
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Web Application Framework
Component Author’s Guide

Sun Java™ Studio Enterprise 7 2004Q4

Part No. 819-0724-10
December 2004, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.Sun, Sun Microsystems, le logo Sun et Java sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.LA

DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Before You Begin 7

1. Overview and Component Architecture 13

Component-Based Development (CBD) 13

What is a Web Application Framework Component? 14

Web Application Framework Component Libraries 15

The Web Application Framework Component Library 16

The Component Class 16

The ComponentInfo Class 17

2. Developing Components 19

Develop Your First Component 19

Decide the Type of the Component 19

Create the Component Class 20

Create the ComponentInfo Class 21

Create the Component Library Manifest 23

Create the Component Library JAR File 24

Test the Component 25

Ship It! 31

Web Application Framework Components in More Detail 31
 3

Distributable vs. Application-Specific (Non-Distributable) Components 32

Extensible vs. Non-Extensible Components 33

ComponentInfo in More Detail 40

Specialized ComponentInfo Interfaces 42

ExtensibleComponentInfo 42

Other Types of Specialized ComponentInfo 42

Standard Implementations of ComponentInfo 43

3. Developing View Components 45

View Components 45

ViewComponentInfo 46

ContainerViewComponentInfo 47

Develop a Non-Extensible View Component 47

Create the Validator Interface 48

Create at Least One Implementation of the Validator Interface 49

Create the Web Application Framework Component Class 50

Create a Custom JSP TagHandler Class 53

Create the ComponentInfo Class 54

Create a New Tag Library TLD File 57

Augment the Component Library Manifest 59

Recreate the Component Library JAR File 61

Test the New Component 61

Ship It! 69

Develop an Extensible View Component 69

Create the MissingTokensEvent Class 71

Create the Web Application Framework Component Class 72

Create the Extensible Component's Java Template 74

Create the ComponentInfo Class 76

Augment the Component Library Manifest 79
4 Web Application Framework Component Author’s Guide • December 2004

Recreate the Component Library JAR File 80

Test the New Component 81

Ship It? 86

4. Developing Model Components 89

Model Components 89

ModelComponentInfo 89

ExecutingModelComponentInfo 89

Developing a Non-Extensible Model Component 90

Developing an Extensible Model Component 90

Key XML Document Model Design Points 91

Create the ModelFieldDescriptor Class 93

Create the Web Application Framework Component Class 95

Create the Extensible Component's Java Template 104

Create the ComponentInfo Class 105

Augment the Component Library Manifest 109

Recreate the Component Library JAR File 110

Test the New Component 111

Ship It? 135

5. Developing Command Components 137

Developing an Extensible Command Component 137

Create the Web Application Framework Component Class 139

Create the Extensible Component's Java Template 141

Create the ComponentInfo Class 142

Augment the Component Library Manifest 144

Recreate the Component Library JAR File 145

Test the New Component 146

6. ConfigurableBeans (Non-Visual Components) 161
Contents 5

Configurable Bean Example: CommandDescriptor 169

7. Developing and Distributing Non-Extensible Model, Command and
ContainerView Components 173

Develop a Non-Extensible Model, ContainerView, or Command Component
175

Distributing a Non-extensible Model, ContainerView, or Command
Component 178

The Object Definition File (non-extensible component metadata) 182

8. Design Actions 185

Developing Extensible Components Which Have Component Design Actions
185

What is a Component Design Action? 186

Exposing Design Action in ComponentInfo 187

A. Component Library Structure 191

Component Library Overview 191

Component Library Structure 191

The Component Manifest 192

Automated Unpacking of Component Tag Libraries (TLD) Files 197

Automated Unpacking of "Additional Files" 199

Index 203
6 Web Application Framework Component Author’s Guide • December 2004

Before You Begin

This Web Application Framework Component Author’s Guide describes the component
architecture of the Web Application Framework and the process whereby component
authors can design, create, and distribute new components. This book is intended
for prospective Web Application Framework component authors, and assumes that
these component authors are already familiar with the Web Application Framework
architecture and the Sun™ Java ™ Studio Enterprise 7 2004Q4 development
environment (hereafter referred to as the IDE).

Before You Read This Book
Before starting, you should be familiar with concepts used in building web
applications using existing J2EE web technologies, such as servlets and JavaServlet
Pages™ (JSP™ pages). You should be also already familiar with the Web Application
Framework architecture by reading the related Web Application Framework
documentation listed later in this chapter.

The following resources can provide additional information:

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs
 7

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
ttp://java.sun.com/j2ee/tutorial
http://java.sun.com/j2ee/download.html#platformspec

Note – Sun is not responsible for the availability of third-party Web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.

How This Book Is Organized
Chapter 1, Overview and Component Architecture provides an overview of
Component-Based Development (CBD), Web Application Framework Component
Library, the Component Class, and the ComponentInfo Class.

Chapter 2, Developing Components provides a description of the fundamental steps
involved in creating, distributing, and using a Web Application Framework
component.

Chapter 3, Developing View Components provides a description of the fundamental
steps involved in developing view components.

Chapter 4, Developing Model Components provides a description of the
fundamental steps involved in developing model components.

Chapter 5, Developing Command Components provides a description of the
fundamental steps involved in developing command components.

Chapter 6, ConfigurableBeans (Non-Visual Components) introduces how the IDE
toolset makes use of the ConfigurableBean, the role it plays, and the relationship
between Web Application Framework and the ConfigurableBean types.

Chapter 7, Developing and Distributing Non-Extensible Model, Command and
ContainerView Components introduces the steps to develop and distribute non-
extensible Model, Command, and ContainerView components.

Chapter 8, Design Actions describes developing extensible components which have
component design actions, defines a component design action, and shows how to
expose design action in ComponentInfo.

Chapter A, Component Library Structure offers an overview of the component
library and the component library structure, and details the component manifest,
with a description of automated unpacking of component tag libraries (TLD) files,
and automated unpacking of "Additional Files".
8 Web Application Framework Component Author’s Guide • December 2004

Typographic Conventions

Related Documentation
Java Studio Enterprise documentation includes books and tutorials delivered in
Acrobat Reader (PDF) format, release notes, online help, and tutorials delivered in
HTML format.

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM
web site and from the Documentation link from the Sun Java Studio Enterprise
Developers Source portal (http://developers.sun.com/jsenterprise).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet.

■ Sun Java Studio Enterprise 7 Release Notes - part no. 819-0905-10

Describes last-minute release changes and technical notes.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
Before You Begin 9

http://developers.sun.com/jsenterprise
http://docs.sun.com
http://developers.sun.com/jsenterprise)

■ Sun Java Studio Enterprise 7 Installation Guide (PDF format) - part no. 817-7971-10

Describes how to install the Sun Java Studio Enterprise 7 integrated development
environment (IDE) on each supported platform and includes other pertinent
information, such as system requirements, upgrade instructions, server
information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Building J2EE Applications - part no. 819-0819-10

Describes how to assemble EJB modules and web modules into a J2EE application
and how to deploy and run a J2EE application.

■ Web Application Framework documentation (PDF format)

■ Web Application Framework Component Author’s Guide - part no. 819-0724-10

Describes the Web Application Framework component architecture and the
process to design, create, and distribute new components.

■ Web Application Framework Component Reference Guide - part no. 819-0725-10

Describes the components available in the Web Application Framework
Library.

■ Web Application Framework Overview - part no. 819-0726-10

Introduces the Web Application Framework and what it is, how it works, and
what sets it apart from other application frameworks.

■ Web Application Framework Tutorial- part no. 819-0727-10

Introduces the mechanics and techniques to build a web application using the
Web Application Framework tools.

■ Web Application Framework Developer’s Guide - part no. 819-0728-10

Provides the steps to create and use application components that can be
assembled to develop an application using the Web Application Framework
and explains how to deploy the application in most J2EE containers.

■ Web Application Framework IDE Guide - part no. 819-0729-10

Describes the various parts of the Sun Java Studio Enterprise 7 2004Q4 IDE and
emphasizes the use of the visual tools for developing a Web Application
Framework application.

■ Web Application Framework Tag Library Reference - part no. 819-0730-10

Gives a brief introduction to the Web Application Framework tag library, as
well as a comprehensive reference to the tags available within the library.
10 Web Application Framework Component Author’s Guide • December 2004

Tutorials
Sun Java Studio Enterprise 7 tutorials help you understand the features of the IDE.
Each tutorial provides techniques and code samples that you can use or modify in
developing more substantial applications. All tutorials illustrate deployment with
Sun Java System Application Server.

All tutorials are available from the Tutorials and Code Camps link off the
Developers Source portal, which you can access from within the IDE by choosing
Help > Examples and Tutorials.

■ QuickStart guides provide an introduction to the Sun Java Studio IDE. Start with
a QuickStart tutorial if you are either new to the Sun Java Studio IDE or want a
quick introduction to a particular feature. These tutorials describe how to develop
simple web and J2EE applications, generate web services, and how to get started
with UML modeling and Refactoring. QuickStarts take minutes to complete.

■ Tutorials focus on a single feature of the Sun Java Studio IDE. Try these if you are
interested in the details of a particular feature. Some tutorials build an application
from the ground up, while others build on provided source files, depending on
the focus of the example. You can complete a tutorial in an hour or less.

■ Narrated Tutorials use video to illustrate a feature or technique. Try a narrated
tutorials for a visual overview of the IDE or an in-depth presentation of a
particular feature. You can complete a narrated tutorial in a few minutes. You can
also start and stop a narrated tutorial at any point you wish.

Online Help
Online help is available in the Sun Java Studio Enterprise 7 IDE. You can open help
by pressing the help key (F1 in Microsoft Windows environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.
Before You Begin 11

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the book’s title (Web Application Framework Component Author’s Guide)
and its part number (819-0724-10) in the subject line of your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Tutorials HTML at the Examples and Code Camps link from the Developers
Source portal at http://developers.sun.com/jsenterprise

Release notes HTML at http://docs.sun.com
12 Web Application Framework Component Author’s Guide • December 2004

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com

CHAPTER 1

Overview and Component
Architecture

Component-Based Development (CBD)
Component-Based Development (CBD) is a highly regarded engineering strategy
whereby the production, distribution, and consumption of components contribute to
more efficient and reliable application development. Mature CBD combines a robust
component model with a component-aware IDE.

The producers of components (component authors) are responsible for developing
components according to the specification of a particular component model
(component architecture). A component model formalizes component structure and
specifies a means of component distribution. A mature component model also
allows each component to be self-describing, so that it can advertise its features to
component consumers. Components are typically distributed as collections known
as component libraries.

Components can come in a variety of flavors intended for use in different
development scenarios. For example, components can be designed in a very generic,
or horizontal fashion to cut across a range of specific development needs. These
components tend to be the broadest components available, with their strength being
flexibility and customizability. These types of components are usable by many
different application developer populations, across projects and companies, and in
the Web application space, and generally are not biased toward any particular look
and feel. Alternatively, other components can be designed to satisfy a narrower,
vertical set of development needs. These components are tailored to a particular
usage scenario, allowing them to provide high-level features and high ease-of-use.
These types of components are less broadly usable, but because their scope is more
narrowly defined, they can keep parameterization to a minimum and use a
particular look and feel.
13

The consumers of components are typically application developers. In CBD,
application development consists primarily of aggregating or assembling a
particular application from a collection of reusable components. The greater the
coverage provided by the components, the smaller the amount of application-
specific code.

A component-aware IDE is necessary to expose components to the component
consumers. The IDE leverages the self-describing nature of components to
dynamically present components for instantiation and configuration. The IDE is the
final piece of the puzzle, but it is very significant. Without a component-aware IDE,
the component model exists only on paper. Without a component-aware IDE,
developers can only use a component as they would any other Java class, through its
public API. A component-aware IDE, on the other hand, allows developers to
browse through collections of components, visually assemble components into
application entities, and configure components by declaratively filling in
component-specific property sheets.

The rest of this document describes the Sun™ ONE Application Framework
component model, and the manner in which component authors can leverage that
component model to create powerful component libraries.

What is a Web Application Framework
Component?
Since its inception, the Web Application Framework has supported a component
model for certain types of objects. However, the prior component model relied on
developers to learn each component's API and write code to use that component in
their applications. Although this level of functionality was sufficient and provided a
significant productivity advantage over contemporary competitors, the Web
Application Framework has significantly extended its component model to
encompass all types of primary Web Application Framework application objects
(Views, Models, and Commands). Furthermore, the Web Application Framework
module for the IDE now provides a full featured, component-aware IDE that creates
a visual development environment for Web Application Framework applications.

In Web Application Framework terms, a component is one of the various types of
supported component classes (Views, Models, and Commands) in conjunction with
metadata information. This metadata is encapsulated in a Web Application
Framework-specific class called a ComponentInfo class. At design-time, the Sun
Java System can inspect the ComponentInfo and present the component in an easy-
to-use visual fashion.
14 Web Application Framework Component Author’s Guide • December 2004

The metadata stored in ComponentInfo classes is intended to enable automated use
of the component in a development environment, such as the Sun Java System.
Developers can still manually create and use various types of components in their
applications without defining a ComponentInfo class.

Web Application Framework Component
Libraries
The Web Application Framework component model requires that components
intended for discovery by the IDE toolset must be packaged into a specific
component library format. A Web Application Framework component library
consists of a standard JAR file containing the component classes, ComponentInfo
metadata classes, and a single component library manifest file. The component
library manifest file is described in detail later in this document.

Note – A component library JAR can contain any number of non-component related
classes. It is just a standard JAR file with some component-model-specific additions.

Application developers make use of the Web Application Framework component
libraries by placing them in their Web application's WEB-INF/lib directory. The
IDE toolset automatically recognizes and mounts any component libraries placed in
that directory. After the IDE toolset has discovered and inspected the libraries (it
might take a minute or two due to background thread latency), the library
components are available for use within the application. The components are then
said to be registered with the IDE toolset.

Hint: The library manifest inspection and component registration process recurs
every time a Web Application Framework application is remounted within the IDE
toolset. This is natural and should be expected, because the component model is
entirely dynamic. However, both component authors and application developers
should be aware of this process and understand that the accidental or intentional
removal of a component library from the application’s WEB-INF/lib directory
results in the expected omission of those components the next time the application is
mounted.

IDE troubleshooting hint: A common mistake of newcomers to the Sun Java System
is to improperly mount a Web application. The IDE's Web application module (upon
which the Web Application Framework toolset module is built) only recognizes a
mounted file system as a Web application if the mount point corresponds with the
root of the Web application structure. If you do not mount the Web application at its
root directory, the IDE treats it as a conventional file system, and fails to provide the
Web Application Framework application view that you expect. Keep this in mind as
Chapter 1 Overview and Component Architecture 15

you build and test your first components. The easiest way to avoid any confusion in
this regard is to use the Mount Web Application action of the IDE instead of the
Mount File System action.

The Web Application Framework Component
Library
The Web Application Framework Component Library contains the core interfaces,
run-time classes, and many basic components that you use to create a Web
Application Framework application. The standard Web Application Framework
Component Library is packaged as a single JAR file, and should appear in your
application's WEB-INF/lib directory.

When creating a Web Application Framework application using the IDE toolset, the
current version of the standard Web Application Framework Component Library is
automatically added to the application's WEB-INF/lib directory. If you open an
application created in a previous version of the IDE toolset, you might be prompted
to upgrade the application, including the Web Application Framework run-time
library.

The Component Class
A Web Application Framework component class is the class which defines a Web
Application Framework run-time type, a View, a Command, or a Model.

The author of the component class is only concerned with design-time
considerations to the extent that a JavaBean developer would do so. That is to say, as
a component author, you must anticipate the properties which you would like to
expose to design time configuration and define appropriate get and set methods.
However, unlike the JavaBean model, the Web Application Framework component
model does not eagerly expose all get and set methods as properties. That is
because the Web Application Framework recognizes that there are many get and
set methods in the Web Application Framework core from which the components
derive which are not appropriate for design time configuration. Therefore, the Web
Application Framework component model limits the exposed properties to those
which are explicitly specified in the companion ComponentInfo class.
16 Web Application Framework Component Author’s Guide • December 2004

The ComponentInfo Class
The ComponentInfo class is the heart and soul of the Web Application Framework
component model. Logically speaking, a Web Application Framework component
can be referred to as a tuple comprised of a component class and a ComponentInfo
class. The ComponentInfo class provides the metadata that is introspected by the
IDE toolset to provide the component's design-time presence. When you author a
ComponentInfo class, you can focus exclusively on design-time considerations. The
ComponentInfo class plays no run-time role in the Web Application Framework.
Chapter 1 Overview and Component Architecture 17

18 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 2

Developing Components

Develop Your First Component
This chapter provides a description of the fundamental steps involved in creating,
distributing, and using a Web Application Framework component.

Approach this as an exercise, and actually build and test drive the component. After
completing this section, you should have a good understanding of the process. Do
not worry about trying to understand every detail at this point. The rest of this
document delves into details concerning the various types of components, the
details of the metadata formats, and the extra optional features available to
component authors.

This section assumes basic familiarity with the Web Application Framework
application.

Decide the Type of the Component
An ultra-simple example is contrived to focus on technique. You will create a new
DisplayField component called "MyTextField". The objective is to have this
component expose a new property called "Foo" that will take a boolean value.
Application developers will be able to visually select MyTextField and add it to
their Web Application Framework pages. It is expected that the component will have
all of the properties of the standard Web Application Framework TextField
component, plus the new Foo property.
19

Create the Component Class
A new component class is not always needed in Web Application Framework. This
subtlety is discussed later in this document. This example, however, does require a
new component class, so you will begin with that.

1. In any Java editor create the package mycomponents.

2. Create the mycomponents.MyTextField class.

3. Make MyTextField extend com.iplanet.jato.view.BasicDisplayField.

4. Implement the appropriate constructor for the component type.

All DisplayField components must implement a two-arg constructor that takes a
View "parent" and a String "name". The IDE toolset assumes that all DisplayField
components will implement this constructor.

5. Add a get and set method for the new boolean property named "Foo".

After these steps, mycomponents/MyTextField.java should look as follows:

package mycomponents;

import com.iplanet.jato.view.*;

/**
 *
 * @author component author
 */
public class MyTextField extends BasicDisplayField {

 /** Creates a new instance of MyTextField */
 public MyTextField(View parent, String name) {
 super(parent, name);
 }

 public boolean getFoo() {
 return foo;
 }

 public void setFoo(boolean value) {
 foo = value;
 }

 boolean foo;
}

20 Web Application Framework Component Author’s Guide • December 2004

Although you are creating a new property on this component, how this property
actually interacts with the component at run-time is not defined. That is up to you as
the component author and is beyond the scope of this part of the document.

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example, you extend an existing
ComponentInfo and, in true OO style, simply augment it. You could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

1. Create the class mycomponents.MyTextFieldComponentInfo.

2. Make MyTextFieldComponentInfo extend
com.iplanet.jato.view.html2.TextFieldComponentInfo.

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic
design-time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you want to expose in the IDE.

Utilize inheritance to add the new Foo property to those properties already defined
in TextFieldComponentInfo.

After these steps, mycomponents/MyTextFieldComponentInfo.java should
look like the code that follows:

Note – In the following sample code, for demonstration purposes, String values
have been embedded directly. Utilize resource bundles if you anticipate the need to
localize your display strings.

package mycomponents;

import java.util.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.view.html2.*;

public class MyTextFieldComponentInfo extends TextFieldComponentInfo {

 public MyTextFieldComponentInfo()
 {
Chapter 2 Developing Components 21

 super();
 }

 public ComponentDescriptor getComponentDescriptor() {

 // identify the component class
 ComponentDescriptor result=new ComponentDescriptor(
 "mycomponents.MyTextField");

 // The name will be used to determine a name for the component instance
 result.setName("MyTextField");

 // The display name will be used to show the component in a chooser
 result.setDisplayName("MyTextField Component");

 // The description will be the tool tip text for the component
 result.setShortDescription("A simple demonstration of a new component");

 return result;
 }

 public ConfigPropertyDescriptor[] getConfigPropertyDescriptors() {

 if (configPropertyDescriptors!=null)
 return configPropertyDescriptors;

 // Get any properties defined in the super class
 configPropertyDescriptors=super.getConfigPropertyDescriptors();
 List descriptors=new LinkedList(
 Arrays.asList(configPropertyDescriptors));

 ConfigPropertyDescriptor descriptor = null;

 // Add the "foo" property
 descriptor=new ConfigPropertyDescriptor("foo",Boolean.TYPE);
 descriptor.setDisplayName("Foo Property");
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptor.setDefaultValue(new Boolean(false));
 descriptors.add(descriptor);

 // Create/return the array
 configPropertyDescriptors = (ConfigPropertyDescriptor[])
 descriptors.toArray(
 new ConfigPropertyDescriptor[descriptors.size()]);
 return configPropertyDescriptors;
 }

 private ConfigPropertyDescriptor[] configPropertyDescriptors;
}

22 Web Application Framework Component Author’s Guide • December 2004

Create the Component Library Manifest
Web Application Framework components are packaged and distributed in ordinary
JAR files. Any classes (component, ComponentInfo, and any other ancillary files)
should be placed in the JAR in accordance with standard Java convention.

Additionally, the Web Application Framework requires that a component library
JAR contains a special Web Application Framework library manifest file. This is a
simple XML document that describes the collection of components in the library.
Library manifests might declare any number of components. In this case, just declare
the one component that you have just authored.

The Web Application Framework library manifest must be named complib.xml.
Within the JAR file, the Web Application Framework library manifest must be placed
in the /COMP-INF directory.

1. Create the file called complib.xml.

2. Add the minimum information to satisfy the Web Application Framework library
manifest requirements.

3. Add a component declaration for the MyTextField component.

After these steps, the COMP-INF/complib.xml file should look like the code that
follows:

Note – If you use a tool to create the XML file, be sure that it looks like this. Some
XML tools automatically insert a root element when you create the file. Make sure
the root element is <component-library> as indicated next. An improper XML file will
cause the IDE toolset to fail to discover your component library
Chapter 2 Developing Components 23

.

Create the Component Library JAR File
JAR up the component classes so they can be ready for distribution as a library.

The name of the JAR file is arbitrary.

1. In this case, name the JAR file mycomponents.jar.

You can omit the Java source files from the JAR.

2. Include in the JAR any necessary ancillary resources, such as icon images or
resource bundles.

In this case there are none.

The mycomponents.jar internal structure should look like the code that follows:

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
 <tool-info>
 <tool-version>2.1.0</tool-version>
 </tool-info>
 <library-name>mycomponents</library-name>
 <display-name>My First Component Library</display-name>
 <!-- Your icon here
 <icon>
 <small-icon>/com/iplanet/jato/resources/complib.gif</small-icon>
 </icon>
 -->
 <interface-version>1.0.0</interface-version>
 <implementation-version>20030221</implementation-version>

 <component>
 <component-class>mycomponents.MyTextField</component-class>
 <component-info-class>mycomponents.MyTextFieldComponentInfo</component-
 info-class>
 </component>

</component-library>

mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
COMP-INF/complib.xml
24 Web Application Framework Component Author’s Guide • December 2004

Test the Component
Your library is now ready for testing and distribution. You should test it in a sample
project. This stage requires the use of the IDE with the Web Application Framework
module installed and enabled. If you have never built a Web Application Framework
application in the IDE, before continuing, you should first complete the Web
Application Framework Tutorial that is included with the Web Application Framework
document set.

Caution – You can test your component(s) in any existing Web Application
Framework application. However, you should create a new Web Application
Framework application to serve as the test application for all of the example
components that you will build in the course of completing the exercises within this
guide. The instructions that follow generally assume that the names for your test
objects were generated according to Web Application Framework defaults (for
example, Page1, and so on) and you will have an easier time following the
instructions if your test application's object names match those in the instructions.

1. Create a new Web Application Framework application in the IDE.

The name of the application is up to you.

2. From the filesystem, copy the new mycomponents.jar file into the WEB-INF/lib
directory within your test application.

3. Wait for the IDE background thread to discover that a new JAR has been deployed
in the application’s WEB-INF/lib directory.

This takes several seconds, depending upon the value of the IDE’s background
thread Refresh Interval.

The library is fully recognized and functional when a new library node appears
under the Web Application Framework application's Settings and Configuration ->
Component Libraries node, as shown next:
Chapter 2 Developing Components 25

4. Create a new Page (ViewBean) object.

Take the wizard defaults, and the IDE names it "Page1".

5. Select and expand the newly created Page1 node.
26 Web Application Framework Component Author’s Guide • December 2004

6. Add an instance of "MyTextField Component" to Page1.

This can be accomplished in either of two equally valid user interface actions.

■ You can utilize the Component Palette (shown in the next figure).

■ Expand the "Visual Components" section.
■ Click the "MyTextField Component" item.

This adds an instance to whatever page node has focus at that moment.

■ Alternatively, you can select Page1's Visual Components sub-node.

Right-click, and select the Add Visual Component action from the pop-up menu.

Note the generic icons for both the library "My First Component Library" and the
component "MyTextField Component". This occurs because, in this example, you
did not specify any specific icons. That is just one of the features that you will
learn about in the rest of this document.
Chapter 2 Developing Components 27

The Component Browser (shown next) is an alternative to the Component Palette
(shown in the previous figure). In the rest of this document, any instruction that
involves adding a visual component can be fulfilled by using either the Component
Palette or the Component Browser. They are functionally interchangeable, and users
can use either, or both, at all times.
28 Web Application Framework Component Author’s Guide • December 2004

After selecting the MyTextField Component from either the Component Palette or
the Component Browser, observe how a child View named "myTextField1" is added
to the page.

