
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Fortran 95 Interval Arithmetic
Programming Reference

Sun™ Studio 11

Part No. 819-3695-10
November 2005, Revision A

http://www.sun.com/hwdocs/feedback


Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.



Contents

Before You Begin xiii

Who Should Use This Book xiii

How This Book Is Organized xiii

What Is Not in This Book xiv

Related Interval References xiv

Online Resources xiv

Typographic Conventions xvi

Shell Prompts xvii

Supported Platforms xvii

Accessing Sun Studio Software and Man Pages xviii

Accessing Sun Studio Documentation xx

Accessing Related Solaris Documentation xxii

Resources for Developers xxiii

Contacting Sun Technical Support xxiii

Sending Your Comments xxiii

1. Using Interval Arithmetic With f95 1–1

1.1 f95 INTERVAL Type and Interval Arithmetic Support 1–1

1.2 f95 Interval Support Goal: Implementation Quality 1–2

1.2.1 Quality Interval Code 1–2
iii



1.2.2 Narrow-Width Interval Results 1–3

1.2.3 Rapidly Executing Interval Code 1–3

1.2.4 Easy to Use Development Environment 1–4

1.3 Writing Interval Code for f95 1–4

1.3.1 Command-Line Options 1–5

1.3.2 Hello Interval World 1–5

1.3.3 Interval Declaration and Initialization 1–6

1.3.4 INTERVAL Input/Output 1–7

1.3.5 Single-Number Input/Output 1–8

1.3.6 Interval Statements and Expressions 1–12

1.3.7 Default Kind Type Parameter Value (KTPV) 1–12

1.3.8 Value Assignment V = expr 1–14

1.3.9 Mixed-Type Expression Evaluation 1–14

1.3.10 Arithmetic Expressions 1–17

1.3.11 Interval Order Relations 1–18

1.3.12 Intrinsic INTERVAL-Specific Functions 1–22

1.3.13 Interval Versions of Standard Intrinsic Functions 1–23

1.4 Code Development Tools 1–24

1.4.1 Debugging Support 1–25

1.4.2 Global Program Checking 1–25

1.4.3 Interval Functionality Provided in Sun Fortran Libraries 1–26

1.4.4 Porting Code and Binary Files 1–26

1.4.5 Parallelization 1–27

1.5 Error Detection 1–27

1.5.1 Known Containment Failures 1–29

2. f95 Interval Reference 2–1

2.1 Fortran Extensions 2–1

2.1.1 Character Set Notation 2–1
iv Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.1.2 INTERVAL Constants 2–2

2.1.3 Internal Approximation 2–6

2.1.4 INTERVAL Statement 2–6

2.2 Data Type and Data Items 2–6

2.2.1 Name: INTERVAL 2–7

2.2.2 Kind Type Parameter Value (KTPV) 2–7

2.2.3 INTERVAL Arrays 2–8

2.3 INTERVAL Arithmetic Expressions 2–8

2.3.1 Mixed-Mode INTERVAL Expressions 2–9

2.3.2 Value Assignment 2–10

2.3.3 Interval Command-Line Options 2–12

2.3.4 Constant Expressions 2–14

2.4 Intrinsic Operators 2–15

2.4.1 Arithmetic Operators +, –, *, / 2–17

2.5 Power Operators X**N and X**Y 2–20

2.6 Dependent Subtraction Operator 2–22

2.7 Set Theoretic Operators 2–23

2.7.1 Hull: X ∪ Y or (X.IH.Y) 2–23

2.7.2 Intersection: X∩Y or (X.IX.Y) 2–23

2.8 Set Relations 2–24

2.8.1 Disjoint: X ∩Y = ∅ or (X .DJ. Y) 2–24

2.8.2 Element: r ∈ Y or (R.IN. Y) 2–24

2.8.3 Interior: (X .INT. Y) 2–25

2.8.4 Proper Subset: X ⊂ Y or (X .PSB. Y) 2–25

2.8.5 Proper Superset: X ⊃ Y or (X .PSP. Y) 2–25

2.8.6 Subset: X ⊆ Y or (X .SB. Y) 2–26

2.8.7 Superset: X ⊇ Y or (X .SP. Y) 2–26

2.8.8 Relational Operators 2–26
Contents v



2.9 Extending Intrinsic INTERVAL Operators 2–30

2.9.1 Extended Operators With Widest-Need Evaluation 2–39

2.9.2 INTERVAL (X [,Y, KIND]) 2–41

2.9.3 Specific Names for Intrinsic Generic INTERVAL Functions 2–47

2.10 INTERVAL Statements 2–48

2.10.1 Type Declaration 2–48

2.10.2 Input and Output 2–60

2.10.3 Intrinsic INTERVAL Functions 2–78

2.10.4 Mathematical Functions 2–79

2.10.5 Random Number Subroutine 2–88

2.11 References 2–88

Glossary Glossary–1

Index Index–1
vi Fortran 95 Interval Arithmetic Programming Reference • November 2005



Tables

TABLE 1-1 INTERVAL Specific Statements and Expressions 1–13

TABLE 1-2 Interval-Specific Operators 1–20

TABLE 1-3 Interval Libraries 1–26

TABLE 2-1 Font Conventions 2–2

TABLE 2-2 INTERVAL Sizes and Alignments 2–7

TABLE 2-3 INTRINSIC Operators 2–15

TABLE 2-4 Intrinsic INTERVAL Relational Operators 2–16

TABLE 2-5 Containment Set for Addition: x + y 2–18

TABLE 2-6 Containment Set for Subtraction: x – y 2–19

TABLE 2-7 Containment Set for Multiplication: x × y 2–19

TABLE 2-8 Containment Set for Division: x ÷ y 2–19

TABLE 2-9 exp(y(ln(x))) 2–21

TABLE 2-10 Results of X .DSUB. A For Different Values of X and A 2–22

TABLE 2-11 Operational Definitions of Interval Order Relations 2–27

TABLE 2-12 KTPV Specific Forms of the Intrinsic INTERVAL Constructor Function 2–45

TABLE 2-13 Specific Names for the Intrinsic INTERVAL ABS Function 2–48

TABLE 2-14 Default Values for Exponent Field in Output Edit Descriptors 2–67

TABLE 2-15 ATAN2 Indeterminate Forms 2–80

TABLE 2-16 Tests and Arguments of the REAL ATAN2 Function 2–82

TABLE 2-17 Tabulated Properties of Each Intrinsic INTERVAL Function 2–83
vii



TABLE 2-18 Intrinsic INTERVAL Type Conversion Functions 2–84

TABLE 2-19 Intrinsic INTERVAL Arithmetic Functions 2–85

TABLE 2-20 Intrinsic INTERVAL Trigonometric Functions 2–86

TABLE 2-21 Other Intrinsic INTERVAL Mathematical Functions 2–87

TABLE 2-22 Intrinsic INTERVAL-Specific Functions 2–87
viii Fortran 95 Interval Arithmetic Programming Reference • November 2005



Code Samples

CODE EXAMPLE 1-1 Hello Interval World 1-6

CODE EXAMPLE 1-2 Hello Interval World With INTERVAL Variables 1-6

CODE EXAMPLE 1-3 Interval Input/Output 1-7

CODE EXAMPLE 1-4 [inf, sup] Interval Output 1-9

CODE EXAMPLE 1-5 Single-Number Output 1-9

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion 1-11

CODE EXAMPLE 1-7 Mixed Precision With Widest-Need 1-14

CODE EXAMPLE 1-8 Mixed Types With Widest-Need 1-15

CODE EXAMPLE 1-9 Simple INTERVAL Expression Example 1-17

CODE EXAMPLE 1-10 Set-Equality Test 1-19

CODE EXAMPLE 1-11 Interval Relational Operators 1-19

CODE EXAMPLE 1-12 Set Operators 1-21

CODE EXAMPLE 1-13 Intrinsic INTERVAL-Specific Functions 1-22

CODE EXAMPLE 1-14 Interval Versions of Standard Intrinsic Functions 1-23

CODE EXAMPLE 1-15 INTERVAL Type Mismatch 1-25

CODE EXAMPLE 1-16 Invalid Endpoints 1-27

CODE EXAMPLE 1-17 Equivalence of Intervals and Non-Intervals 1-27

CODE EXAMPLE 1-18 Equivalence of INTERVAL Objects With Different KTPVs 1-28

CODE EXAMPLE 1-19 Assigning a REAL Expression to an INTERVAL Variable in Strict
Mode 1-28

CODE EXAMPLE 1-20 Assigning an INTERVAL Expression to INTERVAL Variable in Strict Mode 1-29
ix



CODE EXAMPLE 1-21 INTEGER Overflow Containment Violation Under -xia=strict Mode 1-30

CODE EXAMPLE 2-1 KTPV of INTERVAL Constants 2-3

CODE EXAMPLE 2-2 Valid and Invalid INTERVAL Constants 2-5

CODE EXAMPLE 2-3 KTPVmax Depends on KIND (Left-Hand Side) 2-10

CODE EXAMPLE 2-4 Mixed-Mode Assignment Statement 2-11

CODE EXAMPLE 2-5 Mixed-Mode Expression 2-13

CODE EXAMPLE 2-6 Constant Expressions 2-14

CODE EXAMPLE 2-7 Relational Operators 2-27

CODE EXAMPLE 2-8 Interval .IH. Operator Extension 2-31

CODE EXAMPLE 2-9 User-Defined Interface That Conflicts With the Use of the Intrinsic INTERVAL (+)
Operator 2-32

CODE EXAMPLE 2-10 User-Defined Interface Conflicts With Intrinsic Use
of .IH 2-33

CODE EXAMPLE 2-11 Incorrect Change in the Number of Arguments in a Predefined INTERVAL Operator 2-34

CODE EXAMPLE 2-12 User-Defined Interface That Conflicts With the Intrinsic Use of Unary "+" 2-35

CODE EXAMPLE 2-13 Correct Extension of Intrinsic INTERVAL Function WID 2-37

CODE EXAMPLE 2-14 Correct Extension of the Intrinsic INTERVAL
Function ABS 2-37

CODE EXAMPLE 2-15 Correct Extension of the Intrinsic INTERVAL Function MIN 2-38

CODE EXAMPLE 2-16 Widest-Need Expression Processing When Calling a Predefined Version of an Intrinsic
INTERVAL Operator 2-39

CODE EXAMPLE 2-17 Widest-Need Expression Processing When Invoking a User-Defined Operator 2-40

CODE EXAMPLE 2-18 Containment Using the .IH. Operator 2-43

CODE EXAMPLE 2-19 INTERVAL Conversion 2-45

CODE EXAMPLE 2-20 Create a Narrow Interval Containing a Given Real Number 2-46

CODE EXAMPLE 2-21 INTERVAL(NaN) 2-47

CODE EXAMPLE 2-22 Illegal Derived Type: INTERVAL 2-49

CODE EXAMPLE 2-23 Declaring Intervals With Different KTPVs 2-50

CODE EXAMPLE 2-24 Declaring and Initializing INTERVAL Variables 2-50

CODE EXAMPLE 2-25 Declaring INTERVAL Arrays 2-51

CODE EXAMPLE 2-26 DATA Statement Containing INTERVAL Variables 2-51

CODE EXAMPLE 2-27 Nonrepeatable Edit Descriptor Example 2-52
x Fortran 95 Interval Arithmetic Programming Reference • November 2005



CODE EXAMPLE 2-28 Format Statements With INTERVAL-Specific Edit Descriptors 2-53

CODE EXAMPLE 2-29 Default Interval Function 2-54

CODE EXAMPLE 2-30 Explicit INTERVAL(16) Function Declaration 2-54

CODE EXAMPLE 2-31 Intrinsic Function Declaration 2-55

CODE EXAMPLE 2-32 INTERVALS in a NAMELIST 2-56

CODE EXAMPLE 2-33 Constant Expression in Non-INTERVAL PARAMETER Attribute 2-57

CODE EXAMPLE 2-34 INTERVAL Pointers 2-57

CODE EXAMPLE 2-35 INTERVAL Statement Function 2-58

CODE EXAMPLE 2-36 INTERVAL Type Statement 2-59

CODE EXAMPLE 2-37 List Directed Input/Output Code 2-62

CODE EXAMPLE 2-38 The Decimal Point in an Input Value Dominates Format Specifiers 2-64

CODE EXAMPLE 2-39 All of the INTERVAL Edit Descriptors Can Accept Single-Number Input 2-64

CODE EXAMPLE 2-40 BZ Descriptor 2-65

CODE EXAMPLE 2-41 Y [inf, sup]-Style Output 2-68

CODE EXAMPLE 2-42 Yw.d Output 2-68

CODE EXAMPLE 2-43 Yw.d Output Using the NDIGITS Intrinsic 2-69

CODE EXAMPLE 2-44 {Y, F, E, EN,ES,G}w.d Output, Where d Sets the Minimum Number of Significant Digits to
be Displayed 2-70

CODE EXAMPLE 2-45 Yw.dEe Output (The Usage of e Specifier) 2-71

CODE EXAMPLE 2-46 Ew.dEe, ENw.dEe, and ESw.dEe Edit Descriptors 2-72

CODE EXAMPLE 2-47 Fw.d Edit Descriptor 2-72

CODE EXAMPLE 2-48 Gw.dEe Edit Descriptor 2-73

CODE EXAMPLE 2-49 VE Output 2-74

CODE EXAMPLE 2-50 VEN Output 2-75

CODE EXAMPLE 2-51 VES Output 2-75

CODE EXAMPLE 2-52 VF Output Editing 2-76

CODE EXAMPLE 2-53 VG Output 2-77

CODE EXAMPLE 2-54 ATAN2 Indeterminate Forms 2-80
Code Samples xi



xii Fortran 95 Interval Arithmetic Programming Reference • November 2005



Before You Begin

This manual documents the intrinsic INTERVAL data types in the Sun™ Studio
Fortran 95 compiler (f95).

Who Should Use This Book
This is a reference manual intended for programmers with a working knowledge of
the Fortran language, the Solaris™ Operating System (Solaris OS), and UNIX
commands.

How This Book Is Organized
This book contains the following two chapters:

Chapter 1 describes the goals for intrinsic interval support in f95 and provides code
samples that interval programmers can use to quickly learn more about the interval
features in f95. This chapter contains the essential information to get started writing
interval code using f95.

Chapter 2 is a complete description of the interval language extensions to f95.

Glossary contains definitions of interval terms.
xiii



What Is Not in This Book
This book is not an introduction to intervals and does not contain derivations of the
interval innovations included in f95. For a list of sources containing introductory
interval information, see the Interval Arithmetic Readme.

Related Interval References
The interval literature is large and growing. Interval applications exist in various
substantive fields. However, most interval books and journal articles either contain
new interval algorithms, or are written for interval analysts who are developing new
interval algorithms. There is not yet a book titled “Introduction to Intervals.”

The Sun Studio f95 compiler is not the only source of support for intervals. Readers
interested in other well known sources can refer to the following books:

■ IBM High Accuracy Arithmetic - Extended Scientific Computation (ACRITH-
XSC), General Information, GC 33-6461-01 IBM Corp., 1990.

■ R.Klatte, U.Kulisch, M.Neaga, D.Ratz, Ch.Ullrich, PASCAL-XSC Language
Reference With Examples, Springer, 1991.

■ R.Klatte, U.Kulisch, A.Wiethoff, C.Lawo, M. Rauch, C-XSC Class Library for
Extended Scientific Computing, Springer, 1993.

■ R.Hammer, M.Hocks, U.Kulisch, D.Ratz, Numerical Toolbox for Verified Computing I,
Basic Numerical Problems, Springer, 1993.

For a list of technical reports that establish the foundation for the interval
innovations implemented in f95, see Section 2.11, “References” on page 2-88. See the
Interval Arithmetic Readme for the location of the online versions of these
references.

Online Resources
Additional interval information is available at various web sites and by subscribing
to email lists. For a list of online resources, refer to the Interval Arithmetic Readme.
xiv Fortran 95 Interval Arithmetic Programming Reference • November 2005



Web Sites
A detailed bibliography and interval FAQ can be obtained online at the URLs listed
in the Interval Arithmetic Readme on the documentation pages at Sun Studio
developer’s portal:

http://developers.sun.com/sunstudio/

Forums
To discuss interval arithmetic issues or ask questions about using interval arithmetic,
use the Sun Studio C, C++, and Fortran forums at:

http://forum.sun.com/

Code Examples
All code examples in this book can be found on the Code Samples page of the Sun
Studio developer’s portal:

http://developers.sun.com/sunstudio/

The name of each file is cen-m.f95, where n is the chapter in which the example
occurs and m is the number of the example. Additional interval examples can be
found in the following directory:

/opt/SUNWspro/examples/intervalmath/general
Before You Begin xv

http://developers.sun.com/sunstudio/
http://developers.sun.com/sunstudio/
http://forum.sun.com/


Typographic Conventions

Note – Examples use math% as the system prompt.

TABLE P-1 Typeface Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Code samples, the names of
commands, files, and directories;
on-screen computer output

INTERVAL(4):: X = [2,3]

PRINT *, "X = ", X

AaBbCc123 What you type, contrasted with
on-screen computer output

math% f95 -xia test.f95

math% a.out

X = [2.0,3.0]

math%

^d Press the Control and d keys to
terminate an application

A, B = ^d

AaBbCc123 Placeholders for INTERVAL
language elements

The INTERVAL affirmative order
relational operators op ∈ {LT, LE, EQ,
GE, GT} are equivalent to the
mathematical operators

.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[ ] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for required option.

d{y|n} dy

op >,≥,=,≤,<{ }∈
xvi Fortran 95 Interval Arithmetic Programming Reference • November 2005



Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you
are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

In this document, the term "x86" refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product
families. For supported systems, see the hardware compatibility lists.

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…,fn] xinline=alpha,dos

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

TABLE P-2 Code Conventions (Continued)

Code
Symbol Meaning Notation Code Example
Before You Begin xvii

http://www.sun.com/bigadmin/hcl


Accessing Sun Studio Software and Man
Pages
The Sun Studio software and man pages are not installed into the standard
/usr/bin/ and /usr/share/man directories. To access the compilers and tools,
you must have your PATH environment variable set correctly (see “Accessing the
Software” on page xviii). To access the man pages, you must have the your
MANPATH environment variable set correctly (see “Accessing the Man Pages” on
page xix.).

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page.

Note – The information in this section assumes that your Sun Studio software is
installed in the /opt directory. If your software is not installed in the /opt directory,
ask your system administrator for the equivalent path on your system.

Accessing the Software
Use the steps below to determine whether you need to change your PATH variable to
access the software.

To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

% echo $PATH
xviii Fortran 95 Interval Arithmetic Programming Reference • November 2005



To Set Your PATH Environment Variable to Enable Access to
the Software

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable. If you have Forte
Developer software, Sun ONE Studio software, or another release of Sun Studio
software installed, add the following path before the paths to those installations.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

To Set Your MANPATH Environment Variable to Enable Access
to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

% man dbx
Before You Begin xix



Accessing the Integrated Development
Environment
The Sun Studio integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V.

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, if the path to the directory that contains the IDE is /foo/SUNWspro, the
command looks for the core platform in /foo/netbeans/3.5V.

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their
$PATH in front of the path to any other release of Forte Developer software, Sun
ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH..

Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.
xx Fortran 95 Interval Arithmetic Programming Reference • November 2005



■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html
Before You Begin xxi

http://docs.sun.com
http://docs.sun.com


Related Compilers and Tools Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.
xxii Fortran 95 Interval Arithmetic Programming Reference • November 2005

http://docs.sun.com
http://docs.sun.com


Resources for Developers
Visit http://developers.sun.com/sunstudio to find these frequently updated
resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL

http://www.sun.com/hwdocs/feedback

Please include the part number (819-3695-10) of your document.
Before You Begin xxiii

http://www.sun.com/hwdocs/feedback
http://www.sun.com/service/contacting
http://developers.sun.com
http://developers.sun.com/sunstudio


xxiv Fortran 95 Interval Arithmetic Programming Reference • November 2005



CHAPTER 1

Using Interval Arithmetic With f95

1.1 f95 INTERVAL Type and Interval
Arithmetic Support
Interval arithmetic is a system for computing with intervals of numbers. Because
interval arithmetic always produces intervals that contain the set of all possible
result values, interval algorithms have been developed to perform surprisingly
difficult computations. For more information on interval applications, see the
Interval Arithmetic Readme.

Since the inception of interval arithmetic, interval algorithms that produce narrow-
width results have been developed, and the syntax and semantics for interval
language support have been designed. However, relatively little progress has been
made in providing commercially available and supported interval compilers. With
one exception (M77 Minnesota FORTRAN 1977 Standards Version Edition 1),
interval systems have been based on pre-processors, C++ classes, or Fortran 90
modules. The goals of intrinsic compiler support for interval data types in f95 are:

■ Reliability
■ Speed
■ Ease-of-use

Sun Studio Fortran 95 interval support is a significant extension to Fortran.
1-1



1.2 f95 Interval Support Goal:
Implementation Quality
The goal of intrinsic INTERVAL support in f95 is to stimulate development of
commercial interval solver libraries and applications by providing program
developers with:

■ Quality interval code

■ Narrow-width interval results

■ Rapidly executing interval code

■ An easy to use interval software development environment that includes interval-
specific language support and compiler features

Support and features are components of implementation quality. Not all possible
quality of implementation features have been implemented. Throughout this book,
various unimplemented quality of implementation opportunities are described.
Additional suggestions from users are welcome.

1.2.1 Quality Interval Code
As a consequence of evaluating any interval expression, a valid interval-supporting
compiler must produce an interval that contains the set of all possible results. The
set of all possible results is called the containment set (cset) of the given expression.
The requirement to enclose an expression’s cset is the containment constraint of
interval arithmetic. The failure to satisfy the containment constraint is a containment
failure. A silent containment failure (with no warning or documentation) is a fatal
error in any interval computing system. By satisfying this single constraint, intervals
provide otherwise unprecedented computing quality.

Given the containment constraint is satisfied, implementation quality is determined
by the location of a point in the two-dimensional plane whose axes are runtime and
interval width. On both axes, small is better. How to trade runtime for interval width
depends on the application. Both runtime and interval width are obvious measures
of interval-system quality. Because interval width and runtime are always available,
measuring the accuracy of both interval algorithms and implementation systems is
no more difficult than measuring their speed.

The Sun Studio tools for performance profiling can be used to tune interval
programs. However, in f95, no interval-specific tools exist to help isolate where an
algorithm may gain unnecessary interval width. As described in Section 1.4, “Code
1-2 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Development Tools” on page 1-24, some interval dbx and global program checking
(GPC) support are provided. Adding additional interval-specific code development
and debugging tools are quality of implementation opportunities.

1.2.2 Narrow-Width Interval Results
All the normal language and compiler quality of implementation opportunities exist
for intervals, including rapid execution and ease-of-use.

Valid interval implementation systems include a new additional quality of
implementation opportunity: Minimize the width of computed intervals while
always satisfying the containment constraint.

If an interval’s width is as narrow as possible, it is said to be sharp. For a given
floating-point precision, an interval result is sharp if its width is as narrow as
possible.

The following can be said about the width of intervals produced by the f95
compiler:

■ Individual intervals are sharp approximations of constants.
■ Individual interval arithmetic operators produce sharp results.
■ Intrinsic mathematical functions usually produce sharp results.

1.2.3 Rapidly Executing Interval Code
By providing compiler optimization and hardware instruction support, INTERVAL
operations are not necessarily slower than their REAL floating-point counterparts. In
f95, the following can be said about the speed of intrinsic interval operators and
mathematical functions:

■ Arithmetic operations are reasonably fast.

■ The speed of default INTERVAL mathematical functions is generally less than
2 times that of their DOUBLE PRECISION counterparts. KIND = 4 intrinsic
interval math functions are provided, but are not tuned for speed (unlike their
KIND = 8 counterparts). KIND = 16 mathematical functions are not provided in
this release. However, other INTERVAL KIND = 16 functions are supported.

■ The following intrinsic INTERVAL array functions are optimized for performance:

■ SUM
■ PRODUCT
■ DOT_PRODUCT
■ MATMUL
Chapter 1 Using Interval Arithmetic With f95 1-3



1.2.4 Easy to Use Development Environment
The intrinsic INTERVAL data type in Fortran facilitates interval code development,
testing, and execution. To make interval code transparent (easy to write and read),
interval syntax and semantics have been added to Fortran. User acceptance will
ultimately determine which interval features are added to standard Fortran.

By introducing intervals as an intrinsic data type to Fortran, all of the applicable
syntax and semantics of the Fortran language become immediately available. Sun
Studio Fortran 95 includes the following interval-specific Fortran extensions:

■ INTERVAL data types

■ INTERVAL arithmetic operations and intrinsic mathematical functions form a
closed mathematical system. (This means that valid results are produced for any
possible operator-operand combination, including division by zero and other
indeterminate forms involving zero and infinities.)

■ Three classes of interval relational operators:

■ Certainly
■ Possibly
■ Set

■ Intrinsic INTERVAL-specific operators, such as .IX. (intersection) and .IH.
(interval hull)

■ INTERVAL-specific functions, such as INF, SUP, and WID

■ INTERVAL single-number input/output

■ Expression-context-dependent INTERVAL constants

■ Interval-specific mixed-mode (kind type parameter value (KTPV) and/or type)
expression processing

For examples and more information on these and other intrinsic interval functions,
see CODE EXAMPLE 1-11 through CODE EXAMPLE 1-14 and Section 2.10.4.5, “Intrinsic
Functions” on page 2-83.

Chapter 2 contains detailed descriptions of these and other interval features.

1.3 Writing Interval Code for f95
The examples in this section are designed to help new interval programmers to
understand the basics and to quickly begin writing useful interval code. Modifying
and experimenting with the examples is strongly recommended.
1-4 Fortran 95 Interval Arithmetic Programming Reference • November 2005



All code examples in this book are contained in the directory:

/opt/SUNWspro/examples/intervalmath/docExamples

The name of each file is cen-m.f95, where n is the chapter in which the example
occurs, and m is the number of the example. Additional interval examples are
contained in the directory:

/opt/SUNWspro/examples/intervalmath/general

1.3.1 Command-Line Options
The following f95 command-line macro is the simplest way to invoke recognition of
INTERVAL data types as intrinsic and to control INTERVAL expression processing:

■ Compiler support for widest-need interval expression processing is invoked by
including:

-xia or -xia=widestneed

■ Compiler support for strict interval expression processing is invoked by
including:

-xia=strict

For intrinsic INTERVAL data types to be recognized by the compiler, either -xia or
-xinterval must be entered in the f95 command line.

All command-line options that interact with intervals are described in Section 2.3.3,
“Interval Command-Line Options” on page 2-12. Widest-need and strict expression
processing are described in Section 2.3, “INTERVAL Arithmetic Expressions” on
page 2-8.

The simplest command-line invocation of f95 with interval support is shown in
CODE EXAMPLE 1-1.

1.3.2 Hello Interval World
Unless explicitly stated otherwise, all code examples are compiled using the -xia
command-line option. The -xia or -xinterval command-line option is required
to use the interval extensions to f95.
Chapter 1 Using Interval Arithmetic With f95 1-5



CODE EXAMPLE 1-1 is the interval equivalent of “hello world.”

CODE EXAMPLE 1-1 uses list-directed output to print the labeled sum of the intervals
[2, 3] and [4, 5].

1.3.3 Interval Declaration and Initialization
The INTERVAL declaration statement performs the same functions for INTERVAL
data items as the REAL, INTEGER, and COMPLEX declarations do for their respective
data items. The default INTERVAL kind type parameter value (KTPV) is twice the
default INTEGER KTPV. This permits any default INTEGER to be exactly represented
using a degenerate default INTERVAL. See Section 1.3.7, “Default Kind Type
Parameter Value (KTPV)” on page 1-12 for more information.

CODE EXAMPLE 1-2 uses INTERVAL variables and initialization to perform the same
operation as CODE EXAMPLE 1-1.

In line 1, the variables, X and Y are declared to be default type INTERVAL variables
and are initialized to [2, 3] and [4, 5], respectively. Line 2 uses list-directed output to
print the labeled interval sum of X and Y.

CODE EXAMPLE 1-1 Hello Interval World

math% cat ce1-1.f95

PRINT *, "[2, 3] + [4, 5] = ", [2, 3] + [4, 5]    ! line 1

END

math% f95 -xia ce1-1.f95

math% a.out

 [2, 3] + [4, 5] =  [6.0,8.0]

CODE EXAMPLE 1-2 Hello Interval World With INTERVAL Variables

math% cat ce1-2.f95

INTERVAL :: X = [2, 3], Y = [4, 5]   ! Line 1

PRINT *, "[2, 3] + [4, 5] = ", X+Y   ! Line 2

END

math% f95 -xia ce1-2.f95

math% a.out

 [2, 3] + [4, 5] =  [6.0,8.0]
1-6 Fortran 95 Interval Arithmetic Programming Reference • November 2005



1.3.4 INTERVAL Input/Output
Full support for reading and writing intervals is provided. Reading and writing
INTERVAL and COMPLEX data items are similar. Intervals use square brackets,
instead of parentheses as delimiters.

In f95 the input conversion process constructs a sharp interval that contains the
input decimal value. If the value is machine representable, the internal machine
approximation is degenerate. If the value is not machine representable, an interval
having width of 1-ulp (unit-in-the-last-place of the mantissa, pronounced “ulp”) is
constructed.

The simplest way to read and print INTERVAL data items is with list-directed input
and output.

CODE EXAMPLE 1-3 is a simple tool to help users become familiar with interval
arithmetic and single-number INTERVAL input/output using list-directed READ and
PRINT statements. Complete support for formatted INTERVAL input/output is
provided, as described in Section 2.10.2, “Input and Output” on page 2-60.

Note – The interval containment constraint requires that directed rounding be used
during input and output. With single-number input followed immediately by single-
number output, a decimal digit of accuracy can appear to be lost. In fact, the width
of the input interval is increased by at most 1-ulp, when the input value is not
machine representable. See Section 1.3.5, “Single-Number Input/Output” on
page 1-8 and CODE EXAMPLE 1-6

CODE EXAMPLE 1-3 Interval Input/Output

math% cat ce1-3.f95

   INTERVAL ::  X, Y

   INTEGER  :: IOS = 0

   PRINT *, "Press Control/D to terminate!"

   WRITE(*, 1, ADVANCE = 'NO')

   READ(*, *, IOSTAT = IOS) X, Y

   DO WHILE (IOS >= 0)

       PRINT *, " For X =", X, ", and Y =", Y

       PRINT *, "X+Y =", X+Y

       PRINT *, "X-Y =", X-Y

       PRINT *, "X*Y =", X*Y

       PRINT *, "X/Y =", X/Y

       PRINT *, "X**Y =", X**Y

       WRITE(*, 1, ADVANCE = 'NO')

       READ(*, *, IOSTAT=IOS) X, Y
Chapter 1 Using Interval Arithmetic With f95 1-7



Note – The empty interval is supported in f95. The empty interval can be entered
as "[empty]". Infinite interval endpoints are also supported, as described in
Section 2.10.2.1, “External Representations” on page 2-60 and illustrated in
CODE EXAMPLE 2-37.

1.3.5 Single-Number Input/Output
One of the most frustrating aspects of reading interval output is comparing interval
infima and suprema to count the number of digits that agree. For example,
CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5 shows the interval output of a program
that generates different random width INTERVAL data.

   END DO

1  FORMAT(" X, Y = ? ")

   END

%math f95 -xia ce1-3.f95

%math a.out

 Press Control/D to terminate!

