»
2 Sun

microsystems

Sun Java System Web Proxy
Server 4.0.2 NSAPI Developer’'s
Guide

Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-3710-10
November 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S.
and in other countries.

U.S. Government Rights — Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or
import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect,
are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not
limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document.
En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de
brevet en attente aux Etats-Unis et dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l'industrie
de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font I'objet de cette publication et les informations qu’il contient sont régis par la legislation américaine en matiére de contrdle des
exportations et peuvent étre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs
finaux, pour des armes nucléaires, des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes
d’exclusion d’exportation américaines, y compris, mais de maniére non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer,
d’une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la legislation américaine en matiére de contrdle des
exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE
CONTREFACON.

a &

Adobe PostScript

©

051128@13215

Contents

Preface 13

Creating Custom SAFs 19
Future Compatibility Issues 20
The SAF Interface 20
SAF Parameters 20

pb (parameter block) 21

sn (session) 21

rq (request) 21
Result Codes 22
Creating and Using Custom SAFs

V¥ To create a custom SAF 23

Write the Source Code 24
Compile and Link 25
Load and Initialize the SAF

23

27

Instruct the Server to Call the SAFs 28

Restart the Server 29
Test the SAF 29
Overview of NSAPI C Functions

30

Parameter Block Manipulation Routines
Protocol Utilities for Service SAFs 30

Memory Management 31
FileI/O 31

Network I/O 31

Threads 32

Utilities 32

30

Required Behavior of SAFs for Each Directive 33
Init SAFs 34
AuthTrans SAFs 34
NameTrans SAFs 34
PathCheck SAFs 35
ObjectType SAFs 35
Input SAFs 35
Output SAFs 35
Service SAFs 36
Error SAFs 36
AddLog SAFs 36
Connect 36

DNS 37
Filter 37
Route 37

CGI to NSAPI Conversion 37

2 Creating Custom Filters 39
Future Compatibility Issues 39
The NSAPI Filter Interface 40
Filter Methods 40
C Prototypes for Filter Methods 40
insert 41

remove 41

flush 42
read 42
write 42

writev = 43
sendfile 43
Position of Filters in the Filter Stack 44
Filters that Alter Content-Length 45
Creating and Using Custom Filters 46
V To create a custom filter 47
Write the Source Code 47
Compile and Link 48
Load and Initialize the Filter = 48
Instruct the Server to Insert the Filter 48
Restart the Server 49

4 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide ®* November 2005

Test the Filter 49

Overview of NSAPI Functions for Filter Development

Examples of Custom SAFs and Filters 51

Examples in the Build 51

AuthTrans Example 52
Installing the Example 53
Source Code 53

NameTrans Example 54
Installing the Example 55
Source Code 56

PathCheck Example 58
Installing the Example 58
Source Code 58

ObjectType Example 60
Installing the Example 61
Source Code 61

Output Example 62
Installing the Example 62
Source Code 63

Service Example 68
Installing the Example 68
Source Code 68
More Complex Service Example 70

AddLog Example 70
Installing the Example 70
Source Code 71

NSAPI Function Reference 73
NSAPI Functions (in Alphabetical Order) 73
C 74

cache_digest 74

cache_filename 74

cache_fn_to_dig 75

CALLOC 75

ce_free 76

ce_lookup 76

49

cif_write_entry 77
cinfo_find 78
condvar_init 79
condvar_notify 79
condvar_terminate 80
condvar_wait 81
crit_enter 81
crit_exit 82
crit_init 83
crit_terminate 83
D 84

daemon_atrestart 84
dns_set_hostent 85

F 86
fc_close 86
fc_open 86

filebuf_buf2sd 87
filebuf_close 88
filebuf_getc 88
filebuf_open 89
filebuf_open_nostat 90
filter_create 91
filter find 92
filter_insert 93
filter_layer 93
filter_name 94
filter_remove 94
flush 95

FREE 96
fs_blk_size 97
fs_blks_avail 97
func_exec 98
func_find 98

func_insert 99

I 100
insert 100
L 101

log_error 101

6 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide ®* November 2005

102
magnus_atrestart 102
MALLOC 103

104

net_flush 104
net_ip2host 104
net_read 105
net_sendfile 106
net_write 107
netbuf_buf2sd 108
netbuf_close 109
netbuf_getc 109
netbuf_grab 110
netbuf_open 111
nsapi_module_init 111
NSAPI_RUNTIME_VERSION
NSAPI_VERSION 113
113

param_create 113
param_free 114
pblock_copy 115
pblock_create 115
pblock_dup 116
pblock_find 116
pblock_findlong 117
pblock_findval 118
pblock_free 119
pblock_nlinsert 119
pblock_nninsert 120
pblock_nvinsert 120
pblock_pb2env 121
pblock_pblock2str 122
pblock_pinsert 123
pblock_remove 123
pblock_replace_name 124
pblock_str2pblock 124
PERM_CALLOC 125
PERM_FREE 126

112

PERM_MALLOC 127
PERM_REALLOC 127
PERM_STRDUP 128
prepare_nsapi_thread 129
protocol_dump822 130
protocol_finish_request 130
protocol_handle_session 131
protocol_parse_request 131
protocol_scan_headers 132
protocol_set_finfo 133
protocol_start_response 134
protocol_status 135
protocol_uri2url 136
protocol_uri2url_dynamic 136
R 137
read 137
REALLOC 138
remove 139
request_create 140
request_free 140
request_header 141
S 142
sem_grab 142
sem_init 142
sem_release 143
sem_terminate 144
sem_tgrab 144
sendfile 145
session_create 146
session_dns 146
session_free 147
session_maxdns 148
shexp_casecmp 148
shexp_cmp 149
shexp_match 150
shexp_valid 150
shmem_alloc 151

shmem_free 152

8 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide ®* November 2005

STRDUP 152
system_errmsg 153
154

155

system_fopenRO

system_fclose
system_flock
155
156
157

system_fopenRW
system_fopenWA
157
158
system_fwrite_atomic
159
160

system_fread

system_fwrite

system_gmtime
system_localtime
161
162
162

system_unix2local

system_lseek
system_rename
system_ulock
163
163
164
165

systhread_attach
systhread_current
systhread_getdata
165
systhread_newkey

systhread_init
166
166
167
168
systhread_terminate
169
systhread_timerset
170
USE_NSAPI_VERSION
171
172
172
util_does_process_exist
173
174
174
175

systhread_setdata
systhread_sleep
systhread_start

See also

util_can_exec
util_chdir2path

util_cookie_find

util_env_create
util_env_find
util_env_free
util_env_replace

util_env_str 176

169

159

168

170

173

util_get_current_gmt 176
util_get_int_from_aux_file 177
util_get_int_from_file 177
util_get_long_from_aux_file 178
util_get_long_from_file 179
util_get_string_from_aux_file 179
util_get_string_from_file 180
util_getline 181
util_hostname 182
util_is_mozilla 182
util_is_url 183

util_itoa 183
util_later_than 184
util_make_filename 184
util_make_gmt 185
util_make_local 185
util_move_dir 186
util_move_file 186
util_parse_http_time 187
util_put_int_to_file 188
util_put_long to_file 188
util_put_string_to_aux_file 189
util_put_string_to_file 189
util_sect_id 190
util_sh_escape 191
util_snprintf 191
util_sprintf 192
util_strcasecmp 193
util_strftime 193
util_strncasecmp 194
util_uri_check 195
util_uri_escape 195
util_uri_is_evil 196
util_uri_parse 197
util_uri_unescape 197
util_url_cmp 198
util_url_fix_host name 198
util_url_has_FQDN 199

10 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

util_vsnprintf 200

util_vsprintf 200
W 201

write 201

writev 202

Data Structure Reference 205
Privatization of Some Data Structures 206
Session 206

pblock 207

pb_entry 207

pb_param 208

Session->client 208

Request 208

stat 209
shmem_s 209
cinfo 210
sendfiledata 210
Filter 211

FilterContext 211

FilterLayer 211

FilterMethods 212

The CacheEntry Data Structure 212
The CacheState Data Structure 213
The ConnectMode Data Structure 214

Using Wildcard Patterns 215
Wildcard Patterns 215
Wildcard Examples 216

Time Formats 219

Time format strings 219

Hypertext Transfer Protocol 221
Compliance 221
Requests 222

Request Method, URI, and Protocol Version

222

1

12

Request Headers 222
Request Data 223
Responses 223
HTTP Protocol Version, Status Code, and Reason Phrase
Response Headers 224
Response Data 225
Buffered Streams 225

Alphabetical List of NSAPI Functions and Macros 227

Index 235

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

223

Preface

This guide describes how to configure and administer the Sun Java™ System Web
Proxy Server 4, formerly known as Sun ONE™ Web Proxy Server and iPlanet™ Web
Proxy Server (and hereafter referred to as Java System Web Proxy Server or just Proxy
Server).

Who Should Use This Book

The intended audience for this guide is the person who develops, assembles, and
deploys NSAPI plugins in a corporate enterprise. This guide assumes you are familiar
with the following topics:

HTTP

HTML

NSAPI

C programming

Software development processes, including debugging and source code control

How This Book Is Organized

The guide is divided into parts, each of which addresses specific areas and tasks. The
following table lists the parts of the guide and their contents .

13

TABLE P-1 Guide Organization

Chapter Description

Chapter 1 This chapter discusses how to create your own
plugins that define new SAFs to modify or
extend the way the server handles requests.

Chapter 2 This chapter discusses how to create your own
custom filters that you can use to intercept,
and potentially modify, incoming content
presented to or generated by another function.

Chapter 3 This chapter describes examples of custom
SAFs to use at each stage in the
request-handling process.

Chapter 4 This chapter presents a reference of the NSAPI
functions. You use NSAPI functions to define
SAFs.

Chapter 5 This chapter discusses some of the commonly
used NSAPI data structures.

Chapter 6 This chapter lists the wildcard patterns you
can use when specifying values in obj.conf
and various predefined SAFs.

Chapter 7 This chapter lists time formats.

Chapter 8 This chapter gives an overview of HTTP.

Appendix A This appendix provides an alphabetical list of

NSAPI functions and macros.

Related Books

The Sun documents that are related to this manual are:

Sun Java System Web Proxy Server 4.0.2 Release Notes

Sun Java System Web Proxy Server 4.0.2 Installation and Migration Guide
Sun Java System Web Proxy Server 4.0.2 Administration Guide

Sun Java System Web Proxy Server 4.0.2 Configuration File Reference

The following table lists the tasks and concepts described in guide.

14 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

TABLE P-2 Proxy Server Documentation

For Information About

See

Late-breaking information about the software
and documentation

Performing installation and migration tasks:

B Supported platforms and environments

B [nstalling Sun Java System Web Proxy
Server

B Migrating from version 3.6 to version 4

Release Notes

Installation and Migration Guide

Performing administration and management
tasks:

® Using the Administration and
command-line interfaces

Configuring server preferences
Managing users and groups
Monitoring and logging server activity
Using certificates and public key
cryptography to secure the server
Controlling server access

Proxying and routing URLs

Caching

Filtering content

Using a reverse proxy

Using SOCKS

Tuning the Proxy Server to optimize
performance

Administration Guide (and the online Help
included with the product)

Editing configuration files

Configuration File Reference

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related

information.

15

Note — Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

Feedback

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com/app/docs and
click “Send comments.” Be sure to provide the document title and part number in the
online form.

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order
printed documents

Support and http://www.sun.com/support/ Obtain technical support,
Training download patches, and

http://www.sun.com/training/ learn about Sun courses

Typographic Conventions

The following table describes the typographic changes that are used in this book.

16 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

http://docs.sun.com/app/docs
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P-3 Typographic Conventions

Typeface or Symbol | Meaning Example
AaBbCcl23 The names of commands, files, and Edit your . login file.
directories, and onscreen computer
P Use 1s -a to list all files.
output
machine name% you have
mail.
AaBbCcl23 What you type, contrasted with onscreen machine name$% su
computer output
Password:
aabbcc123 Placeholder: replace with a real name or ~ The command to remove a file
value is rm filename.
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User’s
emphasized Guide.

Perform a patch analysis.
Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-4 Shell Prompts

Shell Prompt

C shell prompt machine name$%
C shell superuser prompt machine_name#
Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

17

18 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

CHAPTER 1

Creating Custom SAFs

This chapter describes how to write your own NSAPI plugins that define custom
Server Application Functions (SAFs). Creating plugins allows you to modify or extend
the Sun Java System Web Proxy Server’s built-in functionality. For example, you can
modify the server to handle user authorization in a special way or generate dynamic
HTML pages based on information in a database.

This chapter has the following sections:

“Future Compatibility Issues” on page 20

“The SAF Interface” on page 20

“SAF Parameters” on page 20

“Result Codes” on page 22

“Creating and Using Custom SAFs” on page 23

“Overview of NSAPI C Functions” on page 30

“Required Behavior of SAFs for Each Directive” on page 33
“CGI to NSAPI Conversion” on page 37

Before writing custom SAFs, you should familiarize yourself with the
request-handling process, as described in general in the Sun Java System Web Proxy
Server 4.0.2 Configuration File Reference. Also, before writing a custom SAF, check to see
if a built-in SAF already accomplishes the tasks you have in mind.

For information about predefined SAFs used in the obj . conf file, see the Sun Java
System Web Proxy Server 4.0.2 Configuration File Reference.

For a complete list of the NSAPI routines for implementing custom SAFs, see
Chapter 4

19

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun Java System Web Proxy
Server. To keep your custom plugins upgradeable, do the following:

®m Make sure plugin users know how to edit the configuration files (such as
magnus . conf and obj . conf) manually. The plugin installation software should
not be used to edit these configuration files.

m Keep the source code so you can recompile the plugin.

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the
request-handling step for which they are written. They are small functions designed
for a specific purpose within a specific request-response step. They receive parameters
from the directive that invokes them in the obj . conf file, from the server, and from
previous SAFs.

Here is the C interface for a SAF:
int function (pblock *pb, Session *sn, Request *rq);

The next section discusses the parameters in detail.

The SAF returns a result code that indicates whether and how it succeeded. The server
uses the result code from each function to determine how to proceed with processing
the request. See , for details of the result codes.

SAF Parameters

This section discusses the SAF parameters in detail. The parameters are:

®m “pb (parameter block)” on page 21 -- contains the parameters from the directive
that invokes the SAF in the obj . conf file.

® “sn (session)” on page 21 -- contains information relating to a single TCP/IP
session.

® “1q (request)” on page 21 -- contains information relating to the current request.

20 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide November 2005

pb (parameter block)

The pb parameter is a pointer to a pblock data structure that contains values
specified by the directive that invokes the SAF. A pblock data structure contains a
series of name-value pairs.

For example, a directive that invokes the basic-nsca function might look like:

AuthTrans fn=basic-ncsa auth-type=basic dbm=/<Install_Root>
/<Instance Directorys/userdb/rs

In this case, the pb parameter passed to basic-ncsa contains name-value pairs that
correspond to auth-type=basic and
dbm=/<Install Root>/<Instance Directorys/userdb/rs.

NSAPI provides a set of functions for working with pblock data structures. For
example, pblock findval () returns the value for a given name in a pblock. See
“Parameter Block Manipulation Routines” on page 30, for a summary of the most
commonly used functions for working with parameter blocks.

sn (session)

The sn parameter is a pointer to a session data structure. This parameter contains
variables related to an entire session (that is, the time between the opening and closing
of the TCP/IP connection between the client and the server). The same sn pointer is
passed to each SAF called within each request for an entire session. The following list
describes the most important fields in this data structure (see Chapter 4 for
information about NSAPI routines for manipulating the session data structure).

B sn->client

Pointer to a pblock containing information about the client such as its IP address,
DNS name, or certificate. If the client does not have a DNS name or if it cannot be
found, it will be set to -none.

B sn->csd

Platform-independent client socket descriptor. You will pass this to the routines for
reading from and writing to the client.

rq (request)

The rq parameter is a pointer to a request data structure. This parameter contains
variables related to the current request, such as the request headers, URI, and local file
system path. The same request pointer is passed to each SAF called in the
request-response process for an HTTP request.

The following list describes the most important fields in this data structure (see
Chapter 4 for information about NSAPI routines for manipulating the request data
structure).

Chapter 1 ¢ Creating Custom SAFs 21

B rg->vars

Pointer to a pblock containing the server’s “working” variables. This includes
anything not specifically found in the following three pblocks. The contents of
this pblock vary depending on the specific request and the type of SAF. For
example, an AuthTrans SAF may insert an auth-user parameter into rq->vars
which can be used subsequently by a PathCheck SAE

B rg->regpb

Pointer to a pblock containing elements of the HTTP request. This includes the
HTTP method (GET, POST, and so on), the URI, the protocol (normally HTTP/1.0),
and the query string. This pblock does not normally change throughout the
request-response process.

B rg->headers

Pointer to a pblock containing all of the request headers (such as User-Agent,
If-Modified-Since, and so on) received from the client in the HTTP request.
See Chapter 8 for more information about request headers. This pblock does not
normally change throughout the request-response process.

B rg->srvhdrs

Pointer to a pblock containing the response headers (such as Server, Date,
Content-Type, Content -Length, and so on) to be sent to the client in the HTTP
response. See Chapter 8 for more information about response headers.

The rg parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, rq contains whatever
values were inserted or modified by previously executed SAFs. On output, rgq
contains any modifications or additional information inserted by the SAF. Some SAFs
depend on the existence of specific information provided at an earlier step in the
process. For example, a PathCheck SAF retrieves values in rg->vars that were
previously inserted by an AuthTrans SAF.

22

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what the
server should do next. The result codes are:

® REQ PROCEED

Indicates that the SAF achieved its objective. For some request-response steps
(AuthTrans, NameTrans, Service, and Error), this tells the server to proceed
to the next request-response step, skipping any other SAFs in the current step. For
the other request-response steps (PathCheck, ObjectType, and AddLog), the
server proceeds to the next SAF in the current step.

B REQ NOACTION

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Steps

Indicates that the SAF took no action. The server continues with the next SAF in
the current server step.

B REQ ABORTED

Indicates that an error occurred and an HTTP response should be sent to the client
to indicate the cause of the error. A SAF returning REQ ABORTED should also set
the HTTP response status code. If the server finds an Error directive matching the
status code or reason phrase, it executes the SAF specified. If not, the server sends
a default HTTP response with the status code and reason phrase plus a short
HTML page reflecting the status code and reason phrase for the user. The server
then goes to the first AddLog directive.

® REQ EXIT

Indicates the connection to the client was lost. This should be returned when the
SAF fails in reading or writing to the client. The server then goes to the first
AddLog directive.

Creating and Using Custom SAFs

Custom SAFs are functions in shared libraries that are loaded and called by the server.

To create a custom SAF

1. “Write the Source Code” on page 24 using the NSAPI functions. Each SAF is
written for a specific directive.

2. “Compile and Link” on page 25 the source code to create a shared library (. so,
.sl, or .dl1) file.

3. “Load and Initialize the SAF” on page 27 by editing the magnus. conf file to:
m Load the shared library file containing your custom SAF(s)

m Initialize the SAF if necessary

4. “Instruct the Server to Call the SAFs” on page 28 by editing obj . conf to call
your custom SAF(s) at the appropriate time.

5. “Restart the Server” on page 29.

6. “Test the SAF” on page 29 by accessing your server from a browser with a URL
that triggers your function.

The following sections describe these steps in greater detail.

Chapter 1 » Creating Custom SAFs 23

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the most
commonly used NSAPI functions, see “Overview of NSAPI C Functions” on page 30.
For information about available routines, see Chapter 4

For examples of custom SAFs, see nsapi/examples/ in the server root directory, and
also see Chapter 3

The signature for all SAFs is:

int function (pblock *pb, Session *sn, Request *rq);
For more details on the parameters, see “SAF Parameters” on page 20.

The Sun Java System Web Proxy Server runs as a multi-threaded single process. On
UNIX platforms there are actually two processes (a parent and a child), for historical
reasons. The parent process performs some initialization and forks the child process.
The child process performs further initialization and handles all of the HTTP requests.

Keep the following in mind when writing your SAF:

® Write thread-safe code
® Blocking may affect performance
® Write small functions with parameters and configure them in obj . conf

m Carefully check and handle all errors (and log them so you can determine the
source of problems and fix them)

If necessary, write an initialization function that performs initialization tasks required
by your new SAFs. The initialization function has the same signature as other SAFs:

int function (pblock *pb, Session *sn, Request *rq);

SAFs expect to be able to obtain certain types of information from their parameters. In
most cases, parameter block (pblock) data structures provide the fundamental
storage mechanism for these parameters. A pblock maintains its data as a collection
of name-value pairs. For a summary of the most commonly used functions for
working with pblock structures, see “Parameter Block Manipulation Routines”

on page 30.

When defining a SAF, you do not specifically state which directive it is written for.
However, each SAF must be written for a specific directive (such as AuthTrans,
Service, and so on). Each directive expects its SAFs to behave in particular ways,
and your SAF must conform to the expectations of the directive for which it was
written. For details of what each directive expects of its SAFs, see “Required Behavior
of SAFs for Each Directive” on page 33.

24 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Compile and Link

Compile and link your code with the native compiler for the target platform. For
UNIX, use the gmake command. For Windows, use the nmake command. For
Windows, use Microsoft Visual C++ 6.0 or newer. You must have an import list that
specifies all global variables and functions to access from the server binary. Use the
correct compiler and linker flags for your platform. Refer to the example Makefile in
the server_root/plugins/nsapi/examples directory.

Adbhere to the following guidelines for compiling and linking.

Include Directory and nsapi.h File

Add the server_root/plugins/include (UNIX) or server_root\\plugins\\include
(Windows) directory to your makefile to include the nsapi . h file.

Libraries

Add the server_root /bin/https/1ib (UNIX) or server_root\\bin\\https\\bin
(Windows) library directory to your linker command.

The following table lists the library that you need to link to.

TABLE 1-1 Libraries

Platform Library

Windows ns-httpd40.d11 (in addition to the standard Windows
libraries)

HP-UX libns-httpd40.sl

All other UNIX platforms libns-httpd40.so

Linker Commands and Options for Generating a Shared
Object

To generate a shared library, use the commands and options listed in the following
table.

Chapter 1 ¢ Creating Custom SAFs 25

TABLE 1-2 Linker Commands and Options

Platform Options

Solaris™ Operating System 1d -G or cc -G
(SPARC® Platform Edition)

Windows link -LD

HP-UX cc +Z -b -Wl,+s -W1,-B,symbolic

AIX cc -p 0 -berok -blibpath:$ (LD _RPATH)
Compaq cc -shared

Linux gcc -shared

IRIX cc -shared

Additional Linker Flags

Use the linker flags in the following table to specify which directories should be
searched for shared objects during runtime to resolve symbols.

TABLE 1-3 Linker Flags

Platform Flags

Solaris SPARC -R dir : dir

Windows (no flags, but the ns-httpd40.d11 file must be in the system
PATH variable)

HP-UX -W1,+b,dir,dir

AIX -blibpath:dir:dir

Compaq -rpath dir: dir

Linux -W1, -rpath, dir:dir

IRIX -W1, -rpath, dir:dir

On UNIX, you can also set the library search path using the LD_LIBRARY PATH
environment variable, which must be set when you start the server.

Compiler Flags

The following table lists the flags and defines you need to use for compilation of your
source code.

26 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide November 2005

TABLE 1-4 Compiler Flags and Defines

Parameter Description

Solaris SPARC -DXP_UNIX -D REENTRANT -KPIC -DSOLARIS
Windows -DXP_WIN32 -DWIN32 /MD

HP-UX -DXP_UNIX -D_REENTRANT -DHPUX

AIX -DXP_UNIX -D_REENTRANT -DAIX $ (DEBUG)
Compaq -DXP_UNIX -KPIC

Linux -DLINUX -D_REENTRANT -fPIC

IRIX -032 -exceptions -DXP UNIX -KPIC

All platforms -MCC_HTTPD -NET_SSL

The following table lists the optional flags and defines you can use.

TABLE 1-5 Optional Flags and Defines

Flag/Define Platforms Description

-DSPAPI20 All Needed for the proxy utilities
function include file putil.h

Load and Initialize the SAF

For each shared library (plugin) containing custom SAFs to be loaded into the Sun
Java System Web Proxy Server, add an Init directive that invokes the
load-modules SAF to obj.conf.

The syntax for a directive that calls 1oad-modules is:
Init fn=load-modules shlib= [path]sharedlibname funcs="SAF1,..,SAFn"

® shlib is the local file system path to the shared library (plugin).

® funcs is a comma-separated list of function names to be loaded from the shared
library. Function names are case-sensitive. You may use dash a (-) in place of an
underscore (_) in function names. There should be no spaces in the function name
list.

If the new SAFs require initialization, be sure that the initialization function is
included in the funcs list.

For example, if you created a shared library animations.so that defines two SAFs
do _small anim() and do_big anim() and also defines the initialization function
init_my animations, you would add the following directive to load the plugin:

Init fn=load-modules shlib=animations.so funcs="do small_anim,do_big anim,
init_my animations"

Chapter 1 » Creating Custom SAFs 27

If necessary, also add an Init directive that calls the initialization function for the
newly loaded plugin. For example, if you defined the function init_my new_SAF ()
to perform an operation on the maxAnimLoop parameter, you would add a directive
such as the following to magnus . conf:

Init fn=init my animations maxAnimLoop=5

Instruct the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF at the
appropriate time. The syntax for directives is:

Directive fn=function-name [namel="valuel"] ... [nameN="valueN"]

m Directive is one of the server directives, such as AuthTrans, Service, and so on.
® function-name is the name of the SAF to execute.

® nameN="valueN" are the names and values of parameters which are passed to the
SAF.

Depending on what your new SAF does, you might need to add just one directive to
obj . conf, or you might need to add more than one directive to provide complete
instructions for invoking the new SAF.

For example, if you define a new AuthTrans or PathCheck SAF, you could just add
an appropriate directive in the default object. However, if you define a new Service

SAF to be invoked only when the requested resource is in a particular directory or has
a new kind of file extension, you would need to take extra steps.

If your new Service SAF is to be invoked only when the requested resource has a
new kind of file extension, you might need to add an entry to the MIME types file so
that the type value gets set properly during the ObjectType stage. Then you could
add a Service directive to the default object that specifies the desired type value.

If your new Service SAF is to be invoked only when the requested resource is in a
particular directory, you might need to define a NameTrans directive that generates a
name or ppath value that matches another object, and then in the new object you
could invoke the new Service function.

For example, suppose your plugin defines two new SAFs, do_small anim() and
do_big_anim(), which both take speed parameters. These functions run

animations. All files to be treated as small animations reside in the directory
D:/<Install Root>/<Instance Directory>/docs/animations/small,

while all files to be treated as full-screen animations reside in the directory
D:/<Install Root>/<Instance Directorys>/docs/animations/fullscreen.

To ensure that the new animation functions are invoked whenever a client sends a
request for either a small or full-screen animation, you would add NameTrans
directives to the default object to translate the appropriate URLs to the corresponding
path names and also assign a name to the request.

28 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide November 2005

NameTrans fn=pfx2dir from="/animations/small"
dir="/<Install Root>/<Instance Directorys>/docs/animations/small"
name="small anim"
NameTrans fn=pfx2dir from="/animations/fullscreen"
dir="<Install Root>/<Instance Directory>docs/animations/fullscreen"
name="fullscreen_anim"

You also need to define objects that contain the Service directives that run the
animations and specify the speed parameter.

<Object name="small anim">
Service fn=do_small_anim speed=40
</Object>

<Object name="fullscreen anim">
Service fn=do big anim speed=20
</Object>

Restart the Server

After modifying obj . conf, you need to restart the server. A restart is required for all
plugins that implement SAFs and/ or filters.

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers your
function. For example, if your new SAF is triggered by requests to resources in
http://server-name/animations/small, try requesting a valid resource that starts
with that URL

You should disable caching in your browser so that the server is sure to be accessed. In
Netscape Navigator you may hold the shift key while clicking the Reload button to
ensure that the cache is not used. (Note that the shift-reload trick does not always
force the client to fetch images from source if the images are already in the cache.)

You may also wish to disable the server cache using the cache-init SAF.

Examine the access log and error log to help with debugging.

Chapter 1 » Creating Custom SAFs 29

Overview of NSAPI C Functions

NSAPI provides a set of C functions that are used to implement SAFs. They serve
several purposes. They provide platform independence across Sun Java System Web
Proxy Server operating system and hardware platforms. They provide improved
performance. They are thread-safe which is a requirement for SAFs. They prevent
memory leaks. And they provide functionality necessary for implementing SAFs. You
should always use these NSAPI routines when defining new SAFs.

This section provides an overview of the function categories available and some of the
more commonly used routines. All of the public routines are detailed in Chapter 4

The main categories of NSAPI functions are:

“Parameter Block Manipulation Routines” on page 30
“Protocol Utilities for Service SAFs” on page 30
“Memory Management” on page 31

“File I/O” on page 31

“Network I/O” on page 31

“Threads” on page 32

“Utilities” on page 32

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding,
and removing entries in a pblock data structure:

®m “pblock_findval” on page 118 returns the value for a given name in a pblock.
m “pblock_nvinsert” on page 120 adds a new name-value entry to a pblock.

®m “pblock_remove” on page 123 removes a pblock entry by name from a pblock.
The entry is not disposed. Use “param_free” on page 114 to free the memory used
by the entry.

®m “param_free” on page 114 frees the memory for the given pblock entry.

m “pblock_pblock2str” on page 122 creates a new string containing all of the
name-value pairs from a pblock in the form “name=value name=value.” This can be
a useful function for debugging.

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

® “request_header” on page 141 returns the value for a given request header name,
reading the headers if necessary. This function must be used when requesting
entries from the browser header pblock (rg->headers).

30 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

®m “protocol_status” on page 135 sets the HTTP response status code and reason
phrase.

® “protocol_start_response” on page 134 sends the HTTP response and all HTTP
headers to the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the
standard memory management routines. They also prevent memory leaks by
allocating from a temporary memory (called “pooled” memory) for each request, and
then disposing the entire pool after each request. There are wrappers for standard
memory routines for using permanent memory.

“MALLOC” on page 103
“FREE” on page 96
“PERM_STRDUP” on page 128
“REALLOC” on page 138
“CALLOC” on page 75
“PERM_MALLOC” on page 127
“PERM_FREE” on page 126
“PERM_REALLOC” on page 127
“PERM_CALLOC” on page 125

FileI/O

The file I/O functions provide platform-independent, thread-safe file I/O routines.

m “system_fopenRO” on page 155 opens a file for read-only access.

m “system_fopenRW” on page 156 opens a file for read-write access, creating the file
if necessary.

m “system_fopenWA” on page 157 opens a file for write-append access, creating the
file if necessary.

m “system_fclose” on page 154 closes a file.
m “system_fread” on page 157 reads from a file.
m “system_fwrite” on page 158 writes to a file.

m “system_fwrite_atomic” on page 159 locks the given file before writing to it. This
avoids interference between simultaneous writes by multiple threads.

Network I/0

Network I/O functions provide platform-independent, thread-safe network I/O
routines. These routines work with SSL when it’s enabled.

Chapter 1 ¢ Creating Custom SAFs 31

m “netbuf_grab” on page 110 reads from a network buffer’s socket into the network
buffer.

“netbuf_getc” on page 109 gets a character from a network buffer.

“net_flush” on page 104 flushes buffered data.

“net_read” on page 105 reads bytes from a specified socket into a specified buffer.
“net_sendfile” on page 106 sends the contents of a specified file to a specified a
socket.

®m “net_write” on page 107 writes to the network socket.

Threads

Thread functions include functions for creating your own threads that are compatible
with the server’s threads. There are also routines for critical sections and condition
variables.

m “systhread_start” on page 168 creates a new thread.

m “systhread_sleep” on page 167 puts a thread to sleep for a given time.
® “crit_init” on page 83 creates a new critical section variable.

m “crit_enter” on page 81 gains ownership of a critical section.

® “crit_exit” on page 82 surrenders ownership of a critical section.

m “crit_terminate” on page 83 disposes of a critical section variable.

®m “condvar_init” on page 79 creates a new condition variable.

®m “condvar_notify” on page 79 awakens any threads blocked on a condition
variable.

®m “condvar_wait” on page 81 blocks on a condition variable.
® “condvar_terminate” on page 80 disposes of a condition variable.

m “prepare_nsapi_thread” on page 129 allows threads that are not created by the
server to act like server-created threads.

Utilities
Utility functions include platform-independent, thread-safe versions of many standard

library functions (such as string manipulation), as well as new utilities useful for
NSAPL

®m “daemon_atrestart” on page 84 (UNIX only) registers a user function to be called
when the server is sent a restart signal (HUP) or at shutdown.

®m “condvar_init” on page 79 gets the next line (up to a LF or CRLF) from a buffer.

m “util_hostname” on page 182 gets the local host name as a fully qualified domain
name.

m “util_later_than” on page 184 compares two dates.

32 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

m “util_snprintf” on page 191 is the same as the standard library routine sprintf ().

m “util_strftime” on page 193 is the same as the standard library routine
strftime ().

m “util_uri_escape” on page 195 converts the special characters in a string into
URI-escaped format.

® “util_uri_unescape” on page 197 converts the URI-escaped characters in a string
back into special characters.

