interface to sparse solver. \\
\hline SGSSIN, DGSSIN, CGSSIN, or ZGSSIN & Sparse solver initialization. \\
\hline SGSSOR, DGSSOR, CGSSOR, or ZGSSOR & Fill reducing ordering and symbolic factorization. \\
\hline \begin{tabular}{l}
SGSSFA (P), DGSSFA \\
(P), CGSSFA (P), or ZGSSFA (P)
\end{tabular} & Matrix value input and numeric factorization. \\
\hline SGSSSL, DGSSSL, CGSSSL, or ZGSSSL & Triangular solve. \\
\hline SGSSUO, DGSSUO, CGSSUO, or ZGSSUO & Sets user-specified ordering permutation. \\
\hline SGSSRP, DGSSRP, CGSSRP, or ZGSSRP & Returns permutation used by solver. \\
\hline \[
\begin{aligned}
& \text { SGSSCO, DGSSCO, } \\
& \text { CGSSCO, or ZGSSCO }
\end{aligned}
\] & Returns condition number estimate of coefficient matrix. \\
\hline SGSSDA, DGSSDA, CGSSDA, or ZGSSDA & De-allocates sparse solver. \\
\hline SGSSPS, DGSSPS, CGSSPS, or ZGSSPS & Prints solver statistics. \\
\hline
\end{tabular}

\section*{Signal Processing Library Routines}

Sun Performance Library contains routines for computing the fast Fourier transform, sine and cosine transforms, and convolution and correlation.

\section*{FFT Routines}

Sun Performance Library provides a set of FFT interfaces that supersedes a subset of the FFTPACK and VFFTPACK routines provided in earlier Sun Performance Library releases. The legacy FFT routines and man pages for the routines are still included to maintain compatibility with existing codes, but the routines are no longer supported. For information on using the legacy FFT routines, see the section 3P man pages.

TABLE A-7 shows the mapping between the Sun Performance Library FFT routines and the corresponding FFTPACK and VFFTPACK routines. (P) denotes routines that are parallelized.