 X, Y = ? [1,2] [3,4]

 For X = [1.0,2.0] , and Y = [3.0,4.0]

 X+Y = [4.0,6.0]

 X-Y = [-3.0,-1.0]

 X*Y = [3.0,8.0]

 X/Y = [0.25,0.66666666666666675]

 X**Y = [1.0,16.0]

 X, Y = ? [1,2] -inf

 For X = [1.0,2.0] , and Y = [-Inf,-1.7976931348623157E+308]

 X+Y = [-Inf,-1.7976931348623155E+308]

 X-Y = [1.7976931348623157E+308,Inf]

 X*Y = [-Inf,-1.7976931348623157E+308]

 X/Y = [-1.1125369292536012E-308,0.0E+0]

 X**Y = [0.0E+0,Inf]

 X, Y = ? ^d

CODE EXAMPLE 1-3 Interval Input/Output (Continued)
1-8 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Note – Only program output is shown in CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5.
The code that generates the output is included with the examples locatedat
http://developer.sun.com/prodtech/cc/reference/codesamples/

Compare the output readability in CODE EXAMPLE 1-4 with CODE EXAMPLE 1-5.

CODE EXAMPLE 1-4 [inf, sup] Interval Output

%math f95 -xia ce1-4.f95
%math a.out
Press Control/D to terminate!
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,4,0
[ 0.2017321E-029, 0.2017343E-029]
[ 0.2176913E-022, 0.2179092E-022]
[-0.3602303E-006,-0.3602302E-006]
[-0.3816341E+038,-0.3816302E+038]
[-0.1011276E-039,-0.1011261E-039]
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,8,0
[ -0.3945547546440221E+035, -0.3945543600894656E+035]
[  0.5054960140922359E-270,  0.5054960140927415E-270]
[ -0.2461623589326215E-043, -0.2461623343163864E-043]
[ -0.2128913523672577E+204, -0.2128913523672576E+204]
[ -0.3765492464030608E-072, -0.3765492464030606E-072]
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,16,0
[  0.199050353252318620256245071374058E+055,
0.199050353252320610759742664557447E+055]
[ -0.277386431989417915223682516437493E+203,
-0.277386431989417915195943874118822E+203]
[  0.132585288598265472316856821380503E+410,
0.132585288598265472316856822706356E+410]
[  0.955714436647437881071727891682804E+351,
0.955714436647437881071727891683760E+351]
[ -0.224211897768824210398306994401732E+196,
-0.224211897768824210398306994177519E+196]
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: ^d

CODE EXAMPLE 1-5 Single-Number Output

%math a.out
 Press Control/D to terminate!
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,4,1
     0.20173  E-029
     0.218    E-022
    -0.3602303E-006
Chapter 1 Using Interval Arithmetic With f95 1-9

http://developer.sun.com/prodtech/cc/reference/codesamples/


Because reading and interactively entering interval data can be tedious, a single-
number interval format is introduced. The single-number convention is that any
number not contained in brackets is interpreted as an interval whose lower and
upper bounds are constructed by subtracting and adding 1 unit to the last displayed
digit.

Thus during interval input and output,

2.345 = [2.344, 2.346],

2.34500 = [2.34499, 2.34501],

and

23 = [22, 24].

Symbolically,

[2.34499, 2.34501] = 2.34500 + [-1, +1]uld

where [-1, +1]uld means that the interval [-1, +1] is added to the last digit of the
preceding number. The subscript, uld, is a mnemonic for “unit in the last digit.”

Note – The single number input/output representation is not used to represent
INTERVAL literal constants in f95 code.

To represent a degenerate interval, a single number can be enclosed in square
brackets. For example,

[2.345] = [2.345, 2.345] = 2.345000000000.....

    -0.38163  E+038
    -0.10112  E-039
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,8,1
     -0.394554          E+035
      0.505496014092    E-270
     -0.2461623         E-043
     -0.2128913523672577E+204
     -0.3765492464030607E-072
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,16,1
         0.19905035325232                   E+055
        -0.2773864319894179152              E+203
         0.132585288598265472316856822      E+410
         0.955714436647437881071727891683   E+351
        -0.224211897768824210398306994      E+196
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: ^d

CODE EXAMPLE 1-5 Single-Number Output (Continued)
1-10 Fortran 95 Interval Arithmetic Programming Reference • November 2005



This convention is used both for single-number input/output and to represent
degenerate literal INTERVAL constants in Fortran code. Thus, type [0.1] to enter an
exact decimal number, even though 0.1 is not machine representable.

During input to a program, both [0.1,0.1] and [0.1] represents the point, 0.1.
However, the single-number input/output value 0.1 represents the interval

0.1 + [-1, +1]uld = [0, 0.2].

Note – A uld and an ulp are different. A uld refers to the construction of an interval
using the single number input/output format to add and subtract one unit to and
from the last displayed digit. An ulp is the smallest possible increment or decrement
that can be made to an internal machine number.

In the single-number display format, trailing zeros are significant. See Section 2.10.2,
“Input and Output” on page 2-60 for more information.

Intervals can always be entered and displayed using the traditional [inf, sup] display
format. In addition, a single number in square brackets denotes a point. For
example, on input, [0.1] is interpreted as the number 1/10. To guarantee
containment, directed rounding is used to construct an internal approximation that
is known to contain the number 1/10.

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion

math% cat ce1-6.f95
   INTERVAL :: X
   INTEGER  :: IOS = 0
   CHARACTER*30 BUFFER
   PRINT *, "Press Control/D to terminate!"
   WRITE(*, 1, ADVANCE='NO')
   READ(*, '(A12)', IOSTAT=IOS) BUFFER
   DO WHILE (IOS >= 0)
     PRINT *, ' Your input was: ', BUFFER
     READ(BUFFER, '(Y12.16)') X
     PRINT *, "Resulting stored interval is:", X
       PRINT '(A, Y12.2)', ' Single number interval output  is:', X
     WRITE(*, 1, ADVANCE='NO')
     READ(*, '(A12)', IOSTAT=IOS) BUFFER
   END DO
1  FORMAT(" X = ? ")
   END
math% f95 -xia ce1-6.f95
math% a.out
 Press Control/D to terminate!
 X = ? 1.37
Chapter 1 Using Interval Arithmetic With f95 1-11



CODE EXAMPLE 1-6 notes:

■ Single numbers in square brackets represent degenerate intervals.

■ When a non-machine representable number is read using single-number input,
conversion from decimal to binary (radix conversion) and the containment
constraint force the number’s interval width to be increased by 1-ulp (unit in the
last place of the mantissa). When this result is displayed using single-number
output, it can appear that a decimal digit of accuracy has been lost. This is not so.
To echo single-number interval inputs, use character input together with internal
READ statement data conversion, as shown in CODE EXAMPLE 1-6.

1.3.6 Interval Statements and Expressions
The f95 compiler contains the following INTERVAL-specific statements, expressions,
and extensions:

■ The INTERVAL data type, related instructions, and statements described in
TABLE 1-1 are supported.

■ All intrinsic functions that accept real arguments have corresponding interval
versions.

■ A number of intrinsic INTERVAL-specific functions and operators have been
added, including INTERVAL-specific relational operators and set-theoretic
functions. For a complete of intrinsic INTERVAL functions and INTERVAL
operators, see Section 2.10.3, “Intrinsic INTERVAL Functions” on page 2-78 and
Section 2.10.4, “Mathematical Functions” on page 2-79

1.3.7 Default Kind Type Parameter Value (KTPV)
In f95 the default INTEGER KTPV is KIND(0) = 4. To represent any default
INTEGER with a degenerate default INTERVAL requires the default INTERVAL KTPV,
KIND([0]), to be 2*KIND(0) = 8. Choosing 8 for the default INTERVAL KTPV is
also done because:

 Your input was: 1.37
 Resulting stored interval is: [1.3599999999999998,1.3800000000000002]
 Single number interval output  is:  1.3
 X = ? 1.444
 Your input was: 1.444
 Resulting stored interval is: [1.4429999999999998,1.4450000000000001]
 Single number interval output  is:  1.44
 X = ? ^d

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion (Continued)
1-12 Fortran 95 Interval Arithmetic Programming Reference • November 2005



■ Intervals are often used to perform numerically intense computations, as have
been performed on CDC and Cray machines.

■ When evaluating a single arithmetic expression, the width of intervals necessarily
grows because of accumulated rounding errors, dependence, and cancellation.
Extra precision can help to reduce the effect of accumulated rounding errors and
cancellation. Other means are required to reduce or eliminate the effect of
dependence.

TABLE 1-1 notes:

1. The letters a and b are placeholders for literal decimal constants, such as 0.1 and
0.2.

2. A single decimal constant contained in square brackets denotes a degenerate
INTERVAL constant. The same convention is used in input/output.

3. Let expr stand for any Fortran arithmetic expression, whether or not it contains
items of type INTERVAL. An assignment statement, V = expr, evaluates the
expression, expr, and assigns the resulting value to V. Mixed-mode INTERVAL
expressions are not permitted under the -xia=strict command line option.
Under the -xia or -xia=widestneed option, mixed-mode expressions are
correctly evaluated using widest-need expression processing. Before expression
evaluation under widest-need, all integer and floating-point data items are
promoted to containing intervals with the largest KTPV found anywhere in the
expression, including, V. For details, see Section 2.3.2, “Value Assignment” on
page 2-10.

TABLE 1-1 INTERVAL Specific Statements and Expressions

Statement/expression Description

INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(16)

Default INTERVAL type declaration
KIND=4 INTERVAL

KIND=8 INTERVAL

KIND=16 INTERVAL

[a,b] See Note 1 Literal INTERVAL constant: [a,b]

[a] See Note 2 [a,a]

INTERVAL A

PARAMETER A=[c,d] Named constant: A

V = expr See Note 3 Value assignment

FORMAT(E, EN, ES, F, G, VE,

VF, VG, VEN, VES, Y) See Note 4
E, EN, ES, F, G, VE, VF, VG,

VEN, VES, Y edit descriptors
Chapter 1 Using Interval Arithmetic With f95 1-13



4. Interval input/output support is designed to provide flexibility, readability, and
ease of code development. The most important new edit descriptor is Y, which is
used to read and display intervals using the single-number interval format. For a
complete description of all edit descriptors that can process intervals, see
Section 2.10.2, “Input and Output” on page 2-60.

1.3.8 Value Assignment V = expr

The INTERVAL assignment statement assigns the value of an interval expression,
denoted by the placeholder expr, to an INTERVAL variable, array element, array,
array section, or structure component V. The syntax is:

V = expr

where V must have an INTERVAL type, and expr denotes any non-COMPLEX
numeric expression. Under widest-need expression processing, the expression expr
need not be an INTERVAL expression. Under strict expression processing, expr must
be an INTERVAL expression with the same KTPV as V.

1.3.9 Mixed-Type Expression Evaluation
Gracefully handling mixed-type INTERVAL expressions is an important ease-of-use
feature, because it facilitates writing transparent (easy to understand) mathematical
expressions.

Mixed-type INTERVAL expressions are supported to make writing and reading
interval code no more difficult than it is for REAL code. The interval containment
constraint is satisfied in mixed-mode expressions using either widest-need or strict
expression processing.

1.3.9.1 Widest-Need and Strict Expression Processing

Computing narrow-width interval results is facilitated if the width of INTERVAL
constants is dynamically defined by expression context, as described in Section 2.3,
“INTERVAL Arithmetic Expressions” on page 2-8. In mixed-KTPV expressions,
shown in CODE EXAMPLE 1-7, dynamically increasing the KTPV of INTERVAL
variables can also decrease the width of INTERVAL expression results.

CODE EXAMPLE 1-7 Mixed Precision With Widest-Need

math% cat ce1-7.f95

INTERVAL(4) :: X = [1, 2], Y = [3, 4]
1-14 Fortran 95 Interval Arithmetic Programming Reference • November 2005



In line 3, KTPVmax = KIND(Z) = 8. This value is used to promote the KTPV of X and
Y to 8 before computing their product and storing the result in Z1.

These steps are shown explicitly in the equivalent strict code in line 4.

The process of scanning a statement to determine the maximum KTPV and
performing the necessary promotions, is called widest-need expression processing,
see Section 2.3, “INTERVAL Arithmetic Expressions” on page 2-8.

For syntax and semantics of the intrinsic INTERVAL constructor functions, see
Section 2.9, “Extending Intrinsic INTERVAL Operators” on page 2-30.

1.3.9.2 Mixed-Mode (Type and KTPV) Expressions

If the widest-need principle is used with both KTPVs and data types, mixed-mode
(type and KTPV) INTERVAL expressions can be safely and predictably evaluated. For
example, in CODE EXAMPLE 1-8, the expression for Y1 in line 3 is an interval
expression, because X and Y1 are INTERVAL variables.

INTERVAL    :: Z1, Z2

! Widest-need Code

Z1 = X*Y                                        ! Line 3

! Equivalent Strict Code

Z2 = INTERVAL(X, KIND=8)*INTERVAL(Y, KIND=8)    ! Line 4

IF (Z1 .SEQ. Z2)  PRINT *, ’Check.’

END

math% f95 -xia ce1-7.f95

math% a.out

 Check.

CODE EXAMPLE 1-8 Mixed Types With Widest-Need

math% cat ce1-8.f95
INTERVAL(16) :: X = [0.1, 0.3]
INTERVAL(4)  :: Y1, Y2

! Widest-need code
 Y1 = X + 0.1                               ! Line 3

! Equivalent strict code
 Y2 = INTERVAL(X + [0.1_16], KIND=4)        ! Line 4

CODE EXAMPLE 1-7 Mixed Precision With Widest-Need (Continued)
Chapter 1 Using Interval Arithmetic With f95 1-15



To guarantee containment, a containing interval must be used in place of a real
approximation to the constant 0.1. However, KTPVmax = 16, because KIND(X) = 16.
Therefore, the INTERVAL constant [0.1_16], a sharp KTPV = 16 interval containing
the exact value, 1/10, is used to update X. Finally, the result is converted to a
KTPV = 4 containing interval and assigned to Y1. Line 4 contains the equivalent
strict code. Under strict expression processing, neither mixed-type nor mixed-KTPV
expressions are permitted.

The logical steps in widest-need expression processing are:

1. Scan the entire statement, including the left-hand side, for any INTERVAL data
items.

The presence of any INTERVAL constants, variables, or intrinsic functions, makes the
expression’s type INTERVAL.

2. Scan the INTERVAL expressions for KTPVmax, based on the KTPV of each
INTERVAL, REAL, INTEGER, constant, or variable.

Note – Integers are converted to intervals with twice their KTPV so all integer
values can be exactly represented.

3. Promote all variables and constants to intervals with KTPVmax.

4. Evaluate the expression.

5. Convert the result to a lower KTPV if needed to match the left-hand side’s KTPV.

6. Assign the resulting value to the left-hand side.

These steps guarantee that mixed-mode INTERVAL expression processing satisfies
the containment constraint and efficiently produces reasonably narrow interval
results.

Mixed-mode INTERVAL expression evaluation using widest-need expression
processing is supported by default with the -xia command-line flag. Using -xia=
strict eliminates any automatic type conversions to intervals and any automatic
KTPV increases of INTERVAL variables. In strict mode, all interval type and
precision conversions must be explicitly coded.

 IF (Y1 == Y2) PRINT *, "Check"
END

math% f95 -xia ce1-8.f95
math% a.out
 Check

CODE EXAMPLE 1-8 Mixed Types With Widest-Need (Continued)
1-16 Fortran 95 Interval Arithmetic Programming Reference • November 2005



1.3.10 Arithmetic Expressions
Writing arithmetic expressions that contain INTERVAL data items is simple and
straightforward. Except for INTERVAL literal constants and intrinsic INTERVAL-
specific functions, INTERVAL expressions look like REAL arithmetic expressions. In
particular, with widest-need expression processing, REAL and INTEGER variables
and literal constants can be freely used anywhere in an INTERVAL expression, such
as in CODE EXAMPLE 1-9.

Because X, the variable to which the assignment is made in line 5, is an INTERVAL,
the following steps are taken before evaluating the expression 0.1*A/N:

1. The literal constant 0.1 is converted to the default INTERVAL variable containing
the degenerate interval [0.1].

While not required in a valid interval system implementation, Sun Studio Fortran
95 performs sharp data conversions. For example, the internal approximation of
[0.1] is 1-ulp wide.

2. The REAL variable A is converted to the degenerate interval [5].

3. The INTEGER variable N is converted to the degenerate interval [3].

The expression [0.1] × [5]/[3] is evaluated using interval arithmetic. The above steps
are part of widest-need expression processing, which is required to satisfy the
containment constraint when evaluating mixed-mode INTERVAL expressions. See
Section 1.3.9, “Mixed-Type Expression Evaluation” on page 1-14.

CODE EXAMPLE 1-9 Simple INTERVAL Expression Example

math% cat ce1-9.f95

INTEGER  :: N = 3

REAL     :: A = 5.0

INTERVAL :: X

X = 0.1*A/N                     ! Line 5

PRINT *, "0.1*A/N = ", X

END

math% f95 -xia ce1-9.f95

math% a.out

 0.1*A/N =  [0.16666666666666662,0.16666666666666672]
Chapter 1 Using Interval Arithmetic With f95 1-17



An INTERVAL assignment statement must satisfy one requirement: the variable to
which the assignment is made must be an INTERVAL variable, array element, array,
array section, or structure component. For more information on the widest-need
processing mode, see Section 2.3.1, “Mixed-Mode INTERVAL Expressions” on
page 2-9.

Because the interval system implemented in Sun Studio Fortran 95 is closed, if any
INTERVAL expression fails to produce a valid interval result, it is a compiler error
that should be reported. See Section 1.4, “Code Development Tools” on page 1-24 for
information on how to report a suspected error and Section 1.5.1, “Known
Containment Failures” on page 1-29 for a list of known errors.

Note – Not all cset equivalent INTERVAL expressions produce intervals having the
same width. Additionally, it is often not possible to compute a sharp result by
simply evaluating a single INTERVAL expression. In general, interval result width
depends on the value of INTERVAL arguments and the form of the expression.

1.3.11 Interval Order Relations
Ordering intervals is more complicated than ordering points. Testing whether 2 is
less than 3 is unambiguous. With intervals, while the interval [2,3] is certainly less
than the interval [4,5], what should be said about [2,3] and [3,4]?

Three different classes of INTERVAL relational operators are implemented:

■ certainly
■ possibly
■ set

For a certainly-relation to be true, every element of the operand intervals must
satisfy the relation. A possibly-relation is true if it is satisfied by any elements of the
operand intervals. The set-relations treat intervals as sets. The three classes of
INTERVAL relational operators converge to the normal relational operators on points
if both operand intervals are degenerate.

To distinguish the three operator classes, the normal two-letter Fortran relation
mnemonics are prefixed with the letters C, P, or S. In f95 the set operators .SEQ. and
.SNE. are the only operators for which the point defaults (.EQ. or == and .NE. or
/=) are supported. In all other cases, the relational operator class must be explicitly
identified, as for example in:

■ .CLT. certainly less than
■ .PLT. possibly less than
■ .SLT. set less than
1-18 Fortran 95 Interval Arithmetic Programming Reference • November 2005



See Section 2.4, “Intrinsic Operators” on page 2-15 for the syntax and semantics of all
INTERVAL operators.

The following program demonstrates the use of a set-equality test.

Line 2 uses the set-equality test to verify that X+Y is equal to the interval [6, 8].

An equivalent line 2 is:

IF(X+Y == [6, 8]) PRINT *, "Check." ! line 2

Use CODE EXAMPLE 1-11 and CODE EXAMPLE 1-12 to explore the result of INTERVAL-
specific relational operators.

CODE EXAMPLE 1-10 Set-Equality Test

math% cat ce1-10.f95

INTERVAL :: X = [2, 3], Y = [4, 5]        ! Line 1

IF(X+Y .SEQ. [6, 8]) PRINT *, "Check."    ! Line 2

END

math% f95 -xia ce1-10.f95

math% a.out

 Check.

CODE EXAMPLE 1-11 Interval Relational Operators

math% cat ce1-11.f95

   INTERVAL ::  X, Y

   INTEGER  :: IOS = 0

   PRINT *, "Press Control/D to terminate!"

   WRITE(*, 1, ADVANCE=’NO’)

   READ(*, *, IOSTAT=IOS) X, Y

   DO WHILE (IOS >= 0)

       PRINT *, " For X =", X, ", and Y =", Y

       PRINT *, ’X .CEQ. Y, X .PEQ. Y, X .SEQ. Y =’, &

                 X .CEQ. Y, X .PEQ. Y, X .SEQ. Y

       PRINT *, ’X .CNE. Y, X .PNE. Y, X .SNE. Y =’, &

                 X .CNE. Y, X .PNE. Y, X .SNE. Y

       PRINT *, ’X .CLE. Y, X .PLE. Y, X .SLE. Y =’, &

                 X .CLE. Y, X .PLE. Y, X .SLE. Y

       PRINT *, ’X .CLT. Y, X .PLT. Y, X .SLT. Y =’, &

                 X .CLT. Y, X .PLT. Y, X .SLT. Y

       PRINT *, ’X .CGE. Y, X .PGE. Y, X .SGE. Y =’, &

                 X .CGE. Y, X .PGE. Y, X .SGE. Y
Chapter 1 Using Interval Arithmetic With f95 1-19



CODE EXAMPLE 1-12 demonstrates the use of the INTERVAL-specific operators ed in
TABLE 1-2.

       PRINT *, ’X .CGT. Y, X .PGT. Y, X .SGT. Y =’, &

                 X .CGT. Y, X .PGT. Y, X .SGT. Y

       WRITE(*, 1, ADVANCE=’NO’)

       READ(*, *, IOSTAT=IOS) X, Y

   END DO

1  FORMAT( " X, Y = ")

   END

math% f95 -xia ce1-11.f95

math% a.out

 Press Control/D to terminate!

 X, Y = [2] [3]

 For X = [2.0,2.0] , and Y = [3.0,3.0]

 X .CEQ. Y, X .PEQ. Y, X .SEQ. Y = F F F

 X .CNE. Y, X .PNE. Y, X .SNE. Y = T T T

 X .CLE. Y, X .PLE. Y, X .SLE. Y = T T T

 X .CLT. Y, X .PLT. Y, X .SLT. Y = T T T

 X .CGE. Y, X .PGE. Y, X .SGE. Y = F F F

 X .CGT. Y, X .PGT. Y, X .SGT. Y = F F F

 X, Y = 2 3

 For X = [1.0,3.0] , and Y = [2.0,4.0]

 X .CEQ. Y, X .PEQ. Y, X .SEQ. Y = F T F

 X .CNE. Y, X .PNE. Y, X .SNE. Y = F T T

 X .CLE. Y, X .PLE. Y, X .SLE. Y = F T T

 X .CLT. Y, X .PLT. Y, X .SLT. Y = F T T

 X .CGE. Y, X .PGE. Y, X .SGE. Y = F T F

 X .CGT. Y, X .PGT. Y, X .SGT. Y = F T F

 X, Y = ^d

TABLE 1-2 Interval-Specific Operators

Operator Name Mathematical Symbol

.IH. Interval Hull ∪

.IX. Intersection ∩

.DJ. Disjoint

.IN. Element ∈

.INT. Interior See Section 2.8.3, “Interior: (X .INT. Y)”
on page 2-25.

CODE EXAMPLE 1-11 Interval Relational Operators (Continued)

A B∩ ∅=
1-20 Fortran 95 Interval Arithmetic Programming Reference • November 2005



.PSB. Proper Subset ⊂

.PSP. Proper Superset ⊃

.SB. Subset ⊆

.SP. Superset ⊇

CODE EXAMPLE 1-12 Set Operators

math% cat ce1-12.f95

   INTERVAL ::  X, Y

   INTEGER  :: IOS = 0

   REAL(8)  :: R = 1.5

   PRINT *, "Press Control/D to terminate!"

   WRITE(*, 1, ADVANCE=’NO’)

   READ(*, *, IOSTAT=IOS) X, Y

   DO WHILE (IOS >= 0)

       PRINT *, " For X =", X, ", and Y =", Y

       PRINT *, ’X .IH.  Y =’, X .IH. Y

       PRINT *, ’X .IX.  Y =’, X .IX. Y

       PRINT *, ’X .DJ.  Y =’, X .DJ. Y

       PRINT *, ’R .IN.  Y =’, R .IN. Y

       PRINT *, ’X .INT. Y =’, X .INT. Y

       PRINT *, ’X .PSB. Y =’, X .PSB. Y

       PRINT *, ’X .PSP. Y =’, X .PSP. Y

       PRINT *, ’X .SP.  Y =’, X .SP. Y

       PRINT *, ’X .SB.  Y =’, X .SB. Y

       WRITE(*, 1, ADVANCE=’NO’)

       READ(*, *, IOSTAT=IOS) X, Y

   END DO

1  FORMAT(" X, Y = ? ")

   END

math% f95 -xia ce1-12.f95

math% a.out

 Press Control/D to terminate!

 X, Y = ? [1] [2]

 For X = [1.0,1.0] , and Y = [2.0,2.0]

 X .IH.  Y = [1.0,2.0]

 X .IX.  Y = [EMPTY]

 X .DJ.  Y = T

 R .IN.  Y = F

TABLE 1-2 Interval-Specific Operators (Continued)

Operator Name Mathematical Symbol
Chapter 1 Using Interval Arithmetic With f95 1-21



1.3.12 Intrinsic INTERVAL-Specific Functions
A variety of intrinsic INTERVAL-specific functions are provided. See Section 2.10.4.5,
“Intrinsic Functions” on page 2-83. Use CODE EXAMPLE 1-13 to explore how intrinsic
INTERVAL functions behave.

 X .INT. Y = F

 X .PSB. Y = F

 X .PSP. Y = F

 X .SP.  Y = F

 X .SB.  Y = F

 X, Y = ? [1,2] [1,3]

 For X = [1.0,2.0] , and Y = [1.0,3.0]

 X .IH.  Y = [1.0,3.0]

 X .IX.  Y = [1.0,2.0]

 X .DJ.  Y = F

 R .IN.  Y = T

 X .INT. Y = F

 X .PSB. Y = T

 X .PSP. Y = F

 X .SP.  Y = F

 X .SB.  Y = T

 X, Y = ? ^d

CODE EXAMPLE 1-13 Intrinsic INTERVAL-Specific Functions

math% cat ce1-13.f95

   INTERVAL ::  X, Y

   PRINT *, "Press Control/D to terminate!"

   WRITE(*, 1, ADVANCE=’NO’)

   READ(*, *, IOSTAT=IOS) X

   DO WHILE (IOS >= 0)

       PRINT *, " For X =", X

       PRINT *, ’MID(X)= ’, MID(X)

       PRINT *, ’MIG(X)= ’, MIG(X)

       PRINT *, ’MAG(X)= ’, MAG(X)

       PRINT *, ’WID(X)= ’, WID(X)

       PRINT *, ’NDIGITS(X)= ’, NDIGITS(X)

       WRITE(*, 1, ADVANCE=’NO’)

CODE EXAMPLE 1-12 Set Operators (Continued)
1-22 Fortran 95 Interval Arithmetic Programming Reference • November 2005



1.3.13 Interval Versions of Standard Intrinsic Functions
Every Fortran intrinsic function that accepts REAL arguments has an interval
version. See Section 2.10.4.5, “Intrinsic Functions” on page 2-83. Use
CODE EXAMPLE 1-14 to explore how some intrinsic functions behave.

       READ(*, *, IOSTAT=IOS) X

   END DO

1  FORMAT(" X = ?")

   END

math% f95 -xia ce1-13.f95

math% a.out

 Press Control/D to terminate!

 X = ?[1.23456,1.234567890]

 For X = [1.2345599999999998,1.2345678900000002]

 MID(X)=  1.234563945

 MIG(X)=  1.2345599999999998

 MAG(X)=  1.2345678900000001

 WID(X)=  7.890000000232433E-6

 NDIGITS(X)=  6

 X = ?[1,10]

 For X = [1.0,10.0]

 MID(X)=  5.5

 MIG(X)=  1.0

 MAG(X)=  10.0

 WID(X)=  9.0

 NDIGITS(X)=  1

 X = ? ^d

CODE EXAMPLE 1-14 Interval Versions of Standard Intrinsic Functions

math% cat ce1-14.f95

   INTERVAL :: X, Y

   INTEGER  :: IOS = 0

   PRINT *, "Press Control/D to terminate!"

   WRITE(*, 1, ADVANCE=’NO’)

   READ(*, *, IOSTAT=IOS) X

   DO WHILE (ios >= 0)

      PRINT *, "For X =", X

CODE EXAMPLE 1-13 Intrinsic INTERVAL-Specific Functions (Continued)
Chapter 1 Using Interval Arithmetic With f95 1-23



1-24 Fortran 95 Interval Arithmetic Programming Reference • November 2005

1.4 Code Development Tools
Information on interval code development tools is available online. See the Interval
Arithmetic Readme for a list of interval web sites and other online resources.

To report a suspected interval error, send email to

sun-dp-comments@Sun.COM

Include the following text in the Subject line of the email message:

FORTEDEV "7.0 mm/dd/yy" Interval

where mm/dd/yy is the month, day, and year.

      PRINT *, ’ABS(X) = ’, ABS(X)

      PRINT *, ’LOG(X) = ’, LOG(X)

      PRINT *, ’SQRT(X)= ’, SQRT(X)

      PRINT *, ’SIN(X) = ’, SIN(X)

      PRINT *, ’ACOS(X)= ’, ACOS(X)

      WRITE(*, 1, ADVANCE=’NO’)

      READ(*, *, IOSTAT=IOS) X

   END DO

1  FORMAT(" X = ?")

   END

math% f95 -xia ce1-14.f95

math% a.out

 Press Control/D to terminate!

 X = ?[1.1,1.2]

For X = [1.0999999999999998,1.2000000000000002]

 ABS(X) =  [1.0999999999999998,1.2000000000000002]

 LOG(X) =  [0.095310179804324726,0.18232155679395479]

 SQRT(X)=  [1.0488088481701514,1.0954451150103324]

 SIN(X) =  [0.89120736006143519,0.93203908596722652]

 ACOS(X)=  [EMPTY]

 X = ?[-0.5,0.5]

For X = [-0.5,0.5]

 ABS(X) =  [0.0E+0,0.5]

 LOG(X) =  [-Inf,-0.69314718055994528]

 SQRT(X)=  [0.0E+0,0.70710678118654758]

 SIN(X) =  [-0.47942553860420307,0.47942553860420307]

 ACOS(X)=  [1.0471975511965976,2.0943951023931958]

 X = ? ^d

CODE EXAMPLE 1-14 Interval Versions of Standard Intrinsic Functions (Continued)



1.4.1 Debugging Support
In Sun Studio, interval data types are supported by dbx to the following extent:

■ The values of individual INTERVAL variables can be printed using the print
command.

■ The value of all INTERVAL variables can be printed using the dump command.

■ New values can be assigned to INTERVAL variables using the assign command.

■ There is no provision to visualize INTERVAL data arrays.

■ All generic functionality that is not data type specific should work.

For additional details on dbx functionality, see Debugging a Program With dbx.

1.4.2 Global Program Checking
Global program checking (GPC) in Sun Studio Fortran 95 detects one interval-
specific error: INTERVAL type mismatches in user-supplied routine calls.
CODE EXAMPLE 1-15 shows an example of GPC detecting an INTERVAL type mismatch.

CODE EXAMPLE 1-15 INTERVAL Type Mismatch

math% cat ce1-15.f95

INTERVAL X

X = [-1.0,+2.9]

PRINT *,X

CALL SUB(X)

END

SUBROUTINE SUB(Y)

INTEGER Y(2)

PRINT *,Y

END

math% f95 -xia ce1-15.f95 -Xlistf

( See ce1-15.lst )-

ce1-15.f95 Tue Mar 12 12:51:05 2002
page 1

FILE  "ce1-15.f95"

     1  INTERVAL X

     2  X = [-1.0,+2.9]
Chapter 1 Using Interval Arithmetic With f95 1-25



1.4.3 Interval Functionality Provided in Sun Fortran
Libraries
The following libraries contain intrinsic INTERVAL routines.