Note — You cannot use an embedded null in a string, because NSAPI functions assume
that a null is the end of the string. Therefore, passing unicode-encoded content
through an NSAPI plugin doesn’t work.

Required Behavior of SAFs for Each
Directive

When writing a new SAF, you should define it to do certain things, depending on
which stage of the request-handling process will invoke it. For example, SAFs to be
invoked during the Init stage must conform to different requirements than SAFs to
be invoked during the Service stage.

The rq parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, rq contains whatever
values were inserted or modified by previously executed SAFs. On output, rq
contains any modifications or additional information inserted by the SAF. Some SAFs
depend on the existence of specific information provided at an earlier step in the
process. For example, a PathCheck SAF retrieves values in rq->vars that were
previously inserted by an AuthTrans SAF.

This section outlines the expected behavior of SAFs used at each stage in the
request-handling process.

Init SAFs
AuthTrans SAFs
NameTrans SAFs
PathCheck SAFs
ObjectType SAFs
Input SAFs
Output SAFs
Service SAFs
AddLog SAFs
Error SAFs

Chapter 1 ¢ Creating Custom SAFs 33

34

Connect SAFs
DNS SAFs
Filter SAFs
Route SAFs

For more detailed information about these SAFs, see the Sun Java System Web Proxy
Server 4.0.2 Configuration File Reference.

Init SAFs

®m Purpose: Initialize at startup.

m (Called at server startup and restart.

m rqgand sn are NULL.

m Initialize any shared resources such as files and global variables.

® Can register callback function with daemon_atrestart () to clean up.

® On error, insert error parameter into pb describing the error and return
REQ ABORTED.

m [f successful, return REQ PROCEED.

AuthTrans SAFs

m Purpose: Verify any authorization information. Only basic authorization is
currently defined in the HTTP /1.0 specification.

m Check for Authorization header in rq->headers that contains the
authorization type and uu-encoded user and password information. If header was
not sent, return REQ NOACTION.

m If header exists, check authenticity of user and password.

m If authentic, create auth-type, plus auth-user and/or auth-group parameter
in rqg->vars to be used later by PathCheck SAFs.

m Return REQ PROCEED if the user was successfully authenticated, REQ NOACTION
otherwise.

NameTrans SAFs

® Purpose: Convert logical URI to physical path.

m Perform operations on logical path (ppath in rq->vars) to convert it into a full
local file system path.

®m Return REQ PROCEED if ppath in rg- >vars contains the full local file system
path, or REQ_NOACTION if not.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

To redirect the client to another site, change ppath in rqg->vars to /URL. Add
url to rg->vars with full URL (for example, http://home.netscape.com/).
Return REQ PROCEED.

PathCheck SAFs

Purpose: Check path validity and user’s access rights.
Check auth-type, auth-user, and/or auth-group in rg->vars.

Return REQ_PROCEED if user (and group) is authorized for this area (ppath in
rg->vars).
If not authorized, insert WWW-Authenticate to rg- >srvhdrs with a value such

as: Basic; Realm=\\"Our private area\\". Call protocol status() to
set HTTP response status to PROTOCOL UNAUTHORIZED. Return REQ ABORTED.

ObjectType SAFs

Purpose: Determine content -type of data.

If content-type in rq->srvhdrs already exists, return REQ_NOACTION.
Determine the MIME type and create content -type in rq->srvhdrs
Return REQ_PROCEED if content-type is created, REQ NOACTION otherwise.

Input SAFs

Purpose: Insert filters that process incoming (client-to-server) data.

Input SAFs are executed when a plugin or the server first attempts to read entity
body data from the client.

Input SAFs are executed at most once per request.

Return REQ PROCEED to indicate success, or REQ NOACTION to indicate it
performed no action.

Output SAFs

Purpose: Insert filters that process outgoing (server-to-client) data.

Output SAFs are executed when a plugin or the server first attempts to write
entity body data from the client.

Output SAFs are executed at most once per request.

Return REQ PROCEED to indicate success, or REQ NOACTION to indicate it
performed no action.

Chapter 1 ¢ Creating Custom SAFs 35

36

Service SAFs

m Purpose: Generate and send the response to the client.

®m A service SAFis only called if each of the optional parameters type, method,
and query specified in the directive in obj . conf match the request.

®m Remove existing content -type from rg->srvhdrs. Insert correct
content-type in rg->srvhdrs.

m Create any other headers in rq->srvhdrs.

m Call “protocol_set_finfo” on page 133 to set HTTP response status.

m Call “protocol_start_response” on page 134 to send HTTP response and headers.
m Generate and send data to the client using “net_write” on page 107 .

®m Return REQ PROCEED if successful, REQ EXIT on write error, REQ ABORTED on
other failures.

Error SAFs

m Purpose: Respond to an HTTP status error condition.

® The Error SAF is only called if each of the optional parameters code and reason
specified in the directive in obj . conf match the current error.

m Error SAFs do the same as Service SAFs, but only in response to an HTTP
status error condition.

AddLog SAFs

m Purpose: Log the transaction to a log file.
® AddLog SAFs can use any data available in pb, sn, or rq to log this transaction.
® Return REQ PROCEED.

Connect

® Purpose: Call the connect function you specify.

® Only the first applicable Connect function is called, starting from the most
restrictive object. Occasionally it is desirable to call multiple functions (until a
connection is established). The function returns REQ_NOACTION if the next
function should be called. If it fails to connect, the return value is REQ_ABORT. If it
connects successfully, the connected socket descriptor will be returned.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

DNS

m Purpose: Calls either the dns-config built-in function or a DNS function that you
specify.

Filter

® Purpose: Run an external command and then pipe the data through the external
command before processing that data in the proxy. This is accomplished using the
pre-filter function.

Route

® Purpose: Specify information about where the proxy server should route requests.

CGI to NSAPI Conversion

You may have a need to convert a CGI variable into an SAF using NSAPI. Since the
CGI environment variables are not available to NSAPI, you'll retrieve them from the
NSAPI parameter blocks. The table below indicates how each CGI environment
variable can be obtained in NSAPI.

Keep in mind that your code must be thread-safe under NSAPI. You should use
NSAPI functions that are thread-safe. Also, you should use the NSAPI memory
management and other routines for speed and platform independence.

TABLE 1-6 Parameter Blocks for CGI Variables

CGl getenv() NSAPI

AUTH_TYPE pblock findval ("auth-type", rg->vars);
AUTH_USER pblock findval ("auth-user", rg->vars) ;

CONTENT _LENGTH pblock findval ("content-length", rg-sheaders) ;
CONTENT_TYPE pblock findval ("content-type", rg->headers) ;

GATEWAY INTERFACE "CGI/1.1"

Chapter 1 ¢ Creating Custom SAFs 37

TABLE 1-6 Parameter Blocks for CGI Variables (Continued)

CGl getenv() NSAPI

HITP_* pblock findval("*", rg->headers); (* is lowercase; dash
replaces underscore)

PATH INFO pblock findval ("path-info", rg->vars);

PATH_TRANSLATED pblock findval ("path-translated", rg->vars);

QUERY_STRING pblock findval ("query", rg->regpb); (GET only; POST puts
query string in body data)

REMOTE_ADDR pblock findval ("ip", sn->client);

REMOTE_HOST session dns(sn) ? session dns(sn)

pblock findval ("ip", sn->client);

REMOTE_IDENT pblock findval("from", rg-sheaders) ;(not usually
available)

REMOTE_USER pblock findval ("auth-user", rg-s>vars);

REQUEST METHOD pblock findval ("method", reg->regpb) ;

SCRIPT NAME pblock findval ("uri", rg->regpb) ;

SERVER_NAME char *util hostname () ;

SERVER_PORT conf_getglobals () ->Vport; (as a string)

SERVER_PROTOCOL pblock findval ("protocol", rg->regpb) ;

SERVER_SOFTWARE MAGNUS_VERSION_STRING

Sun ONE-specific:

CLIENT CERT pblock findval ("auth-cert", rg->vars)
HOST char *session_maxdns (sn) ; (may be null)
HTTPS security active ? "ON" : "OFF";
HTTPS_KEYSIZE pblock findval ("keysize", sn->client);

HTTPS_ SECRETKEYSIZBblock findval ("secret-keysize", sn->client);

QUERY pblock_findval (query", rg->regpb); (GET only, POST puts
query string in entity-body data)

SERVER_URL http uri2url dynamic("","", sn, rq);

38 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

CHAPTER 2

Creating Custom Filters

This chapter describes how to create custom filters that can be used to intercept and
possibly modify the content presented to or generated by another function.

This chapter has the following sections:

“Future Compatibility Issues” on page 39

“The NSAPI Filter Interface” on page 40

“Filter Methods” on page 40

“Position of Filters in the Filter Stack” on page 44

“Filters that Alter Content-Length” on page 45

“Creating and Using Custom Filters” on page 46

“Overview of NSAPI Functions for Filter Development” on page 49

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun Java System Web Proxy
Server. To keep your custom plugins upgradeable, do the following;:

® Make sure plugin users know how to edit the configuration files (such as

magnus . conf and obj . conf) manually. The plugin installation software should

not be used to edit these configuration files.

m Keep the source code so you can recompile the plugin.

39

The NSAPI Filter Interface

Sun Java System Web Proxy Server 4 extends NSAPI by introducing a new filter
interface that complements the existing Server Application Function (SAF) interface.
Filters make it possible to intercept and possibly modify data sent to and from the
server. The server communicates with a filter by calling the filter’s filter methods. Each
filter implements one or more filter methods. A filter method is a C function that
performs a specific operation, such as processing data sent by the server.

40

Filter Methods

This section describes the filter methods that a filter can implement. To create a filter, a
filter developer implements one or more of these methods. This section describes the
following filter methods:

“insert” on page 41
“remove” on page 41
“flush” on page 42
“read” on page 42
“write” on page 42
“writev” on page 43
“sendfile” on page 43

For more information about these methods, see Chapter 4

C Prototypes for Filter Methods

Following is a list of C prototypes for the filter methods:

int insert (FilterLayer *layer, pblock *pb);

void remove (FilterLayer *layer) ;

int flush(FilterLayer *layer) ;

int read(FilterLayer *layer, void *buf, int amount, int timeout) ;

int write(FilterLayer *layer, const void *buf, int amount) ;

int writev(FilterLayer *layer, const struct iovec *iov, int iov_size);
int sendfile(FilterLayer *layer, sendfiledata *sfd);

The layer parameter is a pointer to a FilterLayer data structure, which contains
variables related to a particular instance of a filter. Following is a list of the most
important fields in the FilterLayer data structure:

® context->sn: Contains information relating to a single TCP/IP session (the same
sn pointer that’s passed to SAFs).

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

® context->rqg: Contains information relating to the current request (the same rqg
pointer that’s passed to SAFs).

® context->data: Pointer to filter-specific data.

® lower: A platform-independent socket descriptor used to communicate with the
next filter in the stack.

The meaning of the context ->data field is defined by the filter developer. Filters
that must maintain state information across filter method calls can use
context->data to store that information.

For more information about FilterLayer, see “FilterLayer” on page 211.

insert

The insert filter method is called when an SAF such as insert-filter calls the
filter_insert function to request that a specific filter be inserted into the filter
stack. Each filter must implement the insert filter method.

When insert is called, the filter can determine whether it should be inserted into the
filter stack. For example, the filter could inspect the Content - Type header in the
rg->srvhdrs pblock to determine whether it is interested in the type of data that
will be transmitted. If the filter should not be inserted, the insert filter method
should indicate this by returning REQ NOACTION.

If the filter should be inserted, the insert filter method provides an opportunity to
initialize this particular instance of the filter. For example, the insert method could
allocate a buffer with MALLOC and store a pointer to that buffer in
layer->context->data.

The filter is not part of the filter stack until after insert returns. As a result, the
insert method should not attempt to read from, write to, or otherwise interact with
the filter stack.

See Also

“insert” on page 100 in Chapter 4

remove

The remove filter method is called when a filter stack is destroyed (that is, when the
corresponding socket descriptor is closed), when the server finishes processing the
request the filter was associated with, or when an SAF such as remove-filter calls
the filter remove function. The remove filter method is optional.

Chapter 2 » Creating Custom Filters 41

The remove method can be used to clean up any data the filter allocated in insert
and to pass any buffered data to the next filter by calling
net write(layer->lower, ...).

See Also

“remove” on page 139 in Chapter 4

flush

The £1ush filter method is called when a filter or SAF calls the net flush function.
The £1ush method should pass any buffered data to the next filter by calling
net_write(layer->lower, ...).The £lush method is optional, but it should be
implemented by any filter that buffers outgoing data.

See Also
“flush” on page 95 in Chapter 4

read

The read filter method is called when a filter or SAF calls the net read function.
Filters that are interested in incoming data (data sent from a client to the server)
implement the read filter method.

Typically, the read method will attempt to obtain data from the next filter by calling
net read(layer-s>lower, ...).The read method may then modify the received
data before returning it to its caller.

See Also

“read” on page 137 in Chapter 4

write

The write filter method is called when a filter or SAF calls the net _write function.
Filters that are interested in outgoing data (data sent from the server to a client)
implement the write filter method.

Typically, the write method will pass data to the next filter by calling

net write(layer->lower, ...).The write method may modify the data before
calling net_write. For example, the http-compression filter compresses data
before passing it on to the next filter.

42 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide November 2005

If a filter implements the write filter method but does not pass the data to the next
layer before returning to its caller (that is, if the filter buffers outgoing data), the filter
should also implement the £1ush method.

See Also

“write” on page 201 in Chapter 4

writev

The writev filter method performs the same function as the write filter method, but
the format of its parameters is different. It is not necessary to implement the writev
filter method; if a filter implements the write filter method but not the writev filter
method, the server uses the write method instead of the writev method. A filter
should not implement the writev method unless it also implements the write
method.

Under some circumstances, the server may run slightly faster when filters that
implement the write filter method also implement the writev filter method.

See Also

“writev” on page 202 in Chapter 4

sendfile

The sendfile filter method performs a function similar to the writev filter method,
but it sends a file directly instead of first copying the contents of the file into a buffer. It
is not necessary to implement the sendfile filter method; if a filter implements the
write filter method but not the sendfile filter method, the server will use the
write method instead of the sendfile method. A filter should not implement the
sendfile method unless it also implements the write method.

Under some circumstances, the server may run slightly faster when filters that
implement the write filter method also implement the sendfile filter method.

See Also

“sendfile” on page 145 in Chapter 4

Chapter 2 » Creating Custom Filters 43

44

Position of Filters in the Filter Stack

All data sent to the server (such as the result of an HTML form) or sent from the server
(such as the output of a JSP page) is passed through a set of filters known as a filter
stack. The server creates a separate filter stack for each connection. While processing a
request, individual filters can be inserted into and removed from the stack.

Different types of filters occupy different positions within a filter stack. Filters that deal
with application-level content (such filters that translates a page from XHTML to
HTML) occupy a higher position than filters that deal with protocol-level issues (such
as filters that format HTTP responses). When two or more filters are defined to occupy
the same position in the filter stack, filters that were inserted later will appear higher
than filters that were inserted earlier.

Filters positioned higher in the filter stack are given an earlier opportunity to process
outgoing data, while filters positioned lower in the stack are given an earlier
opportunity to process incoming data. For example, in the following figure, the

xml -to-xhtml filter is given an earlier opportunity to process outgoing data than the
xhtml-to-html filter.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Service fn = “send-file”

Highest
filter

Lowest
filter

FIGURE 2-1 Position of Filters in the Filter Stack

P v

xml-to-xhtml

P v

xhtml-to-html

P v

http-compression

T v

Incoming Outgoing
request response

data data

Content
translation
filters

Content
coding
filter

When you create a filter with the filter create function, you specify what
position your filter should occupy in the stack. You can also use the

init-filter-order Init SAF to control the position of specific filters within filter
stacks. For example, init-filter-order can be used to ensure that a filter that

converts outgoing XML to XHTML is inserted above a filter that converts outgoing

XHTML to HTML.

For more information, see “filter_create” on page 91

Filters that Alter Content-Length

Filters that can alter the length of an incoming request body or outgoing response

body must take special steps to ensure interoperability with other filters and SAFs.

Chapter 2 » Creating Custom Filters

45

Filters that process incoming data are referred to as input filters. If an input filter can
alter the length of the incoming request body (for example, if a filter decompresses
incoming data) and there is a Content -Length header in the rq- >headers pblock,
the filter’s insert filter method should remove the Content -Length header and
replace it with a Transfer-encoding: identity header as follows:

pb_param *pp;

pp = pblock remove ("content-length", layer-s>context->rg->headers);
if (pp != NULL) ({
param_free (pp) ;
pblock nvinsert ("transfer-encoding", "identity", layer-scontext->
rg->headers) ;

Because some SAFs expect a Content -Length header when a request body is
present, before calling the first Service SAF the server will insert all relevant filters,
read the entire request body, and compute the length of the request body after it has
been passed through all input filters. However, by default, the server will read at most
8192 bytes of request body data. If the request body exceeds 8192 bytes after being
passed through the relevant input filters, the request will be cancelled. For more
information, see the description of ChunkedRequestBufferSize in the “Syntax and
Use of magnus.conf” chapter in the Sun Java System Web Proxy Server 4.0.2
Configuration File Reference.

Filters that process outgoing data are referred to as output filters. If an output filter
can alter the length of the outgoing response body (for example, if the filter
compresses outgoing data), the filter’s insert filter method should remove the
Content-Length header from rg->srvhdrs as follows:

pb_param *pp;

pp = pblock remove ("content-length", layer-s>context->rg->srvhdrs);
if (pp != NULL)
param_ free (pp) ;

Creating and Using Custom Filters

Custom filters are defined in shared libraries that are loaded and called by the server.

46 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Steps

To create a custom filter

1. “Write the Source Code” on page 47 using the NSAPI functions.

2. “Compile and Link” on page 48 the source code to create a shared library (. so,
.sl, or .d1l1) file.

3. “Load and Initialize the Filter” on page 48 by editing the magnus . conf file.

4. “Instruct the Server to Insert the Filter” on page 48 by editing the obj.conf
file to insert your custom filter(s) at the appropriate time.

5. “Restart the Server” on page 49.

6. “Test the Filter” on page 49 by accessing your server from a browser with a URL
that triggers your filter.

These steps are described in greater detail in the following sections.

Write the Source Code

Write your custom filter methods using NSAPI functions. For a summary of the
NSAPI functions specific to filter development, see “Overview of NSAPI Functions for
Filter Development” on page 49. For a summary of general purpose NSAPI

functions, see Chapter 4 Each filter method must be implemented as a separate
function. See “Filter Methods” on page 40for the filter method prototypes.

The filter must be created by a call to filter create. Typically, each plugin defines
annsapi module init function thatis used to call filter create and perform
any other initialization tasks. See “nsapi_module_init” on page 111 and “filter_create”
on page 91 for more information.

Filter methods are invoked whenever the server or an SAF calls certain NSAPI
functions such as net_write or filter insert. As a result, filter methods can be
invoked from any thread and should only block using NSAPI functions (for example,
crit_enter and net_read). If a filter method blocks using other functions (for
example, the Windows WaitForMultipleObjects and ReadFile functions), the
server may hang. Also, shared objects that define filters should be loaded with the
NativeThread="no" flag, as described in “Load and Initialize the Filter” on page
48

If a filter method must block using a non-NSAPI function, KernelThreads 1
should be set in magnus . conf. For more information about KernelThreads, see the
description in the chapter “Syntax and Use of magnus.conf” in the Sun Java System
Web Proxy Server 4.0.2 Configuration File Reference.

Keep the following in mind when writing your filter:

m Write thread-safe code

Chapter 2 » Creating Custom Filters 47

®]JO should only be performed using the NSAPI functions documented in “File I/O”
on page 31 and “Network I/O” on page 31.

® Thread synchronization should only be performed using NSAPI functions
documented in “Threads” on page 32.

m Blocking may affect performance.
m Carefully check and handle all errors.

For examples of custom filters, see server_root/plugins/nsapi/examples and also
Chapter 3

Compile and Link

Filters are compiled and linked in the same way as SAFs. See “Compile and Link”
on page 25, for more information.

Load and Initialize the Filter

For each shared library (plugin) containing custom SAFs to be loaded into the Sun
Java System Web Proxy Server, add an Init directive that invokes the
load-modules SAF to obj . conf. The syntax for a directive that loads a filter plugin
is:

Init fn=locad-modules shlib=[path]sharedlibname NativeThread="no"

® shlib is the local file system path to the shared library (plugin).

®m NativeThread indicates whether the plugin requires native threads. Filters
should be written to run on any type of thread (see “Write the Source Code”
on page 24).

When the server encounters such a directive, it calls the plugin’s
nsapi_module_ init function to initialize the filter.

Instruct the Server to Insert the Filter

Add an Input or Output directive to obj . conf to instruct the server to insert your
filter into the filter stack. The format of the directive is as follows:

Directive fn=insert-filter £ilter="filter-name”

[namel="valuel”] . . . [nameN="valueN"]

m Directive is Input or Output.

m filter-name is the name of the filter, as passed to filter_create, to insert.

® nameN="valueN" are the names and values of parameters that are passed to the
filter’s insert filter method.

48 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Filters that process incoming data should be inserted using an Input directive. Filters
that process outgoing data should be inserted using an Output directive.

To ensure that your filter is inserted whenever a client sends a request, add the Input
or Output directive to the default object. For example, the following portion of

obj . conf instructs the server to insert a filter named example-replace and pass it
two parameters, from and to:

<Object name="default"s>

Output fn=insert-filter
filter="example-replace"
from="01ld String"
to="New String"

</Objects>

Restart the Server

For the server to load your plugin, you must restart the server. A restart is required for
all plugins that implement SAFs and/ or filters.

Test the Filter

Test your SAF by accessing your server from a browser. You should disable caching in
your browser so that the server is sure to be accessed. In Netscape Navigator, you can
hold the shift key while clicking the Reload button to ensure that the cache is not used.
(Note that the shift-reload trick does not always force the client to fetch images from
source if the images are already in the cache.) Examine the access and error logs to
help with debugging.

Overview of NSAPI Functions for Filter
Development

NSAPI provides a set of C functions that are used to implement SAFs and filters. This
section lists the functions that are specific to the development of filters. All of the
public routines are described in detail in Chapter 4.

The NSAPI functions specific to the development of filters are:

m “filter_create” on page 91 creates a new filter

Chapter 2 » Creating Custom Filters 49

“filter_insert” on page 93 inserts the specified filter into a filter stack
“filter_remove” on page 94 removes the specified filter from a filter stack
“filter_name” on page 94 returns the name of the specified filter

“filter_find” on page 92 finds an existing filter given a filter name

“filter_layer” on page 93 returns the layer in a filter stack that corresponds to the
specified filter

50 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

CHAPTER 3

Examples of Custom SAFs and Filters

This chapter provides examples of custom Sever Application Functions (SAFs) and
filters for each directive in the request-response process. You may wish to use these
examples as the basis for implementing your own custom SAFs and filters. For more
information about creating your own custom SAFs, see Chapter 2

Before writing custom SAFs, you should be familiar with the request-response process
and the role of the configuration file obj . conf (this file is discussed in the Sun Java
System Web Proxy Server 4.0.2 Configuration File Reference).

Before writing your own SAF, check to see if an existing SAF serves your purpose. The
predefined SAFs are discussed in the Sun Java System Web Proxy Server 4.0.2
Configuration File Reference.

For a list of the NSAPI functions for creating new SAFs, see Chapter 4

This chapter has the following sections:

“Examples in the Build” on page 51
“AuthTrans Example” on page 52
“NameTrans Example” on page 54
“PathCheck Example” on page 58
“ObjectType Example” on page 60
“Output Example” on page 62
“Service Example” on page 68
“AddLog Example” on page 70

Examples in the Build

The plugins/nsapi/examples subdirectory within the server installation directory
contains examples of source code for SAFs.

51

You can use the example . mak makefile in the same directory to compile the examples
and create a library containing the functions in all of the example files.

To test an example, load the examples shared library into the Sun Java System Web
Proxy Server by adding the following directive in the Init section of obj . conf:

Init fn=load-modules shlib=examples.so/dll
funcs=
function1,function2, function3

The funcs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization
function in the funcs argument to load-modules, and also add an Init directive to
call the initialization function.

For example, the PathCheck example implements the restrict-by-acf function,
which is initialized by the acf-init function. The following directive loads both
these functions:

Init fn=load-modules yourlibrary funcs=acf-init,restrict-by-acf

The following directive calls the acf-init function during server initialization:
Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling process, add
an appropriate directive in the object to which it applies, for example:

PathCheck fn=restrict-by-acf

After adding new Init directives to obj .conf, you always need to restart the Sun

Java System Web Proxy Server to load the changes, since Init directives are only
applied during server initialization.

AuthTrans Example

This simple example of an AuthTrans function demonstrates how to use your own
custom ways of verifying that the user name and password that a remote client
provided is accurate. This program uses a hard-coded table of user names and
passwords and checks a given user’s password against the one in the static data array.
The userdb parameter is not used in this function.

AuthTrans directives work in conjunction with PathCheck directives. Generally, an
AuthTrans function checks if the user name and password associated with the
request are acceptable, but it does not allow or deny access to the request; it leaves that
to a PathCheck function.

52 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

AuthTrans functions get the user name and password from the headers associated
with the request. When a client initially makes a request, the user name and password
are unknown so the AuthTrans function and PathCheck function work together to
reject the request, since they can’t validate the user name and password. When the
client receives the rejection, the usual response is for it to present a dialog box asking
the user for their user name and password, and then the client submits the request
again, this time including the user name and password in the headers.

In this example, the hardcoded-auth function, which is invoked during the
AuthTrans step, checks if the user name and password correspond to an entry in the
hard-coded table of users and passwords.

Installing the Example

To install the function on the Sun Java System Web Proxy Server, add the following
Init directive to obj . conf to load the compiled function:

Init fn=load-modules shlib=yourlibrary funcs=hardcoded-auth

Inside the default object in obj . conf, add the following AuthTrans directive:

AuthTrans fn=basic-auth auth-type="basic" userfn=hardcoded-auth
userdb=unused

Note that this function does not actually enforce authorization requirements, it only
takes given information and tells the server if it’s correct or not. The PathCheck
function require-auth performs the enforcement, so add the following PathCheck
directive as well:

PathCheck fn=require-auth realm="test realm" auth-type="basic"

Source Code

The source code for this example is in the auth. c file in the nsapi/examples/ or
plugins/nsapi/examples subdirectory of the server root directory.
#include "nsapi.h"

typedef struct ({
char *name;

char *pw;

} user s;

static user_s user set[] = {
{"joe“ , “shmoe"},
{"suzy", "creamcheese"},

{NULL, NULL}

}i

Chapter 3 » Examples of Custom SAFs and Filters 53

#include "frame/log.h"

#ifdef _ cplusplus
extern "C"
#endif
NSAPI_PUBLIC int hardcoded auth(pblock *param, Session *sn, Request *rq)
{
/* Parameters given to us by auth-basic */
char *pwfile = pblock findval ("userdb", param);
char *user = pblock findval ("user", param);
char *pw = pblock findval ("pw", param);

/* Temp variables */
register int x;

for(x = 0; user_set[x].name != NULL; ++x) {
/* If this isn’t the user we want, keep going */
if (strcmp (user, user_set[x] .name) != 0) continue;

/* Verify password */
if (stremp (pw, user set[x].pw)) ({
log_error (LOG_SECURITY, "hardcoded-auth", sn, rq,
"user %s entered wrong password", user);
/* This will cause the enforcement function to ask */
/* user again */
return REQ NOACTION;
1
/* If we return REQ PROCEED, the username will be accepted */
return REQ PROCEED;
}
/* No match, have it ask them again */
log_error (LOG_SECURITY, "hardcoded-auth", sn, rq,
"unknown user $%s", user) ;
return REQ NOACTION;

NameTrans Example

The ntrans. c file in the plugins/nsapi/examples subdirectory of the server root
directory contains source code for two example NameTrans functions:
B explicit pathinfo
This example allows the use of explicit extra path information in a URL.
B https redirect

This example redirects the URL if the client is a particular version of Netscape
Navigator.

54 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

This section discusses the first example. Look at the source code in ntrans. c for the
second example.

Note — A NameTrans function is used primarily to convert the logical URL in ppath
in rg->vars to a physical path name. However, the example discussed here,
explicit_pathinfo, does not translate the URL into a physical path name; it
changes the value of the requested URL. See the second example, https_redirect,
inntrans.c for an example of a NameTrans function that converts the value of
ppathin rq->vars from a URL to a physical path name.

The explicit_pathinfo example allows URLs to explicitly include extra path
information for use by a CGI program. The extra path information is delimited from
the main URL by a specified separator, such as a comma.

For example:

http://server-name/cgi/marketing, /jan/releases/hardware

In this case, the URL of the requested resource (which would be a CGI program) is

http://server-name/cgi/marketing, and the extra path information to give to the
CGI program is /jan/releases/hardware.

When choosing a separator, be sure to pick a character that will never be used as part
of the real URL.

The explicit_pathinfo function reads the URL, strips out everything following
the comma, and puts it in the path-info field of the vars field in the request
object (rq->vars). CGI programs can access this information through the
PATH_INFO environment variable.

One side effect of explicit pathinfo is that the SCRIPT NAME CGI environment
variable has the separator character tacked onto the end.

NameTrans directives usually return REQ PROCEED when they change the path, so
that the server does not process any more NameTrans directives. However, in this
case we want name translation to continue after we have extracted the path info, since
we have not yet translated the URL to a physical path name.

Installing the Example

To install the function on the Sun Java System Web Proxy Server, add the following
Init directive to obj . conf to load the compiled function:

Init fn=load-modules shlib=yourlibrary funcs=explicit-pathinfo

Inside the default object in obj . conf, add the following NameTrans directive:

NameTrans fn=explicit-pathinfo separator=","

Chapter 3 » Examples of Custom SAFs and Filters 55

This NameTrans directive should appear before other NameTrans directives in the
default object.

Source Code

This example is in the ntrans. c file in the plugins/nsapi/examples
subdirectory of the server root directory.

#include "nsapi.h"
#include <string.hs> /* strchr */
#include "frame/log.h" /* log error *x/
#ifdef _ cplusplus
extern "C"
#endif
NSAPI PUBLIC int explicit pathinfo(pblock *pb, Session *sn, Request *rq)
{
/* Parameter: The character to split the path by */
char *sep = pblock findval ("separator", pb);
/* Server variables */
char *ppath = pblock findval ("ppath", rg->vars);
/* Temp var */
char *t;
/* Verify correct usage */
if (!sep) {
log error (LOG_MISCONFIG, "explicit-pathinfo", sn, rq,
"missing parameter (need root)");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;
}
/* Check for separator. If not there, don’t do anything */
t = strchr (ppath, sepl0]);
if(!t)
return REQ NOACTION;
/* Truncate path at the separator */
*t++ = '\\0';
/* Assign path information */
pblock nvinsert ("path-info", t, rg->vars);
/* Normally NameTrans functions return REQ PROCEED when they
change the path. However, we want name translation to
continue after we’re done. */
return REQ NOACTION;

1

#include "base/util.h" /* is_mozilla */
#include "frame/protocol.h" /* protocol status *x/
#include "base/shexp.h" /* shexp cmp */

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int https_redirect (pblock *pb, Session *sn, Request *rq)

{

/* Server Variable */

56 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

char *ppath = pblock findval ("ppath", rg-s>vars);

/* Parameters */

char *from = pblock findval ("from", pb);
char *url = pblock findval ("url", pb);
char *alt = pblock_findval("alt", pb);

/* Work vars */

char *ua;
/* Check usage */
if((!from) || (lurl)) {

log_error (LOG_MISCONFIG, "https-redirect", sn, rq,

"missing parameter (need
return REQ ABORTED;

}

from, url)");

/* Use wildcard match to see if this path is one we should
redirect */

if (shexp cmp (ppath, from) != 0)
return REQ NOACTION; /* no match */

/* Sigh. The only way to check for SSL capability is to

check UA */

if (request_header ("user-agent",
return REQ ABORTED;

/* The is mozilla function
or greater */

&ua, sn, rq) == REQ ABORTED)

checks for Mozilla version 0.96

if (util is mozilla(ua, "0", "96")) {
/* Set the return code to 302 Redirect */
protocol status(sn, rg, PROTOCOL REDIRECT, NULL) ;
/* The error handling functions use this to set the

Location: */
pblock_nvinsert ("url", url,
return REQ ABORTED;

}

/* No match. 0l1ld client. */

rg->vars) ;

/* If there is an alternate document specified, use it. */

if (alt)

pb_param *pp = pblock find("ppath", rg-s>vars);

/* Trash the old value */
FREE (pp->value) ;

/* We must dup it because the library will later free

this pblock */
pp->value = STRDUP (alt) ;
return REQ PROCEED;
1
/* Else do nothing */
return REQ NOACTION;

Chapter 3 « Examples of Custom SAFs and Filters

57

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for
performing path checks. This example simply checks if the requesting host is on a list
of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP addresses
with one IP address per line. The PathCheck function restrict_by acf gets the IP
address of the host that is making the request and checks if it is on the list. If the host
is on the list, it is allowed access; otherwise, access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions, add the following line in the
Init section of the obj . conf file:

Init fn=load-modules yourlibrary funcs=acf-init,restrict-by-acf

To call acf-init to read the list of allowable hosts, add the following line to the
Init section in obj.cont. (This line must come after the one that loads the library
containing acf-init).

