
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Web Application Framework
Component Reference Guide

Sun Java™ Studio Enterprise 7 2004Q4

Part No. 819-0725-10
December 2004, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.Sun, Sun Microsystems, le logo Sun et Java sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.LA

DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Before You Begin 7

1. Component Overview 13

Visual Components 13

2. Basic Container View (Pagelet) 19

3. Basic Tiled View 21

4. Basic Tree View 23

5. Basic ViewBean (Page) 25

6. Button 27

7. Check Box 29

8. Combo Box 31

9. Data-Driven Combo Box 33

10. Data-Driven List Box 35

11. Data-Driven Radio Buttons 37
 3

12. File Upload 39

13. Hidden Field 41

14. Hyperlink (HREF) 43

15. Image 45

16. List Box 47

17. Password Field 49

18. Radio Buttons 51

19. Static Text Field 53

20. Text Field 55

21. Text Area 57

22. Validating Text Field 59

23. Validating Text Area 61

24. Masked Text Field 63

25. Date View 65

26. Time View 67

27. DateTime View 69

28. Go To Page Link 71

29. Menu 73

30. Static Breadcrumb 75
4 Web Application Framework Component Reference Guide • December 2004

31. Dataset Navigator 77

32. Dataset Locator 79

33. Bean Adapter Model 81

34. Custom Model 83

35. Simple Custom Model 85

36. Custom Tree Model 87

37. HTTP Session Model 89

38. JDBC SQL Query Model 91

39. JDBC Stored Procedure Model 93

40. Object Adapter Model 95

41. Resource Bundle Model 99

42. Web Service Model 101

43. Directory Search Model 103

44. JDBC ResultSet Adapter Model 105

45. Client Session Model 107

46. Basic Command 109

47. Command Chain 111

48. Application Attribute Factory 113

49. Execute Model and Goto Page Command 115
Contents 5

50. Execute Model Command 117

51. Forward Command 119

52. Goto ViewBean Command 121

53. Include Command 123

54. Redirect Command 125

55. Regular Expression Validator 127

56. Request Attribute Factory 129

57. Session Attribute Factory 131

58. Simple Choice 133

59. Model Reference 135

60. Type Validator 137

61. User-Defined Command 139

62. WebAction Command 141

Index 143
6 Web Application Framework Component Reference Guide • December 2004

Before You Begin

The Web Application Framework Component Reference Guide introduces the components
in the Web Application Framework Library. The components fall into four basic
groups: Visual components, Model Components, Command Components, and Non-
Visual Components.

Before You Read This Book
Before starting, you should be familiar with concepts used in building web
applications using existing J2EE web technologies, such as servlets and JavaServlet
Pages™ (JSP™ pages). You should also be familiar with the Web Application
Framework architecture and the Sun Java Studio Enterprise 7 development
environment (hereafter referred to as the IDE) by referring to the related Web
Application Framework documentation mentioned later in this chapter.

The following resources can provide additional information:

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs
 7

http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/j2ee/tutorial
http://java.sun.com/j2ee/download.html#platformspec

Note – Sun is not responsible for the availability of third-party Web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.

Typographic Conventions

Related Documentation
Java Studio Enterprise documentation includes books and tutorials delivered in
Acrobat Reader (PDF) format, release notes, online help, and tutorials delivered in
HTML format.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
8 Web Application Framework Component Reference Guide • December 2004

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM
web site and from the Documentation link from the Sun Java Studio Enterprise
Developers Source portal (http://developers.sun.com/jsenterprise).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet.

■ Sun Java Studio Enterprise 7 Release Notes - part no. 819-0905-10

Describes last-minute release changes and technical notes.

■ Sun Java Studio Enterprise 7 Installation Guide (PDF format) - part no. 817-7971-10

Describes how to install the Sun Java Studio Enterprise 7 integrated development
environment (IDE) on each supported platform and includes other pertinent
information, such as system requirements, upgrade instructions, server
information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Building J2EE Applications - part no. 819-0819-10

Describes how to assemble EJB modules and web modules into a J2EE application
and how to deploy and run a J2EE application.

■ Web Application Framework documentation (PDF format)

■ Web Application Framework Component Author’s Guide - part no. 819-0724-10

Describes the Web Application Framework component architecture and the
process to design, create, and distribute new components.

■ Web Application Framework Component Reference Guide - part no. 819-0725-10

Describes the components available in the Web Application Framework
Library.

■ Web Application Framework Overview - part no. 819-0726-10

Introduces the Web Application Framework and what it is, how it works, and
what sets it apart from other application frameworks.

■ Web Application Framework Tutorial- part no. 819-0727-10

Introduces the mechanics and techniques to build a web application using the
Web Application Framework tools.

■ Web Application Framework Developer’s Guide - part no. 819-0728-10

Provides the steps to create and use application components that can be
assembled to develop an application using the Web Application Framework
and explains how to deploy the application in most J2EE containers.
Before You Begin 9

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://developers.sun.com/jsenterprise)

■ Web Application Framework IDE Guide - part no. 819-0729-10

Describes the various parts of the Sun Java Studio Enterprise 7 2004Q4 IDE and
emphasizes the use of the visual tools for developing a Web Application
Framework application.

■ Web Application Framework Tag Library Reference - part no. 819-0730-10

Gives a brief introduction to the Web Application Framework tag library, as
well as a comprehensive reference to the tags available within the library.

Tutorials
Sun Java Studio Enterprise 7 tutorials help you understand the features of the IDE.
Each tutorial provides techniques and code samples that you can use or modify in
developing more substantial applications. All tutorials illustrate deployment with
Sun Java System Application Server.

All tutorials are available from the Tutorials and Code Camps link off the
Developers Source portal, which you can access from within the IDE by choosing
Help > Examples and Tutorials.

■ QuickStart guides provide an introduction to the Sun Java Studio IDE. Start with
a QuickStart tutorial if you are either new to the Sun Java Studio IDE or want a
quick introduction to a particular feature. These tutorials describe how to develop
simple web and J2EE applications, generate web services, and how to get started
with UML modeling and Refactoring. QuickStarts take minutes to complete.

■ Tutorials focus on a single feature of the Sun Java Studio IDE. Try these if you are
interested in the details of a particular feature. Some tutorials build an application
from the ground up, while others build on provided source files, depending on
the focus of the example. You can complete a tutorial in an hour or less.

■ Narrated Tutorials use video to illustrate a feature or technique. Try a narrated
tutorials for a visual overview of the IDE or an in-depth presentation of a
particular feature. You can complete a narrated tutorial in a few minutes. You can
also start and stop a narrated tutorial at any point you wish.

Online Help
Online help is available in the Sun Java Studio Enterprise 7 IDE. You can open help
by pressing the help key (F1 in Microsoft Windows environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.
10 Web Application Framework Component Reference Guide • December 2004

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the book’s title (Web Application Framework Component Reference
Guide’s) and its part number (819-0725-10) in the subject line of your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Tutorials HTML at the Examples and Code Camps link from the Developers
Source portal at http://developers.sun.com/jsenterprise

Release notes HTML at http://docs.sun.com
Before You Begin 11

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com

12 Web Application Framework Component Reference Guide • December 2004

CHAPTER 1

Component Overview

The components in the Web Application Framework Component Library fall into
four basic groups: Visual Components, Model Components, Command Components,
and Non-Visual Components. See the following sections for more information.

The IDE supports the use of both extensible and non-extensible visual components.

Extensible components are components that can be subclassed. Subclassing of
extensible components is transparently facilitated by the IDE. The Web Application
Framework IDE wizards automatically create an application-specific class which
extends the component base class.

Non-extensible components, visual and non-visual alike, are components that are
not normally subclassed in the course of Web Application Framework IDE usage.
When a new non-extensible visual component is selected from the component
palette, a named instance is created rather than a new subtype.

Visual Components
Visual components are components that developers use to assemble a user interface
for an application.
13

Extensible Visual Components

Non-Extensible Visual Components

Component Name Description

Basic Container View
(Pagelet)

A View that can contain other Views.

Basic Tiled View Aspecialization type of ContainerView that can present its child View components
in a number of repeated tiles, or repeated regions.

Basic Tree View A specialization of ContainerView that helps present information in a tree format.

Basic ViewBean (Page) A specialization of ContainerView that can serve as the top, or root, of a View
component hierarchy.

Component Name Description

Button A command field that is rendered as a button.

Check Box A component that provides a mutually exclusive, two-state field value: true/false,
yes/no, on/off, A/B, etc.

Combo Box A choice component that provides a list of choices presented in a drop-down list
style interface.

Data-Driven Combo Box A choice component that can have its choices populated from a model component.
It provides a list of choices presented in a drop-down list style interface.

Data-Driven List Box A choice component that can have its choices populated from a model component.
It presents its list of choices in a list box. Multiple choices, if allowed, can be
selected by the user.

Data-Driven Radio
Buttons

A choice component that can have its choices populated from a model component.
It presents its list of choices as a group of radio buttons.