1.4.4 Porting Code and Binary Files
There is limited legacy interval Fortran code with which to contend. Until language
syntax and semantics are standardized, different providers of interval compiler
support will inevitably diverge. The standardization process will be facilitated if
users provide feedback regarding the most favored INTERVAL syntax and semantics.
Comments can be sent to the email alias ed in the Interval Arithmetic Readme.

The representation of intervals in binary files will change as compilers supporting
narrower interval systems are made available.

     3  PRINT *,X

     4  CALL SUB(X)

                 ^

**** ERR #325: argument "x" is variable, but dummy argument is
array

                 See: "ce1-15.f95" line #6

     4  CALL SUB(X)

                 ^

**** ERR  #560:  variable "x" referenced as integer across
main/sub/ in

                 line #7 but set as interval by main in line #2

     5  END

     6  SUBROUTINE SUB(Y)

     7  INTEGER Y(2)

     8  PRINT *,Y

     9  END

TABLE 1-3 Interval Libraries

Library Name Needed Options

intrinsic INTERVAL array functions libifai None

intrinsic INTERVAL library libsunimath None

CODE EXAMPLE 1-15 INTERVAL Type Mismatch (Continued)
1-26 Fortran 95 Interval Arithmetic Programming Reference • November 2005



1.4.5 Parallelization
In this release, the -autopar compiler option has no effect on loops containing
interval arithmetic operations. These loops are not automatically parallelized. The
-explicitpar compiler option must be used to parallelize loops marked with
explicit parallelization directives.

1.5 Error Detection
The following code samples list interval-specific error messages. Each code sample
includes the error message and the sample code that produced the error.

CODE EXAMPLE 1-16 Invalid Endpoints

math% cat ce1-16.f95

INTERVAL :: I = [2., 1.]

END

math% f95 -xia ce1-16.f95

INTERVAL :: I = [2., 1.]

                       ^

"ce1-16.f95", Line = 1, Column = 24: ERROR: The left endpoint of
the interval constant must be less than or equal to the right
endpoint.

f95comp: 2 SOURCE LINES

f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-17 Equivalence of Intervals and Non-Intervals

math% cat ce1-17.f95

INTERVAL :: I

REAL     :: R

EQUIVALENCE (I, R)

END

math% f95 -xia ce1-17.f95
Chapter 1 Using Interval Arithmetic With f95 1-27



EQUIVALENCE (I, R)

             ^

"ce1-17.f95", Line = 3, Column = 14: ERROR: Equivalence of
INTERVAL object "I" and REAL object "R" is not allowed.

f95comp: 4 SOURCE LINES

f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-18 Equivalence of INTERVAL Objects With Different KTPVs

math% cat ce1-18.f95

INTERVAL(4) :: I1

INTERVAL(8) :: I2

EQUIVALENCE (I1, I2)

END

math% f95 -xia ce1-18.f95

EQUIVALENCE (I1, I2)

             ^

"ce1-18.f95", Line = 3, Column = 14: ERROR: Equivalence of the
interval objects "I1" and  "I2" with the different kind type
parameters is not allowed.

f95comp: 4 SOURCE LINES

f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-19 Assigning a REAL Expression to an INTERVAL Variable in Strict
Mode

math% cat ce1-19.f95

INTERVAL :: X

REAL     :: R

X = R

END

math% f95 -xia=strict ce1-19.f95

X = R

  ^

"ce1-19.f95", Line = 3, Column = 3: ERROR: Assignment of a REAL
expression to a INTERVAL variable is not allowed.

CODE EXAMPLE 1-17 Equivalence of Intervals and Non-Intervals (Continued)
1-28 Fortran 95 Interval Arithmetic Programming Reference • November 2005



1.5.1 Known Containment Failures
Whenever an interval containment failure can occur, a compile-time warning should
be issued. There are no know containment failures under widest-need expression
processing. In -xia=strict mode, it is possible to violate the containment constraint
with an interval ** (integer expression) operation if the integer expression
overflows.

1.5.1.1 Integer Overflow

Numerical inaccuracies are normally associated with REAL rather than INTEGER
expressions. In one respect, INTEGER expressions are harder to detect than REAL
expressions. When REAL expressions overflow, an exception is raised and an IEEE

f95comp: 4 SOURCE LINES

f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-20 Assigning an INTERVAL Expression to INTERVAL Variable in Strict
Mode

math% cat ce1-20.f95

INTERVAL     :: X

INTERVAL(16) :: y

X = Y

END

math% f95 -xia=strict ce1-20.f95

X = Y

  ^

"ce1-20.f95", Line = 3, Column = 3: ERROR: Assignment of an
interval expression to an interval variable is not allowed when
they have different kind type parameter values.

f95comp: 4 SOURCE LINES

f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-19 Assigning a REAL Expression to an INTERVAL Variable in Strict
Mode (Continued)
Chapter 1 Using Interval Arithmetic With f95 1-29



infinity is generated. The exception is a warning that overflow has occurred.
Infinities tend to propagate in floating-point computations, thereby alerting users of
a potential problem. It is also possible to trap on overflow.

When INTEGER expressions overflow, they silently wrap around to some possibly-
opposite-signed value. Moreover, the only practical way to detect integer overflow is
to perform the inverse operation and test for equality on every integer operation.
Integer constant expressions are safe because they are evaluated during compilation
where overflow is detected and signalled with a warning message.

Under -xia=widestneed expression processing when the second operand of the
** operator is an integer expression that overflows, the returned interval is
guaranteed to contain the correct result. However, the same is not true under -xia=
strict processing, because it is not possible to promote integers to intervals prior
to evaluating the given expression without widest-need expression processing, The
same is true if the second operand of the ** operator is the INTERVAL type
conversion routine.

CODE EXAMPLE 1-21 shows that widest-need expression processing is extended to all
intrinsic INTEGER operations and functions inside integer expressions in the second
operand of the ** operator. This is not true under -xia=strict mode.

CODE EXAMPLE 1-21 INTEGER Overflow Containment Violation Under -xia=strict
Mode

math% cat ce1-21.f95

   INTERVAL :: X = [1.5], Y = [1.5], Z = [1.5]

   INTEGER  :: I = HUGE(0)

   PRINT *, "BEFORE POW"

   PRINT *, "X = ", X

   PRINT *, "Y = ", Y

   PRINT *, "Z = ", Z

   PRINT *, "I = ", I

   X = X**(I+1)                 ! I+1 - integer overflow

   Y = Y*(Y**I)

   Z = Z**(INTERVAL(I)+INTERVAL(1))

   PRINT *, "I+1=",I,"+",1,"=",I+1

   PRINT *, "RESULTS:"

   PRINT *, "X = ", X

   PRINT *, "Y = ", Y

   PRINT *, "Z = ", Z
1-30 Fortran 95 Interval Arithmetic Programming Reference • November 2005



This code demonstrates a silent containment failure in -xia=strict mode and the
correct interval results in -xia=widestneed mode. For information on the power
operator, see Section 2.5, “Power Operators X**N and X**Y” on page 2-20.

END

math% f95 -xia ce1-21.f95

math% a.out

 BEFORE POW

 X =  [1.5,1.5]

 Y =  [1.5,1.5]

 Z =  [1.5,1.5]

 I =  2147483647

 I+1= 2147483647 + 1 = -2147483648

 RESULTS:

 X =  [1.7976931348623157E+308,Inf]

 Y =  [1.7976931348623157E+308,Inf]

 Z =  [1.7976931348623157E+308,Inf]

math% f95 -xia=strict ce1-21.f95

math% a.out

 BEFORE POW

 X =  [1.5,1.5]

 Y =  [1.5,1.5]

 Z =  [1.5,1.5]

 I =  2147483647

 I+1= 2147483647 + 1 = -2147483648

 RESULTS:

 X =  [0.0E+0,4.9406564584124655E-324]

 Y =  [1.7976931348623157E+308,Inf]

 Z =  [1.7976931348623157E+308,Inf]

CODE EXAMPLE 1-21 INTEGER Overflow Containment Violation Under -xia=strict
Mode (Continued)
Chapter 1 Using Interval Arithmetic With f95 1-31



1-32 Fortran 95 Interval Arithmetic Programming Reference • November 2005



CHAPTER 2

f95 Interval Reference

This chapter is a reference for the syntax and semantics of the intrinsic INTERVAL
types implemented in Sun Studio Fortran 95. The sections can be read in any order.

Unless explicitly stated otherwise, the INTERVAL data type has the same properties
as other intrinsic numeric types. This chapter highlights differences between the
REAL and INTERVAL types.

Some code examples are not complete programs. The implicit assumption is that
these examples are compiled with the -xia command line option.

2.1 Fortran Extensions
INTERVAL data types are a non-standard extension to Fortran. However, where
possible, the implemented syntax and semantics conform to the style of Fortran.

2.1.1 Character Set Notation
Left and right square brackets, "[…]", are added to the Fortran character set to
delimit literal INTERVAL constants.

Throughout this document, unless explicitly stated otherwise, INTEGER, REAL, and
INTERVAL constants mean literal constants. Constant expressions and named
constants (PARAMETERS) are always explicitly identified as such.
2-1



TABLE 2-1 shows the character set notation used for code and mathematics.

Note – Pay close attention to font usage. Different fonts represent an interval’s
exact, external mathematical value and an interval’s machine-representable, internal
approximation.

2.1.2 INTERVAL Constants
In f95, an INTERVAL constant is either a single integer or real decimal number
enclosed in square brackets, [3.5], or a pair of integer or real decimal numbers
separated by a comma and enclosed in square brackets, [3.5 E-10, 3.6 E-10]. If
a degenerate interval is not machine representable, directed rounding is used to
round the exact mathematical value to an internal machine representable interval
known to satisfy the containment constraint.

An INTERVAL constant with both endpoints of type default INTEGER, default REAL
or REAL(8), has the default type INTERVAL.

If an endpoint is of type default INTEGER, default REAL or REAL(8), it is internally
converted to a value of the type REAL(8).

If an endpoint’s type is INTEGER(8), it is internally converted to a value of type
REAL(16).

If an endpoint’s type is INTEGER(4), it is internally converted to a value of type
REAL(8).

If an endpoint’s type is INTEGER(1) or INTEGER(2), it is internally converted to a
value of type REAL(4).

If both endpoints are of type REAL but have different KTPVs, they are both
internally represented using the approximation method of the endpoint with greater
decimal precision.

TABLE 2-1 Font Conventions

Character Set Notation

Fortran code INTERVAL :: X=[0.1,0.2]

Input to programs and commands Enter X: ? [2.3,2.4]

Placeholders for constants in code [a,b]

Scalar mathematics x(a + b) = xa + xb

Interval mathematics X(A + B) XA + XB⊆
2-2 Fortran 95 Interval Arithmetic Programming Reference • November 2005



The KTPV of an INTERVAL constant is the KTPV of the part with the greatest
decimal precision.

CODE EXAMPLE 2-1 shows the KTPV of various INTERVAL constants.

A Fortran constant, such as 0.1 or [0.1,0.2], is associated with the two values:
the external value it represents and its internal approximation. In Fortran, the value
of a constant is its internal approximation. There is no need to distinguish between a
constant’s external value and its internal approximation. Intervals require this
distinction to be made. To represent a Fortran constant’s external value, the
following notation is used:

ev(0.1) = 0.1 or ev([0.1,0.2])= [0.1, 0.2].

The notation ev stands for external value.

Following the Fortran Standard, the numerical value of an INTERVAL constant is its
internal approximation. The external value of an INTERVAL constant is always
explicitly labelled as such.

For example, the INTERVAL constant [1, 2] and its external value ev([1, 2]) are
equal to the mathematical value [1, 2]. However, while ev([0.1, 0.2]) = [0.1, 0.2],
[0.1, 0.2] is only an internal machine approximation, because the numbers 0.1

CODE EXAMPLE 2-1 KTPV of INTERVAL Constants

math% cat ce2-1.f95

IF(KIND([9_8, 9.0])      == 16 .AND. &

   KIND([9_8, 9_8])      == 16 .AND. &

   KIND([9_4, 9_4])      == 8  .AND. &

   KIND([9_2, 9_2])      == 4  .AND. &

   KIND([9, 9.0_16])     == 16 .AND. &

   KIND([9, 9.0])        == 8  .AND. &

   KIND([9, 9])          == 8  .AND. &

   KIND([9.0_4, 9.0_4])  == 4  .AND. &

   KIND([1.0Q0, 1.0_16]) == 16 .AND. &

   KIND([1.0_8, 1.0_4])  == 8  .AND. &

   KIND([1.0E0, 1.0Q0])  == 16 .AND. &

   KIND([1.0E0, 1])      == 8  .AND. &

   KIND([1.0Q0, 1])      == 16 ) PRINT *, ’CHECK’

END

math% f95 -xia ce2-1.f95

math% a.out

CHECK
Chapter 2 f95 Interval Reference 2-3



and 0.2 are not machine representable. The value of the INTERVAL constant,
[0.1, 0.2] is its internal machine approximation. The external value is denoted
ev([0.1, 0.2]).

Under strict expression processing, an INTERVAL constant’s internal approximation
is fixed, as it is for other Fortran numeric typed constants. The value of a REAL
constant is its internal approximation. Similarly, the value of an INTERVAL
constant’s internal approximation is referred to as the constant’s value. A constant’s
external value, which is not a defined concept in standard Fortran, can be different
from its internal approximation. Under widest-need expression processing, an
INTERVAL constant’s internal value is context-dependent. Nevertheless, an
INTERVAL constant’s internal approximation must contain its external value in both
strict and widest-need expression processing.

Like any mathematical constant, the external value of an INTERVAL constant is
invariant. The external value of a named INTERVAL constant (PARAMETER) cannot
change within a program unit. However, as with any named constant, in different
program units, different values can be associated with the same named constant.

Because intervals are opaque, there is no language requirement to store the
information needed to internally represent an interval. Intrinsic functions are
provided to access the infimum and supremum of an interval. Nevertheless, an
INTERVAL constant is defined by an ordered pair of REAL or INTEGER constants.
The constants are separated by a comma, and the pair is enclosed in square brackets.
The first constant is the infimum or lower bound, and the second, is the supremum
or upper bound.

If only one constant appears inside the square brackets, the represented interval is
degenerate, having equal infimum and supremum. In this case, an internal interval
approximation is constructed that is guaranteed to contain the single decimal literal
constant’s external value.

A valid interval must have an infimum that is less than or equal to its supremum.
Similarly, an INTERVAL constant must also have an infimum that is less than or
equal to its supremum. For example, the following code fragment must evaluate to
true:

INF([0.1]) .LE. SUP([0.1]).

CODE EXAMPLE 2-2 contains examples of valid and invalid INTERVAL constants.
2-4 Fortran 95 Interval Arithmetic Programming Reference • November 2005



For additional information regarding INTERVAL constants, see the supplementary
paper [4] cited in Section 2.11, “References” on page 2-88.

CODE EXAMPLE 2-2 Valid and Invalid INTERVAL Constants

math% cat ce2-2.f95
   INTERVAL :: X
   X=[2,3]
   X=[0.1]        !Case 1: Interval containing the decimal number 1/10
   X=[2, ]        !Case 2: Invalid - missing supremum
   X=[3_2,2_2]    !Case 3: Invalid - infimum > supremum
   X=[2_8,3_8]
   X=[2,3_8]
   X=[0.1E0_8]
   X=[2_16,3_16]  !Case 4: Invalid - KTPV 16 is not valid for type INTEGER
   X=[2,3.0_16]
   X=[0.1E0_16]
   END
math% f95 -xia ce2-2.f95

   X=[2, ]        !Case 2: Invalid - missing supremum
         ^
"ce2-2.f95", Line = 4, Column = 10: ERROR: Unexpected syntax: "operand" was
expected but found "]".

   X=[3_2,2_2]    !Case 3: Invalid - infimum > supremum
             ^
"ce2-2.f95", Line = 5, Column = 14: ERROR: The left endpoint of the interval
constant must be less than or equal to the right endpoint.

   X=[2_16,3_16]  !Case 4: Invalid - KTPV 16 is not valid for type INTEGER
      ^
"ce2-2.f95", Line = 9, Column = 7: ERROR: The kind type parameter value 16 is
not valid for type INTEGER.
           ^
"ce2-2.f95", Line = 9, Column = 12: ERROR: The kind type parameter value 16 is
not valid for type INTEGER.

f95comp: 12 SOURCE LINES
f95comp: 4 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
Chapter 2 f95 Interval Reference 2-5



2.1.3 Internal Approximation
The internal approximation of a REAL constant does not necessarily equal the
constant’s external value. For example, because the decimal number 0.1 is not a
member of the set of binary floating-point numbers, this value can only be
approximated by a binary floating-point number that is close to 0.1. For REAL data
items, the approximation accuracy is unspecified in the Fortran standard. For
INTERVAL data items, a pair of floating-point values is used that is known to contain
the set of mathematical values defined by the decimal numbers used to symbolically
represent an INTERVAL constant. For example, the mathematical interval [0.1, 0.2] is
the external value of the INTERVAL constant [0.1,0.2].

Just as there is no Fortran language requirement to accurately approximate REAL
constants, there is also no language requirement to approximate an interval’s
external value with a narrow width INTERVAL constant. There is a requirement for
an INTERVAL constant to contain its external value.

ev(INF([0.1,0.2])) ≤ inf(ev([0.1,0.2])) = inf([0.1, 0.2])

and

sup([0.1, 0.2]) = sup(ev([0.1,0.2])) ≤ ev(SUP([0.1,0.2]))

f95 INTERVAL constants are sharp. This is a quality of implementation feature.

2.1.4 INTERVAL Statement
The INTERVAL declaration statement is the only INTERVAL-specific statement added
to the Fortran language in f95. For a detailed description of the INTERVAL
declaration statement and standard Fortran statements that interact with INTERVAL
data items, see Section 2.10, “INTERVAL Statements” on page 2-48.

2.2 Data Type and Data Items
If the -xia or -xinterval options are entered in the f95 command line, or if they
are set either to widestneed or to strict, the INTERVAL data type is recognized as
an intrinsic numeric data type in f95. If neither option is entered in the f95
command line, or if they are set to no, the INTERVAL data type is not recognized as
intrinsic. See Section 2.3.3, “Interval Command-Line Options” on page 2-12 for
details on the INTERVAL command-line options.
2-6 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.2.1 Name: INTERVAL
The intrinsic type INTERVAL is added to the six intrinsic Fortran data types. The
INTERVAL type is opaque, meaning that an INTERVAL data item’s internal format is
not specified. Nevertheless, an INTERVAL data item’s external format is a pair of
REAL data items having the same kind type parameter value (KTPV) as the
INTERVAL data item.

2.2.2 Kind Type Parameter Value (KTPV)
An INTERVAL data item is an approximation of a mathematical interval consisting of
a lower bound or infimum and an upper bound or supremum. INTERVAL data items
have all the properties of other numeric data items.

The KTPV of a default INTERVAL data item is 8. The size of a default INTERVAL
data item with no specified KTPV is 16 bytes. The size of a default INTERVAL data
item in f95 cannot be changed using the -xtypemap or -r8const command line
options. For more information, see Section 2.3.3.1, “-xtypemap and -r8const
Command-Line Options” on page 2-13. Thus

KIND([0])= 2*KIND(0) = KIND(0.0_8) = 8

provided the size of the default REAL and INTEGER data items is not changed using
-xtypemap.

2.2.2.1 Size and Alignment Summary

The size and alignment of INTERVAL types is unaffected by f95 compiler options.
TABLE 2-2 contains INTERVAL sizes and alignments.

Note – INTERVAL arrays align the same as their elements.

TABLE 2-2 INTERVAL Sizes and Alignments

Data Type Byte Size Alignment

INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(16)

16

8

16

32

8

4

8

16
Chapter 2 f95 Interval Reference 2-7



2.2.3 INTERVAL Arrays
INTERVAL arrays have all the properties of arrays with different numeric types. See
CODE EXAMPLE 2-25 for the declaration of INTERVAL arrays.

Interval versions of the following intrinsic array functions are supported:

ALLOCATED(), ASSOCIATED(), CSHIFT(), DOT_PRODUCT(), EOSHIFT(), KIND(),
LBOUND(), MATMUL(), MAXVAL(), MERGE(), MINVAL(), NULL(), PACK(),
PRODUCT(), RESHAPE(), SHAPE(), SIZE(), SPREAD(), SUM(), TRANSPOSE(),
UBOUND(), UNPACK().

The MINLOC(), and MAXLOC() intrinsic functions are not defined for INTERVAL
arrays because the MINVAL and MAXVAL intrinsic applied to an INTERVAL array
might return an interval value not possessed by any element of the array. See the
following sections for descriptions of the MAX and MIN intrinsic functions:

■ Section 2.10.4.3, “Maximum: MAX(X1,X2,[X3,...])” on page 2-82
■ Section 2.10.4.4, “Minimum: MIN(X1,X2,[X3, ...])” on page 2-82

For example MINVAL((/[1,2],[3,4]/)) = [1,3] and

MAXVAL(/[1,2],[3,4]/) = [2,4].

Array versions of the following intrinsic INTERVAL-specific functions are supported:
ABS(), INF(), MAG(), MAX(), MID(), MIG(), MIN(), NDIGITS(), SUP(), WID().

Array versions of the following intrinsic INTERVAL-mathematical functions are
supported: ACOS(), AINT(), ANINT(), ASIN(), ATAN(), ATAN2(), CEILING(),
COS(), COSH(), EXP(), FLOOR(), LOG(), LOG10(), MOD(), SIGN(), SIN(),
SINH(), SQRT(), TAN(), TANH().

Array versions of the following INTERVAL constructors are supported:
INTERVAL(), DINTERVAL(), SINTERVAL(), QINTERVAL().

2.3 INTERVAL Arithmetic Expressions
INTERVAL arithmetic expressions are constructed from the same arithmetic
operators as other numerical data types. The fundamental difference between
INTERVAL and non-INTERVAL (point) expressions is that the result of any possible
INTERVAL expression is a valid INTERVAL that satisfies the containment constraint
of interval arithmetic. In contrast, point expression results can be any approximate
value.
2-8 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.3.1 Mixed-Mode INTERVAL Expressions
Mixed-mode (INTERVAL-point) expressions require widest-need expression
processing to guarantee containment. Expression processing is widest-need by
default when support for intervals is invoked using either the -xia command-line
macro or the -xinterval command line option. If widest-need expression
processing is not wanted, use the options -xia=strict or -xinterval=strict to
invoke strict expression processing. Mixed-mode INTERVAL expressions are
compile-time errors under strict expression processing. Mixed-mode operations
between INTERVAL and COMPLEX operands are not supported.

With widest-need expression processing, the KTPV of all operands in an interval
expression is promoted to KTPVmax, the highest INTERVAL KTPV found anywhere in
the expression.

Note – KTPV promotion is performed before expression evaluation.

Widest-need expression processing guarantees:

■ Interval containment
■ No type or precision conversions add width to the converted intervals

Note – Unless there is a specific requirement to use strict expression processing, it is
strongly recommended that users employ widest-need expression processing. In any
expression or subexpression, explicit INTERVAL type and KTPV conversions can
always be made.

Each of the following examples is designed to illustrate the behavior and utility of
widest-need expression processing. There are three blocks of code in each example:

■ Generic code that is independent of the expression processing mode
(widest-need, or strict)

■ Widest-need code

■ Equivalent strict code

The examples are designed to communicate three messages:

■ Except in special circumstances, use the widest-need expression processing.

■ Whenever widest-need expression processing is enabled, but is not wanted, it can
be overridden using the INTERVAL constructor to coerce type and KTPV
conversions.

■ With strict expression processing, INTERVAL type and precision conversions must
be explicitly specified using INTERVAL constants and the INTERVAL constructor.
Chapter 2 f95 Interval Reference 2-9



2.3.2 Value Assignment
The INTERVAL assignment statement assigns a value of an INTERVAL scalar, array
element, or array expression to an INTERVAL variable, array element or array. The
syntax is:

V = expr

where expr is a placeholder for an interval arithmetic or array expression, and V is
an INTERVAL variable, array element, array, array section, or structure component.

Executing an INTERVAL assignment causes the expression to be evaluated using
either widest-need or strict expression processing. The resulting value is then
assigned to V. The following steps occur when evaluating an expression using
widest-need expression processing:

1. The interval KTPV of every point (non-INTERVAL) data item is computed.

If the point item is an integer, the resulting interval KTPV is twice the integer’s
KTPV. Otherwise an interval’s KTPV is the same as the point item’s KTPV.

2. The expression, including the left-hand side of an assignment statement, is
scanned for the maximum interval KTPV, denoted KTPVmax.

3. All point and INTERVAL data items in the INTERVAL expression are promoted to
KTPVmax, prior to evaluating the expression.

4. If KIND(V) < KTPVmax after the expression is evaluated, the expression result is
converted to a containing interval with KTPV = KIND(V) and the resulting value
is assigned to V.

CODE EXAMPLE 2-3 KTPVmax Depends on KIND (Left-Hand Side)

math% cat ce2-3.f95

INTERVAL(4)  :: X1, Y1

INTERVAL :: X2, Y2 ! Same as: INTERVAL(8) :: X2, Y2

INTERVAL(16) :: X3, Y3

! Widest-need code

 X1 = 0.1

 X2 = 0.1

 X3 = 0.1

! Equivalent strict code

Y1 = [0.1_4]

Y2 = [0.1_8]

Y3 = [0.1_16]
2-10 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Note – Under widest-need, the KTPV of the variable to which assignment is made
(the left-hand side) is included in determining the value of KTPVmax to which all
items in an INTERVAL statement are promoted.

CODE EXAMPLE 2-4 notes:

IF(X1 .SEQ. Y1)  PRINT *, "Check1."

IF(X2 .SEQ. Y2)  PRINT *, "Check2."

IF(X3 .SEQ. Y3)  PRINT *, "Check3."

END

math% f95 -xia ce2-3.f95

math% a.out

 Check1.

 Check2.

 Check3.

CODE EXAMPLE 2-4 Mixed-Mode Assignment Statement

math% cat ce2-4.f95
INTERVAL(4) :: X1, Y1
INTERVAL(8) :: X2, Y2
REAL(8)     :: R = 0.1

! Widest-need code
 X1 = R*R ! Line 4
 X2 = X1*R ! Line 5

! Equivalent strict  code
 Y1 = INTERVAL((INTERVAL(R, KIND=8)*INTERVAL(R, KIND=8)), KIND=4)! Line 6
 Y2 = INTERVAL(X1, KIND=8)*INTERVAL(R, KIND=8) ! Line 7

IF((X1 == Y1)) PRINT *, "Check1." ! Line 8
IF((X2 == Y2)) PRINT *, "Check2." ! Line 9
END

math% f95 -xia ce2-4.f95
math% a.out
 Check1.
 Check2.

CODE EXAMPLE 2-3 KTPVmax Depends on KIND (Left-Hand Side) (Continued)
Chapter 2 f95 Interval Reference 2-11



■ The equivalent strict code shows the steps required to reproduce the results
obtained using widest-need expression processing.

■ In line 4, KIND(R)= 8, but KIND(X1) = 4. To guarantee containment and produce
a sharp result, R is converted to a KTPVmax = 8 containing interval before
evaluating the expression. Then the result is converted to a KTPV-4 containing
interval and assigned to X1. These steps are made explicit in the equivalent strict
code in line 6.

■ In line 5, KIND(R) = KIND(X2) = 8. Therefore, X1 is promoted to a KTPV-8
INTERVAL before the expression is evaluated and the result assigned to X2. Line 7
shows the equivalent strict code.

■ The checks in lines 8 and 9 verify that the widest-need and strict results are
identical. For more detailed information on widest-need and strict expression
processing, see Section 2.3, “INTERVAL Arithmetic Expressions” on page 2-8.

2.3.3 Interval Command-Line Options
Interval features in the f95 compiler are activated by means of the following
command-line options:

■ -xinterval=(no|widestneed|strict) is a command-line option to enable
processing of intervals and to control permitted expression evaluation syntax.

■ "no" disables the interval extensions to f95.

■ "widestneed" enables widest-need expression processing and functions the
same as -xinterval if no option is specified. See Section 2.3.1, “Mixed-Mode
INTERVAL Expressions” on page 2-9.

■ "strict" requires all INTERVAL type and KTPV conversions to be explicit, or
it is a compile-time error, as described in Section 1.5, “Error Detection” on
page 1-27.

■ -xia=(widestneed|strict) is a macro that enables the processing of
INTERVAL data types and sets a suitable floating-point environment. If -xia is
not mentioned (the first default), there is no expansion.

-xia expands into the following.

-xinterval=widestneed
-ftrap=%none
-fns=no
-fsimple=0

-xia=(widestneed|strict) expands into the following.

-xinterval=(widestneed|strict)
-ftrap=%none
-fns=no
-fsimple=0
2-12 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Previously set values of -ftrap, -fns, -fsimple are superseded.

It is a fatal error if at the end of command line processing -xinterval=
(widestneed|strict) is set, and either -fsimple, -fns, or -ftrap is set to any
value other than

-fsimple=0
-fns=no
-ftrap=no
-ftrap=%none

When using command-line options:

■ At the end of the command-line processing, if -ansi is set and -xinterval is
set to either widestneed or strict, the following warning is issued:
"Interval data types are a non-standard feature".

■ -fround = <r>: (Set the IEEE rounding mode in effect at startup) does not
interact with -xia because INTERVAL operations and routines save and restore
the rounding mode upon entry and exit.

When recognition of INTERVAL types is activated:

■ INTERVAL operators and functions become intrinsic.

■ The same restrictions are imposed on the extension of intrinsic INTERVAL
operators and functions as are imposed on the extension of standard intrinsic
operators and functions.

■ Intrinsic INTERVAL-specific function names are recognized. See Section 2.2.3,
“INTERVAL Arrays” on page 2-8 and Section 2.10.4, “Mathematical Functions” on
page 2-79.

2.3.3.1 -xtypemap and -r8const Command-Line Options

The size of a default INTERVAL variable declared only with the INTERVAL keyword
cannot be changed using the -xtypemap and -r8const command line options.

While these command line options have no influence on the size of default
INTERVAL types, the options can change the result of mixed-mode INTERVAL
expressions, as shown in CODE EXAMPLE 2-5.

CODE EXAMPLE 2-5 Mixed-Mode Expression

math% cat ce2-5.f95

REAL     :: R

INTERVAL :: X

R = 1.0E0 - 1.0E-15

PRINT *, 'R = ', R
Chapter 2 f95 Interval Reference 2-13



Note – Although -xtypemap has no influence on the KTPV of X, it can influence
the value of X.

2.3.4 Constant Expressions
INTERVAL constant expressions may contain INTERVAL literal and named constants,
as well as any point constant expression components. Therefore, each operand or
argument is itself, another constant expression, a constant, a named constant, or an
intrinsic function called with constant arguments.

X = 1.0E0 - R

PRINT *, 'X = ', X

IF (  0.0 .IN. X  ) THEN

    PRINT *, 'X contains zero'

ELSE

    PRINT *, 'X does not contain zero'

ENDIF

PRINT *, 'WID(X) = ', WID(X)

END

math% f95 -xia ce2-5.f95

math% a.out

 R =  1.0

 X =  [0.0E+0,0.0E+0]

 X contains zero

 WID(X) =  0.0E+0

math% f95 -xia -xtypemap=real:64,double:64,integer:64 ce2-5.f95

math% a.out

 R =  0.999999999999999

 X =  [9.9920072216264088E-16,9.9920072216264089E-16]

 X does not contain zero

 WID(X) =  0.0E+0

CODE EXAMPLE 2-6 Constant Expressions

math% cat ce2-6.f95

INTERVAL :: P, Q

! Widest-need code

P = SIN([1.23])+[3.45]/[9, 11.12]

CODE EXAMPLE 2-5 Mixed-Mode Expression (Continued)
2-14 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Note – Under widest-need expression processing, interval context is used to
determine the KTPV of INTERVAL constants. See Section 1.3.7, “Default Kind Type
Parameter Value (KTPV)” on page 1-12 for more information.