7. Select the child node myTextField1.

Observe how the IDE's property sheet has added Foo Property, the new custom
property, in addition to the inherited TextField component properties.
Chapter 2 Developing Components 29

Test the behavior of the Foo Property to make sure it behaves the way you, as
component author, expect it should.

You should be able to assign the Foo Property the value True or False.

8. In this example, set the Foo Property to True.

9. Observe the code generation inside the Page1 java file.

You should see a block of code inside the createChildReserved method that
looks like the following code (the indenting in your code might differ from what you
see the next code sample):
30 Web Application Framework Component Author’s Guide • December 2004

Ship It!
When you are finished testing and refining your component, you can distribute the
component library JAR file to your developer community. It is up to application
developers to add the component JAR file to each application in which they want to
utilize the components.

Web Application Framework
Components in More Detail
Web Application Framework components are designed to enable application
developers to more rapidly define Web Application Framework run-time types
(Views, Commands, and Models). However, the manner in which Web Application
Framework components are integrated into the application developer’s design-time
experience varies in accordance with the range of Java's object oriented
opportunities (for example, class sub-typing vs. object instantiation).

As an experienced Java programmer, a Web Application Framework component
author should easily anticipate the manner in which Web Application Framework
application developers will integrate a new component into their development
processes. The component author will know that the application developer expects
to subclass one type of component, and instantiate another type of component.
Component authors understand that in some circumstances they can distribute a
component as a fully enabled, fully configured black box, while in other cases, they
require the application developer to configure each usage of the component.

...
else if (name.equals(CHILD_MY_TEXT_FIELD1)) {
 mycomponents.MyTextField child =
 new mycomponents.MyTextField(this, CHILD_MY_TEXT_FIELD1);
 child.setFoo(true);
 return child;
}
...
Chapter 2 Developing Components 31

The Web Application Framework component model and the IDE toolset combine to
empower component authors and application developers to exploit the full range of
Java object orientation. This section details the specific terminology that the Web
Application Framework component model uses to differentiate each component's
role as an object oriented building block.

The discussion of components is often filled with highly overloaded terms. To
provide the grounds for a more precise discussion of Web Application Framework
components, some terminology has been developed to avoid reliance on confusingly
overloaded terms.

Distributable vs. Application-Specific (Non-
Distributable) Components
Technically speaking, every Web Application Framework object (Model, View or
Command) is a component. However, not all Web Application Framework
components are destined for distribution in a component library. Some components
are simply built as part of the standard process of building the application within
the IDE, in which every Model, View, and Command is, technically speaking, a
component. This distinction is acknowledged by referring to components which are
included in libraries as distributable components, and components which are simply
built within applications, as application-specific components, or non-distributable
components. This is purely a distinction of terminology, not a hard formal
distinction. Distributable components and application-specific components do not
differ by type. The distinction is merely a soft categorization, meant to help
distinguish the component author's role from the application developer's role.
Application developers develop application-specific components. Component
authors develop distributable components.

The first term, application-specific components, or non-distributable components,
refers to components which are only reusable within the application in which they
are defined. They are not packaged into a component library. They generally do not
have an explicit ComponentInfo associated with them. As an example, when
application developers build a ContainerView or Model in their applications, they
are implicitly building application-specific components. This is akin to a
javax.swing application developer building an application specific panel or frame.
Because the IDE toolset knows how to manipulate these application-specific
components directly, they are usable within the same application without any
additional work by the developer. For instance, after creating a new application
specific Model, the application developer can visually connect that new Model to
Views within the current application. Development of an application-specific
component is transparent and implicit, and requires no component authoring
knowledge per se.

Application-specific (non-distributable) components are:
32 Web Application Framework Component Author’s Guide • December 2004

■ Implicitly developed by the casual application developer.
■ Designed for use only within the current application.
■ Not accompanied by any explicit ComponentInfo.

By contrast, distributable components refers to components which are reusable
across many applications. Component authors package distributable components
into component libraries. Component authors typically develop an explicit
ComponentInfo class for each distributable component. Usually, the creation of a
distributable component requires more foresight in design due to its greater
ambition for reuse. To use the javax.swing analogy again, a distributable
component would be a new sub-type of javax.swing.JPanel which is distributed
for use in many new applications. In the Web Application Framework application, a
distributable component might be a new type of DisplayField, or a specialized,
but highly reusable type of ContainerView.

Distributable components are:

■ Explicitly developed by someone with an understanding of the component model
(a component author).

■ Designed for reuse across applications.

■ Accompanied by an explicit ComponentInfo class.

■ Packaged into a library for distribution.

Of course, in accordance with common bottom-up design practices, it is not
uncommon for an application-specific component to be explicitly "promoted" to
distributable status. This happens when a development team identifies it as a valid
candidate for reuse across applications. This is normal, expected, and encouraged.
The promotion of an application-specific component to distributed status merely
entails fulfilling the tasks that will be identified as standard for distributable
components.

Therefore, in deference to the simplicity/transparency of creating application-
specific components versus the relative complexity of authoring distributable
components, the bulk of this document is dedicated to describing the process of
authoring distributable components.

Extensible vs. Non-Extensible Components
In Web Application Framework component libraries, there is a formal distinction
between extensible and non-extensible components. Component authors are
responsible for designating a component as either extensible or non-extensible. This
distinction allows component authors to control the manner in which the
component-aware IDE toolset will expose a given component for usage by
application developers. The IDE toolset will expose both extensible and non-
extensible components in well-defined, but distinct fashions.
Chapter 2 Developing Components 33

It is worth noting that while the distinction between extensible and non-extensible is
important to a component author, practically speaking, component consumers are
totally unaware of the distinction. That it to say, the IDE toolset will never present
the application developer with either of these terms. Rather, the IDE toolset will
automatically manage these subtleties so that application developers can just
concentrate on building their applications. Application developers will generally
never need to worry about whether a component is extensible or not, or even
whether it has a ComponentInfo class.

Extensible Components

Extensible components are appropriate in those cases where the application
assembly calls for the declaration of a new Web Application Framework sub-type
(for example, a new type of Model, a new type of ContainerView, a new type of
Command, and so on).

The IDE toolset presents extensible components for direct sub-classing by
application developers. When an application developer selects an extensible
component from the list of available components, the net result is that the IDE
toolset creates a new Java class that extends the selected component's class. A
component author should designate a component as an extensible component if it is
envisioned that the proper usage of a given component is through application
specific sub-typing. Effectively, the Web Application Framework dictates where
extensible components fit in. Wherever the Web Application Framework framework
designates that an application entity must be a sub-type of a framework entity, that
is where extensible components come into play.

Extensible components are designated by an <extensible-component> element within
the component library manifest, as shown in the following example:

Extensible components:

■ Allow application developers to create new types which extend the extensible
component.

■ Might be abstract.

■ Can specify a component-specific Java file to serve as the template for the new
type.

Examples are: Extensible ViewBean, ContainerViews, Model, or Command
components.

<extensible-component>
 <component-class>com.iplanet.jato.view.BasicViewBean</component-class>
 <component-info-class>com.iplanet.jato.view.BasicBeanComponentInfo</component-info-
class>
</extensible-component>
34 Web Application Framework Component Author’s Guide • December 2004

Non-Extensible Components

Non-extensible components are appropriate in cases where the application assembly
calls for the simple declaration and configuration of instances.

The net result of an application developer selecting a non-extensible component is
that a new instance of the non-extensible component is declared in the application-
specific class. For example, whenever a developer adds a text field or a button to a
ContainerView, the IDE toolset turns that design decision into a declaration of an
instance of the text field or button in ContainerView class. In this manner,
application developers populate the application-specific classes with instances of
non-extensible components. This is the classic "assembly" model of component based
development.

Again, the Web Application Framework dictates where this is appropriate. For
instance, in developing an application-level Page (ViewBean) or Pagelet
(ContainerView) component, the application developer expects to be able to add
child view objects (such as DisplayFields) to that component. Consequently, the IDE
toolset presents the application developer with a list of non-extensible components
for direct addition to the page or pagelet.

Non-extensible components are designated by a <component> element within the
component library manifest, as shown in the following example:

Non-extensible components:

■ Allow application developers to easily declare and configure new instances of the
component.

■ Cannot be abstract.

■ Fine grained component example: DisplayField components.

■ Coarse grained example: pre-packaged, fully configured non-extensible
ContainerViews, Models and Commands.

Extensible and Non-Extensible Components in the IDE

If you still find it confusing to distinguish extensible and non-extensible
components, it might help at this point to refer to the IDE to see how the IDE toolset
transparently exposes extensible and non-extensible components.

<component>
 <component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
 <component-info-class>com.iplanet.jato.view.html2.ListBoxComponentInfo</component-
info-class>
</component>
Chapter 2 Developing Components 35

1. Open a Web Application Framework project and select a "module" folder.

2. Right-click, and choose Add->Model or Add->Page (ViewBean) or Add->Pagelet
(ContainerView).

These actions invoke wizards which contain an embedded extensible component
browser, as shown next:

3. Complete either of the wizards, and the IDE toolset creates a new class that
extends the extensible component's class.
36 Web Application Framework Component Author’s Guide • December 2004

4. Select an existing page or pagelet node.

Expand the top node so you can see its inner Visual Components node.

5. Select the Visual Components sub-node, right-click, and select the Add Visual
Component action.

This invokes the non-extensible component browser (shown next).

6. Complete the selection of a child view.

This does not result in the creation of a new class, but rather adds a child element to
the currently selected class.
Chapter 2 Developing Components 37

The figure above shows the Non-Extensible component browser employed in the
context of "Add Visual Component" action. This figure shows the browser fully
expanded to show two libraries and the current application's non-extensible
components.

In other areas of the IDE, the non-extensible component browser is used to select
Page/Pagelets, or Models, or Commands for assignment to certain property values.
For instance, wherever a Web Application Framework use relationship is expressed
38 Web Application Framework Component Author’s Guide • December 2004

in a property (for example, a View uses a Model), the property editor can leverage
the non-extensible component browser to enable the application developer to select
a valid target object.

For instance, properties of type Model Class Name are edited using a non-
extensible Component Browser which shows non-extensible Model components in
the mounted component libraries (if any), and also any Models which have been
added to the current application. Similar behavior applies to editing the "Command
Class Name" property. However, in that case, Command components are selected
instead of Models.

The figure above shows the Non-Extensible component browser employed in
context of a Model Class Name property editor. This figure shows the browser fully
expanded to show two libraries and the current application's non-extensible Model
components.
Chapter 2 Developing Components 39

ComponentInfo in More Detail
The ComponentInfo class is the heart and soul of the Web Application Framework
component model. Logically speaking, a Web Application Framework component
can be defined as a tuple comprised of a component class and a ComponentInfo
class. The ComponentInfo class provides the metadata that is introspected by the
IDE toolset to provide the component's design-time presence. When you author a
ComponentInfo class, you can focus exclusively on design-time considerations. The
ComponentInfo class plays no run-time role in the Web Application Framework.

Specific ComponentInfo classes must implement the
com.iplanet.jato.component.ComponentInfo interface, or one of its sub-
interfaces. ComponentInfo class names must end with the "ComponentInfo" suffix.
Whenever practical, the ComponentInfo class should share the same base name as
the component class (for example, Foo and FooComponentInfo).

Here is an early glimpse into the Web Application Framework Component Library
manifest. In the following snippet, you can see the simple declaration of a
component as a component class and ComponentInfo tuple. Note in this example
the extra designation of the <extensible-component> tag (for complete details of the
Web Application Framework component manifest, see The Component Manifest,
found in Chapter A, Component Library Structure.

However, the Web Application Framework allows ComponentInfo classes to differ
in base name from their associated component class. In fact, the Web Application
Framework allows more than one ComponentInfo class to be associated with the
same component class. As stated earlier, logically speaking, a component is a tuple
comprised of a component class and a ComponentInfo. The surprise is that the
same component class might participate in more than one of these tuples.

This might not be immediately intuitive to most component authors, but it is a very
effective and powerful feature of the Web Application Framework component
model. For instance, in the com.iplanet.jato.view.html2 package, there are
several ComponentInfo classes which are actually associated with the same
component class. For example, the ListBoxComponentInfo,
RadioButtonsComponentInfo and ComboBoxComponentInfo classes all specify
com.iplanet.jato.view.BasicChoiceDisplayField as their component
class.

<extensible-component>
 <component-class>com.iplanet.jato.view.BasicViewBean</component-class>
 <component-info-class>com.iplanet.jato.view.BasicViewBeanComponentInfo</component-
info-class>
</extensible-component>
40 Web Application Framework Component Author’s Guide • December 2004

Following is another actual snippet from the Web Application Framework
Component Library manifest where you can see the component tuples described
above:

These pairs form three distinct tuples, and therefore, three distinct logical
components. The value presented by this freedom is that new component variations
can be created by simply defining new ComponentInfo classes.

Note – To be anything more than just equivalent to other components that use the
same component class, the new components must either expose existing component
properties not exposed by other components (for example, only
ListBoxComponentInfo exposes the "Allow Multiple Choices" property), or
change other meaningful component metadata. In the examples provided above, the
components primarily differ in the JSP tags that they declare, thereby drastically
changing the way these components look and feel when added to an HTML page.
However, the component functionality itself is essentially the same among all of
them. The ability to declare different tags, and thus different rendering mechanisms
for a component, is the most compelling reason to define components that use the
same component underlying component class.

Unlike declarative metadata, a ComponentInfo is specified as a Java class.
Therefore, new ComponentInfo classes can derive from existing ComponentInfo
classes and benefit from standard inheritance of superclass functionality. The
com.iplanet.jato.component.SimpleComponentInfo class can serve as a
reliable starting point for any new ComponentInfo class, if there is not a more
specific and more appropriate subtype already available.

<component>
 <component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
 <component-info-class>com.iplanet.jato.view.html2.ListBoxComponentInfo</component-
info-class>
</component>
<component>
 <component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
 <component-info-
class>com.iplanet.jato.view.html2.RadioButtonsComponentInfo</component-info-class>
</component>
<component>
 <component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
 <component-info-class>com.iplanet.jato.view.html2.ComboBoxComponentInfo</component-
info-class>
</component>
Chapter 2 Developing Components 41

Specialized ComponentInfo Interfaces
The Web Application Framework provides several specialized sub-types of the
ComponentInfo which allow component authors to specify additional metadata
that is appropriate for certain components. The IDE toolset leverages the additional
metadata to provide special visual development support congruent with the
additional metadata.

ExtensibleComponentInfo
The com.iplanet.jato.component.ExtensibleComponentInfo interface
allows developers to provide additional metadata that is specifically appropriate for
extensible components. In the IDE toolset, extensible components serve as the base
classes when developers create new Web Application Framework types (Models,
Pages/Pagelets, and Commands). To this end, the extra metadata defined in the
ExtensibleComponentInfo interface allows the component author to influence
the construction of the new type. Specifically, component authors might specify a
Java class template to serve as the starting point for every new type derived from the
extensible component.

Other Types of Specialized ComponentInfo
There are several other specialized types of ComponentInfo:

■ com.iplanet.jato.component.ExtensibleComponentInfo
■ com.iplanet.jato.view.ViewComponentInfo
■ com.iplanet.jato.view.ContainerViewComponentInfo
■ com.iplanet.jato.command.CommandComponentInfo
■ com.iplanet.jato.model.ModelComponentInfo
■ com.iplanet.jato.model.ExecutingModelComponentInfo

Details of these interfaces are discussed later in sections describing the steps
required to create components of the various types to which these specialized
ComponentInfo interfaces pertain.
42 Web Application Framework Component Author’s Guide • December 2004

Standard Implementations of ComponentInfo
Since the Web Application Framework component model is based on well-defined
interfaces, component authors can implement these interfaces from scratch for any
new component. However, the Web Application Framework generally provides
ready-made implementations of all of the various specialized ComponentInfo
interfaces, and component authors are encouraged to extend one of the existing
implementations when writing their own components. This saves you labor and
speeds your authoring process.
Chapter 2 Developing Components 43

44 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 3

Developing View Components

This section assumes that you have already read “Develop Your First Component”
on page 19.

View Components
For background on Web Application Framework Views, see the Web Application
Framework Developer’s Guide.

View components are also referred to as visual components. The View term comes
from the Model-View-Controller design pattern. Most of the types in the
com.sun.iplanet library use the term view for this reason. The IDE however,
caters to corporate developer expectations by using the term visual component more
frequently than view, and page more frequently than ViewBean.

For the purposes of this document:

■ View component and visual component are synonymous.
■ Child view component and child visual component are synonymous.
■ Page component and ViewBean component are synonymous.
■ Pagelet component and ContainerView component are synonymous.

Broadly speaking, there are two types of view components:

■ Extensible view components.
■ Non-extensible view components.

Extensible view components are custom implementations of Web Application
Framework ContainerViews which are intended for further specialization by
application developers. For instance, in the Web Application Framework Component
Library, the Basic Container View, Basic Tiled View, and Basic ViewBean are all
examples of extensible view components.
45

Do not read too much into the statement "specialization by application developers"
above. Frequently, the only specialization an application developer will make is the
addition of child view components (which is done via the IDE), and the logic
associated with them.

The most recognizable and easily comprehended non-extensible view components
are custom implementations of the DisplayField interface. The Web Application
Framework Component Library contains over a dozen DisplayField components.
These fall easily into the classic widget or visual control category, and component
developers and application developer alike intuitively relate to these components.
As you will see, the Web Application Framework goes well beyond this minimal
component story and offers more potential in the component domain than many
component authors and application developers might have seen before.

For instance, a less recognizable non-extensible view component would be ANY
concrete ContainerView implementation created by the IDE toolset. Every
ContainerView an application developer creates is a non-extensible component. This
is a subtlety of the Web Application Framework approach where nearly everything
is a component. Where these various types of components differ is in the way in
which they are packaged for distribution and reuse.

ViewComponentInfo
The ViewComponentInfo interface allows component authors to specify additional
metadata that is applicable to all view components. This interface is applicable to
both extensible and non-extensible view components, and contains metadata, such
as, which JSP tags should be associated with the view component.

As indicated above, it is possible, and expected, that multiple ComponentInfo
classes can be paired with a single component class to produce a variety of
components. For example, the ListBoxComponentInfo,
RadioButtonsComponentInfo, and ComboBoxComponentInfo all specify
BasicChoiceDisplayField classes as their component class. These form three
distinct tuples, and therefore, three distinct logical components. One of the key ways
in which these three components differ from each other is that they each implement
the ViewComponentInfo's getJspTagDescriptors() method to return a
different JspTagDescriptor. In summary, these components are nearly identical to
each other, except for the different JSP tags which the IDE toolset generates when an
instance of the component is added to the application. The opportunity this presents
to component authors is quite liberating. A component author could create a whole
new library of JSP tags that generate different markup, and pair them with existing
component classes simply by implementing additional ComponentInfo classes.
46 Web Application Framework Component Author’s Guide • December 2004

ContainerViewComponentInfo
The ContainerViewComponentInfo interface allows component authors to
additional metadata that is applicable to all ContainerView components. This
interface is only applicable to extensible view components.

Develop a Non-Extensible View
Component
This section describes how to create a new TextField component that supports a
rudimentary input validation feature. In the interest of simplicity, the validation
design and implementation are kept to a minimum. This exercise is intended to
focus on the mechanics of non-extensible view component design and as such, only
scratches the surface of validation support possibilities.

Note – The Web Application Framework Component Library 2.1.1 already contains
a fully productized ValidatingTextField component. This educational exercise results
in your creating a validating text field component that approximates the Web
Application Framework Component library's functionality. But the resulting
component from this exercise is not equivalent to the one in Web Application
Framework Component library, because this exercise does not attempt to implement
all of the features of that productized component.

This example covers several additional Web Application Framework component
model topics, leveraging ViewComponentInfo, developing a new JSP tag, and
developing a ConfigurableBean.

The validating text component should support the following design-time
functionality:

■ Expose a property called "Validator". This property will take a reference to a
Validator object. The DisplayField will delegate validation to the Validator object.

■ Expose a property called "Validation Failure Message". This property will take a
simple String.

The validating text component should support the following run-time functionality:

■ Upon input, the component will delegate its input value for validation by the
Validator object.

■ If the value is invalid and the application redisplays the page, the validating
component should display the invalid value followed by the application
developer supplied validation failure message.
Chapter 3 Developing View Components 47

To meet these requirements, you will design and implement the following classes:

■ Component class - mycomponents.ValidatingDisplayField

■ ComponentInfo class -
mycomponents.ValidatingTextFieldComponentInfo

■ JSP TagHandler class - mycomponents.ValidatingTextFieldTag

■ A Validator interface - mycomponents.Validator

■ An implementation of the Validator interface - mycomponents.TypeValidator

A new JSP tag library will also be defined - mycomponents.tld

Finally, you will edit the mycomponents complib.xml to add the new component,
taglibrary, and ConfigurableBean to the Web Application Framework component
library.

Create the Validator Interface
1. In any Java editor, create the class mycomponents.Validator

2. Define a very simple validation API.

Design principle hint: In designing the Validator as an interface the stage is being
set to leverage the power of the Web Application Framework component model's
ConfigurableBean story. Specifically, a ValidatingTextField property will
subsequently be defined to be of type "Validator". And as you will see, the IDE
toolset will allow the application developer to choose from a dynamically list of
ConfigurableBean types which implement that interface. Furthermore, third party
component authors can augment this component story by authoring and
distributing additional ConfigurableBean implementations of the same interface.

After these steps, mycomponents/Validator.java should look as follows:
48 Web Application Framework Component Author’s Guide • December 2004

Create at Least One Implementation of the
Validator Interface

1. In any Java editor create the class mycomponents.TypeValidator.

2. Add a String property called ValidationRule.

3. Implement the Validator interface.

After these steps, mycomponents/Validator.java should look as follows:

package mycomponents;

/**
 *
 * @author component-author
 */
public interface Validator {

 /**
 *
 *
 */
 public abstract boolean validate(Object value);
}

package mycomponents;
import com.iplanet.jato.model.*;
import com.iplanet.jato.util.*;

public class TypeValidator implements Validator
{

 public TypeValidator()
 {
 super();
 }

 public String getValidationRule()
 {
 return rule;
 }
Chapter 3 Developing View Components 49

Design hint: The rudimentary implementation of TypeValidator above exposes the
ValidationRule as a simple String property. In the absence of any further work, the
IDE toolset will expose this property for editing with the default String editor. This
will require application developers to explicitly set the value of the property to
"java.lang.String" or "java.lang.Integer" or "java.lang.Float". That is not a very user
friendly user interface. Since this ValidationRule falls into the ConfigurableBean
category, the component author can make use of the full JavaBean component model
to improve the user experience. Ideally, a component author would also design and
deploy a custom property editor for this property. In this case, a simple drop down
list property editor would be a big improvement over the default String editor. Then
the component author can create a TypeValidatorBeanInfo which would specify the
custom property editor of his choice. For more on this topic, see Design Actions.

Create the Web Application Framework
Component Class

1. In any Java editor create the class mycomponents.ValidatingDisplayField.

 public void setValidationRule(String value)
 {
 rule=value;
 }

 public boolean validate(Object value)
 {
 if (getValidationRule()==null)
 throw new ValidationException("No validation rule has been set");

 try
 {
 value=TypeConverter.asType(getValidationRule(),value);
 }
 catch (Exception e)
 {
 return false;
 }

 return true;
 }
 //
 // Instance variables
 //

 private String rule;
}

50 Web Application Framework Component Author’s Guide • December 2004

2. Make ValidatingDisplayField extend
com.iplanet.jato.view.BasicDisplayField

3. Implement the appropriate constructor for the component type.

All DisplayField components must implement a two-arg constructor that takes a
View parent and a String name. The IDE toolset assumes that all DisplayField
components will implement this constructor.

4. Add a get and set method for the property Validator

5. Add a get and set method for the property ValidationFailureMessage

6. Implement the remaining methods that are required to fulfill our requirements.

■ A flag to indicate the valid/invalid state.

■ A buffer to hold the invalid value(s) for redisplay.

■ Overridden implementations of setValue which will invoke the Validator.

■ Overridden implementations of getValue which will conditionally return the
buffered invalid value.

After these steps, mycomponents/ValidatingDisplayField.java should look
as follows:

package mycomponents;
import com.iplanet.jato.view.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.util.*;

public class ValidatingDisplayField extends BasicDisplayField {

 public ValidatingDisplayField(View parent, String name) {
 super(parent, name);
 }

 public Validator getValidator()
 {
 return validator;
 }

 public void setValidator(Validator value)
 {
 validator=value;
 }

 public String getValidationFailureMessage()
 {
Chapter 3 Developing View Components 51

 return validationFailureMessage;
 }

 public void setValidationFailureMessage(String value)
 {
 validationFailureMessage=value;
 }

 public boolean isValid()
 {
 return isValid;
 }

 public void setValid(boolean value)
 {
 isValid = value;
 }

 //
 // Value methods
 //

 public Object getValue()
 {
 if (!isValid())
 return getInvalidValue();
 else
 return super.getValue();
 }

 public Object getInvalidValue()
 {
 if (invalidValue !=null)
 return invalidValue;
 else
 return null;
 }

 public void setValue(Object value)
 {
 if (value!=null && getValidator()!=null)
 {
 if (getValidator().validate(value))
 {
 try
 {
 super.setValue(value);
 setValid(true);
 }
 catch (ValidationException e)
 {
52 Web Application Framework Component Author’s Guide • December 2004

Create a Custom JSP TagHandler Class
Requirements call for the ValidatingComponent class to display its validation
error message. One way to achieve this, and the approach pursued here, is to pair
the new component with a custom JSP TagHandler class. This will allow you to
fully control the rendering of the component.