Dataset Locator Displays the record of the displayed data (e.g. Records 1 to 10 of 53).

Dataset Navigator A set of four command fields that enable pagination (navigation) control over a set
of data through a container view, like a BasicViewBean, a BasicTiledView or a
BasicContainerView.

Date View A visual display field component which displays the date whose fields (month,
day, year) are represented by Combo Boxes. Also includes a javascript mini-
calendar popup.

DateTime View A visual display field component which displays the date whose fields (month,
day, year, hour, minute, etc.) are represented by Combo Boxes. Also includes a
javascript mini-calendar popup.

File Upload A component that provides a way for users to send files to the server.
14 Web Application Framework Component Reference Guide • December 2004

Model Components

Model components are components that act as a business delegate or a data proxy to
an arbitrary data store (Java class, CORBA object, EJB, database, mainframe, ERP
system, transaction processor, etc.).

Go To Page Link A HREF display field component which is preconfigured to use a Goto View Bean
command descriptor.

Hidden Field A component that provides a way to embed non-visible data in a page so that it is
sent back to the server when the surrounding form is posted.

Hyperlink (HREF) A command field that is rendered as a hyperlink.

Image A component that allows an image to be displayed on a page.

List Box A choice component that presents its list of choices in a list box. Multiple choices,
if allowed, can be selected by the user.

Masked Text Field A single-line, free-form text input field.

Menu A View component that allows user to design drop-down menu functionality into
their web applications.

Password Field A component that provides a way for the user to enter text without showing the
characters he or she has entered.

Radio Buttons A choice component that presents its list of choices as a group of radio buttons.

Static Breadcrumb Displays the current page’s context within the site structure.

Static Text Field A component that displays read-only text or markup.s

Text Field A single-line, free-form text input field.

Text Area A multi-line, free-form text input field.

Time View A visual display field component which displays the time whose fields (hour,
minute, etc.) are represented by Combo Boxes.

Validating Text Field A single-line, free-form text input field with the ability to validate the user-
supplied text using an associated validation component.

Validating Text Area A multi-line, free-form text input field with the ability to validate the user-
supplied text using an associated validation component.

Component Name Description

Bean Adapter Model A model that uses one or more JavaBeans as its backing datastore.

Client Session Model Uses the JATO client session as its backing data store.

Custom Model An arbitrary implementation of the com.iplanet.model.Model interface.

Component Name Description
Chapter 1 Component Overview 15

Command Components

Command components encapsulate arbitrary behavior. Typically, command
components encapsulate request handling logic or controller functionality.
Command fields (buttons, HREFs) are the primary consumers of command
components.

Custom Tree Model A model that provide access to data stores that employ a hierarchical (tree or
directory like) data structure, like XML documents, LDAP repositories, or file
systems.

Directory Search Model Allows us to uses a Model as a backing store for the LDAP Query’s Result Set.

HTTP Session Model A model that uses the HTTP session as its backing datastore.

JDBC ResultSet Adapter
Model

Will adapt to the ResultSet thats being passed to it. It allows the user to set the
Field Names and Types during the design time.

JDBC SQL Query Model A model that uses one or more RDBMS tables as the backing datastore.

JDBC Stored Procedure
Model

A model that executes a stored procedure.

Object Adapter Model A model that provides access to any object's fields, bean properties, and/or
methods using path expressions that specify deep access to object members.

Resource Bundle Model A model that uses a resource bundle as its backing datastore.

Simple Custom Model A model that provides a foundation for an arbitrary new model which requires
advanced dataset management and pagination support.

Web Service Model A model that allows developers to easily execute Web service operations.

Component Name Description

Basic Command An arbitrary controller or request handler component.

Command Chain A command that links together two or more command components to be invoked
in sequence

Component Name Description
16 Web Application Framework Component Reference Guide • December 2004

Non-Visual Components

Component Reference

Note Legend:

Req = Required property

Dependent = Dependent property (for example, a property that is dependent on the
value of another property)

Component Name Description

Application Attribute
Factory

A factory that acquires an object from application scope.

Execute Model and Goto
Page Command

Configures an instance of
com.iplanet.jato.view.command.ExecuteAndForwardCommand.

Execute Model
Command

Configures an instance of
com.iplanet.jato.view.command.ExecuteModelCommand.

Forward Command Configures an instance of
com.iplanet.jato.view.command.ForwardCommand.

Goto ViewBean
Command

Configures an instance of
com.iplanet.jato.view.command.GotoViewBeanCommand.

Include Command Configures an instance of
com.iplanet.jato.view.command.RedirectCommand.

Redirect Command Configures an instance of
com.iplanet.jato.view.command.IncludeCommand.

Regular Expression
Validator

A validator that validates based on successful conversion to a specified type.

Request Attribute
Factory

A factory that acquires an object from request scope.

Session Attribute Factory A factory that acquires an object from session scope.

Simple Choice A simple Choice implementation.

Model Reference Configures an instance of
com.iplanet.jato.model.SimpleModelReference.

Type Validator A simple validator that uses JDK 1.4 regular expressions to validate a value.

User-Defined Command Configures an instance of an arbitrary implementation of
com.iplanet.jato.command.Command.

WebAction Command Configures an instance of
com.iplanet.jato.view.command.ExecuteAndForwardCommand.
Chapter 1 Component Overview 17

18 Web Application Framework Component Reference Guide • December 2004

CHAPTER 2

Basic Container View (Pagelet)

The Basic Container View component is also referred to as a pagelet component. It is
analogous to panel components in other visual development environments,
providing a way to group a set of contained components so that they can be
manipulated as a unit. Container views also form the basis for most complex
components (both distributable and non-distributable), which can be reused by
(contained in, parented by) other page and pagelet components.

Property
Name Description Notes

Auto
Deleting
Models

A list of deleting type models that will be have their delete(...) method
invoked when the delete WebAction is invoked for this container view. The
listed models must implement the
com.iplanet.jato.model.DeletingModel interface.

Auto
Executing
Models

A list of executing type models that will be have their execute(...)
method invoked when the execute WebAction is invoked for this container
view. The listed models must implement the
com.iplanet.jato.model.ExecutingModel interface.

Auto
Inserting
Models

A list of inserting type models that will be have their insert(...) method
invoked when the insert WebAction is invoked for this container view. The
listed models must implement the
com.iplanet.jato.model.InsertingModel interface.

Auto
Retrieving
Models

A list of retrieving type models that will be have their retrieve(...)
method invoked when the retrieve WebAction is invoked for this container
view. The listed models must implement the
com.iplanet.jato.model.RetrievingModel interface.

Auto
Updating
Models

A list of updating type models that will be have their update(...) method
invoked when the update WebAction is invoked for this container view. The
listed models must implement the
com.iplanet.jato.model.UpdatingModel interface.
19

Name The class name of the component. Req

Validation
Exception
Handler

Specifies how a validation exception should be handled: by the
handleValidationException(CommandEvent) event, or with a custom
validation command component.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
20 Web Application Framework Component Reference Guide • December 2004

CHAPTER 3

Basic Tiled View

The Basic TiledView (tiled view) is a type of pagelet component. It is a special type
of container view that can present its children (pagelets, and other visual
components like display fields) in a number of repeated tiles, or repeated regions.
Examples of tiles may be rows or columns of a table, or tabs in a tabbed component.
There is no assumption of table layout made; simply the notion of repetition of tiles.

Property
Name Description Notes

Auto
Retrieving
Models

A list of retrieving type models that will be have their retrieve(...)
method invoked when the retrieve WebAction is invoked for this container
view. The listed models must implement the
com.iplanet.jato.model.RetrievingModel interface.

Max Display
Tiles

Controls how many tiles will be displayed. The default, -1, means unlimited
tiles (display all that are available).

Name The class name of the component. Req

Primary
Model
Dataset
Name

Some models can have multiple parallel datasets (like Web service models).
The primary dataset is the dataset that will be displayed by default when
none is otherwise programmatically specified.

Primary
Model
Reference

A tiled view can be associated with multiple models. The primary model
controls the iterative tile behavior of the tiled view.

Validation
Exception
Handler

Specifies how a validation exception should be handled: by the
handleValidationException(CommandEvent) event, or with a custom
validation command component.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
21

22 Web Application Framework Component Reference Guide • December 2004

CHAPTER 4

Basic Tree View

The Basic TreeView (tree view) is a type of pagelet component. It helps present
information that is structured in a tree format, like XML and LDAP data structures.

Property
Name Description Notes

Name The class name of the component. Req

Node
Handle
Request
Handler

Specifies how an expand tree node request is handled (on the server side, not
the client). The default is to expand the node and reload the page. Custom
behavior can be defined in the tree view component's
handleTreeNodeHandleRequest(CommandEvent) event, or in a custom
command component.

Primary
Model
Reference

A tree view can be associated with multiple models. The primary model
controls the iterative node behavior of the tree view.

State Data
Session
Attribute

The name of the HTTP session attribute used to store the state of the tree.

