
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

C++ Interval Arithmetic
Programming Reference

Sun™ Studio 11

Part No. 819-3696-10
November 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xi

Who Should Use This Book xi

How This Book Is Organized xi

What Is Not in This Book xii

Related Interval References xii

Online Resources xii

Typographic Conventions xiv

Shell Prompts xv

Supported Platforms xv

Accessing Sun Studio Software and Man Pages xvi

Accessing Sun Studio Documentation xviii

Accessing Related Solaris Documentation xx

Resources for Developers xxi

Contacting Sun Technical Support xxi

Sending Your Comments xxi

1. Using the Interval Arithmetic Library 1–1

1.1 What Is Interval Arithmetic? 1–1

1.2 C++ Interval Support Goal: Implementation Quality 1–1

1.2.1 Quality Interval Code 1–2
iii

1.2.2 Narrow-Width Interval Results 1–2

1.2.3 Rapidly Executing Interval Code 1–3

1.2.4 Easy-to-Use Development Environment 1–3

1.2.5 The C++ Interval Class Compilation Interface 1–4

1.3 Writing Interval Code for C++ 1–5

1.3.1 Hello Interval World 1–6

1.3.2 interval External Representations 1–6

1.3.3 Interval Declaration and Initialization 1–7

1.3.4 interval Input/Output 1–8

1.3.5 Single-Number Input/Output 1–11

1.3.6 Arithmetic Expressions 1–15

1.3.7 interval-Specific Functions 1–16

1.3.8 Interval Versions of Standard Functions 1–17

1.4 Code Development Tools 1–19

1.4.1 Debugging Support 1–19

2. C++ Interval Arithmetic Library Reference 2–1

2.1 Character Set Notation 2–1

2.1.1 String Representation of an Interval Constant (SRIC) 2–2

2.1.2 Internal Approximation 2–5

2.2 interval Constructor 2–6

2.2.1 interval Constructor Examples 2–9

2.3 interval Arithmetic Expressions 2–12

2.4 Operators and Functions 2–12

2.4.1 Arithmetic Operators +, –, *, / 2–13

2.4.2 Power Function pow(X,n) and pow(X,Y) 2–17

2.5 Set Theoretic Functions 2–18

2.5.1 Hull: X ∪ Y or interval_hull(X,Y) 2–21

2.5.2 Intersection: X∩Y or intersect(X,Y) 2–21
iv C++ Interval Arithmetic Programming Reference • November 2005

Contents v

2.6 Set Relations 2–22

2.6.1 Disjoint: X ∩Y = ∅ or disjoint(X,Y) 2–22

2.6.2 Element: r ∈ Y or in(r,Y) 2–22

2.6.3 Interior: in_interior(X,Y) 2–23

2.6.4 Proper Subset: X ⊂ Y or proper_subset(X,Y) 2–23

2.6.5 Proper Superset: X ⊃ Y or proper_superset(X,Y) 2–24

2.6.6 Subset: X ⊆ Y or subset(X,Y) 2–24

2.6.7 Superset: X ⊇ Y or superset(X,Y) 2–24

2.7 Relational Functions 2–25

2.7.1 Interval Order Relations 2–25

2.7.2 Set Relational Functions 2–29

2.7.3 Certainly Relational Functions 2–31

2.7.4 Possibly Relational Functions 2–32

2.8 Input and Output 2–32

2.8.1 Input 2–33

2.8.2 Single-Number Output 2–34

2.8.3 Single-Number Input/Output and Base Conversions 2–36

2.9 Mathematical Functions 2–36

2.9.1 Inverse Tangent Function atan2(Y,X) 2–37

2.9.2 Maximum: maximum(X1,X2) 2–40

2.9.3 Minimum: minimum(X1,X2) 2–40

2.9.4 Functions That Accept Interval Arguments 2–40

2.10 Interval Types and the Standard Template Library 2–45

2.11 nvector and nmatrix Template Classes 2–46

2.11.1 nvector<T> Class 2–46

2.11.2 nmatrix<T> Class 2–48

2.12 References 2–50

Glossary Glossary–1

Index Index–1

vi C++ Interval Arithmetic Programming Reference • November 2005

Tables

TABLE 2-1 Font Conventions 2–1

TABLE 2-2 Operators and Functions 2–12

TABLE 2-3 interval Relational Functions and Operators 2–13

TABLE 2-4 Containment Set for Addition: x + y 2–15

TABLE 2-5 Containment Set for Subtraction: x – y 2–15

TABLE 2-6 Containment Set for Multiplication: x × y 2–15

TABLE 2-7 Containment Set for Division: x ÷ y 2–16

TABLE 2-8 exp(y(ln(x))) 2–17

TABLE 2-9 Interval-Specific Functions 2–19

TABLE 2-10 Operational Definitions of Interval Order Relations 2–29

TABLE 2-11 atan2 Indeterminate Forms 2–37

TABLE 2-12 Tests and Arguments of the Floating-Point atan2 Function 2–39

TABLE 2-13 Tabulated Properties of Each interval Function 2–40

TABLE 2-14 interval Constructor 2–41

TABLE 2-15 interval Arithmetic Functions 2–41

TABLE 2-16 interval Trigonometric Functions 2–42

TABLE 2-17 Other interval Mathematical Functions 2–43

TABLE 2-18 interval-Specific Functions 2–43
vii

viii C++ Interval Arithmetic Programming Reference • November 2005

Code Samples

CODE EXAMPLE 1-1 Hello Interval World 1-6

CODE EXAMPLE 1-2 Hello Interval World With interval Variables 1-7

CODE EXAMPLE 1-3 Interval Input/Output 1-9

CODE EXAMPLE 1-4 [inf, sup] Interval Output 1-11

CODE EXAMPLE 1-5 Single-Number Output 1-12

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion 1-14

CODE EXAMPLE 1-7 Simple interval Expression Example 1-15

CODE EXAMPLE 1-8 interval-Specific Functions 1-16

CODE EXAMPLE 1-9 interval Versions of Mathematical Functions 1-17

CODE EXAMPLE 2-1 Valid and Invalid interval External Representations 2-3

CODE EXAMPLE 2-2 Efficient Use of the String-to-Interval Constructor 2-4

CODE EXAMPLE 2-3 interval Constructor With Floating-Point Arguments 2-7

CODE EXAMPLE 2-4 Using the interval_hull Function With Interval Constructor 2-8

CODE EXAMPLE 2-5 interval Conversion 2-9

CODE EXAMPLE 2-6 Creating a Narrow Interval That Contains a Given Real Number 2-10

CODE EXAMPLE 2-7 interval(NaN) 2-11

CODE EXAMPLE 2-8 Set Operators 2-19

CODE EXAMPLE 2-9 Set-Equality Test 2-25

CODE EXAMPLE 2-10 Interval Relational Functions 2-26

CODE EXAMPLE 2-11 Single-Number Output Examples 2-33
ix

CODE EXAMPLE 2-12 Single-Number [inf, sup]-Style Output 2-34

CODE EXAMPLE 2-13 ndigits 2-35

CODE EXAMPLE 2-14 atan2 Indeterminate Forms 2-38

CODE EXAMPLE 2-15 Example of Using an Interval Type as a Template Argument for STL Classes 2-45

CODE EXAMPLE 2-16 >> Incorrectly Interpreted as the Right Shift Operator 2-45

CODE EXAMPLE 2-17 Example of Using the nvector Class 2-47

CODE EXAMPLE 2-18 Example of Using the nmatrix Class 2-49
x C++ Interval Arithmetic Programming Reference • November 2005

Before You Begin

This manual documents the C++ interface to the C++ interval arithmetic library
provided with the Sun Studio C++ compiler.

Who Should Use This Book
This is a reference manual intended for programmers with a working knowledge of
the C++ language, the Solaris™ operating environment, and UNIX commands.

How This Book Is Organized
This book contains the following chapters:

Chapter 1 describes the C++ interval arithmetic support goals and provides code
samples that interval programmers can use to quickly learn more about the C++
interval features. This chapter contains the essential information to get started
writing interval code using C++.

Chapter 2 is a complete description of the C++ interval arithmetic library interface.

Glossary contains definitions of interval terms.
xi

What Is Not in This Book
This book is not an introduction to intervals and does not contain derivations of the
interval innovations included in the interval arithmetic C++ library. For a list of
sources containing introductory interval information, see the Interval Arithmetic
Readme.

Related Interval References
The interval literature is large and growing. Interval applications exist in various
substantive fields. However, most interval books and journal articles either contain
these algorithms, or are written for interval analysts who are developing new
interval algorithms. There is not yet a book titled “Introduction to Intervals.”

The Sun Studio C++ compiler is not the only source of C++ support for intervals.
Readers interested in other well known sources can refer to the following books:

■ R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, M. Rauch, C-XSC Class Library for
Extended Scientific Computing. Springer, 1993.

■ R. Hammer, M. Hocks, U. Kulisch, D. Ratz, Numerical Toolbox for Verified
Computing I, Basic Numerical Problems. Springer, 1993.

For a list of technical reports that establish the foundation for the interval
innovations implemented in class interval, see “References” on page 2 50. See the
Interval Arithmetic Readme for the location of the online versions of these
references.

Online Resources
Additional interval information is available at various web sites and by subscribing
to email lists. For a list of online resources, refer to the Interval Arithmetic Readme.
xii C++ Interval Arithmetic Programming Reference • November 2005

Web Sites
A detailed bibliography and interval FAQ can be obtained online at the URLs listed
in the Interval Arithmetic Readme on the documentation pages at Sun Studio
developer’s portal:

http://developers.sun.com/sunstudio/

Forums
To discuss interval arithmetic issues or ask questions about using interval arithmetic,
use the Sun Studio C, C++, and Fortran forums at:

http://forum.sun.com/

Code Examples
All code examples in this book can be found on the Code Samples page of the Sun
Studio developer’s portal:

http://developers.sun.com/sunstudio/

The name of each file is cen-m.cc, where n is the chapter in which the example
occurs and m is the number of the example. Additional interval examples are also
provided in this directory.
Before You Begin xiii

http://developers.sun.com/sunstudio/
http://developers.sun.com/sunstudio/
http://forum.sun.com/

Typographic Conventions

Note – Examples use math% as the system prompt.

TABLE P-1 Typeface Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Code samples, the names of
commands, files, and directories;
on-screen computer output

interval<double>("[4, 5]"))

AaBbCc123 What you type, contrasted with
on-screen computer output

math% CC -xia test.cc

math% a.out

x = [2.0,3.0]

^c Press the Control and c keys to
terminate an application

a,b =? ^c

AaBbCc123 Placeholders for interval
language elements

The interval affirmative order
relational operators op ∈ {lt, le, eq,
ge, gt} are equivalent to the
mathematical operators

.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for required option.

d{y|n} dy

op >,≥,=,≤,<{ }∈
xiv C++ Interval Arithmetic Programming Reference • November 2005

Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you
are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

In this document, the term "x86" refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product
families. For supported systems, see the hardware compatibility lists.

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…,fn] xinline=alpha,dos

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

TABLE P-2 Code Conventions (Continued)

Code
Symbol Meaning Notation Code Example
Before You Begin xv

http://www.sun.com/bigadmin/hcl

Accessing Sun Studio Software and Man
Pages
The Sun Studio software and man pages are not installed into the standard
/usr/bin/ and /usr/share/man directories. To access the software, you must
have your PATH environment variable set correctly (see “Accessing the Software” on
page xvi). To access the man pages, you must have the your MANPATH environment
variable set correctly (see “Accessing the Man Pages” on page xvii.).

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page.

Note – The information in this section assumes that your Sun Studio software is
installed in the /opt directory. If your software is not installed in the /opt directory,
ask your system administrator for the equivalent path on your system.

Accessing the Software
Use the steps below to determine whether you need to change your PATH variable to
access the software.

To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

% echo $PATH
xvi C++ Interval Arithmetic Programming Reference • November 2005

To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable. If you have Forte
Developer software, Sun ONE Studio software, or another release of Sun Studio
software installed, add the following path before the paths to those installations.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

To Set Your MANPATH Environment Variable to Enable Access
to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

% man dbx
Before You Begin xvii

Accessing the Integrated Development
Environment
The Sun Studio integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V.

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, if the path to the directory that contains the IDE is /foo/SUNWspro, the
command looks for the core platform in /foo/netbeans/3.5V.

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their
$PATH in front of the path to any other release of Forte Developer software, Sun
ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH.

Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.
xviii C++ Interval Arithmetic Programming Reference • November 2005

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html
Before You Begin xix

http://docs.sun.com
http://docs.sun.com

Related Compilers and Tools Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.
xx C++ Interval Arithmetic Programming Reference • November 2005

http://docs.sun.com
http://docs.sun.com

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL

http://www.sun.com/hwdocs/feedback

Please include the part number (819-3696-10) of your document.
Before You Begin xxi

http://developers.sun.com
http://developers.sun.com/prodtech/cc
http://www.sun.com/hwdocs/feedback
http://www.sun.com/service/contacting

xxii C++ Interval Arithmetic Programming Reference • November 2005

CHAPTER 1

Using the Interval Arithmetic
Library

1.1 What Is Interval Arithmetic?
Interval arithmetic is a system for computing with intervals of numbers. Because
interval arithmetic always produces intervals that contain the set of all possible
result values, interval algorithms have been developed to perform surprisingly
difficult computations. For more information on interval applications, see the
Interval Arithmetic Readme.

1.2 C++ Interval Support Goal:
Implementation Quality
The goal of interval support in C++ is to stimulate development of commercial
interval solver libraries and applications by providing program developers with:

■ Quality interval code
■ Narrow-width interval results
■ Rapidly executing interval code
■ An easy-to-use software development environment

Support and features are components of implementation quality. Not all possible
quality of implementation features have been implemented. Throughout this book,
various unimplemented quality of implementation opportunities are described.
Additional suggestions from users are welcome.
1-1

1.2.1 Quality Interval Code
As a consequence of evaluating any interval expression, a valid interval-supporting
compiler must produce an interval that contains the set of all possible results. The
set of all possible results is called the containment set (cset) of the given expression.
The requirement to enclose an expression’s cset is the containment constraint of
interval arithmetic. The failure to satisfy the containment constraint is a containment
failure. A silent containment failure (with no warning or documentation) is a fatal
error in any interval computing system. By satisfying this single constraint, intervals
provide otherwise unprecedented computing quality.

Given the containment constraint is satisfied, implementation quality is determined
by the location of a point in the two-dimensional plane whose axes are runtime and
interval width. On both axes, small is better. How to trade runtime for interval width
depends on the application. Both runtime and interval width are obvious measures
of interval-system quality. Because interval width and runtime are always available,
measuring the accuracy of both interval algorithms and implementation systems is
no more difficult than measuring their speed.

The Sun Studio tools for performance profiling can be used to tune interval
programs. However, in C++, no interval-specific tools exist to help isolate where an
algorithm may gain unnecessary interval width. Quality of implementation
opportunities include adding additional interval-specific code development and
debugging tools.

1.2.2 Narrow-Width Interval Results
All the normal language and compiler quality of implementation opportunities exist
for intervals, including rapid execution and ease of use.

Valid interval implementation systems include a new additional quality of
implementation opportunity: Minimize the width of computed intervals while
always satisfying the containment constraint.

If an interval’s width is as narrow as possible, it is said to be sharp. For a given
floating-point precision, an interval result is sharp if its width is as narrow as
possible.

The following statements apply to the width of intervals produced by the interval
class:

■ Individual intervals are sharp approximations of their external representation.
■ Individual interval arithmetic functions produce sharp results.
■ Mathematical functions usually produce sharp results.
1-2 C++ Interval Arithmetic Programming Reference • November 2005

1.2.3 Rapidly Executing Interval Code
By providing compiler optimization and hardware instruction support, interval
operations are not necessarily slower than their floating-point counterparts. The
following can be said about the speed of interval operators and mathematical
functions:

■ Arithmetic operations are reasonably fast.

■ The speed of interval<double> mathematical functions is generally less than
half the speed of their double counterparts. interval<float> math functions
are provided, but are not tuned for speed (unlike their interval<double>
counterparts). The interval<long double> mathematical functions are not
provided in this release. However, other interval<long double> functions are
supported.

1.2.4 Easy-to-Use Development Environment
The C++ interval class facilitates interval code development, testing, and
execution.

Sun Studio C++ includes the following interval extensions:

■ interval template specializations for intervals using float, double, and long
double scalar types.

■ interval arithmetic operations and mathematical functions that form a closed
mathematical system. (This means that valid results are produced for any possible
operator-operand combination, including division by zero and other
indeterminate forms involving zero and infinities.)

■ Three types of interval relational functions:

■ Certainly
■ Possibly
■ Set

■ interval-specific functions, such as intersect and interval_hull.

■ interval-specific functions, such as inf, sup, and wid.

■ interval input/output, including single-number input/output.

For examples and more information on these and other interval functions, see
CODE EXAMPLE 2-8 through CODE EXAMPLE 2-10 and Section 2.9.4, “Functions That
Accept Interval Arguments” on page 2-40.

Chapter 2 contains detailed descriptions of these and other interval features.
Chapter 1 Using the Interval Arithmetic Library 1-3

1.2.5 The C++ Interval Class Compilation Interface
The compilation interface consists of the following:

■ A new value, interval, for the -library flag, which expands to the
appropriate libraries.