\section*{TABLE A-7 FFT Routines}
\begin{tabular}{|c|c|c|}
\hline Routine & Replaces & Function \\
\hline CFFTC (P) & \begin{tabular}{l}
CFFTI \\
CFFTF (P) \\
CFFTB ( P )
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the one-dimensional forward or inverse FFT of a complex sequence. \\
\hline CFFTC2 (P) & \begin{tabular}{l}
CFFT2I \\
CFFT2F (P) \\
CFFT2B (P)
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the two-dimensional forward or inverse FFT of a twodimensional complex array. \\
\hline CFFTC3 (P) & \begin{tabular}{l}
CFFT3I \\
CFFT3F (P) \\
CFFT3B (P)
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the three-dimensional forward or inverse FFT of threedimensional complex array. \\
\hline CFFTCM (P) & \begin{tabular}{l}
VCFFTI \\
VCFFTF (P) \\
VCFFTB (P)
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the one-dimensional forward or inverse FFT of a set of data sequences stored in a two-dimensional complex array. \\
\hline CFFTS & \begin{tabular}{l}
RFFTI, RFFTB \\
EZFFTI, EZFFTB
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse FFT of a complex sequence. \\
\hline CFFTS2 & \begin{tabular}{l}
RFFT2I \\
RFFT2B
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the two-dimensional inverse FFT of a two-dimensional complex array. \\
\hline CFFTS3 (P) & \begin{tabular}{l}
RFFT3I \\
RFFT3B
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the three-dimensional inverse FFT of three-dimensional complex array. \\
\hline CFFTSM & \begin{tabular}{l}
VRFFTI \\
VRFFTB (P)
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse FFT of a set of data sequences stored in a two-dimensional complex array. \\
\hline DFFTZ & \begin{tabular}{l}
DFFTI, DFFTF \\
DEZFFTI, DEZFFTF
\end{tabular} & Initialize the trigonometric weight and factor tables or compute the one-dimensional forward FFT of a double precision sequence. \\
\hline
\end{tabular}
table A-7 FFT Routines (Continued)
\begin{tabular}{|c|c|c|}
\hline Routine & Replaces & Function \\
\hline \multirow[t]{2}{*}{DFFTZ2} & DFFT2I & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the two-dimensional forward FFT of a two-dimensional double precision array.} \\
\hline & DFFT2F & \\
\hline \multirow[t]{2}{*}{DFFTZ3 (P)} & DFFT3I & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the three-dimensional forward FFT of three-dimensional double precision array.} \\
\hline & DFFT3F & \\
\hline \multirow[t]{2}{*}{DFFTZM} & VDFFTI & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the one-dimensional forward FFT of a set of data sequences stored in a two-dimensional double precision array.} \\
\hline & VDFFTF (P) & \\
\hline \multirow[t]{2}{*}{SFFTC} & RFFTI, RFFTF & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the one-dimensional forward FFT of a real sequence.} \\
\hline & EZFFTI, EZFFTF & \\
\hline \multirow[t]{2}{*}{SFFTC2} & RFFT2I & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the two-dimensional forward FFT of a two-dimensional real array.} \\
\hline & RFFT2F & \\
\hline \multirow[t]{2}{*}{SFFTC3 (P)} & RFFT3I & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the three-dimensional forward FFT of three-dimensional real array.} \\
\hline & RFFT3F & \\
\hline \multirow[t]{2}{*}{SFFTCM} & VRFFTI & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the one-dimensional forward FFT of a set of data sequences stored in a two-dimensional real array.} \\
\hline & VRFFTF (P) & \\
\hline \multirow[t]{2}{*}{ZFFTD} & DFFTI, DFFTB & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse FFT of a double complex sequence.} \\
\hline & DEZFFTI, DEZFFTB & \\
\hline \multirow[t]{2}{*}{ZFFTD2} & DFFT2I & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the two-dimensional inverse FFT of a two-dimensional double complex array.} \\
\hline & DFFT2B & \\
\hline \multirow[t]{2}{*}{ZFFTD3 (P)} & DFFT3I & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the three-dimensional inverse FFT of three-dimensional double complex array.} \\
\hline & DFFT3B & \\
\hline \multirow[t]{2}{*}{ZFFTDM} & VDFFTI & \multirow[t]{2}{*}{Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse FFT of a set of data sequences stored in a two-dimensional double complex array.} \\
\hline & VDFFTB (P) & \\
\hline \multirow[t]{3}{*}{ZFFTZ (P)} & ZFFTI & \multirow[t]{3}{*}{Initialize the trigonometric weight and factor tables or compute the one-dimensional forward or inverse FFT of a double complex sequence.} \\
\hline & ZFFTF (P) & \\
\hline & ZFFTB (P) & \\
\hline
\end{tabular}
table A-7 FFT Routines (Continued)
\begin{tabular}{lll}
\hline Routine & Replaces & Function \\
\hline ZFFTZ2 (P) & ZFFT2I & \begin{tabular}{l} 
Initialize the trigonometric weight and factor tables or compute \\
the two-dimensional forward or inverse FFT of a two- \\
dimensional double complex array.
\end{tabular} \\
ZFFT2F (P) & ZFFT2B (P) & \begin{tabular}{l} 
Initialize the trigonometric weight and factor tables or compute \\
the three-dimensional forward or inverse FFT of three- \\
dimensional double complex array.
\end{tabular} \\
ZFFT3I & ZFFT3F (P) & ZFFT3B (P) \\
& VZFFTI & \begin{tabular}{l} 
Initialize the trigonometric weight and factor tables or compute \\
the one-dimensional forward or inverse FFT of a set of data \\
Sequences stored in a two-dimensional double complex array.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fast Cosine and Sine Transforms}

Sun Performance Library fast cosine and sine transform routines are based on the routines contained in FFTPACK (http://www.netlib.org/£ftpack/). Routines with a V prefix are vectorized routines that are based on the routines contained in VFFTPACK (http://www.netlib.org/vfftpack/).

TABLE A-8 lists the Sun Performance Library sine and cosine transform routines.
table A-8 Sine and Cosine Transform Routines
\begin{tabular}{ll}
\hline Routine & Function \\
\hline COSQB, DCOSQB, & Cosine quarter-wave synthesis. \\
VCOSQB, VDCOSQB & \\
COSQF, DCOSQF, & Cosine quarter-wave transform. \\
VCOSQF, VDCOSQF & \\
COSQI, DCOSQI, & Initialize cosine quarter-wave transform and synthesis. \\
VCOSQI, VDCOSQI & \\
COST, DCOST, & Cosine even-wave transform. \\
VCOST, VDCOST & \\
COSTI, DCOSTI, & Initialize cosine even-wave transform. \\
VCOSTI, VDCOSTI & \\
SINQB, DSINQB, & Sine quarter-wave synthesis. \\
VSINQB, VDSINQB & \\
SINQF, DSINQF, & Sine quarter-wave transform. \\
VSINQF, VDSINQF & \\
\hline
\end{tabular}
table A-8 Sine and Cosine Transform Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline SINQI, DSINQI, & Initialize sine quarter-wave transform and synthesis. \\
VSINQI, VDSINQI & \\
SINT, DSINT, & Sine odd-wave transform. \\
VSINT, VDSINT & \\
SINTI, DSINT, & Initialize sine odd-wave transform. \\
VSINTI, VDSINTI & \\
\hline
\end{tabular}