Validation
Exception
Handler

Specifies how a validation exception should be handled: by the
handleValidationException(CommandEvent) event, or with a custom
validation command component.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
23

24 Web Application Framework Component Reference Guide • December 2004

CHAPTER 5

Basic ViewBean (Page)

The Basic ViewBean is also referred to as a page component. It is a special view
component that functions as a root view in an arbitrarily complex view hierarchy. In
other words, a ViewBean is a top-level view component that can contain other view
components, but itself has no parent. ViewBeans can be thought of primarily as
pages in your application. Basic ViewBeans (or 3rd party components which
implement the com.iplanet.jato.view.ViewBean interface) are the only view
components which can be executed (test run) from within the IDE.

Property
Name Description Notes

Auto
Deleting
Models

A list of deleting type models that will be have their delete(...) method
invoked when the delete WebAction is invoked for this container view. The
listed models must implement the
com.iplanet.jato.model.DeletingModel interface.

Auto
Executing
Models

A list of executing type models that will be have their execute(...)
method invoked when the execute WebAction is invoked for this container
view. The listed models must implement the
com.iplanet.jato.model.ExecutingModel interface.

Auto
Inserting
Models

A list of inserting type models that will be have their insert(...) method
invoked when the insert WebAction is invoked for this container view. The
listed models must implement the
com.iplanet.jato.model.InsertingModel interface.

Auto
Retrieving
Models

A list of retrieving type models that will be have their retrieve(...)
method invoked when the retrieve WebAction is invoked for this container
view. The listed models must implement the
com.iplanet.jato.model.RetrievingModel interface.
25

Auto
Updating
Models

A list of updating type models that will be have their update(...) method
invoked when the update WebAction is invoked for this container view. The
listed models must implement the
com.iplanet.jato.model.UpdatingModel interface.

Name The class name of the component. Req

Validation
Exception
Handler

Specifies how a validation exception should be handled: by the
handleValidationException(CommandEvent) event, or with a custom
validation command component.

Property
Name Description Notes
26 Web Application Framework Component Reference Guide • December 2004

CHAPTER 6

Button

A Button is a type of command field that submits form data. The button's request
handling behavior is implemented in an instance-specific request handler method
(handle<ComponentName>Request) or delegated to a command component.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Req

Name The name of the component instance.

Request
Handler

Determines what will be the request handling mechanism for the command
field. This could be the request event handler method
(handle<ComponentName>Request), a custom command component, or a
built-in command component, like a WebAction command, for example).
The default setting is the request event handler method.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
27

28 Web Application Framework Component Reference Guide • December 2004

CHAPTER 7

Check Box

The Check Box component provides a mutually exclusive, two-state field value:
true/false, yes/no, on/off, A/B, etc. The actual field types and values of the true
and false states are completely customizable.

Property
Name Description Notes

False Value The type and value of the field when the visual component is in a false
(unselected) state.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

State The initial state (value) of the check box (true or false).

True Value The type and value when the visual component is in a true (selected) state.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
29

30 Web Application Framework Component Reference Guide • December 2004

CHAPTER 8

Combo Box

The Combo Box component is a type of choice component that provides a list of
choices presented in a drop-down list style interface. The actual field types and
values of the component's choices are customizable by the developer.

Property
Name Description Notes

Choices An array of choices that can be selected by the user. Each choice provides a
value and a label.

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Null Choice
Label

The text that is displayed as the component's choice when the field's value
is null. Leaving this property empty (null) will prevent a null choice option
from being presented to the user, thus forcing the user to select one of the
choices from the list.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
31

32 Web Application Framework Component Reference Guide • December 2004

CHAPTER 9

Data-Driven Combo Box

The Data-Driven Combo Box component is a type of choice component that can have
its choices populated from a model component. It provides a list of choices
presented in a drop-down list style interface.

Property
Name Description Notes

Cached
Choices
Attribute
Name

The name of the attribute used to cache choices for reuse. This value is used
in accordance with the value of the Choices Retrieval Policy property.

Choices
Label
Binding

The model fields that will be used to generate the labels for the component's
list of choices. The Choices Model Reference property must be configured
before this property can be configured. This property allows multiple
bindings, which will be combined via the Choices Label Message Format
property into a single choice label.

Req
Dependent on
Choices Model
Reference

Choices
Label
Message
Format

The message format string that will be applied to transform the raw choice
data into formatted choice labels. This format string may include plain text
as well as standard Java message format tokens ("{0}", "{1}", etc.). Each
message format token will be replaced by the value of the label model
binding that corresponds to the specified index.

Choices
Model
Reference

A reference to the model from which the component's choices list will be
obtained using the value and choice label model field bindings. This
property must be configured before the Choices Label Binding and Choices
Value Binding properties can be configured.

Req

Choices
Retrieval
Exception
Handler

Determines how an exception is handled if an exception is thrown while the
choices values or labels are being retrieved from the model. The possible
settings for this property are the following: the default (throw the
Exception); invoke the data-driven choice component retrieval exception
handler method
(handle<ComponentName>ChoicesRetrievalException), or delegate to
a command component.
33

Choices
Retrieval
Policy

Determines how and when the choices for the component are retrieved and
populated. The possible settings for this property are the following: manual
retrieval (developer takes full control of initiating choices retrieval), once
per request, once per session (once for each new HTTP session created),
once per application (upon first request per virtual machine), and every
time (if component is used more than once in a request, choices are
retrieved once each time the component is rendered). Default setting is once
per request.

Choices
Value
Binding

The model fields that will be used to generate the values for the
component's list of choices. The Choices Model Reference property must be
configured before this property can be configured.

Req
Dependent on
Choices Model
Reference

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Req

Name The name of the component instance.

Null Choice
Label

The text that is displayed as the component's choice when the field's value
is null. Leaving this property empty (null) will prevent a null choice option
from being presented to the user, thus forcing the user to select one of the
choices from the list.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
34 Web Application Framework Component Reference Guide • December 2004

CHAPTER 10

Data-Driven List Box

The Data-Driven List Box component is a type of choice component that can have its
choices populated from a model component. It presents its list of choices in a list
box. Multiple choices, if allowed, can be selected by the user.

Property
Name Description Notes

Allow
Multiple
Choices

Determines whether the user is allowed to select multiple choices or not.
Default setting is false.

Cached
Choices
Attribute
Name

The name of the attribute used to cache choices for reuse. This value is used
in accordance with the value of the Choices Retrieval Policy property.

Choices
Label
Binding

The model fields that will be used to generate the labels for the component's
list of choices. The Choices Model Reference property must be configured
before this property can be configured. This property allows multiple
bindings, which will be combined via the Choices Label Message Format
property into a single choice label.

Req
Dependent on
Choices Model
Reference

Choices
Label
Message
Format

The message format string that will be applied to transform the raw choice
data into formatted choice labels. This format string may include plain text
as well as standard Java message format tokens ("{0}", "{1}", etc.). Each
message format token will be replaced by the value of the label model
binding that corresponds to the specified index.

Choices
Model
Reference

A reference to the model from which the component's choices list will be
obtained using the value and choice label model field bindings. This
property must be configured before the Choices Label Binding and Choices
Value Binding properties can be configured.

Req
35

Choices
Retrieval
Exception
Handler

Determines how an exception is handled if an exception is thrown while the
choices values or labels are being retrieved from the model. The possible
settings for this property are the following: the default (throw the
Exception); invoke the data-driven choice component retrieval exception
handler method
(handle<ComponentName>ChoicesRetrievalException), or delegate to
a command component.

Choices
Retrieval
Policy

Determines how and when the choices for the component are retrieved and
populated. The possible settings for this property are the following: manual
retrieval (developer takes full control of initiating choices retrieval), once
per request, once per session (once for each new HTTP session created),
once per application (upon first request per virtual machine), and every
time (if component is used more than once in a request, choices are
retrieved once each time the component is rendered). Default setting is once
per request.

Choices
Value
Binding

The model fields that will be used to generate the values for the
component's list of choices. The Choices Model Reference property must be
configured before this property can be configured.

Req
Dependent on
Choices Model
Reference

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Null Choice
Label

The text that is displayed as the component's choice when the field's value
is null. Leaving this property empty (null) will prevent a null choice option
from being presented to the user, thus forcing the user to select one of the
choices from the list.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
36 Web Application Framework Component Reference Guide • December 2004

CHAPTER 11

Data-Driven Radio Buttons

The Data-Driven Radio Buttons component is a type of choice component that can
have its choices populated from a model component. It presents its list of choices as
a group of radio buttons.

Property
Name Description Notes

Cached
Choices
Attribute
Name

The name of the attribute used to cache choices for reuse. This value is used
in accordance with the value of the Choices Retrieval Policy property.

Choices
Label
Binding

The model fields that will be used to generate the labels for the component's
list of choices. The Choices Model Reference property must be configured
before this property can be configured. This property allows multiple
bindings, which will be combined via the Choices Label Message Format
property into a single choice label.