■ A new value, interval, for the -staticlib flag, which at present is ignored
because only static libraries are currently supported.

■ A new flag, -xia, which expands to -fsimple=0 -ftrap=%none -fns=no
-library=interval. This flag is the same flag that is used with the Fortran
compilers, though the expansion is different.

It is a fatal error if at the end of command line processing -xia is set, and either
-fsimple, -fns, or -ftrap is set to any value other than

-fsimple=0
-fns=no
-ftrap=no
-ftrap=%none

To use the C++ interval arithmetic features, add the following header file to the
code.

#include <suninterval.h>

An example of compiling code using the -xia command-line option is shown here.

The C++ interval library supports the following common C++ compilation modes:

■ Compatibility mode (ARM) using -compat
■ Standard mode (ISO) with the standard library, which is the default
■ Standard mode with the traditional iostream library (-library=iostream)

See the C++ Migration Guide and the C++ User's Guide for more information on these
modes.

The following sections describe the ways that these compilation modes affect
compilation of applications using the interval library.

math% CC -o filename -xia filename.cc
1-4 C++ Interval Arithmetic Programming Reference • November 2005

1.2.5.1 namespace SUNW_interval

In standard mode only, all interval types and symbols are defined within the
namespace SUNW_interval. To write applications that compile in both standard
mode and compatibility mode, use the following code.

1.2.5.2 Boolean Return Values

Some interval functions return boolean values. Because compatibility mode does not
support boolean types by default, these functions are defined returning a type
interval_bool, which is a typedef to an int (compatibility mode) or a bool
(standard mode). Client code should use whatever type appropriate for boolean
values and rely on the appropriate conversions from interval_bool to the client’s
boolean type. The library does not support explicit use of -features=bool or
-features=no%bool.

1.2.5.3 Input and Output

The interval library requires the I/O mechanisms supplied in one of the three
compilation modes listed in Section 1.2.5, “The C++ Interval Class Compilation
Interface” on page 1-4. In particular, the flag -library=iostream must be
specified on all compile and link commands if the application is using the standard
mode with the traditional iostream library.

1.3 Writing Interval Code for C++
The examples in this section are designed to help new interval programmers to
understand the basics and to quickly begin writing useful interval code. Modifying
and experimenting with the examples is strongly recommended.

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif
Chapter 1 Using the Interval Arithmetic Library 1-5

1.3.1 Hello Interval World
CODE EXAMPLE 1-1 is the interval equivalent of “hello world.”

CODE EXAMPLE 1-1 uses standard output streams to print the labeled sum of the
intervals [2, 3] and [4, 5].

1.3.2 interval External Representations
The integer and floating-point numbers that can be represented in computers are
referred to as internal machine representable numbers. These numbers are a subset
of the entire set of extended (including -∞ and +∞) real numbers. To make the
distinction, machine representable numbers are referred to as internal and any
number as external. Let x be an external (decimal) number or an interval endpoint
that can be read or written in C++. Such a number can be used to represent either an
external interval or an endpoint. There are three displayable forms of an external
interval:

■ [X_inf, X_sup] represents the mathematical interval

■ [X] represents the degenerate mathematical interval [x, x], or [x]

CODE EXAMPLE 1-1 Hello Interval World

math% cat ce1-1.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

cout <<"[2,3]+[4,5]="

 << (interval<double>("[2,3]") +

 interval<double>("[4,5]"));

 cout << endl;

}

math% CC -xia -o ce1-1 ce1-1.cc

math% ce1-1

[2,3]+[4,5]=[0.6000000000000000E+001,0.8000000000000000E+001]

x x[,]
1-6 C++ Interval Arithmetic Programming Reference • November 2005

■ X represents the non-degenerate mathematical interval [x] + [-1,+1]uld (unit in the
last digit). This form is the single-number representation, in which the last
decimal digit is used to construct an interval. See Section 1.3.4, “interval
Input/Output” on page 1-8 and Section 2.8.2, “Single-Number Output” on
page 2-34. In this form, trailing zeros are significant. Thus 0.10 represents
interval [0.09, 0.11], 100E-1 represents interval [9.9, 10.1], and
0.10000000 represents the interval [0.099999999, 0.100000001].

A positive or negative infinite interval endpoint is input/output as a case-insensitive
string inf or infinity prefixed with a minus sign or an optional plus sign.

The empty interval is input/output as the case-insensitive string empty enclosed in
square brackets, [...]. The string, "empty", can be preceded or followed by blank
spaces.

See Section 2.4.1, “Arithmetic Operators +, –, *, /” on page 2-13, for more details.

Note – If an invalid interval such as [2,1] is converted to an internal interval,
[-inf, inf] is stored internally.

1.3.3 Interval Declaration and Initialization
The interval declaration statement performs the same functions for interval
data items as the double and int declarations do for their respective data items.
CODE EXAMPLE 1-2 uses interval variables and initialization to perform the same
operation as CODE EXAMPLE 1-1.

CODE EXAMPLE 1-2 Hello Interval World With interval Variables

math% cat ce1-2.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval<double> X("[2,3]");

 interval<double> Y("3"); // interval [2,4] is represented

 cout <<"[2,3]+[2,4]=" << X + Y;

 cout << endl;

}

Chapter 1 Using the Interval Arithmetic Library 1-7

Variables X and Y are declared to be of type interval<double> variables and are
initialized to [2, 3] and [2, 4], respectively. The standard output stream is used to
print the labeled interval sum of X and Y.

Note – To facilitate code-example readability, all interval variables are shown as
uppercase characters. Interval variables can be uppercase or lowercase in code.

1.3.4 interval Input/Output
Full support for reading and writing intervals is provided. Because reading and
interactively entering interval data can be tedious, a single-number interval format is
introduced. The single-number convention is that any number not contained in
brackets is interpreted as an interval whose lower and upper bounds are constructed
by subtracting and adding 1 unit to the last displayed digit.

Thus

2.345 = [2.344, 2.346],

2.34500 = [2.34499, 2.34501],

and

23 = [22, 24].

Symbolically,

[2.34499, 2.34501] = 2.34500 + [-1, +1]uld

where [-1, +1]uld means that the interval [-1, +1] is added to the last digit of the
preceding number. The subscript, uld, is a mnemonic for “unit in the last digit.”

To represent a degenerate interval, a single number can be enclosed in square
brackets. For example,

[2.345] = [2.345, 2.345] = 2.345000000000.....

math% CC -xia -o ce1-2 ce1-2.cc

math% ce1-2

[2,3]+[2,4]=[0.4000000000000000E+001,0.7000000000000000E+001]

CODE EXAMPLE 1-2 Hello Interval World With interval Variables (Continued)
1-8 C++ Interval Arithmetic Programming Reference • November 2005

This convention is used both for input and constructing intervals out of an external
character string representation. Thus, type [0.1] to indicate the input value is an
exact decimal number, even though 0.1 is not machine representable.

During input to a program, [0.1,0.1] = [0.1] represents the point, 0.1, while using
single-number input/output, 0.1 represents the interval

0.1 + [-1, +1]uld = [0, 0.2].

The input conversion process constructs a sharp interval that contains the input
decimal value. If the value is machine representable, the internal machine
approximation is degenerate. If the value is not machine representable, an interval
having width of 1-ulp (unit-in-the-last-place of the mantissa) is constructed.

Note – A uld and an ulp are different. A uld is a unit in the last displayed decimal
digit of an external number. An ulp is the smallest possible increment or decrement
that can be made to an internal machine number.

The simplest way to read and print interval data items is with standard stream
input and output.

CODE EXAMPLE 1-3 is a simple tool to help users become familiar with interval
arithmetic and single-number interval input/output using streams.

Note – The interval containment constraint requires that directed rounding be used
during both input and output. With single-number input followed immediately by
single-number output, a decimal digit of accuracy can appear to be lost. In fact, the
width of the input interval is increased by at most 1-ulp, when the input value is not
machine representable. See Section 1.3.5, “Single-Number Input/Output” on
page 1-11 and CODE EXAMPLE 1-6.

CODE EXAMPLE 1-3 Interval Input/Output

math% cat ce1-3.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X, Y;

 cout << "Press Control/C to terminate!"<< endl;
Chapter 1 Using the Interval Arithmetic Library 1-9

 cout <<" X,Y=?";

 cin >>X >>Y;

 for (;;){

cout <<endl <<"For X =" <<X <<endl<<", and Y=" <<Y <<endl;

 cout <<"X+Y=" << (X+Y) <<endl;

 cout <<"X-Y=" << (X-Y) <<endl;

 cout <<"X*Y=" << (X*Y) <<endl;

 cout <<"X/Y=" << (X/Y) <<endl;

 cout <<"pow(X,Y)=" << pow(X,Y) <<endl;

 cout <<" X,Y=?";

 cin >>X>>Y;

 }

}

math% CC ce1-3.cc -xia -o ce1-3

math% ce1-3

Press Control/C to terminate!

 X,Y=?[1,2][3,4]

For X =[0.1000000000000000E+001,0.2000000000000000E+001]

, and Y=[0.3000000000000000E+001,0.4000000000000000E+001]

X+Y=[0.4000000000000000E+001,0.6000000000000000E+001]

X-Y=[-.3000000000000000E+001,-.1000000000000000E+001]

X*Y=[0.3000000000000000E+001,0.8000000000000000E+001]

X/Y=[0.2500000000000000E+000,0.6666666666666668E+000]

pow(X,Y)=[0.1000000000000000E+001,0.1600000000000000E+002]

 X,Y=?[1,2] -inf

For X =[0.1000000000000000E+001,0.2000000000000000E+001]

, and Y=[-Infinity,-.1797693134862315E+309]

X+Y=[-Infinity,-.1797693134862315E+309]

X-Y=[0.1797693134862315E+309, Infinity]

X*Y=[-Infinity,-.1797693134862315E+309]

X/Y=[-.1112536929253602E-307,0.0000000000000000E+000]

pow(X,Y)=[0.0000000000000000E+000, Infinity]

 X,Y=? ^c

CODE EXAMPLE 1-3 Interval Input/Output (Continued)
1-10 C++ Interval Arithmetic Programming Reference • November 2005

1.3.5 Single-Number Input/Output
One of the most frustrating aspects of reading interval output is comparing interval
infima and suprema to count the number of digits that agree. For example,
CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5 shows the interval output of a program
that generates different random-width interval data.

Note – Only program output is shown in CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5.
The code that generates the output is included with the code examples located at
http://developer.sun.com/prodtech/cc/reference/codesamples/

CODE EXAMPLE 1-4 [inf, sup] Interval Output

math% a.out
Press Control/C to terminate!

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: 5 4 0

5 intervals, output mode [inf,sup], KIND = 4:
[-.22382161E-001,0.88642842E+000]
[-.14125850E+000,0.69100440E+000]
[-.19697744E+000,0.60414422E+000]
[-.35070375E+000,0.29852561E+000]
[-.50582356E+000,0.84647579E+000]

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: 5 8 0

5 intervals, output mode [inf,sup], KIND = 8:
[-.2564517726079477E+000,0.9827522631010304E+000]
[-.2525155427945818E+000,0.3510597363485733E+000]
[-.3133963062586074E+000,0.6036160987815685E+000]
[-.4608920508962374E+000,0.9438903393544678E+000]
[-.7237777863955990E-001,0.5919545024378117E+000]
Chapter 1 Using the Interval Arithmetic Library 1-11

http://developer.sun.com/prodtech/cc/reference/codesamples/

Compare the output readability in CODE EXAMPLE 1-4 with CODE EXAMPLE 1-5.

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: 5 16 0

5 intervals, output mode [inf,sup], KIND = 16:
[-.7372694179875272420263966037179573E-
0001,0.8914952196721550592428684467449785
E+0000]
[-
.5003665785136456882479176712464738E+0000,0.959635562381059514791559195145964
7
E+0000]
[0.5034039683817009896795857135003379E-
0002,0.6697658316807206801968277432024479
E+0000]
[-
.2131331913859165562121330770531887E+0000,0.844008460045422737039189087226986
9
E+0000]
[-
.1771294604939292809903937013979606E+0000,0.913508169204362729942658916115760
9
E+0000]

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: ?<Control-C>

CODE EXAMPLE 1-5 Single-Number Output

math%: a.out
Press Control/C to terminate!

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: 5 4 1

5 intervals, output mode SINGLE NUMBER, KIND = 4:
[-.2239E-001,0.8865]
[-0.1413 ,0.6911]
[-0.1970 ,0.6042]

CODE EXAMPLE 1-4 [inf, sup] Interval Output (Continued)
1-12 C++ Interval Arithmetic Programming Reference • November 2005

In the single-number display format, trailing zeros are significant. See Section 2.8,
“Input and Output” on page 2-32 for more information.

Intervals can always be entered and displayed using the traditional [inf, sup] display
format. In addition, a single number in square brackets denotes a point. For
example, on input, [0.1] is interpreted as the number 1/10. To guarantee
containment, directed rounding is used to construct an internal approximation that
is known to contain the number 1/10.

[-0.3508 ,0.2986]
[-0.5059 ,0.8465]

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: 5 8 1
5 intervals, output mode SINGLE NUMBER, KIND = 8:
[-0.25646 ,0.98276]
[-0.25252 ,0.35106]
[-0.31340 ,0.60362]
[-0.46090 ,0.94390]
[-.72378E-001,0.59196]

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: 5 16 1

5 intervals, output mode SINGLE NUMBER, KIND = 16:
[-0.737269418E-001, 0.891495220]
[-0.500366579 , 0.959635563]
[0.503403968E-002, 0.669765832]
[-0.213133192 , 0.844008461]
[-0.177129461 , 0.913508170]

Enter number of intervals (less then 10), then 4 - for float,8 - for double, or
16 - for long double, and then 0 for [inf,sup] output and 1 for single-number
output: ?<Control-C>

CODE EXAMPLE 1-5 Single-Number Output (Continued)
Chapter 1 Using the Interval Arithmetic Library 1-13

CODE EXAMPLE 1-6 notes:

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion

math% cat ce1-6.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 char BUFFER[128];

 cout << "Press Control/C to terminate!"<< endl;

 cout << "X=?";

 cin >>BUFFER;

 for(;;) {

 interval<double> X(BUFFER);

 cout << endl << "Your input was:" <<BUFFER << endl;

cout << "Resulting stored interval is:" << endl << X << endl;

 cout << "Single number interval output is: ";

 single_number_output(X, cout);

 cout <<endl <<"X=?" ;

 cin >>BUFFER;

 }

}

math% CC -xia ce1-6.cc -o ce1-6

math% ce1-6

Press Control/C to terminate!

X=?1.37

Your input was:1.37

Resulting stored interval is:

[0.1359999999999999E+001,0.1380000000000001E+001]

Single number interval output is: 0.13 E+001

X=?1.444

Your input was:1.444

Resulting stored interval is:

[0.1442999999999999E+001,0.1445000000000001E+001]

Single number interval output is: 0.144 E+001

X=? ^c
1-14 C++ Interval Arithmetic Programming Reference • November 2005

■ Single numbers in square brackets represent degenerate intervals.

■ When a non-machine representable number is read using single-number input,
conversion from decimal to binary (radix conversion) and the containment
constraint force the number’s interval width to be increased by 1-ulp (unit in the
last place of the mantissa). When this result is displayed using single-number
output, it can appear that a decimal digit of accuracy has been lost. This is not so.
To echo single-number interval inputs, use character input together with an
interval constructor with a character string argument, as shown in
CODE EXAMPLE 1-6.

Note – The empty interval is supported in the interval class. The empty interval
can be entered as [empty]. Infinite interval endpoints are also supported, as
described in Section 1.3.2, “interval External Representations” on page 1-6.

1.3.6 Arithmetic Expressions
Writing arithmetic expressions that contain interval data items is simple and
straightforward. Except for interval-specific functions and constructors,
interval expressions look like floating-point arithmetic expressions, such as in
CODE EXAMPLE 1-7.

CODE EXAMPLE 1-7 Simple interval Expression Example

math% cat ce1-7.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X1("[0.1]");

 interval <double> N(3);

 interval <double> A (5.0);

 interval <double> X = X1 * A / N;

 cout << "[0.1]*[A]/[N]=" <<X <<endl;

}

math% CC -xia -o ce1-7 ce1-7.cc

math% ce1-7

[0.1]*[A]/[N]=[0.1666666666666666E+000,0.1666666666666668E+000]
Chapter 1 Using the Interval Arithmetic Library 1-15

Note – Not all mathematically equivalent interval expressions produce intervals
having the same width. Additionally, it is often not possible to compute a sharp
result by simply evaluating a single interval expression. In general, interval result
width depends on the value of interval arguments and the form of the expression.

1.3.7 interval-Specific Functions
A variety of interval-specific functions are provided. See Section 2.9.4, “Functions
That Accept Interval Arguments” on page 2-40. Use CODE EXAMPLE 1-8 to explore
how specific interval functions behave.