1. In any Java editor, create the class mycomponents.ValidatingTextFieldTag.

2. Extend this class from com.iplanet.jato.taglib.html.TextFieldTag.

3. Override the doEndTag method to conditionally append the validation error
message whenever the component is not valid.

After these steps, mycomponents/ValidatingTextFieldTag.java should look
as follows:

 setValid(false);
 invalidValue=value;
 setValidationFailureMessage("Exception setting value \""+
 "on model: "+ e.getMessage());
 }
 }
 else
 {
 setValid(false);
 invalidValue=value;
 }
 }
 else
 super.setValue(value);
 }

 //
 // Instance variables
 //

 private Validator validator;
 private String validationFailureMessage;
 private boolean isValid = true;

 private Object invalidValue;
}

package mycomponents;
import com.iplanet.jato.util.*;
import javax.servlet.jsp.*;
Chapter 3 Developing View Components 53

Note – The Web Application Framework component model allows component
authors to specify multiple JSP TagHandlers for a given component. For more on
that subject see the JspTagDescriptor API.

import com.iplanet.jato.taglib.html.*;
import com.iplanet.jato.util.*;
import com.iplanet.jato.view.*;
public class ValidatingTextFieldTag extends TextFieldTag
{

 public ValidatingTextFieldTag()
 {
 super();
 }

 public int doEndTag()
 throws JspException
 {
 int result=super.doEndTag();

 ContainerView parentContainer=getParentContainerView();
 View child=parentContainer.getChild(getName());
 checkChildType(child,ValidatingDisplayField.class);

 ValidatingDisplayField field=(ValidatingDisplayField)child;
 // If the field is valid, do nothing.
 if (field.isValid())
 return result;

 // Append the validation error message in Red
 NonSyncStringBuffer buffer=new NonSyncStringBuffer(
 " ");
 buffer.append(field.getValidationFailureMessage());
 buffer.append("");
 writeOutput(buffer);
 return result;
 }
}

54 Web Application Framework Component Author’s Guide • December 2004

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example, you will extend an existing
ComponentInfo class and in true OO style, simply augment it. You could, of
course, implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

This example takes you beyond the functionality revealed in the first component
example. Next, you will take advantage of the key metadata opportunity provided
by the ViewComponentInfo interface, the ability to describe JSP tag(s) for a given
component.

1. Create the class mycomponents.ValidatingTextFieldComponentInfo.

2. Make the ValidatingTextFieldComponentInfo class extend
com.iplanet.jato.view.html2.TextFieldComponentInfo.

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic
design-time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you wish to expose in the IDE.

■ Add a ConfigPropertyDescriptor for the Validator property.

■ Add a ConfigPropertyDescriptor for the ValidationFailureMessage
property.

6. Implement the getJspTagDescriptors() method to specify the JSP tag which
you want the IDE toolset to automatically add to associated JSP(s) whenever an
instance of this component is added to a ViewBeans/ContainerViews.

After these steps, mycomponents/ValidatingTextFieldComponentInfo.java
should look like the code that follows:

Note – In this sample code, String values have been embedded directly for ease of
demonstration. Utilize resource bundles if you anticipate the need to localize your
display strings.

package mycomponents;
import java.beans.*;
import java.util.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.taglib.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.html2.*;
Chapter 3 Developing View Components 55

public class ValidatingTextFieldComponentInfo extends TextFieldComponentInfo {

 public ValidatingTextFieldComponentInfo() {
 super();
 }

 public ComponentDescriptor getComponentDescriptor()
 {
 // identify the component class
 ComponentDescriptor result=new ComponentDescriptor(
 "mycomponents.ValidatingDisplayField");

 // The name will be used to determine a name for the component instance
 result.setName("ValidatingTextField");

 // The display name will be used to show the component in a chooser
 result.setDisplayName("ValidatingTextField Component");

 // The description will be the tool tip text for the component
 result.setShortDescription("A simple validating text field component");

 return result;
 }

 public ConfigPropertyDescriptor[] getConfigPropertyDescriptors()
 {
 if (configPropertyDescriptors!=null)
 return configPropertyDescriptors;

 // get any properties defined in the super class
 configPropertyDescriptors=super.getConfigPropertyDescriptors();
 List descriptors=new LinkedList(Arrays.asList(configPropertyDescriptors));

 ConfigPropertyDescriptor descriptor = null;

 descriptor=new ConfigPropertyDescriptor(
 "validator",Validator.class);
 descriptor.setDisplayName("Validator");
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptors.add(descriptor);

 descriptor=new ConfigPropertyDescriptor(
 "validationFailureMessage",String.class);
 descriptor.setDisplayName("Validation Failure Message");
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptors.add(descriptor);
56 Web Application Framework Component Author’s Guide • December 2004

Create a New Tag Library TLD File
Since a new JSP TagHandler has been defined, a JSP library TLD file must be created
for the component library.

There is a soft restriction on your custom JSP library. During IDE operations, a
logical object model is created for the working JSP files. This JSP object model is
used by the page and pagelet view component mechanisms to manage the
placement of tags in the JSP while the views are mutated. While parsing the JSP file
to create the JSP object model, tags for Web Application Framework component tag
libraries have special treatment. If your custom JSP tag library has additional tags
which are not related to a Web Application Framework view component, these tags
might be categorized incorrectly in the JSP object model. You should isolate your
Web Application Framework related tags in their own tag library. Internally in the
JSP object model, tags from tag libraries specified in the component library manifest
will be categorized as "JATO" tags, while all other tags in the JSP file are categorized
as "OTHER" tags. The reason why this is a soft restriction is that there is only an edge
case where a non Web Application Framework tag would interfere with view
component tag management. If a non Web Application Framework tag remains in
your component tag library, and if that tag has an attribute "name" who's value
collides with a "name" attribute of a true Web Application Framework tag, the JSP
object model might not operate properly. In other words, if you have non Web
Application Framework tags which have a "name" attribute, you should try and
isolate these tags in a separate tag library to avoid edge case problems.

 // Create/return the array
 configPropertyDescriptors = (ConfigPropertyDescriptor[])
 descriptors.toArray(
 new ConfigPropertyDescriptor[descriptors.size()]);
 return configPropertyDescriptors;
 }

 public JspTagDescriptor[] getJspTagDescriptors()
 {
 JspTagAttributeDescriptor[] attrs=new JspTagAttributeDescriptor[1];
 attrs[0]=new JspTagAttributeDescriptor(
 TagBase.ATTR_NAME,JspTagDescriptor.ASSUMED_PROPERTY_NAME,null);

 JspTagDescriptor htmlTagDescriptor=new JspTagDescriptor(
 JspTagDescriptor.ENCODING_HTML,"validatingTextField",
 "/WEB-INF/mycomplib.tld",attrs);

 return new JspTagDescriptor[] {htmlTagDescriptor};
 }

 private ConfigPropertyDescriptor[] configPropertyDescriptors;
}

Chapter 3 Developing View Components 57

The library TLD file name is arbitrary. Its location within the library is also arbitrary.
In a later step, the new TLD file will be declared in your component manifest. A full
discussion of JSP tld files is beyond the scope of this document. Suffice to say, for
this example, only a new library (mycomlib) containing a single tag element
(validatingTextField) needs to be declared. All of the tag attributes can be copied
verbatim from the declaration of the TextField tag in the Web Application
Framework Component Library's jato.tld file. You can find the jato.tld file
located in the WEB-INF\tld\com_iplanet_jato directory of any Web
Application Framework application created by the IDE.

1. Create the file mycomponents/mycomplib.tld.

2. Add the basic tld information to declare a new tag library.

3. Add a tag element for the new tag validatingTextField and its corresponding tag-
class mycomponents.ValidatingTextFieldTag.

4. Complete the tag element declaration by adding all desired tag attributes. Copy
those already defined in jato.tld for the Web Application Framework
Component Library's TextField tag.

After these steps, the mycomponents/mycomplib.tld file should look as follows
58 Web Application Framework Component Author’s Guide • December 2004

:

 <?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<!-- template test -->

<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>mycomponents.mycomplib</short-name>
 <display-name>mycomponents.mycomplib</display-name>
 <tag>
 <name>validatingTextField</name>
 <tag-class>mycomponents.ValidatingTextFieldTag</tag-class>
 <body-content>empty</body-content>
 <display-name>Validating Text Field</display-name>
 <description></description>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 <type>String</type>
 </attribute>
...
 <!-- more attribute definitions follow -->
...

 </tag>
</taglib>
Chapter 3 Developing View Components 59

Augment the Component Library Manifest
The component manifest has already been created in the earlier example. Now you
will add additional information.

Note that you will add additional types of information not seen in the prior
example.

The Web Application Framework library manifest must be named complib.xml.
Within the JAR file, the Web Application Framework library manifest must be placed
in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml.

2. Add a component element to declare the ValidatingTextField component.

3. Add a ConfigurableBean element to declare the mycomponents.TypeValidator.

4. Add a taglib element to declare the mycomplib.tld.

After these steps, the COMP-INF/complib.xml file should look like the following:

Note – Make sure that the tld is a well formed XML document. Even something as
minor as inappropriate leading spaces before the first XML tag can create a
malformed document. If your tld file is not well formed XML, certain servlet
containers will fail to load your entire Web application. Such errors might be
difficult to track down.
60 Web Application Framework Component Author’s Guide • December 2004

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
<tool-info>
<tool-version>2.1.0</tool-version>
</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>
<!-- Your icon here
<icon>
<small-icon>/com/iplanet/jato/resources/complib.gif</small-icon>
</icon>
-->
<interface-version>1.0.0</interface-version>
<implementation-version>20030221</implementation-version>

<component>
<component-class>mycomponents.MyTextField</component-class>
<component-info-class>mycomponents.MyTextFieldComponentInfo</component-info-class>
</component>
<component>
<component-class>mycomponents.ValidatingDisplayField</component-class>
<component-info-class>mycomponents.ValidatingTextFieldComponentInfo</component-info-class>
</component>

<configurable-bean>
<bean-class>mycomponents.TypeValidator</bean-class>
</configurable-bean>

<taglib>
<taglib-uri>/WEB-INF/mycomplib.tld</taglib-uri>
<taglib-resource>/mycomponents/mycomplib.tld</taglib-resource>
<taglib-default-prefix>mycomp</taglib-default-prefix>
</taglib>

</component-library>
Chapter 3 Developing View Components 61

Recreate the Component Library JAR File
Jar up the component classes as you did in the first example so that they can be
ready for distribution as a library.

1. The name of the JAR file is arbitrary.

In this case, name it "mycomponents.jar".

2. You can omit the Java source files from the JAR.

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles.

In this case, there are none.

In this case, you are now including several new classes and a new JSP tag library.

4. The mycomponents.jar internal structure should look as follows:

Test the New Component
Your library is now ready for testing and distribution. You should test it in a sample
project. This stage requires the use of the IDE with the Web Application Framework
module installed and enabled. If you have never built a Web Application Framework
application in the IDE, before continuing, you should first complete the Web
Application Framework Tutorial that is included with the Web Application Framework
document set.

mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
62 Web Application Framework Component Author’s Guide • December 2004

1. Deploy the new version of the library into your previously created test
application.

Important IDE note: The IDE will not let you delete or copy over a JAR file that is
currently mounted. This presents a bit of a challenge when iteratively developing a
component library and testing that library in a test application.

For repeatedly testing new versions of the same library JAR file within a test
application, perform the following steps:

a. Unmount the test application.

b. After the unmount is complete, go to your operating system file system and
copy the new library JAR file over the old library JAR file in the unmounted
test application's WEB-INF/lib directory.

c. Remount the test application.

The test application should now pick up the new library version.

Normally, those steps work fine. If you encounter a spurious failure that either
prevents you from copying the new JAR over the old JAR, or failure to remount
the test application properly, the fallback strategy is to restart the IDE.

2. Select the previously created Page1 object.

3. Add an instance of the ValidatingTextFieldComponent to Page1.

You can either select the component from the Component Palette, or select the
Page1's Visual Components sub-node, right-click, and select the Add Visual
Component... action from the pop-up menu.
Chapter 3 Developing View Components 63

64 Web Application Framework Component Author’s Guide • December 2004

4. Select the "ValidatingTextField Component" from the list.

Observe how a child view named "validatingTextField1" is added to the page.

5. Select the validatingTextField1 visual component node.

Observe how the IDE's property sheet now displays the custom Validator and
Validation Failure Message properties, in addition to the inherited TextField
component properties.
Chapter 3 Developing View Components 65

6. Edit the Validation Failure Message property.

Set it to "This is a test failure message" (or anything you like).

7. Edit the Validator property.

This should bring up the following dedicated ConfigurableBean editor. For test
purposes, set the validationRule property to "java.lang.Integer".

Make sure you specify the fully qualified class name for the validationRule property.
Just "Integer" will not evaluate properly at run-time. It must be fully qualified, as in
"java.lang.Integer".
66 Web Application Framework Component Author’s Guide • December 2004

8. Observe the code generation inside the page's java file.

You should see a block of code inside the createChildReserved method that looks
like the following (the indenting in your code might differ):

...
else if (name.equals(CHILD_VALIDATING_TEXT_FIELD1)) {
mycomponents.ValidatingDisplayField child =
new mycomponents.ValidatingDisplayField(this, CHILD_VALIDATING_TEXT_FIELD1);
mycomponents.TypeValidator validatorVar =
new mycomponents.TypeValidator();

{ // begin local variable scope
validatorVar.setValidationRule("java.lang.Integer");
} // end local variable scope
child.setValidator(validatorVar);
child.setValidationFailureMessage("This is a test failure message");
return child;
}
...
Chapter 3 Developing View Components 67

9. Open the associated JSP file to observe the inclusion of the validatingTextField
tag.

Note also the automatic inclusion of a mycomplib.tld directive. (The overall look
of your test application's JSP may differ from the one shown next, depending upon
whether you have added other child views you to your test page in addition to
validatingTextField1)

10. Before you can effectively test run Page1, you need to add a button and request
handling code.

For your test purposes, you should take the following steps to add a button and
some request handling code, which will redisplay the page following a submit. This
allows you to see if the ValidatingTextComponent is behaving as designed. If you
have not done so already, add a button and some request handling code, follow the
steps shown next:

Note – The following steps represent conventional Web Application Framework
application development practice, the details of which are beyond the scope of this
document. These steps, or similar ones, are required to create an effective test page.

a. Add an instance of the Web Application Framework Library's Basic Button to
Page1.

You may either select the component from the Component Palette or select the
Page1's Visual Components sub-node, right-click, and select the Add Visual
Component... action from the pop-up menu.

This adds a "button1" child to your test ViewBean.

<%@page contentType="text/html; charset=ISO-8859-1" info="Page1" language="java"%>
<%@taglib uri="/WEB-INF/jato.tld" prefix="jato"%>
<%@taglib uri="/WEB-INF/mycomplib.tld" prefix="mycomp"%>

<jato:useViewBean className="testmycomplib.main.Page1">

<html>
<head>
<title>Page1</title>
</head>
<body>
<jato:form name="Page1" method="post">
<jato:textField name="myTextField1"/>
<mycomp:validatingTextField name="validatingTextField1"/>
</jato:form>
</body>
</html>

</jato:useViewBean>
68 Web Application Framework Component Author’s Guide • December 2004

b. Select the button1 visual component node.

c. Right-click, and select the pop up menu's Events->handleRequest action.

This adds an event handler method named handleButton1Request to your
ViewBean's Java file.

For this test, you do not need to modify the body of handleButton1Request
since it is auto-generated to redisplay the current page, which is precisely the test
you are looking for.

Make sure your request handler looks as follows:

11. Test run Page1.

See the Web Application Framework Tutorial if you do not already know how to test
run a Web Application Framework ViewBean.

The Page1 output should appear in a browser looking as follows (it now contains
two text fields, one instance of MyTextField, and one instance of
ValidatingTextField):

12. Enter an invalid value (for example, any value other than an integer) in the
ValidatingTextField's text input, and submit the page.

The page should immediately be redisplayed with the text of the Validation Error
Message property immediately following the ValidatingTextField.

public void handleButton1Request(RequestInvocationEvent event) throws Exception {
getParentViewBean().forwardTo(getRequestContext());
}

Chapter 3 Developing View Components 69

13. Enter a valid value (for example, 55, or any other valid integer) and submit the
page.

The page should be redisplayed without the Validation Error Message text.

If you continue to get the Validation Error Message, go back and verify that you set
the value of validatingTextField1's Validator->ValidationRule property to
"java.lang.Integer", and not just "Integer".

Ship It!
Now that your component is functioning properly, you can ship it. However, you
might also go back and enhance it. For instance, you might decide that requiring the
end user to type "java.lang.Integer" into the Validator's ValidationRule property is
unacceptably error prone. If so, you should spend a little time and develop a custom
property editor. The details of that are beyond the scope of this document, but can
be found in any basic JavaBean reference.

Develop an Extensible View Component
This section describes how to create a new ViewBean component that supports a
rudimentary page level security feature. In the interest of simplicity, the security
model and implementation will be kept to a minimum. This exercise is intended to
focus on the mechanics of extensible View component design and, as such, only
scratches the surface of security model possibilities. Upon completion of this section,
70 Web Application Framework Component Author’s Guide • December 2004

you should have a good understanding of the role of extensible components within
the Web Application Framework. Bear in mind that this example will implement
several optional features, and goes beyond the bare minimum required to author an
extensible View component.

This example introduces several additional Web Application Framework component
model topics, as follows:

■ ExtensibleComponentInfo
■ Component supplied Java templates
■ IndexedConfigPropertyDescriptor
■ EventHandlerDescriptor

As a basic design principle, the Web Application Framework prefers to be enabling
rather than prescriptive when it comes to application and page level security, since
developer preferences in this domain vary widely. This example demonstrates that
the Web Application Framework can easily enable an arbitrary page level security
model. It is not meant to suggest that this example is the ultimate or recommended
implementation.

Your secure ViewBean component should support the following design-time
functionality:

■ Each secure ViewBean will expose an indexed property called “RequiredTokens”.
Application developers will configure this property to specify an arbitrary list of
“required” String tokens (for example, the tokens that are required to gain access
to the current page).

■ Each secure ViewBean will expose an indexed property called "GrantTokens".
Application developers will configure this property to specify an arbitrary list of
"grant" String tokens (for example, the tokens that will be granted to the user after
they successfully access the current page).

■ Each secure ViewBean will expose the "handleMissingTokens" event handler for
custom implementation. This means that IDE developers can select the
"handleMissingTokens" from the "Events" pop up menu, and the IDE toolset will
automatically insert the event handler into the current secure ViewBean's Java
file. This is an advanced and optional feature of the Web Application Framework
component model.

Your secure ViewBean component should support the following run-time
functionality:

■ Each secure ViewBean can "grant" tokens to users who successfully access the
current secure ViewBean. Thus, application users will "accumulate" tokens as they
proceed through the application.

■ Each secure ViewBean will limit run-time access to itself through a simple
comparison of required tokens to user accumulated tokens. If the application user
has not accumulated all of the required tokens, a MissingTokensEvent will be
fired. A specific event handler method called handleMissingTokens will be
invoked. The secure ViewBean base class implementation of
Chapter 3 Developing View Components 71

handleMissingTokens will throw a SecurityCheckException. The Web Application
Framework will automatically process an uncaught SecurityCheckException as it
does any uncaught exception (for example, it will return the standard Web
Application Framework error page to the user). Individual secure ViewBeans can
override the implementation of the handleMissingTokens to perform arbitrary
context specific behavior.

This run-time model assumes that both the grant tokens and the required tokens will
be specified on a per secure ViewBean basis by the application developers.

The implementation of the secure ViewBean component is responsible for tracking
the accumulated tokens at run-time, and enforcing the security model described
above. The implementation shall store the accumulated tokens per user in a special
HttpSession attribute.

The choice to implement the base class version of handleMissingTokens to throw a
SecurityCheckException is purely arbitrary. Alternatively, you could implement that
method to transfer control to a more user friendly error page, or anything else that
the component author prefers. Strictly in the interest of brevity and simplicity, the
choice is to throw a SecurityCheckException.

To meet these requirements, you will design and implement the following classes:

■ Component class - mycomponents.SecureViewBean
■ ComponentInfo class - mycomponents.SecureViewBeanComponentInfo
■ A simple event class - mycomponents.MissingTokensEvent

Additionally, you will implement a custom Java template which the IDE toolset will
use as the basis for application specific sub-types of your SecureViewBean.

Finally, you will edit the mycomponents complib.xml to add the new component
to the Web Application Framework component library.

Create the MissingTokensEvent Class
1. In any Java editor, create the class mycomponents.MissingTokensEvent.

2. Define a very simple event API that will allow the event handler to discover
which tokens were missing.

After these steps, mycomponents/MissingTokensEvent.java should look as
follows:
72 Web Application Framework Component Author’s Guide • December 2004

Create the Web Application Framework
Component Class

1. In any Java editor, create the class mycomponents.SecureViewBean.

2. Make SecureViewBean extend com.iplanet.jato.view.BasicViewBean.

3. Implement the appropriate constructor for the component type.

All ViewBean components must implement a no-arg constructor.

4. Add a get and set method for the property named "RequiredTokens".

5. Add a get and set method for the property named "GrantTokens".

6. Implement the remaining methods that are required to fulfill your component
specific requirements.

■ Overridden implementation of the securityCheck method which will enforce the
component's page security model.

package mycomponents;
 import java.util.*;

 public class MissingTokensEvent extends Object {

 public MissingTokensEvent(List tokens) {
 missingTokens = new ArrayList(tokens);
 }

 public String toString() {
 Iterator iter = missingTokens.iterator();
 StringBuffer buff = new StringBuffer();
 buff.append("MissingToken count[" + missingTokens.size() + "] ");
 while(iter.hasNext()) {
 buff.append("Token[" + (String)iter.next() + "] ");
 }
 return buff.toString();
 }

 public ArrayList getMissingTokens() {
 return missingTokens;
 }

 private ArrayList missingTokens = null;

}

Chapter 3 Developing View Components 73

■ Default implementation of the component's handleMissingTokens method.

After these steps, mycomponents/SecureViewBean.java should look as follows:

package mycomponents;
import java.util.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.*;

public class SecureViewBean extends BasicViewBean {

 public SecureViewBean()
 {
 super();
 }

 public String[] getRequiredTokens()
 {
 return requiredTokens;
 }

 public void setRequiredTokens(String[] value)
 {
 requiredTokens = value;
 }

 public String[] getGrantTokens()
 {
 return grantTokens;
 }

 public void setGrantTokens(String[] value)
 {
 grantTokens = value;
 }

 public void securityCheck() throws SecurityCheckException
 {
 super.securityCheck();

 // Get the accumulated tokens from session.
 HashSet accumulated = (HashSet)
 getSession().getAttribute("AccumulatedTokens");
 // Defensively prepare the accumulated collection
 if(accumulated == null)
 accumulated = new HashSet();

 // Check to see if required tokens are present
 if(requiredTokens.length > 0) {
 // Check for presence of required tokens
 List missingTokens = new ArrayList();
74 Web Application Framework Component Author’s Guide • December 2004

Create the Extensible Component's Java Template
Extensible components serve as base classes for application defined entities.
Therefore, the Web Application Framework component model provides extensible
component authors the opportunity to provide a custom Java template. The IDE
toolset will, subsequently, use the component supplied template to create the
application specific sub-type. Component authors can utilize the custom template to
enhance the application developer's experience. Component authors might prepare
the component specific Java template with a set of template tokens defined in
com.iplanet.jato.component.ExtensibleComponentInfo. For token details,
see ExtensibleComponent API.

 for(int i=0; i<requiredTokens.length; i++)
 {
 if(! accumulated.contains(requiredTokens[i]))
 missingTokens.add(requiredTokens[i]);
 }

 if(missingTokens.size() > 0)
 handleMissingTokens(new MissingTokensEvent(missingTokens));
 }

 // Now add the current grant tokens to the accumulated.
 // Note, as expected, we will not reach this point if the
 // handleMissingTokens throws an Exception.
 for(int i=0; i<grantTokens.length; i++)
 {
 accumulated.add(grantTokens[i]);
 }
 getSession().setAttribute("AccumulatedTokens", accumulated);
 }

 public void handleMissingTokens(MissingTokensEvent e)
 throws SecurityCheckException
 {
 // This default implementation will just trigger conventional
 // Web Application Framework SecurityCheckException handling
 throw new SecurityCheckException(e.toString());
 }

 private String[] requiredTokens = new String[0];
 private String[] grantTokens = new String[0];

}

Chapter 3 Developing View Components 75

Component authors might also utilize any arbitrary Java constructs within the Java
template (for example, import statements, methods, variables, interface declarations,
and so on). Minimally, the custom template will ensure that the new Java class
extends from the extensible component class.

In this example, the template will be kept minimal.

1. Create a new directory mycomponents.resources.

2. In any text editor, create the template
mycomponents.resources.SecureViewBean_java.template.

The template contents should look as follows:

Note – The tokens follow a __TOKEN__ pattern.

package __PACKAGE__;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.iplanet.jato.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.event.*;
import com.iplanet.jato.model.*;
import mycomponents.*;

/**
 *
 *
 */
public class __CLASS_NAME__ extends SecureViewBean
{
 /**
 * Default constructor
 *
 */
 public __CLASS_NAME__()
 {
 super();
 }

}

76 Web Application Framework Component Author’s Guide • December 2004

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example, you will extend an existing
ComponentInfo and in true OO style, simply augment it. You could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

In this example, you are going beyond the functionality revealed in the earlier
component examples. Next, you are going to take advantage of two new metadata
opportunities provided by the ExtensibleComponentInfo interface, the opportunity
to specify a Java template, and the opportunity to describe event handler methods
for the extensible component.