Req
Dependent on
Choices Model
Reference

Choices
Label
Message
Format

The message format string that will be applied to transform the raw choice
data into formatted choice labels. This format string may include plain text
as well as standard Java message format tokens ("{0}", "{1}", etc.). Each
message format token will be replaced by the value of the label model
binding that corresponds to the specified index.

Choices
Model
Reference

A reference to the model from which the component's choices list will be
obtained using the value and choice label model field bindings. This
property must be configured before the Choices Label Binding and Choices
Value Binding properties can be configured.

Req

Choices
Retrieval
Exception
Handler

Determines how an exception is handled if an exception is thrown while the
choices values or labels are being retrieved from the model. The possible
settings for this property are the following: the default (throw the
Exception); invoke the data-driven choice component retrieval exception
handler method
(handle<ComponentName>ChoicesRetrievalException), or delegate to
a command component.
37

Choices
Retrieval
Policy

Determines how and when the choices for the component are retrieved and
populated. The possible settings for this property are the following: manual
retrieval (developer takes full control of initiating choices retrieval), once
per request, once per session (once for each new HTTP session created),
once per application (upon first request per virtual machine), and every
time (if component is used more than once in a request, choices are
retrieved once each time the component is rendered). Default setting is once
per request.

Choices
Value
Binding

The model fields that will be used to generate the values for the
component's list of choices. The Choices Model Reference property must be
configured before this property can be configured.

Req
Dependent on
Choices Model
Reference

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Null Choice
Label

The text that is displayed as the component's choice when the field's value
is null. Leaving this property empty (null) will prevent a null choice option
from being presented to the user, thus forcing the user to select one of the
choices from the list.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
38 Web Application Framework Component Reference Guide • December 2004

CHAPTER 12

File Upload

The File Upload component provides a way for users to send files to the server, and
an easy way for the developer to gain access to the uploaded file content. Global
application properties governing file upload can be configured in the application's
Settings & Configuration node.

Property
Name Description Notes

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
39

40 Web Application Framework Component Reference Guide • December 2004

CHAPTER 13

Hidden Field

The Hidden Field component provides a way to embed non-visible data in a page so
that it is sent back to the server when the surrounding form is posted.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
41

42 Web Application Framework Component Reference Guide • December 2004

CHAPTER 14

Hyperlink (HREF)

The Hyperlink (HREF) component is a type of command field. Unlike the button,
activation of a hyperlink does not cause form data to be submitted to the server.
Instead, each hyperlink has its own set of query parameters. The hyperlink's request
handling behavior is implemented in an instance-specific request handler method
(handle<ComponentName>Request) or delegated to a command component.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Request
Handler

Determines what will be the request handling mechanism for the command
field. This could be the request event handler method
(handle<ComponentName>Request), a custom command component, or a
built-in command component, like a WebAction command, for example).
The default setting is the request event handler method.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
43

44 Web Application Framework Component Reference Guide • December 2004

CHAPTER 15

Image

The Image component allows an image to be displayed on a page. This component
should be used when the URL of the image is dynamically determined by the
application (static images can simply be encoded in the page's markup).

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
45

46 Web Application Framework Component Reference Guide • December 2004

CHAPTER 16

List Box

The List Box component is a type of choice component that presents its list of choices
in a list box. Multiple choices, if allowed, can be selected by the user.

Property
Name Description Notes

Allow
Multiple
Choices

Determines whether the user is allowed to select multiple choices or not.
Default setting is false.

Choices An array of choices that can be selected by the user. Each choice provides a
value and a label.

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.
47

Name The name of the component instance. Req

Null Choice
Label

The text that is displayed as the component's choice when the field's value
is null. Leaving this property empty (null) will prevent a null choice option
from being presented to the user, thus forcing the user to select one of the
choices from the list.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
48 Web Application Framework Component Reference Guide • December 2004

CHAPTER 17

Password Field

The Password Field component provides a way for the users to enter text without
showing the characters they have entered. Instead, asterisk are shown for each
character.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
49

50 Web Application Framework Component Reference Guide • December 2004

CHAPTER 18

Radio Buttons

The Radio Buttons component is a type of choice component that presents its list of
choices as a group of radio buttons. The choices presented by the component are
developer-defined via the Choices property.

Property
Name Description Notes

Choices Choices An array of choices that can be selected by the user. Each choice
provides a value and a label.

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Null Choice
Label

The text that is displayed as the component's choice when the field's value
is null. Leaving this property empty (null) will prevent a null choice option
from being presented to the user, thus forcing the user to select one of the
choices from the list.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
51

52 Web Application Framework Component Reference Guide • December 2004

CHAPTER 19

Static Text Field

The Static Text Field component displays read-only text or markup. This component
can be used to display user-visible text (for example, labels on a page), or used to
generate markup or other non-visual text content.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
53

54 Web Application Framework Component Reference Guide • December 2004

CHAPTER 20

Text Field

The Text Field component is a single-line, free-form text input field.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Bindings

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
55

56 Web Application Framework Component Reference Guide • December 2004

CHAPTER 21

Text Area

The Text Area component is a multi-line, free-form text input field.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Req

Name The name of the component instance.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.
57

58 Web Application Framework Component Reference Guide • December 2004

CHAPTER 22

Validating Text Field

The Validating Text Field component is a single-line, free-form text input field with
the ability to validate the user-supplied text using an associated validation
component.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Show
Validation
Failure
Message

Determines whether to show the value of the Validation Failure Message
property when validation fails for the component.
59

Validation
Failure
Message

The text message to optionally display to the end user when validation fails
for the field. This value may contain markup.

Validator The validation component associated with the field.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
60 Web Application Framework Component Reference Guide • December 2004

CHAPTER 23

Validating Text Area

The Validating Text Area component is a multi-line, free-form text input field with
the ability to validate the user-supplied text using an associated validation
component.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field's value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Show
Validation
Failure
Message

Determines whether to show the value of the Validation Failure Message
property when validation fails for the component.
61

Validation
Failure
Message

The text message to optionally display to the end user when validation fails
for the field. This value may contain markup.

Validator The validation component associated with the field.

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component's setVisible(boolean) method.

Property
Name Description Notes
62 Web Application Framework Component Reference Guide • December 2004

CHAPTER 24

Masked Text Field

The Masked Text Field component is a single-line, free-form text input field. This
component adds support for the validation of input against a specified mask
expression.

A mask expression is specified as:

■ a # character in the mask signifies a number (0-9)
■ a A character in the mask signifies an upper case letter
■ a a (small a) character in the mask signifies a lower case letter
■ a B character in the mask signifies a letter (upper or lower case)
■ a . character in the mask signifies any character
■ a * character in the mask signifies any letter or number
■ any other character (except the \) is required as is
■ a \ character precedes any character that requires escaping (only a #, A, *, . and \)

For example, a mask expression of “###-##-####” could be used to validate a social
security number input. A mask expression of “\##B#\#” describes input that begins
and ends with “#” with a letter in between two numbers in the middle (ex. “#9k1#”)

Note – The backslash character “\” used for escaping characters will require
additional escaping to compensate for the Java and Javascript code used in this
component. For example, an input mask of “\#aA*” will require an input of “\\\\
#aA*” in the component.
63

If you do not use an input mask expression, this component behaves much like a
standard Text Field.

Property
Name Description Notes

Initial Value The value to which the visual component is initialized upon its
instantiation. Note, this value will overwrite any value in the bound model
field if one exists. If you want to set a value on a component without
potentially overwriting the model field’s value, avoid using this property
and instead use the setValue(Object value,boolean overwrite)
method with the overwrite parameter set to false. You may call this
method from your code as needed (for example, from an event handler) or
from the Post-initialization Code property of the component.

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be configured
before this property can be configured.

Dependent on
Model Reference

Model
Reference

A reference to the model to which the visual component's bound model
field belongs. This property must be configured before the Model Field
Binding property can be configured.

Name The name of the component instance. Req

Visible Controls whether the component will be displayed or not. Can also be set
programmatically using the component’s setVisible(boolean) method.

Mask
Expression

Masked expression value in which input of this component is validated
against.
64 Web Application Framework Component Reference Guide • December 2004

CHAPTER 25

Date View

The Date View component is a visual display field component which displays the
date whose fields (month, day, year) are represented by Combo Boxes. Also includes
a javascript mini-calendar popup.

The Date View component is available from the component palette and is added to a
Container View is the same way as other components. The Date View component
displays the date portion of the value of its model field binding. A javascript mini-
calendar popup can be configured with this component through the Show Mini-
Calendar property. Two other configuration properties (Max/Min Year Choice
Display Value) can be set to limit the size of the year field combo box.

Property Name Description Notes

Model Reference A reference to the model to which the visual component's bound
model field belongs. This property must be configured before the
Model Field Binding property can be configured.

Req

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be
configured before this property can be configured.

Dependent on
Model Reference

Name The name of the component instance.