CODE EXAMPLE 1-8 interval-Specific Functions

math% cat ce1-8.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X;

 cout << "Press Control/C to terminate!"<< endl;

 cout <<"X=?";

 cin >>X;

 for(;;){

 cout <<endl << "For X =" <<X << endl;

 cout <<"mid(X)=" << (mid(X)) <<endl;

 cout <<"mig(X)=" << (mig(X)) <<endl;

 cout <<"mag(X)=" << (mag(X)) <<endl;

 cout <<"wid(X)=" << (wid(X)) <<endl;

 cout <<"X=?";

 cin >>X;

 }

}

1-16 C++ Interval Arithmetic Programming Reference • November 2005

1.3.8 Interval Versions of Standard Functions
Use CODE EXAMPLE 1-9 to explore how some standard mathematical functions
behave.

math% CC -xia -o ce1-8 ce1-8.cc

math% ce1-8

Press Control/C to terminate!

X=? [1.23456,1.234567890]

For X =[0.1234559999999999E+001,0.1234567890000001E+001]

mid(X)=1.23456

mig(X)=1.23456

mag(X)=1.23457

wid(X)=7.89e-06

X=? [1,10]

For X =[0.1000000000000000E+001,0.1000000000000000E+002]

mid(X)=5.5

mig(X)=1

mag(X)=10

wid(X)=9

X=? ^c

CODE EXAMPLE 1-9 interval Versions of Mathematical Functions

math% cat ce1-9.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X;

 cout << "Press Control/C to terminate!"<< endl;

 cout <<"X=?";

 cin >>X;

CODE EXAMPLE 1-8 interval-Specific Functions (Continued)
Chapter 1 Using the Interval Arithmetic Library 1-17

 for (;;) {

 cout <<endl << "For X =" <<X << endl;

 cout <<"abs(X)=" << (fabs(X)) <<endl;

 cout <<"log(X)=" << (log(X)) <<endl;

 cout <<"sqrt(X)=" << (sqrt(X)) <<endl;

 cout <<"sin(X)=" << (sin(X)) <<endl;

 cout <<"acos(X)=" << (acos(X)) <<endl;

 cout <<"X=?";

 cin >>X;

 }

}

math% CC -xia -o ce1-9 ce1-9.cc

math% ce1-9

Press Control/C to terminate!

X=? [1.1,1.2]

For X =[0.1099999999999999E+001,0.1200000000000001E+001]

abs(X)=[0.1099999999999999E+001,0.1200000000000001E+001]

log(X)=[0.9531017980432472E-001,0.1823215567939548E+000]

sqrt(X)=[0.1048808848170151E+001,0.1095445115010333E+001]

sin(X)=[0.8912073600614351E+000,0.9320390859672266E+000]

acos(X)=[EMPTY]

X=? [-0.5,0.5]

For X =[-.5000000000000000E+000,0.5000000000000000E+000]

abs(X)=[0.0000000000000000E+000,0.5000000000000000E+000]

log(X)=[-Infinity,-.6931471805599452E+000]

sqrt(X)=[0.0000000000000000E+000,0.7071067811865476E+000]

sin(X)=[-.4794255386042031E+000,0.4794255386042031E+000]

acos(X)=[0.1047197551196597E+001,0.2094395102393196E+001]

X=? ^c

CODE EXAMPLE 1-9 interval Versions of Mathematical Functions (Continued)
1-18 C++ Interval Arithmetic Programming Reference • November 2005

1.4 Code Development Tools
Information on interval code development tools is available online. See the Interval
Arithmetic Readme for a list of interval web sites and other online resources.

To report a suspected interval error, send email to the following address:

sun-dp-comments@Sun.COM

Include the following text in the Subject line of the email message:

FORTEDEV "7.0 mm/dd/yy" Interval

where mm/dd/yy is the month, day, and year of the message.

1.4.1 Debugging Support
In Sun Studio, interval data types are supported by dbx to the following extent:

■ The values of individual interval variables can be printed using the print
command.

■ The value of all interval variables can be printed using the dump command.

■ New values can be assigned to interval variables using the assign command.

■ All generic functionality that is not data type specific should work.

For additional details on dbx functionality, see Debugging a Program With dbx.
Chapter 1 Using the Interval Arithmetic Library 1-19

1-20 C++ Interval Arithmetic Programming Reference • November 2005

CHAPTER 2

C++ Interval Arithmetic Library
Reference

This chapter is a reference for the syntax and semantics of the interval arithmetic
library implemented in Sun Studio C++. The sections can be read in any order.

2.1 Character Set Notation
Throughout this document, unless explicitly stated otherwise, integer and floating-
point constants mean literal constants. Literal constants are represented using
strings, because class types do not support literal constants. Section 2.1.1, “String
Representation of an Interval Constant (SRIC)” on page 2-2.

TABLE 2-1 shows the character set notation used for code and mathematics.

Note – Pay close attention to font usage. Different fonts represent an interval’s
exact, external mathematical value and an interval’s machine-representable, internal
approximation.

TABLE 2-1 Font Conventions

Character Set Notation

C++ code interval<double> DX;

Input to programs and commands Enter X: ? [2.3,2.4]

Placeholders for constants in code [a, b]

Scalar mathematics x(a + b) = xa + xb

Interval mathematics X(A + B) XA + XB⊆
2-1

2.1.1 String Representation of an Interval Constant
(SRIC)
In C++, it is possible to define variables of a class type, but not literal constants. So
that a literal interval constant can be represented, the C++ interval class uses a string
to represent an interval constant. A string representation of an interval constant
(SRIC) is a character string containing one of the following:

■ A single integer or real decimal number enclosed in square brackets, "[3.5]".

■ A pair of integer or real decimal numbers separated by a comma and enclosed in
square brackets, "[3.5 E-10, 3.6 E-10]".

■ A single integer or decimal number. This form is the single-number
representation, in which the last decimal digit is used to construct an interval. See
Section 1.3.2, “interval External Representations” on page 1-6.

Quotation marks delimit the string. If a degenerate interval is not machine
representable, directed rounding is used to round the exact mathematical value to an
internal machine representable interval known to satisfy the containment constraint.

A SRIC, such as "[0.1]" or "[0.1,0.2]", is associated with the two values: its
external value and its internal approximation. The numerical value of a SRIC is its
internal approximation. The external value of a SRIC is always explicitly labelled as
such, by using the notation ev(SRIC). For example, the SRIC "[1, 2]" and its
external value ev("[1, 2]") are both equal to the mathematical value [1, 2].
However, while ev("[0.1, 0.2]") = [0.1, 0.2], interval<double>("[0.1,
0.2]") is only an internal machine approximation containing [0.1, 0.2], because the
numbers 0.1 and 0.2 are not machine representable.

Like any mathematical constant, the external value of a SRIC is invariant.

Because intervals are opaque, there is no language requirement to use any particular
interval storage format to save the information needed to internally approximate an
interval. Functions are provided to access the infimum and supremum of an interval.
In a SRIC containing two interval endpoints, the first number is the infimum or
lower bound, and the second is the supremum or upper bound.

If a SRIC contains only one integer or real number in square brackets, the
represented interval is degenerate, with equal infimum and supremum. In this case,
an internal interval approximation is constructed that is guaranteed to contain the
SRIC’s single decimal external value. If a SRIC contains only one integer or real
number without square brackets, single number conversion is used. See Section 2.8.1,
“Input” on page 2-33.

A valid interval must have an infimum that is less than or equal to its supremum.
Similarly, a SRIC must also have an infimum that is less than or equal to its
supremum. For example, the following code fragment must evaluate to true:

inf(interval<double>("[0.1]") <= sup(interval<double>("[0.1]"))
2-2 C++ Interval Arithmetic Programming Reference • November 2005

CODE EXAMPLE 2-1 contains examples of valid and invalid SRICs.

For additional information regarding SRICs, see the supplementary paper [4] cited
in Section 2.12, “References” on page 2-50.

CODE EXAMPLE 2-1 Valid and Invalid interval External Representations

math% cat ce2-1.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X1("[1,2]");

 interval <double> X2("[1]");

 interval <double> X3("1");

 interval <double> X4("[0.1]");

 interval <double> X5("0.1");

 interval <double> X6("0.10");

 interval <double> X7("0.100");

 interval <double> X8("[2,1]");

 cout << "X1=" << X1 << endl;

 cout << "X2=" << X2 << endl;

 cout << "X3=" << X3 << endl;

 cout << "X4=" << X4 << endl;

 cout << "X5=" << X5 << endl;

 cout << "X6=" << X6 << endl;

 cout << "X7=" << X7 << endl;

 cout << "X8=" << X8 << endl;

}

math% CC -xia -o ce2-1 ce2-1.cc

math% ce2-1

X1=[0.1000000000000000E+001,0.2000000000000000E+001]

X2=[0.1000000000000000E+001,0.1000000000000000E+001]

X3=[0.0000000000000000E+000,0.2000000000000000E+001]

X4=[0.9999999999999999E-001,0.1000000000000001E+000]

X5=[0.0000000000000000E+000,0.2000000000000001E+000]

X6=[0.8999999999999999E-001,0.1100000000000001E+000]

X7=[0.9899999999999999E-001,0.1010000000000001E+000]

X8=[-Infinity, Infinity]
Chapter 2 C++ Interval Arithmetic Library Reference 2-3

Constructing an interval approximation from a SRIC is an inefficient operation that
should be avoided, if possible. In CODE EXAMPLE 2-2, the interval<double>
constant Y is constructed only once at the start of the program, and then its internal
representation is used thereafter.

CODE EXAMPLE 2-2 Efficient Use of the String-to-Interval Constructor

math% cat ce2-2.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

const interval<double> Y("[0.1]");

const int limit = 100000;

int main()

{

 interval<double> RESULT(0.0);

 clock_t t1= clock();

 if(t1==clock_t(-1)){cerr<< "sorry, no clock\n"; exit(1);}

 for (int i = 0; i < limit; i++){

 RESULT += Y;

 }

 clock_t t2= clock();

if(t2==clock_t(-1)){cerr<< "sorry, clock overflow\n"; exit(2);}

 cout << "efficient loop took " <<

 double(t2-t1)/CLOCKS_PER_SEC << " seconds" << endl;

 cout << "result" << RESULT << endl ;

 t1= clock();

if(t1==clock_t(-1)){cerr<< "sorry, clock overflow\n"; exit(2);}

 for (int i = 0; i < limit; i++){

 RESULT += interval<double>("[0.1]");

 }

 t2= clock();

if(t2==clock_t(-1)){cerr<< "sorry, clock overflow\n"; exit(2);}

 cout << "inefficient loop took " <<

 double(t2-t1)/CLOCKS_PER_SEC << " seconds" << endl;

 cout << "result" << RESULT << endl ;

}

2-4 C++ Interval Arithmetic Programming Reference • November 2005

2.1.2 Internal Approximation
The internal approximation of a floating-point constant does not necessarily equal
the constant’s external value. For example, because the decimal number 0.1 is not a
member of the set of binary floating-point numbers, this value can only be
approximated by a binary floating-point number that is close to 0.1. For floating-point
data items, the approximation accuracy is unspecified in the C++ standard. For
interval data items, a pair of floating-point values is used that is known to contain
the set of mathematical values defined by the decimal numbers used to symbolically
represent an interval constant. For example, the mathematical interval [0.1, 0.2] is
represented by a string "[0.1,0.2]".

Just as there is no C++ language requirement to accurately approximate floating-
point constants, there is also no language requirement to approximate an interval’s
external value with a narrow width interval internal representation. There is a
requirement for an interval internal representation to contain its external value.

ev(inf(interval<double>("[0.1,0.2]"))) ≤

inf(ev("[0.1,0.2]")) = inf([0.1, 0.2])

and

sup([0.1, 0.2]) = sup(ev("[0.1,0.2]")) ≤
ev(sup(interval<double>("[0.1,0.2]")))

Note – The arguments of ev() are always code expressions that produce
mathematical values. The use of different fonts for code expressions and
mathematical values is designed to make this distinction clear.

C++ interval internal representations are sharp. This is a quality of
implementation feature.

math% CC -xia ce2-2.cc -o ce2-2

math% ce2-2

efficient loop took 0.16 seconds

result[0.9999999999947978E+004,0.1000000000003054E+005]

inefficient loop took 5.59 seconds

result[0.1999999999980245E+005,0.2000000000013270E+005]

CODE EXAMPLE 2-2 Efficient Use of the String-to-Interval Constructor (Continued)
Chapter 2 C++ Interval Arithmetic Library Reference 2-5

2.2 interval Constructor
The following interval constructors are supported:

The following interval constructors guarantee containment:

The argument interval is rounded outward, if necessary.

The interval constructor with non-interval arguments returns [-inf,inf] if either
the second argument is less then the first, or if either argument is not a mathematical
real number, such as when one or both arguments is a NaN.

Interval constructors with floating-point or integer arguments might not return an
interval that contains the external value of constant arguments.

explicit interval(const char*) ;
explicit interval(const interval<float>&) ;
explicit interval(const interval<double>&) ;
explicit interval(const interval<long double>&) ;
explicit interval(int) ;
explicit interval(long long) ;
explicit interval(float) ;
explicit interval(double) ;
explicit interval(long double) ;
interval(int, int) ;
interval(long long, long long) ;
interval(float, float) ;
interval(double, double) ;
interval(long double, long double) ;

interval(const char*) ;
interval(const interval<float>&) ;
interval(const interval<double>&)
interval(const interval<long double>&) ;
2-6 C++ Interval Arithmetic Programming Reference • November 2005

For example, use interval<double>("[1.1,1.3]") to sharply contain the
mathematical interval [1.1, 1.3]. However, interval<double>(1.1,1.3) might
not contain [1.1, 1.3], because the internal values of floating-point literal constants
are approximated with unknown accuracy.

CODE EXAMPLE 2-3 interval Constructor With Floating-Point Arguments

math% cat ce2-3.cc

#include <limits.h>

#include <strings.h>

#include <sunmath.h>

#include <stack>

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main()

{

 //Compute 0.7-0.1-0.2-0.3-0.1 == 0.0

 interval<double> correct_result;

 const interval<double> x1("[0.1]"),
 x2("[0.2]"),x3("[0.3]"),x7("[0.7]");

 cout << "Exact result:" << 0.0 << endl ;

 cout << "Incorrect evaluation:" <<

interval<double>(0.7-0.1-0.2-0.3-0.1, 0.7-0.1-0.2-0.3-0.1) <<
 endl ;

 correct_result = x7-x1-x2-x3-x1;

 cout << "Correct evaluation:" << correct_result << endl ;

}

math% CC -xia -o ce2-3 ce2-3.cc

math% ce2-3

Exact result:0

Incorrect evaluation:
[-.2775557561562892E-016,-.2775557561562891E-016]

Correct evaluation:
[-.1942890293094024E-015,0.1526556658859591E-015]
Chapter 2 C++ Interval Arithmetic Library Reference 2-7

The result value of an interval constructor is always a valid interval.

The interval_hull function can be used with an interval constructor to construct
an interval containing two floating-point numbers, as shown in CODE EXAMPLE 2-4.

CODE EXAMPLE 2-4 Using the interval_hull Function With Interval Constructor

math% cat ce2-4.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <float> X;

 long double a,b;

 cout << "Press Control/C to terminate!"<< endl;

 cout <<" a,b =?";

 cin >>a >>b;

 for(;;){

 cout <<endl << "For a =" << a << ", and b =" <<b<< endl;

 X = interval <float>(

 interval_hull(interval<long double>(a),

 interval<long double>(b)));

 if(in(a,X) && in(b,X)){

 cout << "Check" << endl ;

 cout << "X=" << X << endl ;

 }

 cout <<" a,b =?";

 cin >>a >>b;

 }

}

math% CC -xia ce2-4.cc -o ce2-4

math% ce2-4

Press Control/C to terminate!

 a,b =?1.0e+400 -0.1

For a =1e+400, and b =-0.1

Check

X=[-.10000001E+000, Infinity]

 a,b =? ^c
2-8 C++ Interval Arithmetic Programming Reference • November 2005

2.2.1 interval Constructor Examples
The three examples in this section illustrate how to use the interval constructor to
perform conversions from floating-point to interval-type data items.
CODE EXAMPLE 2-5 shows that floating-point expression arguments of the interval
constructor are evaluated using floating-point arithmetic.

CODE EXAMPLE 2-5 interval Conversion

math% cat ce2-5.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <float> X, Y;

 interval <double> DX, DY;

 float R = 0.1f, S = 0.2f, T = 0.3f;

 double R8 = 0.1, T1, T2;

 Y = interval <float>(R,R);

 X = interval <float>(0.1f); //note 1

 if (X == Y)

 cout <<"Check1"<< endl;

 X = interval <float>(0.1f, 0.1f);

 if (X == Y)

 cout <<"Check2"<< endl;

 T1 = R + S;

 T2 = T + R8;

 DY = interval <double>(T1, T2);

DX = interval <double>(double(R+S), double(T+R8)); //note 2

 if (DX == DY)

 cout <<"Check3"<< endl;

 DX = interval <double>(Y); //note 3

 if (ceq(DX,interval <double>(0.1f, 0.1f)))

 cout <<"Check4"<< endl;

}

math% CC -xia -o ce2-5 ce2-5.cc

math% ce2-5

Check1
Chapter 2 C++ Interval Arithmetic Library Reference 2-9

CODE EXAMPLE 2-5 notes:

■ Note 1. Interval X is assigned a degenerate interval with both endpoints equal to
the internal representation of the real constant 0.1.