Init fn=acf-init file=fileContainingHostsList

To execute your custom SAF during the request-response process for some object, add
the following line to that object in the obj . conf file:

PathCheck fn=restrict-by-acf

Source Code

The source code for this example is in pcheck. c in the plugins/nsapi/examples
subdirectory within the server root directory.

#include "nsapi.h"

/* Set to NULL to prevent problems with people not calling
acf-init */

static char **hosts = NULL;

#include <stdio.h>

#include "base/daemon.h"

#include "base/util.h" /* util sprintf */

#include "frame/log.h" /* log_error */

#include "frame/protocol.h" /* protocol status */

/* The longest line we’ll allow in an access control file */

58 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

#define MAX ACF_LINE 256

/* Used to free static array on restart */
#ifdef _ cplusplus

extern "C"

#endif

NSAPI_PUBLIC void acf free(void *unused)

{

}

register int x;

for(x = 0; hosts[x]; ++x)
FREE (hosts [x]) ;

FREE (hosts) ;

hosts = NULL;

#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int acf init(pblock *pb, Session *sn, Request *rq)

{

/* Parameter */
char *acf_file = pblock_findval("file", pb);
/* Working variables */
int num hosts;
FILE *f;
char err [MAGNUS_ERROR_LEN] ;
char buf [MAX ACF_LINE];
/* Check usage. Note that Init functions have special
error logging */
if (lacf file)
util sprintf (err, "missing parameter to acf_init
(need file)");
pblock nvinsert ("error", err, pb);
return REQ ABORTED;
1
f = fopen(acf file, "r");
/* Did we open it? */
if (1) {
util sprintf (err, "can’t open access control file %s (%s)",
acf file, system errmsg());
pblock nvinsert ("error", err, pb);
return REQ_ABORTED;
1
/* Initialize hosts array */
num_hosts = 0;
hosts = (char **) MALLOC(1 * sizeof (char *));
hosts[0] = NULL;
while (fgets (buf, MAX ACF LINE, f)) ({
/* Blast linefeed that stdio helpfully leaves on there */

buf [strlen(buf) - 1] = "\\0’;
hosts = (char **) REALLOC (hosts, (num_hosts + 2) *
sizeof (char *));
hosts[num _hosts++] = STRDUP (buf) ;
hosts [num_hosts] = NULL;
1
fclose(f) ;

/* At restart, free hosts array */

Chapter 3 « Examples of Custom SAFs and Filters

59

daemon_atrestart (acf_free, NULL) ;
return REQ PROCEED
1
#ifdef _ cplusplus
extern "C"
#endif
NSAPI_PUBLIC int restrict by acf (pblock *pb, Session *sn, Request *rq)
{
/* No parameters */
/* Working variables */
char *remip = pblock findval("ip", sn->client);
register int x;
if (thosts) ({
log error (LOG_MISCONFIG, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;
}
for(x = 0; hosts[x] != NULL; ++x) {
/* If they’re on the list, they’re allowed */
if (!strcmp (remip, hosts[x]))
return REQ NOACTION;
}
/* Set response code to forbidden and return an error. */
protocol status(sn, rqg, PROTOCOL FORBIDDEN, NULL) ;
return REQ ABORTED;

ObjectType Example

The example in this section demonstrates how to implement html2shtml, a custom
SAF that instructs the server to treat a . html file as a . shtml file if a . shtml version
of the requested file exists.

A well-behaved ObjectType function checks if the content type is already set, and if
so, does nothing except return REQ_NOACTION.

if (pblock findval ("content-type", rg->srvhdrs))
return REQ NOACTION;

The primary task an ObjectType directive needs to perform is to set the content type
(if it is not already set). This example sets it to magnus-internal/parsed-html in
the following lines:

/* Set the content-type to magnus-internal/parsed-html */
pblock nvinsert ("content-type", "magnus-internal/parsed-html",

60 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

rg->srvhdrs) ;

The html2shtml function looks at the requested file name. If it ends with . html, the
function looks for a file with the same base name, but with the extension . shtml
instead. If it finds one, it uses that path and informs the server that the file is parsed
HTML instead of regular HTML. Note that this requires an extra stat call for every
HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in the Init
section of the ob7j . conf file:

Init fn=load-modules shlib=yourlibrary funcs=html2shtml

To execute the custom SAF during the request-response process for some object, add
the following line to that object in the obj . conf file:

ObjectType fn=html2shtml

Source Code

The source code for this example is in otype. ¢ in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include "nsapi.h"
#include <string.h> /* strncpy */
#include "base/util.h"

#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int html2shtml (pblock *pb, Session *sn, Request *rq)

{

/* No parameters */

/* Work variables */

pb_param *path = pblock_find("path", rg-s>vars);
struct stat finfo;

char *npath;

int baselen;

/* If the type has already been set, don’t do anything */
if (pblock_findval ("content-type", rg->srvhdrs))
return REQ NOACTION;

/* If path does not end in .html, let normal object types do
* their job */

Chapter 3 « Examples of Custom SAFs and Filters 61

baselen = strlen(path->value) - 5;
if (strcasecmp (&path->value [baselen], ".html") != 0)
return REQ NOACTION;

/* 1 = Room to convert html to shtml */

npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy (npath, path->value, baselen) ;
strcpy (&npath [baselen], ".shtml");

/* If it’s not there, don’t do anything */
if (stat (npath, &finfo) == -1) {
FREE (npath) ;
return REQ NOACTION;
}
/* Got it, do the switch */
FREE (path->value) ;
path->value = npath;

/* The server caches the stat() of the current path. Update it. */
(void) request_stat path(NULL, rq);

pblock nvinsert ("content-type", "magnus-internal/parsed-html",
rg->srvhdrs) ;
return REQ PROCEED;

Output Example

This section describes an example NSAPI filter named example-replace, which
examines outgoing data and substitutes one string for another. It shows how you can
create a filter that intercepts and modifies outgoing data.

Installing the Example

To load the filter, add the following line in the Init section of the obj . conf file:

Init fn="load-modules" shlib="<paths>/replace.
ext" NativeThread="no"

To execute the filter during the request-response process for some object, add the
following line to that object in the obj . conf file:

Output fn="insert-filter" type="text/*" filter="example-replace"
from="iPlanet" to="Sun ONE"

62 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Source Code

The source code for this example is in the replace. c file in the
plugins/nsapi/examples subdirectory of the server root directory.

#ifdef XP_WIN32

#define NSAPI PUBLIC _ declspec(dllexport)
#else /* IXP_WIN32 */

#define NSAPI_PUBLIC

#endif /* IXP _WIN32 */

/*
* nsapi.h declares the NSAPI interface.
*/

#include "nsapi.h"

/*
* ExampleReplaceData will be used to store information between
* filter method invocations. Each instance of the example-replace
* filter will have its own ExampleReplaceData object.

*/
typedef struct ExampleReplaceData ExampleReplaceData;

struct ExampleReplaceData {

char *from; /* the string to replace */

int fromlen; /* length of "from" */

char *to; /* the string to replace "from" with */
int tolen; /* length of "to" */

int matched; /* number of "from" chars matched */

/*
* example replace_insert implements the example-replace filter’s
* insert method. The insert filter method is called before the
* gserver adds the filter to the filter stack.

*/

#ifdef _ cplusplus
extern "C"
#endif
int example replace insert (FilterLayer *layer, pblock *pb)
{
const char *from;
const char *to;
ExampleReplaceData *data;

/*

* Look for the string to replace, "from", and the string to

Chapter 3 « Examples of Custom SAFs and Filters

63

* replace it with, "to". Both values are required.
*/
from = pblock findval ("from", pb);
to = pblock findval("to", pb);
if (from == NULL || to == NULL || strlen(from) < 1) {
log error (LOG_MISCONFIG, "example-replace-insert",
layer->context->sn, layer->context->rq,
"missing parameter (need from and to)");
return REQ ABORTED; /* error preparing for insertion */

}
/*

* Allocate an ExampleReplaceData object that will store
* configuration and state information.

*/
data = (ExampleReplaceData *)MALLOC (sizeof (ExampleReplaceData)) ;
if (data == NULL)

return REQ ABORTED; /* error preparing for insertion */

/* Initialize the ExampleReplaceData */
data->from = STRDUP (from) ;
data->fromlen = strlen(from) ;

data->to = STRDUP (to) ;

data->tolen = strlen(to);

data->matched = 0;

/* Check for out of memory errors */
if (data->from == NULL || data->to == NULL) ({
FREE (data->from) ;
FREE (data->to) ;
FREE (data) ;
return REQ ABORTED; /* error preparing for insertion */

}
/*

* Store a pointer to the ExampleReplaceData object in the

* FilterLayer. This information can then be accessed from other
* filter methods.

*/

layer->context->data = data;

/* Remove the Content-length: header if we might change the
* body length */
if (data->tolen != data->fromlen) {
pb_param *pp;
pp = pblock remove ("content-length", layer-s>context->rg->srvhdrs);
if (pp)
param_free (pp) ;

return REQ PROCEED; /* insert filter */

64 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

* example replace remove implements the example-replace filter’s
* remove method. The remove filter method is called before the
* gerver removes the filter from the filter stack.

*/

#ifdef _ cplusplus

extern "C"

#endif

void example replace remove (FilterLayer *layer)

{

ExampleReplaceData *data;

/* Access the ExampleReplaceData we allocated in
example replace insert */
data = (ExampleReplaceData *)layer->context->data;

/* Send any partial "from" match */
if (data->matched > 0)
net_write(layer->lower, data->from, data->matched) ;

/* Destroy the ExampleReplaceData object */
FREE (data->from) ;

FREE (data->to) ;

FREE (data) ;

/*

* example replace write implements the example-replace filter’s

* write method. The write filter method is called when there is data
* to be sent to the client.

*/

#ifdef _ cplusplus
extern "C"
#endif
int example_ replace write(FilterLayer *layer, const void *buf, int amount)
{
ExampleReplaceData *data;
const char *buffer;
int consumed;
int i;
int unsent;
int rv;

/* Access the ExampleReplaceData we allocated in
example replace_insert */

data = (ExampleReplaceData *)layer->context->data;

/* Check for "from" matches in the caller’s buffer */
buffer = (const char *)buf;

Chapter 3 « Examples of Custom SAFs and Filters

65

66

consumed = 0;

for (i = 0; i < amount; i++) {
/* Check whether this character matches */
if (buffer[i] == data->from[data->matched]) ({

/* Matched a(nother) character */
data->matched++;

/* 1f we’ve now matched all of "from"... */

if (data->matched == data->fromlen) ({
/* Send any data that preceded the match */
unsent = i + 1 - consumed - data->matched;

if (unsent > 0) {
rv = net write(layer->lower, &buffer[consumed], unsent);
if (rv != unsent)
return IO_ERROR;

}

/* Send "to" in place of "from" */
rv = net write(layer->lower, data->to, data->tolen);
if (rv != data->tolen)

return IO_ERROR;

/* We’ve handled up to and including buffer[i] */
consumed = 1 + 1;

/* Start looking for the next "from" match from scratch */
data->matched = 0;

}

} else if (data->matched > 0) {
/* This match didn’t pan out, we need to backtrack */
int j;
int backtrack = data->matched;
data->matched = 0;

/* Check for other potential "from" matches
* preceding buffer[i] */
for (j = 1; j < backtrack; j++) {
/* Check whether this character matches */
if (data->from[j] == data->from[data-s>matched]) {
/* Matched a(nother) character */
data->matched++;

} else if (data-s>matched > 0) {
/* This match didn’t pan out, we need to
* backtrack */
j -= data->matched;
data->matched = 0;

}

/* If the failed (partial) match begins before the buffer... */
unsent = backtrack - data->matched;
if (unsent > i) {

/* Send the failed (partial) match */

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

rv = net_write(layer->lower, data->from, unsent);
if (rv != unsent)
return IO_ERROR;

/* We’ve handled up to, but not including,
* buffer[i] */
consumed = 1i;

/* We’re not done with buffer[i] yet */
i--;

/* Send any data we know won’t be part of a future
* "from" match */
unsent = amount - consumed - data->matched;

if (unsent > 0) {
rv = net_write(layer->lower, &buffer[consumed], unsent);

if (rv != unsent)
return IO _ERROR;

return amount;

/*
* This is the module initialization entry point for this NSAPI
* plugin. The server calls this entry point in response to the
* Init fn="load-modules" line in magnus.conf.

*/

NSAPI_ PUBLIC nsapi_module_ init (pblock *pb, Session *sn, Request *rq)

{

FilterMethods methods = FILTER METHODS INITIALIZER;
const Filter *filter;

/*
* Create the example-replace filter. The example-replace filter
* has order FILTER CONTENT_TRANSLATION, meaning it transforms
* content (entity body data) from one form to another. The
* example-replace filter implements the write filter method,
* meaning it is interested in outgoing data.
*/
methods.insert = &example replace_insert;
methods.remove = &example replace_remove;
methods.write = &example replace write;

filter = filter create("example-replace",
FILTER CONTENT TRANSLATION,
&methods) ;
if (filter == NULL) ({
pblock nvinsert ("error", system errmsg(), pb);

Chapter 3 « Examples of Custom SAFs and Filters

67

return REQ ABORTED; /* error initializing plugin */

}

return REQ PROCEED; /* success */

Service Example

This section discusses a very simple Service function called simple_service. All
this function does is send a message in response to a client request. The message is
initialized by the init_simple_service function during server initialization.

For a more complex example, see the file service. c in the examples directory,
which is discussed in “More Complex Service Example” on page 70

Installing the Example

To load the shared object containing your functions, add the following line in the
Init section of the obj . conf file:

Init fn=load-modules shlib=
yourlibrary funcs=simple-service-init,simple-service

To call the simple-service-init function to initialize the message representing the
generated output, add the following line to the Init section in obj . conf. (This line
must come after the one that loads the library containing simple-service-init.)

Init fn=simple-service-init

generated-output="<H1l>
Generated output msg</H1>"

To execute the custom SAF during the request-response process for some object, add
the following line to that object in the obj . conf file:

Service type="text/html" fn=simple-service

The type="text/html" argument indicates that this function is invoked during the
Service stage only if the content - type has been set to text /html.

Source Code

#include <nsapi.h>
static char *simple msg = "default customized content";

68 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

/* This is the initialization function.
* It gets the value of the generated-output parameter
* gpecified in the Init directive in magnus.conf
*/
NSAPI_ PUBLIC int init-simple-service(pblock *pb, Session *sn,
Request *rq)
{
/* Get the message from the parameter in the directive in
* magnus.conf
*/
simple msg = pblock findval ("generated-output", pb);
return REQ PROCEED;
}
/* This is the customized Service SAF.
* It sends the "generated-output" message to the client.
*/
NSAPI_ PUBLIC int simple-service(pblock *pb, Session *sn, Request *rq)
{
int return value;
char msg_length(8];
/* Use the protocol status function to set the status of the
* response before calling protocol_ start_ response.
*/
protocol_status(sn, rg, PROTOCOL_OK, NULL) ;
/* Although we would expect the ObjectType stage to
* get the content-type, set it here just to be
* completely sure that it gets set to text/html.

*/
param_free (pblock remove ("content-type", rg->srvhdrs));
pblock nvinsert ("content-type", "text/html", rqg-ssrvhdrs);

/* If you want to use keepalive, need to set content-length header.
* The util_itoa function converts a specified integer to a
* string, and returns the length of the string. Use this
* function to create a textual representation of a number.

*/
util itoa(strlen(simple msg), msg_length);
pblock nvinsert ("content-length", msg length, rg->srvhdrs);
/* Send the headers to the client*/
return _value = protocol_start_response (sn, rq);
if (return value == REQ NOACTION) ({
/* HTTP HEAD instead of GET */
return REQ PROCEED;
}
/* Write the output using net writex/
return value = net write(sn->csd, simple msg,
strlen(simple_msg)) ;
if (return value == IO _ERROR) ({
return REQ EXIT;

}

return REQ PROCEED;

Chapter 3 « Examples of Custom SAFs and Filters

69

More Complex Service Example

The send-images function is a custom SAF that replaces the doit.cgi
demonstration available on the iPlanet home pages. When a file is accessed as
/dirl/dir2/something.picgroup, the send-images function checks if the file is
being accessed by a Mozilla/1.1 browser. If not, it sends a short error message. The file
something.picgroup contains a list of lines, each of which specifies a file name
followed by a content -type (for example, one.gif image/gif).

To load the shared object containing your function, add the following line at the
beginning of the obj . conf file:

Init fn=load-modules shlib=yourlibrary funcs=send-images
Also, add the following line to the mime. types file:
type=magnus-internal/picgroup exts=picgroup

To execute the custom SAF during the request-response process for some object, add
the following line to that object in the obj . conf file (send-images takes an optional
parameter, delay, which is not used for this example):

Service method=(GET|HEAD) type=magnus-internal/picgroup fn=send-images

The source code is in service.c in the plugins/nsapi/examples subdirectory
within the server root directory.

AddLog Example

The example in this section demonstrates how to implement brief-1log, a custom
SAF for logging only three items of information about a request: the IP address, the
method, and the URI (for example, 198.93.95.99 GET
/jocelyn/dogs/homesneeded.html).

Installing the Example

To load the shared object containing your functions, add the following line in the
Init section of the magnus . conf file:

Init fn=load-modules shlib=yourlibrary funcs=brief-init,brief-log

To call brief-init to open the log file, add the following line to the Init section in
obj . conf. (This line must come after the one that loads the library containing
brief-init.)

70 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide November 2005

Init fn=brief-init file=/tmp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the
following line to that object in the obj . conf file:

AddLog fn=brief-log

Source Code

The source code is in addlog. c is in the plugins/nsapi/examples subdirectory

within the server root directory.

#include "nsapi.h"

#include "base/daemon.h" /* daemon_atrestart */

#include "base/file.h" /* system fopenWA, system_ fclose */
#include "base/util.h" /* sprintf */

/* File descriptor to be shared between the processes */
static SYS _FILE logfd = SYS ERROR_FD;

#ifdef _ cplusplus
extern "C"
#endif
NSAPI_PUBLIC void brief terminate(void *parameter)
{
system_fclose (logfd) ;
logfd = SYS ERROR _FD;

}

#ifdef _ cplusplus
extern "C"
#endif
NSAPI PUBLIC int brief init (pblock *pb, Session *sn, Request *rq)
{
/* Parameter */
char *fn = pblock findval("file", pb);

if (1£fn) {
pblock_nvinsert ("error", "brief-init: please supply a file name",
pb) ; return REQ ABORTED;
}
logfd = system fopenWA (fn) ;
if (logfd == SYS ERROR_FD) {
pblock nvinsert ("error", "brief-init: please supply a file name",
pb) ;return REQ ABORTED;
}
/* Close log file when server is restarted */
daemon atrestart (brief terminate, NULL) ;
return REQ PROCEED;

Chapter 3 « Examples of Custom SAFs and Filters

71

#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int brief log(pblock *pb, Session *sn, Request *rq)

{

/* No parameters */

/* Server data */

char *method = pblock findval ("method", rqg->regpb) ;
char *uri = pblock_findval ("uri", rqg->regpb);

char *ip = pblock findval("ip", sn->client);

/* Temp vars */
char *logmsg;
int len;

logmsg = (char *)
MALLOC (strlen(ip) + 1 + strlen(method) + 1 + strlen(uri) + 1 + 1);
len = util_sprintf (logmsg, "%s %s %$s\\n", ip, method, uri);
/* The atomic version uses locking to prevent interference */
system fwrite atomic(logfd, logmsg, len);
FREE (logmsg) ;

return REQ PROCEED;

72 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ®* November 2005

CHAPTER 4

NSAPI Function Reference

This chapter lists all of the public C functions and macros of the Netscape Server
Applications Programming Interface (NSAPI) in alphabetic order. These are the
functions you use when writing your own Server Application Functions (SAFs).

For information about the predefined SAFs used in obj . conf, see the Sun Java

System Web Proxy Server 4.0.2 Configuration File Reference.

Each function provides the name, syntax, parameters, return value, a description of
what the function does, and sometimes an example of its use and a list of related
functions.

For more information on data structures, see Chapter 5 and also look in the nsapi.h
header file in the include directory in the build for Sun Java System Web Proxy
Server 4.0.2.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix A.

“er

on pag
74

“D”

bon pag
84

R

Pon pag
86

“r

bon pag
1001”7

on pag;

100

b

“1y

bon pag

101

NG
bon pag
102

“N”

bon pag
104

“pr

Pon pag
113

“R”

bon pag
137

“grr

bon pag
142

G
bon pag
170

W
bon page
201

73

C

cache_digest

The cache_digest function calculates the MD5 signature of a specified URL and
stores the signature in a digest variable.

Syntax

#include <libproxy/cache.h>
void cache_digest (char *url, unsigned char digest[16])) ;

Returns

void

Parameters

char *url is a string containing the cache filename of a URL.

name *digest is an array to store the MD5 signature of the URL.

See also
“cache_fn_to_dig” on page 75

cache_filename

The cache filename function returns the cache filename for a given URL, specified
by MD?5 signature.

Syntax

#include <libproxy/cutil.h>
char *cache filename (unsigned char digest[16]) ;

Returns

A new string containing the cache filename.

74 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide November 2005

Parameters

char *digest is an array containing the MD5 signature of a URL.

See also
“cache_fn_to_dig” on page 75

cache_fn_to_dig

The cache fn to_dig function converts a cache filename of a URL into a partial
MD?5 digest.

Syntax

#include <libproxy/cutil.h>
void *cache_fn_to_dig(char *name, unsigned char digest[16])) ;

Returns

void

Parameters

char *name is a string containing the cache filename of a URL.

name *digest is an array to receive first 8 bits of the signature of the URL.

CALLOC

The CALLOC macro is a platform-independent substitute for the C library routine
calloc. It allocates num*size bytes from the request’s memory pool. If pooled
memory has been disabled in the configuration file (with the pool-init built-in
SAF), PERM_CALLOC and CALLOC both obtain their memory from the system heap.

Syntax

void *CALLOC (int size)

Returns

A void pointer to a block of memory.

Chapter 4 « NSAPI Function Reference 75

Parameters

int size is the size in bytes of each element.

Example

char *name;name = (char *) CALLOC(100) ;

See Also

“FREE” on page 96, “REALLOC” on page 138, “STRDUP” on page 152,
“PERM_MALLOC” on page 127, “PERM_FREE” on page 126, “PERM_REALLOC”
on page 127, “PERM_STRDUP” on page 128

ce_ free

The ce_free function releases memory allocated by the ce_lookup function.

Syntax

#include <libproxy/cache.h>
void cd_free(CacheEntry *ce) ;

Returns

void

Parameters

CacheEntry *ce is a cache entry structure to be destroyed.

See also
“ce_lookup” on page 76

ce_lookup

The ce_lookup cache entry lookup function looks up a cache entry for a specified
URL.

76 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide November 2005

Syntax

#include <libproxy/cache.h>
CacheEntry *ce_lookup (Session *sn, Request *rq, char *url, time_t ims_c);

Returns
m NULL if caching is not enabled

® A newly allocated CacheEntry structure, whether or not a copy existed in the
cache. Within that structure, the ce->state field reports about the existence:

CACHE_NO signals that the document is not and will not be cached; other fields
in the cache structure may be NULL

CACHE_CREATE signals that the cache file doesn’t exist but may be created once

the remote server is contacted. However, during the retrieval it may turn out that
the document is not cacheable.

CACHE_REFRESH signals that the cache file exists, but it needs to be refreshed (an

up-to-date check must be made) before it’s used; note that the data may still be

up-to-date, but the remote server needs to be contacted to find that out. If not, the

cache file will be replaced with the new document version sent by the remote
origin server.

CACHE_RETURN_FROM_CACHE signals that the cache file exists and is
up-to-date based on the configuration and current parameters controlling what is
considered fresh.

CACHE_RETURN_ERROR is a signal that happens only if the proxy is set to
no-network mode (connect-Modenese), and the document does not exist in the
cache.

Parameters

Session *sn identifies the Session structure.
Request *rq identifies the Request structure.
char *url contains the name of the URL for which the cache is being sought.

time-out misc. is the if-modified-since time.

See also

“ce_free” on page 76

cif_write_entry

The cif write entry function writes a CIF entry for a specified CacheEntry
structure. The CIF entry is stored in the cache file itself.

Chapter 4 « NSAPI Function Reference

77

Syntax

#include <libproxy/cif.h>
int cif write_entry(CacheEntry *ce,int new cachefile)

Returns

® nonzero if the write was successful
m (if the write was unsuccessful

Parameters

CacheEntry *ce is a cache entry structure to be written to the . cif file.
int new cachefile The values are 1 or 0.

1 if it is a new cache file;

0 if the file exists and the CIF entry is to be modified

cinfo_find

The cinfo_find () function uses the MIME types information to find the type,
encoding, and/or language based on the extension(s) of the Universal Resource
Identifier (URI) or local file name. Use this information to send headers
(rg->srvhdrs) to the client indicating the content -type, content -encoding,
and content - language of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no slash is
found. File name extensions are not case-sensitive. The name may contain multiple
extensions separated by period (.) to indicate type, encoding, or language. For
example, the URI a/b/filename. jp.txt.zip could represent a Japanese language,
text/plain type, zip encoded file.

Syntax

cinfo *cinfo find(char *uri);

Returns

A pointer to a newly allocated cinfo structure if content info was found, or NULL if
no content was found.

78 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

The cinfo structure that is allocated and returned contains pointers to the
content-type, content-encoding, and content - language, if found. Each is a
pointer into static data in the types database, or NULL if not found. Do not free these
pointers. You should free the cinfo structure when you are done using it.

Parameters

char *uri is a Universal Resource Identifier (URI) or local file name. Multiple file
name extensions should be separated by periods (.).

condvar_init

The condvar_ init function is a critical-section function that initializes and returns a
new condition variable associated with a specified critical-section variable. You can
use the condition variable to prevent interference between two threads of execution.

Syntax

CONDVAR condvar_init (CRITICAL id) ;

Returns

A newly allocated condition variable (CONDVAR).

Parameters

CRITICAL id is a critical-section variable.

See Also

“condvar_notify” on page 79, “condvar_terminate” on page 80, “condvar_wait”
on page 81, “crit_init” on page 83, “crit_enter” on page 81, “crit_exit” on page 82,
“crit_terminate” on page 83

condvar_notify

The condvar notify function is a critical-section function that awakens any threads
that are blocked on the given critical-section variable. Use this function to awaken
threads of execution of a given critical section. First, use crit enter to gain
ownership of the critical section. Then use the returned critical-section variable to call
condvar_ notify to awaken the threads. Finally, when condvar notify returns,
call crit_exit to surrender ownership of the critical section.

Chapter 4 « NSAPI Function Reference 79

Syntax

void condvar notify (CONDVAR cv) ;

Returns

void

Parameters

CONDVAR cv is a condition variable.

See Also

“condvar_init” on page 79, “condvar_terminate” on page 80, “condvar_wait” on page
81, “crit_init” on page 83, “crit_enter” on page 81, “crit_exit” on page 82,
“crit_terminate” on page 83

condvar_terminate

The condvar terminate function is a critical-section function that frees a condition
variable. Use this function to free a previously allocated condition variable.

Warning

Terminating a condition variable that is in use can lead to unpredictable results.

Syntax

void condvar_ terminate (CONDVAR cv) ;

Returns

void

Parameters

CONDVAR cv is a condition variable.

80 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

See Also

“condvar_init” on page 79, “condvar_notify” on page 79, “condvar_wait” on page 81,
“crit_init” on page 83, “crit_enter” on page 81, “crit_exit” on page 82,
“crit_terminate” on page 83

condvar_wait

The condvar wait function is a critical-section function that blocks on a given
condition variable. Use this function to wait for a critical section (specified by a
condition variable argument) to become available. The calling thread is blocked until
another thread calls condvar_notify with the same condition variable argument.
The caller must have entered the critical section associated with this condition variable
before calling condvar wait.

Syntax

void condvar_ wait (CONDVAR cv) ;

Returns

void

Parameters

CONDVAR cv is a condition variable.

See Also

“condvar_init” on page 79, “condvar_terminate” on page 80, “condvar_notify”
on page 79, “crit_init” on page 83, “crit_enter” on page 81, “crit_exit” on page 82,
“crit_terminate” on page 83

crit_enter

The crit_enter function is a critical-section function that attempts to enter a critical
section. Use this function to gain ownership of a critical section. If another thread
already owns the section, the calling thread is blocked until the first thread surrenders
ownership by calling crit_exit.

Chapter 4 « NSAPI Function Reference 81

Syntax

void crit_enter (CRITICAL crvar) ;

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

See Also

“crit_init” on page 83, “crit_exit” on page 82, “crit_terminate” on page 83

crit_exit

The crit_exit function is a critical-section function that surrenders ownership of a
critical section. Use this function to surrender ownership of a critical section. If another
thread is blocked waiting for the section, the block will be removed and the waiting
thread will be given ownership of the section.

Syntax

void crit_exit (CRITICAL crvar) ;

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

See Also

“crit_init” on page 83, “crit_enter” on page 81, “crit_terminate” on page 83

82 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide November 2005

crit_init

The crit init function is a critical-section function that creates and returns a new
critical-section variable (a variable of type CRITICAL). Use this function to obtain a
new instance of a variable of type CRITICAL (a critical-section variable) to be used in

managing the prevention of interference between two threads of execution. At the
time of its creation, no thread owns the critical section.

Warning

Threads must not own or be waiting for the critical section when crit_terminate is
called.

Syntax

CRITICAL crit_init (void) ;

Returns

A newly allocated critical-section variable (CRITICAL).

Parameters

none

See Also

“crit_enter” on page 81, “crit_exit” on page 82, “crit_terminate” on page 83

crit_terminate

The crit_terminate function is a critical-section function that removes a previously
allocated critical-section variable (a variable of type CRITICAL). Use this function to
release a critical-section variable previously obtained by a call to crit_init.

Syntax

void crit_terminate (CRITICAL crvar) ;

Returns

void

Chapter 4 « NSAPI Function Reference 83

Parameters

CRITICAL crvar is a critical-section variable.

See Also

“crit_init” on page 83, “crit_enter” on page 81, “crit_exit” on page 82

D

daemon_atrestart

The daemon_atrestart function lets you register a callback function named by £n
to be used when the server terminates. Use this function when you need a callback
function to deallocate resources allocated by an initialization function. The
daemon_atrestart function is a generalization of the magnus_atrestart
function.

The magnus . conf directives TerminateTimeout and ChildRestartCallback
also affect the callback of NSAPI functions.

Syntax

void daemon_atrestart (void (*fn) (void *), void *data);

Returns

void

Parameters

void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is
restarted.

Example

/* Register the log close function, passing it NULL */ /* to close *a log
file when the server is *//* restarted or shutdown.

84 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

*/daemon_atrestart (log close, NULL);NSAPI PUBLIC void log close(void *parameter)
{system fclose(global logfd) ;}

dns_set _hostent

The dns_set_hostent function sets the DNS host entry information in the request.If this
is set, the proxy won't try to resolve host information by itself, but instead it will just
use this host information which was already resolved within custom DNS resolution
SAE.

Syntax

int dns_set hostent (struct hostent *hostent, Session *sn, Request *rq);

Returns

REQ PROCEED on success or REQ ABORTED on error.

Parameters
struct hostent *hostent is a pointer to the host entry structure.
Session *sn is the Session

Request *rq is the Request

Example

int my dns_func(pblock *pb, Session *sn, Request *rq)
{
char *host = pblock findval ("dns-host", rg->vars);
struct hostent *hostent;
hostent = gethostbyname (host) ;//replace with custom DNS implementation
dns_set_hostent (hostent, sn, rq);
return REQ PROCEED;

Chapter 4 « NSAPI Function Reference 85

F

fc_close

The fc¢_close function closes a file opened using £c¢_open. This function should
only be called with files opened using £c_open.

Syntax

void fc_close(PRFileDesc *fd, FcHdl *hDl;

Returns

void

Parameters

PRFileDesc *fd is a valid pointer returned from a prior call to fc_open.

FcHAL *hD1 is a valid pointer to a structure of type FcHAL. This pointer must have
been initialized by a prior call to fc_open.

fc_open

The fc_open function returns a pointer to PRFileDesc that refers to an open file
(fileName). The £ileName must be the full path name of an existing file. The file is
opened in read mode only. The application calling this function should not modify the
currency of the file pointed to by the PRFileDesc * unless the DUP_FILE_DESC is
also passed to this function. In other words, the application (at minimum) should not
issue a read operation based on this pointer that would modify the currency for the
PRFileDesc *. If such a read operation is required (that may change the currency for
the PRFileDesc *), then the application should call this function with the argument
DUP_FILE DESC.

On a successful call to this function, a valid pointer to PRFileDesc is returned and
the handle 'FcHdA1’ is properly initialized. The size information for the file is stored in
the "fileSize’ member of the handle.