\section*{Convolution and Correlation Routines}

TABLE A-9 lists the Sun Performance Library convolution and correlation routines.
tABLE A-9 Convolution and Correlation Routines
\begin{tabular}{ll}
\hline Routines & Function \\
\hline xCNVCOR & Computes convolution or correlation \\
xCNVCOR2 & Computes two-dimensional convolution or correlation \\
\hline
\end{tabular}

\section*{Miscellaneous Signal Processing Routines}

TABLE A-10 lists the miscellaneous Sun Performance Library signal processing routines.
table A-10 Convolution and Correlation Routines
\begin{tabular}{ll}
\hline Routines & Function \\
\hline RFFTOPT, DFFTOPT, & Compute the length of the closest FFT \\
CFFTOPT, ZFFTOPT & \\
SWIENER or DWEINER & Performs Wiener deconvolution of two signals \\
xTRANS & Transposes array \\
\hline
\end{tabular}

\section*{Interval BLAS (IBLAS) Routines}

Sun Performance Library includes the interval BLAS routines listed in TAbLE A-11, which operate on interval scalars, interval vectors, and interval matrices (dense, banded, symmetric, and triangular).
table A-11 Interval BLAS Routines
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline amax_val_i & Max absolute value and location. \\
\hline amin_val_i & Min absolute value and location. \\
\hline axpby_i & Scaled vector accumulation. \\
\hline cancel_i & Scaled cancellation. \\
\hline constructv_i & Constructs an interval vector. \\
\hline copy_i & Interval vector copy. \\
\hline disjv_i & Checks if two interval vectors disjoint. \\
\hline dot_i & Scaled dot product of two interval vectors. \\
\hline emptyelev_i & Empty entry and its location. \\
\hline encv_i & Check if an interval vector is enclosed in another. \\
\hline fpinfo_i & Environmental enquiry. \\
\hline gbmv_i & Interval matrix-vector multiplication. \\
\hline gb_acc_i & General band matrix accumulation and scale. \\
\hline gb_add_i & General band matrix add and scale. \\
\hline gb_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline gb_copy_i & General band interval matrix copy. \\
\hline gb_diag_scale_i & Diagonal scaling of an interval matrix. \\
\hline gb_disjm_i & If two interval matrices are disjoint. \\
\hline gb_emptyelem_i & Empty entry and its location. \\
\hline gb_encm_i & If an interval matrix is enclosed in another. \\
\hline gb_hullm_i & Convex hull of two interval matrices. \\
\hline gb_infm_i & Left endpoint of an interval matrix. \\
\hline gb_interiorm_i & If an interval matrix is in interior of another. \\
\hline gb_interm_i & Intersection of two interval matrices. \\
\hline gb_lrscale_i & Two-sided diagonal scaling. \\
\hline gb_midm_i & Midpoint matrix of an interval matrix. \\
\hline
\end{tabular}
table A-11 Interval BLAS Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline gb_norm_i & General band interval matrix norms. \\
\hline gb_supm_i & Right endpoint of an interval matrix. \\
\hline gb_whullm_i & Convex hull of two interval matrices. \\
\hline gb_widthm_i & Elementwise width of an interval matrix. \\
\hline gb_winterm_i & Intersection of two interval matrices. \\
\hline gemm_i & General interval matrix product. \\
\hline gemv_i & General interval matrix and vector multiplication. \\
\hline ger_i & Rank one update. \\
\hline ge_acc_i & General matrix accumulation and scale. \\
\hline ge_add_i & General interval matrix add and scale. \\
\hline ge_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline ge_copy_i & General interval matrix copy. \\
\hline ge_diag_scale_i & Diagonal scaling an interval matrix. \\
\hline ge_disjm_i & If two interval matrices are disjoint. \\
\hline ge_emptyelem_i & Empty entry and its location. \\
\hline ge_encm_i & If an interval matrix is enclosed in another. \\
\hline ge_hullm_i & Convex hull of two interval matrices. \\
\hline ge_infm_i & Left endpoint of an interval matrix. \\
\hline ge_interiorm_i & If an interval matrix is in interior of another. \\
\hline ge_interm_i & Intersection of two interval matrices. \\
\hline ge_lrscale_i & Two-sided diagonal scaling. \\
\hline ge_midm_i & Midpoint matrix of an interval matrix. \\
\hline ge_norm_i & General interval matrix norms. \\
\hline ge_permute_i & Permute an general interval matrix. \\
\hline ge_supm_i & Right endpoint of an interval matrix. \\
\hline ge_trans_i & Matrix transposition. \\
\hline ge_whullm_i & Convex hull of two interval matrices. \\
\hline ge_widthm_i & Elementwise width of an interval matrix. \\