1. Create the class mycomponents.SecureViewBeanComponentInfo.

2. Make SecureViewBeanComponentInfo extend
com.iplanet.jato.view.BasicViewBeanComponentInfo.

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic
design-time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you want to expose in the IDE.

a. Add an IndexedConfigPropertyDescriptor for the RequiredTokens property.

b. Add an IndexedConfigPropertyDescriptor for the GrantTokens property.

6. Implement the getPrimaryTemplateAsStream() method to return a Java
template file which you want the IDE toolset to use as the starting point for new
classes derived from this extensible component.

7. Implement the getEventHandlerDescriptors() method to provide a design-
time description of any event handler methods which you want the IDE toolset to
expose for automated insertion into new classes derived from this extensible
component.

After these steps, mycomponents/SecureViewBeanComponentInfo.java should
look as follows:

In this sample code, String values have been embedded directly for ease of
demonstration. Utilize resource bundles if you anticipate the need to localize your
display strings.

package mycomponents;
import java.util.*;
import java.io.*;
Chapter 3 Developing View Components 77

import com.iplanet.jato.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.view.*;

public class SecureViewBeanComponentInfo extends BasicViewBeanComponentInfo
{

 public SecureViewBeanComponentInfo()
 {
 super();
 }

 public ComponentDescriptor getComponentDescriptor()
 {
 final String CLASS_NAME="mycomponents.SecureViewBean";

 ComponentDescriptor descriptor=new ComponentDescriptor(
 CLASS_NAME);
 descriptor.setName("SecurePage");
 descriptor.setDisplayName("Secure ViewBean");
 descriptor.setShortDescription(
 "A Page with a token based security model");
 return descriptor;
 }

 public ConfigPropertyDescriptor[] getConfigPropertyDescriptors()
 {
 if (configPropertyDescriptors!=null)
 return configPropertyDescriptors;

 configPropertyDescriptors=super.getConfigPropertyDescriptors();
 List descriptors=new LinkedList(Arrays.asList(configPropertyDescriptors));

 ConfigPropertyDescriptor descriptor = null;

 descriptor=new IndexedConfigPropertyDescriptor(
 "grantTokens",String.class); // NOI18N
 descriptor.setDisplayName("Grant Tokens"); // NOI18N
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptors.add(descriptor);

 descriptor=new IndexedConfigPropertyDescriptor(
 "requiredTokens",String.class); // NOI18N
 descriptor.setDisplayName("Required Tokens"); // NOI18N
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptors.add(descriptor);

 // Create/return the array
78 Web Application Framework Component Author’s Guide • December 2004

 configPropertyDescriptors = (ConfigPropertyDescriptor[])
 descriptors.toArray(
 new ConfigPropertyDescriptor[descriptors.size()]);
 return configPropertyDescriptors;
 }

 public String getPrimaryTemplateEncoding()
 {
/* Production version would be resource bundle driven, like this:
return getResourceString(getClass(),
"PROP_SecureViewBean_SOURCE_TEMPLATE_ENCODING", "ascii");
*/

 return "ascii";
 }

 public InputStream getPrimaryTemplateAsStream()
 {
/* Production version would be resource bundle driven, like this:

return SecureViewBeanComponentInfo.class.getClassLoader().
getResourceAsStream(
getResourceString(getClass(),
"RES_SecureViewBeanComponentInfo_SOURCE_TEMPLATE",""));
*/

 return SecureViewBeanComponentInfo.class.getResourceAsStream(
 "/mycomponents/resources/SecureViewBean_java.template");
 }

 public EventHandlerDescriptor[] getEventHandlerDescriptors()
 {
 if (eventHandlerDescriptors!=null)
 return eventHandlerDescriptors;

 eventHandlerDescriptors=super.getEventHandlerDescriptors();
 List descriptors=new LinkedList(
 Arrays.asList(eventHandlerDescriptors));

 EventHandlerDescriptor descriptor =new EventHandlerDescriptor(
 "handleMissingTokens",
 "handleMissingTokens",
 "public void handleMissingTokens(MissingTokensEvent e)" +
 "throws SecurityCheckException",
 "throw new SecurityCheckException(e.toString());",
 "");

 descriptors.add(descriptor);

 // Create/return the array
Chapter 3 Developing View Components 79

Augment the Component Library Manifest
The component manifest has already been created in the earlier example. Now you
will add additional information.

Note that you will add additional types of information not seen in the prior
example.

The Web Application Framework library manifest must be named complib.xml.
Within the JAR file, the Web Application Framework library manifest must be placed
in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml.

2. Add an extensible-component element to declare the SecureViewField component.

After these steps, the COMP-INF/complib.xml file should look as follows:

Note – For clarity, only the significant delta to the prior version of this file shown
earlier is shown here.

 eventHandlerDescriptors = (EventHandlerDescriptor[])
 descriptors.toArray(
 new EventHandlerDescriptor[descriptors.size()]);
 return eventHandlerDescriptors;
 }

 private ConfigPropertyDescriptor[] configPropertyDescriptors;
 private EventHandlerDescriptor[] eventHandlerDescriptors;
}
80 Web Application Framework Component Author’s Guide • December 2004

Recreate the Component Library JAR File
Jar up the component classes as you did in the first example, so that they can be
ready for distribution as a library.

1. The name of the JAR file is arbitrary.

In this case, name it "mycomponents.jar".

You can omit the Java source files from the JAR.

2. Include in the JAR any necessary ancillary resources, like icon images, or resource
bundles.

In this case you are including several new classes and a Java template file.

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
<tool-info>
<tool-version>2.1.0</tool-version>
</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>

 ...

 <extensible-component>
 <component-class>mycomponents.SecureViewBean</component-class>
 <component-info-class>mycomponents.SecureViewBeanComponentInfo</component-info-
class>
 </extensible-component>

...

</component-library>
Chapter 3 Developing View Components 81

3. The mycomponents.jar internal structure should look as follows:

Test the New Component
1. Deploy the new version of the library into your previously created test

application.

Important IDE note: The IDE will not let you delete or copy over a JAR file that is
currently mounted. This presents a bit of a challenge when iteratively developing a
component library and testing that library in a test application. For repeatedly
testing new versions of the same library JAR file within a test application, do the
following:

a. Unmount the test application.

b. After the unmount is complete, go to your operating system file system and
copy the new library JAR file over the old library JAR file in the unmounted
test application's WEB-INF/lib directory.

c. Remount the test application.

The test application should now pick up the new library version.

Normally, those steps work fine. If you encounter a spurious failure that either
prevents you from copying the new JAR over the old JAR, or failure to remount
the test application properly, the fallback strategy is to restart the IDE.

2. Create a new ViewBean object.

The new ViewBean wizard should now look as follows:

mycomponents/resources/SecureViewBean_java.template
mycomponents/MissingTokensEvent.class
mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/SecureViewBean.class
mycomponents/SecureViewBeanComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
82 Web Application Framework Component Author’s Guide • December 2004

3. Select the "Secure ViewBean" from the component list and complete the wizard.

Take the default settings and let the wizard create SecurePage1 for you. (You can
select Finish in the wizard stage shown above.)

4. After the wizard completes you can see that the IDE toolset has created a new
class based on the component supplied template.

5. To test your security model, create a second SecureViewBean.

You application should now contain two SecureViewBeans (SecurePage1 and
SecurePage2).

The new SecureViewBeans contain the Grant Tokens and Required Tokens
properties.
Chapter 3 Developing View Components 83

6. Test the security model by introducing some values into the token properties.

Select SecurePage1's Grant Tokens property.

If you select the ellipsis in the property sheet, it will bring up the indexed String
property editor.

7. Add the value "login" to that property.

You can add additional tokens.
84 Web Application Framework Component Author’s Guide • December 2004

8. Select the other Secure ViewBean, SecurePage2.

Select its Required Tokens property, and add the value "login".

You have now established a page security rule in your application.

SecurePage2 requires the "login" token, and SecurePage1 grants the "login" token.
Therefore, an end user who does not visit SecurePage1 BEFORE SecurePage2 should
trigger a security exception.

9. Add some static content to the SecurePage2's associated JSP, SecurePage2.jsp,
since this is currently a blank page.

For example, put the text "Welcome to Secure2" into SecurePage2.jsp so you will
recognize it in the browser

10. Test run SecurePage2.

Instead of seeing SecurePage2.jsp's content, you should see the following message in
the browser:

Note – If you see this message, it means that the SecureViewBean security model
has worked as intended. At least the access prevention has worked.
Chapter 3 Developing View Components 85

11. Create a link between SecurePage1 and SecurePage2 so that you can test the
positive path.

There are several ways to do this.

You can implement your own link. The instructions that follow are just one
approach.

a. Add an instance of the Web Application Framework Library's Basic Button to
SecurePage1.

You can either select the component from the Component Palette, or select the
SecurePage1's Visual Components sub-node, right-click, and select the Add Visual
Component... action from the pop-up menu.

This will add a "button1" child to your test ViewBean

b. Select the button1 visual component node.

c. Right-click, and select the pop up menu's Events->handleRequest action.

This will add an event handler method named handleButton1Request to your
SecurePage1's Java file.

d. Rework the body of the handleButton1Request to look as follows:

12. Test run the page flow from SecurePage1 to SecurePage2.

a. Test run SecurePage1.

public void handleButton1Request(RequestInvocationEvent event) throws Exception {
getViewBean(SecurePage2.class).forwardTo(getRequestContext());
}

86 Web Application Framework Component Author’s Guide • December 2004

b. Secure1 should appear in the browser as a blank page with a single button
labeled "Submit".

The user should now have been granted the "login" token.

c. Press the Submit button.

This will trigger the handleButton1Request logic which will forward the request
to SecurePage2.

The contents of SecurePage2.jsp should show up in the browser (because the user
had accumulated the required tokens).

Ship It?
Not yet. First test the EventHandlerDescriptor feature (handleMissingTokens).

Recall that the SecureViewBeanComponentInfo declares an EventHandlerDescriptor
which described an event handler called handleMissingTokens. Now you need to
test this feature.

1. Select the SecurePage2 node.

2. Right-click, and select the pop up menu's Events->handleMissingTokens option.

This should insert the handleMissingTokens method skeleton into SecurePage2.java
and automatically position the Java editor at that method.
Chapter 3 Developing View Components 87

3. Edit that method to automatically route users back to SecurePage1 when this
event is triggered.

This is just an arbitrary means of testing the event handler. Application developers
can implement this handler any way they want.

4. Test run SecurePage2 again.

This time, the browser should return SecurePage1, because the event handler took
control.

public void handleMissingTokens(MissingTokensEvent e)throws SecurityCheckException {
 // Route invalid access users to SecurePage1
 appMessage("You need to go to Secure1 before Secure2");
 getViewBean(SecurePage1.class).forwardTo(getRequestContext());
 // Stop further processing of the original request.
 throw new CompleteRequestException();
}

88 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 4

Developing Model Components

This section assumes that you have already read “Develop Your First Component”
on page 19.

Model Components
The obvious Model components are the extensible Model components. Extensible
Model components are custom implementations of the Model class which are
intended for specialization by application developers. The specialization by
application developers will usually consist of application developers adding schema
information to their application specific Models. The Web Application Framework
Component Library contains a number of extensible Model components, such as
QueryModelBase, WebServiceModel, SessionModel, ObjectAdapterModel,
and CustomModel.

ModelComponentInfo
The ModelComponentInfo interface allows component authors to define additional
metadata that is applicable to all Model components.

ExecutingModelComponentInfo
The ExecutingModelComponentInfo interface allows component authors to
define additional metadata that is applicable to all Model components whose
component class implements the com.iplanet.jato.model.ExecutingModel
interface.
89

Is it possible to create a non-extensible Model component?

The answer is yes. In fact, whenever application developers create a new Model via
the Model wizard, they are in fact extending an extensible Model component and
creating an application-specific Model. This new application specific Model is by
definition a non-extensible component. Whenever an application developer attempts
to fill out a property of type ModelReference, the IDE toolset will invoke a
component browser that allows the application developer to choose from a set of
existing non-extensible Models. For instance when a application developers specify a
DisplayField's Model Reference property, the IDE toolset presents them with a
browser that allows them to select a Model.

Is it possible to create one of these non-extensible Models and add it to a library so
that it can be distributed? Again, the answer is yes. See the section Developing and
Distributing Non-Extensible Model, Command and ContainerView Components
(next).

Developing a Non-Extensible Model
Component
A non-extensible Model component is a concrete Model that has been created within
the IDE from an extensible Model component. It is no different from an application
specific Model, except that is distributed in a JAR file and can be incorporated into
multiple applications. The distribution technique is common for non-extensible
Models, ContainerViews, and Commands. See the section Developing and
Distributing Non-Extensible Model, Command and ContainerView Components

Developing an Extensible Model
Component
This section describes how to create a new extensible Model component that acts as
an adapter to an arbitrary XML document. The adapter pattern is one of the patterns
which Web Application Framework Models are well suited to implement. In this
example, the Model component will allow Web Application Framework Views to
access arbitrary XML document data in a Web Application Framework consistent
way. View developers will not need to know anything about the XML internals, or
any XML specific APIs. Instead, the View developers will interact with the XML
document Model as they would any other Web Application Framework Model. This
90 Web Application Framework Component Author’s Guide • December 2004

hightlights one of the key aspects of Web Application Framework Model design.
Web Application Framework Models are intended primarily to serve as application
resources which are used by Views. For more on the relationship between Web
Application Framework Views and Models see the Web Application Framework
Developer’s Guide.

Designing a new extensible Model is generally a non-trivial undertaking. The
following example is sophisticated, yet concise enough for this guide. As with any
Model, alternative designs are possible. As with any example, further refinement is
encouraged for a production quality version. The objective of this section is to
familiarize yourself with the mechanics of Web Application Framework extensible
Model implementation.

This example introduces several additional Web Application Framework component
model topics, as follows:

■ ExtensibleModelComponentInfo
■ ModelFieldGroupDescriptor
■ ModelFieldDescriptor

Key XML Document Model Design Points
This Model will not be a business delegate. Some models ARE both adapters and
business delegates. For example, the Web Application Framework standard
component library's JDBC SQL Query Model is both an adapter and a business
delegate because it is responsible for communicating with the enterprise tier.

The XML Document Model will not be responsible for the lifecycle of the XML
Document. It will assume that the application has managed to acquire the XML
document. The Model does not care how the application acquires the XML
document. The Model will rely on the application to place the XML document
within a well defined location. The Model will access the XML document from that
location, as needed.

There are several benefits to this design decision beyond just making the Model's job
simpler. For one, this approach will allow > 1 XML Document Model access to the
same XML Document. During the testing of the component you will see how this
Document-Model cardinality will benefit application developers.

Another benefit is that it allows application developers to seamlessly leverage non-
Web Application Framework infrastructure code that they might already have
written to manage the document lifecycle.

This Model will limit its ambition to serving as a read-only Model. This means that
the Model will support retrieval and display of XML document data, but it will not
facilitate modification of document data. The implementation of full XML document
update support is beyond the scope of this document. Furthermore, it is perfectly
Chapter 4 Developing Model Components 91

justifiable for a Model to limit its ambition to a well defined feature set, as long as
the Model documentation makes it clear what is, and what is not supported.
Application developers will then limit the use of the Model according to its
documented usage.

Your XML Document Model component should support the following design-
time functionality:

■ Each XML Document Model will expose a property called "Document Scope".
Application developers will configure this property to specify one of three
standard servlet container scopes, request scope, session scope or application
scope. By setting this property the application developer commits to placing the
XML document in the specified scope at run-time. The Model will then fetch the
document from the specified scope at run-time. The default value for this
property will be request scope.

■ Each XML Document Model will expose a property called "Document Scope
Attribute Name". This is a companion property to "Document Scope". Application
developers will configure this property to specify a scoped attribute name. By
setting this property the application developer commits to placing the XML
document in the specified scope and attribute name.

■ Each XML Document Model will expose a property called "Base Dataset Name".
Application developers will configure this property to specify an offset into the
XML Document. The dataset name will be specified as an XPath expression.
Within a given Model all ModelField specific XPath expressions will be relative to
the "Base Dataset Name". This property may be left blank, in which case Model
Field specific XPath expressions will be assumed to be absolute.

■ Each XML Document Model will allow application developers to add an arbitrary
number of Model Fields to the Model at design-time.

■ Application developers can configure each Model Field to have an arbitrary
field name.

■ Application developers can configure each Model Field to access a value
within the XML Document. This access must be configured as an XPath
expression (either relative to the "Base Dataset Name", or absolute in the
absence of any "Base Dataset Name").

■ View developers will be able to bind to the Model Fields in the Web
Application Framework conventional manner.

Your XML Document Model component should support the following run-time
functionality:

■ The XML Document Model will defensively access the XML Document by
retrieving it from the named attribute within the specified scope.

■ The XML Document Model will implement the key
com.iplanet.jato.model.Model method "getValue(String fieldName)" to
resolve a field name to an XPath expression, and an XPath expression to a value
within the document.
92 Web Application Framework Component Author’s Guide • December 2004

■ The XML Document Model will implement the
com.iplanet.jato.model.DatasetModel interface. All DatasetModels
provide consistent access to multiple discreet sets of data. In this case, a dataset
would be a section of the XML Document for which an XPath expression would
return > 1 nodes. The implementation of the DatasetModel interface will allow
application developers to use the DatasetModel API to iterate across the multiple
values within the dataset. The conventional, but not only, means for achieving
this is to associate a TiledView with a DatasetModel.

Note – The implementation shown next will take shortcuts in the interest of brevity.
The sample code contains some comments which point out areas where run time
optimizations are possible, but would require more complex code beyond the scope
of this exercise.

To meet these requirements, you will design and implement the following classes:

■ Component class - mycomponents.XMLDocumentModel

■ ComponentInfo class - mycomponents.XMLDocumentModelComponentInfo

■ A ModelFieldDescriptor class -
mycomponents.XMLDocumentModelFieldDescriptor

Additionally, you will implement a custom Java template which the IDE toolset will
use as the basis for application specific sub-types of our XMLDocumentModel.

Finally, you will edit the mycomponents complib.xml to add the new component
to the Web Application Framework component library.

Create the ModelFieldDescriptor Class
The Web Application Framework component model provides extensible Model
component authors with the opportunity to specify an arbitrary implementation of
the com.iplanet.jato.model.ModelFieldDescriptor interface. This is a
very minimal interface. Each implementation of ModelFieldDescriptor must also be
a JavaBean. Model component authors should design a ModelFieldDescriptor as a
bean that can be configured by application developers to define a model field at
design-time. Component authors, therefore have tremendous freedom to design
model fields which can expose all the design-time configuration opportunity they
want, as long as it can be expressed as a JavaBean.

In the example, your model field design-time configuration needs are trivial. The
application developer needs to be able to configure each model field with an XPath
expression.

1. In any Java editor, create the class
mycomponents.XMLDocumentModelFieldDescriptor.
Chapter 4 Developing Model Components 93

2. Implement the basic com.iplanet.jato.model.ModelFieldDescriptor
interface.

3. Add a get and set method for the property XPath.

4. Add a get and set method for the property FieldClass.

This is an optional property. If populated, at run-time the Model will coerce the raw
value retrieved with the XPath expression into the type specified by the FieldClass
property.

After these steps, mycomponents/XMLDocumentModelFieldDescriptor.java
should look as follows:

package mycomponents;

import java.io.*;
import java.util.*;
import com.iplanet.jato.model.*;

/**
 *
 *
 *
 */
public class XMLDocumentModelFieldDescriptor extends Object
 implements ModelFieldDescriptor, Serializable
{

 public XMLDocumentModelFieldDescriptor()
 {
 super();
 }

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public String getXPath()
 {
 return xpath;
 }

 public void setXPath(String xpath)
 {
94 Web Application Framework Component Author’s Guide • December 2004

Create the Web Application Framework
Component Class

1. In any Java editor, create the class mycomponents.XMLDocumentModel.

2. Make XMLDocumentModel extend
com.iplanet.jato.view.DatasetModelBase.

3. Make XMLDocumentModel implement
com.iplanet.jato.view.MultiDatasetModel.

4. Implement the appropriate constructor for the component type.

All Model components must implement a no-arg constructor.

5. Add a get and set method for the property named "DocumentScope".

6. Add a get and set method for the property named
"DocumentScopeAttributeName".

7. Add a get and set method for the property named "CurrentDatasetName".

This property will get a more user friendly display name "Base Dataset Path", but
that work will be done in the XMLDocumentModelComponentInfo.

8. Implement the remaining methods that are required to fulfill your component
specific requirements.

■ Implement the methods which DatasetModelBase left abstract.

■ Implement the methods required by MultiDatasetModel interface.

 this.xpath = xpath;
 }

 public Class getFieldClass()
 {
 return fieldClass;
 }

 public void setFieldClass(Class fieldClass)
 {
 this.fieldClass = fieldClass;
 }

 private String xpath;
 private String name;
 private Class fieldClass; // DO NOT change this init to a default value

}

Chapter 4 Developing Model Components 95

■ Implement any helper methods which are needed to fulfill the XML Document
adaptation.

After these steps, mycomponents/XMLDocumentModel.java should look as
follows:

package mycomponents;
import java.util.*;
import com.iplanet.jato.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.model.custom.*;
import com.iplanet.jato.util.*;
import org.w3c.dom.*;
import org.w3c.dom.traversal.*;
import org.apache.xpath.XPathAPI;
import javax.xml.transform.*;
import javax.servlet.jsp.PageContext;

/**
 *
 * @author component-author
 */
public class XMLDocumentModel extends DatasetModelBase implements MultiDatasetModel
{

 public XMLDocumentModel()
 {
 super();
 }

 //
 // Properties
 //

 public String getCurrentDatasetName()
 {
 // Add some defensive logic to ensure a valid currentDatasetName
 if(currentDatasetName == null || currentDatasetName.trim().equals(""))
 currentDatasetName = "/";
 return currentDatasetName;
 }

 public void setCurrentDatasetName(String datasetName)
 {
 this.currentDatasetName = datasetName;
 }

 public int getDocumentScope()
96 Web Application Framework Component Author’s Guide • December 2004

 {
 return documentScope;
 }

 public void setDocumentScope(int documentScope)
 {
 this.documentScope = documentScope;
 }

 public String getDocumentScopeAttributeName()
 {
 return documentScopeAttr;
 }

 public void setDocumentScopeAttributeName(String name)
 {
 this.documentScopeAttr = name;
 }

 public void setDocument(Document value)
 {
 doc = value;
 }

 public Document getDocument()
 {
 if(doc == null) {
 // Use the scope and attribute name to find the document
 // The assumption is that the application logic has placed doc
 // in the appropriate scope.
 RequestContext rc = RequestManager.getRequestContext();
 String attr = getDocumentScopeAttributeName();
 switch (getDocumentScope())
 {
 case PageContext.REQUEST_SCOPE:
 doc = (Document)
 rc.getRequest().getAttribute(attr);
 break;
 case PageContext.APPLICATION_SCOPE:
 doc = (Document)
 rc.getServletContext().getAttribute(attr);
 break;
 case PageContext.SESSION_SCOPE:
 doc = (Document)
 rc.getRequest().getSession().getAttribute(attr);
 break;
 default:
 throw new IllegalArgumentException(
 "DocumentScope is set to an invalid value " +
Chapter 4 Developing Model Components 97

 getDocumentScope());
 }

 if(DEBUG)
 System.out.println("XMLDocumentModel.getModel doc is " +
 (doc==null?"null":"not null"));

 }
 return doc;
 }

 //
 // Model Interface Methods
 //

 public Object getValue(String name)
 {
 Node node=null;
 try
 {
 node=getNode(name);
 }
 catch (Exception e)
 {
 throw new ModelValueException("Exception getting value for "+
 "field \""+name+"\"",e);
 }

 if (node==null)
 return null;

 Object result=null;
 if (isTextNode(node) || isAttributeNode(node))
 {
 result=node.getNodeValue();

 XMLDocumentModelFieldDescriptor descriptor=(XMLDocumentModelFieldDescriptor)
 getFieldGroup().getFieldDescriptor(name);
 if (descriptor.getFieldClass()!=null)
 result=TypeConverter.asType(descriptor.getFieldClass(),result);
 }
 else
 {
 // Return the node as is and let the caller figure out what to
 // do with it--this could've been what they actually wanted
 result=node;
 }

 return result;
 }
98 Web Application Framework Component Author’s Guide • December 2004

 public Object[] getValues(String name)
 {
 NodeList nodes=null;
 try
 {
 nodes=getNodes(name);
 }
 catch (Exception e)
 {
 throw new ModelValueException("Exception getting values for "+
 "field \""+name+"\"",e);
 }

 if (nodes==null)
 return new Object[0];

 Object[] result=null;
 try
 {
 List resultList=new LinkedList();
 for (int i=0; i<nodes.getLength(); i++)
 {
 Node node=nodes.item(i);
 if (isTextNode(node) || isAttributeNode(node))
 {
 Object data=node.getNodeValue();