Syntax

PRFileDesc *fc open(const char *fileName, FcHdl *hDl,PRUint32 flags,
Session *sn, Request *rq);

86 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Returns

Pointer to PRFileDesc, or NULL on failure.

Parameters

const char *fileName is the full path name of the file to be opened.
FcHA1+*hD1 is a valid pointer to a structure of type FcHAL.

PRUint32 flags can be 0 or DUP_FILE DESC.

Session *sn is a pointer to the session.

Request *rq is a pointer to the request.

filebuf buf2sd

The filebuf buf2sd function sends a file buffer to a socket (descriptor) and returns

the number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax

int filebuf buf2sd(filebuf *buf, SYS NETFD sd) ;

Returns

The number of bytes sent to the socket if successful, or the constant I0_ERRCR if the
file buffer could not be sent.

Parameters

filebuf *buf is the file buffer that must already have been opened.

SYS_NETFD sd is the platform-independent socket descriptor. Normally this will be
obtained from the csd (client socket descriptor) field of the sn (session) structure.

Example

if (filebuf buf2sd(buf, sn->csd) == IO_ERROR) return (REQ EXIT) ;

Chapter 4 « NSAPI Function Reference

87

See Also

“filebuf_close” on page 88, “filebuf_open” on page 89, “filebuf_open_nostat”
on page 90, “filebuf_getc” on page 88

filebuf_close
The filebuf close function deallocates a file buffer and closes its associated file.

Generally, use filebuf open first to open a file buffer, and then filebuf getc to
access the information in the file. After you have finished using the file buffer, use
filebuf close to close it.

Syntax

void filebuf close(filebuf *buf);

Returns

void

Parameters

filebuf *buf is the file buffer previously opened with filebuf_ open.

Example

filebuf close (buf) ;

See Also

“filebuf_open” on page 89, “filebuf_open_nostat” on page 90, “filebuf_buf2sd”
on page 87, “filebuf_getc” on page 88

filebuf_getc

The filebuf getc function retrieves a character from the current file position and
returns it as an integer. It then increments the current file position.

Use filebuf_getc to sequentially read characters from a buffered file.

88 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Syntax

filebuf getc(filebuf b);

Returns

An integer containing the character retrieved, or the constant I0_EOF or I0_ERROR
upon an end of file or error.

Parameters

filebuf b is the name of the file buffer.

See Also

“filebuf_close” on page 88, “filebuf_buf2sd” on page 87, “filebuf_open” on page 89,
“filter_create” on page 91

filebuf_open

The filebuf_open function opens a new file buffer for a previously opened file. It
returns a new buffer structure. Buffered files provide more efficient file access by
guaranteeing the use of buffered file I/O in environments where it is not supported by
the operating system.

Syntax

filebuf *filebuf open(SYS_FILE fd, int sz);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer
could be opened.

Parameters

SYS_FILE £d is the platform-independent file descriptor of the file which has already
been opened.

int sz is the size, in bytes, to be used for the buffer.

Chapter 4 « NSAPI Function Reference 89

Example

filebuf *buf = filebuf open(fd, FILE BUFFERSIZE);if (!buf)
{ system fclose(£d);}

See Also

“filebuf_getc” on page 88, “filebuf_buf2sd” on page 87, “filebuf_close” on page 88,
“filebuf_open_nostat” on page 90

filebuf_open_nostat

The filebuf open nostat function opens a new file buffer for a previously
opened file. It returns a new buffer structure. Buffered files provide more efficient file
access by guaranteeing the use of buffered file I/O in environments where it is not
supported by the operating system.

This function is the same filebuf open, but is more efficient, since it does not need
to call the request stat path function. It requires that the stat information be
passed in.

Syntax

filebuf* filebuf open nostat (SYS_FILE fd, int sz, struct stat *finfo);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer
could be opened.

Parameters

SYS FILE fd is the platform-independent file descriptor of the file that has already
been opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the
filebuf open nostat function, you must call the request stat path function
to retrieve the file information.

Example

filebuf *buf = filebuf open nostat (fd, FILE_BUFFERSIZE, &finfo);if (!buf)
{ system fclose(£d);}

90 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

See Also

“filebuf_close” on page 88, “filebuf_open” on page 89, “filebuf_getc” on page 88,
“filebuf_buf2sd” on page 87

filter_create
The filter create function defines a new filter.

The name parameter specifies a unique name for the filter. If a filter with the specified
name already exists, it will be replaced.

Names beginning with magnus- or server- are reserved by the server.

The order parameter indicates the position of the filter in the filter stack by specifying
what class of functionality the filter implements.

The following table describes parameters allowed order constants and their associated
meanings for the filter_ create function. The left column lists the name of the
constant, the middle column describes the functionality the filter implements, and the
right column lists the position the filter occupies in the filter stack.

TABLE 4-1 filter-create constants

Constant Functionality Filter Implements Position in Filter Stack

FILTER_CONTENT_ TRANSLATION Translates content from one Top
form to another (for example,
XSLT)

FILTER_CONTENT CODING Encodes content (for example, Middle
HTTP gzip compression)

FILTER_TRANSFER_CODING Encodes entity bodies for Bottom
transmission (for example,
HTTP chunking)

The methods parameter specifies a pointer to a FilterMethods structure. Before
calling filter_ create, you must first initialize the “FilterMethods” on page 212
structure using the FILTER METHODS INITIALIZER macro, and then assign
function pointers to the individual FilterMethods members (for example, insert,
read, write, and so on) that correspond to the filter methods the filter will support.

filter_create returns const Filter *, a pointer to an opaque representation of
the filter. This value may be passed to filter_insert to insert the filter in a
particular filter stack.

Chapter 4 « NSAPI Function Reference 91

92

Syntax

const Filter *filter create(const char *name, int order,
const FilterMethods *methods) ;

Returns

The const Filter * that identifies the filter or NULL if an error occurred.

Parameters
const char *name is the name of the filter.
int order is one of the order constants above.

const FilterMethods *methods contains pointers to the filter methods the filter
supports.

Example

FilterMethods methods = FILTER METHODS_ INTIALIZER;

const Filter *filter;

/* This filter will only support the "read" filter method */
methods.read = my input_ filter read;

/* Create the filter */

filter = filter create("my-input-filter", FILTER_CONTENT_ TRANSLATION,
&methods) ;

filter_find

The filter find function finds the filter with the specified name.

Syntax

const Filter *filter find(const char *name);

Returns

The const Filter * that identifies the filter, or NULL if the specified filter does not
exist.

Parameters

const char *name is the name of the filter of interest.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

filter_insert

The filter_ insert function inserts a filter into a filter stack, creating a new filter
layer and installing the filter at that layer. The filter layer’s position in the stack is
determined by the order value specified when “filter_create” on page 91 was called,
and any explicit ordering configured by init-filter-order. If a filter layer with
the same order value already exists in the stack, the new layer is inserted above that
layer.

Parameters may be passed to the filter using the pb and data parameters. The
semantics of the data parameter are defined by individual filters. However, all filters
must be able to handle a data parameter of NULL.

When possible, plugin developers should avoid calling filter_ insert directly, and
instead use the insert-filter SAF (applicable in Input-class directives).

Syntax

int filter insert (SYS _NETFD sd, pblock *pb, Session *sn, Request *rq,
void *data, const Filter *filter);

Returns

Returns REQ PROCEED if the specified filter was inserted successfully, or
REQ NOACTION if the specified filter was not inserted because it was not required.
Any other return value indicates an error.

Parameters

SYS NETFD sd is NULL (reserved for future use).

pblock *pb is a set of parameters to pass to the specified filter’s init method.
Session *sn is the Session.

Request *rq is the Request.

void *data is filter-defined private data.

const Filter *filter is the filter to insert.

filter_layer

The filter layer function returns the layer in a filter stack that corresponds to the
specified filter.

Chapter 4 « NSAPI Function Reference 93

Syntax

FilterLayer *filter layer (SYS NETFD sd, const Filter *filter);

Returns

The topmost FilterLayer * associated with the specified filter, or NULL if the
specified filter is not part of the specified filter stack.

Parameters

SYS NETFD sd is the filter stack to inspect.

const Filter *filter is the filter of interest.

filter name

The filter name function returns the name of the specified filter. The caller should
not free the returned string.

Syntax

const char *filter name (const Filter *filter);

Returns

The name of the specified filter, or NULL if an error occurred.

Parameters

const Filter *filter is the filter of interest.

filter_ remove

The filter remove function removes the specified filter from the specified filter
stack, destroying a filter layer. If the specified filter was inserted into the filter stack
multiple times, only that filter’s topmost filter layer is destroyed.

When possible, plugin developers should avoid calling filter remove directly, and
instead use the remove-filter SAF (applicable in Input-, Output-, Service-, and
Error-class directives).

94 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Syntax

int filter remove (SYS_NETFD sd, const Filter *filter);

Returns

Returns REQ PROCEED if the specified filter was removed successfully or
REQ NOACTION if the specified filter was not part of the filter stack. Any other return
value indicates an error.

Parameters

SYS NETFD sd is the filter stack, sn->csd.

const Filter *filter is the filter to remove.

flush

The £1ush filter method is called when buffered data should be sent. Filters that
buffer outgoing data should implement the £1ush filter method.

Upon receiving control, a £ lush implementation must write any buffered data to the
filter layer immediately below it. Before returning success, a £1ush implementation
must successfully call the “net_flush” on page 104 function:

net flush(layer->lower) .

Syntax

int flush(FilterLayer *layer) ;

Returns

0 on success or -1 if an error occurred.

Parameters

FilterLayer *layer is the filter layer the filter is installed in.

Example

int myfilter flush(FilterLayer *layer)

{

MyFilterContext context = (MyFilterContext *)layer->context->data;

Chapter 4 « NSAPI Function Reference 95

if (context-sbuf.count) {

int rv;
rv = net_write(layer->lower, context->buf.data, context-s>buf.count);
if (rv != context->buf.count)

return -1; /* failed to flush data */
context->buf.count = 0;

}

return net_flush(layer->lower) ;

See Also

“net_flush” on page 104

FREE

The FREE macro is a platform-independent substitute for the C library routine free.
It deallocates the space previously allocated by MALLOC, CALLOC, or STRDUP from the
request’s memory pool.

Syntax

FREE (void *ptr) ;

Returns

void

Parameters

void *ptrisa (void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

Example

char *name;name = (char *) MALLOC(256) ;...FREE (name) ;

See Also

“CALLOC” on page 75, “REALLOC” on page 138, “STRDUP” on page 152,
“PERM_MALLOC” on page 127, “PERM_FREE” on page 126, “PERM_REALLOC”
on page 127, “PERM_STRDUP” on page 128

96 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

fs_blk_size

The £s blk size function returns the block size of the disk partition on which a

specified directory resides.

Syntax

#include <libproxy/fs.h>
long fs_blk_size(char *root) ;

Returns

the block size, in bytes

Parameters

char *root is the name of the directory.

See also
“fs_blks_avail” on page 97

fs blks_avail

The fs_blks_avail function returns the number of disk blocks available on the disk

partition on which a specified directory resides.

Syntax

#include <libproxy/fs.h>
long fs_blks avail (char *root);

Returns
The number of available disk blocks

Parameters

char *root is the name of the directory.

Chapter 4 « NSAPI Function Reference

97

See also
“fs_blk_size” on page 97

func_exec

The func_exec function executes the function named by the fn entry in a specified
pblock. If the function name is not found, it logs the error and returns
REQ ABORTED

You can use this function to execute a built-in Server Application Function (SAF) by
identifying it in the pblock.

Syntax

int func exec(pblock *pb, Session *sn, Request *rq);

Returns

The value returned by the executed function, or the constant REQ ABORTED if no
function was executed.

Parameters

pblock pb is the pblock containing the function name (fn) and parameters.
Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

See Also

“log_error” on page 101

func_find

The func_find function returns a pointer to the function specified by name. If the
function does not exist, it returns NULL.

98 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Syntax

FuncPtr func_find(char *name) ;

Returns

A pointer to the chosen function, suitable for dereferencing, or NULL if the function
could not be found.

Parameters

char *name is the name of the function.

Example

/* this block of code does the same thing as func_exec */
char *afunc = pblock findval ("afunction", pb);FuncPtr afnptr = func_find(afunc);if (afnj
return (afnptr) (pb, sn, rq);

See Also

“func_exec” on page 98

func_insert

The func_insert function dynamically inserts a named function into the server’s
table of functions. This function should only be called during the Init stage.

Syntax

FuncStruct *func_insert (char *name, FuncPtr fn);

Returns

Returns the FuncStruct structure that identifies the newly inserted function. The
caller should not modify the contents of the FuncStruct structure.

Parameters

char *name is the name of the function.

FuncPtr fn is the pointer to the function.

Chapter 4 « NSAPI Function Reference 99

Example

func_insert ("my-service-saf", &my service saf);

See Also

“func_exec” on page 98, “func_find” on page 98

insert

The insert filter method is called when a filter is inserted into a filter stack by the
“filter_insert” on page 93 function or insert-filter SAF (applicable in Input-class
directives).

Syntax

int insert (FilterLayer *layer, pblock *pb);

Returns

Returns REQ PROCEED if the filter should be inserted into the filter stack,
REQ NOACTION if the filter should not be inserted because it is not required, or
REQ_ ABORTED if the filter should not be inserted because of an error.

Parameters

FilterLayer *layer is the filter layer at which the filter is being inserted.

pblock *pb is the set of parameters passed to filter insert or specified by the
fn="insert-filter" directive.

Example
FilterMethods myfilter methods = FILTER_METHODS INITIALIZER;

const Filter *myfilter;int myfilter insert (FilterLayer *layer, pblock *pb)
{if (pblock_findval ("dont-insert-filter", pb)) return REQ NOACTION;

100 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

return REQ PROCEED;}...myfilter methods.insert = &myfilter insert;
myfilter = filter create("myfilter", &myfilter methods);...

L

log_error

The log_error function creates an entry in an error log, recording the date, the
severity, and a specified text.

Syntax

int log error (int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

Returns

0 if the log entry was created, or -1 if the log entry was not created.

Parameters

int degree specifies the severity of the error. It must be one of the following
constants:

LOG_WARN -- warning LOG MISCONFIG -- a syntax error or permission violation
LOG_SECURITY -- an authentication failure or 403 error from a hostLOG FAILURE --
an internal problemLOG CATASTROPHE -- a nonrecoverable server errorL.LOG_INFORM
-- an informational message

char *func is the name of the function where the error has occurred.
Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

char *fmt specifies the format for the printf function that delivers the message.

Chapter 4 « NSAPI Function Reference 101

. represents a sequence of parameters for the print £ function.

Example

log_error (LOG_WARN, "send-file", sn, rq,
"error opening buffer from %s (%s)"), path, system errmsg(fd)) ;

See Also

“func_exec” on page 98

M

magnus_atrestart

Note — Use the daemon-atrestart function in place of the obsolete
magnus_atrestart function.

The magnus_atrestart function lets you register a callback function named by fn to
be used when the server receives a restart signal. Use this function when you need a
callback function to deallocate resources allocated by an initialization function.

Syntax

#include <netsite.h>
void magnus_atrestart (void (*fn) (void *), void *data) ;

Returns

void

Parameters

void (* fn) (void *) is the callback function.

102 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

void *data is the parameter passed to the callback function when the server is
restarted.

Example

/* Close log file when server is restarted */
magnus_atrestart (brief terminate, NULL);return REQPROCEED;

MALLOC

The MALLOC macro is a platform-independent substitute for the C library routine
malloc. It normally allocates from the request’s memory pool. If pooled memory has
been disabled in the configuration file (with the pool-init built-in SAF),
PERM_MALLOC and MALLOC both obtain their memory from the system heap.

Syntax

void *MALLOC (int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */char *name;name = (char *) MALLOC (256) ;

See Also

“FREE” on page 96, “CALLOC” on page 75, “REALLOC” on page 138, “STRDUP”

on page 152, “PERM_MALLOC” on page 127, “PERM_FREE” on page 126,
“PERM_CALLOC” on page 125, “PERM_REALLOC” on page 127, “PERM_STRDUP”
on page 128

Chapter 4 « NSAPI Function Reference 103

N

net_flush

The net_flush function flushes any buffered data. If you require that data be sent
immediately, call net_ f1lush after calling network output functions such as
net writeornet sendfile.

Syntax

int net_flush(SYS_NETFD sd);

Returns

0 on success, or a negative value if an error occurred.

Parameters

SYS NETFD sd is the socket to flush.

Example

net write(sn->csd, "Please wait... ", 15);
net_flush(sn->csd) ;
/* Perform some time-intensive operation */

net_write(sn->csd, "Thank you.\\n", 11);

See Also

“net_write” on page 107, “net_sendfile” on page 106

net_ip2host

The net_ip2host function transforms a textual IP address into a fully-qualified
domain name and returns it.

104 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Note — This function works only if the DNS directive is enabled in the obj . conf file.
For more information, see Sun Java System Web Proxy Server 4.0.2 Configuration File
Reference.

Syntax

char *net_ip2host (char *ip, int verify);

Returns

A new string containing the fully-qualified domain name if the transformation was
accomplished, or NULL if the transformation was not accomplished.

Parameters

char *ip is the IP address as a character string in dotted-decimal notation:
Nnnn.nnn.nnn.nnn

int verify, if nonzero, specifies that the function should verify the fully-qualified
domain name. Though this requires an extra query, you should use it when checking
access control.

net_read

The net_read function reads bytes from a specified socket into a specified buffer. The
function waits to receive data from the socket until either at least one byte is available
in the socket or the specified time has elapsed.

Syntax

int net read (SYS NETFD sd, char *buf, int sz, int timeout) ;

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative
value is returned if an error has occurred, in which case errno is set to the constant
ETIMEDOUT if the operation did not complete before t imeout seconds elapsed.

Parameters

SYS NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer to receive the bytes.

Chapter 4 « NSAPI Function Reference 105

int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before
returning. The purpose of t imeout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until some
data arrives.

See Also

“net_write” on page 107

net_sendfile

The net_sendfile function sends the contents of a specified file to a specified a
socket. Either the whole file or a fraction may be sent, and the contents of the file may
optionally be preceded and/or followed by caller-specified data.

Parameters are passed to net_sendfile in the sendfiledata structure. Before
invoking net_sendfile, the caller must initialize every sendfiledata structure
member.

Syntax

int net_sendfile (SYS _NETFD sd, const sendfiledata *sfd) ;

Returns

A positive number indicates the number of bytes successfully written, including the
headers, file contents, and trailers. A negative value indicates an error.

Parameters

SYS NETFD sd is the socket to write to.

const sendfiledata *sfd identifies the data to send.

Example

The following Service SAF sends a file bracketed by the strings “begin” and “end.”

#include <string.h>
#include "nsapi.h"

106 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ®* November 2005

NSAPI_PUBLIC int service net_ sendfile(pblock *pb, Session *sn, Request *rq)
{

char *path;

SYS FILE £d;

struct sendfiledata sfd;

int rv;

path = pblock findval ("path", rg-s>vars);
fd = system fopenRO (path) ;
if (1£d) {
log _error (LOG_MISCONFIG, "service-net-sendfile", sn, rq,
"Error opening %s (%s)", path, system errmsg());
return REQ ABORTED;

sfd.fd = £4; /* file to send */

sfd.offset = 0; /* start sending from the beginning */
sfd.len = 0; /* send the whole file */

sfd.header = "begin"; /* header data to send before the file */
sfd.hlen = strlen(sfd.header); /* length of header data */

sfd.trailer = "end"; /* trailer data to send after the file */

sfd.tlen = strlen(sfd.trailer);/* length of trailer data */

/* send the headers, file, and trailers to the client */
rv = net sendfile(sn->csd, &sfd);

system_fclose (fd) ;
if (rv < 0) {
r

log_error (LOG_INFORM, "service-net-sendfile", sn, rqg,"Error sending
%$s (%s)", path, system errmsg()); return REQ ABORTED;

return REQ PROCEED;

See Also

“net_flush” on page 104

net_write

The net write function writes a specified number of bytes to a specified socket from
a specified buffer.

Syntax

int net_write(SYS_NETFD sd, char *buf, int sz);

Chapter 4 « NSAPI Function Reference 107

Returns

The number of bytes written, which may be less than the requested size if an error
occurred.

Parameters

SYS NETFD sd is the platform-independent socket descriptor.
char *buf is the buffer containing the bytes.

int sz is the number of bytes to write.

Example

if (net_write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO_ERROR)
return REQ EXIT;

See Also

“net_read” on page 105

netbuf buf2sd

The netbuf buf2sd function sends a buffer to a socket. You can use this function to
send data from IPC pipes to the client.

Syntax

int netbuf buf2sd(netbuf *buf, SYS NETFD sd, int len);

Returns

The number of bytes transferred to the socket, if successful, or the constant I0_ERROR
if unsuccessful.

Parameters

netbuf *buf is the buffer to send.
SYS_NETFD sd is the platform-independent identifier of the socket.

int len is the length of the buffer.

108 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

See Also

“netbuf_close” on page 109, “netbuf_getc” on page 109, “netbuf_grab” on page 110,
“netbuf_open” on page 111

netbuf close

The netbuf close function deallocates a network buffer and closes its associated
files. Use this function when you need to deallocate the network buffer and close the
socket.

You should never close the netbuf parameter in a session structure.

Syntax

void netbuf close (netbuf *buf);

Returns

void

Parameters

netbuf *buf is the buffer to close.

See Also

“netbuf_buf2sd” on page 108, “netbuf_getc” on page 109, “netbuf_grab” on page 110,
“netbuf_open” on page 111

netbuf_getc

The netbuf getc function retrieves a character from the cursor position of the
network buffer specified by b.

Syntax

netbuf getc (netbuf b);

Chapter 4 « NSAPI Function Reference 109

Returns

The integer representing the character if one was retrieved, or the constant I0_EOF or
I0_ERROR for end of file or error.

Parameters

netbuf b is the buffer from which to retrieve one character.

See Also

“netbuf_buf2sd” on page 108, “netbuf_close” on page 109, “netbuf_grab” on page 110,
“netbuf_open” on page 111

netbuf_grab

The netbuf_grab function reads sz number of bytes from the network buffer’s
(buf) socket into the network buffer. If the buffer is not large enough it is resized. The
data can be retrieved from buf ->inbuf on success.

This function is used by the function netbuf buf2sd.

Syntax

int netbuf grab(netbuf *buf, int sz);

Returns

The number of bytes actually read (between 1 and sz) if the operation was successful,
or the constant I0_EOF or IO0_ERROR for end of file or error.

Parameters

netbuf *buf is the buffer to read into.

int sz is the number of bytes to read.

See Also

“netbuf_buf2sd” on page 108, “netbuf_close” on page 109, “netbuf_grab” on page 110,
“netbuf_open” on page 111

110 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

netbuf_open

The netbuf open function opens a new network buffer and returns it. You can use
netbuf open to create a netbuf structure and start using buffered I/O on a socket.

Syntax

netbuf* netbuf open(SYS NETFD sd, int sz);

Returns

A pointer to a new netbuf structure (network buffer).

Parameters

SYS_NETFD sd is the platform-independent identifier of the socket.

int sz is the number of characters to allocate for the network buffer.

See Also

“netbuf_buf2sd” on page 108, “netbuf_close” on page 109, “netbuf_getc” on page 109,
“netbuf_grab” on page 110

nsapi_module_init

Plugin developers may define an nsapi_module_init function, which is a module
initialization entry point that enables a plugin to create filters when it is loaded. When
an NSAPI module contains an nsapi_module_init function, the server will call that
function immediately after loading the module. The nsapi_module_init presents
the same interface as an Init SAF and it must follow the same rules.

The nsapi_module_init function may be used to register SAFs with
func_insert, and create filters with “filter_create” on page 91 .

Syntax

int nsapi_module_init (pblock *pb, Session *sn, Request *rq);

Returns

REQ PROCEED on success, or REQ ABORTED on error.

Chapter 4 « NSAPI Function Reference 111

Parameters

pblock *pb is a set of parameters specified by the fn="1oad-modules" directive.
Session *sn (the Session) is NULL.

Request *rq (the Request) is NULL.

NSAPI_RUNTIME_VERSION

The NSAPI RUNTIME VERSION macro defines the NSAPI version available at
runtime. This is the same as the highest NSAPI version supported by the server the
plugin is running in. The NSAPI version is encoded as in USE_NSAPI_VERSION.

The value returned by the NSAPI RUNTIME VERSION macro is valid only in
iPlanet™ Web Server 6.0, Netscape Enterprise Server 6.0, Sun Java System Web Server
6.1, and Sun Java System Web Proxy Server 4.0.2 and higher. That is, the server must
support NSAPI 3.1 for this macro to return a valid value. Additionally, to use
NSAPI_RUNTIME_VERSION, you must compile against an nsapi . h header file that
supports NSAPI 3.2 or higher.

Plugin developers should not attempt to set the value of the
NSAPI RUNTIME VERSION macro directly. Instead, see the USE NSAPI VERSION
macro.

Syntax

int NSAPI_RUNTIME_VERSION

Example

NSAPI_ PUBLIC int log nsapi_runtime version(pblock *pb, Session *sn,
Request *rq) {log error (LOG INFORM, "log-nsapi-runtime-version", sn, rq,
"Server supports NSAPI version %d.%d\\n",
NSAPI_ RUNTIME VERSION / 100,
NSAPI_RUNTIME_VERSION % 100);
return REQ PROCEED;

}

See Also
“NSAPI_VERSION” on page 113

“USE_NSAPI_VERSION” on page 170

112 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

NSAPI_VERSION

The NSAPI VERSION macro defines the NSAPI version used at compile time. This
value is determined by the value of the USE_NSAPI_VERSION macro, or, if the plugin
developer did not define USE_NSAPI_VERSION, by the highest NSAPI version
supported by the nsapi . h header the plugin was compiled against. The NSAPI
version is encoded as in USE_NSAPI VERSION.

Plugin developers should not attempt to set the value of the NSAPI VERSION macro
directly. Instead, see the USE_NSAPI_VERSION macro..

Syntax

int NSAPI_VERSION

Example

NSAPI_PUBLIC int log_nsapi_compile_time_version(pblock *pb, Session *sn,
Request *rqg) {log error (LOG_INFORM, "log-nsapi-compile-time-version", sn, rq,
"Plugin compiled against NSAPI version %d.%d\\n",
NSAPI VERSION / 100,
NSAPI_VERSION % 100);
return REQ PROCEED;

}

See Also
“NSAPI_RUNTIME_VERSION” on page 112

“USE_NSAPI_VERSION” on page 170

P

param_create

The param_create function creates a pb_param structure containing a specified
name and value. The name and value are copied. Use this function to prepare a
pb_param structure to be used in calls to pblock routines such as pblock pinsert.

Syntax

pb_param *param create(char *name, char *value);

Chapter 4 « NSAPI Function Reference 113

Returns

A pointer to a new pb_param structure.

Parameters

char *name is the string containing the name.

char *value is the string containing the value.

Example

pb_param *newpp = param create ("content-type","text/plain");
pblock pinsert (newpp, rg->srvhdrs);

See Also

“param_free” on page 114, “pblock_pinsert” on page 123, “pblock_remove” on page
123

param_free

The param free function frees the pb_param structure specified by pp and its
associated structures. Use the param free function to dispose a pb_param after
removing it from a pblock with pblock remove.

Syntax

int param_free (pb_param *pp) ;

Returns

1 if the parameter was freed or 0 if the parameter was NULL.

Parameters

pb_param *pp is the name-value pair stored in a pblock.

Example

if (param free (pblock remove ("content-type", rg-srvhdrs))) return;
/* we removed it */

114 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

See Also

“param_create” on page 113, “pblock_pinsert” on page 123, “pblock_remove”
on page 123

pblock_copy

The pblock copy function copies the entries of the source pblock and adds them
into the destination pblock. Any previous entries in the destination pblock are left
intact.

Syntax

void pblock copy(pblock *src, pblock *dst);

Returns

void

Parameters

pblock *src is the source pblock.
pblock *dst is the destination pblock.

Names and values are newly allocated so that the original pblock may be freed, or
the new pblock changed without affecting the original pblock.

See Also

“pblock_create” on page 115, “pblock_dup” on page 116, “pblock_free” on page 119,
“pblock_find” on page 116, “pblock_findval” on page 118, “pblock_remove” on page
123, “pblock_nvinsert” on page 120

pblock_create

The pblock_create function creates a new pblock. The pblock maintains an internal
hash table for fast name-value pair lookups.

Syntax

pblock *pblock create(int n);

Chapter 4 « NSAPI Function Reference 115

Returns

A pointer to a newly allocated pblock.

Parameters

int n is the size of the hash table (number of name-value pairs) for the pblock.

See Also

“pblock_copy” on page 115, “pblock_dup” on page 116, “pblock_find” on page 116,
“pblock_findval” on page 118, “pblock_free” on page 119, “pblock_nvinsert” on page
120, “pblock_remove” on page 123

pblock_dup

The pblock_dup function duplicates a pblock. It is equivalent to a sequence of
pblock_create and pblock copy.

Syntax

pblock *pblock dup (pblock *src) ;

Returns

A pointer to a newly allocated pblock.

Parameters

pblock *src is the source pblock.

See Also

“pblock_create” on page 115, “pblock_find” on page 116, “pblock_findval” on page
118, “pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove”
on page 123

pblock_find

The pblock_find function finds a specified name-value pair entry in a pblock, and
returns the pb_param structure. If you only want the value associated with the name,
use the pblock findval function.

116 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

This function is implemented as a macro.

Syntax

pb_param *pblock_find(char *name, pblock *pb);

Returns

A pointer to the pb_param structure if one was found, or NULL if name was not
found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

See Also

“pblock_copy” on page 115, “pblock_dup” on page 116, “pblock_findval” on page 118,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123

pblock_findlong

The pblock_findlong function finds a specified name-value pair entry in a
parameter block, and retrieves the name and structure of the parameter block. Use
pblock findlong if you want to retrieve the name, structure, and value of the
parameter block. However, if you want only the name and structure of the parameter
block, use the pblock_find function. Do not use these two functions in conjunction.

Syntax

#include <libproxy/util.h>
long pblock findlong(char *name, pblock *pb);

Returns

® A long containing the value associated with the name
® -1 if no match was found

Chapter 4 « NSAPI Function Reference 117

Parameters

char *name is the name of a name-value pair.

pblock *pb is the parameter block to be searched.

See also

pblock_nlinsert

pblock_findval

The pblock findval function finds the value of a specified name in a pblock. If you
just want the pb_param structure of the pblock, use the pblock_find function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to
modify it, do a STRDUP and modify the copy.

Syntax

char *pblock_ findval (char *name, pblock *pb);

Returns

A string containing the value associated with the name or NULL if no match was
found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

Example

see “pblock_nvinsert” on page 120.

See Also

“pblock_create” on page 115, “pblock_copy” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123, “request_header” on page 141

118 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

pblock_free

The pblock free function frees a specified pblock and any entries inside it. If you
want to save a variable in the pblock, remove the variable using the function
pblock_remove and save the resulting pointer.

Syntax

void pblock free(pblock *pb);

Returns

void

Parameters

pblock *pb is the pblock to be freed.

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_dup” on page 116,
“pblock_find” on page 116, “pblock_findval” on page 118, “pblock_nvinsert” on page
120, “pblock_remove” on page 123

pblock_nlinsert

The pblock nlinsert function creates a new parameter structure with a given
name and long numeric value and inserts it into a specified parameter block. The
name and value parameters are also newly allocated.

Syntax

#include <libproxy/util.h>
pb_param *pblock_nlinsert (char *name, long value, pblock *pb) ;

Returns

The newly allocated parameter block structure

Parameters

char *name is the name by which the name-value pair is stored.

long value is the long (or integer) value being inserted into the parameter block.

Chapter 4 « NSAPI Function Reference 119

pblock *pb is the parameter block into which the insertion occurs.

See also
“pblock_findlong” on page 117

pblock_nninsert

The pblock nninsert function creates a new entry with a given name and a
numeric value in the specified pblock. The numeric value is first converted into a
string. The name and value parameters are copied.

Syntax

pb_param *pblock_nninsert (char *name, int value, pblock *pb);

Returns

A pointer to the new pb_param structure.

Parameters

char *name is the name of the new entry.

int value is the numeric value being inserted into the pblock. This parameter must
be an integer. If the value you assign is not a number, then instead use the function
pblock_nvinsert to create the parameter.

pblock *pb is the pblock into which the insertion occurs.

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123, “pblock_str2pblock” on page 124

pblock_nvinsert

The pblock nvinsert function creates a new entry with a given name and
character value in the specified pblock. The name and value parameters are copied.

120 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Syntax

pb_param *pblock nvinsert (char *name, char *value, pblock *pb);

Returns

A pointer to the newly allocated pb_param structure.

Parameters

char *name is the name of the new entry.
char *value is the string value of the new entry.

pblock *pb is the pblock into which the insertion occurs.

Example

pblock nvinsert ("content-type", "text/html", rg->srvhdrs);

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nninsert” on page 120, “pblock_remove” on page
123, “pblock_str2pblock” on page 124

pblock_pb2env

The pblock_pb2env function copies a specified pblock into a specified
environment. The function creates one new environment entry for each name-value
pair in the pblock. Use this function to send pblock entries to a program that you
are going to execute.