\hline ge_winterm_i & Intersection of two interval matrices. \\
\hline hullv_i & Convex hull of an interval vector with another. \\
\hline
\end{tabular}
table A-11 Interval BLAS Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline infv_i & The left endpoint of an interval vector. \\
\hline interiorv_i & If an interval vector is in the interior of another. \\
\hline interv_i & Intersection of an interval vector with another. \\
\hline midv_i & The approximate midpoint of an interval vector. \\
\hline norm_i & Interval vector norms. \\
\hline permute_i & Permute interval vector. \\
\hline rscale_i & Reciprocal scale of an interval vector. \\
\hline sbmv_i & Interval symmetric matrix vector product. \\
\hline sb_acc_i & Symmetric band matrix accumulation and scale. \\
\hline sb_add_i & Symmetric band matrix add and scale. \\
\hline sb_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline sb_copy_i & Symmetric band interval matrix copy. \\
\hline sb_disjm_i & If two interval matrices are disjoint. \\
\hline sb_emptyelem_i & Empty entry and its location. \\
\hline sb_encm_i & If an interval matrix is enclosed in another. \\
\hline sb_hullm_i & Convex hull of two interval matrices. \\
\hline sb_infm_i & Left endpoint of an interval matrix. \\
\hline sb_interiorm_i & If an interval matrix is in interior of another. \\
\hline sb_interm_i & Intersection of two interval matrices. \\
\hline sb_lrscale_i & Two-sided diagonal scaling. \\
\hline sb_midm_i & Midpoint matrix of an interval matrix. \\
\hline sb_norm_i & Symmetric band interval matrix norms. \\
\hline sb_supm_i & Right endpoint of an interval matrix. \\
\hline sb_whullm_i & Convex hull of two interval matrices. \\
\hline sb_widthm_i & Elementwise width of an interval matrix. \\
\hline sb_winterm_i & Intersection of two interval matrices. \\
\hline spmv_i & Interval symmetric matrix vector product. \\
\hline spr_i & Symmetric rank one update. \\
\hline sp_acc_i & Symmetric packed matrix accumulation and scale. \\
\hline sp_add_i & Symmetric packed matrix add and scale. \\
\hline
\end{tabular}
table A-11 Interval BLAS Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline sp_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline sp_copy_i & Symmetric packed interval matrix copy. \\
\hline sp_disjm_i & If two interval matrices are disjoint. \\
\hline sp_emptyelem_i & Empty entry and its location. \\
\hline sp_encm_i & If an interval matrix is enclosed in another. \\
\hline sp_hullm_i & Convex hull of two interval matrices. \\
\hline sp_infm_i & Left endpoint of an interval matrix. \\
\hline sp_interiorm_i & If an interval matrix is in interior of another. \\
\hline sp_interm_i & Intersection of two interval matrices. \\
\hline sp_lrscale_i & Two-sided diagonal scaling. \\
\hline sp_midm_i & Midpoint matrix of an interval matrix. \\
\hline sp_norm_i & Symmetric packed interval matrix norms. \\
\hline sp_supm_i & Right endpoint of an interval matrix. \\
\hline sp_whullm_i & Convex hull of two interval matrices. \\
\hline sp_widthm_i & Elementwise width of an interval matrix. \\
\hline sp_winterm_i & Intersection of two interval matrices. \\
\hline sumsq_i & Sum of squares. \\
\hline sum_i & Sum the entries of an interval vector. \\
\hline supv_i & The right endpoint of an interval vector. \\
\hline swap_i & Interval vector swap. \\
\hline symm_i & Symmetric interval matrix product. \\
\hline symv_i & Interval symmetric matrix vector product. \\
\hline syr_i & Symmetric rank one update. \\
\hline sy_acc_i & Symmetric interval matrix accumulation and scale. \\
\hline sy_add_i & Symmetric matrix add and scale. \\
\hline sy_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline sy_copy_i & Symmetric interval matrix copy. \\
\hline sy_disjm_i & If two interval matrices are disjoint. \\
\hline sy_emptyelem_i & Empty entry and its location. \\
\hline sy_encm_i & If an interval matrix is enclosed in another. \\
\hline
\end{tabular}
table A-11 Interval BLAS Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline sy_hullm_i & Convex hull of two interval matrices. \\
\hline sy_infm_i & Left endpoint of an interval matrix. \\
\hline sy_interiorm_i & If an interval matrix is in interior of another. \\
\hline sy_interm_i & Intersection of two interval matrices. \\
\hline sy_lrscale_i & Two-sided diagonal scaling. \\
\hline sy_midm_i & Midpoint matrix of an interval matrix. \\