 XMLDocumentModelFieldDescriptor descriptor=
(XMLDocumentModelFieldDescriptor)
 getFieldGroup().getFieldDescriptor(name);
 if (descriptor.getFieldClass()!=null)
 {
 data=TypeConverter.asType(descriptor.getFieldClass(),
 data);
 }

 resultList.add(data);
 }
 else
 {
 // Return the node as is and let the caller figure out what
 // to do with it--this could've been what they actually
 // wanted
 resultList.add(node);
 }
 }

 result=resultList.toArray();
 }
 catch (Exception e)
Chapter 4 Developing Model Components 99

 {
 throw new ModelValueException("Exception getting values "+
 "for field \""+name+"\"",e);
 }

 return result;
 }

 public void setValue(String name, Object value)
 {
 // Ignore
 }

 public void setValues(String name, Object[] value)
 {
 // Ignore
 }

 //
 // DatasetModel Interface Methods
 //

 protected NodeList getCurrentDatasetNodeList()
 throws ModelControlException
 {
 if (nodeList!=null)
 return nodeList;

 if (getDocument()==null)
 {
 throw new ModelControlException(
 "No XML document has been provided");
 }

 try
 {
 // Note: instead of XPathAPI, we can use CachedXPathAPI to improve
 // the efficiency of this call. This requires some additional
 // complexity not useful in this example, however.
 // Also, we could potentially move away from use Apache-specific
 // code by using the org.w3c.dom.xpath package, as long as the
 // XML parser supported DOM Level 3.
 nodeList=XPathAPI.selectNodeList(getDocument(),
 getCurrentDatasetName());
 }
 catch (TransformerException e)
 {
 throw new ModelControlException("Exception getting NodeList for "+
 "dataset \""+getCurrentDatasetName()+"\"");
100 Web Application Framework Component Author’s Guide • December 2004

 }

 return nodeList;
 }

 public int getLocationOffset()
 {
 return 0;
 }

 public int getLocation()
 throws ModelControlException
 {
 Integer index=(Integer)datasetContexts.get(getCurrentDatasetName());
 if (index==null)
 {
 // Call just to check for NodeList validity
 getCurrentDatasetNodeList();
 return -1;
 }

 return index.intValue();
 }

 public void setLocation(int value)
 throws ModelControlException
 {
 int maxLength=getCurrentDatasetNodeList().getLength();
 if (value>=maxLength || value<-1)
 {
 throw new ModelControlException("Location index out of "+
 "range (max value = "+(maxLength-1)+")");
 }

 datasetContexts.put(getCurrentDatasetName(),new Integer(value));
 }

 public int getSize()
 throws ModelControlException
 {
 return getCurrentDatasetNodeList().getLength();
 }

 public void setSize(int value)
 throws ModelControlException
 {
Chapter 4 Developing Model Components 101

 throw new ModelControlException("Unsupported operation; "+
 "model size cannot be set");
 }

 protected boolean ensureValidDataPosition()
 throws ModelControlException
 {
 if (getSize()==0)
 return false; // No data to retrieve
 else
 if (getLocation()==-1)
 {
 // If we're currently before the first item, we need to move
 // to the first item to retrieve some data
 if (!first())
 throw new ModelControlException("Could not move to first item");
 }

 return true;
 }

 //
 // XML Node methods
 //

 public Node getNode(String fieldName)
 throws ModelControlException, TransformerException
 {
 if (!ensureValidDataPosition())
 return null;

 Node contextNode=getCurrentDatasetNodeList().item(getLocation());

 // Note: instead of XPathAPI, we can use CachedXPathAPI to improve
 // the efficiency of this call. This requires some additional
 // complexity not useful in this example, however.
 // Also, we could potentially move away from use Apache-specific
 // code by using the org.w3c.dom.xpath package, as long as the
 // XML parser supported DOM Level 3.
 Node n = XPathAPI.selectSingleNode(contextNode,getFieldXPath(fieldName));
 if(DEBUG) {
 if(n == null)
 System.out.println("Warning: getNode found no node at[" +
 getFieldXPath(fieldName) + "]");
 }
 return n;
 }

 public NodeList getNodes(String fieldName)
 throws ModelControlException, TransformerException
 {
102 Web Application Framework Component Author’s Guide • December 2004

 if (!ensureValidDataPosition())
 return null;

 Node contextNode=getCurrentDatasetNodeList().item(getLocation());

 // Note: instead of XPathAPI, we can use CachedXPathAPI to improve
 // the efficiency of this call. This requires some additional
 // complexity not useful in this example, however.
 // Also, we could potentially move away from use Apache-specific
 // code by using the org.w3c.dom.xpath package, as long as the
 // XML parser supported DOM Level 3.
 NodeList nl = XPathAPI.selectNodeList(contextNode,getFieldXPath(fieldName));
 if(DEBUG) {
 if(nl == null)
 System.out.println("Warning: getNodes found no nodes at[" +
 getFieldXPath(fieldName) + "]");
 }
 return nl;
 }

 public static boolean isTextNode(Node node)
 {
 if (node==null)
 return false;
 return (node instanceof CharacterData);
 }

 public static boolean isAttributeNode(Node node)
 {
 if (node==null)
 return false;
 return node.getNodeType()==Node.ATTRIBUTE_NODE;
 }

 //
 // Helper method
 //
 public String getFieldXPath(String fieldName)
 {
 XMLDocumentModelFieldDescriptor descriptor=(XMLDocumentModelFieldDescriptor)
 getFieldGroup().getFieldDescriptor(fieldName);
 return descriptor.getXPath();
 }
 //
 // Instance variables
 //

 private int documentScope = PageContext.REQUEST_SCOPE; // request scope by default
 private String documentScopeAttr = "testDoc";
 private String currentDatasetName;
Chapter 4 Developing Model Components 103

Create the Extensible Component's Java Template
Extensible components serve as base classes for application defined entities.
Therefore, the Web Application Framework component model provides extensible
component authors the opportunity to provide a custom Java template. The IDE
toolset will, subsequently, use the component supplied template to create the
application specific sub-type. Component authors can utilize the custom template to
enhance the application developer's experience. Component authors may prepare
the component specific Java template with a set of template tokens defined in
com.iplanet.jato.component.ExtensibleComponentInfo. For token details
see ExtensibleComponent API.

Component authors may also utilize any arbitrary Java constructs within the Java
template (for example, import statements, methods, variables, interface declarations,
and so on). Minimally, the custom template will ensure that the new Java class
extends from the extensible component class. Component authors may also use the
template as a means of communicating to the developer documentation inline in the
source so as to provide "recommended steps" or conditions or boundaries to keep in
mind while specializing.

In this example, the template will be kept minimal.

In any text editor create the template
mycomponents.resources.XMLDocumentModel_java.template.

The template contents should look as follows:

Note – The tokens follow a __TOKEN__ pattern.

 private Document doc;

 private NodeList nodeList;
 private Map datasetContexts=new HashMap();
 private String datasetName;

 private static final boolean DEBUG = true;
}

package __PACKAGE__;

import java.io.*;

import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.iplanet.jato.*;
104 Web Application Framework Component Author’s Guide • December 2004

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example, you will extend an existing
ComponentInfo and in true OO style, simply augment it. You could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

In this example, you are going beyond the functionality revealed in the earlier
component examples. Next, you are going to take advantage of a new metadata
opportunity provided by the ExtensibleModelComponentInfo interface, the
opportunity to describe an arbitrary Model Field type.

1. Create the class mycomponents.XMLDocumentModelComponentInfo.

2. Make XMLDocumentModelComponentInfo extend
com.iplanet.jato.model.ExtensibleModelComponentInfo.

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic
design-time description of the component.

import com.iplanet.jato.model.*;
import com.iplanet.jato.util.*;
import mycomponents.*;

/**
 *
 *
 * @author
 */
public class __CLASS_NAME__ extends XMLDocumentModel
{
 /**
 * Default constructor
 *
 */
 public __CLASS_NAME__()
 {
 super();
 }

}

Chapter 4 Developing Model Components 105

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you want to expose in the IDE.

Note the use of default values within the ConfigPropertyDescriptor declarations.

■ Add a ConfigPropertyDescriptor for the DocumentScope property.
■ Add a ConfigPropertyDescriptor for the DocumentScopeAttributeName property.
■ Add a ConfigPropertyDescriptor for the CurrentDatasetName property.

6. Implement the getPrimaryTemplateAsStream() method to return a Java
template file which you want the IDE toolset to use as the starting point for new
classes derived from this extensible component.

7. Implement the getModelFieldGroupDescriptors() method to provide a
design-time description of the model field type required by the Model.

Do not get confused by the extra level of indirectness suggested by
ModelFieldGroupDescriptor on top of ModelFieldDescriptor. The
ModelFieldDescriptor is the vital feature for you to focus on. The
ModelFieldGroupDescriptor is an advanced optional feature. Suffice to say that most
Web Application Framework Model components can simply make use of the
standard com.iplanet.jato.model.ModelFieldGroup.

After these steps, mycomponents/XMLDocumentModelComponentInfo.java
should look as follows:

Note – In this sample code, String values have been embedded directly for ease of
demonstration. Utilize resource bundles if you anticipate the need to localize your
display strings.

package mycomponents;

import java.util.*;
import java.io.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.model.*;

/**
 *
 *
 */
public class XMLDocumentModelComponentInfo extends ExtensibleModelComponentInfo
{

 public XMLDocumentModelComponentInfo()
 {
 super();
 }
106 Web Application Framework Component Author’s Guide • December 2004

 public ComponentDescriptor getComponentDescriptor()
 {
 // identify the component class
 ComponentDescriptor result=new ComponentDescriptor(
 "mycomponents.XMLDocumentModel");

 // The name will be used to determine a name for the component instance
 result.setName("XMLDocumentModel");

 // The display name will be used to show the component in a chooser
 result.setDisplayName("XML Document Model");

 // The description will be the tool tip text for the component
 result.setShortDescription("A simple demonstration of a new model component");

 return result;

 }

 public String getPrimaryTemplateEncoding()
 {
/* Production version would be resource bundle driven, like this:
return getResourceString(getClass(),
"PROP_XMLDocumentModel_SOURCE_TEMPLATE_ENCODING", "ascii");
*/

 return "ascii";
 }

 public InputStream getPrimaryTemplateAsStream()
 {
/* Production version would be resource bundle driven, like this:
return XMLDocumentModelComponentInfo.class.getClassLoader().
getResourceAsStream(
getResourceString(getClass(),
"RES_XMLDocumentModelComponentInfo_SOURCE_TEMPLATE",""));
*/

 return XMLDocumentModelComponentInfo.class.getResourceAsStream(
 "/mycomponents/resources/XMLDocumentModel_java.template");
 }

 public ConfigPropertyDescriptor[] getConfigPropertyDescriptors()
 {
 if (configPropertyDescriptors!=null)
 return configPropertyDescriptors;

 configPropertyDescriptors=super.getConfigPropertyDescriptors();
 List descriptors=new LinkedList(Arrays.asList(configPropertyDescriptors));
Chapter 4 Developing Model Components 107

 ConfigPropertyDescriptor descriptor = null;

 descriptor=new ConfigPropertyDescriptor(
 "documentScope",Integer.TYPE);
 descriptor.setDisplayName("Document Scope");
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptor.setDefaultValue(new Integer(
 javax.servlet.jsp.PageContext.REQUEST_SCOPE));
 descriptors.add(descriptor);

 descriptor=new ConfigPropertyDescriptor(
 "documentScopeAttributeName",String.class);
 descriptor.setDisplayName("Document Scope Attribute Name");
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptor.setDefaultValue("");
 descriptors.add(descriptor);

 descriptor=new ConfigPropertyDescriptor(
 "currentDatasetName",String.class);
 descriptor.setDisplayName("Base Dataset Path");
 descriptor.setHidden(false);
 descriptor.setExpert(false);
 descriptor.setDefaultValue("");
 descriptors.add(descriptor);

 // Create/return the array
 configPropertyDescriptors = (ConfigPropertyDescriptor[])
 descriptors.toArray(
 new ConfigPropertyDescriptor[descriptors.size()]);
 return configPropertyDescriptors;
 }

 public ModelFieldGroupDescriptor[] getModelFieldGroupDescriptors()
 {
 if(null != modelFieldGroupDescriptors)
 return modelFieldGroupDescriptors;

 List descriptors=new ArrayList();
 ModelFieldGroupDescriptor descriptor=null;

 descriptor = new ModelFieldGroupDescriptor(
 "Fields",
 ModelFieldGroup.class,
 new ConfigPropertyDescriptor[0],
 XMLDocumentModelFieldDescriptor.class,
 "addFieldDescriptor",
 "setFieldGroup");

 descriptor.setFieldBaseName("field");
108 Web Application Framework Component Author’s Guide • December 2004

Augment the Component Library Manifest
The component manifest has already been created in the earlier example. Now you
will add additional information.

Note that you will add additional types of information not seen in the prior
example.

The Web Application Framework library manifest must be named complib.xml.
Within the JAR file, the Web Application Framework library manifest must be placed
in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml.

2. Add an extensible component element to declare the XMLDocumentModel
component.

After these steps, the COMP-INF/complib.xml file should look as follows:

Note – For clarity, only the significant delta to the prior version of this file shown
earlier is shown here.

 descriptor.setFieldTypeDisplayName("Field");
 descriptor.setGroupDisplayName("Fields");
 descriptor.setFieldPropertyEditorClass(null);
 descriptors.add(descriptor);

 modelFieldGroupDescriptors = (ModelFieldGroupDescriptor[])
 descriptors.toArray(
 new ModelFieldGroupDescriptor[descriptors.size()]);
 return modelFieldGroupDescriptors;
 }

 private ModelFieldGroupDescriptor[] modelFieldGroupDescriptors;
 private ConfigPropertyDescriptor[] configPropertyDescriptors;

}

Chapter 4 Developing Model Components 109

Recreate the Component Library JAR File
Jar up the component classes as you did in the first example, so that they can be
ready for distribution as a library.

1. The name of the JAR file is arbitrary.

In this case, name it "mycomponents.jar".

2. You can omit the Java source files from the JAR.

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles.

In this case, there are none.

In this case, you are now including several new classes and a Java template file.

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
<tool-info>
<tool-version>2.1.0</tool-version>
</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>

 ...

 <extensible-component>
 <component-class>mycomponents.XMLDocumentModel</component-class>
 <component-info-class>mycomponents.XMLDocumentModelComponentInfo</component-info-
class>
 </extensible-component>

...

</component-library>
110 Web Application Framework Component Author’s Guide • December 2004

4. The mycomponents.jar internal structure should look as follows:

Test the New Component
1. Deploy the new version of the library into your previously created test

application.

Important IDE note: The IDE will not let you delete or copy over a JAR file that is
currently mounted unless this is done via the IDE using ANT tasks which share the
same VM as the IDE and share the file locks. You should shutting down the IDE
whenever you need to replace one of the JAR files that is currently mounted. If you
are trying to test the new version of component library in a project that is already
opened inside the IDE, first shut down the IDE. Once the IDE has released its hold
on the old copy of the library JAR file, you can copy the new version of the JAR file
over the old version. After successfully deploying the new version of the library, you
can re-open the application in IDE.

2. Create a new Model object.

If you have not done this before, complete the Web Application Framework Tutorial.

The new Model wizard should now look as follows:

Note – Depending upon the version of Web Application Framework, you might not
see all of the models that are shown next. The important point is that you see the
entry for "XML Document Model".

mycomponents/resources/SecureViewBean_java.template
mycomponents/resources/XMLDocumentModel_java.template
mycomponents/MissingTokensEvent.class
mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/SecureViewBean.class
mycomponents/SecureViewBeanComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/XMLDocumentModel.class
mycomponents/XMLDocumentModelComponentInfo.class
mycomponents/XMLDocumentModelFieldDescriptor.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
Chapter 4 Developing Model Components 111

3. Select the "XML Document Model" from the component list and complete the
wizard.

Take the default settings and let the wizard create "XMLDocumentModel1" for you.

After the wizard completes, you can see that the IDE toolset has created a new class
based on the component supplied template.

4. To test your mode fully, create a second XML Document Model.

Your application should now contain two XML Document Models
(XMLDocumentModel1 and XMLDocumentModel2).

Note the Base Dataset Name, Document Scope, and Document Scope Attribute
Name properties.
112 Web Application Framework Component Author’s Guide • December 2004

Note above that the Document Scope property value is the raw integer 2. This is
because XMLDocumentModelComponentInfo declared the DocumentScope
property thus. The type is Integer.Type, and the default value is
Chapter 4 Developing Model Components 113

javax.servlet.jsp.PageContext.REQUEST_SCOPE. The net effect in the IDE
will use the default Integer property editor which will express the raw integer value,
in this case 2.

You would be correct in thinking that this is a poor user interface since most
developers will not know that 2 corresponds to request scope. Therefore, as a follow
up exercise, you will see later how to substitute a more user friendly property editor
in place of the default Integer property editor.

To test your new Model component, you need a suitable XML document.

A test case will be contrived by placing an arbitrary XML file on disk, and at run
time the test application will read the document from disk and place it into the
request scope.

Your XML Document Model component does not care where the XML document
comes from. In the real world, the XML document will probably be dynamically
fetched by the application from the enterprise tier. That is of no concern to your
XML Document Model.

a. In any text editor, copy the following XML into a file named "author.xml".

descriptor=new ConfigPropertyDescriptor(
 "documentScope",Integer.TYPE);
descriptor.setDisplayName("Document Scope");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptor.setDefaultValue(new Integer(
 javax.servlet.jsp.PageContext.REQUEST_SCOPE));
descriptors.add(descriptor);
114 Web Application Framework Component Author’s Guide • December 2004

b. Place author.xml in the same application module directory as
XMLDocumentModel1 and XMLDocumentModel2.

The code you will enter, shown next, is assumed to be in the same directory as
your test Models. This is purely a convention of this exercise.

c. Review author.xml for a moment.

Notice that for a single author, there are many book entries. Now is the time to
point out, that you will utilize the two models (XMLDocumentModel1 and
XMLDocumentModel2) to access different parts of the same XML document. You
will configure XMLDocumentModel1 to access the scalar author information,
name, and details. You will configure XMLDocumentModel2 to access the non-
scalar collection of books.

This approach was chosen when the XMLDocumentModel was designed because
it simplifies both the implementation of the Model component, and simplifies the
usage of the component within an application.

5. Configure XMLDocumentModel1 to access the scalar author information.

a. Select the XMLDocumentModel1 node.

b. Edit its Document Scope Attribute Name property.

Set the value to "authorDocument".

c. Leave the Document Scope and the Base Dataset Path properties unchanged.

<?xml version="1.0"?>
<author>
 <name first="Charles" last="Dickens"/>
 <details birth="1812" death="1870"/>
 <works>
 <book title="Great Expectations" publisher="Penguin USA " pages="544"/>
 <book title="Nicholas Nickleby" publisher="Penguin USA " pages="816"/>
 <book title="A Tale of Two Cities" publisher="Signet Classic" pages="371"/>
 <book title="Hard Times" publisher="Bantam Classic" pages="280"/>
 <book title="Oliver Twist" publisher="Tor Books" pages="496"/>
 <book title="David Copperfield " publisher="Penguin USA " pages="912"/>
 <book title="A Christmas Carol" publisher="Bantam Classics" pages="102"/>
 <book title="Our Mutual Friend" publisher="Indypublish.Com" pages="472"/>
 <book title="Bleak House" publisher="Penguin USA " pages="1036"/>
 <book title="The Pickwick Papers " publisher="Penguin USA " pages="848"/>
 <book title="The Haunted House" publisher="Hesperus Press" pages="128"/>
 <book title="Little Dorrit" publisher="Indypublish.Com" pages="460"/>
 <book title="Barnaby Rudge" publisher="Viking Press" pages="766"/>
 <book title="The Mystery of Edwin Drood" publisher="Penguin USA" pages="432"/>
 <book title="Sketches by Boz" publisher="Penguin USA" pages="635"/>
 </works>
</author>
Chapter 4 Developing Model Components 115

d. Expand the XMLDocumentModel1 node so that you can see its Fields sub-
node.

e. Select the Fields sub-node.

f. Right-click, and select the pop up menu's Add Field ... action.

This will automatically add a field with a default name.

In this case the default name will be "field1".

g. Repeat the previous step to create additional fields "field2", "field3", and
"field4".

For the purposes of this exercise you will leave the names unchanged.

In a real application, the Model developer would probably change the field names
to make them more descriptive of their role.

h. Select the field1 node.

Select the Model Field Properties tab on its property sheet.
116 Web Application Framework Component Author’s Guide • December 2004

i. Edit field1's XPath property.

Set the value to the XPath expression "/author/name/@first".

j. Repeat the previous step, and adjust the XPath property for the remaining three
fields as follows:

■ Set field2's XPath value to "/author/name/@last"
■ Set field3's XPath value to "/author/details/@birth"
■ Set field4's XPath value to "/author/details/@death"

6. Configure XMLDocumentModel2 to access the "books" dataset.

a. Select the XMLDocumentModel2 node.

b. Edit its Document Scope Attribute Name property.

Set the value to "authorDocument".
Chapter 4 Developing Model Components 117

c. Edit its Base Dataset Path property.

Set the value to the XPath expression "/author/works/book".

That is an XPath expression that will address the collection of book entries (for
example, a Web Application Framework dataset).

d. Leave the Document Scope property unchanged.

e. Expand the XMLDocumentModel2 node so that you can see its Fields sub-
node.

f. Select the Fields sub-node.

g. Right-click, and select the pop up menu's Add Field ... action to add "field1",
"field2", and "field3".
118 Web Application Framework Component Author’s Guide • December 2004

h. Edit each field's XPath property to XPath expressions relative to the value of the
Base Dataset Path property set above.

■ Set field1's XPath value to @title
■ Set field2's XPath value to @publisher
■ Set field3's XPath value to @pages

The models have now been configured. Now you need to create some Views to use
the Models, and also provide some application logic to read the author.xml
document from disk and store it in the request scope attribute "authorDocument".

First, create the Views.

Advisory: Read this next step fully before attempting, since if you follow the
instructions correctly, you can save some time and effort by utilizing the full
capability of the "New View" wizard. It is perfectly acceptable to create a ViewBean
that will exercise the XMLDocumentModel1 without following the steps detailed
Chapter 4 Developing Model Components 119

next, and you can create the ViewBean according to your preferred style. But, for
newcomers to the Web Application Framework, the following steps are, hopefully,
the most concise.

7. Create the AuthorPage

a. Invoke the "New View" wizard.

■ In the Select View Type panel (next) select the "Basic ViewBean" component.
■ Explicitly set the Name to be "AuthorPage".
■ Press Next.

b. Take the default values in the Associate JSP panel, and press Next.

c. In the Model Associations panel (shown in the next figure), expand the Current
Application Components node until you find "XMLDocumentModel1".
■ Select "XMLDocumentModel1" and press the Add button to create the

association between the ViewBean and the Model.

That will cause the "XMLDocumentModel1' to appear in the Currently chosen
models section of the panel.

■ Press Next.
120 Web Application Framework Component Author’s Guide • December 2004

d. In the Bind Display Fields panel (shown in the next figure), select all four of
the Model fields that are available, and press the Add Fields button.

That will cause four entries to appear in the Bound Fields section of the panel.

e. Press Finish.
Chapter 4 Developing Model Components 121

After completing the wizard in the manner described above, you should find that
the AuthorPage node looks like this.

The individual child display fields should be properly bound to the
corresponding XMLDocumentModel1 fields.
122 Web Application Framework Component Author’s Guide • December 2004

8. Open AuthorPage.java, and add the following code to the constructor.

This code will read the "author.xml" document from disk and store it in the request
scope attribute named "authorDocument", which is where the
XMLDocumentModel1 expects to find it. The choice of placing this code here in the
AuthorPage constructor is simply an arbitrary test stratagem. As stated before, the
XMLDocumentModel does not care how or when the XML document is placed into
the agreed upon attribute, as long as it is there when the Model is accessed. Note the
Chapter 4 Developing Model Components 123

extra import statements at the top. Also, note the getResourceAsStream method's
parameter must take a parameter which reflects the name of your test application
(for example, getResourceAsStream("/testmycomplib/main/author.xml").

9. Compile all the classes in the application and test run the AuthorPage.

The author’s data should appear in the browser as follows:

import org.w3c.dom.*;
import org.xml.sax.InputSource;
import javax.xml.parsers.DocumentBuilderFactory;

/**
 *
 *
 */
public class AuthorPage extends BasicViewBean
{
 /**
 * Default constructor
 *
 */
 public AuthorPage()
 {
 super();
 try {

 InputSource in = new InputSource(AuthorPage.class.
 getResourceAsStream("/testmycomplib/main/author.xml"));
 DocumentBuilderFactory dfactory = DocumentBuilderFactory.newInstance();
 dfactory.setNamespaceAware(true);
 Document doc = dfactory.newDocumentBuilder().parse(in);
 doc.normalize(); // Make sure text in the document is in normal form
 RequestManager.getRequest().setAttribute("authorDocument", doc);
 System.out.println("Author XML Document has been put into request");
 }
 catch(Exception e) {
 System.out.println("Exception trying to load author.xml" + e);
 }
 }
124 Web Application Framework Component Author’s Guide • December 2004

10. Create a TiledView.

Now you want to test XMLDocumentModel2 and its dataset capability.

For this you will need to create a TiledView. Essentially, duplicate the steps taken in
creating AuthorPage, but select a "Basic TiledView" instead of a "Basic ViewBean"
and associate it with XMLDocumentModel2 instead of XMLDocumentModel1.