Syntax

char **pblock pb2env(pblock *pb, char **env);

Returns

A pointer to the environment.

Chapter 4 « NSAPI Function Reference 121

Parameters
pblock *pb is the pblock to be copied.

char **env is the environment into which the pblock is to be copied.

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123, “pblock_str2pblock” on page 124

pblock_pblock2str

The pblock pblock2str function copies all parameters of a specified pblock into a
specified string. The function allocates additional nonheap space for the string if
needed.

Use this function to stream the pblock for archival and other purposes.

Syntax

char *pblock_pblock2str(pblock *pb, char *str);

Returns

The new version of the str parameter. If str is NULL, this is a new string; otherwise,
it is a reallocated string. In either case, it is allocated from the request’s memory pool.

Parameters

pblock *pb is the pblock to be copied.

char *str is the string into which the pblock is to be copied. It must have been
allocated by MALLOC or REALLOC, not by PERM_MALLOC or PERM_REALLOC (which
allocate from the system heap).

Each name-value pair in the string is separated from its neighbor pair by a space, and
is in the format name="value."

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123, “pblock_str2pblock” on page 124

122 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

pblock_pinsert

The function pblock pinsert inserts a pb_param structure into a pblock.

Syntax

void pblock pinsert (pb_param *pp, pblock *pb);

Returns

void

Parameters

b param *pp is the pb param structure to insert.
po_p PP pob_p

pblock *pb is the pblock.

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123, “pblock_str2pblock” on page 124

pblock_remove

The pblock remove function removes a specified name-value entry from a specified
pblock. If you use this function, you should eventually call param_free to
deallocate the memory used by the pb_param structure.

Syntax

pb_param *pblock remove (char *name, pblock *pb);

Returns

A pointer to the named pb_param structure if it was found, or NULL if the named
pb_param was not found.

Parameters

char *name is the name of the pb_param to be removed.

pblock *pb is the pblock from which the name-value entry is to be removed.

Chapter 4 « NSAPI Function Reference 123

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “param_create” on page
113, “param_free” on page 114

pblock_replace_name

The pblock replace_name function replaces the name of a name-value pair,
retaining the value.

Syntax

#include <libproxy/util.h>
void pblock replace_name (char *oname,char *nname, pblock *pb);

Returns

void

Parameters

char *oname is the old name of a name-value pair.
char *nname is the new name for the name-value pair.

pblock *pb is the parameter block to be searched.

See also

“pblock_remove” on page 123

pblock_str2pblock

The pblock_str2pblock function scans a string for parameter pairs, adds them to a
pblock, and returns the number of parameters added.

Syntax

int pblock_str2pblock (char *str, pblock *pb);

124 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Returns

The number of parameter pairs added to the pblock, if any, or -1 if an error
occurred.

Parameters
char *str is the string to be scanned.
The name-value pairs in the string can have the format name=value or name="value."

All backslashes (\\) must be followed by a literal character. If string values are found
with no unescaped = signs (no name=), it assumes the names 1, 2, 3, and so on,
depending on the string position. For example, if pblock_str2pblock finds "some
strings together," the function treats the strings as if they appeared in
name-value pairs as 1="some" 2="strings" 3="together."

pblock *pb is the pblock into which the name-value pairs are stored.

See Also

“pblock_copy” on page 115, “pblock_create” on page 115, “pblock_find” on page 116,
“pblock_free” on page 119, “pblock_nvinsert” on page 120, “pblock_remove” on page
123, “pblock_pblock2str” on page 122

PERM_CALLOC

The PERM_CALLOC macro is a platform-independent substitute for the C library
routine calloc. It allocates int size bytes of memory that persist after the request that
is being processed has been completed. If pooled memory has been disabled in the
configuration file (with the pool-init built-in SAF), PERM CALLOC and CALLOC
both obtain their memory from the system heap.

Syntax

void *PERM_CALLOC (int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the size in bytes of each element.

Chapter 4 « NSAPI Function Reference 125

Example

char **name;name = (char **) PERM CALLOC(100) ;

See Also

“PERM_FREE” on page 126, “PERM_STRDUP” on page 128, “PERM_MALLOC”
on page 127, “PERM_REALLOC” on page 127, “MALLOC” on page 103, “FREE”
on page 96, “CALLOC” on page 75, “STRDUP” on page 152, “REALLOC” on page 138

PERM_FREE

The PERM_FREE macro is a platform-independent substitute for the C library routine
free. It deallocates the persistent space previously allocated by PERM MALLOC,
PERM_CALLOC, or PERM_STRDUP. If pooled memory has been disabled in the
configuration file (with the pool-init built-in SAF), PERM_FREE and FREE both
deallocate memory in the system heap.

Syntax

PERM_FREE (void *ptr) ;

Returns

void

Parameters

void *ptrisa (void *) pointer to block of memory. If the pointer is not one
created by PERM_MALLOC, PERM CALLOC, or PERM_STRDUP, the behavior is
undefined.

Example

char *name;name = (char *) PERM_MALLOC(256) ;...PERM_FREE (name) ;

See Also

“FREE” on page 96, “"MALLOC” on page 103, “CALLOC” on page 75, “"REALLOC”
on page 138, “STRDUP” on page 152, “PERM_MALLOC” on page 127,
“PERM_CALLOC” on page 125, “PERM_REALLOC” on page 127, “PERM_STRDUP”
on page 128

126 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ®* November 2005

PERM_MALLOC

The PERM_MALLOC macro is a platform-independent substitute for the C library
routine malloc. It provides allocation of memory that persists after the request that is
being processed has been completed. If pooled memory has been disabled in the
configuration file (with the pool-init built-in SAF), PERM_MALLOC and MALLOC
both obtain their memory from the system heap.

Syntax

void *PERM_MALLOC (int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */char *name;name = (char ¥*)
PERM_MALLOC (256) ;

See Also

“PERM_FREE” on page 126, “PERM_STRDUP” on page 128, “PERM_CALLOC”
on page 125, “PERM_REALLOC” on page 127, “MALLOC” on page 103, “FREE”
on page 96, “CALLOC” on page 75, “STRDUP” on page 152, “REALLOC” on page 138

PERM_REALLOC

The PERM_REALLOC macro is a platform-independent substitute for the C library
routine realloc. It changes the size of a specified memory block that was originally
created by MALLOC, CALLOC, or STRDUP. The contents of the object remains
unchanged up to the lesser of the old and new sizes. If the new size is larger, the new
space is uninitialized.

Warning

Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLOC, or
STRDUP will not work.

Chapter 4 « NSAPI Function Reference 127

Syntax

void *PERM_REALLOC (vod *ptr, int size)

Returns

A void pointer to a block of memory.

Parameters

void *ptr a void pointer to a block of memory created by PERM_MALLOC,
PERM_CALLOC, or PERM_STRDUP.

int size is the number of bytes to which the memory block should be resized.

Example

char *name;name = (char *) PERM_MALLOC(256) ;if (NotBigEnough())
name = (char *) PERM_REALLOC (512) ;

See Also

“PERM_MALLOC” on page 127,“PERM_FREE” on page 126, “PERM_CALLOC”
on page 125, “PERM_STRDUP” on page 128, “MALLOC” on page 103, “FREE”
on page 96, “STRDUP” on page 152, “"CALLOC” on page 75, “REALLOC” on page 138

PERM_STRDUP

The PERM_STRDUP macro is a platform-independent substitute for the C library
routine strdup. It creates a new copy of a string in memory that persists after the
request that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool-init built-in SAF), PERM STRDUP
and STRDUP both obtain their memory from the system heap.

The PERM_STRDUP routine is functionally equivalent to:

newstr = (char *) PERM MALLOC (strlen(str) + 1);strcpy(newstr, str);

A string created with PERM STRDUP should be disposed with PERM FREE.

Syntax

char *PERM STRDUP (char *ptr);

128 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Returns

A pointer to the new string.

Parameters

char *ptr is a pointer to a string.

See Also

“PERM_MALLOC” on page 127,”"PERM_FREE” on page 126, “PERM_CALLOC”
on page 125, “PERM_REALLOC” on page 127, “MALLOC” on page 103, “FREE”
on page 96, “STRDUP” on page 152, “CALLOC” on page 75, “REALLOC” on page 138

prepare_nsapi_thread

The prepare _nsapi_thread function allows threads that are not created by the
server to act like server-created threads. This function must be called before any
NSAPI functions are called from a thread that is not server-created.

Syntax

void prepare nsapi_thread(Request *rqg, Session *sn);

Returns

void

Parameters

Request *rq is the Request.
Session *sn is the Session.

The Request and Session parameters are the same as the ones passed into your SAE.

See Also

“protocol_start_response” on page 134

Chapter 4 « NSAPI Function Reference 129

protocol_dump822

The protocol dump822 function prints headers from a specified pblock into a
specific buffer, with a specified size and position. Use this function to serialize the
headers so that they can be sent, for example, in a mail message.

Syntax

char *protocol dump822 (pblock *pb, char *t, int *pos, int tsz);

Returns

A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Parameters

pblock *pb is the pblock structure.
char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.
int *pos is the position within the buffer at which the headers are to be dumped.

int tsz is the size of the buffer.

See Also

“protocol_start_response” on page 134, “protocol_status” on page 135

protocol_finish_request

The protocol finish request function finishes a specified request. For HTTP,
the function just closes the socket.

Syntax

#include <frame/protocol.h>
void protocol_finish request (Session *sn, Request *rq);

Returns

void

130 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Parameters

Session *sn is the Session that generated the request.

Request *rq is the Request to be finished.

See also

protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_handle_session

The protocol_handle_session function processes each request generated by a
specified session.

Syntax

#include <frame/protocol.h>
void protocol_handle_session(Session *sn) ;

Parameters

Session *sn is the that generated the requests.

See also

protocol_scan_headers, protocol_start_response, protocol_status

protocol_parse_request

Parses the first line of an HTTP request.

Syntax

#include <frame/protocol.h>
int protocol_parse_request (char *f, Request *rg, Session *sn);

Returns

® The constant REQ_PROCEED if the operation succeeded
® The constant REQ_ABORTED if the operation did not succeed

Chapter 4 « NSAPI Function Reference

131

Parameters

char *t defines a string of length REQ_MAX_LINE. This is an optimization for the
internal code to reduce usage of runtime stack.

Request *rq is the request to be parsed.

Session *sn is the session that generated the request.

See also

“protocol_scan_headers” on page 132, “protocol_start_response” on page 134,
“protocol_status” on page 135

protocol_scan_headers

Scans HTTP headers from a specified network buffer, and places them in a specified
parameter block.

Folded lines are joined and the linefeeds are removed (but not the whitespace). If there
are any repeat headers, they are joined and the two field bodies are separated by a
comma and space. For example, multiple mail headers are combined into one header
and a comma is used to separate the field bodies.

Syntax

#include <frame/protocol.h>
int protocol_ scan headers(Session *sn, netbuf *buf, char *t, pblock *headers) ;

Returns

® The constant REQ PROCEED if the operation succeeded
m The constant REQ ABORTED if the operation did not succeed

Parameters

Session *sn is the session that generated the request. The structure named by sn
contains a pointer to a netbuf called inbuf. If the parameter buf is NULL, the function
automatically uses inbuf.

Note that sn is an optional parameter that is used for error logs. Use NULL if you
wish.

132 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

netbuf *buf is the network buffer to be scanned for HTTP headers.

char *t defines a string of length REQ_MAX LINE. This is an optimization for the
internal code to reduce usage of runtime stack.

pblock *headers is the parameter block to receive the headers.

See also

“protocol_handle_session” on page 131, “protocol_start_response” on page 134,
“protocol_status” on page 135

protocol_set_finfo

The protocol _set finfo function retrieves the content-1length and
last-modified date from a specified stat structure and adds them to the response
headers (rg- >srvhdrs). Call protocol set finfo before calling

protocol start response.

Syntax

int protocol set finfo(Session *sn, Request *rq, struct stat *finfo);

Returns

The constant REQ PROCEED if the request can proceed normally, or the constant
REQ_ABORTED if the function should treat the request normally but not send any
output to the client.

Parameters

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

stat *finfo is the stat structure for the file.

The stat structure contains the information about the file from the file system. You
can get the stat structure info using request_stat_path.

Chapter 4 « NSAPI Function Reference 133

See Also

“protocol_start_response” on page 134, “protocol_status” on page 135

protocol_start_response

The protocol_start_response function initiates the HTTP response for a
specified session and request. If the protocol version is HTTP /0.9, the function does
nothing, because that version has no concept of status. If the protocol version is
HTTP/1.0, the function sends a status line followed by the response headers. Use this
function to set up HTTP and prepare the client and server to receive the body (or data)
of the response.

Syntax

int protocol start response (Session *sn, Request *rq);

Returns

The constant REQ_PROCEED if the operation succeeded, in which case you should
send the data you were preparing to send.

The constant REQ NOACTION if the operation succeeded but the request method was
HEAD, in which case no data should be sent to the client.

The constant REQ ABORTED if the operation did not succeed.

Parameters

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your

SAE

Example

/* A noaction response from this function means the request was HEAD */
if (protocol start response(sn, rg) == REQ NOACTION) { filebuf close (groupbuf) ;
/* close our file*/ return REQ PROCEED; }

See Also

“protocol_status” on page 135

134 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

protocol_status

The protocol status function sets the session status to indicate whether an error
condition occurred. If the reason string is NULL, the server attempts to find a reason
string for the given status code. If it finds none, it returns “Unknown reason.” The
reason string is sent to the client in the HTTP response line. Use this function to set the
status of the response before calling the function protocol_start_response.

For the complete list of valid status code constants, please refer to the file “nsapi.h”
in the server distribution.

Syntax

void protocol_status(Session *sn, Request *rqg, int n, char *r);

Returns

void, but it sets values in the Session/Request designated by sn/rq for the status
code and the reason string.

Parameters

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

int n is one of the status code constants above.

char *r is the reason string.

Example

/* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */if (t = pblock findval ("path-info", rg->vars))
{ protocol status(sn, rqg, PROTOCOL NOT FOUND, NULL) ;
log_error (LOG_WARN, "function-name", sn, rq, "%s not found", path);
return REQ ABORTED; }

See Also

“protocol_start_response” on page 134

Chapter 4 « NSAPI Function Reference 135

protocol_uri2url

The protocol_uri2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly allocated, fully qualified URL in the form

http:// (server) : (port) (prefix) (suffix). See

protocol uri2url dynamic.

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the value
for either parameter.

Syntax

char *protocol uri2url (char *prefix, char *suffix);

Returns

A new string containing the URL.

Parameters

char *prefix is the prefix.

char *suffix is the suffix.

See Also

“protocol_start_response” on page 134, “protocol_status” on page 135,
“pblock_nvinsert” on page 120, “protocol_uri2url_dynamic” on page 136

protocol_uri2url_dynamic

The protocol_uri2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly allocated, fully qualified URL in the form
http:// (server) : (port) (prefix) (suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the value
for either parameter.

The protocol uri2url dynamic function is similar to the protocol uri2url
function, but should be used whenever the session and request structures are
available. This ensures that the URL it constructs refers to the host that the client
specified.

136 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Syntax

char *protocol uri2url(char *prefix, char *suffix, Session *sn, Request *rq);

Returns

A new string containing the URL.

Parameters

char *prefix is the prefix.
char *suffix is the suffix.

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAFE.

See Also

“protocol_start_response” on page 134, “protocol_status” on page 135,
“protocol_uri2url_dynamic” on page 136

R

read

The read filter method is called when input data is required. Filters that modify or
consume incoming data should implement the read filter method.

Upon receiving control, a read implementation should fill buf with up to amount
bytes of input data. This data may be obtained by calling the “net_read” on page 105
function, as shown in the example below.

Syntax

int read(FilterLayer *layer, void *buf, int amount, int timeout) ;

Chapter 4 « NSAPI Function Reference 137

138

Returns

The number of bytes placed in buf on success, 0 if no data is available, or a negative
value if an error occurred.

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.

void *buf is the buffer in which data should be placed.

int amount is the maximum number of bytes that should be placed in the buffer.

int timeout is the number of seconds to allow for the read operation before
returning. The purpose of t imeout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until some
data arrives.

Example

int myfilter read(FilterLayer *layer, void *buf, int amount, int timeout)
{ return net read(layer->lower, buf, amount, timeout);}

See Also

“net_read” on page 105

REALLOC

The REALLOC macro is a platform-independent substitute for the C library routine
realloc. It changes the size of a specified memory block that was originally created
by MALLOC, CALLOC, or STRDUP. The contents of the object remains unchanged up to
the lesser of the old and new sizes. If the new size is larger, the new space is
uninitialized.

Warning

Calling REALLOC for a block that was allocated with PERM_MALLOC, PERM_CALLOC,
or PERM STRDUP will not work.

Syntax

void *REALLOC (void *ptr, int size);

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Returns

A pointer to the new space if the request could be satisfied.

Parameters

void *ptris a (void *) pointer to a block of memory. If the pointer is not one created
by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

int size is the number of bytes to allocate.

Example

char *name;name = (char *) MALLOC (256) ;if (NotBigEnough())
name = (char *) REALLOC(512) ;

See Also

“"MALLOC” on page 103, “FREE” on page 96, “STRDUP” on page 152, “CALLOC”
on page 75, “PERM_MALLOC” on page 127, “PERM_FREE” on page 126,
“PERM_REALLOC” on page 127, “PERM_CALLOC” on page 125, “PERM_STRDUP”
on page 128

remove

The remove filter method is called when the filter stack is destroyed, or when a filter
is removed from a filter stack by the “filter_remove” on page 94 function or
remove-filter SAF (applicable in Input-, Output-, Service-, and Error-class
directives).

Note that it may be too late to flush buffered data when the remove method is
invoked. For this reason, filters that buffer outgoing data should implement the £1ush
filter method.

Syntax

void remove (FilterLayer *layer);

Returns

void

Chapter 4 « NSAPI Function Reference 139

Parameters

FilterLayer *layer is the filter layer the filter is installed in.

See Also
“flush” on page 95

request_create

The request_create function is a utility function that creates a new request
structure.

Syntax

#include <frame/reqg.h>
Request *request create(void) ;

Returns

A Request structure

Parameters

No parameter is required.

See also

“request_free” on page 140, “request_header” on page 141

request_free

The request_free function frees a specified request structure.

Syntax

#include <frame/req.h>
void request_free (Request *req) ;

140 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Returns

void

Parameters

Request *rq is the Request structure to be freed.

See also

“request_header” on page 141

request_header

The request_header function finds an entry in the pblock containing the client’s
HTTP request headers (rg- >headers). You must use this function rather than
pblock_findval when accessing the client headers, since the server may begin
processing the request before the headers have been completely read.

Syntax

int request header (char *name, char **value, Session *sn, Request *rq);

Returns

A result code, REQ PROCEED if the header was found, REQ ABORTED if the header
was not found, REQ EXIT if there was an error reading from the client.

Parameters

char *name is the name of the header.

char **value is the address where the function will place the value of the specified
header. If none is found, the function stores a NULL.

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAFE.

Chapter 4 « NSAPI Function Reference 141

See Also

“request_create” on page 140, “request_free” on page 140

S

sem_grab

The sem_grab function requests exclusive access to a specified semaphore. If
exclusive access is unavailable, the caller blocks execution until exclusive access
becomes available. Use this function to ensure that only one server processor thread
performs an action at a time.

Syntax

#include <base/sem.h>
int sem_grab (SEMAPHORE id) ;

Returns

m -1 if an error occurred
® 0 to signal success

Parameters

SEMAPHORE id is the unique identification number of the requested semaphore.

See also

“sem_init” on page 142, “sem_release” on page 143, “sem_terminate” on page 144,
“sem_tgrab” on page 144

sem_init

The sem_init function creates a semaphore with a specified name and unique
identification number. Use this function to allocate a new semaphore that will be used
with the functions sem_grab and sem_release. Call sem_init from an init class
function to initialize a static or global variable that the other classes will later use.

142 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Syntax

#include <base/sem.h>
SEMAPHORE sem_init (char *name, int number) ;

Returns
The constant SEM_ERROR if an error occurred.

Parameters

SEMAPHORE *name is the name for the requested semaphore. The filename of the
semaphore should be a file accessible to the process.

int number is the unique identification number for the requested semaphore.

See also

“sem_grab” on page 142, “sem_release” on page 143, “sem_terminate” on page 144

sem_release

The sem_release function releases the process’s exclusive control over a specified
semaphore. Use this function to release exclusive control over a semaphore created
with the function sem_grab.

Syntax

#include <base/sem.h>
int sem release (SEMAPHORE id) ;

Returns

m -] if an error occurred
m (if no error occurred

Parameters

SEMAPHORE id is the unique identification number of the semaphore.

See also

“sem_grab” on page 142, “sem_init” on page 142, “sem_terminate” on page 144

Chapter 4 « NSAPI Function Reference 143

sem_terminate

The sem_terminate function deallocates the semaphore specified by id. You can use
this function to deallocate a semaphore that was previously allocated with the
function sem_init.

Syntax

#include <base/sem.h>
void sem terminate (SEMAPHORE id) ;

Returns

void

Parameters

SEMAPHORE id is the unique identification number of the semaphore.

See also

“sem_grab” on page 142, “sem_init” on page 142, “sem_release” on page 143

sem_tgrab

The sem_tgrab function tests and requests exclusive use of a semaphore. Unlike the
somewhat similar sem_grab function, if exclusive access is unavailable the caller is
not blocked but receives a return value of -1. Use this function to ensure that only one
server processor thread performs an action at a time.

Syntax

#include <base/sem.h>
int sem grab (SEMAPHORE id) ;

Returns

m -1 if an error occurred or if exclusive access was not available
® 0 exclusive access was granted

144 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide ®* November 2005

Parameters

SEMAPHORE id is the unique identification number of the semaphore.

See also

“sem_grab” on page 142, “sem_init” on page 142, “sem_release” on page 143,
“sem_terminate” on page 144

sendfile

The sendfile filter method is called when the contents of a file are to be sent. Filters
that modify or consume outgoing data may choose to implement the sendfile filter
method.

If a filter implements the write filter method but not the sendfile filter method, the
server will automatically translate “net_sendfile” on page 106 calls to “net_write”

on page 107 calls. As a result, filters interested in the outgoing data stream do not need
to implement the sendfile filter method. However, for performance reasons, it is
beneficial for filters that implement the write filter method to also implement the
sendfile filter method.

Syntax

int sendfile(FilterLayer *layer, const sendfiledata *data);

Returns

The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters

FilterLayer *layer is the filter layer the filter is installed in.

const sendfiledata *sfd identifies the data to send.

Example

int myfilter sendfile(FilterLayer *layer, const sendfiledata *sfd)

{
}

return net_sendfile (layer->lower, sfd);

Chapter 4 « NSAPI Function Reference 145

See Also

“net_sendfile” on page 106

session_create

The session_create function creates a new Session structure for the client with a
specified socket descriptor and a specified socket address. It returns a pointer to that
structure.

Syntax

#include <base/session.hs>
Session *session_create (SYS NETFD csd, struct sockaddr_in *sac) ;

Returns

® A pointer to the new Session if one was created
m NULL if no new Session was created

Parameters

SYS_NETFD csd is the platform-independent socket descriptor.

sockaddr_in *sac is the socket address.

See also

“session_maxdns” on page 148

session_dns

The session_dns function resolves the IP address of the client associated with a
specified session into its DNS name. It returns a newly allocated string. You can use
session_dns to change the numeric IP address into something more readable.

The session maxdns function verifies that the client is who it claims to be; the
session_dns function does not perform this verification.

146 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ®* November 2005

Note — This function works only if the DNS directive is enabled in the obj . conf file.
For more information, see Sun Java System Web Proxy Server 4.0.2 Configuration File
Reference.

Syntax

char *session dns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the
IP address.

Parameters

Session *sn is the Session.

The Session is the same as the one passed to your SAF.

session_free

The session free function frees a specified Session structure. The session free
function does not close the client socket descriptor associated with the Session.

Syntax

#include <base/session.h>
void session free(Session *sn);

Returns

void

See also

“session_create” on page 146, “session_maxdns” on page 148

Parameters

Session *sn is the Session to be freed.

Chapter 4 « NSAPI Function Reference 147

148

session_maxdns

The session_maxdns function resolves the IP address of the client associated with a
specified session into its DNS name. It returns a newly allocated string. You can use
session_maxdns to change the numeric IP address into something more readable.

Note — This function works only if the DNS directive is enabled in the obj . conf file.
For more information, see Sun Java System Web Proxy Server 4.0.2 Configuration File
Reference

Syntax

char *session maxdns (Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the
IP address.

Parameters

Session *sn is the Session.

The Session is the same as the one passed to your SAF.

shexp_casecmp

The shexp casecmp function validates a specified shell expression and compares it
with a specified string. It returns one of three possible values representing match, no
match, and invalid comparison. The comparison (in contrast to that of the shexp cmp
function) is not case-sensitive.

Use this function if you have a shell expression like * .netscape . com and you want
to make sure that a string matches it, such as foo.netscape.com.

Syntax

int shexp casecmp (char *str, char *exp);

Returns

0 if a match was found.

1 if no match was found.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

-1 if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

See Also
“shexp_cmp” on page 149, “shexp_match” on page 150, “shexp_valid” on page 150

shexp_cmp

The shexp casecmp function validates a specified shell expression and compares it
with a specified string. It returns one of three possible values representing match, no
match, and invalid comparison. The comparison (in contrast to that of the

shexp casecmp function) is case-sensitive.

Use this function if you have a shell expression like * . netscape . com and you want
to make sure that a string matches it, such as foo.netscape . com.

Syntax

int shexp cmp(char *str, char *exp);

Returns

0 if a match was found.
1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example

/* Use wildcard match to see if this path is one we want */

char *path;char *match = "/usr/netscape/*";if (shexp cmp(path, match) != 0)
return REQ NOACTION; /* no match */

Chapter 4 « NSAPI Function Reference 149

150

See Also

“shexp_casecmp” on page 148, “shexp_match” on page 150, “shexp_valid” on page
150

shexp_match

The shexp_match function compares a specified prevalidated shell expression
against a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp casecmp function) is case-sensitive.

The shexp_match function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp valid.

Use this function if you have a shell expression such as * .netscape. com, and you
want to make sure that a string matches it, such as foo.netscape. com.

Syntax

int shexp match(char *str, char *exp);

Returns

0 if a match was found.
1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the prevalidated shell expression (wildcard pattern) to compare against.

See Also

“shexp_casecmp” on page 148, “shexp_cmp” on page 149, “shexp_valid” on page 150

shexp_valid

The shexp_valid function validates a specified shell expression named by exp. Use
this function to validate a shell expression before using the function shexp_match to
compare the expression with a string.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Syntax

int shexp valid(char *exp);

Returns

The constant NON_ SXP if exp is a standard string.
The constant INVALID SXP if exp is a shell expression, but invalid.

The constant VALID_SXP if exp is a valid shell expression.

Parameters

char *exp is the shell expression (wildcard pattern) to be validated.

See Also

“shexp_casecmp” on page 148, “shexp_match” on page 150, “shexp_cmp” on page 149

shmem_ alloc

The shmem alloc function allocates a region of shared memory of the given size,
using the given name to avoid conflicts between multiple regions in the program. The
size of the region will not be automatically increased if its boundaries are overrun; use
the shmem_realloc function for that.

This function must be called before any daemon workers are spawned in order for the
handle to the shared region to be inherited by the children.

Because of the requirement that the region must be inherited by the children, the
region cannot be reallocated with a larger size when necessary.

Syntax

#include <base/shmem.h>
shmem s *shmem alloc (char *name, int size, int expose) ;

Returns

A pointer to a new shared memory region.

Chapter 4 « NSAPI Function Reference 151

Parameters

char *name is the name for the region of shared memory being created. The value of
name must be unique to the program that calls the shmem_alloc function or conflicts
will occur.

int size is the number of characters of memory to be allocated for the shared memory.

int expose is either zero or nonzero. If nonzero, then on systems that support it, the
file that is used to create the shared memory becomes visible to other processes
running on the system.

See also

“shmem_free” on page 152

shmem_ free

The shmem_free function deallocates (frees) the specified region of memory.

Syntax

#include <base/shmem.h>
void *shmem_ free (shmem_ s *region) ;

Returns

void

Parameters

shmem_s *region is a shared memory region to be released.

See also

“shmem_alloc” on page 151

STRDUP

The STRDUP macro is a platform-independent substitute for the C library routine
strdup. It creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

152 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

newstr = (char *) MALLOC (strlen(str) + 1);
strcpy (newstr, str);

A string created with STRDUP should be disposed with FREE.

Syntax

char *STRDUP (char *ptr) ;

Returns

A pointer to the new string.

Parameters

char *ptr is a pointer to a string.

Example

char *namel = "MyName";char *name2 = STRDUP (namel) ;

See Also

“MALLOC” on page 103, “FREE” on page 96, “CALLOC” on page 75, “REALLOC”
on page 138, “PERM_MALLOC” on page 127, “PERM_FREE” on page 126,
“PERM_CALLOC” on page 125, “PERM_REALLOC” on page 127, “PERM_STRDUP”
on page 128

system_errmsg

The system_errmsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an entry from
the global array sys_errlist. Use this macro to help with I/O error diagnostics.

Syntax

char *system_errmsg(int paraml) ;

Returns

A string containing the text of the latest error message that resulted from a system call.
Do not FREE this string.

Chapter 4 « NSAPI Function Reference 153

Parameters

int paraml is reserved, and should always have the value 0.

See Also

“system_fopenRO” on page 155, “system_fopenRW” on page 156, “system_fopenWA”
on page 157, “system_lseek” on page 161, “system_fread” on page 157,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

system_fclose

The system fclose function closes a specified file descriptor. The system fclose
function must be called for every file descriptor opened by any of the system_fopen
functions.

Syntax

int system fclose (SYS_FILE fd);

Returns

0 if the close succeeded, or the constant I0 ERROR if the close failed.

Parameters

SYS_FILE £d is the platform-independent file descriptor.

Example

SYS FILE logfd; system fclose(logfd) ;

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_lseek” on page 161,
“system_fread” on page 157, “system_fwrite” on page 158, “system_fwrite_atomic”
on page 159, “system_flock” on page 155, “system_ulock” on page 162

154 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

system_flock

The system_flock function locks the specified file against interference from other
processes. Use system_ flock if you do not want other processes to use the file you
currently have open. Overusing file locking can cause performance degradation and
possibly lead to deadlocks.

Syntax

int system_ flock(SYS_FILE fd);

Returns

The constant IO OKAY if the lock succeeded, or the constant IO ERROR if the lock
failed.

Parameters

SYS FILE £d is the platform-independent file descriptor.

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_lseek” on page 161,
“system_fread” on page 157, “system_fwrite” on page 158, “system_fwrite_atomic”
on page 159, “system_ulock” on page 162, “system_fclose” on page 154

system_fopenRO

The system fopenRO function opens the file identified by path in read-only mode
and returns a valid file descriptor. Use this function to open files that will not be
modified by your program. In addition, you can use system_fopenRO to open a new
file buffer structure using £ilebuf_open.

Syntax

SYS FILE system fopenRO(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the
open failed.

Chapter 4 « NSAPI Function Reference 155

Parameters

char *path is the file name.

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenWA”
on page 157, “system_lseek” on page 161, “system_fread” on page 157,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

system_fopenRW

The system fopenRW function opens the file identified by path in read-write mode
and returns a valid file descriptor. If the file already exists, system_fopenRW does not
truncate it. Use this function to open files that will be read from and written to by your
program.

Syntax

SYS FILE system_ fopenRW(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the
open failed.

Parameters

char *path is the file name.

Example

SYS FILE fd;fd = system fopenRO (pathname);if (fd == SYS ERROR_FD) break;

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenWA”
on page 157, “system_lseek” on page 161, “system_fread” on page 157,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

156 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer's Guide * November 2005

system_fopenWA

The system_fopenWA function opens the file identified by path in write-append
mode and returns a valid file descriptor. Use this function to open those files to which
your program will append data.

Syntax

SYS FILE system fopenWA (char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the
open failed.

Parameters

char *path is the file name.

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_lseek” on page 161, “system_fread” on page 157,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

system_fread

The system_fread function reads a specified number of bytes from a specified file
into a specified buffer. It returns the number of bytes read. Before system fread can
be used, you must open the file using any of the system_fopen functions (except
system_ fopenWA).

Syntax

int system fread(SYS_FILE fd, char *buf, int sz);

Returns

The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters were
obtained.

Chapter 4 « NSAPI Function Reference 157

Parameters

SYS FILE f£d is the platform-independent file descriptor.
char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_lseek” on page 161,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

system_fwrite

The system_fwrite function writes a specified number of bytes from a specified
buffer into a specified file.

Before system_fwrite can be used, you must open the file using any of the
system_fopen functions (except system_fopenRO).

Syntax

int system fwrite(SYS_FILE fd, char *buf, int sz);

Returns

The constant IO _OKAY if the write succeeded, or the constant IO ERROR if the write
failed.

Parameters

SYS_FILE fd is the platform-independent file descriptor.
char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_lseek” on page 161,
“system_fread” on page 157, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

158 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

system_fwrite_atomic

The system_fwrite_atomic function writes a specified number of bytes from a
specified buffer into a specified file. The function also locks the file prior to performing
the write, and then unlocks it when done, thereby avoiding interference between
simultaneous write actions. Before system fwrite_ atomic can be used, you must
open the file using any of the system_ fopen functions, except system_fopenRO.