\hline sy_norm_i & Symmetric interval matrix norms. \\
\hline sy_supm_i & Right endpoint of an interval matrix. \\
\hline sy_whullm_i & Convex hull of two interval matrices. \\
\hline sy_widthm_i & Elementwise width of an interval matrix. \\
\hline sy_winterm_i & Intersection of two interval matrices. \\
\hline tbmv_i & Interval triangular matrix vector product. \\
\hline tbsv_i & Interval triangular solve with a vector. \\
\hline tb_acc_i & Matrix accumulation and scale. \\
\hline tb_add_i & Triangular band matrix add and scale. \\
\hline tb_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline tb_copy_i & Triangular band interval matrix copy. \\
\hline tb_disjm_i & If two interval matrices are disjoint. \\
\hline tb_emptyelem_i & Empty entry and its location. \\
\hline tb_encm_i & If an interval matrix is enclosed in another. \\
\hline t.b_hullm_i & Convex hull of two interval matrices. \\
\hline tb_infm_i & Left endpoint of an interval matrix. \\
\hline tb_interiorm_i & If an interval matrix is in interior of another. \\
\hline tb_interm_i & Intersection of two interval matrices. \\
\hline tb_midm_i & Midpoint matrix of an interval matrix. \\
\hline tb_norm_i & Triangular band interval matrix norms. \\
\hline tb_supm_i & Right endpoint of an interval matrix. \\
\hline tb_whullm_i & Convex hull of two interval matrices. \\
\hline tb_widthm_i & Elementwise width of an interval matrix. \\
\hline tb_winterm_i & Intersection of two interval matrices. \\
\hline
\end{tabular}
table A-11 Interval BLAS Routines (Continued)
\begin{tabular}{|c|c|}
\hline Routine & Function \\
\hline tpmv_i & Interval triangular matrix vector product. \\
\hline tpsv_i & Interval triangular solve with a vector. \\
\hline tp_acc_i & Matrix accumulation and scale. \\
\hline tp_add_i & Triangular packed matrix add and scale. \\
\hline tp_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline tp_copy_i & Triangular packed interval matrix copy. \\
\hline tp_disjm_i & If two interval matrices are disjoint. \\
\hline tp_emptyelem_i & Empty entry and its location. \\
\hline tp_encm_i & If an interval matrix is enclosed in another. \\
\hline tp_hullm_i & Convex hull of two interval matrices. \\
\hline tp_infm_i & Left endpoint of an interval matrix. \\
\hline tp_interiorm_i & If an interval matrix is in interior of another. \\
\hline tp_interm_i & Intersection of two interval matrices. \\
\hline tp_midm_i & Midpoint matrix of an interval matrix. \\
\hline tp_norm_i & Triangular packed interval matrix norms. \\
\hline tp_supm_i & Right endpoint of an interval matrix. \\
\hline tp_whullm_i & Convex hull of two interval matrices. \\
\hline tp_widthm_i & Elementwise width of an interval matrix. \\
\hline tp_winterm_i & Intersection of two interval matrices. \\
\hline trmm_i & Triangular interval matrix matrix product. \\
\hline trmv_i & Interval triangular matrix vector product. \\
\hline trsm_i & Interval triangular solve. \\
\hline trsv_i & Interval triangular solve with a vector. \\
\hline tr_acc_i & Matrix accumulation and scale. \\
\hline tr_add_i & Triangular matrix add and scale. \\
\hline tr_constructm_i & Constructs an interval matrix from two floating point matrices. \\
\hline tr_copy_i & Triangular interval matrix copy. \\
\hline tr_disjm_i & If two interval matrices are disjoint. \\
\hline tr_emptyelem_i & Empty entry and its location. \\
\hline tr_encm_i & If an interval matrix is enclosed in another. \\
\hline
\end{tabular}
table A-11 Interval BLAS Routines (Continued)
\begin{tabular}{ll}
\hline Routine & Function \\
\hline tr_hullm_i & Convex hull of two interval matrices. \\
tr_infm_i & Left endpoint of an interval matrix. \\
tr_interiorm_i & If an interval matrix is in interior of another. \\
tr_interm_i & Intersection of two interval matrices. \\
tr_midm_i & Midpoint matrix of an interval matrix. \\
tr_norm_i & Triangular interval matrix norms. \\
tr_supm_i & Right endpoint of an interval matrix. \\
tr_whullm_i & Convex hull of two interval matrices. \\
tr_widthm_i & Elementwise width of an interval matrix. \\
tr_winterm_i & Intersection of two interval matrices. \\
waxpby_i & Scaled vector addition. \\
wcancel_i & Scaled cancellation. \\
whullv_i & Convex hull of an interval vector with another. \\
widthv_i & The elementwise width of an interval vector. \\
winterv_i & Intersection of an interval vector with another. \\
\hline
\end{tabular}