Max Year Choice
Display Value

Specify the maximum year to display for the year field combo box. Default is <current
year> + 50

Min Year Choice
Display Value

Specify the minimum year to display for the year field combo box. Default is <current
year> - 50

Show Mini-
Calendar

Specify whether to display the button to invoke the mini-calendar
popup.

Default is false.
65

66 Web Application Framework Component Reference Guide • December 2004

CHAPTER 26

Time View

The Time View component is a visual display field component which displays the
time whose fields (hour, minute, etc.) are represented by Combo Boxes.

The Time View component is available from the component palette and is added to
a Container View is the same way as other components. The Time View component
displays the time portion of the value of its model field binding. In the military time
display format, two combo boxes are used to represent the hour and minute fields.
In the standard time display format, three combo boxes are used to represent the
hour, minute, and am/pm fields.

Property Name Description Notes

Model Reference A reference to the model to which the visual component's bound
model field belongs. This property must be configured before the
Model Field Binding property can be configured.

Req

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be
configured before this property can be configured.

Dependent on
Model Reference

Name The name of the component instance.

Visible Controls whether the component will be displayed or not. Can also
be set programmatically using the component’s
setVisible(boolean) method.

Minute Interval
Display

Specify the minute display increments in intervals of 1, 5, 10, 15, or
30 minutes.

Default is 1.

Time Format Specify whether the display format is in military time (24 hour
clock) or standard time (12 hour clock).

Default is 12 hour.
67

68 Web Application Framework Component Reference Guide • December 2004

CHAPTER 27

DateTime View

The DateTime View component is a visual display field component which displays
the date whose fields (month, day, year, hour, minute, etc.) are represented by
Combo Boxes. Also includes a javascript mini-calendar popup.

The DateTime View component is available from the component palette and is
added to a Container View is the same way as other components. The DateTime
View component displays the date and time portion of the value of its model field
binding. A javascript mini-calendar popup can be configured with this component
through the Show Mini-Calendar property. Two other configuration properties
(Max/Min Year Choice Display Value) can be set to limit the size of the year field
combo box. In the military time display format, two combo boxes are used to
represent the hour and minute fields. In the standard time display format, three
combo boxes are used to represent the hour, minute, and am/pm fields.

Property Name Description Notes

Model Reference A reference to the model to which the visual component's bound
model field belongs. This property must be configured before the
Model Field Binding property can be configured.

Req

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be
configured before this property can be configured.

Dependent on
Model Reference

Name The name of the component instance.

Max Year Choice
Display Value

Specify the maximum year to display for the year field combo box. Default is <current
year> + 50

Min Year Choice
Display Value

Specify the minimum year to display for the year field combo box. Default is <current
year> - 50

Show Mini-
Calendar

Specify whether to display the button to invoke the mini-calendar
popup.

Default is false.
69

Minute Interval
Display

Specify the minute display increments in intervals of 1, 5, 10, 15, or
30 minutes.

Default is 1

Time Format Specify whether the display format is in military time (24 hour
clock) or standard time (12 hour clock).

Default is 12 hour

Property Name Description Notes
70 Web Application Framework Component Reference Guide • December 2004

CHAPTER 28

Go To Page Link

The Go To Page Link component is a HREF display field component which is
preconfigured to use a Goto View Bean command descriptor.

The Go To Page Link component behaves in much the same way as the Hyperlink
(HREF) component. The only difference is that the Go To Page Link component is
explicitly preconfigured with a Goto View Bean command descriptor. This descriptor
takes its parameter from the Target ViewBean Class Name property of the this
component.

Property Name Description Notes

Model Reference A reference to the model to which the visual component's bound
model field belongs. This property must be configured before the
Model Field Binding property can be configured.

Req

Model Field
Binding

The model field to which the visual component is bound (where it
stores/retrieves its value). The Model Reference property must be
configured before this property can be configured.

Dependent on
Model Reference

Name The name of the component instance.

Visible Controls whether the component will be displayed or not. Can also
be set programmatically using the component’s setVisible(boolean)
method.

Target ViewBean
Class Name

The class name of the view bean that the will be displayed at the
conclusion of the request.

Req
71

72 Web Application Framework Component Reference Guide • December 2004

CHAPTER 29

Menu

Menu is a View component that allows user to design drop-down menu
functionality into their web applications. Menu component consists of Menu bar and
sub menu items. Menu component is available from the component palette and one
can configure the style and look of the menu at design time.

Hierarchical collection of menu items can be configured by defining the menu items
through XML. At run time, this XML will be used as an input for reading the menu
definition.

For more details on writing this XML, please refer to the DTD and sample XML.

Property Name Description Notes

Background Color This property defines the background color of the menu. All menu
items will be shown with the color that is specified by this
property.

Mouse over color This property defines the mouse over color of the menu. When the
mouse is moved over the menu items, they will change to the color
specified by this property.

Font Name This property defines the font family to be used for the menu
item(s) text. All menu item text will appear with the font that is
specified by this property.

Font Size This property defines the font size to be used for the menu item(s)
text. All menu item text will appear with the font size that is
specified by this property.

Font Style This property defines the font style to be used for the menu item(s)
text. All menu item text will appear with the font style that is
specified by this property.
73

Menu Style This property defines the style of the menu. (Either HORIZONTAL
or VERTICAL)

Menu Definition
File

This property defines the name of the XML file which has the
menu definition. The location of the XML file should be relative to
the context root of the application.

Req

Cached Menu
Definition
Attribute Name

This property defines the application scope attribute name where
the XML DOM Tree is kept. When this is set, menu definition will
be read from the DOM tree stored in the attribute specified by this
property.

Property Name Description Notes
74 Web Application Framework Component Reference Guide • December 2004

CHAPTER 30

Static Breadcrumb

Breadcrumb navigation displays the current page’s context within the site structure.
It also helps user getting to know the ways in which information has been grouped
and allows him to move between these groupings and understand the information
structure. Static Breadcrumbs are a type of Breadcrumb where in, a Breadcrumb
displayed for the current page does not depend on the user navigation, but depends
on the logical grouping of pages, specified by the site developer.

Static Breadcrumb is a View component, that allows the user to drag and drop static
breadcrumb components into their web applications. The web application can be
mapped to hierarchical collection of breadcrumb items, that can be configured
though XML. At run time, this XML will be used as an input for reading the site
map structure and depending on the page currently displayed, the bread crumb will
be constructed.
75

For more details on writing this XML, please refer to the DTD and sample XML.

Property Name Description Notes

Prefix Text This property defines the text that will be rendered pre-fixing
the Breadcrumb.
For example, If Prefix Text property is You are currently here it
will be rendered as:
You are currently here : Home > Shopping > Men’s Section
in the browser.

Separator Image This property defines the separator image to be used between
breadcrumb items. Both relative and absolute URL can be
specified. In case of relative URL, the location of the image file
should be relative to the context root of the application.

If separator image is
not specified, then
Separator String will
be used as a
separator.

Separator String This property defines the separator string to be used between
breadcrumb items.
For example, If Separator String property is " >> " it will be
rendered as
You are currently here : Home >> Shopping >> Men’s Section
in the browser.

The string specified in
this property will also
be used as an
alternate separator
when the image can
not be rendered by
the browser.

Site Map File This property defines the name of the XML file which has the
site map structure. The location of the XML file should be
relative to the context root of the application.

Cached Site Map
Attribute Name

This property defines the application scope attribute name
where the XML DOM Tree is kept. When this is set, site map
definition will be read from the DOM tree stored in the attribute
specified by this property.
76 Web Application Framework Component Reference Guide • December 2004

CHAPTER 31

Dataset Navigator

The Dataset Navigator component is a set of four command fields that enable
pagination (navigation) control over a set of data through a container view, like a
BasicViewBean, a BasicTiledView or a BasicContainerView. Each of the four
command fields represents the four types of navigation: First, Previous, Next, and
Last. The command fields can be configured to auto-hide or auto-disable when the
operation would result in no change to the display. For example, if the last record is
currently displayed, the Next and Last command fields would be hidden or disabled
since there is no next record.

Property Name Description Notes

Auto Disable Enables the command fields to auto hide/disable when the corresponding
operation would not result in a difference in the displayed data.

Hide When
Disabled

Prevents the display of the command fields that are in a disabled mode. Dependent on
Auto Disable

Name The class name of the component.

Target
Container View
Path

The name of the ContainerView reference instance as declared in its parent
(a ContainerView, TiledView, or ViewBean).
This name may be a qualified view path, using forward slashes (“/”) as
delimiters. All components in the path must refer to a ContainerView or a
derivative of ContainerView (such as TiledView, ContainerView, or
ViewBean or other custom or third party version derivative of these types).
Both relative and absolute paths are possible. If a name path begins with a
forward slash, the name is assumed to be relative to the root view (the
ViewBean). If the path does not begin with a forward slash, the name is
assumed to refer to a child relative to the current container. Two dots (“..”)
may be used to refer to the container that is the parent of the current
container.
Examples:
/header/orderList/customerName (absolute from root view)

orderList/customerName (relative to current container)

../footer/orderList/customerName (relative to parent)
77

78 Web Application Framework Component Reference Guide • December 2004

CHAPTER 32

Dataset Locator

The Dataset Locator component displays the record of the displayed data (e.g.
Records 1 to 10 of 53).