Syntax

int system fwrite atomic(SYS_FILE fd, char *buf, int sz);

Returns

The constant IO0_OKAY if the write/lock succeeded, or the constant I0_ERROR if the
write/lock failed.

Parameters

SYS FILE fd is the platform-independent file descriptor.
char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

Example

SYS FILE logfd;char *logmsg = "An error occurred.";
system fwrite atomic(logfd, logmsg, strlen(logmsg)) ;

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_lseek” on page 161,
“system_fread” on page 157, “system_fwrite” on page 158, “system_flock” on page
155, “system_ulock” on page 162, “system_fclose” on page 154

system_gmtime

The system gmtime function is a thread-safe version of the standard gmtime
function. It returns the current time adjusted to Greenwich Mean Time.

Chapter 4 « NSAPI Function Reference 159

Syntax

struct tm *system gmtime (const time t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the GMT time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not assume
either situation.

Parameters

time t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example

time_t tp;struct tm res, *resp;tp = time (NULL) ;
resp = system gmtime (&tp, &res);

See Also

“system_localtime” on page 160, “util_strftime” on page 193

system_localtime

The system localtime function is a thread-safe version of the standard
localtime function. It returns the current time in the local time zone.

Syntax

struct tm *system localtime (const time t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the local time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not assume
either situation.

160 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Parameters
time_ t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

See Also

“system_gmtime” on page 159, “util_strftime” on page 193

system_lseek

The system_1lseek function sets the file position of a file. This affects where data
from system_fread or system fwrite is read or written.

Syntax

int system lseek(SYS FILE fd, int offset, int whence);

Returns

The offset, in bytes, of the new position from the beginning of the file if the operation
succeeded, or -1 if the operation failed.

Parameters

SYS_FILE fd is the platform-independent file descriptor.

int offset is a number of bytes relative to whence. It may be negative.
int whence is one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK_END, from the end of the file.

See Also

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_fread” on page 157,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_ulock” on page 162, “system_fclose” on page 154

Chapter 4 « NSAPI Function Reference 161

system_rename

The system_rename function renames a file. It may not work on directories if the old
and new directories are on different file systems.

Syntax

int system rename (char *old, char *new);

Returns

0 if the operation succeeded, or -1 if the operation failed.

Parameters

char *old is the old name of the file.

char *new is the new name for the file.

system_ulock

The system ulock function unlocks the specified file that has been locked by the
function system_lock. For more information about locking, see system_ flock.

Syntax

int system ulock(SYS FILE fd);

Returns

The constant IO_OKAY if the operation succeeded, or the constant I0_ERROR if the
operation failed.

Parameters

SYS FILE £d is the platform-independent file descriptor.

See Also

system _errmsg, system fopenRO, system fopenRW, system fopenWA,
system fread, system fwrite, system fwrite atomic, system flock,
system_fclose

162 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

“system_errmsg” on page 153, “system_fopenRO” on page 155, “system_fopenRW”
on page 156, “system_fopenWA” on page 157, “system_fread” on page 157,
“system_fwrite” on page 158, “system_fwrite_atomic” on page 159, “system_flock”
on page 155, “system_fclose” on page 154

system_unix2local

The system_unix2local function converts a specified UNIX-style path name to a
local file system path name. Use this function when you have a file name in the UNIX
format (such as one containing forward slashes), and you need to access a file on
another system such as Windows. You can use system unix2local to convert the
UNIX file name into the format that Windows accepts. In the UNIX environment this
function does nothing, but may be called for portability.

Syntax

char *system unix2local (char *path, char *1p);

Returns

A pointer to the local file system path string.

Parameters

char *path is the UNIX-style path name to be converted.
char *1p is the local path name.

You must allocate the parameter 1p, and it must contain enough space to hold the
local path name.

See Also

“system_fclose” on page 154, “system_flock” on page 155, “system_fopenRO”
on page 155, “system_fopenRW” on page 156, “system_fopenWA” on page 157,
“system_fwrite” on page 158

systhread_attach

The systhread_attach function makes an existing thread into a
platform-independent thread.

Chapter 4 « NSAPI Function Reference 163

Syntax

SYS THREAD systhread attach(void) ;

Returns

A SYS THREAD pointer to the platform-independent thread.

Parameters

none

See Also

“systhread_current” on page 164, “systhread_getdata” on page 165, “systhread_init”
on page 165, “systhread_newkey” on page 166, “systhread_setdata” on page 166,
“systhread_sleep” on page 167, “systhread_start” on page 168, “systhread_timerset”
on page 169

systhread_current

The systhread_current function returns a pointer to the current thread.

Syntax

SYS THREAD systhread current (void) ;

Returns

A SYS_THREAD pointer to the current thread.

Parameters

none

See Also

“systhread_getdata” on page 165, “systhread_newkey” on page 166,
“systhread_setdata” on page 166, “systhread_sleep” on page 167, “systhread_start”
on page 168, “systhread_timerset” on page 169

164 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

systhread_getdata

The systhread_getdata function gets data that is associated with a specified key in

the current thread.

Syntax

void *systhread getdata (int key);

Returns

A pointer to the data that was earlier used with the systhread_setkey function
from the current thread, using the same value of key if the call succeeds. Returns
NULL if the call did not succeed; for example, if the systhread setkey function
was never called with the specified key during this session.

Parameters

int key is the value associated with the stored data by a systhread setdata
function. Keys are assigned by the systhread_newkey function.

See Also

“systhread_current” on page 164, “systhread_newkey” on page 166,
“systhread_setdata” on page 166, “systhread_sleep” on page 167, “systhread_start
on page 168, “systhread_timerset” on page 169

”

systhread_init

The systhread_init function initializes the threading system.

Syntax

#include <base/systhr.h>
void systhread init (char *name) ;

Returns

void

Chapter 4 « NSAPI Function Reference

165

Parameters

char *name is a name to be assigned to the program for debugging purposes.

See also

systhread_attach, systhread_current, systhread_getdata, systhread_newkey, systhread_setdata,
systhread_sleep,systhread_start, systhread_terminate, systhread_ timerset

systhread_newkey

The systhread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize to the
current thread, then use the systhread setdata function to associate a value with
the key.

Syntax

int systhread newkey (void) ;

Returns
An integer key.

Parameters

none

See Also

“systhread_current” on page 164, “systhread_getdata” on page 165,
“systhread_setdata” on page 166, “systhread_sleep” on page 167, “systhread_start”
on page 168, “systhread_timerset” on page 169

systhread_setdata

The systhread_setdata function associates data with a specified key number for
the current thread. Keys are assigned by the systhread_newkey function.

166 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Syntax

void systhread setdata(int key, void *data);

Returns

void

Parameters

int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value of key.

See Also

“systhread_current” on page 164, “systhread_getdata” on page 165,
“systhread_newkey” on page 166, “systhread_sleep” on page 167, “systhread_start”
on page 168, “systhread_timerset” on page 169

systhread_sleep

The systhread_sleep function puts the calling thread to sleep for a given time.

Syntax

void systhread sleep(int milliseconds) ;

Returns

void

Parameters

int milliseconds is the number of milliseconds the thread is to sleep.

See Also

“systhread_current” on page 164, “systhread_getdata” on page 165,
“systhread_newkey” on page 166, “systhread_setdata” on page 166, “systhread_start”
on page 168, “systhread_timerset” on page 169

Chapter 4 « NSAPI Function Reference 167

systhread_start

The systhread_start function creates a thread with the given priority, allocates a
stack of a specified number of bytes, and calls a specified function with a specified
argument.

Syntax

SYS THREAD systhread start (int prio, int stksz, void (*fn) (void *),
void *arg) ;

Returns

A new SYS THREAD pointer if the call succeeded, or the constant
SYS THREAD ERROR if the call did not succeed.

Parameters

int prio is the priority of the thread. Priorities are system-dependent.

int stksz is the stack size in bytes. If stksz is zero (0), the function allocates a
default size.

void (*fn) (void *) is the function to call.

void *arg is the argument for the f£n function.

See Also

“systhread_current” on page 164, “systhread_getdata” on page 165,
“systhread_newkey” on page 166, “systhread_setdata” on page 166, “systhread_sleep”
on page 167, “systhread_timerset” on page 169

systhread_terminate

The systhread_terminate function terminates a specified thread.

Syntax

#include <base/systhr.h>
void systhread terminate (SYS THREAD thr) ;

168 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ®* November 2005

Returns

void

Parameters

SYS_ THREAD thr is the thread to terminate.

See also

“systhread_current” on page 164, “systhread_getdata” on page 165,
“systhread_newkey” on page 166, “systhread_setdata” on page 166, “systhread_sleep”
on page 167, “systhread_start” on page 168, “systhread_timerset” on page 169

systhread_timerset

The systhread_timerset function starts or resets the interrupt timer interval for a
thread system.

Because most systems don’t allow the timer interval to be changed, this should be
considered a suggestion, rather than a command.

Syntax

void systhread timerset (int usec);

Returns

void

Parameters

int usec is the time, in microseconds

See Also

“systhread_current” on page 164, “systhread_getdata” on page 165,
“systhread_newkey” on page 166, “systhread_setdata” on page 166, “systhread_sleep”
on page 167, “systhread_start” on page 168

Chapter 4 « NSAPI Function Reference 169

U

USE_NSAPI_VERSION

Plugin developers can define the USE_NSAPI_VERSION macro before including the
nsapi.h header file to request a particular version of NSAPI. The requested NSAPI
version is encoded by multiplying the major version number by 100 and then adding
this to the minor version number. For example, the following code requests NSAPI 3.2
features:

#define USE_NSAPI VERSION 302 /* We want NSAPI 3.2 (Web Server 6.1) */

#include "nsapi.h"

To develop a plugin that is compatible across multiple server versions, define
USE_NSAPI_VERSION to the highest NSAPI version supported by all of the target
server versions.

The following table lists server versions and the highest NSAPI version supported by
each:

TABLE 4-2 NSAPI Versions Supported by Different Servers

Server Version NSAPI Version
iPlanet Web Server 4.1 3.0
iPlanet Web Server 6.0 3.1
Netscape Enterprise Server 6.0 3.1
Netscape Enterprise Server 6.1 3.1
Sun ONE Application Server 7.0 3.1
Sun Java System Web Server 6.1 3.2
Sun Java System Web Proxy Server 4 3.3

It is an error to request a version of NSAPI higher than the highest version supported
by the nsapi . h header that the plugin is being compiled against. Additionally, to use
USE NSAPI VERSION, you must compile against an nsapi .h header file that
supports NSAPI 3.3 or higher.

Syntax

int USE NSAPI_VERSION

170 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Example

The following code can be used when building a plugin designed to work with Sun
Java System Web Proxy Server 4:

#define USE_NSAPI_VERSION 303 /* We want NSAPI 3.3 (Proxy Server 4) */
#include "nsapi.h"

See Also
“NSAPI_RUNTIME_VERSION” on page 112, “NSAPI_VERSION” on page 113

util_can_exec

UNIX Only

The util_can_exec function checks that a specified file can be executed, returning
either a 1 (executable) or a 0. The function checks if the file can be executed by the
user with the given user and group ID.

Use this function before executing a program using the exec system call.

Syntax

int util can exec(struct stat *finfo, uid t uid, gid t gid);

Returns

1 if the file is executable, or 0 if the file is not executable.

Parameters

stat *finfo is the stat structure associated with a file.
uid t uid is the UNIX user id.

gid_t gidis the UNIX group id. Together with uid, this determines the permissions
of the UNIX user.

See Also

“util_env_create” on page 173, “util_getline” on page 181, “util_hostname” on page
182

Chapter 4 « NSAPI Function Reference 171

util_chdir2path

The util chdir2path function changes the current directory to a specified
directory, where you will access a file.

When running under Windows, use a critical section to ensure that more than one
thread does not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker, because
you do not need to use a full path.

Syntax

int util chdir2path(char *path);

Returns

0 if the directory was changed, or -1 if the directory could not be changed.

Parameters

char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_cookie find

The util_cookie_find function finds a specific cookie in a cookie string and
returns its value.

Syntax

char *util cookie find(char *cookie, char *name) ;

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie. Otherwise,
returns NULL. This function modifies the cookie string parameter by null-terminating
the name and value.

Parameters

char *cookie is the value of the Cookie: request header.

char *name is the name of the cookie whose value is to be retrieved.

172 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

util_does_process_exist

The util_does_process_exist function verifies that a given process ID is that of
an executing process.

Syntax

#include <libproxy/util.h>
int util does process_exist (int pid)

Returns

® nonzero if the pid represents an executing process
m (if the pid does not represent an executing process

Parameters

int pid is the process ID to be tested.

See also

“util_url_fix_host name” on page 198, “util_uri_check” on page 195

util_env_create

The util_env_create function creates and allocates the environment specified by
env, returning a pointer to the environment. If the parameter env is NULL, the function
allocates a new environment. Use util env_ create to create an environment when
executing a new program.

Syntax

#include <base/util.h>
char **util_env_create(char **env, int n, int *pos) ;

Returns

A pointer to an environment.

Parameters

char **env is the existing environment or NULL.

Chapter 4 « NSAPI Function Reference 173

int n is the maximum number of environment entries that you want in the
environment.

int *pos is an integer that keeps track of the number of entries used in the
environment.

See also

“util_env_replace” on page 175, “util_env_str” on page 176 , “util_env_free” on page
174 , “util_env_find” on page 174

util env_find

The util env find function locates the string denoted by a name in a specified
environment and returns the associated value. Use this function to find an entry in an
environment.

Syntax

char *util_env_find(char **env, char *name);

Returns

The value of the environment variable if it is found, or NULL if the string was not
found.

Parameters

char **env is the environment.

char *name is the name of an environment variable in env.

See Also

“util_env_replace” on page 175, “util_env_str” on page 176 , “util_env_free” on page
174 , “util_env_create” on page 173

util env_free

The util_env_free function frees a specified environment. Use this function to
deallocate an environment you created using the function util_env_create.

174 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Syntax

void util env_free(char **env);

Returns

void

Parameters

char **env is the environment to be freed.

See Also

“util_env_replace” on page 175, “util_env_str” on page 176 , “util_env_create”
on page 173, “util_env_find” on page 174

util_env_replace

The util_env_replace function replaces the occurrence of the variable denoted by
a name in a specified environment with a specified value. Use this function to change
the value of a setting in an environment.

Syntax

void util_env_replace (char **env, char *name, char *value);

Returns

void

Parameters

char **env is the environment.
char *name is the name of a name-value pair.

char *value is the new value to be stored.

See Also

“util_env_str” on page 176, “util_env_free” on page 174, “util_env_find” on page 174,
“util_env_create” on page 173

Chapter 4 « NSAPI Function Reference 175

176

util env_str

The util_env_str function creates an environment entry and returns it. This
function does not check for nonalphanumeric symbols in the name (such as the equal

“u__r

sign “="). You can use this function to create a new environment entry.

Syntax

char *util env_str(char *name, char *value);

Returns

A newly allocated string containing the name-value pair.

Parameters

char *name is the name of a name-value pair.

char *value is the new value to be stored.

See Also

“util_env_replace” on page 175, “util_env_free” on page 174, “util_env_create”
on page 173, “util_env_find” on page 174

util_get_current_gmt

The util get current gmt function obtains the current time, represented in terms
of GMT (Greenwich Mean Time).

Syntax

#include <libproxy/util.hs>
time t util get current gmt (void) ;

Returns
the current GMT

Parameters

No parameter is required.

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

See also

“util_make_local” on page 185

util_get_int from_aux_file

The util_get_ int_from aux_ file function is used to get a single line from a
specified file and return it in the form of an integer. This is a utility for storing single
numbers in a file.

Syntax

#include <libproxy/cutil.hs>
int util get_int from file(char *root, char *name) ;

Returns

An integer from the file.

Parameters

char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

See also

“util_get_long_from_aux_file” on page 178, “util_get_string_from_aux_file” on page
179, “util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_get_string_from_file” on page 180, “util_put_int_to_file” on page 188,
“util_put_long_to_file” on page 188, “util_put_string_to_aux_file” on page 189,
“util_put_string_to_file” on page 189

util_get_int_from_file

The util get int_ from file function is used to get a single line from a specified
file and return it in the form of an integer. This is a utility for storing single numbers in
a file.

Syntax

#include <libproxy/cutil.hs>
int util_get_int from_file (char *filename) ;

Chapter 4 « NSAPI Function Reference 177

Returns

® an integer from the file.
m -1 if no value was obtained from the file.

Parameters

char *filename is the name of the file to be read.

See also

“util_get_long_from_file” on page 179, “util_get_string_from_file” on page 180,
“util_put_int_to_file” on page 188, “util_put_long_to_file” on page 188,
“util_put_string_to_file” on page 189

util_get_long_from_aux_file

The util get long from file function is used to get a single line from a
specified file and return it in the form of a long number. This is a utility for storing
single long numbers in a file.

Syntax

#include <libproxy/cutil.h>
long util get long from file(char *root,char *name) ;

Returns

a long integer from the file.

Parameters

char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

See also

“util_get_int_from_aux_file” on page 177, “util_get_string_from_aux_file” on page
179, “util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_get_string_from_file” on page 180, “util_put_int_to_file” on page 188,
“util_put_long_to_file” on page 188, “util_put_string_to_aux_file” on page 189,
“util_put_string_to_file” on page 189

178 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

util_get_long from_file

The util_get_long_from file function is used to get a single line from a
specified file and return it in the form of a long number. This is a utility for storing
single long numbers in a file.

Syntax

#include <libproxy/cutil.h>
long util_get_long_from file(char *filename) ;

Returns

® along integer from the file.
m -1 if no value was obtained from the file.

Parameters

char *file is the name of the file to be read.

See also

“util_get_int_from_file” on page 177, “util_get_string_from_file” on page 180,
“util_put_int_to_file” on page 188, “util_put_long_to_file” on page 188,
“util_put_string to_file” on page 189

util_get_string from_aux_file

The util get string from aux file function is used to get a single line from a
specified file and return it in the form of a word. This is a utility for storing single
words in a file.

Syntax

#include <libproxy/cutil.h>
char *util_get_string from file(char *root, char *name, char *buf, int maxsize) ;

Returns

a string containing the next line from the file.

Chapter 4 « NSAPI Function Reference 179

Parameters

char *root is the name of the directory containing the file to be read.
char *name is the name of the file to be read.
char *buf is the string to use as the file buffer.

int maxsize is the maximum size for the file buffer.

See also

“util_get_int_from_aux_file” on page 177, “util_get_long_from_aux_file” on page 178,
“util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_get_string_from_file” on page 180, “util_put_int_to_file” on page 188,
“util_put_long_to_file” on page 188, “util_put_string_to_aux_file” on page 189,
“util_put_string_to_file” on page 189

util_get_string from_file

Theutil get string from file function is used to get a single line from a
specified file and return it in the form of a word. This is a utility for storing single
words in a file.

Syntax

#include <libproxy/cutil.hs>
char *util get_string from file(char *filename, char *buf, int maxsize) ;

Returns

® 3 string containing the next line from the file.
= NULL if no string was obtained.

Parameters

char *file is the name of the file to be read.
char *buf is the string to use as the file buffer.

int maxsize is the maximum size for the file buffer.

180 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

See also

“util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_put_int_to_file” on page 188, “util_put_long_to_file” on page 188,
“util_put_string_to_file” on page 189

util_getline

The util_getline function scans the specified file buffer to find a line feed or
carriage return/line feed terminated string. The string is copied into the specified
buffer, and NULL-terminates it. The function returns a value that indicates whether

the operation stored a string in the buffer, encountered an error, or reached the end of
the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax

int util getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns

0 if successful; 1ine contains the string.
1 if the end of file was reached; 1ine contains the string.

-1 if an error occurred; 1ine contains a description of the error.

Parameters

filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an error
occurs. The caller is responsible for making sure the line number is accurate.

int maxlen is the maximum number of characters that can be written into 1.

char *1 is the buffer in which to store the string. The user is responsible for
allocating and deallocating 1ine.

See Also

“util_can_exec” on page 171, “util_env_create” on page 173, “util_hostname” on page
182

Chapter 4 « NSAPI Function Reference 181

util _hostname

The util_hostname function retrieves the local host name and returns it as a string.
If the function cannot find a fully-qualified domain name, it returns NULL. You may
reallocate or free this string. Use this function to determine the name of the system
you are on.

Syntax

char *util hostname (void) ;

Returns

If a fully-qualified domain name was found, returns a string containing that name;
otherwise, returns NULL if the fully-qualified domain name was not found.

Parameters

none

util_is_mozilla

The util is mozilla function checks whether a specified user-agent header string
is a Netscape browser of at least a specified revision level, returning a 1 if it is, and 0
otherwise. It uses strings to specify the revision level to avoid ambiguities such as 1.56
>1.5.

Syntax

int util_is mozilla(char *ua, char *major, char *minor);

Returns

1 if the user-agent is a Netscape browser, or 0 if the user-agent is not a Netscape
browser.

Parameters

char *ua is the user-agent string from the request headers.
char *major is the major release number (to the left of the decimal point).

char *minor is the minor release number (to the right of the decimal point).

182 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

See Also

“util_is_url” on page 183, “util_later_than” on page 184

util is_url

The util_is_url function checks whether a string is a URL, returning 1 if it is and 0
otherwise. The string is a URL if it begins with alphabetic characters followed by a
colon (3).

Syntax

int util_is_url(char *url);

Returns

1 if the string specified by url is a URL, or 0 if the string specified by ur1l is not a
URL.

Parameters

char *url is the string to be examined.

See Also

“util_is_mozilla” on page 182, “util_later_than” on page 184

util_itoa

The util_itoa function converts a specified integer to a string, and returns the
length of the string. Use this function to create a textual representation of a number.

Syntax

int util itoa(int i, char *a);

Returns

The length of the string created.

Chapter 4 « NSAPI Function Reference 183

Parameters

int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible for the
allocation and deallocation of a, and it should be at least 32 bytes long.

util later than

The util later than function compares the date specified in a time structure
against a date specified in a string. If the date in the string is later than or equal to the
one in the time structure, the function returns 1. Use this function to handle RFC 822,
RFC 850, and ctime formats.

Syntax

int util later than(struct tm *1lms, char *ims);

Returns

1 if the date represented by ims is the same as or later than that represented by the
lms, or 0 if the date represented by ims is earlier than that represented by the 1ms.

Parameters

tm *1ms is the time structure containing a date.

char *ims is the string containing a date.

See Also

“util_strftime” on page 193

util make filename

The util make filename function concatenates a directory name and a filename
into a newly created string. This can be handy when you are dealing with a number of
files that all go to the same directory.

Syntax

#include <libproxy/cutil.h>
char *util make filename (char *root, char *name) ;

184 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Returns

A new string containing the directory name concatenated with the filename.

Parameters
char *root is a string containing the directory name.

char *name is a string containing the filename.

util_make_gmt

The util_make_gmt function converts a given local time to GMT (Greenwich Mean
Time), or obtains the current GMT.

Syntax

#include <libproxy/util.h>
time t util make gmt (time_t t);

Returns

m the GMT equivalent to the local time ¢, if t is not 0
m the current GMT if tis 0

Parameters

time_t tis a time.

See also

“util_make_local” on page 185

util_make_local

The util_make_local function converts a given GMT to local time.

Syntax

#include <libproxy/util.hs>
time t util make local (time_t t);

Chapter 4 « NSAPI Function Reference 185

Returns
The local equivalent to the GMT ¢

Parameters

time_t f is a time.

See also

“util_make_gmt” on page 185

util move_dir

The util move_ dir function moves a directory, preserving permissions, creation
times, and last-access times. It attempts to do this by renaming, but if that fails (for
example, if the source and destination are on two different file systems), it copies the
directory.

Syntax

#include <libproxy/util.h>
int util move dir (char *src, char *dst);

Returns

m (if the move failed
® nonzero if the move succeeded

Parameters

char *src is the fully qualified name of the source directory.

char *dst is the fully qualified name of the destination directory.

See also

“util_move_file” on page 186

util_ move_file

The util_move_dir function moves a file, preserving permissions, creation time,
and last-access time. It attempts to do this by renaming, but if that fails (for example, if
the source and destination are on two different file systems), it copies the file.

186 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Syntax

#include <libproxy/util.hs>
int util move_ file (char *src, char *dst);

Returns

m (if the move failed
m nonzero if the move succeeded

Parameters

char *src is the fully qualified name of the source file.

char *dst is the fully qualified name of the destination file.

See also

“util_move_dir” on page 186

util_parse_http_time

The util_parse_http_time function converts a given HTTP time string to time_t
format.

Syntax

#include <libproxy/util.h>
time t util parse http time(char *date_ string);

Returns

the time_t equivalent to the GMT ¢
Parameters

time_t tisa time.

See also

“util_make_gmt” on page 185

Chapter 4 « NSAPI Function Reference 187

util_put_int_to_file

The util_put_int_to_file function writes a single line containing an integer to a
specified file.

Syntax

#include <libproxy/cutil.h>
int util put_int to_file(char *filename, int i) ;

Returns

® nonzero if the operation succeeded
m (if the operation failed

Parameters

char *file is the name of the file to be written.

int i is the integer to write.

See also

“util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_put_long_to_file” on page 188, “util_put_string_to_file” on page 189

util_put_long to_file

Theutil put long to file function writes a single line containing a long integer
to a specified file.

Syntax

#include <libproxy/cutil.h>
ing util_put_long to_file(char *filename, long I);

Returns

® nonzero if the operation succeeded
m (if the operation failed

188 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Parameters

char *file is the name of the file to be written.

long [is the long integer to write.

See also

“util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_put_int_to_file” on page 188, “util_put_string_to_file” on page 189

util_put_string_to_aux_file

The util put_ string to_aux file function writes a single line containing a
string to a file specified by directory name and file name.

Syntax

#include <libproxy/cutil.hs>
int util put string to aux file(char *root, char *name, char *str);

Returns

® non-zero if the operation succeeded
m 0 if the operation failed

Parameters

char *root is the name of the directory where the file is to be written.
char *name is the name of the file is to be written.

char *str is the string to write.

See also

“util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_put_int_to_file” on page 188, “util_put_long_to_file” on page 188,
“util_put_string_to_file” on page 189

util_put_string_to_file

The util put string to file function writes a single line containing a string to
a specified file.

Chapter 4 « NSAPI Function Reference 189

Syntax

#include <libproxy/cutil.hs>
int util_put_string to_file(char *filename, char *str);

Returns

® nonzero if the operation succeeded
m 0 if the operation failed

Parameters

char *file is the name of the file to be read.

char *str is the string to write.

See also

“util_get_int_from_file” on page 177, “util_get_long_from_file” on page 179,
“util_put_int_to_file” on page 188, “util_put_long_to_file” on page 188

util_sect id

The util sect_id function creates a section ID from the section dim and an index.

Syntax

#include <libproxy/cutil.hs>
void util_sect_id(int dim, int idx, char *buf);

Returns

® nonzero if the operation succeeded
m (if the operation failed

Parameters

int dim is the section dim.
int idx is the index.

char *buf is the buffer to receive the section ID.

190 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

util_sh_escape

The util_sh_escape function parses a specified string and places a backslash (\\)
in front of any shell-special characters, returning the resultant string. Use this function
to ensure that strings from clients won't cause a shell to do anything unexpected.

The shell-special characters are the space plus the following characters:

&:\Q " *2~a>™ () [T {}S\\#!

Syntax

char *util sh escape (char *s);

Returns

A newly allocated string.

Parameters

char *s is the string to be parsed.

See Also

“util_uri_escape” on page 195

util_snprintf

The util snprintf function formats a specified string, using a specified format,
into a specified buffer using the printf-style syntax and performs bounds checking.
It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime
library of your compiler.

Syntax

int util_snprintf (char *s, int n, char *fmt, ...);

Returns

The number of characters formatted into the buffer.

Chapter 4 « NSAPI Function Reference 191

Parameters

char *s is the buffer to receive the formatted string.
int n is the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only $d and %s strings; it does
not handle any width or precision strings.

. Tepresents a sequence of parameters for the print £ function.

See Also

“util_sprintf” on page 192, “util_vsnprintf” on page 200, “util_vsprintf” on page 200

util_sprintf

The util_sprintf function formats a specified string, using a specified format, into
a specified buffer, using the print f-style syntax without bounds checking. It returns
the number of characters in the formatted buffer.

Because util_sprintf doesn’t perform bounds checking, use this function only if
you are certain that the string fits the buffer. Otherwise, use the function

util snprint£. For more information, see the documentation on the print£
function for the runtime library of your compiler.

Syntax

int util sprintf (char *s, char *fmt, ...);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only $d and %s strings; it does
not handle any width or precision strings.

. represents a sequence of parameters for the printf function.

Example

char *logmsg;int len;logmsg = (char *) MALLOC(256) ;
len = util_sprintf (logmsg, "%s %s %$s\\n", ip, method, uri);

192 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

See Also

“util_snprintf” on page 191, “util_vsnprintf” on page 200, “util_vsprintf” on page 200

util_strcasecmp

The util strcasecmp function performs a comparison of two alphanumeric strings
and returns a -1, 0, or 1 to signal which is larger or that they are identical.

The comparison is not case-sensitive.

Syntax

int util_strcasecmp (const char *sl, const char *s2);

Returns

1 if s1 is greater than s2.
0if slisequal tos2.

-1 if s1isless than s2.

Parameters

char *s1 is the first string.

char *s2 is the second string.

See Also

“util_strncasecmp” on page 194

util_strftime

The util strftime function translates a tm structure, which is a structure
describing a system time, into a textual representation. It is a thread-safe version of the
standard strftime function

Syntax

int util strftime(char *s, const char *format, const struct tm *t);

Chapter 4 « NSAPI Function Reference 193

Returns

The number of characters placed into s, not counting the terminating NULL character.

Parameters

char *s is the string buffer to put the text into. There is no bounds checking, so you
must make sure that your buffer is large enough for the text of the date.

const char *format is a format string, a bit like a printf string in that it consists
of text with certain $x substrings. You may use the constant HTTP_DATE_FMT to
create date strings in the standard Internet format. For more information, see the
documentation on the printf function for the runtime library of your compiler. Refer
to Chapter 7 for details on time formats.

const struct tm *t is a pointer to a calendar time (tm) structure, usually created
by the function system_localtime or system_gmtime.

See Also

system localtime, system gmtime

util_strncasecmp

The util_strncasecmp function performs a comparison of the first n characters in
the alphanumeric strings and returns a -1, 0, or 1 to signal which is larger or that they
are identical.

The function’s comparison is not case-sensitive.

Syntax

int util strncasecmp (const char *sl, const char *s2, int n);

Returns

1if s1 is greater than s2.
0if slisequaltos2.

-1 if s1isless than s2.

Parameters

char *s1 is the first string.

char *s2 is the second string.

194 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

int n is the number of initial characters to compare.

See Also

“util_strcasecmp” on page 193

util uri_check

The util uri check function checks that a URI has a format conforming to the
standard.

At present, the only URI it checks for is a URL. The standard format for a URL is

protocol : / / user : password@host : port / url-path

where user:password, :password. :port, or /url-path can be omitted.

Syntax

#include <libproxy/util.h>
int util uri_check (char *uri);

Returns

m (if the URI does not have the proper form.
® nonzero if the URI has the proper form.

Parameters

char *uri is the URI to be tested.

util_uri_escape

The util uri escape function converts any special characters in the URI into the
URI format ($XX, where XX is the hexadecimal equivalent of the ASCII character), and
returns the escaped string. The special characters are $?#: +&* " <>, space, carriage
return, and line feed.

Useutil_uri_escape before sending a URI back to the client.

Syntax

char *util uri escape(char *d, char *s);

Chapter 4 « NSAPI Function Reference 195

Returns

The string (possibly newly allocated) with escaped characters replaced.

Parameters

char *d is a string. If d is not NULL, the function copies the formatted string into d
and returns it. If d is NULL, the function allocates a properly sized string and copies
the formatted special characters into the new string, then returns it.

The util_uri_escape function does not check bounds for the parameter d.
Therefore, if d is not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URL

See Also

“util_uri_is_evil” on page 196, “util_uri_parse” on page 197, “util_uri_unescape”
on page 197

util uri_is_evil

Theutil_uri_is_evil function checks a specified URI for insecure path characters.
Insecure path characters include //, /./, /. ./ and/., /. . (also for Windows. /) at
the end of the URI. Use this function to see if a URI requested by the client is insecure.

Syntax

int util uri_is evil (char *t);

Returns
1 if the URI is insecure, or 0 if the URI is OK.

Parameters

char *t is the URI to be checked.

See Also

“util_uri_escape” on page 195, “util_uri_parse” on page 197

196 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

util_uri_parse

Theutil uri parse function converts //, /./,and /*/. ./ into / in the specified
URI (where * is any character other than /). You can use this function to convert a
URI'’s bad sequences into valid ones. First use the function util uri is evil to
determine whether the function has a bad sequence.

Syntax

void util uri parse(char *uri);

Returns

void

Parameters

char *uri is the URI to be converted.