Here are the detailed steps:

a. Invoke the "New View" wizard.

b. In the Select View Type panel (shown in the next figure) select the "Basic Tiled
View" component.

c. Explicitly set the Name to be "Books".

d. Press Next.
Chapter 4 Developing Model Components 125

■ Take the default values in the Associate JSP panel and press Next.

■ In the Model Associations panel (shown in the next figure) expand the Current
Application Components node until you find "XMLDocumentModel2".

■ Select "XMLDocumentModel2", and press the Add button to create the
association between the TiledView and the Model.

That will cause the "XMLDocumentModel2' to appear in the Currently chosen
models section of the panel.

■ Press Next.
126 Web Application Framework Component Author’s Guide • December 2004

■ In the Bind Display Fields panel (shown next), select all three of the Model fields
that are available, and press the Add Fields button.

That will cause three entries to appear in the Bound Fields section of the panel.

■ Press Finish.
Chapter 4 Developing Model Components 127

■ After completing the wizard in the manner described above, you should find that
the Books TiledView node looks like this. The individual child display fields
should be properly bound to the corresponding XMLDocumentModel2 fields.
128 Web Application Framework Component Author’s Guide • December 2004

11. The TiledView requires one additional configuration step that you have not seen
before in this guide.

You need to configure the :Book TiledView's Primary Model Reference property to
reference "XMLDocumentModel2". If you do not configure this property, the test run
of this TiledView will show no data. That is a common Web Application Framework
application developer error.

Edit the Primary Model Reference property (shown next), and from its drop down
list select the "xmldocumentModel2" value.
Chapter 4 Developing Model Components 129

12. Before you can test run the Books TiledView, you must add it to a ViewBean. To
make this example more interesting, add the Books TiledView as a child of the
AuthorPage. This is a good example of Web Application Framework's hierarchical
view support.

Add an instance of Books TiledView to AuthorPage. Again, you can achieve this by
selecting Books TiledView from either the Component Palette or the Component
Browser, just as you did earlier with the various text fields and button components.
Except this time, the component will be located in the Current Application
Components section of either the Component Palette or Component Browser.
130 Web Application Framework Component Author’s Guide • December 2004

Chapter 4 Developing Model Components 131

After adding Books as a child view, the AuthorPage node should look as follows:
132 Web Application Framework Component Author’s Guide • December 2004

13. You can now format the JSP associated with the AuthorPage to suit your taste.

By default when you add a container view child to a ViewBean, the IDE toolset will
add the container view child and its children's tags to the ViewBean's JSP(s). The
application developer may use the Synchronize to View action on the JSP node to
batch remove tags for any child container view children. Take this opportunity to
also add some basic formatting to the JSP so it renders more neatly.

a. Select and expand the AuthorPage's JSPs node.

b. Select the actual AuthorPage.jsp node.

c. Double-click the AuthorPage.jsp node to open the JSP file in the editor so you
can edit it.
Chapter 4 Developing Model Components 133

d. Add some basic formatting (for example, <p> and
) to the
AuthorPage.jsp so that you will get some separation between rows of Book
data.

When done, the AuthorPage.jsp should look something like the following:

14. Test run AuthorPage again.

Make sure you select the ExecutePage (Redeploy) action, not the Execute Page
action. Otherwise you will not see the effects of the recent changes.

The contents of AuthorPage.jsp should show up in the browser (because the user
had accumulated the required tokens).

<%@page contentType="text/html; charset=ISO-8859-1" info="AuthorPage" language="java"%>
<%@taglib uri="/WEB-INF/jato.tld" prefix="jato"%>

<jato:useViewBean className="testmycomplib.main.AuthorPage">

<html>
<head>
<title></title>
</head>
<body>

<jato:form name="Author" method="post">

<jato:text name="field1"/>
<jato:text name="field2"/>
<jato:text name="field3"/>
<jato:text name="field4"/>
<p>
<jato:tiledView name="books1">

<jato:text name="field1"/>
<jato:text name="field2"/>
<jato:text name="field3"/>
</jato:tiledView></jato:form>

</body>
</html>

</jato:useViewBean>
134 Web Application Framework Component Author’s Guide • December 2004

Ship It?
Not yet. Provide a custom editor for that "Document Scope" property.

Recall that the XMLDocumentModel's Document Scope property is currently
vulnerable to user error, because it exposes a raw int value for direct editing. What
you really need is a custom editor that presents the application developer with a
fool-proof drop down list containing only valid choices. You would normally spend
a little time and develop a custom property editor. The details of that task are
beyond the scope of this document, but can be found in any basic JavaBean
reference.
Chapter 4 Developing Model Components 135

136 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 5

Developing Command Components

This section assumes that you have already read “Develop Your First Component”
on page 19.

Developing an Extensible Command
Component
This section describes how to create a new Command component that adds value on
top of the ValidatingDisplayField you created in the Develop a Non-Extensible View
Component section found in Chapter 3, Developing View Components.

This is called the ValidatingCommand component, and it encapsulates some
reusable logic related to the processing of pages which contain instances of the
ValidatingDisplayField.

This exercise is intended to focus on the mechanics of extensible Command
component design and, as such, only scratches the surface of extensible Command
possibilities.

The mechanics of creating extensible Commands are very straightforward. If you
have completed the previous sections, you know the mechanics by now. The reality
is that Commands are structurally simple. This section will reinforce your familiarity
with the command design pattern, introduce you to its role in the Web Application
Framework, and hopefully encourage you to become creative in leveraging this
simple, but powerful pattern.

This example introduces several additional Web Application Framework component
model topics:

■ CommandComponentInfo
■ CommandDescriptor

Your validating Command component should support the following design-time
functionality:
137

■ Allow developers to subclass your ValidatingCommand, and add some
application specific behavior on top of the behavior encapsulated in the base
class.

Specifically, subclass developers will focus on implementing two component
specific methods handleInvalid and handleValid, instead of the
conventional Command execute method. The application command developer
will rely on the component base class to determine if the page on which the
component has been activated is valid or invalid, and invoke the appropriate
handler. Therefore, application command developers can focus on responding to
the valid or invalid state, and not need to worry about detecting the state.

■ The extensible command allows component authors to specify configuration
properties, like you did with the View and Model components. However, in this
example none will need defining.

Your validating Command component should support the following run-time
functionality:

The ValidatingCommand base class implementation of the execute method will
perform a deep search on the submitted ViewBean, detect any and all instances of
ValidatingTextField, and check to see if any of those fields are invalid.

■ If any field is found to be invalid, the ValidatingCommand base class will
invoke the handleInvalid method. It is assumed that ValidatingCommand
will override the handleInvalid method if they wish to perform some
command specific behavior. The base class implementation of handleInvalid
will simply redisplay the invalid page. This behavior may be deemed sufficient
in some cases.

■ If no fields are found to be invalid, the ValidatingCommand base class will
invoke the handleValid method. It is assumed that ValidatingCommand will
override the handleValid method to perform some command specific behavior.
The base class implementation of handleValid is an abstract method. This
command assumes that the application specific command developer will
implement the handleValid method.

The choice to implement this Command component as outlined above is purely a
matter of style. As pointed out the command pattern is elementary. Therefore,
personal OO style will factor largely into component authors designs.

To meet these requirements, you will design and implement the following classes:

■ Component class - mycomponents.ValidatingCommand
■ ComponentInfo class - mycomponents.ValidatingCommandComponentInfo

Additionally, you will implement a custom Java template which the IDE toolset will
use as the basis for application specific sub-types of your ValidatingCommand.

Finally, you will edit the mycomponents complib.xml to add the new component
to the Web Application Framework component library.
138 Web Application Framework Component Author’s Guide • December 2004

This example assumes the co-existence of the
mycomponents.ValidatingDisplayField. Before continuing, complete the
Develop a Non-Extensible View Component section in Chapter 3, Developing View
Components, if you have not already done so.

Create the Web Application Framework
Component Class

1. In any Java editor, create the class mycomponents.ValidatingCommand.

2. Make ValidatingCommand extend com.iplanet.jato.comand.BasicCommand.

3. Implement the appropriate constructor for the component type.

All Command components must implement a no-arg constructor.

4. Implement the remaining methods that are required to fulfill your component
specific requirements.

■ Implementation of execute method, which will enforce the component's
validation logic.

■ Default implementation of the component's handleInvalid method.

■ Abstract declaration of the component's handleValid method.

After these steps, mycomponents/ValidatingCommand.java should look as
follows:

package mycomponents;
import java.util.*;
import com.iplanet.jato.*;
import com.iplanet.jato.command.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.event.*;

public abstract class ValidatingCommand extends Object implements Command {

 public ValidatingCommand() {
 super();
 }

 public void execute(CommandEvent event) throws CommandException {
 Map map=event.getParameters();
Chapter 5 Developing Command Components 139

 try {
 boolean isValid = true;
 ViewBean viewBean = ViewBase.getRootView((View)event.getSource());
 List vFields = getValidatingTextChildren(viewBean);
 Iterator iter = vFields.iterator();

 while(iter.hasNext()) {
 ValidatingDisplayField vText = (ValidatingDisplayField)iter.next();
 if(! vText.isValid()) {
 isValid = false;
 break;
 }
 }

 if(isValid) {
 handleValid(event);
 }
 else {
 handleInvalid(event, viewBean);
 }

 }
 catch (Exception e) {
 if (e instanceof CommandException)
 throw (CommandException)e;
 else {
 throw new CommandException(
 "Error executing ValidatingCommand",e);
 }
 }
 }

 public List getValidatingTextChildren(ContainerView container) {
 List result=new LinkedList();

 String[] childNames=container.getChildNames();
 for (int i=0; i<childNames.length; i++) {
 Class childType=container.getChildType(childNames[i]);
 if (ValidatingDisplayField.class.isAssignableFrom(childType)) {
 ValidatingDisplayField child=(ValidatingDisplayField)
 container.getChild(childNames[i]);
 result.add(child);
 }
 else if (ContainerView.class.isAssignableFrom(childType)) {
 ContainerView child=
 (ContainerView) container.getChild(childNames[i]);
 result.addAll(getValidatingTextChildren(child));
 }
 }
 return result;
140 Web Application Framework Component Author’s Guide • December 2004

Create the Extensible Component's Java Template
Extensible components serve as base classes for application defined entities.
Therefore, the Web Application Framework component model provides extensible
component authors the opportunity to provide a custom Java template.

The IDE toolset will, subsequently, use the component supplied template to create
the application specific sub-type. Component authors can utilize the custom
template to enhance the application developer's experience. Component authors
may prepare the component specific Java template with a set of template tokens
defined in com.iplanet.jato.component.ExtensibleComponentInfo. For
token details, see ExtensibleComponent API.

Component authors can also utilize any arbitrary Java constructs within the Java
template (for example, import statements, methods, variables, interface declarations,
and so on). Minimally, the custom template will ensure that the new Java class
extends from the extensible component class.

In this example you will use the template to assist the developer in the
implementation of methods which are declared abstract in the base class.

In any text editor, create the template
mycomponents.resources.ValidatingCommand_java.template.

The template contents should look as follows:

Note – The tokens follow a __TOKEN__ pattern.

 }

 public abstract void handleValid(CommandEvent event) throws CommandException;

 public void handleInvalid(CommandEvent event, ViewBean invalidVB)
 throws CommandException {
 // default implementation is to just redisplay the invalid page
 invalidVB.forwardTo(event.getRequestContext());
 }

}

Chapter 5 Developing Command Components 141

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example, you will extend an existing
ComponentInfo, and in true OO style, simply augment it. You could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

In this example, you are not going beyond the functionality revealed in the earlier
component examples.

package __PACKAGE__;

import com.iplanet.jato.*;
import com.iplanet.jato.command.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.event.*;
import mycomponents.*;

/**
 *
 *
 */
public class __CLASS_NAME__ extends ValidatingCommand
{
 /**
 * Default constructor
 *
 */
 public __CLASS_NAME__()
 {
 super();
 }

 /**
 *
 *
 */
 public void handleValid(CommandEvent event) throws CommandException
 {
 // TODO - Developers must implement this method.
 }

}

142 Web Application Framework Component Author’s Guide • December 2004

1. Create the class mycomponents.ValidatingCommandComponentInfo.

2. Make ValidatingCommandComponentInfo extend
com.iplanet.jato.command.BasicCommandComponentInfo.

3. Implement the no-arg constructor.

There is no need to Implement the getComponentDescriptor() method since
you do not need to define any new properties.

4. Implement the getPrimaryTemplateAsStream() method to return a Java
template file which you want the IDE toolset to use as the starting point for new
classes derived from this extensible component.

After these steps, mycomponents/ValidatingCommandComponentInfo.java
should look as follows:

Note – In this sample code, String values have been embedded directly for ease of
demonstration. Utilize resource bundles if you anticipate the need to localize your
display strings.

package mycomponents;
import java.util.*;
import java.awt.Image;
import java.io.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.command.*;

public class ValidatingCommandComponentInfo extends BasicCommandComponentInfo {

 public ValidatingCommandComponentInfo()
 {
 super();
 }

 public ComponentDescriptor getComponentDescriptor()
 {
 // identify the component class
 ComponentDescriptor result=new ComponentDescriptor(
 "mycomponents.ValidatingCommand");

 // The name will be used to determine a name for the component instance
 result.setName("ValidatingCommand");

 // The display name will be used to show the component in a chooser
 result.setDisplayName("Validating Command");
Chapter 5 Developing Command Components 143

Augment the Component Library Manifest
The component manifest has already been created in the earlier example. Now you
will add additional information.

Note that you will add additional types of information not seen in the prior
example.

The Web Application Framework library manifest must be named complib.xml.
Within the JAR file, the Web Application Framework library manifest must be placed
in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml.

 // The description will be the tool tip text for the component
 result.setShortDescription("A validating command component");

 return result;
 }

 public String getPrimaryTemplateEncoding()
 {
/* Production version would be resource bundle driven, like this:
return getResourceString(getClass(),
"PROP_ValidatingCommand_SOURCE_TEMPLATE_ENCODING", "ascii");
*/

 return "ascii"; // NOI18N
 }

 public InputStream getPrimaryTemplateAsStream()
 {
/* Production version would be resource bundle driven, like this:

return ValidatingCommandComponentInfo.class.getClassLoader().
getResourceAsStream(
getResourceString(getClass(),
"RES_ValidatingCommandComponentInfo_SOURCE_TEMPLATE",""));
*/

 return mycomponents.ValidatingCommandComponentInfo.class.getResourceAsStream(
 "/mycomponents/resources/ValidatingCommand_java.template"); // NOI18N
 }

}
144 Web Application Framework Component Author’s Guide • December 2004

2. Add an extensible component element to declare the ValidatingCommand
component.

After these steps, the COMP-INF/complib.xml file should look as follows:

Note – For clarity, only the significant delta to the prior version of this file shown
earlier is shown here.

Recreate the Component Library JAR File
JAR up the component classes as you did in the first example, so they can be ready
for distribution as a library.

1. The name of the JAR file is arbitrary.

In this case, name it "mycomponents.jar".

2. You can omit the Java source files from the JAR.

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles.

In this case there are none.

In this case you are now including several new classes and a Java template file.

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
 <tool-info>
 <tool-version>2.1.0</tool-version>
 </tool-info>
 <library-name>mycomponents</library-name>
 <display-name>My First Component Library</display-name>

 ...

 <extensible-component>
 <component-class>mycomponents.ValidatingCommand</component-class>
 <component-info-class>mycomponents.ValidatingCommandComponentInfo</component-info-
class>
 </extensible-component>

 ...

</component-library>
Chapter 5 Developing Command Components 145

4. The mycomponents.jar internal structure should look as follows:

Test the New Component
Additional Web Application Framework IDE toolset features introduced in this
section:

■ The new Command Wizard
■ The Command Descriptor property editor

1. Deploy the new version of the library into your previously created test
application

Important IDE note: The IDE will not let you delete or copy over a JAR file that is
currently mounted.

You should shut down the IDE whenever you need to replace one of the JAR files
that is currently mounted. If you are trying to test the new version of component
library in a project that is already open inside the IDE, you should first shut down
the IDE.

Once the IDE has released its hold on the old copy of the library JAR file, you can
copy the new version of the JAR file over the old version.

After successfully deploying the new version of the library, you can reopen the
application in the IDE.

2. Create a new Command object.

mycomponents/resources/SecureViewBean_java.template
mycomponents/resources/ValidatingCommand_java.template
mycomponents/resources/XMLDocumentModel_java.template
mycomponents/MissingTokensEvent.class
mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/SecureViewBean.class
mycomponents/SecureViewBeanComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingCommand.class
mycomponents/ValidatingCommandComponentInfo.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/XMLDocumentModel.class
mycomponents/XMLDocumentModelComponentInfo.class
mycomponents/XMLDocumentModelFieldDescriptor.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
146 Web Application Framework Component Author’s Guide • December 2004

Note – If you have not done this before, complete the Web Application Framework
Tutorial).

The "New Command" wizard should now look as follows:

3. Select "Validating Command" from the component list, and complete the wizard.

4. Take the default settings and let the wizard create ValidatingCommand1 for you.

After the wizard completes, you can see that the IDE toolset has created a new class
based on the component supplied template.

You application should now contain a ValidatingCommand1 object.
Chapter 5 Developing Command Components 147

The remaining steps assume that your test application already contains two pages
that you can leverage in testing your new ValidatingCommand.

The two pages you will need are as follows:

■ Page1 from the Develop a Non-Extensible View Component section.
■ SecurePage1 from the Develop an Extensible View Component section.

You can see those ViewBeans in the test application explorer graphic just above.

First, you need to complete the coding of ValidatingCommand1.

As designed, the superclass will handle validation state detection, while the
application specific class (for example, ValidatingCommand1) is responsible for
determining what to do when the submitted page is valid.

This is a very application specific determination. In the interest of simply testing the
component, you will code its handleValid method to just display SecurePage1.
148 Web Application Framework Component Author’s Guide • December 2004

a. Open the java source for ValidatingCommand1.

b. Implement its handleValid method.

To test a ValidatingCommand component, in particular, you need a ViewBean that
contains some ValidatingDisplayFields.

You created just such a ViewBean earlier, Page1

5. Select the Page1 node.

To test any Command component, you need to set up a uses relationship between a
command client (for example, a CommandField like a Button or HREF) and your
command object.

At run-time, the CommandField will use (activate) the command object. At design-
time one establishes this uses relationship by configuring a CommandDescriptor (to
declaratively describe a Command instance) and associating this
CommandDescriptor with a CommandField.

The IDE toolset actually makes this relatively easy by allowing developers to initiate
this multi-step configuration process by selecting the CommandField first, and it
will automatically walk you through the configuration of the CommandDescriptor
as part of the CommandField configuration.

Learning is doing, so follow the steps below and see.

a. Select its Visual Components sub-node.

b. Select the node for button1 (below).

public void handleValid(CommandEvent event) throws CommandException
 {
 ViewBean next = event.getRequestContext().getViewBeanManager().getViewBean(
 SecurePage1.class);
 next.forwardTo(event.getRequestContext());
 }
Chapter 5 Developing Command Components 149

6. Edit button1's Request Handler property.

a. Click the property's ellipsis to bring up the full blown Command Descriptor
Property Editor.

This is a very sophisticated editor and takes some effort to get familiar with it, but
the payoff is substantial, as it offers exciting additional opportunities to
component authors, which is discussed later.

First you must become comfortable using the editor. The Command Descriptor
Property Editor contains a dynamic list of available CommandDescriptor types
and it also contains an embedded property sheet (at the bottom of the editor)
which will dynamically display the properties for the type of
CommandDescriptor that is selected (this will become more clear in subsequent
steps).
150 Web Application Framework Component Author’s Guide • December 2004

7. Select the Create new shared instance radio button.

Note – The meaning of "shared instance" is explained a few steps later.

8. Select the "User-Defined Command (Default)" item from the list of available
descriptor types (see graphic above).

As you select a given command descriptor type, the bottom section of the editor
displays the properties which are particular to the type of descriptor you selected.

Your property editor should look as follows:
Chapter 5 Developing Command Components 151

The embedded property sheet contains three tabs, as follows:

■ Properties.
■ Component Properties.
■ Code Generation.

9. Select the Component Properties tab.

10. Within the Component Properties tab, select the Command Class Name property
(shown below).
152 Web Application Framework Component Author’s Guide • December 2004

The Command Class Name property is of type java.lang.String.

11. Instead of directly typing into the exposed property field, select the ellipsis to
bring up the full blown editor.

You should now see that the Command Class Name property editor is actually the
same non-extensible Component browser that you have seen in several other
contexts.

In this context, however, it intentionally filters the list of components to those which
are appropriate for the context (for example, Command components).
Chapter 5 Developing Command Components 153

12. Fully expand the Current Application Components node, and you should see
"ValidatingCommand1" available (shown below).

13. Select the "ValidatingCommand1" node from the property editor, and click OK
(shown above).

Notice that the Command Class Name property in the CommandDescriptor's
embedded property sheet now contains the fully qualified class name for
ValidatingCommand1 (shown below).
154 Web Application Framework Component Author’s Guide • December 2004

Note – You could have directly typed in the fully qualified name of the Command
class (for example, <yourTestApplication>.main.ValidatingTest1) into the
Command Class Name property. However, direct editing of the Command Class
Name property should only be done in special cases (for example, where you need
to refer to a Command Class that exists only as a .class file, and is therefore not
visible for direct selection in the Command Component browser as shown above.
Chapter 5 Developing Command Components 155

14. Click OK to complete the configuration of the CommandDescriptor.

Before further configuration, spend a moment to fully understand the impact of the
previous configuration on the Page1.

Note that the value of button1's Request Handler property now reads
"commandDescriptor1" (shown below).

You might be wondering where commandDescriptor1 is.

You might also be wondering about the "Create new shared instance" radio button in
the CommandDescriptor property editor that you selected (shown above).

The following step provides the answers.
156 Web Application Framework Component Author’s Guide • December 2004

15. Expand the Page1's Non-Visual Components node (shown below).

There you will find a new non-visual component node "commandDescriptor1". It is
the CommandDescriptor object you configured just moments ago. It is a
CommandDescriptor that you configured as a "shared instance".

To visually express its "shared" nature, the IDE toolset provides the "Non-visual
Components" node to house all of these shared instances.

The "Non-Visual Components" node is an Web Application Framework component
model construct. It provides a ContainerView scoped space for the configuration of
JavaBean objects (for example, Configured Beans) which are referenceable by
properties elsewhere in the current ContainerView.

In this example, "commandDescriptor1" is a configured CommandDescriptor (which
is a JavaBean), which is referenced by button1's Request Handler property. The key
to this component model feature is that the same configured non-visual component
Chapter 5 Developing Command Components 157

can be referenced by more than one property within the current ContainerView
scope (for example, more than one button or HREF could have its
CommandDescriptor property also set to refer to commandDescriptor1).

A quick glance at the IDE toolset generated Java code for Page1 would reveal how
this is expressed in Java terms. The benefits to both component authors and
application developers are substantial. As a further clarification, not only can
multiple CommandFields (for example, Buttons, HREFs, and so on) share
commandDescriptor1 by each referring to it in their specific "Command Descriptor"
property, but any property within the current ContainerView whose type is
assignable from com.iplanet.jato.command.CommandDescriptor may be set
to refer to commandDescriptor1. In essence, the non-visual components are class
scoped, IDE configurable JavaBean objects which might be referenced in a type safe
manner by any number of other visual components within the class.

At this time, the IDE toolset does not support the ability to have one non-visual
component refer to another non-visual component.

Application developers must understand and respect the shared nature of the non-
visual components. Modifications to the configuration of an existing non-visual
component will indirectly affect all circumstances in which that instance of the non-
visual component is referenced at run-time.This is why the CommandDescriptor
editor (or more generally, the non-visual component editor) always allows one to
"Create a new shared instance" of a non-visual component. More often than not,
multiple CommandFields within a given ContainerView will not share the same
instance of CommandDescriptor, but rather, refer to different and distinctively
configured instances of CommandDescriptor.

Now you have configured Page1 to instantiate ValidatingCommand1 and invoke its
execute method whenever button1 is indicated in a form submit.

16. Test run the page flow from Page1 to SecurePage1 which is now controlled by
ValidatingCommand1.

Test run Page1

The contents of Page1.jsp should show up in the browser.
158 Web Application Framework Component Author’s Guide • December 2004

17. Enter an invalid value (any non-integer) in the ValidatingTextField text input, and
submit the page.

The page should immediately redisplay with the text of the "Validation Error
Message" property immediately following the ValidatingTextField.

18. Enter a valid value (for example, 55, or any other valid Integer), and submit the
page.

Now, instead of Page1 redisplaying as it did earlier in this guide, the logic within
ValidatingCommand1 will display SecurePage1.
Chapter 5 Developing Command Components 159

160 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 6

ConfigurableBeans (Non-Visual
Components)

ConfigurableBeans are JavaBean types which have been explicitly designated as
ConfigurableBeans in a component library manifest.

The IDE toolset automatically inspects all component library manifests and builds a
dynamic list of ConfigurableBean types in memory. After the component manifest
has been inspected, these types are said to be registered with the IDE toolset.

A snippet of the Web Application Framework Component Library manifest that
declares some ConfigurableBeans is shown below.

As you can see, the designation is straightforward.

Note that the technical name for these components is ConfigurableBeans. That is the
name by which these entities are declared within the component library manifest.
However, within the IDE toolset, application developers see the more developer
friendly term Non-Visual Components.