INTERVAL constant expressions are permitted wherever an INTERVAL constant is
allowed.

2.4 Intrinsic Operators
TABLE 2-3 lists the intrinsic operators that can be used with intervals. In TABLE 2-3, X
and Y are intervals.

! Equivalent strict code

Q = SIN([1.23_8])+[3.45_8]/[9.0_8, 11.12_8]

IF(P .SEQ. Q) PRINT *, ’Check’

END

math% f95 -xia ce2-6.f95

math% a.out

 Check

TABLE 2-3 INTRINSIC Operators

Operator Operation Expression Meaning

** Exponentiation X**Y Raise X to the INTERVAL power Y

X**N Raise X to the INTEGER power N (See Note 1)

* Multiplication X*Y Multiply X and Y

/ Division X/Y Divide X by Y

+ Addition X+Y Add X and Y

+ Identity +X Same as X (without a sign)

- Subtraction X-Y Subtract Y from X

(1)If N is an integer expression, overflow can cause a containment failure under -xia=strict expression
processing. This is not a problem under widest-need expression processing. Users must be responsible for
preventing integer overflow under strict expression processing. See Section 1.5.1.1, “Integer Overflow” on
page 1-29 for more information.

CODE EXAMPLE 2-6 Constant Expressions (Continued)
Chapter 2 f95 Interval Reference 2-15



Precedence of operators:

■ The operator ** takes precedence over the *, /, +, -, .IH., and .IX. operators.
■ The operators * and / take precedence over the +, -, .IH., and .IX. operators.
■ The operators + and – take precedence over the .IH. and .IX. operators.
■ The operators .IH. and .IX. take precedence over the // operator.

With the exception of the interval ** operator and an integer exponent, interval
operators can only be applied to two interval operands with the same kind type
parameter value. Thus the type and KTPV of an interval operator’s result are the
same as the type and KTPV of its operands.

If the second operand of the interval ** operator is an integer, the first operand can
be of any interval KTPV. In this case, the result has the type and KTPV of the first
operand.

Some INTERVAL-specific operators have no point analogs. These can be grouped
into three categories: set, certainly, and possibly, as shown in TABLE 2-4. A number of
unique set-operators have no certainly or possibly analogs.

The precedence of intrinsic INTERVAL relational operators is the same as the
precedence of REAL relational operators.

- Numeric Negation -X Negate X

.IH. INTERVAL hull X.IH.Y Interval hull of X and Y

.IX. Intersection X.IX.Y Intersect X and Y

TABLE 2-4 Intrinsic INTERVAL Relational Operators

Set Relational
Operators

.SP. .PSP. .SB. .PSB. .IN. .DJ.

.EQ.
(same as ==)

.NEQ.
(same as /=)

.SEQ. .SNE. .SLT. .SLE. .SGT. .SGE.

Certainly
Relational
Operators

.CEQ. .CNE. .CLT. .CLE. .CGT. .CGE.

Possibly Relational
Operators

.PEQ. .PNE. .PLT. .PLE. .PGT. .PGE.

TABLE 2-3 INTRINSIC Operators (Continued)

Operator Operation Expression Meaning

(1)If N is an integer expression, overflow can cause a containment failure under -xia=strict expression
processing. This is not a problem under widest-need expression processing. Users must be responsible for
preventing integer overflow under strict expression processing. See Section 1.5.1.1, “Integer Overflow” on
page 1-29 for more information.
2-16 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Except for the .IN. operator, intrinsic INTERVAL relational operators can only be
applied to two INTERVAL operands with the same KTPV.

The first operand of the .IN. operator is of any INTEGER or REAL type. The second
operand can have any interval KTPV.

The result of the INTERVAL relational expression has the default LOGICAL kind type
parameter.

2.4.1 Arithmetic Operators +, –, *, /
Formulas for computing the endpoints of interval arithmetic operations on finite
REAL intervals are motivated by the requirement to produce the narrowest interval
that is guaranteed to contain the set of all possible point results. Ramon Moore
independently developed these formulas and more importantly, was the first to
develop the analysis needed to apply interval arithmetic. For more information, see
R. Moore, Interval Analysis, Prentice-Hall, 1966.

The set of all possible values was originally defined by performing the operation in
question on any element of the operand intervals. Therefore, given finite intervals,
[a, b] and [c, d], with ,

,

with division by zero being excluded. The formulas, or their logical equivalent, are:

Directed rounding is used when computing with finite precision arithmetic to
guarantee the set of all possible values is contained in the resulting interval.

The set of values that any interval result must contain is called the containment set
(cset) of the operation or expression that produces the result.

To include extended intervals (with infinite endpoints) and division by zero, csets
can only indirectly depend on the value of arithmetic operations on real operands.
For extended intervals, csets are required for operations on points that are normally
undefined. Undefined operations include the indeterminate forms:

.

The containment-set closure identity solves the problem of identifying the value of
containment sets of expressions at singular or indeterminate points. The identity
states that containment sets are function closures. The closure of a function at a point

op {+, –, , }÷×∈

a b,[ ] op c d,[ ] x yop x a b,[ ]∈ y c d,[ ]∈and{ }⊇

a b,[ ] c d,[ ]+ a c+ b d+[ , ]=

a b,[ ] c d,[ ]– a d– b c–[ , ]=

a b,[ ] c d,[ ]× min a c a d b c b d×,×,×,×( ) max a c a d b c b d×,×,×,×( )[ , ]=

a b,[ ] c d,[ ]⁄ min
a
c
--- a

d
--- b

c
--- b

d
---, , , 

  max
a
c
--- a

d
--- b

c
--- b

d
---, , , 

 , , if 0 c d,[ ]∉=

1 0÷ 0 ∞× 0 0÷ and ∞ ∞÷, , ,
Chapter 2 f95 Interval Reference 2-17



on the boundary of its domain includes all limit or accumulation points. For details,
see the Glossary and the supplementary papers [1], [3], [10], and [11] cited in
Section 2.11, “References” on page 2-88.

The following is an intuitive way to justify the values included in an expression’s
cset. Consider the function

.

The question is: What is the cset of h(x0), for x0 = 0 ? To answer this question,
consider the function

.

Clearly, f(x0) = 0, for x0 = 0. But, what about

or

?

The function g(x0) is undefined for x0 = 0, because h(x0) is undefined. The cset of h(x0)
for x0 = 0 is the smallest set of values for which g(x0) = f(x0). Moreover, this must be
true for all composite functions of h. For example if

g’(y) = ,

then g(x) = g’(h(x)). In this case, it can be proved that the cset of h(x0) = if
x0 = 0, where denotes the set consisting of the two values, and .

TABLE 2-5 through TABLE 2-8, contain the csets for the basic arithmetic operations. It is
convenient to adopt the notation that an expression denoted by f(x) simply means its
cset. Similarly, if

,

the containment set of f over the interval X, then hull(f(x)) is the sharp interval that
contains f(X).

TABLE 2-5 Containment Set for Addition: x + y

{−∞} {real: y0} {+∞}

{−∞} {-∞} {-∞}

{real: x0} {-∞} {x0 + y0} {+∞}

{+∞} {+∞} {+∞}

h x( ) 1
x
---=

f x( ) x
x 1+
------------=

g x( ) 1

1
1
x
--- 
 +

------------------=

g x( ) 1
1 h x( )+
--------------------=

1
1 y+
------------

∞– +∞,{ }
∞– +∞,{ } ∞– +∞

f X( ) f x( )
x X∈
∪=

ℜ*

ℜ*
2-18 Fortran 95 Interval Arithmetic Programming Reference • November 2005



All inputs in the tables are shown as sets. Results are shown as sets or intervals.
Customary notation, such as , , and

, is used, with the understanding that csets are implied when
needed. Results for general set (or interval) inputs are the union of the results of the
single-point results as they range over the input sets (or intervals).

In one case, division by zero, the result is not an interval, but the set, . In
this case, the narrowest interval in the current system that does not violate the
containment constraint of interval arithmetic is the interval .

Sign changes produce the expected results.

To incorporate these results into the formulas for computing interval endpoints, it is
only necessary to identify the desired endpoint, which is also encoded in the
rounding direction. Using to denote rounding down (towards -∞) and to denote
rounding up (towards +∞),

and .

TABLE 2-6 Containment Set for Subtraction: x – y

{−∞} {real: y0} {+∞}

{−∞} {-∞} {-∞}

{real: x0} {+∞} {x0 – y0} {-∞}

{+∞} {+∞} {+∞}

TABLE 2-7 Containment Set for Multiplication: x × y

{−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} {+∞} {+∞} {-∞} {-∞}

{real: x0 < 0} {+∞} {x × y} {0} {x × y} {-∞}

{0} {0} {0} {0}

{real: x0 > 0} {-∞} x × y {0} x × y {+∞}

{+∞} {-∞} {-∞} {+∞} {+∞}

TABLE 2-8 Containment Set for Division: x ÷ y

{−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} [0, +∞] {+∞} {-∞, +∞} {-∞} [-∞, 0]

{real: x0 ≠ 0} {0} {x ÷ y} {-∞, +∞} {x ÷ y} {0}

{0} {0} {0} {0} {0}

{+∞} [-∞, 0] {-∞} {-∞, +∞} {+∞} [0, +∞]

ℜ*

ℜ*

ℜ*

ℜ* ℜ*

ℜ*

ℜ*

∞–( ) +∞( )+ ∞–= ∞–( ) y+ ∞–=
∞–( ) +∞( )+ ℜ∗=

∞– +∞,{ }

∞– +∞,[ ] ℜ∗=

↓ ↑

↓ +∞( ) +∞( )÷ 0= ↑ +∞( ) +∞( )÷ +∞=
Chapter 2 f95 Interval Reference 2-19



and .

Similarly, because ,

and .

Finally, the empty interval is represented in Fortran by the character string [empty]
and has the same properties as the empty set, denoted ∅ in the algebra of sets. Any
arithmetic operation on an empty interval produces an empty interval result. For
additional information regarding the use of empty intervals, see the supplementary
papers [6] and [7] cited in Section 2.11, “References” on page 2-88.

Using these results, f95 implements the “simple” closed interval system. The system
is closed because all arithmetic operations and functions always produce valid
interval results. See the supplementary papers [2] and [8] cited in Section 2.11,
“References” on page 2-88.

2.5 Power Operators X**N and X**Y
The power operator can be used with integer exponents (X**N) and continuous
exponents (X**Y). With a continuous exponent, the power operator has
indeterminate forms, similar to the four arithmetic operators.

In the integer exponents case, the set of all values that an enclosure of must
contain is .

Monotonicity can be used to construct a sharp interval enclosure of the integer
power function. When n = 0, Xn, which represents the cset of Xn, is 1 for all

, and for all n.

In the continuous exponents case, the set of all values that an interval enclosure of
X**Y must contain is

where and exp(y(ln(x))) are their respective containment sets. The
function exp(y(ln(x))) makes explicit that only values of x ≥ 0 need be considered,
and is consistent with the definition of X**Y with REAL arguments in Fortran.

The result is empty if either INTERVAL argument is empty, or if x < 0. This is also
consistent with the point version of X**Y in Fortran.

↓ 0 +∞( )× -∞= ↑ 0 +∞( )× +∞=

hull -∞ +∞,{ }( ) -∞ +∞,[ ]=

↓ x 0÷ ∞–= ↑ x 0÷ +∞=

X
n

z z x
n∈ x X∈and{ }

x -∞ +∞,[ ]∈ ∅n ∅=

Y X( )ln( )( )exp z z y x( )ln( )( )exp y Y 0 x X0∈,∈,∈{ }=

Y X( )ln( )( )exp
2-20 Fortran 95 Interval Arithmetic Programming Reference • November 2005



TABLE 2-9 displays the containment sets for all the singularities and indeterminate
forms of exp(y(ln(x))).

The results in TABLE 2-9 can be obtained in two ways:

■ Directly computing the closure of the composite expression, exp(y(ln(x))) for the
values of x0 and y0 for which the expression is undefined.

■ Use the containment-set evaluation theorem to bound the set of values in a
containment set.

For most compositions, the second option is much easier. If sufficient conditions are
satisfied, the closure of a composition can be computed from the composition of its
closures. That is, the closure of each sub-expression can be used to compute the
closure of the entire expression. In the present case,

exp(y(ln(x))) = exp(y0 × ln(x0)).

That is, the cset of the expression on the left is equal to the composition of csets on
the right.

It is always the case that

exp(y(ln(x))) ⊆ exp(y0 × ln(x0)).

Note that this is exactly how interval arithmetic works on intervals. The needed
closures of the ln and exp functions are:

A necessary condition for closure-composition equality is that the expression must
be a single-use expression (or SUE), which means that each independent variable can
appear only once in the expression.

In the present case, the expression is clearly a SUE.

TABLE 2-9 exp(y(ln(x)))

x0 y0 exp(y(ln(x)))

0 y0 < 0 +∞

1 -∞ [0,+∞]

1 +∞ [0,+∞]

+∞ 0 [0,+∞]

0 0 [0,+∞]

ln 0( ) ∞–=

ln +∞( ) +∞=

exp ∞–( ) 0=

exp +∞( ) +∞=
Chapter 2 f95 Interval Reference 2-21



The entries in TABLE 2-9 follow directly from using the containment set of the basic
multiply operation in TABLE 2-7 on the closures of the ln and exp functions. For
example, with x0 = 1 and y0 = -∞, ln(x0) = 0. For the closure of multiplication on the
values -∞ and 0 in TABLE 2-7, the result is [-∞, +∞]. Finally, exp([-∞, +∞]) = [0, +∞], the
second entry in TABLE 2-9. Remaining entries are obtained using the same steps.
These same results are obtained from the direct derivation of the containment set of
exp(y(ln(x))). At this time, sufficient conditions for closure-composition equality of
any expression have not been identified. Nevertheless,

■ The containment-set evaluation theorem guarantees that a containment failure
can never result from computing a composition of closures instead of a closure.

■ An expression must be a SUE for closure-composition equality to be true.

2.6 Dependent Subtraction Operator
The dependent subtraction operator .DSUB. can be used to recover either operand
of a previous interval addition.

Two interval variables are dependent when one interval variable is a result of an
interval arithmetic operation applied to the other interval variable. For example, if
X = A + B, then X depends on both A and B. Dependent interval subtraction
produces narrower interval results when recovering A or B from X.

Dependent operations cannot be applied to interval constants because interval
constants are not the result of an interval operation, and therefore, cannot be
dependent. Applying dependent operations to interval constants produces a
compile-time error.

The result of X.DSUB.A returns an enclosure of B given that X = A + B, as shown
in TABLE 2-10.

TABLE 2-10 Results of X .DSUB. A For Different Values of X and A

A = [EMPTY] A = Finite Interval A = [-inf, inf]

X = [EMPTY] [-inf, inf] [EMPTY] [EMPTY]

X = Finite Interval [-inf, inf] Finite interval1

1 The returned finite interval must always enclose B, given that X = A + B.

[-inf, inf]

X = [-inf, inf] [-inf, inf] [-inf, inf] [-inf, inf]
2-22 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.7 Set Theoretic Operators
f95 supports the following set theoretic operators for determining the interval hull
and intersection of two intervals.

2.7.1 Hull: X ∪ Y or (X.IH.Y)
Description: Interval hull of two intervals. The interval hull is the smallest interval
that contains all the elements of the operand intervals.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Same as X.

2.7.2 Intersection: X∩Y or (X.IX.Y)
Description: Intersection of two intervals.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Same as X.

X Y inf X Y∪( ) sup X Y∪( ),[ ]≡.IH.

Y if X ∅ ,=,
X if Y ∅ , and=,
min x y( , ) max x y( , )[ , ] , otherwise.






=

X Y z z X and z Y∈∈ }{≡.IX.

∅ if X ∅=( ) or Y ∅=( ) or min x y( , ) max x y( , )<( ),

max x y( , ) min x y( , )[ , ] , otherwise.






=

Chapter 2 f95 Interval Reference 2-23



2.8 Set Relations
f95 provides the following set relations that have been extended to support intervals.

2.8.1 Disjoint: X ∩Y = ∅ or (X .DJ. Y)

Description: Test if two intervals are disjoint.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.2 Element: r ∈ Y or (R.IN. Y)

Description: Test if the number, R, is an element of the interval, Y.

Mathematical and operational definitions:

Arguments: The type of R is INTEGER or REAL, and the type of Y is INTERVAL.

Result type: Default logical scalar.

The following comments refer to the set relation:

■ Under widest-need expression processing, R and Y having different KTPVs has no
impact on how they are evaluated. Widest-need expression processing applies to
Y, but does not apply to the evaluation of R. After evaluation, KTPV promotion of
Y or R is done before the inclusion test is performed.

■ Under strict expression evaluation, R and Y must have the same KTPV.

■ If R is NaN (Not a Number), R .IN. Y is unconditionally false.

■ If Y is empty, R .IN. Y is unconditionally false.

X Y.DJ. X ∅=( ) or Y ∅=( ) or

X ∅≠( ) and Y ∅≠( ) and x X∈∀ y Y :∈ x y≠∀,( )( )
≡

X ∅=( )= or Y ∅=( ) or X ∅≠( ) and

Y ∅≠( ) and y x<( ) or x y<( )( )
(

)

r Y∈ y Y∈∃ : y r=( )≡
Y ∅≠( )= and y r≤( ) and r y≤( )

r Y∈
2-24 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.8.3 Interior: (X .INT. Y)
Description: Test if X is in interior of Y.

The interior of a set in topological space is the union of all open subsets of the set.

For intervals, the relation X .INT. Y (X in interior of Y) means that X is a subset of
Y, and both of the following relations are false:

■ , or in Fortran: INF(Y) .IN. X
■ , or in Fortran: SUP(Y) .IN. X

Note also that, , but [empty] .INT. [empty] = true

The empty set is open and therefore is a subset of the interior of itself.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.4 Proper Subset: X ⊂ Y or (X .PSB. Y)

Description: Test if X is a proper subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.5 Proper Superset: X ⊃ Y or (X .PSP. Y)
Description: See proper subset with .

inf Y( ) X∈
sup Y( ) X∈

∅ ∅∉

X Y.INT. X ∅=( ) or≡
X ∅≠( ) and Y ∅≠( ) and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''< <∀( )( )

X ∅=( ) or X ∅≠( ) and Y ∅≠( ) and y x<( ) and x y<( )( )=

X Y.PSB. X Y⊆( ) and X Y≠( )≡

X ∅=( ) and Y ∅≠( )( ) or

X ∅≠( ) and Y ∅≠( ) and y x≤( ) and x y<( ) or

y x<( ) x y≤( )and

=

X Y↔
Chapter 2 f95 Interval Reference 2-25



2.8.6 Subset: X ⊆ Y or (X .SB. Y)
Description: Test if X is a subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.7 Superset: X ⊇ Y or (X .SP. Y)
Description: See subset with .

2.8.8 Relational Operators
An intrinsic INTERVAL relational operator, denoted .qop., is composed by
concatenating:

■ The required period delimiters

■ An operator prefix, q ∈ {C,P,S}, where C, P, and S stand for certainly, possibly,
and set, respectively

■ A Fortran relational operator suffix, op ∈ {LT, LE, EQ, NE, GT, GE}

In place of .SEQ. and .SNE., .EQ. (or ==) and .NE. (or /=) defaults are accepted.
To eliminate code ambiguity, all other INTERVAL relational operators must be made
explicit by specifying a prefix.

All INTERVAL relational operators have equal precedence. Arithmetic operators
have higher precedence than relational operators.

INTERVAL relational expressions are evaluated by first evaluating the two operands,
after which the two expression values are compared. If the specified relationship
holds, the result value is true; otherwise, it is false.

When widest-need expression processing is invoked, it applies to both INTERVAL
operand expressions of INTERVAL relational operators.

Letting "nop" stand for the complement of the operator op, the certainly and possibly
operators are related as follows:

X Y.SB. X ∅=( ) or
X ∅≠( ) and Y ∅≠( ) and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''≤ ≤∀( )( )

≡

X ∅=( ) or= X ∅≠( ) and Y ∅≠( ) and y x≤( ) and x y≤( )( )

X Y↔
2-26 Fortran 95 Interval Arithmetic Programming Reference • November 2005



.Cop. ≡ .NOT.(.Pnop.)

.Pop. ≡ .NOT.(.Cnop.)

Note – This identity between certainly and possibly operators holds
unconditionally if op ∈ {EQ, NE}, and otherwise, only if neither operand is empty.
Conversely, the identity does not hold if op ∈ {LT, LE, GT, GE} and either operand is
empty.

Assuming neither operand is empty, TABLE 2-11 contains the Fortran operational
definitions of all INTERVAL relational operators of the form:

[x,x].qop.[y,y].

The first column contains the value of the prefix, and the first row contains the value
of the operator suffix. If the tabled condition holds, the result is true.

TABLE 2-11 Operational Definitions of Interval Order Relations

LT. LE. EQ. GE. GT. NE.

.S x < y
and
x < y

x ≤ y
and
x ≤ y

x = y
and
x = y

x ≥ y
and
x ≥ y

x > y
and
x > y

x ≠ y
or
x ≠ y

.C x < y x ≤ y y ≤ x
and
x ≤ y

x ≥ y x > y x > y
or
y > x

.P x < y x ≤ y x ≤ y
and
y ≤ x

x ≥ y x > y y > x
or
x > y

CODE EXAMPLE 2-7 Relational Operators

math% cat ce2-7.f95

INTERVAL :: X = [1.0, 3.0], Y = [2.0, 4.0], Z

INTEGER  :: V = 4, W = 5

LOGICAL  :: L1, L2, L3, L4

REAL :: R

L1 = (X == X) .AND. (Y .SEQ. Y)

L2 = X .SLT. Y

! Widest-need code

Z  = W

L3 = W .CEQ. Z
Chapter 2 f95 Interval Reference 2-27



CODE EXAMPLE 2-7 notes:

■ L1 is true because an interval is set-equal to itself and the default .EQ. ( or == )
operator is the same as .SEQ. .

■ L2 is true because (INF(X).LT.INF(Y)).AND.(SUP(X).LT.SUP(Y)) is true.

■ L3 is true because widest need promotes W to the interval [5,5] and two
intervals are certainly equal if and only if all four of their endpoints are equal.

■ L4 is true because evaluating the interval expressions X–Y and V–W yields the
intervals [-3,1] and [-1,-1] respectively. Therefore the expression (INF(X-Y)
.LT. SUP(V-W)) is true.

2.8.8.1 Set Relational Operators

For an affirmative order relation with

op ∈ {LT, LE, EQ, GE, GT} and

,

between two points x and y, the mathematical definition of the corresponding
set-relation, .Sop., between two non-empty intervals X and Y is:

For the relation ≠ between two points x and y, the corresponding set relation, .SNE.,
between two non-empty intervals X and Y is:

Empty intervals are explicitly considered in each of the following relations. In each
case:

Arguments: X and Y must be intervals with the same KTPV.

L4 = X-Y .PLT. V-W

IF( L1 .AND. L2 .AND. L3 .AND. L4) PRINT *, 'Check1'

! Equivalent (for the assignment to L3 and L4) strict code

L3 = INTERVAL(W, KIND=8) .CEQ. Z

L4 = X-Y  .PLT. INTERVAL(V, KIND=8)-INTERVAL(W, KIND=8)

IF(L3 .AND. L4) PRINT *, 'Check2'

END

math% f95 -xia ce2-7.f95

math% a.out

 Check1

 Check2

CODE EXAMPLE 2-7 Relational Operators (Continued)

op >,≥,=,≤,<{ }∈

X Y.Sop. x X y Y∈∃,∈ : x op y∀( ) and y Y x X :∈∃,∈ x op y∀( ).≡

X Y.SNE. x X∈∃ y Y :∈ x y≠∀,( ) or y Y∈∃ x X :∈ x y≠∀,( ).≡
2-28 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Result type: default logical scalar.

2.8.8.2 Certainly Relational Operators

The certainly relational operators are true if the underlying relation is true for every
element of the operand intervals. For example, [a,b] .CLT. [c,d] is true if x < y
for all and . This is equivalent to b < c.

For an affirmative order relation with

op ∈ {LT, LE, EQ, GE, GT} and

,

between two points x and y, the corresponding certainly-true relation .Cop. between
two intervals, X and Y, is

.

With the exception of the anti-affirmative certainly-not-equal relation, if either
operand of a certainly relation is empty, the result is false. The one exception is the
certainly-not-equal relation, .CNE., which is true in this case.

For each of the certainly relational operators:

Arguments: X and Y must be intervals with the same KTPV.

Result type: default logical scalar.

2.8.8.3 Possibly Relational Operators

The possibly relational operators are true if any element of the operand intervals
satisfy the underlying relation. For example, [a,b] .PLT. [c,d] is true if there
exists an and a such that x < y. This is equivalent to a < d.

For an affirmative order relation with

op ∈ {LT, LE, EQ, GE, GT} and

,

between two points x and y, the corresponding possibly-true relation .Pop. between
two intervals X and Y is defined as follows:

.

If the empty interval is an operand of a possibly relation then the result is false. The
one exception is the anti-affirmative possibly-not-equal relation, .PNE., which is
true in this case.

For each of the possibly relational operators:

x a b,[ ]∈ y c d[ , ]∈

op >,≥,=,≤,<{ }∈

X Y.Cop. X ∅≠( ) and Y ∅≠( ) and x X y Y∈∀,∈ : x yop∀( )≡

x a b,[ ]∈ y c d[ , ]∈

op >,≥,=,≤,<{ }∈

X Y.Pop. X ∅≠( ) and Y ∅≠( ) and x X y Y∈∃,∈ : x yop∃( )≡
Chapter 2 f95 Interval Reference 2-29



Arguments: X and Y must be INTERVALS with the same KTPV.

Result type: default logical scalar.

2.9 Extending Intrinsic INTERVAL
Operators
If the operator specified in the INTERFACE statement of a user provided operator
interface block is an intrinsic INTERVAL operator (for example .IH.), an extension
to the intrinsic INTERVAL operator is created.

A user-provided operator function that extends an intrinsic INTERVAL operator may
not extend the operator for those data types of its operands for which this operator
is predefined.

For the combinations of arguments listed below, intrinsic interval operators +, -, *, /,
.IH., .IX., and ** are predefined and cannot be extended by users.

(any INTERVAL type, any INTERVAL type)

(any INTERVAL type, any REAL or INTEGER type)

(any REAL or INTEGER type, any INTERVAL type)

The interval operator ** with the integer exponent is predefined and cannot be
extended by users for the following combination of arguments:

(any INTERVAL type, any INTEGER type)

Except for the operator .IN. interval relational operators are predefined for the
combinations of arguments listed below and cannot be extended by users.

(any INTERVAL type, any INTERVAL type)

(any INTERVAL type, any REAL or INTEGER type)

(any REAL or INTEGER type, any INTERVAL type)

The interval relational operator .IN. is predefined and cannot be extended by users
for the following combination of arguments:

(any REAL or INTEGER type, any INTERVAL type)
2-30 Fortran 95 Interval Arithmetic Programming Reference • November 2005



In CODE EXAMPLE 2-8, both S1 and S2 interfaces are correct, because .IH. is not
predefined for (LOGICAL, INTERVAL(16)) operands.

CODE EXAMPLE 2-8 Interval .IH. Operator Extension

math% cat ce2-8.f95

MODULE M

INTERFACE OPERATOR (.IH.)

    MODULE PROCEDURE S1

    MODULE PROCEDURE S2

END INTERFACE

CONTAINS

REAL FUNCTION S1(L, Y)

LOGICAL, INTENT(IN)      ::  L

INTERVAL(16), INTENT(IN) ::  Y

    S1 = 1.0

END FUNCTION S1

INTERVAL FUNCTION S2(R1, R2)

REAL, INTENT(IN) ::  R1

REAL, INTENT(IN) ::  R2

    S2 = [2.0]

END FUNCTION S2

END MODULE M

PROGRAM TEST

USE M

INTERVAL(16) :: X = [1, 2]

LOGICAL      :: L = .TRUE.

REAL         :: R = 0.1

PRINT *, ’L  .IH. X  = ’, L  .IH. X

PRINT *, ’R1 .IH. R2 =’, R1 .IH. R2

END PROGRAM TEST

math% f95 -xia ce2-8.f95

math% a.out

 L  .IH. X  =  1.0

 R1 .IH. R2 = [2.0,2.0]
Chapter 2 f95 Interval Reference 2-31



The extension of the + operator in CODE EXAMPLE 2-9 is incorrect because the attempt
is made to change the definition of the intrinsic INTERVAL (+) operator, which is
predefined for (INTERVAL, INTERVAL) type operands.

CODE EXAMPLE 2-9 User-Defined Interface That Conflicts With the Use of the Intrinsic
INTERVAL (+) Operator

math% cat ce2-9.f95

MODULE M1

INTERFACE OPERATOR (+)

    MODULE PROCEDURE S4

END INTERFACE

CONTAINS

REAL FUNCTION S4(X, Y)

INTERVAL, INTENT(IN) ::  X

INTERVAL, INTENT(IN) ::  Y

    S4 = 4.0

END FUNCTION S4

END MODULE M1

PROGRAM TEST

USE M1

INTERVAL :: X = [1.0], Y = [2.0]

PRINT *, 'X + Y = ', X + Y

END PROGRAM TEST

math% f95 -xia ce2-9.f95

MODULE M1

       ^

"ce2-9.f95", Line = 1, Column = 8: ERROR: The compiler has detected
errors in module "M1". No module information file will be created
for this module.

    MODULE PROCEDURE S4

                     ^

"ce2-9.f95", Line = 3, Column = 22: ERROR: This specific interface
"S4" conflicts with the intrinsic use of "+".

USE M1

    ^
2-32 Fortran 95 Interval Arithmetic Programming Reference • November 2005



In CODE EXAMPLE 2-10, the following S1 interface is incorrect, because .IH. is
predefined for (INTERVAL(4), INTERVAL(8)) operands.

"ce2-9.f95", Line = 14, Column = 5: ERROR: Module "M1" has compile
errors, therefore declarations obtained from the module via the
USE statement may be incomplete.

f95comp: 17 SOURCE LINES

f95comp: 3 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-10 User-Defined Interface Conflicts With Intrinsic Use
of .IH

math% cat ce2-10.f95

MODULE M

INTERFACE OPERATOR (.IH.)

    MODULE PROCEDURE S1

END INTERFACE

CONTAINS

INTERVAL FUNCTION S1(X, Y)

INTERVAL(4), INTENT(IN) ::  X

INTERVAL(8), INTENT(IN) ::  Y

    S1 = [1.0]

END FUNCTION S1

END MODULE M

PROGRAM TEST

USE M

INTERVAL(4) :: X = [1.0]

INTERVAL(8) :: Y = [2.0]

PRINT *, ’X .IH. Y = ’, X .IH. Y

END PROGRAM TEST

math% f95 -xia ce2-10.f95

MODULE M

       ^

"ce2-10.f95", Line = 1, Column = 8: ERROR: The compiler has
detected errors in module "M". No module information file will be
created for this module.

    MODULE PROCEDURE S1

                     ^

CODE EXAMPLE 2-9 User-Defined Interface That Conflicts With the Use of the Intrinsic
INTERVAL (+) Operator (Continued)
Chapter 2 f95 Interval Reference 2-33



The number of arguments of an operator function that extends an intrinsic
INTERVAL operator must agree with the number of operands needed for the
intrinsic operator, as shown in CODE EXAMPLE 2-11.