The “to ##” portion will only be displayed if the page displays more than one record
at a time.

The “of ##” portion will only be displayed if it can be calculated. Some models do
not fully implement the PaginatingModel interface, in particular, the
getTotalDataCount method, and therefore, this information is not available. Some
models read the entire dataset into memory on each request, and therefore, the total
is always available, even if the getTotalDataCount method is not implemented.

If a page is displayed with no records, the DatasetLocator will display “(No Data
Found)” by default. This message can be customized by editing the JSP pagelet,
“com/sun/jatox/view/DatasetLocator.jsp”. This will happen in the event that a
model does not implement the getTotalDataCount method, and the actual total
data count is evenly divisible by the number of records displayed per page. On the
last page of data of 50 total records with a 10 record per page display, the display
will read “Records 41 to 50”, and because the total data count is unknown, the Next
and Last buttons will still be enabled. When the user clicks one of these buttons, a
blank page will be displayed with the "(No Data Found)" display and the Next and
Last buttons will disabled at this point.

Physcial layout of the DatasetLocator component on the page may determine
whether it works or not. This is because of the sequence in which content is
generated versus the actual execution of models in the application. For example, if
you place the DatasetLocator before the fields that actually display the data, the
model may not have been executed yet. If it has not, either move the DatasetLocator
to follow the data display, or just execute the model manually before the
DatasetLocator is displayed.
79

Property Name Description Notes

Show Dataset
Total

Displays the absolute total number of records in the dataset (last record index
number). This will only work for model types that have properly implemented
the getTotalDataSize method from the PaginatingModel interface, or the
total number of records can be deterministally calculated. If the total number of
records can not be determined, then the total records portion of this control will
not display, as if the property were set to false.

Name The class name of the component.

Target
Container View
Path

The name of the ContainerView reference instance as declared in its parent (a
ContainerView, TiledView, or ViewBean).
This name may be a qualified view path, using forward slashes (“/”) as
delimiters. All components in the path must refer to a ContainerView or a
derivative of ContainerView (such as TiledView, ContainerView, or ViewBean or
other custom or third party version derivative of these types). Both relative and
absolute paths are possible. If a name path begins with a forward slash, the name
is assumed to be relative to the root view (the ViewBean). If the path does not
begin with a forward slash, the name is assumed to refer to a child relative to the
current container. Two dots (“..”) may be used to refer to the container that is the
parent of the current container.
Examples:
/ (target the same container view that is also the parent of
this component)

/header/orderList/customerName (absolute from root view)

orderList/customerName (relative to current container)

../footer/orderList/customerName (relative to parent)
80 Web Application Framework Component Reference Guide • December 2004

CHAPTER 33

Bean Adapter Model

The Bean Adapter Model allows developers to use one or more JavaBeans as the
backing datastore for a model. This allows display fields to be bound to JavaBean
properties, and is a convenient approach when you have an application object model
and want to leverage automatic binding of these objects to a view. This model is an
ideal solution for integrating with an EJB client library. The common and
recommended approach when designing a client EJB interface is to use the transfer
object pattern where the input, output and return parameters of the EJB business
methods are primitive or JavaBeans or collections of the same.

Property
Name Description Notes

Bean Class The fully qualified class name of the JavaBean that the model is adapting
(based on).

Bean Scope The J2EE scope or location of the bean to be adapted: request, session,
application, none or any are the choices. Please note that this model will not
originate or create the bean. Existence of the bean in whatever scope is not a
responsibility of the base class implementation. The developer may choose
none and programmatically assign the adapted bean(s).

Bean Scope
Attribute
Name

The name of the attribute when the scope is set to request, session or
application. For example, if the bean is session scoped, this property should
be set to the name of the HTTP session attribute.

Name The class name of the component. Req
81

Bean Adapter Model Design Actions

Update Fields

Provides for the automatic validation of the Bean Class property and the creation of
a model field for each JavaBean property of the Bean Class. This mechanism uses
JavaBean introspection to determine the properties. Since the Introspector may cache
BeanInfo, repeated invocations of this design action will usually yield the same set
of JavaBean properties. If the adapted Bean Class itself changes, then the Studio
filesystem for that Bean Class will need to be remounted so that the Bean
Introspector will pick up the latest property descriptors.

Fields

Property
Name Description Notes

Bean
Property
Name

The name of JavaBean property for this field. Each model field on the Bean
Adapter Model represents a single JavaBean property. This property value
may be null (not set) if the developer wishes to rely on the model field name
property to also represent the name of the JavaBean property. If this
property value is set, it must match the exact name of the JavaBean property
descriptor name.

Name The logical name of the model field. Req
82 Web Application Framework Component Reference Guide • December 2004

CHAPTER 34

Custom Model

Custom Model extensible components support developers who need to create
completely new and arbitrary model implementations. While it has always been
possible to code a new model implementation manually, using custom models, one
may have the new model and its fields and operations exposed in the IDE,
automatically. The custom model provides little existing infrastructure and no
storage for model data. The custom model is a solution for the developer who would
have previously coded a new model from scratch by minimally implementing the
Model interface.

Fields

Property
Name Description Notes

Default
Operation
Name

The operation which may be invoked when an operation name is not
specified in the ModelExecutionContext parameter of the execute()
method. Please note that the execute() method implementation of the
new model must be provided by the developer. If the developer chooses to
disable or omit execute() behavior for their new model then this property
will have no purpose. In short, use of this property is at the discretion of the
component author.

Name The class name of the component. Req

Property
Name Description Notes

Field Class Class type of the field (String, Integer, Boolean, etc.) which may be
leveraged by the developer coding the model implementation.

Name The logical name of the model field. Req
83

Operations

Property
Name Description Notes

Name The model operation name. Req
84 Web Application Framework Component Reference Guide • December 2004

CHAPTER 35

Simple Custom Model

The Simple Custom Model provides a foundation for a new model which requires
advanced dataset management and pagination support. The simple custom model is
a solution for the developer who would have previously coded a new model which
specialized com.iplanet.jato.model.DefaultModel. Unlike other types of custom
model, this type provides field value storage and other behavior, allowing the
developer to merely customize existing capabilities rather then define them.

Property
Name Description Notes

Coerce
Value Types

When true, the model implementation will try to convert values set on the
model fields to the type specified for that field. For instance if the type of
the field is Boolean, then a string value from an HTML form which is
mapped to the model through a display field will be coerced to a Boolean.
This feature uses the com.iplanet.jato.util.TypeConverter class for all type
conversions, which allows developers to register new type conversion
algorithms.

Default
Operation
Name

The operation which may be invoked when an operation name is not
specified in the ModelExecutionContext parameter of the execute()
method. Please note that the execute() method implementation of the
new model must be provided by the developer. If the developer chooses to
disable or omit execute() behavior for their new model then this property
will have no purpose. In short, use of this property is at the discretion of the
component author.

Name The class name of the component. Req
85

Fields

Operations

Property
Name Description Notes

Field Class Class type of the field (String, Integer, Boolean, etc.) which may be
leveraged by the developer coding the model implementation.

Name The logical name of the model field. Req

Property
Name Description Notes

Name The model operation name. Req
86 Web Application Framework Component Reference Guide • December 2004

CHAPTER 36

Custom Tree Model

The Custom Tree Model allows a developer to use data stores that use a hierarchical
(tree or directory like) data structure, like XML documents, LDAP repositories, or
file systems.

Property
Name Description Notes

Name The class name of the component. Req
87

88 Web Application Framework Component Reference Guide • December 2004

CHAPTER 37

HTTP Session Model

An HTTP Session Model uses the HTTP session as its backing data store. HTTP
session model fields map directly to HTTP session attributes. Unlike most other
models, the fields of an HTTP session model are merely a passthrough vehicle for
the values to the session attributes. In other words, setting the value on a field
pushes the value immediately into the session attribute without the need to execute
the model to update the actual backing data store. This model has no internal
storage it is a facade to the session attributes.

HTTP session model is not required for interaction with the HTTP Session within a
Web Application Framework application. The HTTP session API is completely
accessible as it is in any web application. This model provides an avenue for the
developer to formally declare session attributes during application design time for
use in binding and potentially as an adapter or interceptor to HttpSession.

Property
Name Description Notes

Allow
Setting
Equivalent
Value

In certain application servers, the affect of calling
HttpSession.setAttribute() may have consequences, including
invoking HttpSessionBindingListeners and or causing transactions on
a persistent session store. This property provides a way for redundant
setValue() calls to be defensive against passthrough to
HttpSession.setAttribute().