<configurable-bean>
 <bean-class>com.iplanet.jato.model.SimpleModelReference</bean-class>
</configurable-bean>
<configurable-bean>
 <bean-class>com.iplanet.jato.command.CommandDescriptor</bean-class>
</configurable-bean>
<configurable-bean>
 <bean-class>com.iplanet.jato.view.command.WebActionCommandDescriptor</bean-class>
</configurable-bean>
161

Only component authors need to understand that ConfigurableBeans and Non-
Visual Components are essentially the same thing.

Technically speaking, the Non-Visual Components, which are visible as a sub-node
of a ContainerView, are just a special case of the IDE toolset exposing
ConfigurableBeans as nodes.

Formally speaking, all Non-Visual Components are ConfigurableBeans, but not all
ConfigurableBeans are Non-Visual Components. There are, in fact, other cases of
ConfigurableBeans being used within the IDE toolset which do not appear as explicit
nodes. See ConfigPropDescriptors API - Value Policy.

How does the IDE toolset make use of the ConfigurableBean? What role do they
play?
162 Web Application Framework Component Author’s Guide • December 2004

ConfigurableBeans are just ordinary JavaBean types which play a well defined but
subtle role within the Web Application Framework IDE toolset. The Web Application
Framework component model relies on ConfigurableBeans to complement the
standard Web Application Framework components (Model, View, Commands).

Specifically, ConfigurableBeans complete the story begun by Web Application
Framework ConfigPropertyDescriptors. Component authors add
ConfigPropertyDescriptors to ComponentInfo whenever they need to specify a
configuration property that they want to expose for design time configuration. Each
ConfigPropertyDescriptor specifies a property "type". Application developers must
edit/configure these properties within the IDE. Since the properties are typed, the
IDE toolset can leverage this formalism, and provide a type specific editor. For
example, if the configuration property type is Boolean.TYPE, the IDE will invoke the
standard Boolean editor. This behavior is typical of any JavaBean aware IDE.

However, the Web Application Framework IDE toolset offers functionality above
and beyond that of the standard JavaBean editor. This extra functionality involves
the special treatment that the IDE toolset provides for Web Application Framework
configuration properties whose property types correspond to ConfigurableBean
designated types.
Chapter 6 ConfigurableBeans (Non-Visual Components) 163

The IDE toolset uses a lookup algorithm to determine if the configuration property
type corresponds to a registered ConfigurableBean type, and if so, it automatically
invokes one of two special ConfigurableBean editors. These special Web Application
Framework ConfigurableBean editors are shown below.
164 Web Application Framework Component Author’s Guide • December 2004

Chapter 6 ConfigurableBeans (Non-Visual Components) 165

166 Web Application Framework Component Author’s Guide • December 2004

The IDE toolset will invoke one of the two editors above based on a further subtlety
in the ConfigPropertyDescriptor, known as the value policy. The details of value
policy are beyond the scope of this section, for more information see
ConfigPropDescriptors API - Value Policy.

For this section, it is sufficient to observe that while their layout is radically
different, both of the ConfigurableBean editors provide a common core functionality.
Both of these editors provide the application developer with a dynamic list of
ConfigurableBean types which are assignable from the configuration property type.
That is the key value add of the ConfigurableBean component. It is this mechanism
which allows the IDE to seamlessly and dynamically incorporate new choices into
properties that otherwise would normally be severely restricted.

For instance, the IDE will enable the editing of a configuration property of type
CommandDescriptor with the ConfigurableBean editor that displays a dynamic list
of CommandDescriptor sub-types. The application developer first selects the type of
Chapter 6 ConfigurableBeans (Non-Visual Components) 167

CommandDescriptor from the list, and then configures an instance of that type. The
properties of the selected sub-type, of course, are dynamically exposed via
conventional JavaBean logic.

Instead of being limited to a very plain vanilla CommandDescriptor editor which
would be the case if left to the standard JavaBean handling, the Web Application
Framework IDE toolset provides an unlimited opportunity for component authors to
introduce custom ConfigurableBean types with their own sets of properties, and
potentially, custom property editors. The IDE then transparently leverages these
type/property sheet/editor combinations into the IDE as new offerings for simply
defined properties. Effectively, the ConfigurableBean editor introduces an extra level
of indirection that is extremely powerful and somewhat unprecedented. It is so
unprecedented that it may take component authors some time to actually fully
appreciate the opportunity that this offers them.

What is the relationship between Web Application Framework and the
ConfigurableBean types?

ConfigurableBeans are a value added feature of the Web Application Framework
component model.

Component authors are not required to utilize the ConfigurableBean feature. There
is no formal notion of ConfigurableBean in the Web Application Framework run-
time environment, or framework API. Rather, ConfigurableBeans are a feature
offered by the component model to empower component authors and make the IDE
experience richer for developers. Component authors are encouraged to come up
with new ConfigurableBean types to either augment existing components, or
enhance entirely new components.

The Web Application Framework Component Library does define quite a few
ConfigurableBean types. Component authors should familiarize themselves with the
usage of these ConfigurableBean types, as they provide the best illustration of the
feature. Component authors should understand the manner in which the Web
Application Framework standard components declare configuration properties
which are satisfied by ConfigurableBean types. In addition to writing new
components, component authors should understand that they can also immediately
augment the existing Web Application Framework components by providing
additional ConfigurableBean types that are appropriate for the already defined Web
Application Framework configuration properties identified below.

Following is a table to help guide your review.
168 Web Application Framework Component Author’s Guide • December 2004

Configurable Bean Example: CommandDescriptor
The obvious Command components are the extensible Command components.
Extensible Command components are custom implementations of the
com.iplanet.jato.command.Command interface, which are intended for
specialization by application developers. The specialization by application
developers will usually consist of application developers adding custom logic to
their application specific Commands. Command objects have minimal formal
structure, being arbitrary implementations of a very simple interface,
com.iplanet.jato.command.Command. Therefore, there is not as much of an
opportunity to formalize the construction of new Command types within the IDE
beyond the specification of properties.

ComponentInfo ConfigPropertyDescriptor
ConfigBeans Assignable From
Property Type

BasicDisplayFieldComponentInfo ConfigPropertyDescriptor(
"modelReference",
com.iplanet.jato.model.ModelRefere
nce.class)

com.iplanet.jato.model.Simple
ModelReference

BasicCommandFieldComponentInfo ConfigPropertyDescriptor(
"commandDescriptor",
com.iplanet.jato.command.Comman
dDescriptor.class)

com.iplanet.jato.command.Co
mmandDescriptor
com.iplanet.jato.view.comman
d.WebActionCommandDescrip
tor
com.iplanet.jato.view.comman
d.ExecuteModelCommandDes
criptor
com.iplanet.jato.view.comman
d.GotoViewBeanCommandDes
criptor

ObjectAdapterModelComponentInfo ConfigPropertyDescriptor(
"objectFactory",
com.iplanet.jato.model.object.ObjectF
actory.class)

com.iplanet.jato.model.object.f
actory.SessionAttributeFactory
com.iplanet.jato.model.object.f
actory.ApplicationAttributeFac
tory
com.iplanet.jato.model.object.f
actory.RequestAttributeFactory

BasicChoiceDisplayFieldComponentI
nfo

IndexedConfigPropertyDescriptior(
"choices",com.iplanet.view.Choice.cla
ss)

com.iplanet.jato.view.SimpleC
hoice
Chapter 6 ConfigurableBeans (Non-Visual Components) 169

Additionally, the Web Application Framework offers other Command component
opportunities. To understand this opportunity, it is necessary for the component
author to fully understand the formal role of CommandDescriptors. Effectively,
CommandDescriptors are configurable beans that allow for the design-time
configuration of Command object instances.

The Web Application Framework and the IDE toolset utilize CommandDescriptors
to allow the application developer to configure the usage of Command objects. That
is to say, there is a formal uses relationship between CommandFields and Command
objects and this relationship is mediated by CommandDescriptors. CommandFields
are Views (for example, Buttons and HREFs) which invoke Command objects when
activated. The application developer specifies which Command object will be
invoked when the CommandField is activated via the field's Command Descriptor
property.

A CommandDescriptor is a Web Application Framework object that encodes the
information needed at run-time to construct a particular instance of a Command
class and invoke it. Minimally, the CommandDescriptor specifies which Command
class should be instantiated at run-time. The CommandDescriptor also allows
developers to specify Command specific parameterized values. For instance, it is
very common for a single Command object to be associated with multiple
CommandFields. Each CommandField would employ a distinctly configured
CommandDescriptor to direct and influence the execution of the Command. For
more detailed information on this subject, see the Web Application Framework
Developer’s Guide.
170 Web Application Framework Component Author’s Guide • December 2004

Chapter 6 ConfigurableBeans (Non-Visual Components) 171

Given the role of the CommandDescriptor, the opportunity exists for component
authors to create a very rich Command component story through the combination of
non-extensible Command components and component specific CommandDescriptor
classes.

For instance, a component author can create and distribute a non-extensible
Command component plus a custom CommandDesciptor class designed to allow
developers to visually configure the invocation of the non-extensible Command
component. The custom CommandDescriptor, itself, can be distributed as a
ConfigurableBean component. ConfigurableBeans are visually exposed by the IDE
toolset as Non-Visual Components.
172 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 7

Developing and Distributing Non-
Extensible Model, Command and
ContainerView Components

Recall that there is a fundamental difference between extensible and non-extensible
components (see the earlier section “Extensible vs. Non-Extensible Components” on
page 33).

In the previous exercises, the development, distribution, and test cycle for five
components was demonstrated. All but two of those were extensible components.

■ MyTextField (non-extensible DisplayField component).
■ ValidatingDisplayField (non-extensible DisplayField component).
■ SecureViewBean (extensible ViewBean component).
■ XMLDocumentModel (extensible Model component).
■ ValidatingCommand (extensible Command component).

What about the possibility of developing and distributing non-extensible Model,
ContainerView, and Command components?

The short answer is that such components are possible, easy to develop, and easy to
distribute. A non-extensible Model, ContainerView or Command component is a
concrete Model, ContainerView, or Command that has been created within the IDE
from an extensible Model, ContainerView, or Command component. It is no different from
an application specific Model, ContainerView, or Command, except that is
subsequently distributed in a component library JAR file with the express purpose
of being incorporated into multiple applications, like any other distributed
component. The distribution technique is common for non-extensible Models,
ContainerViews, and Commands.

Why would someone develop and distribute non-extensible Model,
ContainerView, and Command components?

Non-extensible Model, ContainerView and Command components provide several
opportunities for component authors to deliver highly leveraged components to
their component consumers. The discussion which follows only scratches the surface
of this topic.
173

The most obvious opportunity provided by non-extensible Model, ContainerView,
and Command components is the opportunity for component authors to move
beyond delivering small building blocks to large reusable application and
organization sized components. Non-extensible Model, ContainerView, and
Command components typically form the top end of the component food chain.
They allow component authors to deliver arbitrarily complex, very coarse grained
components. If you consider DisplayField components to be the most fine grained
components, the non-extensible Model, ContainerView, and Command components
are at the opposite end of the component spectrum. Companies or organizations can
create very sophisticated horizontal or vertical libraries of non-extensible Model,
ContainerView, and Command components from which application developers can
assemble applications out of very large, very reusable, very powerful building
blocks.

For instance, non-extensible Model components can provide pre-packaged ready to
use access to specific organizational data. Application developers can then simply
define new Views and visually bind these applications specific Views to the pre-
packaged Model.

Non-extensible ContainerView components can deliver pre-configured visual
building blocks comprised of arbitrarily complex aggregations of smaller Views.

Non-extensible Command components can provide plug and play behavior.

Non-extensible components can be preconfigured to use other non-extensible
components within the library. For example, a ShoppingCart ContainerView
component can be pre-configured to use a companion non-extensible Model
component.

Together, such preconfigured ContainerView and Model components provide ready
to use already integrated visual presentation and data access. On top of that, the
component author could preconfigure said ContainerView component to use one or
more non-extensible Command components, thereby adding already integrated
command behavior to the composite.

Organizations can create toolboxes comprised of collections of integrated non-
extensible Model, ContainerView, and Command components. These toolboxes can
be used internally to facilitate the rapid development of applications, or even
delivered to partners as part of a broader business to business architecture.

The opportunity is boundless.
174 Web Application Framework Component Author’s Guide • December 2004

Develop a Non-Extensible Model,
ContainerView, or Command
Component

1. Develop the component within the Web Application Framework IDE as you
would an ordinary Web Application Framework application object.

■ Use the appropriate Model, ContainerView, or Command wizard to construct the
component.

■ Configure the component's properties.

■ Add arbitrary behavior to the component's Java class.

■ (ContainerView components only) Optionally add zero or more child view
components to the ContainerView.

■ (ContainerView components only) Optionally associate zero or more JSP pagelets,
to provide the rendering specification for the ContainerView component.

■ (Model components only) Optionally add zero or more model fields or model
operations to the Model.

2. Create a ComponentInfo class for the new component.

This is highly recommended, though strictly speaking, not required.

A component specific ComponentInfo is recommended to minimally provide a
component specific ComponentDescriptor. Optionally, the ComponentInfo can be
used to specify any and all of the advanced component model features which are
appropriate for non-extensible components.
Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 175

Note – To visually create any non-extensible Model, ContainerView, or Command
components within the IDE, you must construct the components within the context
of an Web Application Framework application. That is to say, you must, first create
an Web Application Framework application before you can leverage the IDE toolset
to create any new non-extensible Model, ContainerView, or Command components.
This is because the IDE toolset does not currently support a "library only design"
mode. Future versions of the Web Application Framework IDE toolset might allow
developers to choose between a "new library" or a "new application". However,
currently, you can only leverage the Web Application Framework new object
wizards within a Web Application Framework application. The fact that a
component author will design these new components within an "application" has no
bearing on the future independence of the components. The application merely
provide the IDE toolset recognized context that allows the component author to
leverage the complete visual IDE feature set during the authoring process. The
ultimate end product of the component authoring will be the component's Java
resources, which are totally independent of the application in which they might have
been originally visually designed.

Assuming that you intend to create a new Web Application Framework application
merely for the purposes of designing some new non-extensible Model,
ContainerView, or Command components, the name of the application itself does
not matter. One recommended approach is to consider the application as a
convenient "test application" for your new non-extensible Model, ContainerView, or
Command components. After you are satisfied with their performance within the
test application, you add the new components to a component library JAR file.

The IDE Toolset will treat a Web Application Framework component's
ComponentInfo Java source as "part" of the component. This means that the
ComponentInfo Java source node will appear as a child of the component's primary
node, just as the component's Java source appears as a child of the component's
primary node.
176 Web Application Framework Component Author’s Guide • December 2004

Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 177

Distributing a Non-extensible Model,
ContainerView, or Command
Component

1. Add a component element to the component library's complib.xml with one
additional sub-element not discussed previously.

■ The component element must include a design-reference-resource sub-
element.

■ The design-reference-resource sub-element must specify the location of the
component's object definition resource.

2. Add the non-extensible component to a Web Application Framework component
library JAR.

■ Include any classes and other component specific resources as you would for any
Web Application Framework component.

■ Include the component's object definition file. This is the key distinction, as this is
not required for the other components discussed in this guide.

■ Include any special "Additional Files" resources. See “Automated Unpacking of
"Additional Files"” on page 199.

Common additional file resources will include ContainerView components'
associated JSP pagelet files.

An example of a non-extensible component entry in a complib.xml is as follows:

The emphasis on non-extensible Models, ContainerViews, and Commands being
created within the IDE is intentional and important. All preceding component
examples in this guide did not assume or require that the component types
themselves be developed inside of the IDE. The visual use of the components within
the IDE did require the use of the Web Application Framework enabled IDE, but the
authoring of the component classes, ComponentInfo, complib.xml, and the
preparation of the component library JAR files did not assume or require the use of
the IDE.

<component>
 <component-class>mycomponents.MyFooCommand</component-class>
 <component-info-
class>com.iplanet.jato.command.BasicCommandComponentInfo</component-info-class>
 <design-reference-resource>/mycomponents/MyFooCommand.command</design-reference-
resource>
</component>
178 Web Application Framework Component Author’s Guide • December 2004

However, with non-extensible Models, ContainerViews, and Commands that is not
the case. They must be developed within the IDE because it is only the IDE which
can generate the non-extensible component metadata, called the object definition
file. In short, the key to distributing a non-extensible Model, ContainerView, or
Command is to distribute its object definition file along with the class and
ComponentInfo.

Can a component author mix non-extensible Model, Command, and ContainerView
components in the same library with extensible Model, Command, and
ContainerView components?

Absolutely yes. This is expected and encouraged.

After non-extensible Model, Command, and ContainerView components have been
distributed in a Web Application Framework component library, how do application
developer's make use of the components?

The non-extensible Model, Command, and ContainerView components within a
given Web Application Framework component library will appear in the IDE toolset
in exactly the same IDE contexts that the current application's non-extensible
components appear. If this sounds tautological, it is intentionally so. Its points out
that from the Web Application Framework IDE toolset's perspective all Model, View
and Command objects are components. As far as the IDE toolset is concerned, it
does not matter whether it discovers the components in a component library JAR or
within the current application space.

The images below will demonstrate this point by showing that the various
component choosers within the IDE toolset allow the application developer to
choose freely and transparently between library supplied non-extensible
components and application defined non-extensible components.
Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 179

180 Web Application Framework Component Author’s Guide • December 2004

Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 181

The Object Definition File (non-
extensible component metadata)
Suffice to say that both component authors and application developers should
understand that the object definition files are produced by the IDE toolset and
should be treated as first class application resources.

■ They should be preserved in source code control systems along with the
conventional application resources.

■ They should not be edited by hand.

■ They have zero run-time value and need not be deployed to the servlet container.

■ They do need to be distributed with non-extensible Model, ContainerView, and
Command components.

The following details of the object definition files are provided for information
purposes only. These are implementation details of the Web Application Framework
component model that neither component authors nor application developers are
required to know
182 Web Application Framework Component Author’s Guide • December 2004

The Web Application Framework IDE toolset stores design-time state in XML format
within its object definition files. The term object definition file is an arbitrary
designation for these files. The object definition files:

■ Are XML files that conform to the Web Application Framework Model,
ContainerView and Command DTDs.

■ Are the authoritative representation of Web Application Framework design-time
state.

■ They are produced by the IDE toolset to capture the application developer
design-time decisions (for example, object hierarchy declarations property
configurations).

■ They are read by the IDE toolset to restore the design-time state across IDE
sessions.

■ The IDE toolset generates Java code within the component's Java source file
which is a Java equivalent of the design-time state stored in the object
definition file. This code is generated into the IDE’s Java source code editor
protected blocks (for example, non-editable blocks).

■ Have file suffixes recognized by the Web Application Framework IDE toolset
.model, .viewbean, .cview, and .command.

■ Have no run-time value at all.

The IDE toolset generates Java code within the application class which is a Java
equivalent of the design-time state stored in the object definition file. Therefore,
the object definition files have absolutely no run-time role or presence.
Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 183

184 Web Application Framework Component Author’s Guide • December 2004

CHAPTER 8

Design Actions

This section assumes that you have already read “Develop Your First Component”
on page 19 and “Developing Model Components” on page 89.

Developing Extensible Components
Which Have Component Design Actions
This section provides a description of the basic steps involved in adding design
actions to your extensible component.

Component design actions encapsulate arbitrary design time behavior for a
component. The design action might post an "About" or "Credits" dialog, perform
validation, autoconfigure the component, synchronize support files, display
messages or warnings, open complex editors and wizards, and even read and edit
the finest details of the component object model.

To support component design actions, a new interface to Web Application
Framework component architecture, called DesignableComponentInfo, is
introduced. DesignableComponentInfo is an optional specialization of
ExtensibleComponentInfo that allows the component author to define special design
time behavior for extensible components. The practical use of
DesignableComponentInfo is to expose design actions to the developer in the IDE.
Any extensible command, mode,l and view ComponentInfo classes may optionally
implement DesignableComponentInfo to expose
ComponentDesignActionDescriptors.

The IDE module only exposes design actions for extensible components and
therefore, the DesignableComponentInfo specializes ExtensibleComponentInfo to
impose this rule.

When available, the IDE uses ComponentDesignActionDescriptors to present a
submenu list of the defined design actions in the component node's contextual menu
"Design Actions".
185

Because DesignableComponentInfo is a recent addition to the Web Application
Framework component architecture, only the Bean Adapter Model uses
DesignableComponentInfo to expose the Update Properties design action.

What is a Component Design Action?
Although a component design action may be used to perform practically anything,
here are some guidelines to consider.

The standard mechanism a developer expects to use when configuring an extensible
component during design time is the property sheet of the primary component node
and/or the contained property sheets of subnodes. The component author should
first turn to automatic support for config properties and optionally any custom
editors which may be applicable for complex config properties. If component
authors are using design actions to take the place of config properties or custom
editors, they might be going in the wrong direction.

Discrete component config property editors alone are often not enough for
managing the design aspects of certain components. An editor for a config property
will not have scope to other config properties or other parts of the component object
model. Therefore, it is not possible to edit a subset of related config properties as a
whole. In the case of models and container views, there is no way for a collection of
model fields or child views to be edited together. Also, there is currently no support
in the component architecture to specify wizards or initialization mechanisms to be
used by the developer when creating a new component.

A solution to these issues is the component design action. You will see later in this
section that, while performing a component design action, the component author is
provided a context in which very powerful design changes (even continuous and re-
entrant design changes) might be implemented.

A good example of a component design action can be found in Bean Adapter Model
in the Web Application Framework component library. Although the Bean Adapter
Model has a config property "Bean Type" which allows the developer to specify the
type/class of the adapted Java Bean, there is no easy way for the developer to
automatically generate model fields for the properties of the Bean. The Update
Properties design action of the Bean Adapter Model validates the Bean Type config
186 Web Application Framework Component Author’s Guide • December 2004

property and ensures that at least the full set of bean properties have representative
model fields. This design action supports continuous design, because the action can
be used as the adapted Bean changes.

An opportunity is provided with component design actions for component authors
to publish "black box" components, which may be configured by a mechanism which
does not use the component object model. For instance, an existing view or model
component, or the foundation of a new component, which uses a custom runtime
XML descriptor or properties file, might already exist. In this case, the component
author needs a way to provide editors for this custom configuration. Advanced APIs
of the ComponentDesignContext support such situations.

The rest of this section assumes that you has reviewed the JavaDocs for the
com.iplanet.jato.component.design and
com.iplanet.jato.component.design.objmodel packages.

A simple example of how to specify a ComponentDesignAction for an extensible
component using the DesignableComponentInfo and
ComponentDesignActionDescriptor APIs is presented.

Exposing Design Action in ComponentInfo
To expose component design actions for your extensible component, the first step is
to implement DesignableComponentInfo.

In the example shown below, you build onto the XMLDocumentModel example. You
will create a simple design action called "About" which presents an informational
dialog to the developer dumping some component details including name, logical
name, and config properties.

1. Have your component info implement DesignableComponentInfo.

2. Implement method getComponentDesignActionDescriptors() (see code
example shown below).
Chapter 8 Design Actions 187

3. Because the ComponentDesignActionDescriptor bean requires the
ComponentDesignAction class to be assigned, you also need to create the action
class.

The minimum that you need is a class implementing ComponentDesignAction,
including the performAction(ComponentDesignContext) method.

A simple technique is to have an inner class of the component info define the action
class as is shown in the code example below, where there is the static inner class
AboutDialog.

The component design action mechanism will only call the default (no arg)
constructor of the design action class. Therefore, avoid using alternate constructors,
for they will have no use.

The performAction() method is not required to do anything other than return
promptly; in our minimal example below we will post a modal dialog and call a
helper method aboutDisplayMessage()

In this sample code, String values have been embedded directly for ease of
demonstration. Utilize resource bundles if you anticipate the need to localize your
display strings.

The following code represents what needs to be added to the
XMLDocumentModelComponentInfo.java. Non-relevant code has been snipped
as represented by the ellipsis " . . ."

. . .
import com.iplanet.jato.component.design.*;
import com.iplanet.jato.component.design.objmodel.*;

public class XMLDocumentModelComponentInfo extends ExtensibleModelComponentInfo
 implements DesignableComponentInfo
{
 . . .

 public ComponentDesignActionDescriptor[] getComponentDesignActionDescriptors()
 {
 if(null != designActionDescriptors)
 return designActionDescriptors;

 List descriptors=new ArrayList();

 ComponentDesignActionDescriptor descriptor = new
ComponentDesignActionDescriptor(AboutDialog.class);
 descriptor.setName("About");

 descriptor.setDisplayName("About");
 descriptor.setShortDescription(
 "Displays a small list of component details");
 descriptors.add(descriptor);
188 Web Application Framework Component Author’s Guide • December 2004

In the AboutDialog design action, a Swing informational modal dialog box is
presented to the developer. The "MainWindow" property of the
ComponentDesignContext is used to place the Swing visual component. The
message presented comes from the helper method aboutDisplayMessage().

 designActionDescriptors = (ComponentDesignActionDescriptor[])
 descriptors.toArray(
 new ComponentDesignActionDescriptor[descriptors.size()]);
 return designActionDescriptors;
 }

 public static class AboutDialog implements ComponentDesignAction
{
 public void performAction(ComponentDesignContext context)
 throws DesignActionException
 {
 javax.swing.JOptionPane.showMessageDialog(
 context.getMainWindow(),
 aboutDisplayMessage(context),
 "XMLDocumentModel About Design Action",
 javax.swing.JOptionPane.INFORMATION_MESSAGE);
 }

 private String aboutDisplayMessage(ComponentDesignContext context)
 {
 StringBuffer msg = new StringBuffer(
 "Component Name: " +
 context.getComponentInfo().getComponentDescriptor(
).getName() +
 "\nComponent Logical Name: " +
 context.getComponentLogicalName() + "\n");
 ConfigPropertyNode[] props =
((ConfigPropertyNodeContainer)
 context.getPrimaryObjectModel()).getConfigProperty
Node();
 for(int i=0;i<props.length;i++)
 {
 props[i].dump(msg, "\t");
 msg.append("\n");
 }
 return msg.toString();
 }
 }

 . . .

 private ComponentDesignActionDescriptor[] designActionDescriptors;
}

Chapter 8 Design Actions 189

Again, the various properties of the ComponentDesignContext are used to acquire
information about the component including its name, logical name, and you loop
through the config properties and dump their values.