■ Note 2. Interval DX is assigned an interval with left and right endpoints equal to
the result of floating-point expressions R+S and T+R8 respectively.

■ Note 3. Interval Y is converted to a containing interval<double>.

CODE EXAMPLE 2-6 shows how the interval constructor can be used to create the
smallest possible interval, Y, such that the endpoints of Y are not elements of a given
interval, X.

Given an interval X, a sharp interval Y satisfying the condition in_interior(X,Y)
is constructed. For information on the interior set relation, Section 2.6.3, “Interior:
in_interior(X,Y)” on page 2-23.

Check2

Check3

Check4

CODE EXAMPLE 2-6 Creating a Narrow Interval That Contains a Given Real Number

math% cat ce2-6.cc

#include <suninterval.h>

#include <values.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X("[10.E-10,11.E-10]");

 interval <double> Y;

 Y = interval<double>(-MINDOUBLE, MINDOUBLE) + X;

 cout << "X is " <<

((!in_interior(X,Y))? "not": "")<< "in interior of Y" <<endl;

}

math% CC ce2-6.cc -o ce2-6 -xia

math% ce2-6

X is in interior of Y

CODE EXAMPLE 2-5 interval Conversion (Continued)
2-10 C++ Interval Arithmetic Programming Reference • November 2005

CODE EXAMPLE 2-7 illustrates when the interval constructor returns the interval
[-inf, inf] and [max_float, inf].

CODE EXAMPLE 2-7 notes:

■ Note 1. Variable T is assigned a NaN value.

■ Note 2. Because one of the arguments of the interval constructor is a NaN, the
result is the interval [-inf, inf].

■ Note 3. The interval [-inf, inf] is constructed instead of an invalid interval
[2,1].

■ Note 4. The interval [max_float, inf] is constructed, which contains +inf, the
value returned by IEEE arithmetic for 1./R. It is assumed that +inf represents
+infinity. See the supplementary paper [8] cited in Section 2.12, “References”
on page 2-50 for a discussion of the chosen intervals to represent internally.

CODE EXAMPLE 2-7 interval(NaN)

math% cat ce2-7.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> DX;

 float R=0.0, S=0.0, T;

 T = R/S; //note 1

 cout<< T <<endl;

 cout<< interval<double>(T,S)<<endl; //note 2

 cout<< interval<double>(T,T)<<endl;

 cout<< interval<double>(2.,1.)<<endl; //note 3

 cout<< interval<double>(1./R)<<endl; //note 4

}

math% CC -xia -o ce2-7 ce2-7.cc

math% ce2-7

NaN

[-Infinity, Infinity]

[-Infinity, Infinity]

[-Infinity, Infinity]

[0.1797693134862315E+309, Infinity]
Chapter 2 C++ Interval Arithmetic Library Reference 2-11

2.3 interval Arithmetic Expressions
interval arithmetic expressions are constructed from the same arithmetic
operators as other numerical data types. The fundamental difference between
interval and non-interval (point) expressions is that the result of any possible
interval expression is a valid interval that satisfies the containment constraint
of interval arithmetic. In contrast, point expression results can be any approximate
value.

2.4 Operators and Functions
TABLE 2-2 lists the operators and functions that can be used with intervals. In
TABLE 2-2, X and Y are intervals.

TABLE 2-2 Operators and Functions

Operator Operation Expression Meaning

* Multiplication X*Y Multiply X and Y

/ Division X/Y Divide X by Y

+ Addition X+Y Add X and Y

+ Identity +X Same as X (without a sign)

- Subtraction X-Y Subtract Y from X

- Numeric Negation -X Negate X

Function Meaning

interval_hull(X,Y) Interval hull of X and Y

intersect(X,Y) Intersect X and Y

pow(X,Y) Power function
2-12 C++ Interval Arithmetic Programming Reference • November 2005

Some interval-specific functions have no point analogs. These can be grouped into
three categories: set, certainly, and possibly, as shown in TABLE 2-3. A number of
unique set-operators have no certainly or possibly analogs.

Except for the in function, interval relational functions can only be applied to
two interval operands with the same type.

The first argument of the in function is of any integer or floating-point type. The
second argument can have any interval type.

All the interval relational functions and operators return an interval_bool-type
result.

2.4.1 Arithmetic Operators +, –, *, /
Formulas for computing the endpoints of interval arithmetic operations on finite
floating-point intervals are motivated by the requirement to produce the narrowest
interval that is guaranteed to contain the set of all possible point results. Ramon
Moore independently developed these formulas and more importantly, was the first
to develop the analysis needed to apply interval arithmetic. For more information,
see Interval Analysis by R. Moore (Prentice-Hall, 1966).

The set of all possible values was originally defined by performing the operation in
question on any element of the operand intervals. Therefore, given finite intervals,
[a, b] and [c, d], with ,

,

TABLE 2-3 interval Relational Functions and Operators

Operators == !=

Set Relational
Functions

superset(X,Y) proper_superset(X,Y)

subset(X,Y) proper_subset(X,Y)

in_interior(X,Y) disjoint(X,Y)

in(r,Y)

seq(X,Y) sne(X,Y) slt(X,Y) sle(X,Y) sgt(X,Y) sge(X,Y)

Certainly
Relational
Functions

ceq(X,Y) cne(X,Y) clt(X,Y) cle(X,Y) cgt(X,Y) cge(X,Y)

Possibly
Relational
Functions

peq(X,Y) pne(X,Y) plt(X,Y) ple(X,Y) pgt(X,Y) pge(X,Y)

op {+, –, , }÷×∈

a b,[] op c d,[] x yop x a b,[]∈ y c d,[]∈and{ }⊇
Chapter 2 C++ Interval Arithmetic Library Reference 2-13

with division by zero being excluded. Implementation formulas, or their logical
equivalent, are:

Directed rounding is used when computing with finite precision arithmetic to
guarantee the set of all possible values is contained in the resulting interval.

The set of values that any interval result must contain is called the containment set
(cset) of the operation or expression that produces the result.

To include extended intervals (with infinite endpoints) and division by zero, csets
can only indirectly depend on the value of arithmetic operations on real operands.
For extended intervals, csets are required for operations on points that are normally
undefined. Undefined operations include the indeterminate forms:

The containment-set closure identity solves the problem of identifying the value of
containment sets of expressions at singular or indeterminate points. The identity
states that containment sets are function closures. The closure of a function at a point
on the boundary of its domain includes all limit or accumulation points. For details,
see the Glossary and the supplementary papers [1], [3], [10], and [11] cited in
Section 2.12, “References” on page 2-50.

The following is an intuitive way to justify the values included in an expression’s
cset. Consider the function

The question is: what is the cset of h(x0), for x0 = 0 ? To answer this question,
consider the function

Clearly, f(x0) = 0, for x0 = 0. But, what about

or

?

a b,[] c d,[]+ a c+ b d+[,]=

a b,[] c d,[]– a d– b c–[,]=

a b,[] c d,[]× min a c a d b c b d×,×,×,×() max a c a d b c b d×,×,×,×()[,]=

a b,[] c d,[]⁄ min
a
c
--- a

d
--- b

c
--- b

d
---, , , 

  max
a
c
--- a

d
--- b

c
--- b

d
---, , , 

 , , if 0 c d,[]∉=

1 0÷ 0 ∞× 0 0÷ and ∞ ∞÷, , ,

h x() 1
x
---=

f x() x
x 1+
------------=

g x() 1

1
1
x
--- 
 +

------------------=

g x() 1
1 h x()+
--------------------=
2-14 C++ Interval Arithmetic Programming Reference • November 2005

The function g(x0) is undefined for x0 = 0, because h(x0) is undefined. The cset of h(x0)
for x0 = 0 is the smallest set of values for which g(x0) = f(x0). Moreover, this must be
true for all composite functions of h. For example if

g’(y) = ,

then g(x) = g’(h(x)). In this case, it can be proved that the cset of h(x0) = if
x0 = 0, where denotes the set consisting of the two values, and .

TABLE 2-4 through TABLE 2-7, contain the csets for the basic arithmetic operations. It is
convenient to adopt the notation that an expression denoted by f(x) simply means its
cset. Similarly, if

,

the containment set of f over the interval X, then hull(f(x)) is the sharp interval that
contains f(X).

TABLE 2-4 Containment Set for Addition: x + y

{−∞} {real: y0} {+∞}

{−∞} {-∞} {-∞}

{real: x0} {-∞} {x0 + y0} {+∞}

{+∞} {+∞} {+∞}

TABLE 2-5 Containment Set for Subtraction: x – y

{−∞} {real: y0} {+∞}

{−∞} {-∞} {-∞}

{real: x0} {+∞} {x0 – y0} {-∞}

{+∞} {+∞} {+∞}

TABLE 2-6 Containment Set for Multiplication: x × y

{−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} {+∞} {+∞} {-∞} {-∞}

{real: x0 < 0} {+∞} {x × y} {0} {x × y} {-∞}

{0} {0} {0} {0}

{real: x0 > 0} {-∞} x × y {0} x × y {+∞}

{+∞} {-∞} {-∞} {+∞} {+∞}

1
1 y+

∞– +∞,{ }
∞– +∞,{ } ∞– +∞

f X() f x()
x X∈
∪=

ℜ*

ℜ*

ℜ*

ℜ*

ℜ*

ℜ* ℜ*

ℜ*
Chapter 2 C++ Interval Arithmetic Library Reference 2-15

All inputs in the tables are shown as sets. Results are shown as sets or intervals.
Customary notation, such as , , and

, is used, with the understanding that csets are implied when
needed. Results for general set (or interval) inputs are the union of the results of the
single-point results as they range over the input sets (or intervals).

In one case, division by zero, the result is not an interval, but the set, . In
this case, the narrowest interval in the current system that does not violate the
containment constraint of interval arithmetic is the interval .

Sign changes produce the expected results.

To incorporate these results into the formulas for computing interval endpoints, it is
only necessary to identify the desired endpoint, which is also encoded in the
rounding direction. Using to denote rounding down (towards -∞) and to denote
rounding up (towards +∞),

and .

and .

Similarly, because ,

and .

Finally, the empty interval is represented in C++ by the character string [empty]
and has the same properties as the empty set, denoted ∅ in the algebra of sets. Any
arithmetic operation on an empty interval produces an empty interval result. For
additional information regarding the use of empty intervals, see the supplementary
papers [6] and [7] cited in Section 2.12, “References” on page 2-50.

Using these results, C++ implements the closed interval system. The system is closed
because all arithmetic operations and functions always produce valid interval
results. See the supplementary papers [2] and [8] cited in Section 2.12, “References”
on page 2-50.

TABLE 2-7 Containment Set for Division: x ÷ y

{−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} [0, +∞] {+∞} {-∞, +∞} {-∞} [-∞, 0]

{real: x0 0} {0} {x ÷ y} {-∞, +∞} {x ÷ y} {0}

{0} {0} {0} {0} {0}

{+∞} [-∞, 0] {-∞} {-∞, +∞} {+∞} [0, +∞]

ℜ*

∞–() +∞()+ ∞–= ∞–() y+ ∞–=
∞–() +∞()+ ℜ∗=

∞– +∞,{ }

∞– +∞,[] ℜ∗=

↓ ↑

↓ +∞() +∞()÷ 0= ↑ +∞() +∞()÷ +∞=

↓ 0 +∞()× -∞= ↑ 0 +∞()× +∞=

hull -∞ +∞,{ }() -∞ +∞,[]=

↓ x 0÷ ∞–= ↑ x 0÷ +∞=
2-16 C++ Interval Arithmetic Programming Reference • November 2005

2.4.2 Power Function pow(X,n) and pow(X,Y)

The power function can be used with integer or continuous exponents. With a
continuous exponent, the power function has indeterminate forms, similar to the
four arithmetic operators.

In the integer exponents case, the set of all values that an enclosure of must
contain is .

Monotonicity can be used to construct a sharp interval enclosure of the integer
power function. When n = 0, Xn, which represents the cset of Xn, is 1 for all

, and for all n.

In the continuous exponents case, the set of all values that an interval enclosure of
X**Y must contain is

where and exp(y(ln(x))) are their respective containment sets. The
function exp(y(ln(x))) makes explicit that only values of x ≥ 0 need be considered,
and is consistent with the definition of X**Y with REAL arguments in C++.

The result is empty if either interval argument is empty, or if sup(X) < 0.

TABLE 2-8 displays the containment sets for all the singularities and indeterminate
forms of exp(y(ln(x))).

The results in TABLE 2-8 can be obtained in two ways:

■ Directly compute the closure of the composite expression exp(y(ln(x))) for the
values of x0 and y0 for which the expression is undefined.

■ Use the containment-set evaluation theorem to bound the set of values in a
containment set.

For most compositions, the second option is much easier. If sufficient conditions are
satisfied, the closure of a composition can be computed from the composition of its
closures. That is, the closure of each sub-expression can be used to compute the
closure of the entire expression. In the present case,

TABLE 2-8 exp(y(ln(x)))

x0 y0 exp(y(ln(x)))

0 y0 < 0 +∞

1 -∞ [0,+∞]

1 +∞ [0,+∞]

+∞ 0 [0,+∞]

0 0 [0,+∞]

X
n

z z x
n∈ x X∈and{ }

x -∞ +∞,[]∈ ∅n ∅=

Y X()ln()()exp z z y x()ln()()exp y Y 0 x X0∈,∈,∈{ }=

Y X()ln()()exp
Chapter 2 C++ Interval Arithmetic Library Reference 2-17

exp(y(ln(x))) = exp(y0 × ln(x0)).

That is, the cset of the expression on the left is equal to the composition of csets on
the right.

It is always the case that

exp(y(ln(x))) ⊆ exp(y0 × ln(x0)).

Note that this is exactly how interval arithmetic works on intervals. The needed
closures of the ln and exp functions are:

A necessary condition for closure-composition equality is that the expression must
be a single-use expression (or SUE), which means that each independent variable can
appear only once in the expression.

In the present case, the expression is clearly a SUE.

The entries in TABLE 2-8 follow directly from using the containment set of the basic
multiply operation in TABLE 2-6 on the closures of the ln and exp functions. For
example, with x0 = 1 and y0 = -∞, ln(x0) = 0. For the closure of multiplication on the
values -∞ and 0 in TABLE 2-6, the result is [-∞, +∞]. Finally, exp([-∞, +∞]) = [0, +∞], the
second entry in TABLE 2-8. Remaining entries are obtained using the same steps.
These same results are obtained from the direct derivation of the containment set of
exp(y(ln(x))). At this time, sufficient conditions for closure-composition equality of
any expression have not been identified. Nevertheless, the following statements
apply:

■ The containment-set evaluation theorem guarantees that a containment failure
can never result from computing a composition of closures instead of a closure.

■ An expression must be a SUE for closure-composition equality to be true.

2.5 Set Theoretic Functions
C++ supports the following set theoretic functions for determining the interval hull
and intersection of two intervals.

ln 0() ∞–=

ln +∞() +∞=

exp ∞–() 0=

exp +∞() +∞=
2-18 C++ Interval Arithmetic Programming Reference • November 2005

CODE EXAMPLE 2-8 demonstrates the use of the interval-specific functions listed in
TABLE 2-9.

TABLE 2-9 Interval-Specific Functions

Function Name Mathematical Symbol

interval_hull(X,Y) Interval Hull ∪

intersect(X,Y) Intersection ∩

disjoint(X,Y) Disjoint

in(r,Y) Element ∈

in_interior(X,Y) Interior See Section 2.6.3, “Interior:
in_interior(X,Y)” on page 2-23.

proper_subset(X,Y) Proper Subset ⊂

proper_superset(X,Y) Proper Superset ⊃

subset(X,Y) Subset ⊆

superset(X,Y) Superset ⊇

CODE EXAMPLE 2-8 Set Operators

math% cat ce2-8.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X, Y;

 double R;

 R = 1.5;

 cout << "Press Control/C to terminate!"<< endl;

 cout <<"X,Y=?";

 cin >>X >>Y;

 for(;;){

cout <<endl << "For X =" <<X <<", and" << endl << "Y =" <<Y<<
 endl;

 cout <<"interval_hull(X,Y)=" << endl <<

 interval_hull(X,Y) <<endl;

A B∩ ∅=
Chapter 2 C++ Interval Arithmetic Library Reference 2-19

 cout <<"intersect(X,Y)="<< intersect(X,Y) <<endl;

cout <<"disjoint(X,Y)=" << (disjoint(X,Y) ?"T":"F") <<endl;

 cout <<"in(R,Y)=" << (in(R,Y) ?"T":"F") <<endl;

 cout <<"in_interior(X,Y)=" <<

 (in_interior(X,Y) ?"T":"F") <<endl;

 cout <<"proper_subset(X,Y)=" <<

 (proper_subset(X,Y) ?"T":"F") <<endl;

 cout <<"proper_superset(X,Y)=" <<

 (proper_superset(X,Y) ?"T":"F") <<endl;

 cout <<"subset(X,Y)=" << (subset(X,Y) ?"T":"F") <<endl;

cout <<"superset(X,Y)=" << (superset(X,Y) ?"T":"F") <<endl;

 cout <<"X,Y=?";

 cin >>X>>Y;

 }

}

math%CC -xia -o ce2-8 ce2-8.cc

math%ce2-8

Press Control/C to terminate!