"ce2-10.f95", Line = 3, Column = 22: ERROR: This specific interface
"S1" conflicts with the intrinsic use of "ih".

USE M

    ^

"ce2-10.f95", Line = 14, Column = 5: ERROR: Module "M" has compile
errors, therefore declarations obtained from the module via the
USE statement may be incomplete.

f95comp: 18 SOURCE LINES

f95comp: 3 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-11 Incorrect Change in the Number of Arguments in a Predefined
INTERVAL Operator

math% cat ce2-11.f95

MODULE M

INTERFACE OPERATOR (.IH.)

    MODULE PROCEDURE S1

END INTERFACE

CONTAINS

REAL FUNCTION S1(R)

REAL, INTENT(IN) :: R

    S1 = 1.0

END FUNCTION S1

END MODULE M

PROGRAM TEST

USE M

REAL :: R = 0.1

PRINT *, ’ .IH. R = ’, .IH. R

END PROGRAM TEST

math% f95 -xia ce2-11.f95

MODULE M

       ^

CODE EXAMPLE 2-10 User-Defined Interface Conflicts With Intrinsic Use
of .IH (Continued)
2-34 Fortran 95 Interval Arithmetic Programming Reference • November 2005



A binary intrinsic INTERVAL operator cannot be extended with unary operator
function having an INTERVAL argument.

In CODE EXAMPLE 2-12, the S1 interface is incorrect, because "+" is predefined for the
INTERVAL operand.

"ce2-11.f95", Line = 1, Column = 8: ERROR: The compiler has
detected errors in module "M". No module information file will be
created for this module.

    MODULE PROCEDURE S1

                     ^

"ce2-11.f95", Line = 3, Column = 22: ERROR: The specific interface
"S1" must have exactly two dummy arguments when inside a defined
binary operator interface block.

USE M

    ^

"ce2-11.f95", Line = 13, Column = 5: ERROR: Module "M" has compile
errors, therefore declarations obtained from the module via the
USE statement may be incomplete.

PRINT *, ’ .IH. R = ’, .IH. R

                       ^

"ce2-11.f95", Line = 15, Column = 24: ERROR: Unexpected syntax:
"operand" was expected but found ".".

f95comp: 16 SOURCE LINES

f95comp: 4 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-12 User-Defined Interface That Conflicts With the Intrinsic Use of Unary
"+"

math% cat ce2-12.f95

MODULE M

INTERFACE OPERATOR (+)

    MODULE PROCEDURE S1

END INTERFACE

CONTAINS

REAL FUNCTION S1(X)

    INTERVAL, INTENT(IN) :: X

    S1 = 1.0

CODE EXAMPLE 2-11 Incorrect Change in the Number of Arguments in a Predefined
INTERVAL Operator (Continued)
Chapter 2 f95 Interval Reference 2-35



In a generic interface block, if the generic name specified in the INTERFACE
statement is the name of an intrinsic INTERVAL subprogram, the specific
user-defined subprograms extend the predefined meaning of the intrinsic
subprogram.

All references to subprograms having the same generic name must be unambiguous.

END FUNCTION S1

END MODULE M

PROGRAM TEST

USE M

INTERVAL :: X = 0.1

PRINT *, ' + X = ', + X

END PROGRAM TEST

math% f95 -xia ce2-12.f95

MODULE M

       ^

"ce2-12.f95", Line = 1, Column = 8: ERROR: The compiler has
detected errors in module "M". No module information file will be
created for this module.

    MODULE PROCEDURE S1

                     ^

"ce2-12.f95", Line = 3, Column = 22: ERROR: This specific interface
"S1" conflicts with the intrinsic use of "+".

USE M

    ^

"ce2-12.f95", Line = 13, Column = 5: ERROR: Module "M" has compile
errors, therefore declarations obtained from the module via the
USE statement may be incomplete.

f95comp: 16 SOURCE LINES

f95comp: 3 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-12 User-Defined Interface That Conflicts With the Intrinsic Use of Unary
"+" (Continued)
2-36 Fortran 95 Interval Arithmetic Programming Reference • November 2005



The intrinsic subprogram is treated as a collection of specific intrinsic subprograms,
the interface definitions of which are also specified in the generic interface block.

CODE EXAMPLE 2-14 is correct.

CODE EXAMPLE 2-13 Correct Extension of Intrinsic INTERVAL Function WID

math% cat ce2-13.f95

MODULE M

INTERFACE WID

    MODULE PROCEDURE S1

    MODULE PROCEDURE S2

END INTERFACE

CONTAINS

REAL FUNCTION S1(X)

REAL, INTENT(IN) :: X

    S1 = 1.0

END FUNCTION S1

INTERVAL FUNCTION S2(X, Y)

INTERVAL, INTENT(IN) :: X

INTERVAL, INTENT(IN) :: Y

    S2 = [2.0]

END FUNCTION S2

END MODULE M

PROGRAM TEST

USE M

INTERVAL :: X = [1, 2], Y = [3, 4]

REAL     :: R = 0.1

PRINT *, WID(R)

PRINT *, WID(X, Y)

END PROGRAM TEST

math% f95 -xia ce2-13.f95

math% a.out

 1.0

 [2.0,2.0]

CODE EXAMPLE 2-14 Correct Extension of the Intrinsic INTERVAL
Function ABS

math% cat ce2-14.f95

MODULE M

INTERFACE ABS
Chapter 2 f95 Interval Reference 2-37



CODE EXAMPLE 2-15 is correct.

    MODULE PROCEDURE S1

END INTERFACE

CONTAINS

INTERVAL FUNCTION S1(X)

INTERVAL, INTENT(IN) :: X

    S1 = [-1.0]

END FUNCTION S1

END MODULE M

PROGRAM TEST

USE M

INTERVAL :: X = [1, 2]

PRINT *, ABS(X)

END PROGRAM TEST

math% f95 -xia ce2-14.f95

math% a.out

 [-1.0,-1.0]

CODE EXAMPLE 2-15 Correct Extension of the Intrinsic INTERVAL Function MIN

math% cat ce2-15.f95

MODULE M

INTERFACE MIN

    MODULE PROCEDURE S1

END INTERFACE

CONTAINS

INTERVAL FUNCTION S1(X, Y)

    INTERVAL(4), INTENT(IN) :: X

    INTERVAL(8), INTENT(IN) :: Y

    S1 = [-1.0]

END FUNCTION S1

END MODULE M

PROGRAM TEST

USE M

INTERVAL(4) :: X = [1, 2]

INTERVAL(8) :: Y = [3, 4]

REAL        :: R = 0.1

PRINT *, MIN(X, Y)

CODE EXAMPLE 2-14 Correct Extension of the Intrinsic INTERVAL
Function ABS (Continued)
2-38 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.9.1 Extended Operators With Widest-Need
Evaluation
CODE EXAMPLE 2-16 illustrates how widest-need expression processing occurs when
calling predefined versus extended versions of an intrinsic INTERVAL operator.

END PROGRAM TEST

math% f95 -xia ce2-15.f95

math% a.out

 [-1.0,-1.0]

CODE EXAMPLE 2-16 Widest-Need Expression Processing When Calling a Predefined
Version of an Intrinsic INTERVAL Operator

math% cat ce2-16.f95

MODULE M

INTERFACE OPERATOR (.IH.)

    MODULE PROCEDURE S4

END INTERFACE

CONTAINS

INTERVAL FUNCTION S4(X, Y)

    COMPLEX, INTENT(IN) :: X

    COMPLEX, INTENT(IN) :: Y

    S4 = [0]

END FUNCTION S4

END MODULE M

USE M

INTERVAL :: X = [1.0]

REAL     :: R = 1.0

COMPLEX  :: C = (1.0, 0.0)

X = (R-0.1).IH.(R-0.2)   ! intrinsic interval .IH. is invoked,

                         ! widest-need on both arguments

X = X .IH. (R+R)         ! intrinsic interval .IH. is invoked,

                         ! widest-need on both arguments

X = X .IH. (R+R+X)       ! intrinsic interval .IH. is invoked,

                         ! widest-need on the second argument

CODE EXAMPLE 2-15 Correct Extension of the Intrinsic INTERVAL Function MIN
Chapter 2 f95 Interval Reference 2-39



CODE EXAMPLE 2-17 illustrates how widest-need expression processing occurs when
calling a user-defined operator.

X = (R+R) .IH. (R+R+X) ! intrinsic interval .IH. is invoked,

                         ! widest-need on both arguments

X = C .IH. (C+R)         ! s4 is invoked, no widest-need

END

math% f95 -xia ce2-16.f95

math% a.out

CODE EXAMPLE 2-17 Widest-Need Expression Processing When Invoking a
User-Defined Operator

math% cat ce2-17.f95

MODULE M

INTERFACE OPERATOR (.AA.)

    MODULE PROCEDURE S1

    MODULE PROCEDURE S2

END INTERFACE

CONTAINS

INTERVAL FUNCTION S1(X, Y)

INTERVAL, INTENT(IN) :: X

REAL, INTENT(IN)     :: Y

    PRINT *, ’S1 is invoked.’

    S1 = [1.0]

END FUNCTION S1

INTERVAL FUNCTION S2(X, Y)

INTERVAL, INTENT(IN) :: X

INTERVAL, INTENT(IN) :: Y

    PRINT *, ’S2 is invoked.’

    S2 = [2.0]

END FUNCTION S2

END MODULE M

USE M

INTERVAL :: X = [1.0]

REAL     :: R = 1.0

X = X .AA. R+R     ! S1 is invoked

CODE EXAMPLE 2-16 Widest-Need Expression Processing When Calling a Predefined
Version of an Intrinsic INTERVAL Operator (Continued)
2-40 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.9.2 INTERVAL (X [,Y, KIND])
Description: Convert to INTERVAL type.

Class: Elemental function.

Arguments:

X is of type INTEGER, REAL, or INTERVAL.

Y (optional) is of type INTEGER or REAL. If X is of type INTERVAL, Y must not be
present.

KIND (optional) is a scalar INTEGER initialization expression.

Result characteristics: INTERVAL

If KIND is present, its value is used to determine the result’s KTPV; otherwise, the
result’s KTPV is the same as a default interval.

Containment:

Containment is guaranteed if X is an interval. For example, given

X = X .AA. X       ! S2 is invoked

END

math% f95 -xia ce2-17.f95

    MODULE PROCEDURE S1

                     ^

"ce2-17.f95", Line = 3, Column = 22: WARNING: Widest-need
evaluation does not apply to arguments of user-defined operation.

USE M

    ^

"ce2-17.f95", Line = 20, Column = 5: WARNING: Widest-need
evaluation does not apply to arguments of user-defined operation.

f95comp: 26 SOURCE LINES

f95comp: 0 ERRORS, 2 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

math% a.out

 S1 is invoked.

 S2 is invoked.

CODE EXAMPLE 2-17 Widest-Need Expression Processing When Invoking a
User-Defined Operator (Continued)
Chapter 2 f95 Interval Reference 2-41



INTERVAL(16):: X,

the result of INTERVAL(X, KIND=4) contains the INTERVAL X.

However, given REAL(8) X, Y, the result of INTERVAL(X,Y,KIND=4) does not
necessarily contain the internal interval X .IH. Y. The reason is that X and Y can be
REAL expressions, the values of which cannot be guaranteed.

The INTERVAL constructor does not necessarily contain the value of a literal
INTERVAL constant with the same endpoints. For example, INTERVAL(1.1,1.3)
does not necessarily contain the external value ev([1.1, 1.3]) = [1.1, 1.3]. The
reason is that the internal values of REAL constants are approximations with
unknown accuracy.

To construct an interval that always contains two REAL values, use the interval hull
operator .IH., as shown in CODE EXAMPLE 2-18.

Result value: The interval result value is a valid interval.

If Y is absent and X is an interval, then INTERVAL(X [,KIND]) is an interval
containing X and INTERVAL(X [,KIND]) is an interval with left and right
endpoints [XL,XU], where

XL = REAL(INF(X) [,KIND]) rounded down, so that XL .LE. INF(X)

and

XU = REAL(SUP(X)[,KIND]) rounded up, so that XU.GE.SUP(X).

If both X and Y are present (and are therefore not intervals), then INTERVAL(X,Y
[,KIND]) is an interval with left and right endpoints equal to REAL(X [,KIND])
and REAL(Y [,KIND]) respectively.

Note – In this case, rounding direction is not specified. Therefore, containment is
not provided.

[-inf,inf] is returned in two cases:

■ If both X and Y are present and Y is less than X.

■ If either X or Y or both do not represent a mathematical integer or real number
(for example, when one or both REAL arguments is a NaN).

2.9.2.1 Limiting the Scope of Widest-Need

The intrinsic INTERVAL constructor function can be used in two ways:

■ To perform KTPV conversions of INTERVAL variables or expressions

■ To insulate a non-INTERVAL expression from mixed-mode INTERVAL expression
evaluation.
2-42 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Given the non-INTERVAL (REAL or INTEGER) expression, EXP, the code

is the same as

This is not the same as

The later will evaluate EXP as an interval expression. In the first two code
fragments, the expression EXP is evaluated as a non-INTERVAL expression, and the
result is used to construct a degenerate interval.

With two arguments, EXP1 and EXP2, INTERVAL(EXP1, EXP2) insulates both
expressions from widest-need expression processing and constructs an interval with
endpoints equal to the result of the non-INTERVAL evaluation of the expressions.

Including the KIND parameter makes it possible to control the KTPV of the result.
This is most often needed under -strict expression processing where explicit KTPV
conversions are necessary.

The intrinsic INTERVAL function with non-INTERVAL arguments should be used
with care. Whenever interval containment is desired, use the interval hull operator
.IH., as shown in CODE EXAMPLE 2-18.

The INTERVAL constructor acts as a boundary between INTERVAL and REAL or
INTEGER expressions. On the non-INTERVAL side of this boundary, accuracy (and
therefore containment) guarantees cannot be enforced.

INTERVAL Y
REAL R
R = EXP
Y = R

INTERVAL Y
Y = INTERVAL(EXP)

INTERVAL Y
Y = EXP

CODE EXAMPLE 2-18 Containment Using the .IH. Operator

math% cat ce2-18.f95

REAL(16) :: A, B

INTERVAL :: X1, X2

PRINT *, "Press Control/D to terminate!"
Chapter 2 f95 Interval Reference 2-43



See Section 2.9.2, “INTERVAL (X [,Y, KIND])” on page 2-41 for details on the use of
the intrinsic INTERVAL constructor function.

WRITE(*, 1, ADVANCE='NO')

READ(*, *, IOSTAT=IOS) A, B

DO WHILE (IOS >= 0)

    PRINT *, " FOR A =", A, ", AND B =", B

    ! Widest need code

     X1 = A .IH. B

    ! Equivalent strict code

X2 = INTERVAL(INTERVAL(A, KIND=16) .IH. INTERVAL(B, KIND=16))

    IF (X1 .SEQ. X2)  PRINT *, 'Check.'

    PRINT *, 'X1 = ', X1

    WRITE(*, 1, ADVANCE='NO')

    READ(*, *, IOSTAT=IOS)  A, B

END DO

1  FORMAT(" A, B = ")

END

math% f95 -xia ce2-18.f95

math% a.out

Press Control/D to terminate!

A, B = 1.3 1.7

FOR A = 1.3 , AND B = 1.7

Check.

X1 =  [1.2999999999999998,1.7000000000000002]

A, B = 0.0 0.2

FOR A = 0.0E+0 , AND B = 0.2

Check.

X1 =  [0.0E+0,0.20000000000000002]

A, B = ^d

CODE EXAMPLE 2-18 Containment Using the .IH. Operator (Continued)
2-44 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.9.2.2 KTPV-Specific Names of Intrinsic INTERVAL Constructor
Functions

As shown in TABLE 2-12, the intrinsic INTERVAL constructor function can be called
using a KTPV-specific form that does not use the optional KIND parameter.

2.9.2.3 Intrinsic INTERVAL Constructor Function Conversion
Examples

The three examples in this section illustrate how to use the intrinsic INTERVAL
constructor to perform conversions from REAL to INTERVAL type data items.
CODE EXAMPLE 2-19 shows that REAL expression arguments of the INTERVAL
constructor are evaluated using REAL arithmetic and are, therefore, insulated from
widest-need expression evaluations.

TABLE 2-12 KTPV Specific Forms of the Intrinsic INTERVAL Constructor Function

KTPV -Specific Name Result

DINTERVAL(X[,Y]) INTERVAL(X[,Y], KIND = 8) or INTERVAL(X[,Y])

SINTERVAL(X[,Y]) INTERVAL(X[,Y], KIND = 4)

QINTERVAL(X[,Y]) INTERVAL(X[,Y], KIND = 16)

CODE EXAMPLE 2-19 INTERVAL Conversion

math% cat ce2-19.f95

REAL        :: R = 0.1, S = 0.2, T = 0.3

REAL(8)     :: R8 = 0.1D0, T1, T2

INTERVAL(4) :: X, Y

INTERVAL(8) :: DX, DY

R = 0.1

Y  = INTERVAL(R, R, KIND=4)

X  = INTERVAL(0.1, KIND=4) ! Line 7

IF ( X == Y ) PRINT *, ’Check1’

X  = INTERVAL(0.1, 0.1, KIND=4) ! Line 10

IF ( X == Y ) PRINT *, ’Check2’

T1 = R+S

T2 = T+R8

DY = INTERVAL(T1, T2)

DX = INTERVAL(R+S, T+R8) ! Line 15

IF ( DX == DY ) PRINT *, ’Check3’

DX = INTERVAL(Y, KIND=8) ! Line 17
Chapter 2 f95 Interval Reference 2-45



CODE EXAMPLE 2-19 notes:

■ Lines 7 and 10: Interval X is assigned a degenerate interval with both endpoints
equal to the internal representation of the real constant 0.1

■ Line 15: Interval DX is assigned an interval with left and right endpoints equal to
the result of REAL expressions R+S and T+R8 respectively

■ Line 17: Interval Y is converted to a containing KTPV-8 interval.

CODE EXAMPLE 2-20 shows how the INTERVAL constructor can be used to construct
the smallest possible interval, Y, such that the endpoints of Y are not elements of a
given interval, X.

Given an interval X, a sharp interval Y satisfying the condition X .INT. Y is
constructed. For information on the interior set relation, Section 2.8.3, “Interior:
(X .INT. Y)” on page 2-25.

IF (Y .CEQ. INTERVAL(0.1, 0.1, KIND=8)) PRINT *, ’Check4’

END

math% f95 -xia ce2-19.f95

math% a.out

 Check1

 Check2

 Check3

 Check4

CODE EXAMPLE 2-20 Create a Narrow Interval Containing a Given Real Number

math% cat ce2-20.f95

INTERVAL :: X = [10.E-10,11.E+10]

INTERVAL :: Y

Y = INTERVAL(-TINY(INF(X)), TINY(INF(X))) + X

PRINT *, X .INT. Y

END

%math f95 -xia ce2-20

%math a.out

  T

CODE EXAMPLE 2-19 INTERVAL Conversion (Continued)
2-46 Fortran 95 Interval Arithmetic Programming Reference • November 2005



CODE EXAMPLE 2-21 illustrates when the INTERVAL constructor returns the interval
[-INF, INF] and [MAX_FLOAT, INF].

CODE EXAMPLE 2-21 notes:

■ Line 2: Variable T is assigned a NaN value.

■ Lines 4 and 5: One of the arguments of the INTERVAL constructor is a NaN and the
result is the interval [-INF, INF].

■ Line 6: The interval [-INF, INF] is constructed instead of an invalid interval
[2,1].

■ Line 7: The interval [MAX_FLOAT, INF] is constructed. This interval contains the
interval [INF, INF]. See the supplementary paper [8] cited in Section 2.11,
“References” on page 2-88, for a discussion of the chosen intervals to internally
represent.

2.9.3 Specific Names for Intrinsic Generic INTERVAL
Functions
The f95 specific names for intrinsic generic INTERVAL functions end with the
generic name of the intrinsic and start with V, followed by S, D, or Q for arguments of
type INTERVAL(4), INTERVAL(8), and INTERVAL(16), respectively.

CODE EXAMPLE 2-21 INTERVAL(NaN)

math% cat ce2-21.f95

REAL :: R = 0., S = 0.

T = R/S                        ! Line 2

PRINT *, T

PRINT *, INTERVAL(T, S)        ! Line 4

PRINT *, INTERVAL(T, T)        ! Line 5

PRINT *, INTERVAL(2., 1.)      ! Line 6

PRINT *, INTERVAL(1./R)        ! Line 7

END

math% f95 -xia ce2-21.f95

math% a.out

 NaN

 [-Inf,Inf]

 [-Inf,Inf]

 [-Inf,Inf]

 [1.7976931348623157E+308,Inf]
Chapter 2 f95 Interval Reference 2-47



In f95, only the following specific intrinsic functions are supported for the
INTERVAL(16) data type: VQABS, VQAINT, VQANINT, VQINF, VQSUP, VQMID, VQMAG,
VQMIG, and VQISEMPTY.

To avoid name space clashes in non-interval programs, the specific names are made
available only by the command line options:

■ -xinterval
■ -xinterval=strict or -xinterval=widestneed
■ macro -xia, -xia=strict or -xia=widestneed

See Section 2.3.3, “Interval Command-Line Options” on page 2-12 for more
information.

All the supported intrinsic functions have specific names. For example, TABLE 2-13
lists the names for the INTERVAL version of the ABS intrinsic.

The remaining specific intrinsic functions are listed in Section 2.10.4.5, “Intrinsic
Functions” on page 2-83.

2.10 INTERVAL Statements
This section describes the INTERVAL statements recognized by f95. The syntax and
description of each statement is given, along with possible restrictions and
examples.

2.10.1 Type Declaration
An INTERVAL statement is used to declare INTERVAL named constants, variables,
and function results. INTERVAL is an intrinsic numeric type declaration statement
with the same syntax and semantics as standard numeric type declaration
statements. The same specifications are available for use with the INTERVAL
statement as exist for use in other numeric type declarations.

TABLE 2-13 Specific Names for the Intrinsic INTERVAL ABS Function

Specific Name Argument Result

VSABS INTERVAL(4) INTERVAL(4)

VDABS INTERVAL(8) INTERVAL(8)

VQABS INTERVAL(16) INTERVAL(16)
2-48 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Description: The declaration can be INTERVAL, INTERVAL(4), INTERVAL(8), or
INTERVAL(16).

2.10.1.1 INTERVAL

For a declaration such as

INTERVAL :: W

the variable, W, has the default INTERVAL KTPV of 8 and occupies 16 bytes of
contiguous memory. In Sun Studio Fortran 95, the default INTERVAL KTPV is not
altered by the command-line options -xtypemap or -r8const.

INTERVAL cannot be used as a derived type name. For example the code in
CODE EXAMPLE 2-22 is illegal.

2.10.1.2 INTERVAL(n), for n ∈{4, 8, 16}

For a declaration such as

INTERVAL(n) :: W

the variable, W, has KTPV = n and occupies 2n bytes of contiguous memory.

CODE EXAMPLE 2-22 Illegal Derived Type: INTERVAL

math% cat ce2-22.f95

TYPE INTERVAL

    REAL :: INF, SUP

END TYPE INTERVAL

END

math% f95 -xia ce2-22.f95

TYPE INTERVAL

     ^

"ce2-22.f95", Line = 1, Column = 6: ERROR: A derived type type-
name must not

be the same as the name of the intrinsic type INTERVAL.

f95comp: 5 SOURCE LINES

f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
Chapter 2 f95 Interval Reference 2-49



CODE EXAMPLE 2-23 contains INTERVAL variable declarations with different KTPVs.
Widest-need and strict value alignment is also shown.

CODE EXAMPLE 2-24 illustrates how to declare and initialize INTERVAL variables. See
Section 2.1.2, “INTERVAL Constants” on page 2-2 regarding the different ways to
represent INTERVAL constants.

CODE EXAMPLE 2-23 Declaring Intervals With Different KTPVs

math% cat ce2-23.f95

INTERVAL(4)  :: X1, X2

INTERVAL(8)  :: Y1, Y2

INTERVAL(16) :: Z1, Z2

REAL(8)      :: D = 1.2345

! Widest-need code

 X1 = D

 Y1 = D

 Z1 = D

! Equivalent strict code

X2 = INTERVAL(INTERVAL(D, KIND=8), KIND=4)

Y2 = INTERVAL(D, KIND=8)

Z2 = INTERVAL(D, KIND=16)

IF (X1 == X2) PRINT *, ’Check1’

IF (Y1 == Y2) PRINT *, ’Check2’

IF (Z1 == Z2) PRINT *, ’Check3’

END

math% f95 -xia ce2-23.f95

math% a.out

 Check1

 Check2

 Check3

CODE EXAMPLE 2-24 Declaring and Initializing INTERVAL Variables

math% cat ce2-24.f95

INTERVAL :: U = [1, 9.1_8], V = [4.1]

! Widest-need code

INTERVAL :: W1 = 0.1_16
2-50 Fortran 95 Interval Arithmetic Programming Reference • November 2005



In any initializing declaration statement, if the type of the data expression does not
match the type of the symbolic name, type conversion is performed.

2.10.1.3 DATA Statements

Syntax

The syntax for DATA statements containing INTERVAL variables is the same as for
other numeric data types except that INTERVAL variables are initialized using
INTERVAL constants.

! Equivalent strict code

INTERVAL :: W2 = [0.1_16]

PRINT *, U, V

IF (W1 .SEQ. W2) PRINT *, ’Check’

END

math% f95 -xia ce2-24.f95

math% a.out

 [1.0,9.1000000000000015]
[4.0999999999999996,4.1000000000000006]

 Check

CODE EXAMPLE 2-25 Declaring INTERVAL Arrays

math% cat ce2-25.f95
INTERVAL(4) :: R(5), S(5)
INTERVAL :: U(5), V(5)
INTERVAL(16) :: X(5), Y(5)
END
math% f95 -xia ce2-25.f95
math% a.out

CODE EXAMPLE 2-26 DATA Statement Containing INTERVAL Variables

math% cat ce2-26.f95
INTERVAL X

CODE EXAMPLE 2-24 Declaring and Initializing INTERVAL Variables (Continued)
Chapter 2 f95 Interval Reference 2-51



2.10.1.4 EQUIVALENCE Statements

Any INTERVAL variables or arrays may appear in an EQUIVALENCE statement with
the following restriction: If an equivalence set contains an INTERVAL variable or
array, all of the objects in the equivalence set must have the same type, as shown in
CODE EXAMPLE 1-18. This is a standard, not interval-specific, Fortran restriction.

2.10.1.5 FORMAT Statements

Syntax

The repeatable edit descriptors for intervals are:

Fw.d, VFw.d, Dw.d, VDw.d, Dw.dEe, VDw.dEe, Yw.d, and Yw.dEe

where

D ∈ {E, EN, ES, G}

w and e are nonzero, unsigned integer constants

d is an unsigned integer constant.

See Section 2.10.2, “Input and Output” on page 2-60 for the specifications of how
edit descriptors process INTERVAL data.

All standard Fortran edit descriptors accept intervals. The prefix V can be added to
the standard E, F, and G edit descriptors for interval-only versions.

As shown in CODE EXAMPLE 2-27, no modifications to nonrepeatable edit descriptors
are required when reading or writing INTERVAL data.

DATA X/[1,2]/
END

math% f95 -xia ce2-26.f95
math% a.out

CODE EXAMPLE 2-27 Nonrepeatable Edit Descriptor Example

math% cat ce2-27.f95

INTERVAL :: X = [-1.3, 1.3]

WRITE(*, ’(SP, VF20.5)’) X

CODE EXAMPLE 2-26 DATA Statement Containing INTERVAL Variables
2-52 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Description

Repeatable Edit Descriptors

The repeatable edit descriptors E, F, EN, ES, G, VE, VEN, VES, VF, VG, and Y specify
how INTERVAL data are edited.

CODE EXAMPLE 2-28 contains examples of INTERVAL-specific edit descriptors.

See Section 2.10.2, “Input and Output” on page 2-60 for additional examples.

WRITE(*, ’(SS, VF20.5)’) X

END

math% f95 -xia ce2-27.f95

math% a.out

 [-1.30001,+1.30001]

 [-1.30001, 1.30001]

CODE EXAMPLE 2-28 Format Statements With INTERVAL-Specific Edit Descriptors

math% cat ce2-28.f95

 10   FORMAT(VE22.4E4)

 20   FORMAT(VEN22.4)

 30   FORMAT(VES25.5)

 40   FORMAT(VF25.5)

 50   FORMAT(VG25.5)

 60   FORMAT(VG22.4E4)

 70   FORMAT(Y25.5)

      END

math% f95 -xia ce2-28.f95

math% a.out

CODE EXAMPLE 2-27 Nonrepeatable Edit Descriptor Example (Continued)
Chapter 2 f95 Interval Reference 2-53



2.10.1.6 FUNCTION (External)

As shown in CODE EXAMPLE 2-29, there is no difference between an interval and a
non-interval external function, except for the use of INTERVAL types (INTERVAL,
INTERVAL(4), INTERVAL(8), or INTERVAL(16)) in the function’s and argument’s
definitions.

The default INTERVAL in line 1 can be made explicit, as shown in
CODE EXAMPLE 2-30.

CODE EXAMPLE 2-29 Default Interval Function

math% cat ce2-29.f95

PROGRAM ce2_29

INTERVAL :: X, Y

EXTERNAL SQR

INTERVAL :: SQR

Y = [4.0]

X = SQR(Y)

print *, "X = ", X

print *, "KIND(X) =", KIND(X)

END

INTERVAL FUNCTION SQR (A)          !Line 1

INTERVAL :: A

SQR = A**2

RETURN

END

math% f95 -xia ce2-29.f95

math% a.out

 X =  [16.0,16.0]

 KIND(X) = 8

CODE EXAMPLE 2-30 Explicit INTERVAL(16) Function Declaration

math% cat ce2-30.f95

PROGRAM ce2_30

INTERVAL(16) :: X, Y

EXTERNAL SQR

INTERVAL(16) :: SQR
2-54 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.10.1.7 IMPLICIT Attribute

Use the IMPLICIT attribute to specify the default type of interval names.

2.10.1.8 INTRINSIC Statement

Use the INTRINSIC statement to declare intrinsic functions, so they can be passed as
actual arguments.

Note – Specific names of generic functions must be used in the INTRINSIC
statement and passed as actual arguments. See Section 2.9.3, “Specific Names for
Intrinsic Generic INTERVAL Functions” on page 2-47 and Section 2.10.4.5, “Intrinsic
Functions” on page 2-83.

Because they are generic, the following intrinsic INTERVAL functions cannot be
passed as actual arguments:

Y = [4.0]

X = SQR(Y)

print *, "X = ", X

print *, "KIND(X) =", KIND(X)

END

INTERVAL(16) FUNCTION SQR (A)          !Line 1

INTERVAL(16) :: A

SQR = A**2

RETURN

END

math% f95 -xia ce2-30.f95

math% a.out

 X =  [16.0,16.0]

 KIND(X) = 16

IMPLICIT INTERVAL (8) (V)

CODE EXAMPLE 2-31 Intrinsic Function Declaration

INTRINSIC VDSIN, VDCOS, VSSIN, VSCOS
X = CALC(VDSIN, VDCOS, VSSIN, VSCOS)

CODE EXAMPLE 2-30 Explicit INTERVAL(16) Function Declaration (Continued)
Chapter 2 f95 Interval Reference 2-55



NDIGITS, INTERVAL

2.10.1.9 NAMELIST Statement

The NAMELIST statement supports intervals.

2.10.1.10 PARAMETER Attribute

The PARAMETER attribute is used to assign the result of an INTERVAL initialization
to a named constant (PARAMETER).