Name The class name of the component. Req
89

Fields

Property
Name Description Notes

Attribute
Class

Class type of the HTTP session attribute. The HTTP Session Model
implementation of setValue() will use this property to coerce value types.

Attribute
Name

The name of the HTTP session attribute to which the model field maps. This
property value may be null (not set) if the developer wishes to rely on the
model field name property to also represent the name of the HTTP session
attribute. If this property value is set, it must match the exact name
intended for the session attribute.

Name The logical name of the model field. Req

Optional
Initial Value

Allows an initial value to encapsulated with the field declaration. In order
to have session attributes initialized based on this property, the developer
should acquire this model from the ModelManager and invoke the
ensureInitialValues() method to push all initial values into
HttpSession. The proper place to make this call is from the application
servlet onNewSession() method.

Store As
Transient
Attribute

When set to true, calls to setValue() for this field will wrap the actual
value in a JavaBean which manages the value as a transient member. The
potential value here is when an application server supports the passivation
or persistent storage of HttpSession, this property may be used to support
an in memory cache of the attribute value. For instance, if developer has a
large amount of business data which is needed across a user session, he or
she can avoid having this large data structure pushed to disk or persistent
store. This is an advanced property which should only be enabled with care.
The result of enabling this property is that this session attribute will not be
highly available in the case of an application server which provides high
availability support for the HTTP session.
90 Web Application Framework Component Reference Guide • December 2004

CHAPTER 38

JDBC SQL Query Model

The JDBC SQL Query Model allows developers to use one or more RDBMS tables as
the backing datastore for the model. This allows display fields to be bound to
columns in the database tables. All of the SQL operations can be performed using
the query model: select (including multi-table joins), insert, update, and delete.

Property
Name Description Notes

Data Source The JDBC datasource name that will be used to obtain a connection from the
J2EE container.

Req

Modifying
Query Table

The name of the table that will be used when generating modifying queries
(insert, update, delete). The model may use several tables for the select
query but may only use one for modifying queries.

Name The class name of the component. Req

Select SQL
Template

The SQL select statement template used to construct SQL SELECT
statements for a retrieve operation. Typically, there is a where token
("__WHERE__") at the end of this statement that is replaced by a where
clause that is constructed dynamically at runtime by the component.

Static Where
Criteria

The where clause that is used with every SQL operation (except insert).
91

Fields

Property
Name Description Notes

Column
Name

The actual name of the column in the table to which the model field maps. Req

Computed
Field

True if If the model field is mapped to a computed field (a SQL aggregate
function). Default setting is false.

Empty
Formula

Specifies a SQL formula that provides a value if the field has no value, and
only if the Empty Value Policy property is set to Use Formula.

Empty
Value Policy

The policy used to provide a value for the field during an update operation.
Choices are Exclude, Send Null, and Use Formula. Default setting is
Exclude.

Field Type The Java class type of the model field (java.lang.String, java.lang.Integer,
java.lang.Boolean, etc.).

Req

Insert
Formula

Specifies a SQL formula that provides a value if the field has no
value, and only if the Insert Value Source property is set to Use
Formula.

Insert Value
Source

The policy used to provide a value for the field during an insert operation.
Choices are Application, Database, and Use Formula. Default setting is
Application.

Key Field Specifies that the column to which the model maps is a key field or not. This
property is required to be set if this model will be used for update, insert or
delete behavior. When creating a Query Model using the wizard, it is not
always possible for the key fields to be found in the JDBC driver metadata.
For instance, PointBase datasources often fail to reveal key field indications
while Oracle datasources work very consistently. If this field is not set and
the update, insert or delete behavior is invoked, it may lead to a SQL
exception.

Name The logical name of the model field. Req

Qualified
Column
Name

The fully qualified name (<table>.<column>) of the column to which the
model field maps.

Req

Supported
Operations

The SQL operations in which the model field will participate: Select, Insert,
Update, and Delete. Default setting is Select, Insert, Update, and Delete.
92 Web Application Framework Component Reference Guide • December 2004

CHAPTER 39

JDBC Stored Procedure Model

The JDBC Stored Procedure model allows developers to execute stored procedures.
This allows display fields to be bound to parameters and result columns (where
vendor supported) in the stored procedure.

Result Set Column Fields

Property
Name Description Notes

Data Source The JDBC datasource name that will be used to obtain a connection from the
J2EE container.

Req

Name The class name of the component. Req

Procedure
Name

The name of the stored procedure in the RDBMS which this model will
invoke.

Req

Property
Name Description Notes

Column
Name

The name of the result column to which the model field maps in the stored
procedure.

Req

Field Type The Java class type of the model field (java.lang.String, java.lang.Integer,
java.lang.Boolean, etc.).

Req

Name The logical name of the model field. Req
93

Procedure Parameter Fields

Property
Name Description Notes

Parameter
Class

The Java class type of the model field (java.lang.String, java.lang.Integer,
java.lang.Boolean, etc.). Note, this is not the actual parameter SQL type in
the database.

Req

Parameter
Name

The name of the parameter in the stored procedure to which this field is
bound.

Req

Parameter
Type

The stored procedure parameter type: IN, IN_OUT, OUT, RESULT,
RETURN, and UNKNOWN.

Req

Name The logical name of the model field. Req

SQL Type The SQL datatype (from java.sql.Types) of the parameter: VARCHAR,
TIMESTAMP, SMALLINT, etc.

Req
94 Web Application Framework Component Reference Guide • December 2004

CHAPTER 40

Object Adapter Model

The Object Adapter Model provides access to any object's, or any of its contained
objects', fields, bean properties, and/or methods using path expressions that specify
deep access to object members.

After the Object Class Name property has been set for the model, and if that class is
compiled and loadable, the general keypath binding chooser is available for
browsing, or for use when binding to display fields on views. Although views may
bind to anonymous path expressions, the developer may also create named model
fields that act as aliases to complex path expressions to help isolate changes in the
object graph from clients of the model. This can be done manually after adding a
model field and setting the model field properties, or automatically by invoking the
Browse/Add Object Field Bindings action.

This component implements com.iplanet.jato.model.ExecutingModel, and
may have model operations declared in the IDE. These model operations are
mapped to the top-level methods on the adapted object class, and only these
methods may be exposed as model operations. Although path expressions may
invoke a deep method in the object graph, the current implementation only supports
methods with zero parameters or string literal parameters. Model operations may be
created manually by adding a new model operation and editing the property sheet
for the operation name and parameters. Operations may be automatically added
using the contextual menu choice Complete Missing Operations.
95

Object Adapter Model Design Actions

Complete Missing Operations

Invoking this action will ensure that there are at least a set of model operations
representative of the top-level public methods on the adapted object. Please refer to
the detailed JavaDocs which describe the storage mechanism for model operations
parameters and return values.

Browse/Add Object Field Bindings

Invoking this action opens the binding chooser dialog and allows the developer to
explore properties and operations of the object (properties are only available if the
object is a JavaBean, and operations are only available if operations have been
defined for top-level object methods). The dialog displays the key path expression
for the currently selected node in the object graph. Nodes in the object graph which
represent datasets have path expressions highlighted and denoted as dataset names.
Selecting OK will generate a new model field for the currently selected node in the
graph. Selecting Cancel will exit the dialog without adding a field. Developers may

Property
Name Description Notes

Default
Dataset
Name

Because there may be more than one dataset (collection) in the adapted
object, this property declares which of these datasets will be considered the
default. During field binding, any path expression which cross a contained
dataset requires a current dataset name to be set for the model. This
property allows the developer to specify a dataset name (path expression
denoting a contained dataset) which the model will use in the case of a null
current dataset name.

Is Object
Array

When true, indicates that the object type being adapted is an array or
collection. Default setting is false.

Name The class name of the component. Req

Object Class
Name

The fully qualified class name of the object type being adapted. Req

Object
Factory

Allows the developer to specify a JavaBean implementing the ObjectFactory
interface. When the adapted object is not set programmatically and an
object factory is specified instead, the model will delegate to the object
factory to find the adapted object at runtime. The standard object factories
allow objects to be retrieved from the standard J2EE request, session, or
application scopes.
96 Web Application Framework Component Reference Guide • December 2004

also highlight the current path expression and copy it to the clipboard. This
capability is useful when setting the Default Dataset Name property, or the Primary
Dataset Name property of a TiledView.

Fields

Operations

Property
Name Description Notes

Key Path An expression describing how to traverse properties, members, and
methods on the adapted object graph to arrive at the field's value. This
expression will be used at runtime to resolve a logical field name to a
physical field value in the object graph. Please refer to the JavaDocs for
detailed explanation of the key path expression syntax.

Name The logical name of the model field. Req

Property
Name Description Notes

Name The model operation name. Req

Operation
Name

The name of the public method on the adapted object class. Req

Operation
Parameter

Describes zero or more parameters for the method of this operation.
Chapter 40 Object Adapter Model 97

98 Web Application Framework Component Reference Guide • December 2004

CHAPTER 41

Resource Bundle Model

The Resource Bundle Model enables a developer to use a resource bundle to retrieve
localized values. Model field names used in this model are the names of these
resources. A common use of the resource bundle model is to localize a page by
forming any localized content with static text display fields and binding the display
fields to a resource bundle model. The locale used by the model to find resources at
runtime may be set programmatically. If not set, the model will use the default
system locale.