See Also

“util_uri_is_evil” on page 196, “util_uri_unescape” on page 197

util_uri_unescape

The util uri unescape function converts the encoded characters of a URI into
their ASCII equivalents. Encoded characters appear as $XX, where XX is a hexadecimal
equivalent of the character.

Note — You cannot use an embedded null in a string, because NSAPI functions assume
that a null is the end of the string. Therefore, passing unicode-encoded content
through an NSAPI plugin doesn’t work.

Syntax

void util_uri_unescape (char *uri);

Returns

void

Chapter 4 « NSAPI Function Reference 197

Parameters

char *uri is the URI to be converted.

See Also

“util_uri_escape” on page 195, “util_uri_is_evil” on page 196, “util_uri_parse”
on page 197

util_url cmp

The util url cmp function compares two URLs. It is analogous to the stremp()
library function of C.

Syntax

#include <libproxy/util.h>
int util url cmp (char *sl, char *s2);

Returns

m -1 if the first URL, s1, is less than the second, s2
m (0 if they are identical
m 1 if the first URL, s1, is greater than the second, s2

Parameters

char *s1 is the first URL to be tested.

char *s2 is the second URL to be tested.

See also

“util_url_fix_host name” on page 198, “util_uri_check” on page 195

util_url fix_host name

The util url fix host name function converts the host name in a URL to
lowercase and removes redundant port numbers.

198 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’'s Guide * November 2005

Syntax

#include <libproxy/util.h>
void util url fix host name (char *url) ;

Returns

void (but changes the value of its parameter string)

The protocol specifier and the host name in the parameter string are changed to
lowercase. The function also removes redundant port numbers, such as 80 for HTTP,
70 for gopher, and 21 for FTP.

Parameters

char *url is the URL to be converted.

See also

“util_url_cmp” on page 198, “util_uri_check” on page 195

util_url_has FQDN

The util url has_ FQDN function returns a value to indicate whether a specified
URL references a fully qualified domain name.

Syntax

#include <libproxy/util.hs>
int util url has FQDN(char *url);

Returns

m 1 if the URL has a fully qualified domain name
m (if the URL does not have a fully qualified domain name

Parameters

char *url is the URL to be examined.

Chapter 4 « NSAPI Function Reference 199

util_vsnprintf

The util_vsnprintf function formats a specified string, using a specified format,
into a specified buffer using the vprint £-style syntax and performs bounds checking.
It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime
library of your compiler.

Syntax

int util vsnprintf (char *s, int n, register char *fmt, va_list args);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.
int nis the maximum number of bytes allowed to be copied.

register char *fmt is the format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to
va_start.

See Also

“util_snprintf” on page 191, “util_vsprintf” on page 200

util_vsprintf

The util vsprintf function formats a specified string, using a specified format,
into a specified buffer using the vprintf-style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime
library of your compiler.

Syntax

int util vsprintf (char *s, register char *fmt, va_list args);

200 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.

register char *fmt is the format string. The function handles only $d and %s
strings; it does not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to
va_start.

See Also

“util_snprintf” on page 191, “util_vsnprintf” on page 200

W

write

The write filter method is called when output data is to be sent. Filters that modify
or consume outgoing data should implement the write filter method.

Upon receiving control, a write implementation should first process the data as
necessary, and then pass it on to the next filter layer; for example, by calling
net_write (layer->lower, ...,).If the filter buffers outgoing data, it should
implement the “flush” on page 95 filter method.

Syntax

int write(FilterLayer *layer, const void *buf, int amount) ;

Returns

The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Chapter 4 « NSAPI Function Reference 201

Parameters
FilterLayer *layer is the filter layer in which the filter is installed.
const void *buf is the buffer that contains the outgoing data.

int amount is the number of bytes in the buffer.

Example

int myfilter write(FilterLayer *layer, const void *buf, int amount)

{
}

See Also

return net_write(layer->lower, buf, amount);

“flush” on page 95, “net_write” on page 107, “writev” on page 202

writev

The writev filter method is called when multiple buffers of output data are to be
sent. Filters that modify or consume outgoing data may choose to implement the
writev filter method.

If a filter implements the write filter method but not the writev filter method, the
server automatically translates net_writev calls to “net_write” on page 107 calls. As
a result, filters interested in the outgoing data stream do not need to implement the
writev filter method. However, for performance reasons, it is beneficial for filters that
implement the write filter method to also implement the writev filter method.

Syntax

int writev(FilterLayer *layer, const struct iovec *iov, int iov_size);

Returns

The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters

FilterLayer *layer is the filter layer the filter is installed in.

const struct iovec *iov is an array of iovec structures, each of which contains
outgoing data.

202 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

int iov_size is the number of iovec structures in the iov array.

Example

int myfilter writev(FilterLayer *layer, const struct iovec *iov,
int iov_size)

}

return net_writev(layer->lower, iov, iov_size);

See Also

“flush” on page 95, “net_write” on page 107, “write” on page 201

Chapter 4 « NSAPI Function Reference 203

204 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

CHAPTER 5

Data Structure Reference

NSAPI uses many data structures that are defined in the nsapi . h header file, which
is in the directory server-root/plugins/include.

The NSAPI functions described in Chapter 4 provide access to most of the data
structures and data fields. Before directly accessing a data structure in naspi . h, check
to see if an accessor function exists for it.

For information about the privatization of some data structures in Sun Java System
Web Proxy Server 4, see “Privatization of Some Data Structures” on page 206

The rest of this chapter describes public data structures in nsapi . h. Note that data
structures in nsapi . h that are not described in this chapter are considered private
and may change incompatibly in future releases.

This chapter has the following sections:

“Privatization of Some Data Structures” on page 206
“Session” on page 206

“pblock” on page 207

“pb_entry” on page 207

“pb_param” on page 208

“Session->client” on page 208

“Request” on page 208

“stat” on page 209

“shmem_s” on page 209

“cinfo” on page 210

“sendfiledata” on page 210

“Filter” on page 211

“FilterContext” on page 211

“FilterLayer” on page 211

“FilterMethods” on page 212

“The CacheEntry Data Structure” on page 212
“The CacheState Data Structure” on page 213
“The ConnectMode Data Structure” on page 214

205

Privatization of Some Data Structures

The data structures in nsapi pvt.h are now considered to be private data structures,
and you should not write code that accesses them directly. Instead, use accessor
functions. We expect that very few people have written plugins that access these data
structures directly, so this change should have very little impact on customer-defined
plugins. Look in nsapi_pvt .h to see which data structures have been removed from
the public domain, and to see the accessor functions you can use to access them from
now on.

Plugins written for Enterprise Server 3.x that access contents of data structures defined
innsapi pvt.h will not be source compatible with Sun Java System Web Proxy
Server 4, that is, it will be necessary to #include "nsapi_pvt.h" to build such
plugins from source. There is also a small chance that these programs will not be
binary compatible with Sun Java System Web Proxy Server 4, because some of the data
structures in nsapi_pvt .h have changed size. In particular, the directive
structure is larger, which means that a plugin that indexes through the directives in a
dtable will not work without being rebuilt (with nsapi_pvt . h included).

We hope that the majority of plugins do not reference the internals of data structures
in nsapi_pvt.h, and therefore that most existing NSAPI plugins will be both binary
and source compatible with Sun Java System Web Proxy Server 4.

Plugins written for iPlanet Web Proxy Server 3.6 will not be binary compatible with
Proxy Server 4. These plugins will have to be recompiled and relinked using Web
Proxy Server 4’s NSAPI header files and libraries.

206

Session

A session is the time between the opening and closing of the connection between the
client and the server. The session data structure holds variables that apply session
wide, regardless of the requests being sent, as shown here:

typedef struct {
/* Information about the remote client */
pblock *client;

/* The socket descriptor to the remote client */
SYS_NETFD csd;

/* The input buffer for that socket descriptor */
netbuf *inbuf;

Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

/* Raw socket information about the remote */
/* client (for internal use) */
struct in_addr iaddr;

} Session;

pblock

The parameter block is the hash table that holds pb_entry structures. Its contents are
transparent to most code. This data structure is frequently used in NSAPI; it provides
the basic mechanism for packaging up parameters and values. There are many
functions for creating and managing parameter blocks, and for extracting, adding, and
deleting entries. See the functions whose names start with pblock_in Chapter 4. You
should not need to write code that accesses pblock data fields directly.

typedef struct {

int hsize;

struct pb_entry **ht;
} pblock;

pb_entry

The pb_entry is a single element in the parameter block.

struct pb_entry ({
pb_param *param;
struct pb_entry *next;

}i

Chapter 5 ¢ Data Structure Reference 207

pb_param
The pb_param represents a name-value pair, as stored in a pb_entry.

typedef struct {
char *name, *value;
} pb_param;

Session->client

The Session->client parameter block structure contains two entries:

®m The ip entry is the IP address of the client machine.

® The dns entry is the DNS name of the remote machine. This member must be
accessed through the session_dns function call:

/** session_dns returns the DNS host name of the client for this* session
and inserts it into the client pblock. Returns NULL if* unavailable.
*/char *session_dns(Session *sn);

Request

Under HTTP protocol, there is only one request per session. The request structure
contains the variables that apply to the request in that session (for example, the
variables include the client’s HTTP headers).

typedef struct
/* Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
block *regpb;

/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */

208 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

int senthdrs;
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd objset *os;

} Request;

stat

When a program calls the stat () function for a given file, the system returns a

structure that provides information about the file. The specific details of the structure
should be obtained from your platform’s implementation, but the basic outline of the
structure is as follows:

struct stat {
dev_t
inot_t
short
short
short
short
dev_t
off t
time_t
time_t
time_t

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

/* device of inode */

/* inode number */

/* mode bits */

/* number of links to file /*
/* owner’s user id */

/* owner’s group id */

/* for special files */

/* file size in characters */
/* time last accessed */

/* time last modified */

/* time inode last changed*/

The elements that are most significant for server plugin API activities are st_size,
st_atime, st _mtime, and st _ctime.

shmem_s

typedef struct {

void
HANDLE
int

char
SYS_FILE

*data;
fdmap;
size;
*name;
fd;

/*
/*
/*

the data */
the maximum length of the data */

internal use: filename to unlink if exposed */
internal use: file descriptor for region */

Chapter 5 ¢ Data Structure Reference 209

} shmem s;

cinfo

The cinfo data structure records the content information for a file.

typedef struct {
char *type;

/* Identifies what kind of data is in the file*/

char *encoding;

/* encoding identifies any compression or other /*
/* content-independent transformation that’s been /*
/* applied to the file, such as uuencode) */

char *language;

/* Identifies the language a text document is in. */

} cinfo;

sendfiledata

The sendfiledata data structure is used to pass parameters to the net_sendfile
function. It is also passed to the sendfile method in an installed filter in response to

anet sendfile call.

typedef struct ({
SYS FILE fd;
size_t offset;
size t len;
const void *header;
int hlen;

const void *trailer;

int tlen;
} sendfiledata;

/*
/*
/*
/*
/*
/*

file to send */

offset in file to start sending from */
number of bytes to send from file */
data to send before file */

number of bytes to send before file */
data to send after file */

number of bytes to send after file */

210 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

Filter

The Filter data structure is an opaque representation of a filter. A Filter structure

is created by calling “filter_create” on page 91.

typedef struct Filter Filter;

FilterContext

The FilterContext data structure stores context associated with a particular filter

layer. Filter layers are created by calling “filter_insert” on page 93.

Filter developers may use the data member to store filter-specific context information.

typedef struct {
pool handle t *pool; /* pool context was allocated from */

Session *sn; /* session being processed */
Request *rqg; /* request being processed */
void *data; /* filter-defined private data */

} FilterContext;

FilterLayer

The FilterLayer data structure represents one layer in a filter stack. The
FilterLayer structure identifies the filter installed at that layer and provides
pointers to layer-specific context and a filter stack that represents the layer
immediately below it in the filter stack.

typedef struct {
Filter *filter; /* the filter at this layer in the filter stack */
FilterContext *context; /* context for the filter */
SYS NETFD lower; /* access to the next filter layer in the stack */
} FilterLayer;

Chapter 5 » Data Structure Reference

211

FilterMethods

The FilterMethods data structure is passed to “filter_create” on page 91 to define
the filter methods a filter supports. Each new FilterMethods instance must be
initialized with the FILTER_METHODS_INITIALIZER macro. For each filter method a
filter supports, the corresponding FilterMethods member should point to a
function that implements that filter method.

typedef struct {
size t size;
FilterInsertFunc *insert;
FilterRemoveFunc *remove;
FilterFlushFunc *flush;
FilterReadFunc *read;
FilterWriteFunc *write;
FilterWritevFunc *writev;
FilterSendfileFunc *sendfile;
} FilterMethods;

The CacheEntry Data Structure

The CacheEntry data structure holds all the information about one cache entry. It is
created by the ce_lookup function and destroyed by the ce free function. It is
defined in the 1ibproxy/cache.h file.

typedef struct CacheEntry {
CacheState state; /* state of the cache file; DO NOT refer to any
* of the other fields in this C struct if state
* is other than

* CACHE_REFRESH or

* CACHE_RETURN_FROM_CACHE

*/
SYS FILE fd_in; /* do not use: open cache file for reading */
int fd out; /* do not use: open (locked) cache file for writing */
struct stat finfo; /* stat info for the cache file */
unsigned char digest [CACHE DIGEST LEN] ; /* MD5 for the URL */
char * url dig; /* URL used to for digest; field #8 in CIF */
char * url cif; /* URL read from CIF file */
char * filname; /* Relative cache file name */
char * dirname; /* Absolute cache directory name */
char * absname; /* Absolute cache file path */
char * lckname; /* Absolute locked cache file path */
char * cifname; /* Absolute CIF path */
int sect_idx; /* Cache section index */

212 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

int part_idx; /* Cache partition index */

CSect * section; /* Cache section that this file belongs to */
CPart * partition;/* Cache partition that this file belongs to */
int xfer time; /* secs *//* Field #2 in CIF */
time_t last _modified;/* GMT *//* Field #3 in CIF */
time t expires; /* GMT *//* Field #4 in CIF */
time_t last_checked; /* GMT *//* Field #5 in CIF */
long content length; /* Field #6 in CIF */
char * content type; /* Field #7 in CIF */
int is_auth; /* Authenticated data -- always do recheck */
int auth_sent; /* Client did send the Authorization header */
long min_size; /* Min size for a cache file (in KB) */
long max_size; /* Max size for a cache file (in KB) */
time_t last_accessed;/* GMT for proxy, local for gc */
time t created; /* localtime (only used by gc, st _mtime) */
int removed; /* gc only; file was removed from disk */
long bytes; /* from stat (), using this we get hdr len */
long bytes_written; /* Number of bytes written to disk */
long bytes in media; /* real fs size taken up */
long blks; /* size in 512 byte blocks */
int category; /* Value category; bigger is better */
int cif entry ok; /* CIF entry found and ok */
time_t ims_c; /* GMT; Client -> proxy if-modified-since */
time t start_time; /* Transfer start time */
int inhibit caching; /* Bad expires/other reason not to cache */
int corrupt cache file; /* Cache file gone corrupt => remove */
int write_ aborted; /* True if the cache file write was aborted */
int batch_update; /* We’'re doing batch update (no real user) */
char * cache_exclude; /* Hdrs not to write to cache (RE) */
char * cache_replace; /* Hdrs to replace with fresh ones

from 304 response (RE) */
char * cache _nomerge; /* Hdrs not to merge with the

cached ones (RE) */
Session * sn;
Request * rqg;

} CacheEntry;

The CacheState Data Structure

The CacheState data structure is actually an enumerated list of constants. Aways use
their names because values are subject to implementation change.

typedef enum {

CACHE EXISTS NOT = O, /* Internal flag -- do not use! */
CACHE_EXISTS, /* Internal flag -- do not use! */

CACHE_NO, /* No caching: don’t read, don’t write cache */
CACHE_CREATE, /* Create cache; don’t read */

CACHE_REFRESH, /* Refresh cache; read if not modified */
CACHE_RETURN_FROM_CACHE, /* Return directly, no check */
CACHE_RETURN_ERROR /* With connect-mode=never when not in cache */

} CacheState;

Chapter 5 ¢ Data Structure Reference 213

The ConnectMode Data Structure

The ConnectMode data structure is actually an enumerated list of constants. Aways
use their names because values are subject to implementation change.

typedef enum {

CM_NORMAL = O, /* normal -- retrieve/refresh when necessary */
CM_FAST DEMO, /* fast -- retrieve only if not in cache already */
CM_NEVER /* never -- never connect to network */

} ConnectMode;

214 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

CHAPTER 6

Using Wildcard Patterns

This chapter describes the format of wildcard patterns used by the Sun Java System
Web Proxy Server. These wildcards are used in:

m Directives in the configuration file obj . conf (see the Sun Java System Web Proxy
Server Configuration File Reference for detailed information about obj . conf).

® Various built-in SAFs (see the Sun Java System Web Proxy Server 4.0.2
Configuration File Reference for more information about these predefined SAFs).

m Some NSAPI functions .

Wildcard patterns use special characters. If you want to use one of these characters
without the special meaning, precede it with a backslash (\\) character.

This chapter has the following sections:

m “Wildcard Patterns” on page 215
m “Wildcard Examples” on page 216

Wildcard Patterns

The following table describes wildcard patterns, listing the pattern and its use.

TABLE 6-1 Wildcard Patterns

Pattern Use
* Match zero or more characters.
? Match exactly one occurrence of any character.

215

TABLE 6-1 Wildcard Patterns (Continued)

Pattern Use

| An or expression. The substrings used with this operator
can contain other special characters such as * or $. The
substrings must be enclosed in parentheses, for example,
(alblc), but the parentheses cannot be nested.

$ Match the end of the string. This is useful in or
expressions.

[abc] Match one occurrence of the characters a, b, or c. Within
these expressions, the only character that needs to be
treated as a special character is]; all others are not special.

[a-z] Match one occurrence of a character between a and z.
["az] Match any character except a or z.
* This expression, followed by another expression, removes

any pattern matching the second expression.

* Match zero or more characters.

Wildcard Examples

The following table provides wildcard examples, listing the pattern and the result.

TABLE 6-2 Wildcard Examples

Pattern Result

* .netscape.com Matches any string ending with the characters
.netscape.com.

(quark | energy) .netscape.comMatches either quark.netscape.com or
energy.netscape.com

198.93.9[23].?2?°? Matches a numeric string starting with either 198.93.92
or 198.93.93 and ending with any 3 characters.

* % Matches any string with a period in it.

-netscape- Matches any string except those starting with netscape-.

* .netscape.com~quark.netscapatches any host from domain netscape . com except for
a single host quark.netscape . com.

216 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

TABLE 6-2 Wildcard Examples (Continued)
Pattern Result

* .netscape.com~ (quark | energ¥atelesramohostd tamajmmaiomne t scape . com except
for hosts quark .netscape.com,
energy.netscape.com, and
neutrino.netscape.com

.com~.netscape.com Matches any host from domain . com except for hosts
from subdomain netscape . com.

type=*~magnus-internal/* Matches any type that does not start with
magnus-internal/.

This wildcard pattern is used in the file obj . conf in the
catch-all Service directive.

Chapter 6 * Using Wildcard Patterns 217

218 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

CHAPTER 7

Time Formats

This chapter describes the format strings used for dates and times. These formats are
used by the NSAPI function util_strftime, by some built-in SAFs such as
append-trailer, and by server-parsed HTML (parse-html). The formats are
similar to those used by the strftime C library routine, but not identical.

Time format strings

The following table describes the formats, listing the symbols and their meanings.

TABLE 7-1 Time Formats

Symbol Meaning

Y%oa Abbreviated weekday name (3 chars)
%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099
Y%b Abbreviated month name (3 chars)

Y%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"

219

TABLE 7-1 Time Formats (Continued)

Symbol Meaning

Y%A Full weekday name

%B Full month name

%C "%a %b Y%e %H:%M:%S %Y"

%cC Date & time "%m/%d /%y %H:%M:%S"

%D Date "%m/%d/%y"

Y%oe Day of month as decimal number (1-31) without leading zeros
Yol Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

Yok Hour in 24-hour format (0-23) without leading zeros

%l Hour in 12-hour format (1-12) without leading zeros

Yom Month as decimal number (01-12)

Yont line feed

Y%op AM./PM. indicator for 12-hour clock

%R Time "%H:%M"

Yor Time "%I:%M:%S %p"

Yot tab

%U Week of year as decimal number, with Sunday as first day of week (00-51)
Yow Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week (00-51)
Yox Date "%m/%d/%y"

Yoy Year without century, as decimal number (00-99)

%% Percent sign

220 SunJava System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

CHAPTER 8

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol (a set of rules that describes how
information is exchanged) that allows a client (such as a web browser) and a web
proxy server to communicate with each other.

HTTP is based on a request-response model. The browser opens a connection to the
server and sends a request to the server. The server processes the request and
generates a response, which it sends to the browser. The server then closes the
connection.

This chapter provides a short introduction to a few HTTP basics. For more information
on HTTP, see the IETF home page at:

http://www.ietf.org/home.html

This chapter has the following sections:

“Compliance” on page 221
“Requests” on page 222
“Responses” on page 223
“Buffered Streams” on page 225

Compliance

Sun Java System Web Proxy Server 4 supports HTTP/1.1. Previous versions of the
server supported HTTP/1.0. The server is conditionally compliant with the HTTP/1.1
proposed standard, as approved by the Internet Engineering Steering Group (IESG),
and the Internet Engineering Task Force (IETF) HTTP working group.

For more information on the criteria for being conditionally compliant, see the
Hypertext Transfer Protocol -- HTTP/1.1 specification (RFC 2068) at:

221

http://www.ietf.org/home.html

http://www.ietf.org/rfc/rfc2068.txt?number=2068

Requests

A request from a browser to a server includes the following information:

m “Request Method, URI, and Protocol Version” on page 222
m “Request Headers” on page 222
m “Request Data” on page 223

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly used
methods include the following:

® GET -- Requests the specified resource (such as a document or image)
® HEAD -- Requests only the header information for the document

® POST -- Requests that the server accept some data from the browser, such as form
input for a CGI program

® PUT -- Replaces the contents of a server’s document with data from the browser

Request Headers
The browser can send headers to the server. Most are optional.

The following table lists some of the commonly used request headers.

TABLE 8-1 Common Request Headers

Request Header Description
Accept File types the browser can accept.
Authorization Used if the browser wants to authenticate itself with a server;

information such as the user name and password are included.

User-Agent Name and version of the browser software.
Referer URL of the document where the user clicked on the link.
Host Internet host and port number of the resource being requested.

222 SunJava System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Request Data

If the browser has made a POST or PUT request, it sends data after the blank line
following the request headers. If the browser sends a GET or HEAD request, there is no
data to send.

Responses

The server’s response includes the following:

m “HTTP Protocol Version, Status Code, and Reason Phrase” on page 223
m “Response Headers” on page 224
®m “Response Data” on page 225

HTTP Protocol Version, Status Code, and Reason
Phrase

The server sends back a status code, which is a three-digit numeric code. The five
categories of status codes are:

100-199 a provisional response.

200-299 a successful transaction.

300-399 the requested resource should be retrieved from a different location.
400-499 an error was caused by the browser.

500-599 a serious error occurred in the server.

The following table lists some common status codes.

TABLE 8-2 Common HTTP Status Codes

Status Code Meaning

200 OK; request has succeeded for the method used (GET, POST, HEAD).

201 The request has resulted in the creation of a new resource reference by the
returned URL

206 The server has sent a response to byte range requests.

302 Found. Redirection to a new URL. The original URL has moved. This is not an

error; most browsers will get the new page.

Chapter 8 « Hypertext Transfer Protocol 223

TABLE 8-2 Common HTTP Status Codes (Continued)

Status Code

Meaning

304

Use a local copy. If a browser already has a page in its cache, and the page is
requested again, some browsers (such as Netscape Navigator) relay to the web
server the “last-modified” timestamp on the browser’s cached copy. If the
copy on the server is not newer than the browser’s copy, the server returns a
304 code instead of returning the page, reducing unnecessary network traffic.
This is not an error.

Sent if the request is not a valid HTTP /1.0 or HTTP/1.1 request. For example
HTTP/1.1 requires a host to be specified either in the Host header or as part
of the URI on the request line.

401

Unauthorized. The user requested a document but didn’t provide a valid user
name or password.

403

Forbidden. Access to this URL is forbidden.

404

Not found. The document requested isn’t on the server. This code can also be
sent if the server has been told to protect the document by telling
unauthorized people that it doesn’t exist.

If the client starts a request but does not complete it within the keep-alive
timeout configured in the server, then this response will be sent and the
connection closed. The request can be repeated with another open connection.

The client submitted a POST request with chunked encoding, which is of
variable length. However, the resource or application on the server requires a
fixed length - a Content -Length header to be present. This code tells the
client to resubmit its request with content-length.

413

Some applications (e.g., certain NSAPI plugins) cannot handle very large
amounts of data, so they will return this code.

The URI is longer than the maximum the web server is willing to serve.

Data was requested outside the range of a file.

Server error. A server-related error occurred. The server administrator should
check the server’s error log to see what happened.

503

Sent if the quality of service mechanism was enabled and bandwidth or
connection limits were attained. The server will then serve requests with that
code. See the "quality of service" section.

Response Headers

The response headers contain information about the server and the response data.

The following table lists some common response headers.

224 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

TABLE 8-3 Common Response Headers

Response Header Description

Server Name and version of the web server.

Date Current date (in Greenwich Mean Time).

Last-Modified Date when the document was last modified.

Expires Date when the document expires.

Content-Length Length of the data that follows (in bytes).

Content-Type MIME type of the following data.

WWW-Authenticate Used during authentication and includes information that tells

the browser software what is necessary for authentication
(such as user name and password).

Response Data

The server sends a blank line after the last header. It then sends the response data such
as an image or an HTML page.

Buffered Streams

Buffered streams improve the efficiency of network I/O (for example, the exchange of
HTTP requests and responses), especially for dynamic content generation. Buffered
streams are implemented as transparent NSPR 1/0 layers, which means even existing
NSAPI modules can use them without any change.

The buffered streams layer adds the following features to the Sun Java System Web
Proxy Server:

® Enhanced keep-alive support: When the response is smaller than the buffer size,
the buffering layer generates the Content -Length header so that the client can
detect the end of the response and reuse the connection for subsequent requests.

® Response length determination: If the buffering layer cannot determine the length
of the response, it uses HTTP /1.1 chunked encoding instead of the
Content-Length header to convey the delineation information. If the client only
understands HTTP /1.0, the server must close the connection to indicate the end of
the response.

m Deferred header writing: Response headers are written out as late as possible to
give the servlets a chance to generate their own headers (for example, the session
management header set -cookie).

Chapter 8 « Hypertext Transfer Protocol 225

m Ability to understand request entity bodies with chunked encoding: Though
popular clients do not use chunked encoding for sending POST request data, this
feature is mandatory for HTTP/1.1 compliance.

The improved connection handling and response length header generation provided
by buffered streams also addresses the HTTP /1.1 protocol compliance issues, where
absence of the response length headers is regarded as a category 1 failure. In previous
Enterprise Server versions, it was the responsibility of the dynamic content generation
programs to send the length headers. If a CGI script did not generate the

Content -Length header, the server had to close the connection to indicate the end of
the response, breaking the keep-alive mechanism. However, it is often very
inconvenient to keep track of response length in CGI scripts or servlets, and as an
application platform provider, the web server is expected to handle such low-level
protocol issues.

Output buffering has been built in to the functions that transmit data, such as
“net_write” on page 107 (see Chapter 4). You can specify the following Service SAF
parameters that affect stream buffering, which are described in detail in the chapter
“Syntax and Use of magnus.conf” in the Sun Java System Web Proxy Server 4.0.2
Configuration File Reference.

B UseOutputStreamSize
B ChunkedRequestBufferSize
B ChunkedRequestTimeout

The UseOutputStreamSize, ChunkedRequestBufferSize, and
ChunkedRequestTimeout parameters also have equivalent magnus . conf
directives; see “Chunked Encoding” in the chapter “Syntax and Use of magnus.conf”
in the Sun Java System Web Proxy Server 4.0.2 Configuration File Reference. The

obj . conf parameters override the magnus . conf directives.

Note — The UseOutputStreamSize parameter can be set to zero (0) in the obj . conf
file to disable output stream buffering. For the magnus . conf file, setting
UseOutputStreamSize to zero has no effect.

To override the default behavior when invoking an SAF that uses one of the functions
“net_read” on page 105 or “netbuf_grab” on page 110, you can specify the value of the
parameter in obj . conf, for example:

Service fn="my-service-saf" type=perf UseOutputStreamSize=8192

226 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

APPENDIX A

Alphabetical List of NSAPI Functions
and Macros

This appendix provides an alphabetical list for the easy lookup of NSAPI functions
and macros.