See the section 3P man pages for information on using each routine.

\section*{Sort Routines}

TABLE A-12 lists the Sun Performance Library sort routines. (P) denotes routines that are parallelized on Solaris/SPARC platforms. All routines are single-threaded on Solaris/x86 platforms whether denoted by (P) or not.
tABLE A-12 Sort Routines
\begin{tabular}{ll}
\hline Routines & Function \\
\hline BLAS_DSORT (P) & \begin{tabular}{l} 
Sorts a real (double precision) vector X in increasing or \\
decreasing order using quick sort algorithm.
\end{tabular} \\
BLAS_DSORTV (P) & \begin{tabular}{l} 
Sorts a real (double precision) vector X in increasing or \\
decreasing order using quick sort algorithm and overwrite P with \\
the permutation vector.
\end{tabular} \\
BLAS_DPERMUTE (P) & \begin{tabular}{l} 
Permutes a real (double precision) array in terms of the \\
permutation vector P, output by DSORTV.
\end{tabular} \\
\hline
\end{tabular}
tABLE A-12 Sort Routines (Continued)
\begin{tabular}{ll}
\hline Routines & Function \\
\hline BLAS_ISORT (P) & \begin{tabular}{l} 
Sorts an integer vector \(X\) in increasing or decreasing order using \\
quick sort algorithm.
\end{tabular} \\
BLAS_ISORTV (P) & \begin{tabular}{l} 
Sorts a real vector X in increasing or decreasing order using \\
quick sort algorithm and overwrite P with the permutation \\
vector.
\end{tabular} \\
BLAS_IPERMUTE (P) & \begin{tabular}{l} 
Permutes an integer array in terms of the permutation vector P, \\
output by DSORTV.
\end{tabular} \\
BLAS_SSORT (P) & \begin{tabular}{l} 
Sorts a real vector \(X\) in increasing or decreasing order using quick \\
sort algorithm.
\end{tabular} \\
BLAS_SSORTV (P) & \begin{tabular}{l} 
Sorts a real vector \(X\) in increasing or decreasing order using quick \\
sort algorithm and overwrite P with the permutation vector.
\end{tabular} \\
BLAS_SPERMUTE (P) & \begin{tabular}{l} 
Permutes a real array in terms of the permutation vector P, \\
output by DSORTV.
\end{tabular} \\
\hline
\end{tabular}

\section*{Index}

\section*{Symbols}
\(\% \mathrm{~g} 2, \% \mathrm{~g} 3, \% \mathrm{~g} 4\), and \(\% \mathrm{~g} 5\) global integer registers, 38
_64, appending to routine name, 32, 43

\section*{Numerics}

2D FFT routines
complex sequences as input, 90
conjugate symmetry, 91
data storage format, 90
forward 2D FFT, 90
inverse 2D FFT, 90
real sequences as input, 90
routines, 80, 91
32-bit addressing, 42
3D FFT routines
complex sequences as input, 95
conjugate symmetry, 95
data storage format, 95
forward 3D FFT, 95
inverse 3D FFT, 95
real sequences as input, 95
routines, 80, 96
64-bit addressing, 43
64-bit code
C, 45
Fortran 95, 44
See also 64-bit enabled Solaris operating environment
64-bit enabled Solaris operating environment
appending -64 to routine names, 43
compiling code, 43
integer promotion, 44

64-bit integer arguments, 31
promoting integers to 64-bits, 43, 44
64-bit integer interfaces, calling, 43

\section*{A}
accessible documentation, 19
argument data types
summary, 116
arguments
convolution and correlation, 117
FFT routines, 80
automatic code restructuring tools, 30

\section*{B}
banded matrix, 55
bidiagonal matrix, 136
BLAS1, 23, 151
BLAS2, 23, 152
BLAS3, 23, 153

\section*{C}

C
64-bit code, 45
array storage, 38
routine calling conventions, 37
C interfaces
advantages, 37
compared to Fortran interfaces, 37
routine calling conventions, 37
calling 64-bit integer interfaces, 43
calling conventions
C, 37
£77/£95, 30
CLAPACK, 25
compatibility, LAPACK, 24, 26
compiler parallelization, 49
compilers, accessing, 15
compile-time checking, 31
compressed sparse column (CSC) format, 61
conjugate symmetric, 82
conjugate symmetry
2D FFT routines, 91
3D FFT routines, 95
FFT routines, 82
convolution, 114
convolution and correlation
arguments, 117
routines, 116
correlation, 115
cosine transforms, 102