Syntax

PARAMETER (p = e [, p = expr]...)

p INTERVAL symbolic name

expr INTERVAL constant expression

= assigns the value of e to the symbolic name, p

Description

Both the symbolic name, p, and the constant expression, expr, must have INTERVAL
types.

Exponentiation to an integer power is allowed in constant expressions.

Mixed-mode INTERVAL expression evaluation is supported in the definition of
interval named constants under widest-need expression processing. If the constant
expression’s type does not match the named constant’s type, type conversion of the
constant expression is performed under widest-need expression processing.

CODE EXAMPLE 2-32 INTERVALS in a NAMELIST

CHARACTER(8) :: NAME
CHARACTER(4) :: COLOR
INTEGER      :: AGE
INTERVAL(4)  :: HEIGHT
INTERVAL(4)  :: WEIGHT
NAMELIST /DOG/ NAME, COLOR, AGE, WEIGHT, HEIGHT
2-56 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Note – In f95, non-INTERVAL constant expressions are evaluated at compile time
without regard to their possible subsequent use in mixed-mode INTERVAL
expressions. They are outside the scope of widest-need expression processing.
Therefore, no requirement exists to contain the value of the point expression used to
set the value of non-INTERVAL named constants. To remind users whenever a
non-INTERVAL named constant appears in a mixed-mode INTERVAL expression, a
compile-time warning message is issued. Named constants, as defined by the
Fortran standard, are more properly called read-only variables. There is no external
value associated with a read-only variable.

In standard Fortran 95, named constants cannot be used to represent the infimum
and supremum of an INTERVAL constant. This is a known error that this constraint
is not enforced in this release.

Note – XR does not contain 1/10, whereas XI does.

2.10.1.11 Fortran 95-Style POINTER

Intervals can be associated with pointers.

CODE EXAMPLE 2-33 Constant Expression in Non-INTERVAL PARAMETER Attribute

math% cat ce2-33.f95

REAL(4), PARAMETER      :: R4 = 0.1

INTERVAL(4), PARAMETER  :: I4  = 0.1

INTERVAL(16), PARAMETER :: I16 = 0.1

INTERVAL                :: XR, XI

XR = R4

XI = I4

IF ((.NOT.(XR.SP.I16)).AND. (XI.SP.I16)) PRINT *, ’Check.’

END

math% f95 -xia ce2-33.f95

math% a.out

 Check.

CODE EXAMPLE 2-34 INTERVAL Pointers

math% cat ce2-34.f95

INTERVAL, POINTER :: PX
Chapter 2 f95 Interval Reference 2-57



2.10.1.12 Statement Function

A statement function can be used to declare and evaluate parameterized INTERVAL
expressions. Non-INTERVAL statement function restrictions apply.

2.10.1.13 Type Statement

The type statement specifies the data type of variables in a variable list. Optionally
the type statement specifies array dimensions, and initializes variables with values.

Syntax

The syntax is the same as for non-INTERVAL numeric data types, except that type
can be one of the following INTERVAL type specifiers: INTERVAL, INTERVAL(4),
INTERVAL(8), or INTERVAL(16).

INTERVAL, TARGET  :: X

X = [0.1,0.3]

PX => X

PRINT*, X

PRINT*, PX

END

math% f95 -xia ce2-34.f95

math% a.out

 [0.099999999999999991,0.30000000000000005]

 [0.099999999999999991,0.30000000000000005]

CODE EXAMPLE 2-35 INTERVAL Statement Function

math% cat ce2-35.f95

INTERVAL :: X, F

F(X) = SIN(X)**2 + COS(X)**2

IF(1 .IN. F([0.5])) PRINT *, ’Check’

END

math% f95 -xia ce2-35.f95

math% a.out

 Check

CODE EXAMPLE 2-34 INTERVAL Pointers (Continued)
2-58 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Description

Properties of the type statement are the same for INTERVAL types as for other
numeric data types.

Restrictions

Same as for non-INTERVAL numeric types.

CODE EXAMPLE 2-36 notes:

■ J is initialized to [0.0]
■ K is initialized to an interval containing [0.1, 0.2]
■ L is initialized to an interval containing [0.1]

2.10.1.14 WRITE Statement

The WRITE statement accepts INTERVAL variables and processes an input/output
list in the same way that non-INTERVAL type variables are processed. Formatted
writing of INTERVAL data is performed using the defined INTERVAL edit
descriptors. NAMELIST-directed WRITE statements support intervals.

2.10.1.15 READ Statement

The READ statement accepts INTERVAL variables and processes an input/output list
in the same way that non-INTERVAL type variables are processed.

CODE EXAMPLE 2-36 INTERVAL Type Statement

math% cat ce2-36.f95

INTERVAL     :: I,J = [0.0]

INTERVAL(16) :: K = [0.1, 0.2_16]

INTERVAL(16) :: L = [0.1]

END

math% f95 -xia ce2-36.f95

math% a.out
Chapter 2 f95 Interval Reference 2-59



2.10.2 Input and Output
The process of performing INTERVAL input/output is the same as for other
non-INTERVAL data types.

2.10.2.1 External Representations

Let x be an external (decimal) number that can be read or written using either
list-directed or formatted input/output. See the subsections in Section 2.1, “Fortran
Extensions” on page 2-1 regarding the regarding the distinction between internal
approximations and external values. Such a number can be used to represent either
an external interval, or an endpoint. There are three displayable forms of an external
interval:

■ [X_inf, X_sup] represents the mathematical interval

■ [X] represents the degenerate mathematical interval [x, x], or [x]

■ X represents the non-degenerate mathematical interval [x] + [-1,+1]uld (unit in the
last digit). This form is the single-number representation, in which the last
decimal digit is used to construct an interval (see the Y edit descriptor). In this
form, trailing zeros are significant. Thus 0.10 represents interval [0.09, 0.11],
100E-1 represents interval [9.9, 10.1], and 0.10000000 represents the
interval [0.099999999, 0.100000001].

A positive or negative infinite interval endpoint is input/output as a case-insensitive
string INF or INFINITY prefixed with a minus or an optional plus sign.

The empty interval is input/output as the case-insensitive string EMPTY enclosed in
square brackets, "[…]". The string, EMPTY, may be preceded or followed by
blanks.

CODE EXAMPLE 1-6 can be used to experiment with extended intervals.

See Section 2.4.1, “Arithmetic Operators +, –, *, /” on page 2-17, for more details.

2.10.2.2 Input

On input, any external interval, X, or its components, X_inf and X_sup, can be
formatted in any way that is accepted by the Dw.d edit descriptor. Therefore, let
input-field, input-field1, and input-field2 be valid input fields for the Dw’.d, Dw1.d, and
Dw2.d edit descriptors, respectively.

Let w be the width of an interval input field. On input, w must be greater than zero.
All INTERVAL edit descriptors accept input INTERVAL data in each of the following
three forms:

■ [input-field1, input-field2], in which case w1 + w2 = w - 3 or w = w1 + w2 + 3

x x[ , ]
2-60 Fortran 95 Interval Arithmetic Programming Reference • November 2005



■ [input-field], in which case w’ = w-2 or w = w’+2
■ input-field, in which case w’ = w

The first form (two numbers enclosed in brackets and separated by a comma) is the
familiar [inf, sup] representation.

The second form (a single number enclosed in brackets) denotes a point or
degenerate interval.

The third form (without brackets) is the single-number form of an interval in which
the last displayed digit is used to determine the interval’s width. See Section 2.10.2.7,
“Single-Number Editing With the Y Edit Descriptor” on page 2-67. For more detailed
information, see M. Schulte, V. Zelov, G.W. Walster, D. Chiriaev, “Single-Number
Interval I/O,” Developments in Reliable Computing, T. Csendes (ed.), (Kluwer 1999).

If an infimum is not internally representable, it is rounded down to an internal
approximation known to be less than the exact value. If a supremum is not internally
representable, it is rounded up to an internal approximations known to be greater
than the exact input value. If the degenerate interval is not internally representable,
it is rounded down and rounded up to form an internal INTERVAL approximation
known to contain the exact input value.

2.10.2.3 List-Directed Input

If an input list item is an INTERVAL, the corresponding element in the input record
must be an external interval or a null value.

An external interval value may have the same form as an INTERVAL, REAL, or
INTEGER literal constant. If an interval value has the form of a REAL or INTEGER
literal constant with no enclosing square brackets, "["… "]", the external interval is
interpreted using the single-number interval representation: [x] + [-1,1]uld (unit in the
last digit).

When using the [inf, sup] input style, an end of record may occur between the
infimum and the comma or between the comma and the supremum.

A null value, specified by two consecutive commas, means that the corresponding
INTERVAL list item is unchanged.
Chapter 2 f95 Interval Reference 2-61



Note – Do not use a null value for the infimum or supremum of an interval.

2.10.2.4 Formatted Input/Output

The INTERVAL edit descriptors are:

■ Ew.dEe
■ ENw.d
■ ESw.d
■ Fw.d
■ Gw.dEe
■ VEw.dEe
■ VENw.dEe
■ VESw.dEe
■ VFw.d
■ VGw.dE
■ Yw.dEe

CODE EXAMPLE 2-37 List Directed Input/Output Code

math% cat ce2-37.f95

INTERVAL, DIMENSION(6) :: X

INTEGER I

DO I = LBOUND(X, 1), UBOUND(X, 1)

    READ(*, *) X(I)

    WRITE(*, *) X(I)

END DO

END

math% f95 -xia ce2-37.f95

math% a.out

1.234500

 [1.2344989999999997,1.2345010000000001]

[1.2345]

 [1.2344999999999999,1.2345000000000002]

[-inf,2]

 [-Inf,2.0]

[-inf]

 [-Inf,-1.7976931348623157E+308]

[EMPTY]

 [EMPTY]

[1.2345,1.23456]

 [1.2344999999999999,1.2345600000000002]
2-62 Fortran 95 Interval Arithmetic Programming Reference • November 2005



In the INTERVAL edit descriptors:

■ w specifies the number of positions occupied by the field
■ d specifies the number of digits to the right of the decimal point
■ Ee specifies the width of exponent field

The parameters w and d must be used. Ee is optional

The w and d specifiers must be present and are subject to the following constraints:

■ e > 0

■ w ≥ 0 when using the F edit descriptor, or w > 0 when using all edit descriptors
other than F.

Input Actions

Input actions for formatted interval input are the same as for other numeric data
types, except that in all cases, the stored internal approximation contains the
external value represented by the input character string. Containment can require
outward rounding of interval endpoints. Given any input interval characters,
input_string, the corresponding external value, ev(input_string), and the resulting
internal approximation after input conversion, X, are related:

ev(input_string) X.

During input, all interval edit descriptors have the same semantics. The value of
parameter w, is the field width containing the external interval. The value of e is
ignored.

Output Actions

Output actions for formatted interval output are the same as for other data types,
except that in all cases, the mathematical value of the output character string must
contain the mathematical value of the internal data item in the output list.
Containment can require outward rounding of interval endpoints. Given any
internal interval, X, the corresponding output characters, output_string, and the
external value, ev(output_string), are related:

X ev(output_string).

During output, edit descriptors cause the internal value of interval output list items
to be displayed using different formats. However, the containment constraint
requires that

ev(input_string) X ev(output_string)

⊆

⊆

⊆ ⊆
Chapter 2 f95 Interval Reference 2-63



2.10.2.5 Formatted Input

The behavior of formatted input is identical for all INTERVAL edit descriptors listed
in Section 2.10.2.4, “Formatted Input/Output” on page 2-62. All inputs described in
Section 2.10.2.2, “Input” on page 2-60 are accepted.

If the input field contains a decimal point, the value of d is ignored. If a decimal
point is omitted from the input field, d determines the position of the decimal point
in the input value; that is, the input value is read as an integer and multiplied by
10(-d).

CODE EXAMPLE 2-38 The Decimal Point in an Input Value Dominates Format Specifiers

math% cat ce2-38.f95

INTERVAL :: X, Y

READ(*, '(F10.4)') X

READ(*, '(F10.4)') Y

WRITE(*, *)'1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, E19.6)') X

WRITE(*, '(1X, E19.6)') Y

END

math% f95 -xia ce2-38.f95

math% a.out

[.1234]

[1234]

 1234567890123456789012345678901234567890-position

      0.123400E+000

      0.123400E+000

CODE EXAMPLE 2-39 All of the INTERVAL Edit Descriptors Can Accept Single-Number
Input

math% cat ce2-39.f95

INTERVAL, DIMENSION(9) :: X

INTEGER                :: I

READ(*, '(Y25.3)')   X(1)

READ(*, '(E25.3)')   X(2)

READ(*, '(F25.3)')   X(3)

READ(*, '(G25.3) ')  X(4)

READ(*, '(VE25.3)')  X(5)

READ(*, '(VEN25.3)') X(6)

READ(*, '(VES25.3)') X(7)
2-64 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Blank Editing (BZ)

Because trailing zeros are significant in single-number INTERVAL input, the BZ
control edit descriptor is ignored when processing leading and trailing blanks for
input to INTERVAL list items.

READ(*, '(VF25.3)')  X(8)

READ(*, '(VG25.3)')  X(9)

DO I = LBOUND(X, 1), UBOUND(X, 1)

    PRINT *, X(I)

END DO

END

%math f95 -xia ce2-39.f95

%math a.out

1.23

1.23

1.23

1.23

1.23

1.23

1.23

1.23

1.23

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

 [1.2199999999999999,1.2400000000000003]

CODE EXAMPLE 2-40 BZ Descriptor

math% cat ce2-40.f95

INTERVAL :: X

REAL(4)  :: R

READ(*, ’(BZ, F40.6 )’) X

CODE EXAMPLE 2-39 All of the INTERVAL Edit Descriptors Can Accept Single-Number
Input (Continued)
Chapter 2 f95 Interval Reference 2-65



Scale Factor (P)

The P edit descriptor changes the scale factor for Y, VE, VEN, VES, VF, and VG
descriptors and for F, E, EN, ES, and G edit descriptors when applied to intervals.
The P edit descriptor scales interval endpoints the same way it scales REAL values.

2.10.2.6 Formatted Output

The F, E, EN, ES, and G edit descriptors applied to intervals have the same meaning
as the Y edit descriptor except that if the F or G edit descriptor is used, the output
field may be formatted using the F edit descriptor. If the E edit descriptors are used,
the output field always has the form prescribed by the corresponding E, EN, or ES
edit descriptor.

Formatted INTERVAL output has the following properties:

■ A positive interval endpoint starts with an optional plus sign.

■ A negative endpoint always starts with a leading minus sign.

■ A zero interval endpoint never starts with a leading plus or minus.

■ The VF, VE, VEN, VES, and VG edit descriptors provide [inf, sup]-style formatting of
intervals.

■ The Y edit descriptor produces single-number interval output.

■ If an output list item matching the VF, VE, VEN, VES, or VG, or Y edit descriptor is
any type other than INTERVAL, the entire output field is filled with asterisks.

■ If the output field’s width, w, in VF, VE, VEN, VES, VG edit descriptors is an even
number, the field is filled with one leading blank character and w-1 is used for the
output field’s width.

READ(*, ’(BZ, F40.6 )’) R

WRITE(*, ’(VF40.3)’)    X

WRITE(*, ’(F40.3)’)     R

END

math% f95 -xia ce2-40.f95

math% a.out

[.9998   ]

   .9998

[         0.999,             1.000]

                              1.000

CODE EXAMPLE 2-40 BZ Descriptor (Continued)
2-66 Fortran 95 Interval Arithmetic Programming Reference • November 2005



On output, the default values for the exponent field, e, are shown in TABLE 2-14.

2.10.2.7 Single-Number Editing With the Y Edit Descriptor

The Y edit descriptor formats extended interval values in the single-number form.

If the external INTERVAL value is not degenerate, the output format is the same as
for a REAL or INTEGER literal constant (X without square brackets, "["..."]"). The
external value is interpreted as a non-degenerate mathematical interval [x] + [-1,1]uld.
The general form of the Y edit descriptor is:

Yw.dEe

The d specifier sets the number of places allocated for displaying significant digits.
However, the actual number of displayed digits may be more or less than d,
depending on the value of w and the width of the external interval.

The e specifier (if present) defines the number of places in the output subfield
reserved for the exponent.

The presence of the e specifier forces the output field to have the form prescribed by
the E (as opposed to F) edit descriptor.

The single-number interval representation is often less precise than the [inf, sup]
representation. This is particularly true when an interval or its single-number
representation contains zero or infinity.

For example, the external value of the single-number representation for [-15, +75] is
ev([0E2]) = [-100, +100]. The external value of the single-number representation for
[1, ∞] is ev([0E+inf]) = .

In these cases, to produce a narrower external representation of the internal
approximation, the VGw.d’Ee edit descriptor is used, with d’ ≥ 1 to display the
maximum possible number of significant digits within the w-character input field.

TABLE 2-14 Default Values for Exponent Field in Output Edit Descriptors

Edit Descriptor INTERVAL(4) INTERVAL(8) INTERVAL(16)

Y, E, EN, ES, G 3 3 3

VE, VEN, VES, VG 3 3 3

-∞ +∞,[ ]
Chapter 2 f95 Interval Reference 2-67



If it is possible to represent a degenerate interval within the w-character output field,
the output string for a single number is enclosed in obligatory square brackets,
"[", "]" to signify that the result is a point.

If there is sufficient field width, the E or F edit descriptor is used, depending on
which can display the greater number of significant digits. If the number of
displayed digits using the E and F edit descriptor is the same, the F edit descriptor
is used.

CODE EXAMPLE 2-41 Y [inf, sup]-Style Output

math% cat ce2-41.f95

INTERVAL :: X = [-1, 10]

INTERVAL :: Y = [1, 6]

WRITE(*, '(Y20.5)') X

WRITE(*, '(Y20.5)') Y

END

math% f95 -xia ce2-41.f95

math% a.out

 [-1.     ,0.1E+002]

 [1.0     ,6.0     ]

CODE EXAMPLE 2-42 Yw.d Output

cat math% cat ce2-42.f95

WRITE(*, *) ’1234567890123456789012345678901234567890-position’

WRITE(*, ’(1x, F20.6)’) [1.2345678, 1.23456789]

WRITE(*, ’(1x, F20.6)’) [1.234567, 1.2345678]

WRITE(*, ’(1x, F20.6)’) [1.23456, 1.234567]

WRITE(*, ’(1x, F20.6)’) [1.2345, 1.23456]

WRITE(*, ’(1x, F20.6)’) [1.5111, 1.5112]

WRITE(*, ’(1x, F20.6)’) [1.511, 1.512]

WRITE(*, ’(1x, F20.6)’) [1.51, 1.52]

WRITE(*, ’(1x, F20.6)’) [1.5, 1.5]

END

math% f95 -xia ce2-42.f95

math% a.out

 1234567890123456789012345678901234567890-position

       1.2345679

       1.234567

       1.23456
2-68 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Increasing interval width decreases the number of digits displayed in the
single-number representation. When the interval is degenerate all remaining
positions are filled with zeros and brackets are added if the degenerate interval
value is represented exactly.

The intrinsic function NDIGITS (see TABLE 2-22) returns the maximum number of
significant digits necessary to write an INTERVAL variable or array using the
single-number display format.

       1.2345

       1.511

       1.51

       1.5

 [     1.50000000000]

CODE EXAMPLE 2-43 Yw.d Output Using the NDIGITS Intrinsic

math% cat ce2-43.f95

INTEGER :: I, ND, T, D, DIM

PARAMETER(D=5)      ! Some default number of digits

PARAMETER(DIM=8)

INTERVAL, DIMENSION(DIM) :: X

CHARACTER(20) :: FMT

X = (/ [1.2345678, 1.23456789], &

  [1.234567, 1.2345678], &

  [1.23456, 1.234567], &

  [1.2345, 1.23456], &

  [1.5111, 1.5112], &

  [1.511, 1.512], &

  [1.51, 1.52], &

  [1.5]/)

ND=0

DO I=1, DIM

    T = NDIGITS(X(I))

    IF(T == EPHUGE(T)) THEN ! The interval is degenerate

        ND = MAX(ND, D)

    ELSE

        ND = MAX( ND, T )

    ENDIF

END DO

CODE EXAMPLE 2-42 Yw.d Output (Continued)
Chapter 2 f95 Interval Reference 2-69



For readability, the decimal point is always located in position p = e + d + 4, counting
from the right of the output field.

WRITE(FMT, ’(A2, I2, A1, I1, A1)’) ’(E’, 10+ND, ’.’, ND, ’)’

DO I=1, DIM

    WRITE(*, FMT) X(I)

END DO

END

math% f95 -xia ce2-43.f95

math% a.out

  0.12345679E+001

  0.1234567 E+001

  0.123456  E+001

  0.12345   E+001

  0.1511    E+001

  0.151     E+001

  0.15      E+001

[ 0.15000000E+001]

CODE EXAMPLE 2-44 {Y, F, E, EN,ES,G}w.d Output, Where d Sets the Minimum Number of
Significant Digits to be Displayed

math% cat ce2-44.f95

INTERVAL :: X = [1.2345678, 1.23456789]

INTERVAL :: Y = [1.5]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, F20.5)') X

WRITE(*, '(1X, F20.5)') Y

WRITE(*, '(1X, E20.5)') X

WRITE(*, '(1X, E20.5)') Y

WRITE(*, '(1X, G20.5)') X

WRITE(*, '(1X, G20.5)') Y

WRITE(*, '(1X, Y20.5)') X

WRITE(*, '(1X, Y20.5)') Y

END

math% f95 -xia ce2-44.f95

math% a.out

 1234567890123456789012345678901234567890-position

        1.2345679

 [      1.5000000000]

        0.12345E+001

CODE EXAMPLE 2-43 Yw.d Output Using the NDIGITS Intrinsic (Continued)
2-70 Fortran 95 Interval Arithmetic Programming Reference • November 2005



The optional e specifier specifies the number of exponent digits. If the number of
exponent digits is specified, w must be at least d + e + 7.

2.10.2.8 E, EN, and ES Edit Descriptors

The E, EN, and ES edit descriptors format INTERVAL data items using the
single-number E, EN, and ES forms of the Y edit descriptor.

 [      0.15000E+001]

        1.2345679

 [      1.5000000000]

        1.2345679

 [      1.5000000000]

CODE EXAMPLE 2-45 Yw.dEe Output (The Usage of e Specifier)

math% cat ce2-45.f95

INTERVAL :: X = [1.2345, 1.2346]

INTERVAL :: Y = [3.4567, 3.4568]

INTERVAL :: Z = [1.5]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, Y19.5E4)') X

WRITE(*, '(1X, Y19.5E4)') Y

WRITE(*, '(1X, Y19.5E4)') Z

WRITE(*, '(1X, Y19.5E3)') X

WRITE(*, '(1X, Y19.5E3)') Y

WRITE(*, '(1X, Y19.5E3)') Z

END

math% f95 -xia ce2-45.f95

math% a.out

 1234567890123456789012345678901234567890-position

      0.1234 E+0001

      0.3456 E+0001

 [    0.15000E+0001]

       0.1234 E+001

       0.3456 E+001

 [     0.15000E+001]

CODE EXAMPLE 2-44 {Y, F, E, EN,ES,G}w.d Output, Where d Sets the Minimum Number of
Significant Digits to be Displayed (Continued)
Chapter 2 f95 Interval Reference 2-71



The general forms are:

■ Ew.dEe
■ ENw.dEe
■ ESw.dEe

2.10.2.9 F Edit Descriptor

The F edit descriptor formats INTERVAL data items using only the F form of the
INTERVAL Y edit descriptor. The general form is:

Fw.d

Using the F descriptor, it is possible to display more significant digits than specified
by d. Positions corresponding to the digits that are not displayed are filled with
blanks.

CODE EXAMPLE 2-46 Ew.dEe, ENw.dEe, and ESw.dEe Edit Descriptors

math% cat ce2-46.f95

INTERVAL :: X = [1.2345678, 1.23456789]

INTERVAL :: Y = [1.5]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, E20.5)')   X

WRITE(*, '(1X, E20.5E3)') X

WRITE(*, '(1X, E20.5E3)') Y

WRITE(*, '(1X, E20.5E4)') X

WRITE(*, '(1X, E20.5E2)') X

END

math% f95 -xia ce2-46.f95

math% a.out

 1234567890123456789012345678901234567890-position

        0.12345E+001

        0.12345E+001

 [      0.15000E+001]

       0.12345E+0001

         0.12345E+01

CODE EXAMPLE 2-47 Fw.d Edit Descriptor

math% cat ce2-47.f95

INTERVAL :: X = [1.2345678, 1.23456789]

INTERVAL :: Y = [2.0]

WRITE(*, *) '1234567890123456789012345678901234567890-position'
2-72 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.10.2.10 G Edit Descriptor

The G edit descriptor formats INTERVAL data items using the single-number E or F
form of the Y edit descriptor. The general form is:

Gw.dEe

Note – If it is impossible to output interval endpoints according to the F descriptor,
G edit descriptor uses the E descriptor

WRITE(*, '(1X, F20.4)') X

WRITE(*, '(1X, E20.4)') X

WRITE(*, '(1X, F20.4)') Y

WRITE(*, '(1X, E20.4)') Y

END

math% f95 -xia ce2-47.f95

math% a.out

 1234567890123456789012345678901234567890-position

         1.2345679

         0.1234E+001

 [       2.000000000]

 [       0.2000E+001]

CODE EXAMPLE 2-48 Gw.dEe Edit Descriptor

math% cat ce2-48.f95

INTERVAL :: X = [1.2345678, 1.23456789]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, G20.4)')   X

WRITE(*, '(1X, G20.4E3)') X

END

math% f95 -xia ce2-48.f95

math% a.out

 1234567890123456789012345678901234567890-position

         1.2345679

         0.1234E+001

CODE EXAMPLE 2-47 Fw.d Edit Descriptor (Continued)
Chapter 2 f95 Interval Reference 2-73



2.10.2.11 VE Edit Descriptor

The general form of the VE edit descriptor is:

VEw.dEe

Let Xd be a valid external value using the Ew’.d edit descriptor. The VE edit
descriptor outputs INTERVAL data items in the following form:

[X_inf,X_sup], where w’ = (w-3)/2 .

The external values, X_inf and X_sup, are lower and upper bounds, respectively,
on the infimum and supremum of the INTERVAL output list item.

2.10.2.12 VEN Edit Descriptor

The general form of the VEN edit descriptor is:

VENw.dEe

Let X_inf and X_sup be valid external values displayed using the ENw’.d edit
descriptor. The VEN edit descriptor outputs an INTERVAL data item in the following
form:

[X_inf,X_sup], where w’ = (w-3)/2 .

CODE EXAMPLE 2-49 VE Output

math% cat ce2-49.f95

INTERVAL :: X = [1.2345Q45, 1.2346Q45]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, VE25.3)')   X

WRITE(*, '(1X, VE33.4E4)') X

END

math% f95 -xia ce2-49.f95

math% a.out

 1234567890123456789012345678901234567890-position

 [ 0.123E+046, 0.124E+046]

 [   0.1234E+0046,   0.1235E+0046]
2-74 Fortran 95 Interval Arithmetic Programming Reference • November 2005



The external values, X_inf and X_sup, are lower and upper bounds, respectively,
on the infimum and supremum of the INTERVAL output list item.

2.10.2.13 VES Edit Descriptor

The general form of the VES edit descriptor is:

VESw.dEe

Let X_inf and X_sup be a valid external values using the ESw’.d edit descriptor.
The VES edit descriptor outputs an INTERVAL data item in the following form:

[X_inf,X_sup], where w’ = (w-3)/2 .

The external values, X_inf and X_sup, are lower and upper bounds, respectively,
on the infimum and supremum of the INTERVAL output list item.

CODE EXAMPLE 2-50 VEN Output

math% cat ce2-50.f95

INTERVAL :: X = [1024.82]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, VEN25.3)') X

WRITE(*, '(1X, VEN33.4E4)') X

END

math% f95 -xia ce2-50.f95

math% a.out

 1234567890123456789012345678901234567890-position

 [ 1.024E+003, 1.025E+003]

 [   1.0248E+0003,   1.0249E+0003]

CODE EXAMPLE 2-51 VES Output

math% cat ce2-51.f95

INTERVAL :: X = [21.234]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, VES25.3)')   X

WRITE(*, '(1X, VES33.4E4)') X

END
Chapter 2 f95 Interval Reference 2-75



2.10.2.14 VF Edit Descriptor

Let X_inf and X_sup be valid external values displayed using the Fw’.d edit
descriptor. The VF edit descriptor outputs INTERVAL data items in the following
form:

[X_inf,X_sup], where w’ = (w-3)/2 .

The external values, X_inf and X_sup, are lower and upper bounds, respectively,
on the infimum and supremum of the INTERVAL output list item.

Note – If it is impossible to output an interval endpoint according to the specified
interval edit descriptor, asterisks are printed. For example, [0.9999, ******]

math% f95 -xia ce2-51.f95

math% a.out

 1234567890123456789012345678901234567890-position

 [ 2.123E+001, 2.124E+001]

 [   2.1233E+0001,   2.1235E+0001]

CODE EXAMPLE 2-52 VF Output Editing

math% cat ce2-52.f95

INTERVAL :: X = [1.2345, 1.2346], Y = [1.2345E11, 1.2346E11]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, VF25.3)') X

WRITE(*, '(1X, VF25.3)') Y

END

math% f95 -xia ce2-52.f95

math% a.out

 1234567890123456789012345678901234567890-position

 [      1.234,      1.235]

 [***********,***********]

CODE EXAMPLE 2-51 VES Output (Continued)
2-76 Fortran 95 Interval Arithmetic Programming Reference • November 2005



2.10.2.15 VG Edit Descriptor

For INTERVAL output, VG editing is the same as VE or VF editing, except that the G
edit descriptor is used to format the displayed interval endpoints.

Note – If it is impossible to output interval endpoints according to the F descriptor,
the VG edit descriptor uses the E descriptor.

2.10.2.16 Unformatted Input/Output

Unformatted input/output is used to transfer data to and from memory locations
without changing its internal representation. With intervals, unformatted
input/output is particularly important, because outward rounding on input and
output is avoided.

Note – Use only unformatted INTERVAL input and output to read and write
unformatted INTERVAL data. Binary file compatibility with future releases is not
guaranteed. Unformatted input/output relies on the fact that INTERVAL data items
are opaque.

CODE EXAMPLE 2-53 VG Output

math% cat ce2-53.f95

INTERVAL :: X = [1.2345, 1.2346], Y = [1.2345E11, 1.2346E11]

WRITE(*, *) '1234567890123456789012345678901234567890-position'

WRITE(*, '(1X, VG25.3)') X

WRITE(*, '(1X, VG25.3)') Y

END

math% f95 -xia ce2-53.f95

math% a.out

 1234567890123456789012345678901234567890-position

 [  1.23     ,  1.24     ]

 [ 0.123E+012, 0.124E+012]
Chapter 2 f95 Interval Reference 2-77



2.10.2.17 List-Directed Output

REAL constants for left and right endpoints are produced using either an F or an E
edit descriptor. Let |x| be the absolute value of an output interval endpoint. Then if

,

the endpoint is produced using the 0PFw.d edit descriptor. Otherwise, the 1PEw.dEe
descriptor is used. In f95, d1 = -2 and d2 = +8.

For the output of INTERVAL data items in f95, the values for d and e are the same as
for the REAL types with the same KTPV. The value of w reflects the need to
conveniently accommodate two REAL values and three additional characters for
square brackets, "[", "]", and the comma, as shown in CODE EXAMPLE 2-37.

2.10.2.18 Single-Number Input/Output and Base Conversions

Single-number INTERVAL input, immediately followed by output, can appear to
suggest that a decimal digit of accuracy has been lost, when in fact radix conversion
has caused a 1 or 2 ulp increase in the width of the stored input interval. For
example, an input of 1.37 followed by an immediate print will result in 1.3 being
output. See Section 2.10.2.4, “Formatted Input/Output” on page 2-62.