C
“cache_digest” on page 74

“cache_filename” on page 74
“cache_fn_to_dig” on page 75
“CALLOC” on page 75
“ce_free” on page 76
“ce_lookup” on page 76
“cif_write_entry” on page 77
“cinfo_find” on page 78
“condvar_init” on page 79
“condvar_notify” on page 79
“condvar_terminate” on page 80
“condvar_wait” on page 81
“crit_enter” on page 81
“crit_exit” on page 82
“crit_init” on page 83

“crit_terminate” on page 83

227

“daemon_atrestart” on page 84

“dns_set_hostent” on page 85

“fc_close” on page 86
“fc_open” on page 86
“filebuf_buf2sd” on page 87
“filebuf_close” on page 88
“filebuf_getc” on page 88
“filebuf_open” on page 89
“filebuf_open_nostat” on page 90
“filter_create” on page 91
“filter_find” on page 92
“filter_insert” on page 93
“filter_layer” on page 93
“filter_name” on page 94
“filter_remove” on page 94
“flush” on page 95

“FREE” on page 96
“fs_blk_size” on page 97
“fs_blks_avail” on page 97
“func_exec” on page 98
“func_find” on page 98

“func_insert” on page 99
“insert” on page 100
“log_error” on page 101

“magnus_atrestart” on page 102

228 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

“MALLOC” on page 103

“net_flush” on page 104
“net_ip2host” on page 104
“net_read” on page 105
“net_sendfile” on page 106
“net_write” on page 107
“netbuf_buf2sd” on page 108
“netbuf_close” on page 109
“netbuf_getc” on page 109
“netbuf_grab” on page 110
“netbuf_open” on page 111
“nsapi_module_init” on page 111
“NSAPI_RUNTIME_VERSION” on page 112

“NSAPI_VERSION” on page 113

“param_create” on page 113
“param_free” on page 114
“pblock_copy” on page 115
“pblock_create” on page 115
“pblock_dup” on page 116
“pblock_find” on page 116
“pblock_findlong” on page 117
“pblock_findval” on page 118
“pblock_free” on page 119
“pblock_nlinsert” on page 119
“pblock_nninsert” on page 120

“pblock_nvinsert” on page 120

Appendix A ¢ Alphabetical List of NSAPI Functions and Macros 229

“pblock_pb2env” on page 121
“pblock_pblock2str” on page 122
“pblock_pinsert” on page 123
“pblock_remove” on page 123
“pblock_replace_name” on page 124
“pblock_str2pblock” on page 124
“PERM_CALLOC” on page 125
“PERM_FREE” on page 126
“PERM_MALLOC” on page 127
“PERM_REALLOC” on page 127
“PERM_STRDUP” on page 128
“prepare_nsapi_thread” on page 129
“protocol_dump822” on page 130
“protocol_finish_request” on page 130
“protocol_handle_session” on page 131
“protocol_parse_request” on page 131
“protocol_scan_headers” on page 132
“protocol_set_finfo” on page 133
“protocol_start_response” on page 134
“protocol_status” on page 135
“protocol_uri2url” on page 136

“protocol_uri2url_dynamic” on page 136

“read” on page 137
“REALLOC” on page 138
“remove” on page 139
“request_create” on page 140

“request_free” on page 140

230 SunJava System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

“request_header” on page 141

“sem_grab” on page 142
“sem_init” on page 142
“sem_release” on page 143
“sem_terminate” on page 144
“sem_tgrab” on page 144
“sendfile” on page 145
“session_create” on page 146
“session_dns” on page 146
“session_free” on page 147
“session_maxdns” on page 148
“shexp_casecmp” on page 148
“shexp_cmp” on page 149
“shexp_match” on page 150
“shexp_valid” on page 150
“shmem_alloc” on page 151
“shmem_free” on page 152
“STRDUP” on page 152
“system_errmsg” on page 153
“system_fclose” on page 154
“system_flock” on page 155
“system_fopenRO” on page 155
“system_fopenRW” on page 156
“system_fopenWA” on page 157
“system_fread” on page 157
“system_fwrite” on page 158

“system_fwrite_atomic” on page 159

Appendix A ¢ Alphabetical List of NSAPI Functions and Macros 231

“system_gmtime” on page 159
“system_localtime” on page 160
“system_lseek” on page 161
“system_rename” on page 162
“system_ulock” on page 162
“system_unix2local” on page 163
“systhread_attach” on page 163
“systhread_current” on page 164
“systhread_getdata” on page 165
“systhread_init” on page 165
“systhread_newkey” on page 166
“systhread_setdata” on page 166
“systhread_sleep” on page 167
“systhread_start” on page 168
“systhread_terminate” on page 168

“systhread_timerset” on page 169

“USE_NSAPI_VERSION” on page 170
“util_can_exec” on page 171
“util_chdir2path” on page 172
“util_cookie_find” on page 172
“util_does_process_exist” on page 173
“util_env_create” on page 173
“util_env_find” on page 174
“util_env_free” on page 174
“util_env_replace” on page 175
“util_env_str” on page 176

“util_get_current_gmt” on page 176

232 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

“util_get_int_from_aux_file” on page 177
“util_get_int_from_file” on page 177
“util_get_long_from_aux_file” on page 178
“util_get_long_from_file” on page 179
“util_get_string_from_aux_file” on page 179
“util_get_string_from_file” on page 180
“util_getline” on page 181
“util_hostname” on page 182
“util_is_mozilla” on page 182
“util_is_url” on page 183

“util_itoa” on page 183

“util_later_than” on page 184
“util_make_filename” on page 184
“util_make_gmt” on page 185
“util_make_local” on page 185
“util_move_dir” on page 186
“util_move_file” on page 186
“util_parse_http_time” on page 187
“util_put_int_to_file” on page 188
“util_put_long_to_file” on page 188
“util_put_string_to_aux_file” on page 189
“util_put_string_to_file” on page 189
“util_sect_id” on page 190
“util_sh_escape” on page 191
“util_snprintf” on page 191

“util_sprintf” on page 192

“util_strcasecmp” on page 193

Appendix A ¢ Alphabetical List of NSAPI Functions and Macros 233

“util_strftime” on page 193
“util_strncasecmp” on page 194
“util_uri_check” on page 195
“util_uri_escape” on page 195
“util_uri_is_evil” on page 196
“util_uri_parse” on page 197
“util_uri_unescape” on page 197
“util_url_cmp” on page 198
“util_url_fix_host name” on page 198
“util_url_has_FQDN" on page 199
“util_vsnprintf” on page 200

“util_vsprintf” on page 200

W
“write” on page 201

“writev” on page 202

234 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide * November 2005

Index

A API functions (Continued)

AddLog filter_name, 94
example of custom SAF, 70-72 filter_remove, 94-95
requirements for SAFs, 33-37 flush, 95-96

API funct, 148-149 FREE, 96

APIT functions fs_blk_size, 97

cache_digest, 74
cache_filename, 74-75
cache_fn_to_dig, 75
CALLOC, 75-76

ce_free, 76

ce_lookup, 76-77
cif_write_entry, 77-78
cinfo_find, 78
condvar_init, 79
condvar_notify, 79-80
condvar_terminate, 80-81
condvar_wait, 81
crit_enter, 81-82
crit_exit, 82

crit_init, 83
crit_terminate, 83-84
daemon_atrestart, 84-85
fc_close, 86

filebuf buf2sd, 86-87, 87-88
filebuf_close, 88
filebuf_getc, 88-89
filebuf_open, 89-90
filebuf_open_nostat, 90-91
filter_create, 91-92
filter_find, 92
filter_insert, 93
filter_layer, 93-94

fs_blks_available, 97-98
func_exec, 98
func_find, 98-99
func_insert, 99-100
insert, 100-101
log_error, 101-102
magnus_atrestart, 102-103
MALLOC, 103
net_ip2host, 104-105
net_read, 105-106
net_write, 107-108
netbuf_buf2sd, 108-109
netbuf_close, 109
netbuf_getc, 109-110
netbuf_grab, 110
netbuf_open, 111
param_create, 113-114
param_free, 114-115
pblock_copy, 115
pblock_create, 115-116
pblock_dup, 116
pblock_find, 116-117
pblock_findlong, 117-118
pblock_findval, 118
pblock_free, 119
pblock_nlinsert, 119-120
pblock_nninsert, 120

235

API functions (Continued)
pblock_nvinsert, 120-121
pblock_pb2env, 121-122
pblock_pblock2str, 122
pblock_pinsert, 123
pblock_remove, 123-124
pblock_replace_name, 124
pblock_str2pblock, 124-125
PERM_FREE, 126
PERM_MALLOC, 125-126, 127
PERM_STRDUP, 128-129
prepare_nsapi_thread, 129
protocol_dump822, 130
protocol_set_finfo, 133-134
protocol_start_response, 134
protocol_status, 135
protocol_uri2url, 136
read, 137-138
REALLOC, 138-139
remove, 139-140
request_create, 140
request_free, 140-141
request_header, 141-142
sem_grab, 142
sem_init, 142-143
sem_release, 143
sem_terminate, 144
sem_tgrab, 144-145
sendfile, 145-146
session_create, 146
session_dns, 146-147
session_free, 147
session_maxdns, 148
shem_alloc, 151-152
shexp_cmp, 149-150
shexp_match, 150
shexp_valid, 150-151
shmem_free, 152
STRDUP, 152-153
system_errmsg, 153-154
system_fclose, 154
system_flock, 155
system_fopenRO, 155-156
system_fopenRW, 156
system_fopenWA, 157
system_fread, 157-158
system_fwrite, 158
system_fwrite_atomic, 159

API functions (Continued)

system_gmtime, 159-160
system_localtime, 160-161
system_lseek, 161
system_rename, 162
system_ulock, 161,162
system_unix2local, 163
systhread_attach, 163-164
systhread_current, 164
systhread_getdata, 165
systhread_newkey, 153-154, 166
systhread_setdata, 166-167
systhread_sleep, 167
systhread_start, 168
systhread_terminate, 168-169
systhread_timerset, 153-154, 169
util_can_exec, 171
util_chdir2path, 172
util-cookie_find, 172
util_cookie_find, 172
util-does_process_exist, 173
util_env_create, 173-174
util_env_find, 174
util_env_free, 174-175
util_env_replace, 175
util_env_str, 176
util_get_current_gmt, 176-177
util_get_int_from_file, 181
util_get_long_from_file, 179
util_get_string_from_file, 180-181
util_getline, 181
util_hostname, 182
util_is_mozilla, 182-183
util_is_url, 183

util_itoa, 183-184
util_later_than, 184
util_make_filename, 184-185
util_make_gmt, 185
util_make_local, 185-186
util_move_dir, 186
util_move_file, 186-187
util_parse_http_time, 187
util_put_int_to_file, 188
util_put_long_to_file, 188-189
util_put_string_to_file, 189-190
util_sect_id, 190
util_sh_escape, 191
util_snprintf, 191-192

236 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

API functions (Continued)
util-sprintf, 192-193
util_strcasecmp, 193
util_strftime, 193-194
util_strncasecmp, 194-195
util_uri_escape, 195-196
util_uri_is_evil, 196
util_uri_parse, 197
util_uri_unescape, 197-198
util_url_fix_hosthame, 198-199, 199
util_vsnprintf, 200
util_vsprintf, 200-201
write, 201-202
writev, 202-203
AUTH_TYPE environment variable, 37
AUTH_USER environment variable, 37
AuthTrans
example of custom SAF, 52-54
requirements for SAFs, 33-37

B
buffered streams, 225-226

C
cache_digest, API function, 74
cache_filename, API function, 74-75
cache_fn_to_dig, API function, 75
CALLOC API function, 75-76
ce_free, API function, 76
ce_lookup, API function, 76-77
CGlI
environment variables in NSAPI, 37-38
to NSAPI conversion, 37-38
chunked encoding, 225-226, 226
cif_write_entry, API function, 77-78
cinfo_find API function, 78
cinfo NSAPI data structure, 210
client
field in session parameter, 21
getting DNS name for, 208
getting IP address for, 208
sessions and, 206
CLIENT_CERT environment variable, 38
compatibility issues, 20,206

compiling custom SAFs, 25-27
condvar_init API function, 79
condvar_notify API function, 79-80
condvar_terminate API function, 80-81
condvar_wait API function, 81

CONTENT_LENGTH environment variable,

CONTENT_TYPE environment variable, 37
context->data, 41

context->rq, 41

context->sn, 40

creating, custom filters, 46-49

crit_enter API function, 81-82

crit_exit API function, 82

crit_init API function, 83

crit_terminate API function, 83-84

csd field in session parameter, 21

D

daemon_atrestart API function, 84-85

data structures
cinfo, 210
compatibility issues, 206
Filter, 211
FilterContext, 211
FilterLayer, 211
FilterMethods, 212
nsapi.h header file, 205
nsapi_pvt.h, 206
pb_entry, 207
pb_param, 208
pblock, 207
privatization of, 206
removed from nsapih, 206
request, 208-209
sendfiledata, 210
session, 206-207
Session->client, 208
shmem_s, 209-210
stat, 209

day of month, 219

DNS names, getting clients, 208

37

237

E
environment variables, CGI to NSAPI
conversion, 37-38
Error directive
requirements for SAFs, 33-37
errors, finding most recent system
error, 153-154
examples
location in the build, 51-52
of custom SAFs in the build, 51-52
wildcard patterns, 216-217

F
fc_close API function, 86
file descriptor

closing, 154

locking, 155

opening read-only, 155-156

opening read-write, 156

opening write-append, 157

reading into a buffer, 157-158

unlocking, 161, 162

writing from a buffer, 158

writing without interruption, 159
file I/O routines, 31
filebuf_buf2sd API function, 86-87, 87-88
filebuf close API function, 88
filebuf_getc API function, 88-89
filebuf_open API function, 89-90
filebuf_open_nostat API function, 90-91
filter_create API function, 91-92
filter_find API function, 92
filter_insert API function, 93
filter_layer API function, 93-94
filter methods, 40-43

C prototypes for, 40-41

FilterLaver data structure, 40

flush, 42

insert, 41

remove, 41-42

sendfile, 43

write, 42-43

writev, 43
filter_name API function, 94
Filter NSAPI data structure, 211
filter_remove API function, 94-95

FilterContext NSAPI data structure, 211
FilterLayer NSAPI data structure, 40, 211
context->data, 41
context->rq, 41
context->sn, 40
lower, 41
FilterMethods NSAPI data structure, 212
filters
altering Content-length, 45-46
functions used to implement, 49-50
input, 46
interface, 40
methods, 40-43
NSAPI function overview, 49-50
output, 46
stack position, 44-45
using, 46-49
flush API function, 42, 95-96
FREE API function, 96
fs_blk_size, API function, 97
fs_blks_available, API function, 97-98
func_exec API function, 98
func_find API function, 98-99
func_insert API function, 99-100
funcs parameter, 27

G
GATEWAY_INTERFACE environment
variable, 37

GMT time, getting thread-safe value, 159-160

H

headers
field in request parameter, 22
request, 222-223
response, 224-225
HOST environment variable, 38
HTTP
buffered streams, 225-226
compliance with HTTP/1.1, 221
HTTP /1.1 specification, 221
overview, 221
requests, 222-223
responses, 223-225

238 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

HTTP (Continued)
status codes, 223
HTTP_* environment variable, 38
HTTPS environment variable, 38
HTTPS_KEYSIZE environment variable, 38
HTTPS_SECRETKEYSIZE environment
variable, 38

|
IETF home page, 221
include directory, for SAFs, 25
Init SAFs in magnus.conf
requirements for SAFs, 33-37
initializing
plugins, 27-28
SAFs, 27-28
Input
requirements for SAFs, 33-37
input filters, 46
insert API function, 41, 100-101
IP address, getting client’, 208

L
layer parameter, 40
linking SAFs, 25-27
load-modules function, example, 27
loading
custom SAFs, 27-28
plugins, 27-28
SAFs, 27-28
localtime, getting thread-safe value, 160-161
log_error API function, 101-102

M

magnus_atrestart, API function, 102-103
MALLOC API function, 103

matching, special characters, 215-216
memory management routines, 31
month name, 219

N

NameTrans

example of custom SAF, 54-57

requirements for SAFs, 33-37
net_ip2host API function, 104-105
net_read API function, 105-106
net_write API function, 107-108
netbuf_buf2sd API function, 108-109
netbuf_close API function, 109
netbuf_getc API function, 109-110
netbuf_grab API function, 110
netbuf_open API function, 111
network I/O routines, 31-32
NSAPI

CGI environment variables, 37-38

filter interface, 40

function overview, 30-33
NSAPI filters

interface, 40

methods, 40-43
nsapih, 205
nsapi_pvt.h, 206

o

obj.conf, adding directives for new SAFs, 28-29
ObjectType
example of custom SAF, 60-62
requirements for SAFs, 33-37
order, of filters in filter stack, 44-45
Output
example of custom SAF, 62-68
requirements for SAFs, 33-37
output filters, 46

P
param_create API function, 113-114
param_free API function, 114-115
parameter block
manipulation routines, 30
SAF parameter, 21
parameters, for SAFs, 20-22
PATH_INFO environment variable, 38
path name, converting UNIX-style to local, 163

239

PATH_TRANSLATED environment

variable, 38
PathCheck

example of custom SAF, 58-60

requirements for SAFs, 33-37
pb_entry NSAPI data structure, 207
pb_param NSAPI data structure, 208
pb SAF parameter, 21
pblock, NSAPI data structure, 207
pblock_copy API function, 115
pblock_create API function, 115-116
pblock_dup API function, 116
pblock_find API function, 116-117
pblock_findlong, API function, 117-118
pblock_findval API function, 118
pblock_free API function, 119
pblock_nlinsert, API function, 119-120
pblock_nninsert API function, 120
pblock_nvinsert API function, 120-121
pblock_pb2env API function, 121-122
pblock_pblock2str API function, 122
pblock_pinsert API function, 123
pblock_remove API function, 123-124
pblock_replace_name, API function, 124
pblock_str2pblock API function, 124-125
PERM_FREE API function, 126
PERM_MALLOC API function, 125-126, 127
PERM_STRDUP API function, 128-129
plugins

compatibility issues, 20, 206

creating, 19

instructing the server to use, 28-29

loading and initializing, 27-28

private data structures, 206
prepare_nsapi_thread API function, 129
private data structures, 206
protocol_dump822 API function, 130
protocol_set_finfo API function, 133-134
protocol_start_response API function, 134
protocol_status API function, 135
protocol_uri2url API function, 136
protocol utility routines, 30-31

Q

QUERY environment variable, 38
QUERY_STRING environment variable, 38

R
read API function, 42, 137-138
REALLOC API function, 138-139
REMOTE_ADDR environment variable, 38
REMOTE_HOST environment variable, 38
REMOTE_IDENT environment variable, 38
REMOTE_USER environment variable, 38
remove API function, 41-42, 139-140
replace.c, 63
REQ_ABORTED response code, 23
REQ_EXIT response code, 23
REQ_NOACTION response code, 22
REQ_PROCEED response code, 22
reqpb, field in request parameter, 22
request

NSAPI data structure, 208-209

SAF parameter, 21-22
request_create, API function, 140
request_free, API function, 140-141
request-handling process, 33-37
request_header API function, 141-142
request headers, 222-223

REQUEST_METHOD environment variable, 38

request-response model, 221
requests, HTTD, 222-223
requirements for SAFs, 33-37
AddLog, 36
AuthTrans, 34
Error directive, 36
Init, 34
Input, 35
NameTrans, 34-35
ObjectType, 35
Output, 35
PathCheck, 35
Service, 36
response headers, 224-225
responses, HTTP, 223-225
result codes, 22-23
rq->headers, 22
rq->reqpb, 22
rqg->srvhdrs, 22
rq->vars, 22
rq SAF parameter, 21-22

S
s, 208

240 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

SAFs

compiling and linking, 25-27

include directory, 25

interface, 20

loading and initializing, 27-28

parameters, 20-22

result codes, 22-23

return values, 22

signature, 20

testing, 29
SCRIPT_NAME environment variable, 38
sem_grab, API function, 142
sem_init, API function, 142-143
sem_release, API function, 143
sem_terminate, API function, 144
sem_tgrab, API function, 144-145
semaphore

creating, 142-143

deallocating, 144

gaining exclusive access, 142

releasing, 143

testing for exclusive access, 144-145
sendfile API function, 43, 145-146
sendfiledata NSAPI data structure, 210
server, instructions for using plugins, 28-29
SERVER_NAME environment variable, 38
SERVER_PORT environment variable, 38
SERVER_PROTOCOL environment variable, 38
SERVER_SOFTWARE environment variable, 38
SERVER_URL environment variable, 38
Service

directives for new SAFs (plugins), 29

example of custom SAF, 68-70

requirements for SAFs, 33-37
session

defined, 206

NSAPI data structure, 206-207

resolving the IP address of, 146-147, 148
Session->client NSAPI data structure, 208
session_create, API function, 146
session_dns API function, 146-147
session_free, API function, 147
session_maxdns API function, 148
session SAF parameter, 21
session structure

creating, 146

freeing, 147

shared memory

allocating, 151-152

freeing, 152
shell expression

comparing (case-sensitive) to a

string, 149-150, 150

validating, 150-151
shexp_casecmp API function, 148-149
shexp_cmp API function, 149-150
shexp_match API function, 150
shexp_valid API function, 150-151
shlib parameter, 27
shmem_alloc, API function, 151-152
shmem_free, API function, 152
shmem_s NSAPI data structure, 209-210
sn->client, 21
sn->csd, 21
sn SAF parameter, 21
socket

closing, 109

reading from, 105

sending a buffer to, 108

sending file buffer to, 87

writing to, 107
sprintf, see util_sprintf, 192-193
srvhdrs, field in request parameter, 22
stat NSAPI data structure, 209
status codes, 223
STRDUP API function, 152-153
streams, buffered, 225-226
string, creating a copy of, 152-153
system_errmsg API function, 153-154
system_fclose API function, 154
system_flock API function, 155
system_fopenRO API function, 155-156
system_fopenRW API function, 156
system_fopenWA API function, 157
system_fread API function, 157-158
system_fwrite API function, 158
system_fwrite_atomic API function, 159
system_gmtime API function, 159-160
system_localtime API function, 160-161
system_lseek API function, 161
system_rename API function, 162
system_ulock API function, 161, 162
system_unix2local API function, 163
systhread_attach API function, 163-164
systhread_current API function, 164

241

systhread_getdata API function, 165
systhread_newkey, API function, 153-154
systhread_newkey API function, 166
systhread_setdata API function, 166-167
systhread_sleep API function, 167
systhread_start API function, 168
systhread_terminate, API function, 168-169
systhread_timerset, API function, 153-154
systhread_timerset API function, 169

T
testing custom SAFs, 29
thread
allocating a key for, 153-154, 166
creating, 168
getting a pointer to, 164
getting data belonging to, 165
putting to sleep, 167
setting data belonging to, 166-167
setting interrupt timer, 153-154, 169
terminating, 168-169
thread routines, 32

U

unicode, 33, 197

util_can_exec API function, 171
util_chdir2path API function, 172
util_cookie_find API function, 172
util_does_process_exist, API function, 173
util_env_create, API function, 173-174
util_env_find API function, 174
util_env_free API function, 174-175
util_env_replace API function, 175
util_env_str API function, 176
util_get_current_gmt, API function, 176-177
util_get_int_from_file, API function, 181
util_get_long_from_file, API function, 179

util_get_string_from_file, API function, 180-181

util_getline API function, 181
util_hostname API function, 182
util_is_mozilla API function, 182-183
util_is_url API function, 183
util_itoa API function, 183-184
util_later_than API function, 184

util_make_filename, API function, 184-185
util_make_gmt, API function, 185
util_make_local, API function, 185-186
util_move_dir, API function, 186
util_move_file, API function, 186-187
util_parse_http_time, API function, 187
util_put_int_to_file, API function, 188
util_put_long_to_file, API function, 188-189
util_put_string_to_file, API function, 189-190
util_sect_id, API function, 190
util_sh_escape API function, 191
util_snprintf API function, 191-192
util_sprintf API function, 192-193
util_strcasecmp API function, 193
util_strftime API function, 193-194, 219
util_strncasecmp API function, 194-195
util_uri_escape API function, 195-196
util_uri_is_evil API function, 196
util_uri_parse API function, 197
util_uri_unescape API function, 197-198
util_url_fix_hostname

API function, 198-199, 199
util_vsnprintf API function, 200
util_vsprintf API function, 200-201
utility routines, 32-33

\")

vars, field in request parameter, 22
vsnprintf, see util_vsnprintf, 200
vsprintf, see util_vsprintf, 200-201

w

weekday, 219

write API function, 42-43,201-202
writev API function, 43, 202-203

242 Sun Java System Web Proxy Server 4.0.2 NSAPI Developer’s Guide ® November 2005

	Sun Java System Web Proxy Server 4.0.2 NSAPI Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Related Third-Party Web Site References
	Feedback
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Creating Custom SAFs
	Future Compatibility Issues
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	To create a custom SAF
	Write the Source Code
	Compile and Link
	Include Directory and nsapi.h File
	Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags

	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Restart the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Input SAFs
	Output SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs
	Connect
	DNS
	Filter
	Route

	CGI to NSAPI Conversion

	Creating Custom Filters
	Future Compatibility Issues
	The NSAPI Filter Interface
	Filter Methods
	C Prototypes for Filter Methods
	insert
	See Also

	remove
	See Also

	flush
	See Also

	read
	See Also

	write
	See Also

	writev
	See Also

	sendfile
	See Also

	Position of Filters in the Filter Stack
	Filters that Alter Content-Length
	Creating and Using Custom Filters
	To create a custom filter
	Write the Source Code
	Compile and Link
	Load and Initialize the Filter
	Instruct the Server to Insert the Filter
	Restart the Server
	Test the Filter

	Overview of NSAPI Functions for Filter Development

	Examples of Custom SAFs and Filters
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Output Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	C
	cache_digest
	Syntax
	Returns
	Parameters
	See also

	cache_filename
	See also

	cache_fn_to_dig
	Syntax
	Returns
	Parameters

	CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	ce_free
	Syntax
	Returns
	Parameters
	See also

	ce_lookup
	Syntax
	Returns
	Parameters
	See also

	cif_write_entry
	Syntax
	Returns
	Parameters

	cinfo_find
	Syntax
	Returns
	Parameters

	condvar_init
	Syntax
	Returns
	Parameters
	See Also

	condvar_notify
	Syntax
	Returns
	Parameters
	See Also

	condvar_terminate
	Warning
	Syntax
	Returns
	Parameters
	See Also

	condvar_wait
	Syntax
	Returns
	Parameters
	See Also

	crit_enter
	Syntax
	Returns
	Parameters
	See Also

	crit_exit
	Syntax
	Returns
	Parameters
	See Also

	crit_init
	Warning
	Syntax
	Returns
	Parameters
	See Also

	crit_terminate
	Syntax
	Returns
	Parameters
	See Also

	D
	daemon_atrestart
	Syntax
	Returns
	Parameters
	Example

	dns_set_hostent
	Syntax
	Returns
	Parameters
	Example

	F
	fc_close
	Syntax
	Returns
	Parameters

	fc_open
	Syntax
	Returns
	Parameters

	filebuf_buf2sd
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_close
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_getc
	Syntax
	Returns
	Parameters
	See Also

	filebuf_open
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_open_nostat
	Syntax
	Returns
	Parameters
	Example
	See Also

	filter_create
	Syntax
	Returns
	Parameters
	Example

	filter_find
	Syntax
	Returns
	Parameters

	filter_insert
	Syntax
	Returns
	Parameters

	filter_layer
	Syntax
	Returns
	Parameters

	filter_name
	Syntax
	Returns
	Parameters

	filter_remove
	Syntax
	Returns
	Parameters

	flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	fs_blk_size
	Syntax
	Returns
	Parameters
	See also

	fs_blks_avail
	Syntax
	Returns
	Parameters
	See also

	func_exec
	Syntax
	Returns
	Parameters
	See Also

	func_find
	Syntax
	Returns
	Parameters
	Example
	See Also

	func_insert
	Syntax
	Returns
	Parameters
	Example
	See Also

	I
	insert
	Syntax
	Returns
	Parameters
	Example

	L
	log_error
	Syntax
	Returns
	Parameters
	Example
	See Also

	M
	magnus_atrestart
	Syntax
	Returns
	Parameters
	Example

	MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	N
	net_flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_ip2host
	Syntax
	Returns
	Parameters

	net_read
	Syntax
	Returns
	Parameters
	See Also

	net_sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_write
	Syntax
	Returns
	Parameters
	Example
	See Also

	netbuf_buf2sd
	Syntax
	Returns
	Parameters
	See Also

	netbuf_close
	Syntax
	Returns
	Parameters
	See Also

	netbuf_getc
	Syntax
	Returns
	Parameters
	See Also

	netbuf_grab
	Syntax
	Returns
	Parameters
	See Also

	netbuf_open
	Syntax
	Returns
	Parameters
	See Also

	nsapi_module_init
	Syntax
	Returns
	Parameters

	NSAPI_RUNTIME_VERSION
	Syntax
	Example
	See Also

	NSAPI_VERSION
	Syntax
	Example
	See Also

	P
	param_create
	Syntax
	Returns
	Parameters
	Example
	See Also

	param_free
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_copy
	Syntax
	Returns
	Parameters
	See Also

	pblock_create
	Syntax
	Returns
	Parameters
	See Also

	pblock_dup
	Syntax
	Returns
	Parameters
	See Also

	pblock_find
	Syntax
	Returns
	Parameters
	See Also

	pblock_findlong
	Syntax
	Returns
	Parameters
	See also

	pblock_findval
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_free
	Syntax
	Returns
	Parameters
	See Also

	pblock_nlinsert
	Syntax
	Returns
	Parameters
	See also

	pblock_nninsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_nvinsert
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_pb2env
	Syntax
	Returns
	Parameters
	See Also

	pblock_pblock2str
	Syntax
	Returns
	Parameters
	See Also

	pblock_pinsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_remove
	Syntax
	Returns
	Parameters
	See Also

	pblock_replace_name
	Syntax
	Returns
	Parameters
	See also

	pblock_str2pblock
	Syntax
	Returns
	Parameters
	See Also

	PERM_CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_STRDUP
	Syntax
	Returns
	Parameters
	See Also

	prepare_nsapi_thread
	Syntax
	Returns
	Parameters
	See Also

	protocol_dump822
	Syntax
	Returns
	Parameters
	See Also

	protocol_finish_request
	Syntax
	Returns
	Parameters
	See also

	protocol_handle_session
	Syntax
	Parameters
	See also

	protocol_parse_request
	Syntax
	Returns
	Parameters
	See also

	protocol_scan_headers
	Syntax
	Returns
	Parameters
	See also

	protocol_set_finfo
	Syntax
	Returns
	Parameters
	See Also

	protocol_start_response
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_status
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_uri2url
	Syntax
	Returns
	Parameters
	See Also

	protocol_uri2url_dynamic
	Syntax
	Returns
	Parameters
	See Also

	R
	read
	Syntax
	Returns
	Parameters
	Example
	See Also

	REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See Also

	remove
	Syntax
	Returns
	Parameters
	See Also

	request_create
	Syntax
	Returns
	Parameters
	See also

	request_free
	Syntax
	Returns
	Parameters
	See also

	request_header
	Syntax
	Returns
	Parameters
	See Also

	S
	sem_grab
	Syntax
	Returns
	Parameters
	See also

	sem_init
	Syntax
	Returns
	Parameters
	See also

	sem_release
	Syntax
	Returns
	See also

	sem_terminate
	Syntax
	Returns
	Parameters
	See also

	sem_tgrab
	Syntax
	Returns
	Parameters
	See also

	sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	session_create
	Syntax
	Returns
	Parameters
	See also

	session_dns
	Syntax
	Returns
	Parameters

	session_free
	Syntax
	Returns
	See also
	Parameters

	session_maxdns
	Syntax
	Returns
	Parameters

	shexp_casecmp
	Syntax
	Returns
	Parameters
	See Also

	shexp_cmp
	Syntax
	Returns
	Parameters
	Example
	See Also

	shexp_match
	Syntax
	Returns
	Parameters
	See Also

	shexp_valid
	Syntax
	Returns
	Parameters
	See Also

	shmem_alloc
	Syntax
	Returns
	Parameters
	See also

	shmem_free
	Syntax
	Returns
	Parameters
	See also

	STRDUP
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_errmsg
	Syntax
	Returns
	Parameters
	See Also

	system_fclose
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_flock
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRO
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRW
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_fopenWA
	Syntax
	Returns
	Parameters
	See Also

	system_fread
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite_atomic
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_gmtime
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_localtime
	Syntax
	Returns
	Parameters
	See Also

	system_lseek
	Syntax
	Returns
	Parameters
	See Also

	system_rename
	Syntax
	Returns
	Parameters

	system_ulock
	Syntax
	Returns
	Parameters
	See Also

	system_unix2local
	Syntax
	Returns
	Parameters
	See Also

	systhread_attach
	Syntax
	Returns
	Parameters
	See Also

	systhread_current
	Syntax
	Returns
	Parameters
	See Also

	systhread_getdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_init
	Syntax
	Returns
	Parameters
	See also

	systhread_newkey
	Syntax
	Returns
	Parameters
	See Also

	systhread_setdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_sleep
	Syntax
	Returns
	Parameters
	See Also

	systhread_start
	Syntax
	Returns
	Parameters
	See Also

	systhread_terminate
	Syntax
	Returns
	Parameters

	See also
	systhread_timerset
	Syntax
	Returns
	Parameters
	See Also

	U
	USE_NSAPI_VERSION
	Syntax
	Example
	See Also

	util_can_exec
	UNIX Only
	Syntax
	Returns
	Parameters
	See Also

	util_chdir2path
	Syntax
	Returns
	Parameters

	util_cookie_find
	Syntax
	Returns
	Parameters

	util_does_process_exist
	Syntax
	Returns
	Parameters
	See also

	util_env_create
	Syntax
	Returns
	Parameters
	See also

	util_env_find
	Syntax
	Returns
	Parameters
	See Also

	util_env_free
	Syntax
	Returns
	Parameters
	See Also

	util_env_replace
	Syntax
	Returns
	Parameters
	See Also

	util_env_str
	Syntax
	Returns
	Parameters
	See Also

	util_get_current_gmt
	Syntax
	Returns
	Parameters
	See also

	util_get_int_from_aux_file
	Syntax
	Returns
	Parameters
	See also

	util_get_int_from_file
	Syntax
	Returns
	Parameters
	See also

	util_get_long_from_aux_file
	Syntax
	Returns
	Parameters
	See also

	util_get_long_from_file
	Syntax
	Returns
	Parameters
	See also

	util_get_string_from_aux_file
	Syntax
	Returns
	Parameters
	See also

	util_get_string_from_file
	Syntax
	Returns
	Parameters
	See also

	util_getline
	Syntax
	Returns
	Parameters
	See Also

	util_hostname
	Syntax
	Returns
	Parameters

	util_is_mozilla
	Syntax
	Returns
	Parameters
	See Also

	util_is_url
	Syntax
	Returns
	Parameters
	See Also

	util_itoa
	Syntax
	Returns
	Parameters

	util_later_than
	Syntax
	Returns
	Parameters
	See Also

	util_make_filename
	Syntax
	Returns
	Parameters

	util_make_gmt
	Syntax
	Returns
	Parameters
	See also

	util_make_local
	Syntax
	Returns
	Parameters
	See also

	util_move_dir
	Syntax
	Returns
	Parameters
	See also

	util_move_file
	Syntax
	Returns
	Parameters
	See also

	util_parse_http_time
	Syntax
	Returns
	See also

	util_put_int_to_file
	Syntax
	Returns
	Parameters
	See also

	util_put_long_to_file
	Syntax
	Returns
	Parameters
	See also

	util_put_string_to_aux_file
	Syntax
	Returns
	Parameters
	See also

	util_put_string_to_file
	Syntax
	Returns
	Parameters
	See also

	util_sect_id
	Syntax
	Returns
	Parameters

	util_sh_escape
	Syntax
	Returns
	Parameters
	See Also

	util_snprintf
	Syntax
	Returns
	Parameters
	See Also

	util_sprintf
	Syntax
	Returns
	Parameters
	Example
	See Also

	util_strcasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_strftime
	Syntax
	Returns
	Parameters
	See Also

	util_strncasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_uri_check
	Syntax
	Returns
	Parameters

	util_uri_escape
	Syntax
	Returns
	Parameters
	See Also

	util_uri_is_evil
	Syntax
	Returns
	Parameters
	See Also

	util_uri_parse
	Syntax
	Returns
	Parameters
	See Also

	util_uri_unescape
	Syntax
	Returns
	Parameters
	See Also

	util_url_cmp
	Syntax
	Returns
	Parameters
	See also

	util_url_fix_host name
	Syntax
	Returns
	Parameters
	See also

	util_url_has_FQDN
	Syntax
	Returns
	Parameters

	util_vsnprintf
	Syntax
	Returns
	Parameters
	See Also

	util_vsprintf
	Syntax
	Returns
	Parameters
	See Also

	W
	write
	Syntax
	Returns
	Parameters
	Example

	writev
	Syntax
	Returns
	Parameters
	Example
	See Also

	Data Structure Reference
	Privatization of Some Data Structures
	Session
	pblock
	pb_entry
	pb_param
	Session->client
	Request
	stat
	shmem_s
	cinfo
	sendfiledata
	Filter
	FilterContext
	FilterLayer
	FilterMethods
	The CacheEntry Data Structure
	The CacheState Data Structure
	The ConnectMode Data Structure

	Using Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Time format strings

	Hypertext Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Alphabetical List of NSAPI Functions and Macros
	Index