\section*{D}
-dalign, 27, 42
data storage format
2D FFT routines, 90
3D FFT routines, 95
FFT routines, 83
data types
arguments, 116
degree of parallelism, 47
DFT
efficiency of FFT versus DFT, 79
diagonal matrix, 136
discrete Fourier transform
See DFT
documentation index, 18
documentation, accessing, 18 to 19
DOSERIAL* directive, 48

\section*{E}
empty interval, 127
enable trap 6, 28
environment variable
OMP_NUM_THREADS, 48
PARALLEL, 47, 50

STACKSIZE, 46
SUNW_MP_THR_IDLE, 49
even sequences
fast cosine transform routines, 103

\section*{F}
£95 interfaces
calling conventions, 30
fast cosine transform routines, 104
even sequences, 103
forward and inverse, 105
forward transform (multiple quarter-wave even sequences), 107
forward transform (quarter-wave even sequence), 106
inverse transform (multiple quarter-wave even sequences), 107
inverse transform (quarter-wave even sequence), 106
multiple sequences, 106
quarter-wave even sequences, 103
fast Fourier transform
See FFT
fast sine transform routines, 105
forward and inverse, 107
forward and inverse (multiple sequences), 108
forward transform (multiple quarter-wave odd sequences), 109
forward transform (quarter-wave odd sequence), 108
inverse transform (multiple quarter-wave odd sequences), 109
inverse transform (quarter-wave odd sequence), 108
odd sequences, 103
quarter-wave odd sequences, 103
FFT
efficiency of FFT versus DFT, 79
FFT routines
2D FFT routines, 80
3D FFT routines, 80
arguments, 80
complex sequences as input, 82
conjugate symmetry, 82
data storage format, 83
forward and inverse, 80
linear FFT routines, 80, 83
linear forward FFT, 82
linear forward FFT (polar form), 82
linear inverse FFT, 82
linear inverse FFT (polar form), 82
real sequences as input, 82
sequence length for most efficient
computation, 81, 101
FFTPACK, 103, 156, 158
Fortran 95
64-bit code, 44
compile-time checking, 31
optional arguments, 31, 33
type independence, 31
USE SUNPERF, 31
Fortran interfaces
IBLAS routines, 129

\section*{G}
general band matrix, 136
general matrix, 57, 136
general tridiagonal matrix, 138
global integer registers, 38

\section*{H}

Hermitian band matrix, 139
Hermitian matrix, 139
Hermitian matrix in packed storage, 140

\section*{I}

IBLAS
add or cancel vectors routines, 131
f95 language bindings, 130
Fortran interfaces, 129
matrix movements routines, 132
matrix set operations routines, 133
matrix utilities routines, 134
matrix-vector operations routines, 131
\(\mathrm{O}\left(n^{2}\right.\) matrix operations routines, 132
\(\mathrm{O}\left(n^{3}\right.\) matrix operations routines, 132
vector movements routines, 131
vector reductions routines, 130
vector set operations routines, 132
vector utilities routines, 133
IBLAS naming conventions, 128
including routines in development environment, 29
interval BLAS
See IBLAS
intervals, 127
empty interval, 127
isalist, 42

\section*{L}

LAPACK, 23, 136
LAPACK 90, 25
LAPACK compatibility, 24, 26

\section*{M}
malloc, 38
man pages
section 3P, 79, 127, 135
man pages, accessing, 15
MANPATH environment variable, setting, 17
matrix
banded, 55
bidiagonal, 136
diagonal, 136
general, 57, 136
general band, 136
general tridiagonal, 138
Hermitian, 139
Hermitian band, 139
Hermitian in packed storage, 140
real orthogonal, 142
real orthogonal in packed storage, 142
real symmetric band, 145
real symmetric tridiagonal, 146
structurally symmetric sparse, 62
symmetric, 59, 147
symmetric banded, 60
symmetric in packed storage, 145
symmetric or Hermitian-positive definite, 143
symmetric or Hermitian-positive definite band, 143
symmetric or Hermitian-positive definite in packed storage, 144
symmetric or Hermitian-positive definite tridiagonal, 144
symmetric sparse, 61
trapezoidal, 149
triangular, 58, 148, 149
triangular band, 148
triangular in packed storage, 148
tridiagonal, 60
unitary, 149
unitary in packed storage, 150
unsymmetric sparse, 62
upper Hessenberg, 141
-misalign, 50
MT-safe routines, 36
multithreading
compiler parallelization, 49
POSIX/Solaris threads, 49

\section*{N}
naming conventions
IBLAS, 128
IBLAS prefixes, 128
Netlib, 24
Netlib Sparse BLAS, 63
naming conventions, 64
NIST Fortran Sparse BLAS, 63
naming conventions, 64

\section*{0}
odd sequences
fast sine transform routines, 103
OMP_NUM_THREADS, 48
one-call interface, 66
optimizing
64-bit code, 42
SPARC instruction set, 42
optional f95 arguments, 31, 33