As shown in CODE EXAMPLE 1-6, programs must use character input and output to
exactly echo input values and internal reads to convert input character strings into
valid internal approximations.

2.10.3 Intrinsic INTERVAL Functions
This section contains the defining properties of the f95 intrinsic INTERVAL
functions.

Generic intrinsic INTERVAL functions that accept arguments with more than one
KTPV have both generic and KTPV-specific names. When an intrinsic function is
invoked using its KTPV-specific name, arguments must have the matching KTPV.

Note – In f95, some KTPV-16 specific intrinsic functions are not provided. This is
an outstanding quality of implementation opportunity.

With functions that accept more than one INTERVAL data item (for example,
SIGN(A,B)), all arguments must have the same KTPV. Under widest-need
expression processing, compliance with this restriction is automatic. With strict

10
d1 x 10

d2≤ ≤
2-78 Fortran 95 Interval Arithmetic Programming Reference • November 2005



expression processing, developers are responsible for enforcing type and KTPV
restrictions on intrinsic function arguments. Compile-time errors result when
different KTPVs are encountered.

2.10.4 Mathematical Functions
This section lists the type-conversion, trigonometric, and other functions that accept
INTERVAL arguments. The symbols and in the interval are used to denote
its ordered elements, the infimum, or lower bound and supremum, or upper bound,
respectively. In point (non-interval) function definitions, lowercase letters x and y are
used to denote REAL or INTEGER values.

When evaluating a function, f, of an interval argument, X, the interval result, f(X),
must be an enclosure of its containment set, f(x). Therefore,

A similar result holds for functions of n-variables. Determining the containment set
of values that must be included when the interval contains values outside the
domain of f is discussed in the supplementary paper [1] cited in Section 2.11,
“References” on page 2-88. The results therein are needed to determine the set of
values that a function can produce when evaluated on the boundary of, or outside
its domain of definition. This set of values, called the containment set is the key to
defining interval systems that return valid results, no matter what the value of a
function’s arguments or an operator’s operands. As a consequence, there are no
argument restrictions on any intrinsic INTERVAL functions in f95.

2.10.4.1 Division With Intersection Function DIVIX

The function DIVIX returns the interval enclosure of the result of the interval
division operation (A/B) intersected with the interval C.

In the case when A contains zero, the mathematical result of the interval division
operation (A/B) is the union of two disjoint intervals. Each interval in the union can
be represented in the currently implemented interval arithmetic system. The DIVIX
function is a convenient way to compute one or both of these intervals.

2.10.4.2 Inverse Tangent Function ATAN2(Y,X)

This sections provides additional information about the inverse tangent function.
For further details, see the supplementary paper [9] cited in Section 2.11,
“References” on page 2-88.

x x x x,[ ]

f X( ) f x( )
x X∈
∪=

x x,[ ]
Chapter 2 f95 Interval Reference 2-79



Description: Interval enclosure of the inverse tangent function over a pair of
intervals.

Mathematical definition:

Class: Elemental function.

Special values: TABLE 2-15 and CODE EXAMPLE 2-54 display the ATAN2 indeterminate
forms.

TABLE 2-15 ATAN2 Indeterminate Forms

y0 x0

0 0 [-1, 1] [-1, 1]

+∞ +∞ [0, 1] [0, 1]

+∞ -∞ [0, 1] [-1, 0]

-∞ -∞ [-1, 0] [-1, 0]

-∞ +∞ [-1, 0] [0, 1]

CODE EXAMPLE 2-54 ATAN2 Indeterminate Forms

math% cat ce2-54.f95

   INTERVAL :: X, Y
   INTEGER  :: IOS = 0
   PRINT *, "Press Control/D to terminate!"
   WRITE(*, 1, ADVANCE='NO')
   READ(*, *, IOSTAT=IOS) Y, X
   DO WHILE (IOS >= 0)
      PRINT *,  "For Y =", Y, "For X =", X
      PRINT *, 'ATAN2(Y,X) = ', ATAN2(Y,X)
      WRITE(*, 1, ADVANCE='NO')
      READ(*, *, IOSTAT=IOS) Y, X
   END DO
1  FORMAT("Y, X = ?")
   END

2 Y X,( )atan θ
h θsin y0=
h θcos x0=

h x0
2

y0
2

+( )=
1 2⁄

 
 
 
 
 

x X∈
y Y∈

∪⊇

θsin h θsin y0={ } θcos h θcos x0={ } θ h x0
2

y0
2

+( )=
1 2⁄{ }

π– π,[ ]

0 π
2
---,[ ]

π
2
--- π,[ ]

π–
π–

2
-------,[ ]

π–
2

------- 0,[ ]
2-80 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Arguments: Y is of type INTERVAL. X is of the same type and KIND type parameter
as Y.

Result characteristics: Same as the arguments.

Result value: The interval result value is an enclosure for the specified interval. An
ideal enclosure is an interval of minimum width that contains the exact
mathematical interval in the description.

The result is empty if one or both arguments are empty.

In the case where x < 0 and , to get a sharp interval enclosure (denoted by Θ),
the following convention uniquely defines the set of all possible returned interval
angles:

This convention, together with

results in a unique definition of the interval angles Θ that ATAN2(Y, X) must
include.

TABLE 2-16 contains the tests and arguments of the REAL ATAN2 function that are
used to compute the endpoints of Θ in the algorithm that satisfies the constraints
required to produce sharp interval angles. The first two columns define the

math% f95 -xia ce2-54.f95
math% a.out
 Press Control/D to terminate!
Y, X = ?[0] [0]
For Y = [0.0E+0,0.0E+0] For X = [0.0E+0,0.0E+0]
 ATAN2(Y,X) =  [-3.1415926535897936,3.1415926535897936]
Y, X = ?inf inf
For Y = [1.7976931348623157E+308,Inf] For X = [1.7976931348623157E+308,Inf]
 ATAN2(Y,X) =  [0.0E+0,1.5707963267948968]
Y, X = ?inf -inf
For Y = [1.7976931348623157E+308,Inf] For X = [-Inf,-1.7976931348623157E+308]
 ATAN2(Y,X) =  [1.5707963267948965,3.1415926535897936]
Y, X = ?-inf +inf
For Y = [-Inf,-1.7976931348623157E+308] For X = [1.7976931348623157E+308,Inf]
 ATAN2(Y,X) =  [-1.5707963267948968,0.0E+0]
Y, X = ?-inf -inf
For Y = [-Inf,-1.7976931348623157E+308] For X =
[-Inf,-1.7976931348623157E+308]
 ATAN2(Y,X) =  [-3.1415926535897936,-1.5707963267948965]
Y, X = ? ^d

CODE EXAMPLE 2-54 ATAN2 Indeterminate Forms (Continued)

0 Y∈

π– m Θ( ) π≤<

0 w Θ( ) 2π≤≤
Chapter 2 f95 Interval Reference 2-81



distinguishing cases. The third column contains the range of possible values of the
midpoint, m(Θ), of the interval Θ. The last two columns show how the endpoints of
Θ are computed using the REAL ATAN2 intrinsic function. Directed rounding must be
used to guarantee containment.

2.10.4.3 Maximum: MAX(X1,X2,[X3,...])

Description: Range of maximum.

The containment set for max(X1,..., Xn) is:

.

The implementation of the MAX intrinsic must satisfy:

MAX(X1,X2,[X3, ...])⊇ {max(X1, ..., Xn)}.

Class: Elemental function.

Arguments: The arguments are of type INTERVAL and have the same type and KIND
type parameter.

Result characteristics: The result is of type INTERVAL. The kind type parameter is
that of the arguments.

2.10.4.4 Minimum: MIN(X1,X2,[X3, ...])

Description: Range of minimum.

The containment set for min(X1,..., Xn) is:

.

The implementation of the MIN intrinsic must satisfy:

MIN(X1,X2,[X3, ...])⊇ {min(X1, ..., Xn)}.

Class: Elemental function.

Arguments: The arguments are of type INTERVAL and have the same type and KIND
type parameter.

TABLE 2-16 Tests and Arguments of the REAL ATAN2 Function

Y X m(Q) θ θ

- < y x < 0 ATAN2(y, x) ATAN2( , x) + 2π

- = y x < 0 ATAN2(y, x) 2π − θ

< - x < 0 ATAN2(y, x) - 2π ATAN2( , x)

y---
π
2
--- m Θ( ) π< < y---

y--- m Θ( ) π=

y y--- π– m Θ( )
π–

2
-------< < y---

z z max x1 … xn, ,( ) x,
i

Xi∈={ } sup hull x1 … xn, ,( )( ) sup hull x1 … xn, ,( )( ),[ ]=

z z min x1 … xn, ,( ) x,
i

Xi∈={ } inf hull x1 … xn, ,( )( ) inf hull x1 … xn, ,( )( ),[ ]=
2-82 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Result characteristics: The result is of type INTERVAL. The kind type parameter is
that of the arguments.

2.10.4.5 Intrinsic Functions

Tables TABLE 2-19 through TABLE 2-22 list the properties of intrinsic functions that
accept interval arguments. TABLE 2-17 lists the tabulated properties of intrinsic
INTERVAL functions in these tables.

KTPV 4, 8 and 16 versions of intrinsic INTERVAL functions are defined. The
corresponding specific intrinsic names begin with VS, VD or VQ, from interVal
Single, Double and Quad.

For each specific REAL intrinsic function, a corresponding intrinsic INTERVAL
function exists with a VS, VD, or VQ prefix, such as VSSIN() and VDSIN().

Because indeterminate forms are possible, special values of the X**Y and ATAN2
function are contained in Section 2.5, “Power Operators X**N and X**Y” on
page 2-20 and Section 2.10.4.2, “Inverse Tangent Function ATAN2(Y,X)” on
page 2-79, respectively. The remaining intrinsic functions do not require this
treatment.

TABLE 2-17 Tabulated Properties of Each Intrinsic INTERVAL Function

Tabulated Property Description

Intrinsic Function what the function does

Definition mathematical definition

No. of Args. number of arguments the function accepts

Generic Name the function’s generic name

Type-Specific Names the function’s specific names

Argument Type data type associated with each specific name

Function Type data type returned for specific argument data type
Chapter 2 f95 Interval Reference 2-83



TABLE 2-18 Intrinsic INTERVAL Type Conversion Functions

Conversion To No. of Args. Generic Name Argument Type Function Type

INTERVAL 1, 2, or 3 INTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTEGER

REAL

REAL(8)

REAL(16)

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL(4) 1 or 2 SINTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTEGER

REAL

REAL(8)

REAL(16)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(8) 1 or 2 DINTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTEGER

REAL

REAL(8)

REAL(16)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(16) 1 or 2 QINTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(16)

INTEGER

REAL

REAL(8)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)
2-84 Fortran 95 Interval Arithmetic Programming Reference • November 2005



TABLE 2-19 Intrinsic INTERVAL Arithmetic Functions

Intrinsic
Function

Point
Definition

No.
of
Args.

Generic
Name

Specific
Names Argument Type Function Type

Absolute value |a| 1 ABS VDABS

VSABS

VQABS

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Truncation
See Note 1

int(a) 1 AINT VDINT

VSINT

VQINT

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Nearest integer int(a + .5)
if a ≥ 0
int(a - .5)
if a < 0

1 ANINT VDNINT

VSNINT

VQNINT

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Remainder a-b(int(a/b)) 2 MOD VDMOD

VSMOD

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Transfer of sign
See Note 2

|a| sgn(b) 2 SIGN VDSIGN

VSSIGN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Choose largest
value See Note 3

max(a,b,...) ≥2 MAX MAX INTERVAL INTERVAL

Choose smallest
value See Note 3

min(a,b,...) ≥2 MIN MIN INTERVAL INTERVAL

Floor floor(A) 1 FLOOR INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

Ceiling ceiling(A) 1 CEILING INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

Precision precision(A) 1 PRECISION INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

Range range(A) 1 RANGE INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

(1) int(a) = floor(a) if a > 0 and ceiling(a) if a < 0

(2) The signum function sgn(a) = -1 if a < 0, +1 if a > 0 and 0 if a = 0

(3) The MIN and MAX intrinsic functions ignore empty interval arguments unless all arguments are empty, in which case, the empty in-
terval is returned.
Chapter 2 f95 Interval Reference 2-85



TABLE 2-20 Intrinsic INTERVAL Trigonometric Functions

Intrinsic
Function

Point
Definition

No. of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Sine sin(a) 1 SIN VDSIN

VSSIN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Cosine cos(a) 1 COS VDCOS

VSCOS

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Tangent tan(a) 1 TAN VDTAN

VSTAN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arcsine arcsin(a) 1 ASIN VDASIN

VSASIN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arccosine arccos(a) 1 ACOS VDACOS

VSACOS

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arctangent arctan(a) 1 ATAN VDATAN

VSATAN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arctangent
See Note 1

arctan(a/b) 2 ATAN2 VDATAN2

VSATAN2

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Hyperbolic
Sine

sinh(a) 1 SINH VDSINH

VSSINH

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Hyperbolic
Cosine

cosh(a) 1 COSH VDCOSH

VSCOSH

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Hyperbolic
Tangent

tanh(a) 1 TANH VDTANH

VSTANH

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

(1) arctan(a/b) = θ, given a = h sinθ, b = h cosθ, and h2 = a2 + b2.
2-86 Fortran 95 Interval Arithmetic Programming Reference • November 2005



TABLE 2-21 Other Intrinsic INTERVAL Mathematical Functions

Intrinsic
Function

Point
Definition

No. of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Square Root
See Note 1

exp{ln(a)/2} 1 SQRT VDSQRT

VSSQRT

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Exponential exp(a) 1 EXP VDEXP

VSEXP

INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Natural
logarithm

ln(a) 1 LOG VDLOG

VSLOG

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Common
logarithm

log(a) 1 LOG10 VDLOG10

VSLOG10

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

(1) sqrt(a) is multi-valued. A proper interval enclosure must contain both the positive and negative square
roots. Defining the SQRT intrinsic to be

eliminates this difficulty.

TABLE 2-22 Intrinsic INTERVAL-Specific Functions

Intrinsic
Function

Definition
No.
of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Infimum inf([a, b]) = a 1 INF VDINF

VSINF

VQINF

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Supremum sup([a, b]) = b 1 SUP VDSUP

VSSUP

VQSUP

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Width w([a, b]) = b - a 1 WID VDWID

VSWID

VQWID

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Midpoint mid([a, b]) =
(a + b)/2

1 MID VDMID

VSMID

VQMID

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Magnitude
See Note 1

max(|a|) ∈A 1 MAG VDMAG

VSMAG

VQMAG

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: NDIGITS([-inf, +inf]) = NDIGITS([EMPTY]) = 0

aln
2

--------
 
 
 

exp
Chapter 2 f95 Interval Reference 2-87



2.10.5 Random Number Subroutine
RANDOM_NUMBER(HARVEST) returns through the interval variable HARVEST one
pseudorandom interval [a, b], or an array of pseudorandom intervals from uniform
distributions over the ranges 0 ≤ a ≤ 1, and a ≤ b ≤ 1.

2.11 References
The following technical reports are available online. See the Interval Arithmetic
Readme for the location of these files.

1. G.W. Walster, E.R. Hansen, and J.D. Pryce, “Extended Real Intervals and the
Topological Closure of Extended Real Relations,” Technical Report, Sun
Microsystems. February 2000.

2. G. William Walster, “Empty Intervals,” Technical Report, Sun Microsystems. April
1998.

Mignitude
See Note 2

min(|a|) ∈A 1 MIG VDMIG

VSMIG

VQMIG

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Test for empty
interval

true if A
is empty

1 ISEMPTY VDISEMPTY

VSISEMPTY

VQISEMPTY

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

LOGICAL

LOGICAL

LOGICAL

Division with
intersection

3 DIVIX VDDIVIX

VSDIVIX

VQDIVIX

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Number of digits
See Note 3

Maximum
number of
digits using Y
edit descriptor

1 NDIGITS INTERVAL

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

TABLE 2-22 Intrinsic INTERVAL-Specific Functions (Continued)

Intrinsic
Function

Definition
No.
of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: NDIGITS([-inf, +inf]) = NDIGITS([EMPTY]) = 0

A B⁄( ) C∩
2-88 Fortran 95 Interval Arithmetic Programming Reference • November 2005



3. G. William Walster, “Closed Interval Systems,” Technical Report, Sun
Microsystems. August 1999.

4. G. William Walster, “Literal Interval Constants,” Technical Report, Sun
Microsystems. August 1999.

5. G. William Walster, “Widest-Need Interval Expression Evaluation,” Technical
Report, Sun Microsystems. August 1999.

6. G. William Walster, “Compiler Support of Interval Arithmetic With Inline Code
Generation and Nonstop Exception Handling,” Technical Report, Sun
Microsystems. February 2000.

7. G. William Walster, “Finding Roots on the Edge of a Function’s Domain,”
Technical Report, Sun Microsystems. February 2000.

8. G. William Walster, “Implementing the ‘Simple’ Closed Interval System,”
Technical Report, Sun Microsystems. February 2000.

9. G. William Walster, “Interval Angles and the Fortran ATAN2 Intrinsic Function,”
Technical Report, Sun Microsystems. February 2000.

10. G. William Walster, “The ‘Simple’ Closed Interval System,” Technical Report, Sun
Microsystems. February 2000.

11. G. William Walster, Margaret S. Bierman, “Interval Arithmetic in Forte Developer
Fortran,” Technical Report, Sun Microsystems. March 2000.
Chapter 2 f95 Interval Reference 2-89



2-90 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Glossary

affirmative relation An order relation other than certainly, possibly, or set not equal. Affirmative
relations affirm something, such as a < b.

affirmative relational
operators An affirmative relational operator is an element of the set: {<, ≤, =, ≥, >}.

anti-affirmative
relation An anti-affirmative relation is a statement about what cannot be true. The order

relation ≠ is the only anti-affirmative relation in Fortran.

anti-affirmative
relational operator The Fortran .NE. and /= operators implement the anti-affirmative relation.

The certainly, possible, and set versions for interval operands are denoted
.CNE., .PNE., and .SNE., respectively.

assignment statement An assignment statement is a Fortran statement having the form:
V = expression. The left-hand side of the assignment statement is the
variable, array element, or array, V.

certainly true
relational operator See relational operators: certainly true.

closed interval A closed interval includes its endpoints. A closed interval is a closed set. The
interval [2, 3] = {z | 2 ≤ z ≤ 3} is closed, because its endpoints are included. The
interval (2, 3) = {z | 2 < z < 3} is open, because its endpoints are not included.
Interval arithmetic, as implemented in f95, only deals with closed intervals.

closed mathematical
system In a closed mathematical system, there can be no undefined operator-operand

combinations. Any defined operation on elements of a closed system must
produce an element of the system. The real number system is not closed,
because, in this system, division by zero is undefined.
Glossary-1



compact set A compact set contains all limit or accumulation points in the set. That is, given
the set, S, and sequences, , the closure of S is ,
where denotes an accumulation or limit point of the sequence {sj}.

The set of real numbers is {z | -∞ < z < +∞} is not compact. The set of extended
real numbers, , is compact.

composite expression Forming a new expression, f, (the composite expression) from the given
expressions, g and h by the rule f({ }) = g(h({ })) for all singleton sets, { } =
{x1} {xn} in the domain of h for which h is in the domain of g.

Singleton set arguments connote the fact that expressions can be either
functions or relations.

constant expression A constant expression in Fortran contains no variables or arrays. It can contain
constants and operands. The expression [2, 3] + [4, 5] is a constant
expression. If X is a variable, the expression X + [2, 3] is not a constant
expression. If Y is a named constant, Y + [2, 3] is a constant expression.

containment
constraint The containment constraint on the interval evaluation, f([x]), of the expression, f,

at the degenerate interval, [x], is f([x]) ⊇ f(x), where f(x) denotes the
containment set of all possible values that f([x]) must contain. Because the
containment set of 1 / 0 = {-∞, +∞}, [1] / [0] = hull({-∞, +∞}) = [-∞, +∞]. See also
containment set.

containment failure A containment failure is a failure to satisfy the containment constraint. For
example, a containment failure results if [1]/[0] is defined to be [empty]. This
can be seen by considering the interval expression

for X=[0] and Y, given . The containment set of the first expression is [0].
However, if [1]/[0] is defined to be [empty], the second expression is also
[empty]. This is a containment failure.

containment set The containment set, h(x) of the expression h is the smallest set that does not
violate the containment constraint when h is used as a component of any
composition, f({x}) = g(h(x), x).

For h(x, y) = x ÷ y,

h(+∞, +∞) = [0, +∞].

See also f(set).

containment set closure
identity Given any expression f(x) = f(x1, …, xn) of n-variables and the point, x0, then

= f({x0}), the closure of f at the point, x0.

s j{ } S∈ S lim j ∞→ s
j

s j S∈{ }=
lim j ∞→

ℜ∗

x x x
…⊗ ⊗

X
X Y+
--------------- 1

1 Y
X
----+

--------------=

0 Y∉

f x
˜

( )
Glossary-2 Fortran 95 Interval Arithmetic Programming Reference • November 2005



containment set
equivalent Two expressions are containment-set equivalent if their containment sets are

everywhere identical.

context-dependent
INTERVAL constant The internal approximation of an INTERVAL constant under widest-need

expression processing is context dependent, because it is a sharp interval with
KTPV that equals KTPVmax. Any approximation for the interval constant [a, b]
can be used, provided,

[a,b] ⊇ ev([a,b]),

where ev([a,b]) denotes the external value of the interval constant, [a, b].
Choosing any internal approximation is permitted, provided containment is
not violated. For example, the internal approximations, [0.1_4], [0.1_8],
and [0.1_16], all have external value, ev(0.1) = 1/10, and therefore do not
violate the containment constraint. Under widest-need expression processing
the internal approximation is used that has the same KTPV as KTPVmax.

degenerate interval A degenerate interval is a zero-width interval. A degenerate interval is a
singleton set, the only element of which is a point. In most cases, a degenerate
interval can be thought of as a point. For example, the interval [2, 2] is
degenerate, and the interval [2, 3] is not.

directed rounding Directed rounding is rounding in a particular direction. In the context of interval
arithmetic, rounding up is towards +∞, and rounding down is towards -∞. The
direction of rounding is symbolized by the arrows, ↓ and ↑. Therefore, with
5-digit arithmetic, ↑ 2.00001 = 2.0001. Directed rounding is used to implement
interval arithmetic on computers so that the containment constraint is never
violated.

disjoint interval Two disjoint intervals have no elements in common. The intervals [2, 3] and
[4, 5] are disjoint. The intersection of two disjoint intervals is the empty
interval.

empty interval The empty interval, [empty], is the interval with no members. The empty interval
naturally occurs as the intersection of two disjoint intervals. For example,
[2, 3] ∩ [4,5] = [empty].

empty set The empty set, , is the set with no members. The empty set naturally occurs
as the intersection of two disjoint sets. For example, {2, 3} ∩ {4, 5} = .

ev(literal_constant) The notation ev(literal_constant) is used to denote the external value defined by
a literal constant character string. For example, ev(0.1) = 1/10, in spite of the
fact that an internal approximation of 0.1 must be used, because the constant
0.1 is not machine representable.

exception In the IEEE 754 floating-point standard, an exception occurs when an attempt is
made to perform an undefined operation, such as division by zero.

∅
∅

Glossary-3



exchangeable
expression Two expressions are exchangeable if they are containment-set equivalent (their

containment sets are everywhere identical).

expression context In widest-need expression processing, the two attributes that define expression
context are the expression’s type and the maximum KTPV (KTPVmax).

expression processing:
strict See strict expression processing.

expression processing:
widest-need See widest-need expression processing.

extended interval The term extended interval refers to intervals whose endpoints can be extended
real numbers, including -∞ and +∞. For completeness, the empty interval is
also included in the set of extended real intervals.

external
representation The external representation of a Fortran data item is the character string used to

define it during input data conversion, or the character string used to display it
after output data conversion.

external value The external value of a Fortran literal constant is the mathematical value defined
by the literal constant’s character string. The external value of a literal constant
is not necessarily the same as the constant’s internal approximation, which, in
the Fortran standard, is the only defined value of a literal constant. See
ev(literal_constant).

f(set) The notation, f(set), is used to symbolically represent the containment set of an
expression evaluated over a set of arguments. For example, for the expression,
f(x, y) = xy, the containment constraint that the interval expression [0] × [+∞]
must satisfy is

[0] × [+∞] ⊇ = [-∞, +∞].

hull See interval hull.

infimum
(plural, infima) The infimum of a set of numbers is the set’s greatest lower bound. This is either

the smallest number in the set or the largest number that is less than all the
numbers in the set. The infimum, inf([a, b]), of the interval constant [a, b] is a.

interval algorithm An interval algorithm is a sequence of operations used to compute an interval
result.

internal
approximation In Fortran, the internal approximation of a literal constant is a machine

representable value. There is no internal approximation accuracy requirement
in the Fortran standard.

interval arithmetic Interval arithmetic is the system of arithmetic used to compute with intervals.
Glossary-4 Fortran 95 Interval Arithmetic Programming Reference • November 2005



interval box An interval box is a parallelepiped with sides parallel to the n-dimensional
Cartesian coordinate axes. An interval box is conveniently represented using
an n-dimensional interval vector, X = (X1,..., Xn)T.

INTERVAL constant An INTERVAL constant is the closed corrected set: [a, b] ={z | a ≤ z ≤ b} defined
by the pair of numbers, a ≤ b.

INTERVAL constant’s
external value An INTERVAL constant’s external value is the mathematical value defined by the

interval constant’s character string. See also external value.

INTERVAL
constant’s internal

approximation In f95, an INTERVAL constant’s internal approximation is the sharp internal
approximation of the constant’s external value. Therefore, it is the narrowest
possible machine representable interval that contains the constant’s external
value.

interval hull The interval hull operator, , on a pair of intervals ,
is the smallest interval that contains both X and Y (also represented as

). For example,

[2, 3] [5, 6] = [2, 6].

INTERVAL-specific
function In f95, an INTERVAL-specific function is an interval function that is not an

interval version of a standard Fortran function. For example, WID, MID, INF,
and SUP, are INTERVAL-specific functions.

interval width Interval width, w([a, b]) = b - a.

intrinsic INTERVAL
data type In Fortran, there are four intrinsic numeric data types: INTEGER, REAL,

DOUBLE PRECISION REAL, and COMPLEX. With the command line option -xia
or -xinterval, f95 recognizes INTERVAL as an intrinsic data type.

intrinsic INTERVAL-
specific function In f95, there are a variety of intrinsic INTERVAL-specific functions, including:

WID, HULL, MID, INF, and SUP.

kind type parameter
value (KTPV) In Fortran, each intrinsic data type is parameterized using a kind type parameter

value (KTPV), which selects the kind (precision) of the data type. In f95, there
are three INTERVAL KTPVs: 4, 8, and 16. The default interval KTPV is 8.

KTPV (kind type
parameter value) See kind type parameter value (KTPV).

KTPVmax In widest-need expression processing of interval expressions, all intervals are
converted to the maximum value of the KTPV of any data item in the
expression. This maximum value is given the name KTPVmax.

∪ x x,[ ] Y?and_rom? y,[= =

X Y∪( )?inf? X Y∪( )?sup?, ]

∪

Glossary-5



left endpoint The left endpoint of an interval is the same as its infimum or lower bound.

literal constant In f95, an interval literal constant is the character string used to define the
constant’s external value.

literal constant’s
external value In f95, an interval literal constant’s external value is the mathematical value

defined by the constant’s character string. See also external value.

literal constant’s
internal

approximation In f95, an interval literal constant’s internal approximation is the sharp machine
representable interval that contains the constant’s external value.

lower bound See infimum (plural, infima).

mantissa When written in scientific notation, a number consists of a mantissa or
significand and an exponent power of 10. The E edit descriptor in Fortran
displays numbers in terms of a mantissa or significand and an exponent, or
power of 10.

mixed-KTPV INTERVAL
expression A mixed-KTPV INTERVAL expression contains constants and/or variables with

different KTPVs. For example, [1_4] + [0.2_8] is a mixed-KTPV INTERVAL
expression. Mixed-KTPV interval expressions are permitted under widest-need
expression processing, but are not permitted under strict expression
processing.

mixed-mode (type and
KTPV) INTERVAL

expression A mixed-mode INTERVAL expression contains data items of different types and
KTPV. For example, the expression [0.1] + 0.2 is a mixed-mode expression.
[0.1] is an INTERVAL constant with KTPV = 8, while 0.2 is a REAL constant
with KTPV = 4.

mixed-type INTERVAL
expression A mixed-type INTERVAL expression contains data items of different types. For

example, the expression [0.1] + 0.2D0 is a mixed-type INTERVAL expression,
because [0.1] is an INTERVAL, and 0.2D0 is a DOUBLE PRECISION constant.
They both have the same KTPV = 8.

multiple-use expression
(MUE) A multiple-use expression (MUE) is an expression in which at least one

independent variable appears more than once.

named constant A named constant is declared and initialized in a PARAMETER statement.
Because the value of a named constant is not context dependent, a more
appropriate name for a data item in a PARAMETER declaration is “read-only
variable.”
Glossary-6 Fortran 95 Interval Arithmetic Programming Reference • November 2005



narrow-width
interval Let the interval [a, b] be an approximation of the value . If w[a, b] =

b - a, is small, [a, b] is a narrow-width interval. The narrower the width of the
interval [a, b], the more accurately [a, b] approximates ν. See also sharp
interval result.

opaque data type An opaque data type leaves the structure of internal approximations unspecified.
INTERVAL data items are opaque. Therefore, programmers cannot count on
INTERVAL data items being internally represented in any particular way. The
intrinsic functions INF and SUP provide access to the components of an
interval. The INTERVAL constructor can be used to manually construct any
valid interval.

point A point (as opposed to an interval), is a number. A point in n-dimensional
space, is represented using an n-dimensional vector, x = (x1,..., xn)T. A point and
a degenerate interval, or interval vector, can be thought of as the same. Strictly,
any interval is a set, the elements of which are points.

possibly true relational
operators See relational operators: possibly true.

quality of
implementation Quality of implementation, is a phrase used to characterize properties of

compiler support for intervals. Narrow width is a new quality of
implementation opportunity provided by intrinsic compiler support for
INTERVAL data types.

radix conversion Radix conversion is the process of converting back and forth between external
decimal numbers and internal binary numbers. Radix conversion takes place in
formatted and list-directed input/output. Because the same numbers are not
always representable in the binary and decimal number systems, guaranteeing
containment requires directed rounding during radix conversion.

read-only variable A read-only variable is not a defined construct in standard Fortran. Nevertheless,
a read-only variable is a variable, the value of which cannot be changed once it
is initialized. In standard Fortran, without interval support, there is no need to
distinguish between a named constant and a read-only variable. Because
widest-need expression processing uses the external value of constants, the
distinction between a read-only variable and a named constant must be made.
As implemented in f95, the symbolic name that is initialized in a PARAMETER
declaration is a read-only variable.

relational operators:
certainly true The certainly true relational operators are {.CLT., .CLE., .CEQ., .CNE., .CGE., .CGT.}.

Certainly true relational operators are true if the relation in question is true for
all elements in the operand intervals. That is [a, b] .Cop. [c, d] = true if x .op. y =
true for all .

For example, [a, b] .CLT. [c, d] if b < c.

ν a b,[ ]∈

x a b,[ ]∈ and y c d,[ ]∈
Glossary-7



relational operators:
possibly true The possibly true relational operators are {.PLT., .PLE., .PEQ., .PNE., .PGE., .PGT.}.