X,Y=? [1] [2]

For X =[0.1000000000000000E+001,0.1000000000000000E+001], and Y =
[0.2000000000000000E+001,0.2000000000000000E+001]

interval_hull(X,Y)=
[0.1000000000000000E+001,0.2000000000000000E+001]

intersect(X,Y)=[EMPTY]

disjoint(X,Y)=T

in(R,Y)=F

in_interior(X,Y)=F

proper_subset(X,Y)=F

proper_superset(X,Y)=F

subset(X,Y)=F

superset(X,Y)=F

X,Y=? [1,2] [1,3]

CODE EXAMPLE 2-8 Set Operators (Continued)
2-20 C++ Interval Arithmetic Programming Reference • November 2005

2.5.1 Hull: X ∪ Y or interval_hull(X,Y)
Description: Interval hull of two intervals. The interval hull is the smallest interval
that contains all the elements of the operand intervals.

Mathematical definitions:

Arguments: X and Y must be intervals with the same type.

Result type: Same as X.

2.5.2 Intersection: X∩Y or intersect(X,Y)
Description: Intersection of two intervals.

For X =[0.1000000000000000E+001,0.2000000000000000E+001], and Y =
[0.1000000000000000E+001,0.3000000000000000E+001]

interval_hull(X,Y)=
[0.1000000000000000E+001,0.3000000000000000E+001]

intersect(X,Y)=[0.1000000000000000E+001,0.2000000000000000E+001]

disjoint(X,Y)=F

in(R,Y)=T

in_interior(X,Y)=F

proper_subset(X,Y)=T

proper_superset(X,Y)=F

subset(X,Y)=T

superset(X,Y)=F

X,Y=? ^c

CODE EXAMPLE 2-8 Set Operators (Continued)

interval_hull(X,Y) inf X Y∪() sup X Y∪(),[]≡
Y if X ∅ ,=,
X if Y ∅ , and=,
min x y(,) max x y(,)[,] , otherwise.






=

Chapter 2 C++ Interval Arithmetic Library Reference 2-21

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: Same as X.

2.6 Set Relations
C++ provides the following set relations that have been extended to support
intervals.

2.6.1 Disjoint: X ∩Y = ∅ or disjoint(X,Y)
Description: Test if two intervals are disjoint.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

2.6.2 Element: r ∈ Y or in(r,Y)
Description: Test if the number, r, is an element of the interval, Y.

intersect(X,Y) z z X and z Y∈∈ }{≡

∅ if X ∅=() or Y ∅=() or min x y(,) max x y(,)<(),

max x y(,) min x y(,)[,] , otherwise.






=

disjoint(X,Y) X ∅=() or Y ∅=() or

X ∅≠() and Y ∅≠() and x X∈∀ y Y :∈ x y≠∀,()()
≡

X ∅=()= or Y ∅=() or X ∅≠() and

Y ∅≠() and y x<() or x y<()()
(

)

2-22 C++ Interval Arithmetic Programming Reference • November 2005

Mathematical and operational definitions:

Arguments: The type of r is an integer or floating-point type, and the type of Y is
interval.

Result type: interval_bool.

The following comments refer to the set relation:

■ If r is NaN (Not a Number), in(r, y) is unconditionally false.
■ If Y is empty, in(r, y) is unconditionally false.

2.6.3 Interior: in_interior(X,Y)
Description: Test if X is in interior of Y.

The interior of a set in topological space is the union of all open subsets of the set.

For intervals, the function in_interior(X,Y) means that X is a subset of Y, and
both of the following relations are false:

■ , or in C++: in(inf(Y), X)
■ , or in C++: in(sup(Y), X)

Note also that, , but in_interior([empty],[empty]) = true

The empty set is open and therefore is a subset of the interior of itself.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

2.6.4 Proper Subset: X ⊂ Y or proper_subset(X,Y)
Description: Test if X is a proper subset of Y

r Y∈ y Y∈∃ : y r=()≡
Y ∅≠()= and y r≤() and r y≤()

r Y∈

inf Y() X∈
sup Y() X∈

∅ ∅∉

in_interior(X,Y) X ∅=() or≡
X ∅≠() and Y ∅≠() and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''< <∀()()

X ∅=() or X ∅≠() and Y ∅≠() and y x<() and x y<()()=
Chapter 2 C++ Interval Arithmetic Library Reference 2-23

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

2.6.5 Proper Superset: X ⊃ Y or
proper_superset(X,Y)
Description: See proper subset with .

2.6.6 Subset: X ⊆ Y or subset(X,Y)
Description: Test if X is a subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

2.6.7 Superset: X ⊇ Y or superset(X,Y)
Description: See subset with .

proper_subset(X,Y) X Y⊆() and X Y≠()≡

X ∅=() and Y ∅≠()() or

X ∅≠() and Y ∅≠() and y x≤() and x y<() or

y x<() x y≤()and

=

X Y↔

subset(X,Y) X ∅=() or
X ∅≠() and Y ∅≠() and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''≤ ≤∀()()

≡

X ∅=() or= X ∅≠() and Y ∅≠() and y x≤() and x y≤()()

X Y↔
2-24 C++ Interval Arithmetic Programming Reference • November 2005

2.7 Relational Functions

2.7.1 Interval Order Relations
Ordering intervals is more complicated than ordering points. Testing whether 2 is
less than 3 is unambiguous. With intervals, while the interval [2,3] is certainly less
than the interval [4,5], what should be said about [2,3] and [3,4]?

Three different classes of interval relational functions are implemented:

■ Certainly
■ Possibly
■ Set

For a certainly-relation to be true, every element of the operand intervals must
satisfy the relation. A possibly-relation is true if it is satisfied by any elements of the
operand intervals. The set-relations treat intervals as sets. The three classes of
interval relational functions converge to the normal relational functions on points
if both operand intervals are degenerate.

To distinguish the three function classes, the two-letter relation mnemonics (lt, le,
eq, ne, ge, and gt) are prefixed with the letters c, p, or s. The functions seq(X,Y)
and sne(X,Y) correspond to the operators == and !=. In all other cases, the
relational function class must be explicitly identified, as for example in:

■ clt(X,Y) certainly less than
■ plt(X,Y) possibly less than
■ slt(X,Y) set less than

See Section 2.4, “Operators and Functions” on page 2-12 for the syntax and
semantics of all interval functions.

The following program demonstrates the use of a set-equality test.

CODE EXAMPLE 2-9 Set-Equality Test

math% cat ce2-9.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif
Chapter 2 C++ Interval Arithmetic Library Reference 2-25

CODE EXAMPLE 2-9 uses the set-equality test to verify that X+Y is equal to the interval
[6, 8] using the == operator.

Use CODE EXAMPLE 2-10 and CODE EXAMPLE 2-8 to explore the result of interval-
specific relational functions.

int main() {

 interval <double> X("[2,3]");

 interval <double> Y("[4,5]");

 if (X+Y == interval <double>("[6,8]"))

 cout << "Check." <<endl;

}

math% CC -xia -o ce2-9 ce2-9.cc

math% ce2-9

Check.

CODE EXAMPLE 2-10 Interval Relational Functions

math% cat ce2-10.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X, Y;

 cout << "Press Control/C to terminate!"<< endl;

 cout <<" X,Y =?";

 cin >>X >>Y;

 for(;;){

 cout <<endl << "For X =" <<X << ", and Y =" <<Y<< endl;

 cout <<"ceq(X,Y),peq(X,Y),seq(X,Y)="

 << (ceq(X,Y) ?"T ":"F ")

 << (peq(X,Y) ?"T ":"F ")

 <<(seq(X,Y) ?"T ":"F ") <<endl;

CODE EXAMPLE 2-9 Set-Equality Test (Continued)
2-26 C++ Interval Arithmetic Programming Reference • November 2005

 cout <<"cne(X,Y),pne(X,Y),sne(X,Y)="

 << (cne(X,Y) ?"T ":"F ")

 << (pne(X,Y) ?"T ":"F ")

 <<(sne(X,Y) ?"T ":"F ") <<endl;

 cout <<"cle(X,Y),ple(X,Y),sle(X,Y)="

 << (cle(X,Y) ?"T ":"F ")

 << (ple(X,Y) ?"T ":"F ")

 <<(sle(X,Y) ?"T ":"F ") <<endl;

 cout <<"clt(X,Y),plt(X,Y),slt(X,Y)="

 << (clt(X,Y) ?"T ":"F ")

 << (plt(X,Y) ?"T ":"F ")

 <<(slt(X,Y) ?"T ":"F ") <<endl;

 cout <<"cge(X,Y),pge(X,Y),sge(X,Y)="

 << (cge(X,Y) ?"T ":"F ")

 << (pge(X,Y) ?"T ":"F ")

 <<(sge(X,Y) ?"T ":"F ") <<endl;

 cout <<"cgt(X,Y),pgt(X,Y),sgt(X,Y)="

 << (cgt(X,Y) ?"T ":"F ")

 << (pgt(X,Y) ?"T ":"F ")

 <<(sgt(X,Y) ?"T ":"F ") <<endl;

 cout <<" X,Y =?";

 cin >>X>>Y;

 }

}

math% CC -xia -o ce2-10 ce2-10.cc

math% ce2-10

Press Control/C to terminate!

 X,Y =? [2] [3]

For X =[0.2000000000000000E+001,0.2000000000000000E+001], and Y =
[0.3000000000000000E+001,0.3000000000000000E+001]

ceq(X,Y),peq(X,Y),seq(X,Y)=F F F

cne(X,Y),pne(X,Y),sne(X,Y)=T T T

cle(X,Y),ple(X,Y),sle(X,Y)=T T T

clt(X,Y),plt(X,Y),slt(X,Y)=T T T

cge(X,Y),pge(X,Y),sge(X,Y)=F F F

cgt(X,Y),pgt(X,Y),sgt(X,Y)=F F F

CODE EXAMPLE 2-10 Interval Relational Functions (Continued)
Chapter 2 C++ Interval Arithmetic Library Reference 2-27

An interval relational function, denoted qop, is composed by concatenating both
of the following:

■ An operator prefix, q ∈ {c,p,s}, where c, p, and s stand for certainly, possibly,
and set, respectively

■ A relational function suffix, op ∈ {lt,le, eq, ne, gt, ge}

In place of seq(X,Y) and sne(X,Y), == and != operators are accepted. To eliminate
code ambiguity, all other interval relational functions must be made explicit by
specifying a prefix.

Letting “nop” stand for the complement of the operator op, the certainly and possibly
functions are related as follows:

cop ≡ !(pnop)

pop ≡ !(cnop)

Note – This identity between certainly and possibly functions holds unconditionally
if op ∈ {eq, ne}, and otherwise, only if neither argument is empty. Conversely, the
identity does not hold if op ∈ {lt, le, gt, ge} and either operand is empty.

Assuming neither argument is empty, TABLE 2-10 contains the C++ operational
definitions of all interval relational functions of the form:

qop(X,Y), given X = [x,x] and Y = [y,y]).

 X,Y =? 2 3

For X =[0.1000000000000000E+001,0.3000000000000000E+001], and Y =
[0.2000000000000000E+001,0.4000000000000000E+001]

ceq(X,Y),peq(X,Y),seq(X,Y)=F T F

cne(X,Y),pne(X,Y),sne(X,Y)=F T T

cle(X,Y),ple(X,Y),sle(X,Y)=F T T

clt(X,Y),plt(X,Y),slt(X,Y)=F T T

cge(X,Y),pge(X,Y),sge(X,Y)=F T F

cgt(X,Y),pgt(X,Y),sgt(X,Y)=F T F

 X,Y =? ^c

CODE EXAMPLE 2-10 Interval Relational Functions (Continued)
2-28 C++ Interval Arithmetic Programming Reference • November 2005

The first column contains the value of the prefix, and the first row contains the value
of the operator suffix. If the tabled condition holds, the result is true.

2.7.2 Set Relational Functions
For an affirmative order relation with

op ∈ {lt, le, eq, ge, gt} and

,

between two points x and y, the mathematical definition of the corresponding
set-relation, Sop, between two non-empty intervals X and Y is:

For the relation ≠ between two points x and y, the corresponding set relation,
sne(X,Y), between two non-empty intervals X and Y is:

Empty intervals are explicitly considered in each of the following relations. In each
case:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

2.7.2.1 Set-equal: X = Y or seq(X,Y)

Description: Test if two intervals are set-equal.

Mathematical and operational definitions:

TABLE 2-10 Operational Definitions of Interval Order Relations

lt le eq ge gt ne

s x < y
and
x < y

x ≤ y
and
x ≤ y

x = y
and
x = y

x ≥ y
and
x ≥ y

x > y
and
x > y

x ≠ y
or
x ≠ y

c x < y x ≤ y y ≤ x
and
x ≤ y

x ≥ y x > y x > y
or
y > x

p x < y x ≤ y x ≤ y
and
y ≤ x

x ≥ y x > y y > x
or
x > y

op >,≥,=,≤,<{ }∈

Sop X Y,() x X y Y∈∃,∈ : x op y∀() and y Y x X :∈∃,∈ x op y∀().≡

sne X Y,() x X∈∃ y Y :∈ x y≠∀,() or y Y∈∃ x X :∈ x y≠∀,().≡
Chapter 2 C++ Interval Arithmetic Library Reference 2-29

Any interval is set-equal to itself, including the empty interval. Therefore,
seq([a,b],[a,b]) is true.

2.7.2.2 Set-greater-or-equal: sge(X,Y)

Description: See set-less-or-equal with .

2.7.2.3 Set-greater: sgt(X,Y)

Description: See set-less with .

2.7.2.4 Set-less-or-equal: sle(X,Y)

Description: Test if one interval is set-less-or-equal to another.

Mathematical and operational definitions:

Any interval is set-equal to itself, including the empty interval. Therefore
sle([X,X]) is true.

2.7.2.5 Set-less: slt(X,Y)

Description: Test if one interval is set-less than another.

2.7.2.6 Set-not-equal: or sne(X,Y)

Description: Test if two intervals are not set-equal.

seq(X,Y) X Y ∅=∪() or X ∅≠() and Y ∅≠() and≡
x X y Y∈∃,∈ : x y=∀() and y Y x X :∈∃,∈ x y=∀())

X ∅=() and Y ∅=()()= or

X ∅≠() and Y ∅≠() and x y=() and y x=()()

X Y↔

X Y↔

sle(X,Y) X Y ∅=∪() or X ∅≠() and Y ∅≠() and
x X y Y∈∃,∈ : x y≤∀() and y Y x X :∈∃,∈ x y≤∀()

(
)

≡

X ∅=() and Y ∅=()()= or X ∅≠() and Y ∅≠() and
x y≤() and x y≤()

(
)

slt(X,Y) X ∅≠() and Y ∅≠() and
x X y Y∈∃,∈ : x y<∀() and y Y x X :∈∃,∈ x y<∀()

≡

X ∅≠()= and Y ∅≠() and x y<() and x y<()

X Y≠
2-30 C++ Interval Arithmetic Programming Reference • November 2005

Mathematical and operational definitions:

Any interval is set-equal to itself, including the empty interval. Therefore
sne([X,X]) is false.

2.7.3 Certainly Relational Functions
The certainly relational functions are true if the underlying relation is true for every
element of the operand intervals. For example, clt([a,b],[c,d]) is true if x < y
for all and . This is equivalent to b < c.

For an affirmative order relation with

op ∈ {lt, le, eq, ge, gt} and

,

between two points x and y, the corresponding certainly-true relation cop between
two intervals, X and Y, is

.

With the exception of the anti-affirmative certainly-not-equal relation, if either
operand of a certainly relation is empty, the result is false. The one exception is the
certainly-not-equal relation, cne(X,Y), which is true in this case.

Mathematical and operational definitions cne(X,Y):

For each of the certainly relational functions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

sne(X,Y) X ∅=() and Y ∅≠()() or X ∅≠() and Y ∅=()() or
X ∅≠() and Y ∅≠() and x X y Y∈∀,∈ : x y≠∃() or
y Y x X :∈∀,∈ x y≠∃()

(
)

(
)

≡

X ∅=() and Y ∅≠()() or X ∅≠() and Y ∅=()()= or
X ∅≠() and Y ∅≠() and x y≠() or x y≠()()()

x a b,[]∈ y c d[,]∈

op >,≥,=,≤,<{ }∈

cop X Y,() X ∅≠() and Y ∅≠() and x X y Y∈∀,∈ : x yop∀()≡

cne(X,Y) X ∅=() or Y ∅=() or X ∅≠() and Y ∅≠() and
x X y Y∈∀,∈ : x y≠∀()

(
)

≡

X ∅=()= or Y ∅=() or X ∅≠() and Y ∅≠() and
x y>() or y x>()()

(
)

Chapter 2 C++ Interval Arithmetic Library Reference 2-31

2.7.4 Possibly Relational Functions
The possibly relational functions are true if any element of the operand intervals
satisfy the underlying relation. For example, plt([X,Y]) is true if there exists an

and a such that x < y. This is equivalent to .

For an affirmative order relation with

op ∈ {lt, le, eq, ge, gt} and

,

between two points x and y, the corresponding possibly-true relation Pop between
two intervals X and Y is defined as follows:

.

If the empty interval is an operand of a possibly relation then the result is false. The
one exception is the anti-affirmative possibly-not-equal relation, pne(X,Y), which is
true in this case.