To access the config properties, advantage is taken of object model interfaces
ConfigPropertyNodeContainer and ConfigPropertyNode. This AboutDialog
example can be used on Command, ContainerView, ViewBean, and Model extensible
components. This example is not Model specific.

After compiling, packaging, and using this component in an application, instances of
XMLDocumentModel will provide the design action "About".

The result of performing the design action is:
190 Web Application Framework Component Author’s Guide • December 2004

APPENDIX A

Component Library Structure

Component Library Overview
Web Application Framework components are packaged and distributed in ordinary
JAR files. The JAR file must contain:

■ A component library manifest (/COMP-INF/complib.xml)

■ Component library specific Java resources (component classes, ComponentInfo
classes, resource bundles, component icon images, and any other ancillary files).
Any classes (component, ComponentInfo, and any other ancillary files) should be
placed in the JAR in accordance with standard Java convention.

Optionally, a Web Application Framework component library JAR may contain:

■ A special directory named /webapp

The contents of the /webapp directory are called the "Additional Files". This is a
Web Application Framework IDE toolset value add feature that allows developers
to distribute arbitrary additional files inside their component library JAR. The
Web Application Framework IDE toolset will "unpack" these additional files into
the Web application development environment. See “Automated Unpacking of
"Additional Files"” on page 199.

Component Library Structure
The contents of a Web Application Framework component library JAR must be
structured as follows:
 191

The Component Manifest
Web Application Framework requires that each component library JAR contain a
special Web Application Framework component library manifest file. The
component library manifest file is a simple XML document that describes the
collection of components within the library. A component library manifest may
declare any number of components and associated Web Application Framework
component model resources.

The IDE toolset automatically introspects each JAR file mounted in an Web
Application Framework application's WEB-INF/lib directory. It specifically looks
inside the JAR for the component library manifest file. If the IDE toolset finds a valid
component library manifest file in the prescribed location within the JAR file, the
IDE toolset will expose any properly declared components for design time
utilization within the IDE toolset. If it does not find the component library manifest
file in the expected location within the JAR file, or if the component library manifest
is invalid, the IDE toolset will not recognize the JAR as a component library.

The component library manifest must comply with the following strict rules:

■ The component library manifest file must be named complib.xml.

■ The complib.xml file must be a well formed XML file.

■ The complib.xml file must comply with the jato-component-library_1_0.dtd
(shown below).

■ The complib.xml file must be located in the component library JAR's /COMP-
INF directory.

jato-component-library_1_0.dtd

/COMP-INF/complib.xml
/[Java classes and resources]
/webapp/[additional files intended for IDE toolset design-time auto-extraction]

Note: The webapp directory is optional

<!--
The component-library element is the root element of the component manifest
-->
<!ELEMENT component-library (tool-info, library-name, display-name,

description?, legal-notice?, icon?, interface-version, implementation-
version,

author-info?, taglib*, component*, extensible-component*,
configurable-bean*)>
192 Web Application Framework Component Author’s Guide • December 2004

<!--
The tool-info elements contains information about the tool environment this
library was written against
-->
<!ELEMENT tool-info (tool-version)>

<!--
The tool-version element contains the interface version of Web Application
Framework
Framework/JATO this library targets. Should be a dot-separated version number,
for example "2.1.0".
-->
<!ELEMENT tool-version (#PCDATA)>

<!--
The library-name element contains the internal name of the component library.
This name is expected to be globally unique, and should follow the standard
Java package naming convention. For example, the library name of the Web
Application Framework/JATO component library is "com.iplanet.jato", the root of
its package structure.
-->
<!ELEMENT library-name (#PCDATA)>

<!--
The display-name element contains a short display name of the library which
will be presented in GUI tools.
-->
<!ELEMENT display-name (#PCDATA)>

<!--
The description element is used to contain descriptive text about its parent
element.
-->
<!ELEMENT description (#PCDATA)>

<!--
The legal-notice element contains legal or copyright text that should accompany
this library. This element is meant to provide an additional opportunity to
keep this information in proximity to the library itself; however it should not
be considered a sufficient means of conveying licensing terms or other legally
binding terms to users of the library.
-->
<!ELEMENT legal-notice (#PCDATA)>

<!--
The icon element contains a small-icon and a large-icon element
which specify the location within the Web application for a small and
large image used to represent the Web application in a GUI tool. At a
Appendix A Component Library Structure 193

minimum, tools must accept GIF format images.
-->
<!ELEMENT icon (large-icon?, small-icon?)>

<!--
The large-icon element contains the resource name within the library
of a file containing a large (32x32 pixel) icon image. The resource name must
follow standard Java resource name syntax, with individual path elements
separated by forward slashes ("/").
-->
<!ELEMENT large-icon (#PCDATA)>

<!--
The small-icon element contains the resource location within the library
of a file containing a small (16x16 pixel) icon image. The resource name must
follow standard Java resource name syntax, with individual path elements
separated by forward slashes ("/").
-->
<!ELEMENT small-icon (#PCDATA)>

<!--
The author-info element contains information on the author(s) of this library.
-->
<!ELEMENT author-info (author*, info-resource*) >

<!--
The author element contains information about a particular author of the
library.
-->
<!ELEMENT author (author-name, description?, author-contact?) >

<!--
The author-name element contains the author's full name.
-->
<!ELEMENT author-name (#PCDATA)>

<!--
The author-contact element contains the author's contact information, usually
an email address.
-->
<!ELEMENT author-contact (#PCDATA)>

<!--
The info-resource element contains information describing external
informational resources relevant to this library, such as a link to a
publisher's homepage, a public link to API documentation, or a support email
address.
-->
194 Web Application Framework Component Author’s Guide • December 2004

<!ELEMENT info-resource (info-resource-name, description?, info-resource-
contact?) >

<!--
The info-resource-name element contains an arbitrary descriptive name of the
resource that can be presented to the user of the library.
-->
<!ELEMENT info-resource-name (#PCDATA)>

<!--
The info-resource-contact elements contains the actual contact information
for the resource, such as an email address or HTTP link.
-->
<!ELEMENT info-resource-contact (#PCDATA)>

<!--
The interface-version element contains the interface version of this library,
used to determine interface compatibility of the contained code. The version
should be a dot-separated numeric version number, such as "1.0.0". The version
number can contain as many dot-separated elements as desired.
-->
<!ELEMENT interface-version (#PCDATA)>

<!--
The implementation-version element contains the interface version of this
library, used to determine the implementation version of the contained code.
This version number usually takes the form of a timestamp or build number.
The version should be a dot-separated numeric version number, such as
"2003.1.31". The version number can contain as many dot-separated elements as
desired.
-->
<!ELEMENT implementation-version (#PCDATA)>

<!--
The taglib element declares any JSP tag libraries included in this library.
Declared tag libraries will be automatically unpacked from the library and
registered in the web.xml of the application under this URI.
-->
<!ELEMENT taglib (taglib-uri, taglib-resource, taglib-default-prefix)>

<!--
The taglib-uri element contains a logical URI that will be used to identify the
tag library within the application. This URI will be registered to the declared
tab library descriptor in the application's web.xml file. Note that this URI
is purely logical and need not have any relation to the physical location of
the tag library descriptor file (which will be unpacked into a physical location
determined solely by the GUI tool). This URI must match the TaglibURI property
value in a component's JspTagDescriptor.
-->
Appendix A Component Library Structure 195

<!ELEMENT taglib-uri (#PCDATA)>

<!--
The taglib-resource element contains the resource name of the tag library's
taglib descriptor (.tld) file. The resource name must follow standard Java
resource name syntax, with individual path elements separated by forward
slashes ("/"). This file will automatically be extracted and registered with
the application.
-->
<!ELEMENT taglib-resource (#PCDATA)>

<!--
The taglib-default-prefix element specifies the tag prefix that should be used
for this tag library in JSP pages that use the tag library. For example, the
default prefix for the Web Application Framework/JATO tag library is "jato".
This prefix may be changed by the JSP author on any given page; this element
simply
gives the default name of the prefix when the tag library declaration is
automatically
added to a page.
-->
<!ELEMENT taglib-default-prefix (#PCDATA)>

<!--
The component element declares a non-extensible component within this library.
All components must be declared in the component manifest in order to be
recognized at design-time.
-->
<!ELEMENT component (component-class, component-info-class, design-reference-
resource?)>

<!--
The extensible-component element declares an extensible component within this
library. All extensible components must be declared in the component manifest
in order to be recognized at design-time.
-->
<!ELEMENT extensible-component (component-class, component-info-class)>

<!--
The component-class element specifies the fully-qualified class name of the
component.
-->
<!ELEMENT component-class (#PCDATA)>

<!--
The component-info-class element specifies the fully-qualified name of the
component's ComponentInfo class.
-->
196 Web Application Framework Component Author’s Guide • December 2004

Automated Unpacking of Component Tag
Libraries (TLD) Files
As part of a Web Application Framework component library, a library developer
may provide one or more tag libraries to support rendering of the library's View
components. Tag libraries are declared in the component library's component
manifest file, and when the IDE toolset recognizes the component library, its tag
library descriptors (.tld files) are automatically unpacked from the library JAR file
for use by the application. In addition, the IDE toolset automatically adds tag library
entries to the web.xml file.

Tag library descriptor files are unpacked to a special location under the application's
WEB-INF/tld directory based on the name of the library to ensure that same-named
files from different libraries do not conflict. In this scheme, library names are
converted to directory names by replacing dots (".") with underscores ("_"). For
example, the Web Application Framework Component Library's internal library
name is "com.iplanet.jato", which is translated to "com_iplanet_jato" when
unpacking the tag library descriptor. The SCL's tag descriptor file ultimately appears
under the WEB-INF/tld/com_iplanet_jato directory in your application.

<!ELEMENT component-info-class (#PCDATA)>

<!--
The design-reference-resource specifies the metadata file resource that will
be used at design-time to inspect the component. Components without this
declaration will generally not be inspectable at design-time other than through
ComponentInfo. The resource name must follow standard Java resource name
syntax, with individual path elements separated by forward slashes ("/").

-->
<!ELEMENT design-reference-resource (#PCDATA)>

<!--
The configurable-bean element declares a non-visual bean component contained
within this library.
-->
<!ELEMENT configurable-bean (bean-class)>

<!--
The configurable-bean element specifies the fully-qualified class name of the
non-visual component bean.
-->
<!ELEMENT bean-class (#PCDATA)>
Appendix A Component Library Structure 197

The tag descriptor's derived physical directory name is automatically registered to a
logical resource name in the web.xml file for use by the application. This logical
name is chosen by the component library author and specified in the component
library manifest. In the SCL's case, the descriptor is registered as the resource /WEB-
INF/jato.tld.

The tag descriptor unpacking mechanism makes use of timestamps to determine if
an existing file should be overwritten when a new version of the library is added to
an application. This feature ensures that upgrading of an application's component
libraries is just a single step for a developer.

Referring to the example "mycomponents" library described in this guide. The
library author has created a tag library tld file called mycomplib.tld and
arbitrarily placed it in the mycomponents package. Therefore, looking into the
mycomponents.jar file, the tld appears physically located as follows:

Inside of the complib.xml, the component author has declared a taglib element as
follows:

Based on the configuration described by the taglib element, whenever the
mycomponens.jar is deployed into a Web Application Framework Web
application's WEB-INF/lib directory, the IDE toolset will automatically perform the
following steps. These steps will allow the run-time JSP engine to properly locate the
tag library. This frees the application developer from having to perform any
configuration.

■ Automatically adds the following entry to the Web application's web.xml file,
which sets up a conventional servlet container run-time mapping between the
logical resource and its physical location.

/COMP-INF/complib.xml
/mycomponents/*.class
/mycomponents/mycomplib.tld
/mycomponents/...

<taglib>
 <taglib-uri>/WEB-INF/mycomplib.tld</taglib-uri>
 <taglib-resource>/mycomponents/mycomplib.tld</taglib-resource>
 <taglib-default-prefix>mycomp</taglib-default-prefix>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/mycomplib.tld</taglib-uri>
 <taglib-location>/WEB-INF/tld/mycomponents/mycomplib.tld</taglib-location>
</taglib>
198 Web Application Framework Component Author’s Guide • December 2004

■ Automatically extracts the mycomplib.tld file from the mycomponents.jar,
and places it into the following location:

Also, at design-time, as the developer builds application Views, the IDE toolset will
perform the following:

■ Automatically ensure that the appropriate tag library declaration is present in any
associated JSP files. This declaration contains the "prefix" as specified by the
component author in the complib.xml's taglib element.

■ Automatically ensures that as the IDE toolset adds additional component library
specific tags to the JSP, it also utilizes the prefix declared in the taglib directive.
For example:

Web Application Framework recognizes that taglib prefix is a JSP page specific
directive. J2EE allows each page to declare arbitrary prefixes for the included tag
libraries via the tablib directive. The IDE toolset will always utilize the current taglib
directive declared prefix as it parses the JSP looking for tags, or whenever it
automatically inserts additional tags into the JSP in conjunction with the developer's
View design decisions. The IDE toolset merely utilizes the complib.xml specified
taglib "prefix" to insert an initial taglib directive into the application JSP files.
Application developers can subsequently manually change the prefix declared in the
page specific taglib directive. The IDE toolset thereafter utilizes the newly declared
prefix for any additional tags, but it will not automatically change any already
declared tags to coincide with the adjusted prefix. This is an application developer
issue. It is mentioned here so that component authors fully understand the design-
time usage of complib.xml's taglib element.

Automated Unpacking of "Additional Files"
Optionally, a Web Application Framework component library JAR might contain
arbitrary "Additional Files" arranged hierarchically underneath the /webapp
directory.

Do not confuse a Web Application Framework component library JAR's internal /webapp
directory with the common servlet container directory called "webapps". There is absolutely
no relationship between the two.

[current app]/WEB-INF/tld/mycomponents/mycomplib.tld

<%@taglib uri="/WEB-INF/mycomplib.tld" prefix="mycomp"%>

<mycomp:validatingTextField name="validatingTextField1"/>
Appendix A Component Library Structure 199

The hierarchical arrangement of the files within the Web Application Framework
component library JAR's /webapp root is totally up to the discretion of the
component library author. As a value added feature, the Web Application
Framework IDE tools will "unpack" these additional files into the Web application
development environment in direct correspondence to the additional files location
relative to the /webapp root.

Note – This is a pure value added, totally optional, "resource distribution"
opportunity provided to component authors by the Web Application Framework
IDE toolset. The assumption is that the extracted files will provide some arbitrary
design time or run time value as determined by the component author. It is further
assumed that to provide this arbitrary value, the extracted files must be extracted to
the Web application's file system. Otherwise, they need not be placed in the
"Additional Files" (for example, /webapp) section of the JAR, and should be placed
in the conventional location within the JAR where they will be picked up by the Java
runtime.

For example, consider a mycomponents.jar that contains the following /webapp
structure:

When the mycomponents.jar, with the above content, is deployed into a Web
Application Framework application, the IDE toolset will extract the /webapp
content into the particular Web Application Framework application's structure.

For example, consider a Web Application Framework application called "AppOne"
which has the following initial structure created by the Web Application Framework
IDE toolset.

/mycomponents/...
/mycomponents/mycomplib.tld
/webapp/mycomponents/foo.jsp
/webapp/mycomponents/bar.jsp
/webapp/mycomponents/images/banner.gif
/webapp/WEB-INF/jato/templates/jsp/MyViewBeanJSP.jsp
/webapp/WEB-INF/jato/templates/jsp/FooContainerViewJSP.jsp
/webapp/WEB-INF/lib/helper.jar
/webapp/WEB-INF/mycomponents/config-files/configA.xml
/webapp/WEB-INF/mycomponents/config-files/configB.xml

AppOne/index.html
AppOne/WEB-INF/classes/...
AppOne/WEB-INF/jato/templates/jsp/DefaultViewBeanJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/DefaultContainerViewJSP.jsp
AppOne/WEB-INF/lib/jato-2_1_0.jar
AppOne/WEB-INF/tld/com_iplanet_jato/jato.tld
200 Web Application Framework Component Author’s Guide • December 2004

After "deploying" the mycomponents.jar (for example, dropping it into
AppOne/Web-INF/lib), the IDE toolset will discover that it is a Web Application
Framework component library and extract the "additional files" which will result in
the creation of the following integrated structure:

Component library authors can leverage the Additional Files Feature to provide any
arbitrary resources which they consider appropriate for extraction. Examples of
common Additional Files are (but not limited to):

■ Component specific JSP files (for example, component pagelets).

■ Arbitrary Web application document resources (for example, images, static HTML
pages, style sheets, JavaScript).

■ Additional arbitrary JAR files.

For example, assume that the component library relies on a custom XML parsing
library. The component author can "bundle" that JAR inside the component
library JAR. This is potentially a more convenient distribution model than
requiring the application developer to deploy these extra libraries manually.

■ Arbitrary Web application WEB-INF resources.

For example suppose the component author designs a set of components which
support extra configuration via arbitrary configuration file(s). These configuration
files can be "bundled" with the component library and extracted into the
appropriate location via the Additional Files mechanism.

AppOne/index.html
AppOne/mycomponents/foo.jsp
AppOne/mycomponents/bar.jsp
AppOne/mycomponents/images/banner.gif
AppOne/WEB-INF/classes/...
AppOne/WEB-INF/jato/templates/jsp/DefaultViewBeanJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/DefaultContainerViewJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/MyViewBeanJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/FooContainerViewJSP.jsp
AppOne/WEB-INF/lib/jato-2_1_0.jar
AppOne/WEB-INF/lib/mycomponents.jar
AppOne/WEB-INF/lib/helper.jar
AppOne/WEB-INF/mycomponents/config-files/configA.xml
AppOne/WEB-INF/mycomponents/config-files/configB.xml
AppOne/WEB-INF/tld/com_iplanet_jato/jato.tld
AppOne/WEB-INF/tld/mycomponents/mycomplib.tld
Appendix A Component Library Structure 201

Note – The automated extraction of the component library tld file(s) is handled via
a different mechanism. The component library tld file(s) should not be located under
the /webapp root, but rather placed in their normal "resource" appropriate location
within the component library JAR (for example, mycomplib.tld above). See
“Automated Unpacking of Component Tag Libraries (TLD) Files” on page 197.
202 Web Application Framework Component Author’s Guide • December 2004

Index
A
application developers, 14

B
book organization, 8

C
CBD - Component-Based Development, 13
CommandDescriptor, configurable bean

example, 169
component authors, 13
component class, 16
component class, create the, 20
Component Class, Web Application Framework,

create the, 50, 72, 95, 139
Component Design Action, what is a?, 186
component library, 13, 16
component library JAR, 15
Component Library JAR File, create the, 24
component library JAR file, distribute the, 31
Component Library JAR File, recreate the, 61, 80,

110, 145
Component Library Manifest, augment the, 59, 79,

109, 144
Component Library Structure, 191
component model, 13
component type, decide the, 19
component, develop your first, 19
component, test, 25, 61, 81, 111
Component-Based Development (CBD), 13

ComponentInfo class, 17, 40
ComponentInfo Class, create the, 21, 54, 76, 105, 142
ComponentInfo, Design Action in, exposing, 187
ComponentInfo, specialized, other types, 42
components, 13
components, detailed, 31
components, extensible, 34
components, non-extensible, 35
configurable bean example,

CommandDescriptor, 169
ConfigurableBean, 162
ConfigurableBeans (Non-Visual Components), 161

to 172
ContainerViewComponentInfo, 47
Custom JSP TagHandler Class, create a, 53

D
Design Action in ComponentInfo, exposing, 187
Design Action, component, 186
Design Actions, 185 to 190
design-time functionality, XML document model

component should support, 92
Develop Your First Component, 19
Developing and Distributing Non-Extensible Model,

Command and ContainerView Components, 173
to 183

Developing Command Components, 137 to 159
Developing Components, 19 to 43
Developing Model Components, 89 to 135
Developing View Components, 45 to 87
 203

Distributable vs. Application-Specific (Non-
Distributable) Components, 32

E
ExecutingModelComponentInfo interface, 89
Extensible and Non-Extensible Components in the

IDE, 35
Extensible Command Component, developing, 137
Extensible Component’s Java Template, create

the, 74, 104, 141
Extensible Components, 34
Extensible Components Which Have Component

Design Actions, developing, 185
Extensible Model Component, developing a, 90
extensible Model components, 89
Extensible View Component, develop an, 69
ExtensibleComponentInfo interface, 42

I
IDE, Extensible and Non-Extensible Components in

the, 35

J
JAR File, Component Library, recreate the, 61, 80,

110, 145
jato-component-library_1_0.dtd, 192
Java Template, Extensible Component’s, create

the, 141

K
Key XML Document Model Design Points, 91

M
MissingTokensEvent Class, create the, 71
Model components, 89
ModelComponentInfo interface, 89

N
non-extensible component metadata - Object

Definition File, 182
Non-Extensible Components, 35
non-extensible Model component, can you

create?, 90
Non-Extensible Model Component, developing

a, 90

Non-Extensible View Component, develop a, 47

O
Object Definition File (non-extensible component

metadata), 182
Overview and Component Architecture, 13 to 17

P
Preface, 7 to 12

R
run-time functionality, XML document model

component should support, 92

S
Ship It?, 31, 69, 86, 135

T
Tag Library TLD File, create a new, 57
TLD (Component Tag Libraries) Files, automated

unpacking of, 197

V
Validator Interface, create one implementation of

the, 49
Validator Interface, create the, 48
ViewComponentInfo, 46

W
Web Application Framework component class, 16
Web Application Framework Component Class,

create the, 50
Web Application Framework Component

Library, 15, 16
Web Application Framework component, what is

it?, 14

X
XML Document Model Design Points, key, 91
204 Web Application Framework Component Author’s Guide • December 2004

	Web Application Framework Component Author’s Guide
	Contents
	Before You Begin
	Overview and Component Architecture
	Component-Based Development (CBD)
	What is a Web Application Framework Component?
	Web Application Framework Component Libraries
	The Web Application Framework Component Library
	The Component Class
	The ComponentInfo Class

	Developing Components
	Develop Your First Component
	Decide the Type of the Component
	Create the Component Class
	Create the ComponentInfo Class
	Create the Component Library Manifest
	Create the Component Library JAR File
	Test the Component
	Ship It!

	Web Application Framework Components in More Detail
	Distributable vs. Application-Specific (Non- Distributable) Components
	Extensible vs. Non-Extensible Components
	Extensible Components
	Non-Extensible Components
	Extensible and Non-Extensible Components in the IDE

	ComponentInfo in More Detail
	Specialized ComponentInfo Interfaces
	ExtensibleComponentInfo
	Other Types of Specialized ComponentInfo
	Standard Implementations of ComponentInfo

	Developing View Components
	View Components
	ViewComponentInfo
	ContainerViewComponentInfo

	Develop a Non-Extensible View Component
	Create the Validator Interface
	Create at Least One Implementation of the Validator Interface
	Create the Web Application Framework Component Class
	Create a Custom JSP TagHandler Class
	Create the ComponentInfo Class
	Create a New Tag Library TLD File
	Augment the Component Library Manifest
	Recreate the Component Library JAR File
	Test the New Component
	Ship It!

	Develop an Extensible View Component
	Create the MissingTokensEvent Class
	Create the Web Application Framework Component Class
	Create the Extensible Component's Java Template
	Create the ComponentInfo Class
	Augment the Component Library Manifest
	Recreate the Component Library JAR File
	Test the New Component
	Ship It?

	Developing Model Components
	Model Components
	ModelComponentInfo
	ExecutingModelComponentInfo

	Developing a Non-Extensible Model Component
	Developing an Extensible Model Component
	Key XML Document Model Design Points
	Create the ModelFieldDescriptor Class
	Create the Web Application Framework Component Class
	Create the Extensible Component's Java Template
	Create the ComponentInfo Class
	Augment the Component Library Manifest
	Recreate the Component Library JAR File
	Test the New Component
	Ship It?

	Developing Command Components
	Developing an Extensible Command Component
	Create the Web Application Framework Component Class
	Create the Extensible Component's Java Template
	Create the ComponentInfo Class
	Augment the Component Library Manifest
	Recreate the Component Library JAR File
	Test the New Component

	ConfigurableBeans (Non-Visual Components)
	Configurable Bean Example: CommandDescriptor

	Developing and Distributing Non- Extensible Model, Command and ContainerView Components
	Develop a Non-Extensible Model, ContainerView, or Command Component
	Distributing a Non-extensible Model, ContainerView, or Command Component
	The Object Definition File (non- extensible component metadata)

	Design Actions
	Developing Extensible Components Which Have Component Design Actions
	What is a Component Design Action?
	Exposing Design Action in ComponentInfo

	Component Library Structure
	Component Library Overview
	Component Library Structure
	The Component Manifest
	Automated Unpacking of Component Tag Libraries (TLD) Files
	Automated Unpacking of "Additional Files"

	Index