Possibly true relational operators are true if the relation in question is true for
any elements in operand intervals. For example, [a, b] .PLT. [c, d] if a < d.

relational operators:
set The set relational operators are {.SLT., .SLE., .SEQ., .SNE., .SGE., .SGT.}. Set

relational operators are true if the relation in question is true for the endpoints
of the intervals. For example, [a, b] .SEQ. [c, d] if (a = c) and (b = d).

right endpoint See supremum (plural, suprema).

scope of widest-need
expression processing See widest-need expression processing: scope.

set theoretic Set theoretic is the means of or pertaining to the algebra of sets.

sharp interval result A sharp interval result has a width that is as narrow as possible. A sharp
interval result is equal to the hull of an expression’s containment. Given the
limitations imposed by a particular finite precision arithmetic, a sharp interval
result is the narrowest possible finite precision interval that contains the
expression’s containment set.

single-number
input/output Single-number input/output, uses the single-number external representation for

an interval, in which the interval [-1, +1]uld is implicitly added to the last
displayed digit. The subscript uld is an acronym for unit in the last digit. For
example 0.12300 represents the interval 0.12300 + [-1, +1]uld = [0.12299,
0.12301].

single-number
INTERVAL data

conversion Single-number INTERVAL data conversion is used by the Y edit descriptor to read
and display external intervals using the single-number representation. See
single-number input/output.

single-use expression
(SUE) A single-use expression (SUE) is an expression in which each variable only

occurs once. For example

is a single use expression, whereas

is not.

1

1 Y
X
----+

-------------

X
X Y+
--------------
Glossary-8 Fortran 95 Interval Arithmetic Programming Reference • November 2005



strict expression
processing Under strict expression processing, no automatic type or KTPV changes are made

by the compiler. Mixed type and mixed KTPV INTERVAL expressions are not
allowed. Any type and/or KTPV changes must be explicitly programmed.

supremum
(plural, suprema) The supremum of a set of numbers is the set’s least upper bound. This is either

the largest number in the set or the smallest number that is greater than all the
numbers in the set. The supremum, sup([a, b]), of the interval constant [a, b] is
b.

unit in the last digit
(uld) In single number input/output, one unit in the last digit (uld) is added to and

subtracted from the last displayed digit to implicitly construct an interval.

unit in the last place
(ulp) One unit in the last place (ulp) of an internal machine number is the smallest

possible increment or decrement that can be made using the machine’s
arithmetic. Therefore, if the width of a computed interval is 1-ulp, this is the
narrowest possible non-degenerate interval with a given KTPV.

upper bound See supremum (plural, suprema).

valid interval result A valid interval result, [a, b] must satisfy two requirements:

■ a ≤ b

■ [a, b] must not violate the containment constraint

value assignment In Fortran, an assignment statement computes the value of the expression to
the right of the assignment of value operator, =, and stores the value in the
variable, array element, or array to the left of the assignment of value operator.

widest-need expression
processing Under widest-need expression processing, automatic type and KTPV changes are

made by the compiler. Any non-interval subexpressions are promoted to
intervals and KTPVs are set to KTPVmax.

widest-need expression
processing: scope In Fortran, scope refers to that part of an executable program where data

and/or operations are defined and unambiguous. The scope of widest-need
expression processing is limited by calls to functions and subroutines.
Glossary-9



Glossary-10 Fortran 95 Interval Arithmetic Programming Reference • November 2005



Index
Symbols
.CEQ., 2-16
.CGE., 2-16
.CGT., 2-16
.CLE., 2-16
.CLT., 2-16
.CNE., 2-16
.DJ., 2-16, 2-24
.DSUB., 2-22
.EQ., 2-16
.IH., 2-16, 2-23
.IN., 2-16, 2-24
.INT., 2-25
.IX., 2-16, 2-23
.NEQ., 2-16
.PEQ., 2-16
.PGT., 2-16
.PLE., 2-16
.PLT., 2-16
.PNE., 2-16
.PSB., 2-16, 2-25
.PSP., 2-16, 2-25
.SB., 2-16, 2-26
.SEQ., 2-16
.SGE., 2-16
.SGT., 2-16
.SLE., 2-16
.SLT., 2-16
.SNE., 2-16
.SP., 2-16, 2-26

A
ABS, 2-8, 2-85
accessible documentation, -xxi
ACOS, 2-8, 2-86
affirmative relation, Glossary-1
affirmative relational operators, Glossary-1
AINT, 2-8, 2-85
ALLOCATED, 2-8
ANINT, 2-8, 2-85
-ansi, 2-13
anti-affirmative relation, Glossary-1
anti-affirmative relational operator, Glossary-1
arithmetic expressions, 1-17
arithmetic operators, 2-17

formulas, 2-17
arrays

See also INTERVAL array functions
INTERVAL, 2-8

ASIN, 2-8, 2-86
assignment statement, Glossary-1
assignment statements

evaluating with widest-need, 2-10
INTERVAL, 2-10

ASSOCIATED, 2-8
ATAN, 2-8, 2-86
ATAN2, 2-8, 2-86

indeterminate forms, 2-80
attribute

IMPLICIT, 2-55
PARAMETER, 2-56
Index-1



-autopar, 1-27

B
base conversion, 1-12, 2-78
binary files, 1-26
BZ edit descriptor, 2-65

C
CEILING, 2-8, 2-85
certainly relational operators, 2-16, 2-29
certainly-relation, 1-18
character set notation

constants, 2-2
closed interval, Glossary-1
closed mathematical system, 1-4, Glossary-1
code examples

location, 1-5
naming convention, 1-5

command-line macro, 1-5
command-line options

-ansi, 2-13
-autopar, 1-27
effect on KTPV, 2-7
-explicitpar, 1-27
-fns, 2-13
-fround, 2-13
-fsimple, 2-13
-ftrap, 2-13
-r8const, 2-13
-xia, 1-5, 2-12
-xia=strict, 1-5
-xia=widestneed, 1-5
-xinterval, 2-12
-xtypemap, 2-13

compact set, Glossary-2
compilers, accessing, -xviii
composite expression, Glossary-2
constant expression, Glossary-2
constants

character set notation, 2-2
external value, 2-4
literal, 2-1
named, 2-1, 2-56
strict interval expression processing, 2-4

constructor functions
KTPV-specific names, 2-45

containment constraint, Glossary-2
containment failure, 1-2, Glossary-2

errors, 1-29
containment set, 2-17, Glossary-2
containment set equivalent, Glossary-3
containment-set closure identity, 2-17
context-dependent INTERVAL constant, Glossary-3
COS, 2-8, 2-86
COSH, 2-8, 2-86
cset, See containment set
CSHIFT, 2-8

D
D edit descriptor, 2-60
DATA, 2-51
data

INTERVAL data type, 2-7
representing intervals, 1-7

dbx, 1-3, 1-25
debugging tools

dbx, 1-3, 1-25
GPC, 1-3, 1-25

default INTEGER KTPV, 1-6
default KTPV, 1-12
degenerate interval, 2-2, Glossary-3

representation, 1-10
DINTERVAL, 2-8, 2-84
directed rounding, 2-2, 2-17, Glossary-3
disjoint interval, Glossary-3
disjoint set relation, 2-24
display format

inf, sup, 1-11
DIVIX function, 2-79, 2-88
documentation index, -xx
documentation, accessing, -xx to -xxii
DOT_PRODUCT, 2-8
DSUB, dependent subtraction operator, 2-22

E
E edit descriptor, 2-71
edit descriptors

BZ, 2-65
D, 2-60
E, 2-71
F, 2-72
Index-2 Fortran 95 Interval Arithmetic Programming Reference • November 2005



forms, 2-60
G, 2-73
input fields, 2-60
list-directed output, 2-61, 2-78
P, 2-66
repeatable, 2-52
summary, 2-66
VE, 2-74
VEN, 2-74
VES, 2-75
VF, 2-76
VG, 2-77
w, d, e parameters, 2-63

element set relation, 2-24
empty interval, Glossary-3
empty set, Glossary-3
endpoint type

internal type conversions, 2-2
EOSHIFT, 2-8
EQUIVALENCE statement, 2-52

restrictions, 2-52
errors

containment failure, 1-29
error detection, 1-27
integer overflow, 1-29

ev(literal_constant), Glossary-3
exceptions, Glossary-3
exchangeable expression, Glossary-4
EXP, 2-8, 2-87
-explicitpar, 1-27
expression context, 1-14, Glossary-4
expression evaluation

mixed-type, 1-14
expression processing

mixed-mode, 1-4
strict, 1-14
widest-need, 1-14

expressions
composite, Glossary-2
constant, Glossary-2
INTERVAL, 2-8
INTERVAL constant, 2-14
mixed type and KTPV, 1-15

extended interval, Glossary-4
extended operators

widest-need expression processing, 2-39

extending intrinsic INTERVAL operators, 2-30
external functions, 2-54
external representation, Glossary-4
external value, 2-3, 2-4, Glossary-4

notation, 2-3

F
F edit descriptor, 2-72
f(set), Glossary-4
f95 interval support features, 1-4
FLOOR, 2-8, 2-85
-fns, 2-13
FORMAT, 1-13, 2-52
formatted input, 2-64
Fortran INTERVAL extensions, 2-1
-fround, 2-13
-fsimple, 2-13
-ftrap, 2-13
FUNCTION, 2-54
functions

constructor, 2-45
external, 2-54
statement, 2-58

G
G edit descriptor, 2-73
global program checking (GPC), 1-3, 1-25

-Xlistf, 1-25

H
hull, See INTERVAL hull

I
implementation quality, 1-2
IMPLICIT attribute, 2-55
indeterminate forms

ATAN2, 2-80
power operator, 2-21

INF, 2-8, 2-87
inf, sup display format, 1-11
infima, 1-8
infimum, 2-4, Glossary-4
input list, 2-61
input/output

entering INTERVAL data, 1-7
Index-3



formatted input, 2-64
list-directed input, 2-61
list-directed output, 2-78
single number, 1-4, 1-8, 1-10
single-number, 2-78
unformatted input/output, 2-77

integer overflow, 1-29
INTERFACE, 2-30
interior set relation, 2-25
internal approximation, 2-6, Glossary-4
intersection set theoretic operator, 2-16, 2-22, 2-23
INTERVAL, 1-13, 2-6, 2-8, 2-41

alignment, 2-7
arrays, 2-8
assignment statements, 2-10
expressions, 2-8
size, 2-7

interval algorithm, Glossary-4
interval arithmetic, 1-1, Glossary-4
INTERVAL arithmetic functions

ABS, 2-85
AINT, 2-85
ANINT, 2-85
MAX, 2-82, 2-85
MIN, 2-82, 2-85
MOD, 2-85
SIGN, 2-85
VDABS, 2-85
VDINT, 2-85
VDMOD, 2-85
VDNINT, 2-85
VDSIGN, 2-85
VQABS, 2-85
VQINT, 2-85
VQNINT, 2-85
VSABS, 2-85
VSINT, 2-85
VSMOD, 2-85
VSNINT, 2-85
VSSIGN, 2-85

INTERVAL arithmetic operations, 1-4
INTERVAL array functions, 1-26

ABS, 2-8
ACOS, 2-8
AINT, 2-8
ALLOCATED, 2-8
ANINT, 2-8

ASIN, 2-8
ASSOCIATED, 2-8
ATAN, 2-8
ATAN2, 2-8
CEILING, 2-8
COS, 2-8
COSH, 2-8
CSHIFT, 2-8
DINTERVAL, 2-8
DOT_PRODUCT, 2-8
EOSHIFT, 2-8
EXP, 2-8
FLOOR, 2-8
INF, 2-8
INTERVAL, 2-8
KIND, 2-8
LBOUND, 2-8
LOG, 2-8
LOG10, 2-8
MAG, 2-8
MATMUL, 2-8
MAX, 2-8
MAXLOC, 2-8
MAXVAL, 2-8
MERGE, 2-8
MID, 2-8
MIG, 2-8
MIN, 2-8
MINLOC, 2-8
MINVAL, 2-8
MOD, 2-8
NDIGITS, 2-8
NULL, 2-8
PACK, 2-8
PRODUCT, 2-8
QINTERVAL, 2-8
RESHAPE, 2-8
SHAPE, 2-8
SIGN, 2-8
SIN, 2-8
SINH, 2-8
SINTERVAL, 2-8
SIZE, 2-8
SPREAD, 2-8
SQRT, 2-8
SUM, 2-8
SUP, 2-8
TAN, 2-8
TANH, 2-8
Index-4 Fortran 95 Interval Arithmetic Programming Reference • November 2005



TRANSPOSE, 2-8
UBOUND, 2-8
UNPACK, 2-8
WID, 2-8

INTERVAL assignment statements, 1-14, 2-10
interval box, Glossary-5
INTERVAL constant expressions, 2-14
INTERVAL constants, 1-4, Glossary-5

external value, Glossary-5
internal approximation, 2-6, Glossary-5
KTPV, 2-3
strict expression processing, 2-4
strict interval expression processing, 2-4
type, 2-2
widest-need interval expression processing, 2-4

INTERVAL data type, 1-4
INTERVAL expressions, 1-12, 2-8
INTERVAL hull, 2-16, Glossary-5
INTERVAL hull set theoretic operator, 2-23
INTERVAL input

input fields, 2-60
INTERVAL input/output, 1-7
INTERVAL library, 1-26
INTERVAL mathematical functions

EXP, 2-87
LOG, 2-87
LOG10, 2-87
SQRT, 2-87
VDEXP, 2-87
VDLOG, 2-87
VDLOG10, 2-87
VDSQRT, 2-87
VSEXP, 2-87
VSLOG, 2-87
VSLOG10, 2-87
VSSQRT, 2-87

interval order relations, 1-18
certainly, 1-18
definitions, 2-27
possibly, 1-18
set, 1-18

INTERVAL relational operators, 1-4, 2-16
.CEQ., 2-16
.CGE., 2-16
.CGT., 2-16
.CLE., 2-16
.CLT., 2-16

.CNE., 2-16

.DJ., 2-16

.EQ., 2-16

.IN., 2-16

.NEQ., 2-16

.PEQ., 2-16

.PGT., 2-16

.PLE., 2-16

.PLT., 2-16

.PNE., 2-16

.PSB., 2-16

.PSP., 2-16

.SB., 2-16

.SEQ., 2-16

.SGE., 2-16

.SGT., 2-16

.SLE., 2-16

.SLT., 2-16

.SNE., 2-16

.SP., 2-16
interval resources

papers, -xiv
INTERVAL- specific operators, 1-4
INTERVAL statements, 1-12, 2-49
interval support

performance, 1-3
INTERVAL support goals, 1-2
INTERVAL trigonometric functions

ACOS, 2-86
ASIN, 2-86
ATAN, 2-86
ATAN2, 2-86
COS, 2-86
COSH, 2-86
SIN, 2-86
SINH, 2-86
TAN, 2-86
TANH, 2-86
VDACOS, 2-86
VDASIN, 2-86
VDATAN, 2-86
VDATAN2, 2-86
VDCOS, 2-86
VDCOSH, 2-86
VDSIN, 2-86
VDSINH, 2-86
VDTAN, 2-86
VDTANH, 2-86
Index-5



VSACOS, 2-86
VSASIN, 2-86
VSATAN, 2-86
VSATAN2, 2-86
VSCOS, 2-86
VSCOSH, 2-86
VSSIN, 2-86
VSSINH, 2-86
VSTAN, 2-86
VSTANH, 2-86

INTERVAL type conversion functions
DINTERVAL, 2-84
INTERVAL, 2-84
QINTERVAL, 2-84
SINTERVAL, 2-84

INTERVAL variables
declaring and initializing, 2-49

interval width, Glossary-5
narrow, 1-1, 1-3, Glossary-7
related to base conversion, 2-78
sharp, 1-3

intervals
f95 interval support features, 1-4
goals of compiler support, 1-1
input/output, 1-7

INTERVAL-specific functions, 1-4, 1-22, Glossary-5
CEILING, 2-85
DIVIX, 2-79, 2-88
FLOOR, 2-85
INF, 2-87
ISEMPTY, 2-88
MAG, 2-87
MID, 2-87
MIG, 2-88
NDIGITS, 2-88
PRECISION, 2-85
RANGE, 2-85
SUP, 2-87
VDDIVIX, 2-88
VDINF, 2-87
VDISEMPTY, 2-88
VDMAG, 2-87
VDMID, 2-87
VDMIG, 2-88
VDSUP, 2-87
VDWID, 2-87
VQDIVIX, 2-88
VQINF, 2-87

VQISEMPTY, 2-88
VQMAG, 2-87
VQMID, 2-87
VQMIG, 2-88
VQSUP, 2-87
VQWID, 2-87
VSDIVIX, 2-88
VSINF, 2-87
VSISEMPTY, 2-88
VSMAG, 2-87
VSMID, 2-87
VSMIG, 2-88
VSSUP, 2-87
VSWID, 2-87
WID, 2-87

intrinsic f95 interval support, 1-2
intrinsic functions

INTERVAL, 1-22
properties, 2-83
standard, 1-23
VS,VD,VQ prefixes, 2-83

intrinsic INTERVAL data type, Glossary-5
intrinsic INTERVAL-specific function, Glossary-5
intrinsic operators, 2-15

arithmetic, 2-17
precedence of operators, 2-16
relational, 2-16

INTRINSIC statement, 2-55
ISEMPTY, 2-88

K
KIND, 2-8
kind type parameter value (KTPV), Glossary-5

alignment, 2-7
default values, 1-6, 1-12, 2-7
INTERVAL constant, 2-3
size, 2-7
specific constructor function names, 2-45

KTPVmax, 2-9, Glossary-5

L
LBOUND, 2-8
libraries

INTERVAL functions, 1-26
interval support, 1-26

list-directed input, 2-61
input list, 2-61
Index-6 Fortran 95 Interval Arithmetic Programming Reference • November 2005



list-directed output, 2-78
literal constants, 1-13, 2-1, Glossary-6

external value, Glossary-6
internal approximation, Glossary-6

LOG, 2-8, 2-87
LOG10, 2-8, 2-87

M
MAG, 2-8, 2-87
man pages, accessing, -xviii
MANPATH environment variable, setting, -xix
mantissa, Glossary-6
MATMUL, 2-8
MAX, 2-8, 2-82, 2-85
MAXLOC, 2-8
MAXVAL, 2-8
MERGE, 2-8
MID, 2-8, 2-87
MIG, 2-8, 2-88
MIN, 2-8, 2-82, 2-85
MINLOC, 2-8
MINVAL, 2-8
mixed-KTPV INTERVAL expression, Glossary-6
mixed-mode expression evaluation, 1-4
mixed-mode expressions

non-INTERVAL named constant compiler
warning, 2-57

type and KTPV, 1-15, Glossary-6
widest-need expression processing, 2-9

mixed-type expression evaluation, 1-14
mixed-type INTERVAL expressions, 1-14, Glossary-

6
MOD, 2-8, 2-85
multiple-use expression (MUE), -6

N
named constant, 1-13, 2-56, Glossary-6
named constants, 2-1
NAMELIST statement, 2-56
narrow intervals, 1-1, 1-3, Glossary-7
NDIGITS, 2-8, 2-88
non-INTERVAL named constants

mixed-mode expressions, 2-57
NULL, 2-8

O
opaque

data type, Glossary-7
INTERVAL type, 2-7

operator precedence, 2-16
operators

arithmetic, 2-17
extending, 2-30
intrinsic, 2-15
power, 2-20
relational, 2-16

P
P edit descriptor, 2-66
PACK, 2-8
PARAMETER, 1-13
PARAMETER attribute, 2-56
parameters, named constants, 2-56
PATH environment variable, setting, -xix
performance, 1-3
point, Glossary-7
POINTER statement, 2-57
porting code, 1-26
possibly relational operators, 2-16, 2-29
possibly-relation, 1-18
power operator, 2-20

containment failure, 1-31
indeterminate forms, 2-21
singularities, 2-21

precedence of intrinsic operators, 2-16
PRECISION, 2-85
processing expressions

widest-need expression processing, 1-17
PRODUCT, 2-8
proper subset set relation, 2-25
proper superset set relation, 2-25

Q
QINTERVAL, 2-8, 2-84
quality of implementation, 1-2, Glossary-7

R
-r8const, 2-13
radix conversion, 1-12, Glossary-7
RANDOM_NUMBER(HARVEST) subroutine, 2-88
Index-7



RANGE, 2-85
READ statement, 2-59
read-only variable, Glossary-7
relational operators, 2-26

certainly true, Glossary-7
possibly true, Glossary-8
set, Glossary-8

RESHAPE, 2-8

S
scale factor, 2-66
semantics, 1-4
set relational operators, 2-16, 2-28
set relations, 2-24

disjoint, 2-24
element, 2-24
interior, 2-25
proper subset, 2-25
proper superset, 2-25
subset, 2-26
superset, 2-26

set theoretic, Glossary-8
set theoretic operators, 2-23

dependent subtraction, 2-22
INTERVAL hull, 2-16, 2-23
INTERVAL intersection, 2-16, 2-23

set-relations, 1-18
set-theoretic functions, 1-12
SHAPE, 2-8
sharp intervals, 1-3, Glossary-8
shell prompts, -xvii
SIGN, 2-8, 2-85
SIN, 2-8, 2-86
single-number editing, Y edit descriptors

single-number editing, 2-67
single-number input/output, 1-4, 1-8, 2-78,

Glossary-8
single-number INTERVAL data

conversion, Glossary-8
single-number interval format, 1-10
single-number interval representation

precision, 2-67
single-use expression, See SUE
singularities

power operator, 2-21

SINH, 2-8, 2-86
SINTERVAL, 2-8, 2-84
SIZE, 2-8
SPREAD, 2-8
SQRT, 2-8, 2-87
standard intrinsic functions, 1-23
statement function, 2-58
statements

DATA, 2-51
EQUIVALENCE, 2-52
FORMAT, 1-13, 2-52
FUNCTION, 2-54
INTERFACE, 2-30
INTERVAL, 1-13, 2-6, 2-41, 2-49
INTRINSIC, 2-55
NAMELIST, 2-56
PARAMETER, 1-13
POINTER, 2-57
READ, 2-59
type, 2-58
WRITE, 2-59

strict expression processing, 1-5, 1-14, Glossary-9
subroutine, RANDOM_NUMBER(HARVEST), 2-88
subset set relation, 2-26
SUE, 2-21, Glossary-8
SUM, 2-8
SUP, 2-8, 2-87
superset set relation, 2-26
suprema, 1-8
supremum, 2-4, Glossary-9
syntax, 1-4

T
TAN, 2-8, 2-86
TANH, 2-8, 2-86
The, 2-47
TRANSPOSE, 2-8
type declaration, 2-48
type declaration statements

INTERVAL, 2-49
type statement, 2-58
typographic conventions, -xvi

U
UBOUND, 2-8
Index-8 Fortran 95 Interval Arithmetic Programming Reference • November 2005



uld, 1-10, Glossary-9
ulp, 1-7, 1-12, Glossary-9
unformatted input/output, 2-77
unit in last digit, See uld
unit in last place, See ulp
UNPACK, 2-8

V
valid interval result, Glossary-9
value assignment, 1-13, Glossary-9
variables, INTERVAL, 2-49
VDABS, 2-85
VDACOS, 2-86
VDASIN, 2-86
VDATAN, 2-86
VDATAN2, 2-86
VDCOS, 2-86
VDCOSH, 2-86
VDDIVIX, 2-88
VDEXP, 2-87
VDINF, 2-87
VDINT, 2-85
VDISEMPTY, 2-88
VDLOG, 2-87
VDLOG10, 2-87
VDMAG, 2-87
VDMID, 2-87
VDMIG, 2-88
VDMOD, 2-85
VDNINT, 2-85
VDSIGN, 2-85
VDSIN, 2-86
VDSINH, 2-86
VDSQRT, 2-87
VDSUP, 2-87
VDTAN, 2-86
VDTANH, 2-86
VDWID, 2-87
VE edit descriptor, 2-74
VEN edit descriptor, 2-74
VES edit descriptor, 2-75
VF edit descriptor, 2-76
VG edit descriptor, 2-77

VQABS, 2-85
VQDIVIX, 2-88
VQINF, 2-87
VQINT, 2-85
VQISEMPTY, 2-88
VQMAG, 2-87
VQMID, 2-87
VQMIG, 2-88
VQNINT, 2-85
VQSUP, 2-87
VQWID, 2-87
VSABS, 2-85
VSACOS, 2-86
VSASIN, 2-86
VSATAN, 2-86
VSATAN2, 2-86
VSCOS, 2-86
VSCOSH, 2-86
VSDIVIX, 2-88
VSEXP, 2-87
VSINF, 2-87
VSINT, 2-85
VSISEMPTY, 2-88
VSLOG, 2-87
VSLOG10, 2-87
VSMAG, 2-87
VSMID, 2-87
VSMIG, 2-88
VSMOD, 2-85
VSNINT, 2-85
VSSIGN, 2-85
VSSIN, 2-86
VSSINH, 2-86
VSSQRT, 2-87
VSSUP, 2-87
VSTAN, 2-86
VSTANH, 2-86
VSWID, 2-87

W
WID, 2-8, 2-87
widest-need expression processing, 1-14, Glossary-

9

Index-9



command-line option, 1-5
evaluating assignment statements, 2-10
evaluating expressions, 1-17
extended operators, 2-39
limiting scope, 2-42
mixed-mode expressions, 2-9
scope, Glossary-9
steps, 1-16

WRITE statement, 2-59

X
X**N, 2-20
X**Y, 2-20
-xia, 2-12
-xinterval, 2-12
-Xlistf GPC example, 1-25
-xtypemap, 2-13
Index-10 Fortran 95 Interval Arithmetic Programming Reference • November 2005


	Fortran 95 Interval Arithmetic Programming Reference
	Contents
	Tables
	Code Samples
	Before You Begin
	Using Interval Arithmetic With f95
	1.1 f95 INTERVAL Type and Interval Arithmetic Support
	1.2 f95 Interval Support Goal: Implementation Quality
	1.2.1 Quality Interval Code
	1.2.2 Narrow-Width Interval Results
	1.2.3 Rapidly Executing Interval Code
	1.2.4 Easy to Use Development Environment

	1.3 Writing Interval Code for f95
	1.3.1 Command-Line Options
	1.3.2 Hello Interval World
	1.3.3 Interval Declaration and Initialization
	1.3.4 INTERVAL Input/Output
	1.3.5 Single-Number Input/Output
	1.3.6 Interval Statements and Expressions
	1.3.7 Default Kind Type Parameter Value (KTPV)
	1.3.8 Value Assignment V = expr
	1.3.9 Mixed-Type Expression Evaluation
	1.3.9.1 Widest-Need and Strict Expression Processing
	1.3.9.2 Mixed-Mode (Type and KTPV) Expressions

	1.3.10 Arithmetic Expressions
	1.3.11 Interval Order Relations
	1.3.12 Intrinsic INTERVAL-Specific Functions
	1.3.13 Interval Versions of Standard Intrinsic Functions

	1.4 Code Development Tools
	1.4.1 Debugging Support
	1.4.2 Global Program Checking
	1.4.3 Interval Functionality Provided in Sun Fortran Libraries
	1.4.4 Porting Code and Binary Files
	1.4.5 Parallelization

	1.5 Error Detection
	1.5.1 Known Containment Failures
	1.5.1.1 Integer Overflow



	f95 Interval Reference
	2.1 Fortran Extensions
	2.1.1 Character Set Notation
	2.1.2 INTERVAL Constants
	2.1.3 Internal Approximation
	2.1.4 INTERVAL Statement

	2.2 Data Type and Data Items
	2.2.1 Name: INTERVAL
	2.2.2 Kind Type Parameter Value (KTPV)
	2.2.2.1 Size and Alignment Summary

	2.2.3 INTERVAL Arrays

	2.3 INTERVAL Arithmetic Expressions
	2.3.1 Mixed-Mode INTERVAL Expressions
	2.3.2 Value Assignment
	2.3.3 Interval Command-Line Options
	2.3.3.1 -xtypemap and -r8const Command-Line Options

	2.3.4 Constant Expressions

	2.4 Intrinsic Operators
	2.4.1 Arithmetic Operators +, -, *, /

	2.5 Power Operators X**N and X**Y
	2.6 Dependent Subtraction Operator
	2.7 Set Theoretic Operators
	2.7.1 Hull: X » Y or (X.IH.Y)
	2.7.2 Intersection: X«Y or (X.IX.Y)

	2.8 Set Relations
	2.8.1 Disjoint: X «Y = Æ or (X .DJ. Y)
	2.8.2 Element: r Œ Y or (R.IN. Y)
	2.8.3 Interior: (X .INT. Y)
	2.8.4 Proper Subset: X Ã Y or (X .PSB. Y)
	2.8.5 Proper Superset: X … Y or (X .PSP. Y)
	2.8.6 Subset: X Õ Y or (X .SB. Y)
	2.8.7 Superset: X   Y or (X .SP. Y)
	2.8.8 Relational Operators
	2.8.8.1 Set Relational Operators
	2.8.8.2 Certainly Relational Operators
	2.8.8.3 Possibly Relational Operators


	2.9 Extending Intrinsic INTERVAL Operators
	2.9.1 Extended Operators With Widest-Need Evaluation
	2.9.2 INTERVAL (X [,Y, KIND])
	2.9.2.1 Limiting the Scope of Widest-Need
	2.9.2.2 KTPV-Specific Names of Intrinsic INTERVAL Constructor Functions
	2.9.2.3 Intrinsic INTERVAL Constructor Function Conversion Examples

	2.9.3 Specific Names for Intrinsic Generic INTERVAL Functions

	2.10 INTERVAL Statements
	2.10.1 Type Declaration
	2.10.1.1 INTERVAL
	2.10.1.2 INTERVAL(n), for n Œ{4, 8, 16}
	2.10.1.3 DATA Statements
	2.10.1.4 EQUIVALENCE Statements
	2.10.1.5 FORMAT Statements
	2.10.1.6 FUNCTION (External)
	2.10.1.7 IMPLICIT Attribute
	2.10.1.8 INTRINSIC Statement
	2.10.1.9 NAMELIST Statement
	2.10.1.10 PARAMETER Attribute
	2.10.1.11 Fortran 95-Style POINTER
	2.10.1.12 Statement Function
	2.10.1.13 Type Statement
	2.10.1.14 WRITE Statement
	2.10.1.15 READ Statement

	2.10.2 Input and Output
	2.10.2.1 External Representations
	2.10.2.2 Input
	2.10.2.3 List-Directed Input
	2.10.2.4 Formatted Input/Output
	2.10.2.5 Formatted Input
	2.10.2.6 Formatted Output
	2.10.2.7 Single-Number Editing With the Y Edit Descriptor
	2.10.2.8 E, EN, and ES Edit Descriptors
	2.10.2.9 F Edit Descriptor
	2.10.2.10 G Edit Descriptor
	2.10.2.11 VE Edit Descriptor
	2.10.2.12 VEN Edit Descriptor
	2.10.2.13 VES Edit Descriptor
	2.10.2.14 VF Edit Descriptor
	2.10.2.15 VG Edit Descriptor
	2.10.2.16 Unformatted Input/Output
	2.10.2.17 List-Directed Output
	2.10.2.18 Single-Number Input/Output and Base Conversions

	2.10.3 Intrinsic INTERVAL Functions
	2.10.4 Mathematical Functions
	2.10.4.1 Division With Intersection Function DIVIX
	2.10.4.2 Inverse Tangent Function ATAN2(Y,X)
	2.10.4.3 Maximum: MAX(X1,X2,[X3,...])
	2.10.4.4 Minimum: MIN(X1,X2,[X3, ...])
	2.10.4.5 Intrinsic Functions

	2.10.5 Random Number Subroutine

	2.11 References

	Glossary
	Index