Mathematical and operational definitions pne(X,Y):

For each of the possibly relational functions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool.

2.8 Input and Output
The process of performing interval stream input/output is the same as for other
non-interval data types.

Note – Floating-point stream manipulations do not influence interval input/output.

x X[]∈ y Y[]∈ x y<

op >,≥,=,≤,<{ }∈

pop(x, y) X ∅≠() and Y ∅≠() and x X y Y∈∃,∈ : x yop∃()≡

pne(X,Y) X ∅=() or Y ∅=() or
X ∅≠() and Y ∅≠() and x X y Y∈∃,∈ : x y≠∃()()

≡

X ∅=()= or Y ∅=() or
X ∅≠() and Y ∅≠() and x y>() or y x>()()()
2-32 C++ Interval Arithmetic Programming Reference • November 2005

2.8.1 Input
When using the single-number form of an interval, the last displayed digit is used to
determine the interval’s width. See Section 2.8.2, “Single-Number Output” on
page 2-34. For more detailed information, see M. Schulte, V. Zelov, G.W. Walster, D.
Chiriaev, “Single-Number Interval I/O,” Developments in Reliable Computing, T.
Csendes (ed.), (Kluwer 1999).

If an infimum is not internally representable, it is rounded down to an internal
approximation known to be less than the exact value. If a supremum is not internally
representable, it is rounded up to an internal approximations known to be greater
than the exact input value. If the degenerate interval is not internally representable,
it is rounded down and rounded up to form an internal interval approximation
known to contain the exact input value. These results are shown in
CODE EXAMPLE 2-11.

CODE EXAMPLE 2-11 Single-Number Output Examples

math% cat ce2-11.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

main() {

 interval<double> X[8];

 for (int i = 0; i < 8 ; i++) {

 cin >> X[i];

 cout << X[i] << endl;

 }

}

math% CC -xia ce2-11.cc -o ce2-11

math% ce2-11

1.234500

[0.1234498999999999E+001,0.1234501000000001E+001]

[1.2345]

[0.1234499999999999E+001,0.1234500000000001E+001]

[-inf,2]

[-Infinity,0.2000000000000000E+001]

[-inf]

[-Infinity,-.1797693134862315E+309]

[EMPTY]
Chapter 2 C++ Interval Arithmetic Library Reference 2-33

2.8.2 Single-Number Output
The function single_number_output() is used to display intervals in the single-
number form and has the following syntax, where cout is an output stream.

If the external interval value is not degenerate, the output format is a floating-
point or integer literal (X without square brackets, "["..."]"). The external value is
interpreted as a non-degenerate mathematical interval [x] + [-1,1]uld.

The single-number interval representation is often less precise than the [inf, sup]
representation. This is particularly true when an interval or its single-number
representation contains zero or infinity.

For example, the external value of the single-number representation for [-15, +75] is
ev([0E2]) = [-100, +100]. The external value of the single-number representation for
[1, ∞] is ev([0E+inf]) = .

In these cases, to produce a narrower external representation of the internal
approximation, the [inf, sup] form is used to display the maximum possible
number of significant digits within the output field.

[EMPTY]

[1.2345,1.23456]

[0.1234499999999999E+001,0.1234560000000001E+001]

[inf]

 [0.1797693134862315E+309, Infinity]

[Nan]

[-Infinity, Infinity]

single_number_output(interval<float> X, ostream& out=cout)
single_number_output(interval<double> X, ostream& out=cout)
single_number_output(interval<long double> X, ostream& out=cout)

CODE EXAMPLE 2-12 Single-Number [inf, sup]-Style Output

math% cat ce2-12.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

CODE EXAMPLE 2-11 Single-Number Output Examples (Continued)

-∞ +∞,[]
2-34 C++ Interval Arithmetic Programming Reference • November 2005

If it is possible to represent a degenerate interval within the output field, the output
string for a single number is enclosed in obligatory square brackets, "[", ... "]" to
signify that the result is a point.

An example of using ndigits to display the maximum number of significant
decimal digits in the single-number representation of the non-empty interval X is
shown in CODE EXAMPLE 2-13.

Note – If the argument of ndigits is a degenerate interval, the result is INT_MAX.

#endif

int main() {

 interval <double> X(-1, 10);

 interval <double> Y(1, 6);

 single_number_output(X, cout);

 cout << endl;

 single_number_output(Y, cout);

 cout << endl;

}

math% CC -xia -o ce2-12 ce2-12.cc

math% ce2-12

[-1.0000 , 10.000]

[1.0000 , 6.0000]

CODE EXAMPLE 2-13 ndigits

math% cat ce2-13.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

main() {

 interval<double> X[4];

 X[0] = interval<double>("[1.2345678, 1.23456789]");

 X[1] = interval<double>("[1.234567, 1.2345678]");

 X[2] = interval<double>("[1.23456, 1.234567]");

CODE EXAMPLE 2-12 Single-Number [inf, sup]-Style Output (Continued)
Chapter 2 C++ Interval Arithmetic Library Reference 2-35

Increasing interval width decreases the number of digits displayed in the
single-number representation. When the interval is degenerate all remaining
positions are filled with zeros and brackets are added if the degenerate interval
value is represented exactly.

2.8.3 Single-Number Input/Output and Base
Conversions
Single-number interval input, immediately followed by output, can appear to
suggest that a decimal digit of accuracy has been lost, when in fact radix conversion
has caused a 1 or 2 ulp increase in the width of the stored input interval. For
example, an input of 1.37 followed by an immediate print will result in 1.3 being
output.

As shown in CODE EXAMPLE 1-6, programs must use character input and output to
exactly echo input values and internal reads to convert input character strings into
valid internal approximations.

2.9 Mathematical Functions
This section lists the type-conversion, trigonometric, and other functions that accept
interval arguments. The symbols and in the interval are used to denote
its ordered elements, the infimum, or lower bound and supremum, or upper bound,
respectively. In point (non-interval) function definitions, lowercase letters x and y are
used to denote floating-point or integer values.

 X[3] = interval<double>("[1.2345, 1.23456]");

 for (int i = 0; i < 4 ; i++) {

 single_number_output((interval<long double>)X[i], cout);

 cout << " ndigits =" << ndigits(X[i]) << endl;

 }

}

math% CC ce2-13.cc -xia -o ce2-13

math% ce2-13

 0.12345679 E+001 ndigits =8

 0.1234567 E+001 ndigits =7

 0.123456 E+001 ndigits =6

 0.12345 E+001 ndigits =5

CODE EXAMPLE 2-13 ndigits (Continued)

x x x x,[]
2-36 C++ Interval Arithmetic Programming Reference • November 2005

When evaluating a function, f, of an interval argument, X, the interval result, f(X),
must be an enclosure of its containment set, f(x). Therefore,

A similar result holds for functions of n-variables. Determining the containment set
of values that must be included when the interval contains values outside the
domain of f is discussed in the supplementary paper [1] cited in Section 2.12,
“References” on page 2-50. The results therein are needed to determine the set of
values that a function can produce when evaluated on the boundary of, or outside
its domain of definition. This set of values, called the containment set is the key to
defining interval systems that return valid results, no matter what the value of a
function’s arguments or an operator’s operands. As a consequence, there are no
argument restrictions on any interval functions in C++.

2.9.1 Inverse Tangent Function atan2(Y,X)

This sections provides additional information about the inverse tangent function.
For further details, see the supplementary paper [9] cited in Section 2.12,
“References” on page 2-50.

Description: Interval enclosure of the inverse tangent function over a pair of
intervals.

Mathematical definition:

Special values: TABLE 2-11 and CODE EXAMPLE 2-14 display the atan2 indeterminate
forms.

TABLE 2-11 atan2 Indeterminate Forms

y0 x0

0 0 [-1, 1] [-1, 1]

+∞ +∞ [0, 1] [0, 1]

+∞ -∞ [0, 1] [-1, 0]

-∞ -∞ [-1, 0] [-1, 0]

-∞ +∞ [-1, 0] [0, 1]

f X() f x()
x X∈
∪=

x x,[]

2 Y X,()atan θ
h θsin y0=
h θcos x0=

h x0
2

y0
2

+()=
1 2⁄

 
 
 
 
 

x X∈
y Y∈

∪⊇

θsin h θsin y0={ } θcos h θcos x0={ } θ h x0
2

y0
2

+()=
1 2⁄{ }

π– π,[]

0 π
2
---,[]

π
2
--- π,[]

π–
π–

2
-------,[]

π–
2

------- 0,[]
Chapter 2 C++ Interval Arithmetic Library Reference 2-37

CODE EXAMPLE 2-14 atan2 Indeterminate Forms

math% cat ce2-14.cc

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main() {

 interval <double> X,Y;

 cout << "Press Control/C to terminate!"<< endl;

 cout <<"Y,X=?";

 cin >>Y >>X;

 for(;;) {

 cout <<endl << "For X =" <<X << endl;

 cout << "For Y =" <<Y << endl;

 cout << atan2(Y,X) << endl << endl;

 cout << "Y,X=?";

 cin >>Y >>X;

 }

}

math% CC -xia -o ce2-14 ce2-14.cc

math% ce2-14

Press Control/C to terminate!

Y,X=? [0] [0]

For X =[0.0000000000000000E+000,0.0000000000000000E+000]

For Y =[0.0000000000000000E+000,0.0000000000000000E+000]

[-.3141592653589794E+001,0.3141592653589794E+001]

Y,X=? inf inf

For X =[0.1797693134862315E+309, Infinity]

For Y =[0.1797693134862315E+309, Infinity]

[0.0000000000000000E+000,0.1570796326794897E+001]

Y,X=? inf -inf

For X =[-Infinity,-.1797693134862315E+309]

For Y =[0.1797693134862315E+309, Infinity]

[0.1570796326794896E+001,0.3141592653589794E+001]

Y,X=? -inf inf

For X =[0.1797693134862315E+309, Infinity]
2-38 C++ Interval Arithmetic Programming Reference • November 2005

Result value: The interval result value is an enclosure for the specified interval. An
ideal enclosure is an interval of minimum width that contains the exact
mathematical interval in the description.

The result is empty if one or both arguments are empty.

In the case where x < 0 and , to get a sharp interval enclosure (denoted by Θ),
the following convention uniquely defines the set of all possible returned interval
angles:

This convention, together with

results in a unique definition of the interval angles Θ that atan2(Y,X) must
include.

TABLE 2-12 contains the tests and arguments of the floating-point atan2 function that
are used to compute the endpoints of Θ in the algorithm that satisfies the constraints
required to produce sharp interval angles. The first two columns define the
distinguishing cases. The third column contains the range of possible values of the
midpoint, m(Θ), of the interval Θ. The last two columns show how the endpoints of
Θ are computed using the floating-point atan2 function. Directed rounding must be
used to guarantee containment.

For Y =[-Infinity,-.1797693134862315E+309]

[-.1570796326794897E+001,0.0000000000000000E+000]

Y,X=? -inf -inf

For X =[-Infinity,-.1797693134862315E+309]

For Y =[-Infinity,-.1797693134862315E+309]

[-.3141592653589794E+001,-.1570796326794896E+001]

Y,X=? ^c

TABLE 2-12 Tests and Arguments of the Floating-Point atan2 Function

Y X m(Q) θ θ

- < y x < 0 atan2(y, x) atan2(, x) + 2π

- = y x < 0 atan2(y, x) 2π − θ

< - x < 0 atan2(y, x) - 2π atan2(, x)

CODE EXAMPLE 2-14 atan2 Indeterminate Forms (Continued)

0 Y∈

π– m Θ() π≤<

0 w Θ() 2π≤≤

y---
π
2
--- m Θ() π< < y---

y--- m Θ() π=

y y--- π– m Θ()
π–

2
-------< < y---
Chapter 2 C++ Interval Arithmetic Library Reference 2-39

2.9.2 Maximum: maximum(X1,X2)
Description: Range of maximum.

The containment set for max(X1,..., Xn) is:

.

The implementation of the max function must satisfy:

maximum(X1,X2,[X3,...]) {max(X1, ..., Xn)}.

2.9.3 Minimum: minimum(X1,X2)
Description: Range of minimum.

The containment set for min(X1,..., Xn) is:

.

The implementation of the min function must satisfy:

minimum(X1,X2,[X3,...]) {min(X1, ..., Xn)}.

2.9.4 Functions That Accept Interval Arguments
TABLE 2-14 through TABLE 2-18 list the properties of functions that accept interval
arguments. TABLE 2-13 lists the tabulated properties of interval functions in these
tables.

TABLE 2-13 Tabulated Properties of Each interval Function

Tabulated Property Description

Function What the function does

Definition Mathematical definition

No. of Args. Number of arguments the function accepts

Name The function’s name

Argument Type Valid argument types

Function Type Type returned for specific argument data type

z z max x1 … xn, ,() x,
i

Xi∈={ } sup hull x1 … xn, ,()() sup hull x1 … xn, ,()(),[]=

⊇

z z min x1 … xn, ,() x,
i

Xi∈={ } inf hull x1 … xn, ,()() inf hull x1 … xn, ,()(),[]=

⊇

2-40 C++ Interval Arithmetic Programming Reference • November 2005

Because indeterminate forms are possible, special values of the pow and atan2
function are contained in Section 2.4.2, “Power Function pow(X,n) and pow(X,Y)”
on page 2-17 and Section 2.9.1, “Inverse Tangent Function atan2(Y,X)” on
page 2-37, repectively. The remaining functions do not require this treatment.

TABLE 2-14 interval Constructor

Conversion To
No. of
Args. Name Argument Type Function Type

interval 1, 2 interval const char*

const interval<float>&

const interval<double>&

const interval<long double>&

int

long long

float

double

long double

int, int

long long, long long

float, float

double, double

long double, long double

The function type can be
interval<float>,
interval<double>, or
interval<long double>
for each argument type.

TABLE 2-15 interval Arithmetic Functions

Function
Point
Definition

No. of
Args. Name Argument Type Function Type

Absolute
value

|a| 1 fabs interval <double>

interval <float>

interval <long double>

interval <double>

interval <float>

interval <long double>

Remainder a-b(int(a/b)) 2 fmod interval <double>

interval <float>

interval <long double>

interval <double>

interval <float>

interval <long double>

Choose
largest
value1

max(a,b) 2 maximum interval <double>

interval <float>

interval <long double>

interval <double>

interval <float>

interval <long double>

Choose
smallest
value1

min(a,b) 2 minimum interval <double>

interval <float>

interval <long double>

interval <double>

interval <float>

interval <long double>

(1) The minimum and maximum functions ignore empty interval arguments unless all arguments are empty, in which case, the empty
interval is returned.
Chapter 2 C++ Interval Arithmetic Library Reference 2-41

TABLE 2-16 interval Trigonometric Functions

Function
Point
Definition

No. of
Args. Name Argument Type Function Type

Sine sin(a) 1 sin interval <double>

interval <float>

interval <double>

interval <float>

Cosine cos(a) 1 cos interval <double>

interval <float>

interval <double>

interval <float>

Tangent tan(a) 1 tan interval <double>

interval <float>

interval <double>

interval <float>

Arcsine arcsin(a) 1 asin interval <double>

interval <float>

interval <double>

interval <float>

Arccosine arccos(a) 1 acos interval <double>

interval <float>

interval <double>

interval <float>

Arctangent arctan(a) 1 atan interval <double>

interval <float>

interval <double>

interval <float>

Arctangent1 arctan(a/b) 2 atan2 interval <double>

interval <float>

interval <double>

interval <float>

Hyperbolic
Sine

sinh(a) 1 sinh interval <double>

interval <float>

interval <double>

interval <float>

Hyperbolic
Cosine

cosh(a) 1 cosh interval <double>

interval <float>

interval <double>

interval <float>

Hyperbolic
Tangent

tanh(a) 1 tanh interval <double>

interval <float>

interval <double>

interval <float>

(1) arctan(a/b) = θ, given a = h sinθ, b = h cosθ, and h2 = a2 + b2.
2-42 C++ Interval Arithmetic Programming Reference • November 2005

TABLE 2-17 Other interval Mathematical Functions

Function
Point
Definition

No. of
Args. Name Argument Type Function Type

Square
Root1

exp{ln(a)/2} 1 sqrt interval <double>

interval <float>

interval <double>

interval <float>

Exponential exp(a) 1 exp interval <double>

interval <float>

interval <double>

interval <float>

Natural
logarithm

ln(a) 1 log interval <double>

interval <float>

interval <double>

interval <float>

Common
logarithm

log(a) 1 log10 interval <double>

interval <float>

interval <double>

interval <float>

(1) sqrt(a) is multi-valued. A proper interval enclosure must contain both the positive and negative square roots. Defining the sqrt
function to be

eliminates this difficulty.