\section*{P}
packed storage, 56
PARALLEL environment variable, 47, 50
parallel processing
degree of parallelism, 47
examples, 49
PATH environment variable, setting, 16
POSIX/Solaris threads, 49
promoting integer arguments to 64-bits, 43, 44

\section*{Q}
quarter-wave even sequences
fast cosine transform routines, 103
quarter-wave odd sequences fast sine transform routines, 103

\section*{R}
real orthogonal matrix, 142
real orthogonal matrix in packed storage, 142
real symmetric band matrix, 145
real symmetric tridiagonal matrix, 146
regular interface, 66
replacing routines, 30
routines
2D FFT routines, 80, 91
3D FFT routines, 80, 96
BLAS1, 151
BLAS2, 152
BLAS3, 153
C calling conventions, 37
convolution and correlation, 116
f95 calling conventions, 30
fast cosine transform routines, 103, 104
fast cosine transform routines (multiple sequences), 106
fast sine transform routines, 103, 105
FFTPACK, 156, 158
forward and inverse FFT, 80
forward fast cosine transform routines, 105
forward fast cosine transform routines (multiple quarter-wave even sequences), 107
forward fast cosine transform routines (quarterwave even sequence), 106
forward fast sine transform routines, 107
forward fast sine transform routines (multiple quarter-wave odd sequences), 109
forward fast sine transform routines (multiple sequences), 108
forward fast sine transform routines (quarterwave odd sequence), 108
IBLAS add or cancel vectors routines, 131
IBLAS matrix movements routines, 132
IBLAS matrix set operations routines, 133
IBLAS matrix utilities routines, 134
IBLAS matrix-vector operations routines, 131
IBLAS \(\mathrm{O}\left(n^{2}\right.\) matrix operations routines, 132
IBLAS O( \(n^{3}\) matrix operations routines, 132
IBLAS vector movements routines, 131
IBLAS vector reductions, 130
IBLAS vector set operations routines, 132
IBLAS vector utilities routines, 133
inverse fast cosine transform routines, 105
inverse fast cosine transform routines (multiple quarter-wave even sequences), 107
inverse fast cosine transform routines (quarterwave even sequence), 106
inverse fast sine transform routines, 107
inverse fast sine transform routines (multiple quarter-wave odd sequences), 109
inverse fast sine transform routines (multiple sequences), 108
inverse fast sine transform routines (quarterwave odd sequence), 108
LAPACK, 136
linear FFT routines, 80, 83
sparse BLAS, 153
sparse solvers, 155
VFFTPACK, 156, 158

\section*{S}
section 3P man pages, 79, 127, 135
shell prompts, 14
sine transforms, 102
single processor, 49
sparse BLAS, 153
sparse matrices
CSC storage format, 61
structurally symmetric, 62
symmetric, 61
unsymmetric, 62
sparse solver, 155
sparse solver package, 60
one-call interface, 66
regular interface, 66
routine calling order, 67
routines, 65
using with C, 61
STACKSIZE environment variable, 46
structurally symmetric sparse matrix, 62
SUNW_MP_THR_IDLE, 49
symmetric banded matrix, 60
symmetric matrix, 59, 147
symmetric matrix in packed storage, 145
symmetric or Hermitian positive definite band matrix, 143
symmetric or Hermitian positive definite matrix, 143
symmetric or Hermitian positive definite matrix in packed storage, 144
symmetric or Hermitian positive definite tridiagonal matrix, 144
symmetric sparse matrix, 61

\section*{T}
trap 6, enabling, 28
trapezoidal matrix, 149
triangular band matrix, 148
triangular matrix, 58, 148, 149
triangular matrix in packed storage, 148
tridiagonal matrix, 60
type Independence, 31
typographic conventions, 13

\section*{U}
unitary matrix, 149
unitary matrix in packed storage, 150
unsymmetric sparse matrix, 62
upper Hessenberg matrix, 141
USE SUNPERF
enabling Fortran 95 features, 31
USE_THREADS routine, 47

\section*{V}

VFFTPACK, 103, 156, 158

\section*{X}
-xarch, 42
xFFTOPT, 102
-xlic_lib=sunperf, 27, 42
-xtypemap, 44```


[^0]:    1. If compiling and linking a $C / C++$ program using the $C / C++$ compiler driver, $c c$, you may need to expliciltly link to the Fortran runtime libraries or use the Fortran F95 compiler driver to perform the link step. Refer to the performance_library README file to see whether this restriction applies to your distribution.
[^1]:    2. If statically linking the SSE2 library, you may also need to explicitly set the library path. Refer to the performance_library README file to see whether this restriction applies to your distribution