TABLE 2-18 interval-Specific Functions

Function Definition
No. of
Args. Name Argument Type Function Type

Infimum inf([a, b]) = a 1 inf interval <double>

interval <float>

interval <long double>

double

float

long double

Supremum sup([a, b]) = b 1 sup interval <double>

interval <float>

interval <long double>

double

float

long double

Width w([a, b]) = b - a 1 wid interval <double>

interval <float>

interval <long double>

double

float

long double

Midpoint mid([a, b]) =
(a + b)/2

1 mid interval <double>

interval <float>

interval <long double>

double

float

long double

Magnitude1 max(|a|) ∈A 1 mag interval <double>

interval <float>

interval <long double>

double

float

long double

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: ndigits([-inf, +inf]) = ndigits([empty]) = 0

aln
2

 
 
 

exp
Chapter 2 C++ Interval Arithmetic Library Reference 2-43

Mignitude2 min(|a|) ∈A 1 mig interval <double>

interval <float>

interval <long double>

double

float

long double

Test for
empty
interval

true if A
is empty

1 is_empty interval <double>

interval <float>

interval <long double>

interval_bool

interval_bool

interval_bool

Floor floor(A) 1 floor interval <double>

interval <float>

interval <long double>

double

double

double

Ceiling ceiling(A) 1 ceil interval <double>

interval <float>

interval <long double>

double

double

double

Number of
digits3

Maximum number
of significant
decimal digits in
the single-number
representation of a
non-empty
interval

1 ndigits interval <double>

interval <float>

interval <long double>

int

int

int

TABLE 2-18 interval-Specific Functions (Continued)

Function Definition
No. of
Args. Name Argument Type Function Type

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: ndigits([-inf, +inf]) = ndigits([empty]) = 0
2-44 C++ Interval Arithmetic Programming Reference • November 2005

2.10 Interval Types and the Standard
Template Library
When interval types are used as template arguments for STL classes, a blank must be
inserted between two consecutive > symbols, as shown on the line marked note 1 in
CODE EXAMPLE 2-15.

Otherwise, >> is incorrectly interpreted as the right shift operator, as shown on the
line marked note 1 in CODE EXAMPLE 2-16.

CODE EXAMPLE 2-15 Example of Using an Interval Type as a Template Argument for STL
Classes

math% cat ce2-15.cc

#include <limits.h>

#include <strings.h>

#include <sunmath.h>

#include <stack>

#include <suninterval.h>

#if __cplusplus >= 199711

using namespace SUNW_interval;

#endif

int main()

{

 std::stack<interval<double> > st; //note 1

 return 0;

}

math% CC -xia ce2-15.cc

CODE EXAMPLE 2-16 >> Incorrectly Interpreted as the Right Shift Operator

math% cat ce2-16.cc

#include <limits.h>

#include <strings.h>

#include <sunmath.h>

#include <stack>

#include <suninterval.h>

#if __cplusplus >= 199711
Chapter 2 C++ Interval Arithmetic Library Reference 2-45

Note – Interpreting >> as a right shift operator is a general design problem in C++.

2.11 nvector and nmatrix Template
Classes
The C++ interval arithmetic library includes the nvector<T> and nmatrix<T>
template classes. The nvector<T> class represents and manipulates one-
dimensional arrays of values. The nmatrix<T> class represents and manipulates
two-dimensional arrays of values.

2.11.1 nvector<T> Class
The nvector<T> class represents and manipulates one-dimensional arrays of
values. Elements in a vector are indexed sequentially beginning with zero.

Template specializations are available for the following types:

■ interval<float>
■ interval<double>
■ interval<long double>

using namespace SUNW_interval;

#endif

int main()

{

 std::stack<interval<double>> st; //note 1

 return 0;

}

math% CC -xia -o ce2-16 ce2-16.cc

"ce2-16.cc", line 13: Error: "," expected instead of ">>".

"ce2-16.cc", line 13: Error: Illegal value for template
parameter.

"ce2-16.cc", line 13: Error: "," expected instead of ";".

"ce2-16.cc", line 13: Error: Illegal value for template
parameter.

4 Error(s) detected.

CODE EXAMPLE 2-16 >> Incorrectly Interpreted as the Right Shift Operator (Continued)
2-46 C++ Interval Arithmetic Programming Reference • November 2005

■ float, double, long double
■ int
■ bool (nvector<bool> has restricted usage)

To write applications that use objects and operations of nvector<T> class, use the
following header files and namespace:

#include <iostream.h>

#include <suninterval_vector.h>

using namespace SUNW_interval;

Note – Because these classes are based on the C++ standard library, the classes are
not available in compatibility mode (-compat).

For a detailed description of the nvector<T> class, see the nvector(3C++) man
page.

CODE EXAMPLE 2-17 illustrates the nvector class usage.

CODE EXAMPLE 2-17 Example of Using the nvector Class

math% cat ce2-17.cc

#include <iostream.h>

#include <suninterval_vector.h>

using namespace SUNW_interval;

main ()

{

// create two vectors

nvector< interval<double> > v1 (interval<double> (2.0,
3.0), 10);

nvector< double > v2 (10);

// compute middle points of v1 elements

v2 = mid (v1);

// print them out

cout << v2 << endl;

// print scalar product of vectors v1 and v1*v1

cout << dot_product (v1, v1*v1) << endl;
Chapter 2 C++ Interval Arithmetic Library Reference 2-47

2.11.2 nmatrix<T> Class
The nmatrix<T> class represents and manipulates two-dimensional arrays of
values. Arrays are stored internally in column-major order (FORTRAN-style).
Indexes of matrix elements begin with zero.

Template specializations are available for the following types:

■ interval<float>
■ interval<double>
■ interval<long double>
■ float, double, long double
■ int
■ bool (nmatrix<bool> has restricted usage).

To write applications that use objects and operations of nmatrix<T> class use the
following header files and namespace:

#include <iostream.h>

#include <suninterval_matrix.h>

using namespace SUNW_interval;

Note – Because these classes are based on the C++ standard library, the classes are
not available in compatibility mode (-compat).

}

math% CC ce2-17.cc -xia

math% a.out

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

[0.8000000000000000E+002,0.2700000000000000E+003]

CODE EXAMPLE 2-17 Example of Using the nvector Class (Continued)
2-48 C++ Interval Arithmetic Programming Reference • November 2005

For a detailed description of the nmatrix<T> class, see the nmatrix(3C++) man
page.

CODE EXAMPLE 2-18 illustrates the nvector class usage.

CODE EXAMPLE 2-18 Example of Using the nmatrix Class

math% cat ce2-18.cc
#include <iostream.h>
#include <suninterval_matrix.h>

using namespace SUNW_interval;

main()
{
 // create matrix and vector
 nmatrix< interval<double> > m(interval<double>(2.0, 3.0), 3, 3);
 nvector< interval<double> > v(interval<double>(2.0, 3.0), 3);

 // examples of equivalent references to
 // element at line 2 and column 3
 m(1,2) = interval<double>(4.0);
 cout << m(1)(2)<< endl;
 cout << m(1)[2]<< endl;
 cout << m[1](2)<< endl;
 cout << m[1][2]<< endl;

 // print result of multiplication of matrix by column
 cout << matmul(m,v) << endl;

 // print result of multiplication of line by matrix
 cout << matmul(v,m) << endl;
}

math% CC ce2-18.cc -xia
math% a.out

[0.4000000000000000E+001,0.4000000000000000E+001]
[0.4000000000000000E+001,0.4000000000000000E+001]
[0.4000000000000000E+001,0.4000000000000000E+001]
[0.4000000000000000E+001,0.4000000000000000E+001]
[0.1200000000000000E+002,0.2700000000000000E+002]
[0.1600000000000000E+002,0.3000000000000000E+002]
[0.1200000000000000E+002,0.2700000000000000E+002]
[0.1200000000000000E+002,0.2700000000000000E+002]
[0.1200000000000000E+002,0.2700000000000000E+002]
[0.1600000000000000E+002,0.3000000000000000E+002]
Chapter 2 C++ Interval Arithmetic Library Reference 2-49

2.12 References
The following technical reports are available online. See the interval arithmetic
readme for the location of these files.

1. G.W. Walster, E.R. Hansen, and J.D. Pryce, “Extended Real Intervals and the
Topological Closure of Extended Real Relations,” Technical Report, Sun
Microsystems. February 2000.

2. G. William Walster, “Empty Intervals,” Technical Report, Sun Microsystems. April
1998.

3. G. William Walster, “Closed Interval Systems,” Technical Report, Sun
Microsystems. August 1999.

4. G. William Walster, “Literal Interval Constants,” Technical Report, Sun
Microsystems. August 1999.

5. G. William Walster, “Widest-Need Interval Expression Evaluation,” Technical
Report, Sun Microsystems. August 1999.

6. G. William Walster, “Compiler Support of Interval Arithmetic With Inline Code
Generation and Nonstop Exception Handling,” Technical Report, Sun
Microsystems. February 2000.

7. G. William Walster, “Finding Roots on the Edge of a Function’s Domain,”
Technical Report, Sun Microsystems. February 2000.

8. G. William Walster, “Implementing the ‘Simple’ Closed Interval System,”
Technical Report, Sun Microsystems. February 2000.

9. G. William Walster, “Interval Angles and the Fortran ATAN2 Intrinsic Function,”
Technical Report, Sun Microsystems. February 2000.

10. G. William Walster, “The ‘Simple’ Closed Interval System,” Technical Report, Sun
Microsystems. February 2000.

11. G. William Walster, Margaret S. Bierman, “Interval Arithmetic in Forte Developer
Fortran,” Technical Report, Sun Microsystems. March 2000.
2-50 C++ Interval Arithmetic Programming Reference • November 2005

Glossary

affirmative relation An order relation other than certainly, possibly, or set not equal. Affirmative
relations affirm something, such as a < b.

affirmative relational
functions An affirmative relational function is an element of the set: {<, ≤, =, ≥, >}.

anti-affirmative
relation An anti-affirmative relation is a statement about what cannot be true. The order

relation ≠ is the only anti-affirmative relation in C++.

anti-affirmative
relational function The C++ != operator implements the anti-affirmative relation. The certainly,

possible, and set functions for interval arguments are denoted cne, pne, and
sne, respectively.

assignment statement An interval assignment statement is a C++ statement having the form: V =
expression. The left-hand side of the assignment statement is the interval

variable or array element V.

certainly true
relational function See relational functions: certainly true.

closed interval A closed interval includes its endpoints. A closed interval is a closed set. The
interval [2, 3] = {z | 2 ≤ z ≤ 3} is closed, because its endpoints are included. The
interval (2, 3) = {z | 2 < z < 3} is open, because its endpoints are not included.
Interval arithmetic, as implemented in C++, only deals with closed intervals.

closed mathematical
system In a closed mathematical system, there can be no undefined operator-operand

combinations. Any defined operation on elements of a closed system must
produce an element of the system. The real number system is not closed,
because, in this system, division by zero is undefined.
Glossary-1

compact set A compact set contains all limit or accumulation points in the set. That is, given
the set, S, and sequences, , the closure of S is ,
where denotes an accumulation or limit point of the sequence {sj}.

The set of real numbers is {z | -∞ < z < +∞} is not compact. The set of extended
real numbers, , is compact.

composite expression Forming a new expression, f, (the composite expression) from the given
expressions, g and h by the rule f({ }) = g(h({ })) for all singleton sets, { } =
{x1} {xn} in the domain of h for which h is in the domain of g.

Singleton set arguments connote the fact that expressions can be either
functions or relations.

containment
constraint The containment constraint on the interval evaluation, f([x]), of the expression, f,

at the degenerate interval, [x], is f([x]) ⊇ f(x), where f(x) denotes the
containment set of all possible values that f([x]) must contain. Because the
containment set of 1 / 0 = {-∞, +∞}, [1] / [0] = hull({-∞, +∞}) = [-∞, +∞]. See also
containment set.

containment failure A containment failure is a failure to satisfy the containment constraint. For
example, a containment failure results if [1]/[0] is defined to be [empty]. This
can be seen by considering the interval expression

for X=[0] and Y, given . The containment set of the first expression is [0].
However, if [1]/[0] is defined to be [empty], the second expression is also
[empty]. This is a containment failure.

containment set The containment set, h(x) of the expression h is the smallest set that does not
violate the containment constraint when h is used as a component of any
composition, f({x}) = g(h(x), x).

For h(x, y) = x ÷ y,

h(+∞, +∞) = [0, +∞].

See also f(set).

containment set closure
identity Given any expression f(x) = f(x1, …, xn) of n-variables and the point, x0, then

= f({x0}), the closure of f at the point, x0.

containment set
equivalent Two expressions are containment-set equivalent if their containment sets are

everywhere identical.

s j{ } S∈ S lim j ∞→ s
j

s j S∈{ }=
lim j ∞→

ℜ∗

x x x
…⊗ ⊗

X
X Y+
-------------- 1

1 Y
X
----+

-------------=

0 Y∉

f x
˜

()
Glossary-2 C++ Interval Arithmetic Programming Reference • November 2005

degenerate interval A degenerate interval is a zero-width interval. A degenerate interval is a
singleton set, the only element of which is a point. In most cases, a degenerate
interval can be thought of as a point. For example, the interval [2, 2] is
degenerate, and the interval [2, 3] is not.

directed rounding Directed rounding is rounding in a particular direction. In the context of interval
arithmetic, rounding up is towards +∞, and rounding down is towards -∞. The
direction of rounding is symbolized by the arrows, ↓ and ↑. Therefore, with
5-digit arithmetic, ↑ 2.00001 = 2.0001. Directed rounding is used to implement
interval arithmetic on computers so that the containment constraint is never
violated.

disjoint interval Two disjoint intervals have no elements in common. The intervals [2, 3] and
[4, 5] are disjoint. The intersection of two disjoint intervals is the empty
interval.

empty interval The empty interval, [empty], is the interval with no members. The empty interval
naturally occurs as the intersection of two disjoint intervals. For example,
[2, 3] ∩ [4,5] = [empty].

empty set The empty set, ∅, is the set with no members. The empty set naturally occurs as
the intersection of two disjoint sets. For example, {2, 3} ∩ {4, 5} = ∅.

ev(SRIC) The notation ev(SRIC) is used to denote the external value defined by a SRIC.
For example, ev("[0.1]") = 1/10, in spite of the fact that a non-degenerate
interval approximation of 0.1 must be used, because the constant 0.1 is not
machine representable. See also string representation of an interval constant
(SRIC).

exception In the IEEE 754 floating-point standard, an exception occurs when an attempt is
made to perform an undefined operation, such as division by zero.

exchangeable
expression Two expressions are exchangeable if they are containment-set equivalent (their

containment sets are everywhere identical).

extended interval The term extended interval refers to intervals whose endpoints can be extended
real numbers, including -∞ and +∞. For completeness, the empty interval is
also included in the set of extended real intervals.

external
representation The external representation of a C++ data item is the character string used to

define it during input data conversion, or the character string used to display it
after output data conversion.

external value The external value of a SRIC is the mathematical value defined by the SRIC. The
external value of a SRIC might not be the same as the SRIC’s internal
approximation, which, in C++, is the only defined value of the SRIC. See also
ev(SRIC).
Glossary-3

f(set) The notation, f(set), is used to symbolically represent the containment set of an
expression evaluated over a set of arguments. For example, for the expression,
f(x, y) = xy, the containment constraint that the interval expression [0] × [+∞]
must satisfy is

[0] × [+∞] ⊇ = [-∞, +∞].

hull See interval hull.

infimum
(plural, infima) The infimum of a set of numbers is the set’s greatest lower bound. This is either

the smallest number in the set or the largest number that is less than all the
numbers in the set. The infimum, inf([a, b]), of the interval constant [a, b] is a.

interval algorithm An interval algorithm is a sequence of operations used to compute an interval
result.

internal
approximation In the C++ interval class, an interval constant is represented using a string. The

string representation of an interval constant (or SRIC) has an internal
approximation, which is the sharp internal approximation of the SRIC’s
external value. The external value is an interval constant. See also string
representation of an interval constant (SRIC)

interval arithmetic Interval arithmetic is the system of arithmetic used to compute with intervals.

interval box An interval box is a parallelepiped with sides parallel to the n-dimensional
Cartesian coordinate axes. An interval box is conveniently represented using
an n-dimensional interval vector, X = (X1,..., Xn)T.

interval constant An interval constant is the closed connected set: [a, b] ={z | a ≤ z ≤ b} defined by
the pair of numbers, a ≤ b.

interval constant’s
external value See external value.

interval
constant’s internal

approximation See internal approximation.

interval hull The interval hull function, , on a pair of intervals ,
is the smallest interval that contains both X and Y (also represented as

). For example,

[2, 3] [5, 6] = [2, 6].

interval-specific
function In the C++ interval class, an interval-specific function is an interval function

that is not an interval version of a standard C++ function. For example, wid,
mid, inf, and sup, are interval-specific functions.

interval width Interval width, w([a, b]) = b - a.

∪ x x,[] Y?and_rom? y,[= =

X Y∪()?inf? X Y∪()?sup?,]

∪

Glossary-4 C++ Interval Arithmetic Programming Reference • November 2005

left endpoint The left endpoint of an interval is the same as its infimum or lower bound.

literal constant No literal constant construct for user-defined objects is provided in C++
classes. Therefore, a string representation of a literal constant (or SRIC) is used
instead. See also string representation of an interval constant (SRIC).

lower bound See infimum (plural, infima).

mantissa When written in scientific notation, a number consists of a mantissa or
significand and an exponent power of 10.

multiple-use expression
(MUE) A multiple-use expression (MUE) is an expression in which at least one

independent variable appears more than once.

narrow-width
interval Let the interval [a, b] be an approximation of the value . If w[a, b] =

b - a, is small, [a, b] is a narrow-width interval. The narrower the width of the
interval [a, b], the more accurately [a, b] approximates ν. See also sharp
interval result.

opaque data type An opaque data type leaves the structure of internal approximations unspecified.
interval data items are opaque. Therefore, programmers cannot count on
interval data items being internally represented in any particular way. The
intrinsic functions inf and sup provide access to the components of an
interval. The interval constructor can be used to manually construct any
valid interval.

point A point (as opposed to an interval), is a number. A point in n-dimensional
space, is represented using an n-dimensional vector, x = (x1,..., xn)T. A point and
a degenerate interval, or interval vector, can be thought of as the same. Strictly,
any interval is a set, the elements of which are points.

possibly true relational
functions See relational functions: possibly true.

quality of
implementation Quality of implementation, is a phrase used to characterize properties of

compiler support for intervals. Narrow width is a new quality of
implementation opportunity provided by intrinsic compiler support for
interval data types.

radix conversion Radix conversion is the process of converting back and forth between external
decimal numbers and internal binary numbers. Radix conversion takes place in
formatted and list-directed input/output. Because the same numbers are not
always representable in the binary and decimal number systems, guaranteeing
containment requires directed rounding during radix conversion.

ν a b,[]∈
Glossary-5

relational functions:
certainly true The certainly true relational functions are {clt, cle, ceq, cne, cge, cgt}.

Certainly true relational functions are true if the relation in question is true for
all elements in the operand intervals. That is cop ([a, b], [c, d]) = true if op(x, y) =
true for all .

For example, clt([a, b], [c, d]) evaluates to true if b < c.

relational functions:
possibly true The possibly true relational functions are {plt, ple, peq, pne, pge, pgt}.

Possibly true relational functions are true if the relation in question is true for
any elements in operand intervals. For example, plt([a, b], [c, d]) if a < d.

relational functions:
set The set relational functions are {slt, sle, seq, sne, sge, sgt}. Set relational

functions are true if the relation in question is true for the endpoints of the
intervals. For example, seq([a, b], [c, d]) evaluates to true if (a = c) and (b = d).

right endpoint See supremum (plural, suprema).

set theoretic Set theoretic is the means of or pertaining to the algebra of sets.

sharp interval result A sharp interval result has a width that is as narrow as possible. A sharp
interval result is equal to the hull of the expression’s containment. Given the
limitations imposed by a particular finite precision arithmetic, a sharp interval
result is the narrowest possible finite precision interval that contains the
expression’s containment set.

single-number
input/output Single-number input/output, uses the single-number external representation for

an interval, in which the interval [-1, +1]uld is implicitly added to the last
displayed digit. The subscript uld is an acronym for unit in the last digit. For
example 0.12300 represents the interval 0.12300 + [-1, +1]uld = [0.12299,
0.12301].

single-number
interval data

conversion Single-number interval data conversion is used to read and display external
intervals using the single-number representation. See single-number
input/output.

x a b,[]∈ and y c d,[]∈
Glossary-6 C++ Interval Arithmetic Programming Reference • November 2005

single-use expression
(SUE) A single-use expression (SUE) is an expression in which each variable only

occurs once. For example

is a single use expression, whereas

is not.

string representation of
an interval constant

(SRIC) In C++, it is possible to define variables of a class type, but not literal
constants. So that a literal interval constant can be represented, the C++
interval class uses a string to represent an interval constant. A string
representation of an interval constant (SRIC), such as "[0.1,0.2]", is the
character string that represents a literal interval constant. See Section 2.1.1,
“String Representation of an Interval Constant (SRIC)” on page 2-2.

SRIC’s external value In the C++ interval class, a literal interval constant is represented using a
string. This is referred to as the string representation of an interval constant, or
SRIC. The external value of a SRIC, or ev(SRIC), is the exact mathematical
value the SRIC represents. For example, the SRIC "[0.1]" has the external
value: ev("[0.1]") = 1/10. See also string representation of an interval
constant (SRIC).

SRIC’s internal
approximation In the C++ interval class, a literal interval constant is represented using a

string. This is referred to as the string representation of an interval constant, or
SRIC. The internal approximation of a SRIC, is the sharp machine
representable interval that contains the SRIC’s external value. For example, the
internal approximation of the SRIC "[0.1]" is the narrowest possible machine
representable interval that contains the SRIC’s external value, which, in this
case, is ev("[0.1]") = 1/10. See also string representation of an interval
constant (SRIC).

supremum
(plural, suprema) The supremum of a set of numbers is the set’s least upper bound, which is

either the largest number in the set or the smallest number that is greater than
all the numbers in the set. The supremum, sup([a, b]), of the interval constant
[a, b] is b.

unit in the last digit
(uld) In single number input/output, one unit in the last digit (uld) is added to and

subtracted from the last displayed digit to implicitly construct an interval.

1

1 Y
X
----+

X
X Y+

Glossary-7

unit in the last place
(ulp) One unit in the last place (ulp) of an internal machine number is the smallest

possible increment or decrement that can be made using the machine’s
arithmetic. Therefore, if the width of a computed interval is 1-ulp, this is the
narrowest possible non-degenerate interval with a given type.

upper bound See supremum (plural, suprema).

valid interval result A valid interval result, [a, b] must satisfy two requirements:

■ a ≤ b

■ [a, b] must not violate the containment constraint
Glossary-8 C++ Interval Arithmetic Programming Reference • November 2005

Index
A
accessible documentation, xix
acos, 2-42
affirmative relation, Glossary-1
affirmative relational operators, Glossary-1
anti-affirmative relation, Glossary-1
anti-affirmative relational operator, Glossary-1
arithmetic expressions, 1-15
arithmetic operators, 2-13

formulas, 2-14
asin, 2-42
assignment statement, Glossary-1
atan, 2-42
atan2, 2-42

indeterminate forms, 2-37

B
base conversion, 1-15, 2-36

C
ceiling, 2-44
ceq, 2-13
certainly relational operators, 2-13, 2-31
certainly-relation, 2-25
cge, 2-13
cgt, 2-13
character set notation

constants, 2-1
Class template

nmatrix, 2-48

nvector, 2-46
cle, 2-13
closed interval, Glossary-1
closed mathematical system, 1-3, Glossary-1
clt, 2-13
cne, 2-13
command-line options

-fns, 1-4
-fsimple, 1-4
-ftrap, 1-4

compact set, Glossary-2
compilers, accessing, xvi
composite expression, Glossary-2
constants

character set notation, 2-1
literal, 2-1
strict interval expression processing, 2-2

containment constraint, Glossary-2
containment failure, 1-2, Glossary-2
containment set, 2-14, Glossary-2
containment set equivalent, Glossary-2
containment-set closure identity, 2-14
cos, 2-42
cosh, 2-42

D
data

representing intervals, 1-8
dbx, 1-19
debugging tools

dbx, 1-19
Index-1

degenerate interval, 2-2, Glossary-3
representation, 1-8

directed rounding, 2-2, 2-14, Glossary-3
disjoint, 2-13, 2-22
disjoint interval, Glossary-3
disjoint set relation, 2-22
display format

inf, sup, 1-13
documentation index, xviii
documentation, accessing, xviii to xx

E
element set relation, 2-22
empty interval, 1-15, Glossary-3
empty set, Glossary-3
ev(literal_constant), Glossary-3
exceptions, Glossary-3
exchangeable expression, Glossary-3
exp, 2-43
expressions

composite, Glossary-2
interval, 2-12

extended interval, Glossary-3
external representation, Glossary-3
external value, Glossary-3

F
f(set), Glossary-4
fabs, 2-41
floor, 2-44
fmod, 2-41
-fns, 1-4
-fsimple, 1-4
-ftrap, 1-4

H
hull

see interval hull

I
implementation quality, 1-1
in, 2-13, 2-22
in_interior, 2-13, 2-23

indeterminate forms
atan2, 2-37
power operator, 2-17

inf, 2-43
inf, sup display format, 1-13
infima, 1-11
infimum, 2-2, Glossary-4
input/output

entering interval data, 1-8
single number, 1-3, 1-8, 1-11
single-number, 2-36

interior set relation, 2-23
internal approximation, 2-5, Glossary-4
intersect, 2-12, 2-21
intersection set theoretic operator, 2-12, 2-21
interval

expressions, 2-12
interval algorithm, Glossary-4
interval arithmetic, 1-1, Glossary-4
interval arithmetic functions

fabs, 2-41
fmod, 2-41
maximum, 2-40, 2-41
minimum, 2-40, 2-41

interval arithmetic operations, 1-3
interval box, Glossary-4
interval constants, Glossary-4

external value, Glossary-4
internal approximation, 2-5, Glossary-4
strict interval expression processing, 2-2

interval data type, 1-3
interval expressions, 2-12
interval hull, 2-12, Glossary-4
interval hull set theoretic operator, 2-21
interval input/output, 1-8
interval mathematical functions

exp, 2-43
log, 2-43
log10, 2-43
sqrt, 2-43

interval order relations, 2-25
certainly, 2-25
definitions, 2-29
possibly, 2-25
set, 2-25
Index-2 C++ Interval Arithmetic Programming Reference • November 2005

interval relational operators, 1-3, 2-13
ceq, 2-13
cge, 2-13
cgt, 2-13
cle, 2-13
clt, 2-13
cne, 2-13
disjoint, 2-13
in, 2-13
in_interior, 2-13
peq, 2-13
pgt, 2-13
ple, 2-13
plt, 2-13
pne, 2-13
proper_subset, 2-13
proper_superset, 2-13
seq, 2-13, 2-25
sge, 2-13
sgt, 2-13
sle, 2-13
slt, 2-13
sne, 2-13
subset, 2-13
superset, 2-13

interval resources
code examples, xiii
email, xiii
papers, xii
web sites, xiii

interval- specific operators, 1-3
interval support

performance, 1-3
interval support goals, 1-1
interval trigonometric functions

acos, 2-42
asin, 2-42
atan, 2-42
atan2, 2-42
cos, 2-42
cosh, 2-42
sin, 2-42
sinh, 2-42
tan, 2-42
tanh, 2-42

interval type conversion functions
interval, 2-41

interval width, Glossary-4
narrow, 1-1, 1-2, Glossary-5
related to base conversion, 2-36
sharp, 1-2

interval_hull, 2-12, 2-21
intervals

goals of compiler support, 1-1
input/output, 1-8

interval-specific functions, 1-3, 1-16, Glossary-4
ceiling, 2-44
floor, 2-44
inf, 2-43
is_empty, 2-44
mag, 2-43
mid, 2-43
mig, 2-44
ndigits, 2-44
sup, 2-43
wid, 2-43

intrinsic C++ interval support, 1-1
intrinsic functions

interval, 1-16
properties, 2-40
standard, 1-17

intrinsic operators, 2-12
arithmetic, 2-13
relational, 2-13

is_empty, 2-44

K
kind type parameter value (KTPV)

default values, 1-7

L
literal constants, 2-1, Glossary-5

external value, Glossary-7
internal approximation, Glossary-7

log, 2-43
log10, 2-43

M
mag, 2-43
man pages, accessing, xvi
MANPATH environment variable, setting, xvii
mantissa, Glossary-5
maximum, 2-40, 2-41
Index-3

mid, 2-43
mig, 2-44
minimum, 2-40, 2-41
multiple-use expression (MUE), Glossary-5

N
narrow intervals, 1-1, 1-2, Glossary-5
ndigits, 2-44
nmatrix class template, 2-48
nvector class template, 2-46

O
online interval resources, xiii
opaque

data type, Glossary-5
operators

arithmetic, 2-13
intrinsic, 2-12
power, 2-17
relational, 2-13

P
PATH environment variable, setting, xvii
peq, 2-13
performance, 1-3
pgt, 2-13
ple, 2-13
plt, 2-13
pne, 2-13
point, Glossary-5
possibly relational operators, 2-13, 2-32
possibly-relation, 2-25
power operator, 2-17

indeterminate forms, 2-17
singularities, 2-17

proper subset set relation, 2-23
proper superset set relation, 2-24
proper_subset, 2-13, 2-23
proper_superset, 2-13, 2-24

Q
quality of implementation, 1-1, Glossary-5

R
radix conversion, 1-15, Glossary-5

relational operators, 2-28
certainly true, Glossary-6
possibly true, Glossary-6
set, Glossary-6

S
seq, 2-13
set relational operators, 2-13, 2-29
set relations, 2-22

disjoint, 2-22
element, 2-22
interior, 2-23
proper subset, 2-23
proper superset, 2-24
subset, 2-24
superset, 2-24

set theoretic, Glossary-6
set theoretic operators, 2-18

interval hull, 2-12, 2-21
interval intersection, 2-12, 2-21

set-relations, 2-25
sge, 2-13
sgt, 2-13
sharp intervals, 1-2, Glossary-6
shell prompts, xv
sin, 2-42
single-number input/output, 1-3, 1-11, 2-36,

Glossary-6
single-number INTERVAL data

conversion, Glossary-6
single-number interval format, 1-8
single-number interval representation

precision, 2-34
single-use expression

see SUE
singularities

power operator, 2-17
sinh, 2-42
sle, 2-13
slt, 2-13
sne, 2-13
sqrt, 2-43
standard intrinsic functions, 1-17
subset, 2-13, 2-24
subset set relation, 2-24
Index-4 C++ Interval Arithmetic Programming Reference • November 2005

SUE, 2-18, Glossary-7
sup, 2-43
superset, 2-13, 2-24
superset set relation, 2-24
suprema, 1-11
supremum, 2-2, Glossary-7

T
tan, 2-42
tanh, 2-42
typographic conventions, xiv

U
uld, 1-8, Glossary-7
ulp, 1-15, Glossary-8
unit in last digit

see uld
unit in last place

see ulp

V
valid interval result, Glossary-8

W
wid, 2-43
Index-5

Index-6 C++ Interval Arithmetic Programming Reference • November 2005

	C++ Interval Arithmetic Programming Reference
	Contents
	Tables
	Code Samples
	Before You Begin
	Using the Interval Arithmetic Library
	1.1 What Is Interval Arithmetic?
	1.2 C++ Interval Support Goal: Implementation Quality
	1.2.1 Quality Interval Code
	1.2.2 Narrow-Width Interval Results
	1.2.3 Rapidly Executing Interval Code
	1.2.4 Easy-to-Use Development Environment
	1.2.5 The C++ Interval Class Compilation Interface
	1.2.5.1 namespace SUNW_interval
	1.2.5.2 Boolean Return Values
	1.2.5.3 Input and Output

	1.3 Writing Interval Code for C++
	1.3.1 Hello Interval World
	1.3.2 interval External Representations
	1.3.3 Interval Declaration and Initialization
	1.3.4 interval Input/Output
	1.3.5 Single-Number Input/Output
	1.3.6 Arithmetic Expressions
	1.3.7 interval-Specific Functions
	1.3.8 Interval Versions of Standard Functions

	1.4 Code Development Tools
	1.4.1 Debugging Support

	C++ Interval Arithmetic Library Reference
	2.1 Character Set Notation
	2.1.1 String Representation of an Interval Constant (SRIC)
	2.1.2 Internal Approximation

	2.2 interval Constructor
	2.2.1 interval Constructor Examples

	2.3 interval Arithmetic Expressions
	2.4 Operators and Functions
	2.4.1 Arithmetic Operators +, -, *, /
	2.4.2 Power Function pow(X,n) and pow(X,Y)

	2.5 Set Theoretic Functions
	2.5.1 Hull: X » Y or interval_hull(X,Y)
	2.5.2 Intersection: X«Y or intersect(X,Y)

	2.6 Set Relations
	2.6.1 Disjoint: X «Y = Æ or disjoint(X,Y)
	2.6.2 Element: r Œ Y or in(r,Y)
	2.6.3 Interior: in_interior(X,Y)
	2.6.4 Proper Subset: X Ã Y or proper_subset(X,Y)
	2.6.5 Proper Superset: X … Y or proper_superset(X,Y)
	2.6.6 Subset: X Õ Y or subset(X,Y)
	2.6.7 Superset: X Y or superset(X,Y)

	2.7 Relational Functions
	2.7.1 Interval Order Relations
	2.7.2 Set Relational Functions
	2.7.2.1 Set-equal: X = Y or seq(X,Y)
	2.7.2.2 Set-greater-or-equal: sge(X,Y)
	2.7.2.3 Set-greater: sgt(X,Y)
	2.7.2.4 Set-less-or-equal: sle(X,Y)
	2.7.2.5 Set-less: slt(X,Y)
	2.7.2.6 Set-not-equal: or sne(X,Y)

	2.7.3 Certainly Relational Functions
	2.7.4 Possibly Relational Functions

	2.8 Input and Output
	2.8.1 Input
	2.8.2 Single-Number Output
	2.8.3 Single-Number Input/Output and Base Conversions

	2.9 Mathematical Functions
	2.9.1 Inverse Tangent Function atan2(Y,X)
	2.9.2 Maximum: maximum(X1,X2)
	2.9.3 Minimum: minimum(X1,X2)
	2.9.4 Functions That Accept Interval Arguments

	2.10 Interval Types and the Standard Template Library
	2.11 nvector and nmatrix Template Classes
	2.11.1 nvector<T> Class
	2.11.2 nmatrix<T> Class

	2.12 References

	Glossary
	Index