This model component has a model field chooser which will display the available
resources if the resource bundle has been set. In addition, this model supports
predefined model fields which encapsulate a resource name. In this way, if resource
names change in the bundle, clients of the model will be insulated from the resource
name change. Another possible use of the model fields would be to dynamically
change a field's resource name at runtime without affecting clients bound to the
model field.

Property
Name Description Notes

Bundle
Name

The fully qualified resource name of the bundle (for example,
"com/sun/jato/Bundle").

Req

Name The class name of the component. Req
99

Fields

Property
Name Description Notes

Name The logical name of the model field. Req

Resource
Name

The key in the resource bundle associated with this model. This property
value may be null (not set) if the developer wishes to rely on the model field
name property to also represent the name of the resource name. If this
property value is set, it must match the name of the resource found in the
bundle.
100 Web Application Framework Component Reference Guide • December 2004

CHAPTER 42

Web Service Model

The Web Service Model (WS model) allows developers to easily execute Web service
operations and retrieve/populate the parameters of those operations via display
field bindings. The Web service model is a specialized object adapter model which
specifically handles JAX-RPC client stubs. The result is a model which adapts to
arbitrary RPC-style Web services.

The Web service model is fully configured by the wizard when it is created: all
required properties are set and model operations are declared for the methods on the
Web services port. Usually the only remaining configuration task is to set the default
dataset name, if needed.

Note that when the model is created, JAX-RPC client stubs are generated in the
application's WEB-INF/classes/stubs directory, and JAX-RPC support libraries
are added to the application's WEB-INF/lib directory automatically.

Property
Name Description Notes

Default
Dataset
Name

Because there may be more than one dataset (collection) in the adapted
object, this property declares which of these datasets will be considered the
default. During field binding, any path expression which cross a contained
dataset requires a current dataset name to be set for the model. This
property allows the developer to specify a dataset name (path expression
denoting a contained dataset) which the model will use in the case of a null
current dataset name.

JAX RPC
Stub Factory

Whereas the object adapter model allows the specification of an arbitrary
object factory bean, this model requires an object factory of type
com.iplanet.jato.model.object.JaxRpcStubFactory. In this case,
the object factory helps the Web service model find the request-scoped JAX-
RPC stub. This property is set by the Web service model wizard
automatically and generally should not be edited.

Name The class name of the component. Req
101

Fields

Operations

Property
Name Description Notes

Key Path An expression describing how to traverse properties, members, and
methods on the adapted object graph to arrive at the field's value. This
expression will be used at runtime to resolve a logical field name to a
physical field value in the object graph. Please refer to the JavaDocs for
detailed explanation of the key path expression syntax.

Name The logical name of the model field. Req

Property
Name Description Notes

Name The model operation name. Req

Operation
Name

The name of the public method on the adapted object class. Req

Operation
Parameter

Describes zero or more parameters for the method of this operation.
102 Web Application Framework Component Reference Guide • December 2004

CHAPTER 43

Directory Search Model

The Directory Search Model allows us to uses a Model as a backing store for the
LDAP Query’s Result Set. This allows display fields to be bound to Directory
attributes, and is a convenient approach when you have directory store and want to
leverage automatic binding of these directory store values to a view. The runtime
convenience is that the model provided pagination support and the results are
scrollable bidirectionally.

Also there are properties that can be programatically modified. SearchControl,
InitialDirContext are few of the attributes that can be set programatically. Please
refer to the Javadocs for more information on how to use these attributes.

Directory Search Model Design Actions

Start by creating Fields on the model. Name each field same as the attribute name in
the LDAP. Alternatively you can use the “Attribute Name” instead to hold the
attribute name and “Name” as just a logical name.

Property Name Description Notes

Append Multiple
Valued Attributes

This takes values True or False. If you want to append the multiple
values of a single attribute, set this to True.

Required

Multiple Value
Delimiter

This is used as a delimiter to append multiple values. This is ignored
if the above property is set to false.

Optional

Root Context This is the node from which the search is performed. Its value will be
something like “ou=People,dc=sun,dc=com”

Required

Search Filter Specify the filer for your search. This should be in he standard
Directory search filter format. Eg: “(cn=anand*)”

Required
103

Fields

How to Use This Component

1. Drag a DirectorySearchModel into your application.

2. Set the properties in the above table.

3. Add fields to the model. The Model Field name should be the same as the
attribute name.

4. Multi-valued attributes can be concatenated to generate a single value

5. For each field Model Field Property “attribute” needs to be modified to match the
attribute name in the LDAP server.

6. Create a Pagelet (tiled view) and associate this with the DirectorySearchModel.

7. Drag the required fields into your paglet.

8. Drag your paglet into a View Bean.

9. Create a submit button and a text field in your view bean.

10. When the user enters the search filter in the test field, get the value and set it to
the model (in the handle request method of the button).

11. Now the model will update itself with the new result set, which will be
displayed back to you.

Property Name Description Notes

Attribute Name This should match the attribute the name Optional

Name The logical name of the model field. Required
104 Web Application Framework Component Reference Guide • December 2004

CHAPTER 44

JDBC ResultSet Adapter Model

The JDBC ResultSet Model will adapt to the ResultSet thats being passed to it. It
allows the user to set the Field Names and Types during the design time. The
Application Developer can map DisplayFields directly to this Model Fields that has
been created. Model will work as a adapter to the underlying ResultSet and will
support only retrievel and display of data encapsulated in ResultSet. Also this model
will not support Insert & Update actions.

Like the bean adapter model, this model could be used programmatically by calling
setResultSet() before value binding or like the bean adapter model it may have
config properties defined in the component info which look for the ResultSet
automatically in as a scoped object.

JDBC ResultSet Adapter Model Design Actions

All the remaining fields on this model is not required to be filled in.

Property Name Description Notes

ResultSet
Attribute Scope

It takes Request, Application and Session as values. If
"Any" is specified, the attribute is

ResultSet
Attribute Name

The name of the attribute into which the ResultSet is store. Required
when
above is
set.

Property Name Description Notes

Field Name Name of the column in the table you are trying to connect. Optional

Name The logical name of the model field. Required
105

106 Web Application Framework Component Reference Guide • December 2004

CHAPTER 45

Client Session Model

A ClientSession Model uses the JATO client session as its backing data store.
ClientSession model fields map directly to client session attributes. Unlike most
other models, the fields of a ClientSession Model are merely a pass through vehicle
for the values to the client session attributes. In other words, setting the value on a
field pushes the value immediately into the client session attribute without the need
to execute the model to update the actual backing data store. This model has no
internal storage it is a facade to the client session attributes.

Fields

Property Name Description Notes

Name The class name of the component. Required

Property Name Description Notes

Attribute Class Class type of the HTTP session attribute. The HTTP
Session Model implementation of setValue() will use this
property to coerce value types.

Attribute Name The name of the HTTP session attribute to which the
model field maps. This property value may be null (not
set) if the developer wishes to rely on the model field
name property to also represent the name of the HTTP
session attribute. If this property value is set, it must
match the exact name intended for the session attribute.

Name The logical name of the model field. Required
107

108 Web Application Framework Component Reference Guide • December 2004

CHAPTER 46

Basic Command

The Basic Command component is a controller or request handler component. It is a
simple structure for creating reusable and extensible request handling objects.

Property
Name Description Notes

Name The class name of the component. Req
109

110 Web Application Framework Component Reference Guide • December 2004

CHAPTER 47

Command Chain

The Command Chain component enables a developer to link together two or more
command components to be invoked in sequence.

Property
Name Description Notes

Chained
Command
Descriptors

An array of command components to be invoked in sequence.

Name The class name of the component. Req
111

112 Web Application Framework Component Reference Guide • December 2004

CHAPTER 48

Application Attribute Factory

The Application Attribute Factory is a factory that acquires an object from
application scope.

Property
Name Description Notes

Attribute
Name

The name of the attribute used to retrieve the object from application scope.

Name The name of the component instance. Req
113

114 Web Application Framework Component Reference Guide • December 2004

CHAPTER 49

Execute Model and Goto Page
Command

The Execute Model Goto Page Command (execute and forward command)
automatically executes a model and then displays a page within the current
application.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.ExecuteAndForwardCommand.
Developers should only change the setting of this expert property if they
wish to set it to a subclass of the standard command class implementation.

Executing
Model
Reference

The reference of the model on which the specified operation will be
executed.

Req

Name The name of the component instance. Req
115

Model
Operation
Name

The name of the model operation that is to be executed.

Target
ViewBean
Class Name

The class name of the view bean that the will be displayed after the model
is executed.

Req

User
Parameters

An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter. The parameters specified in this property will be
passed as a single reserved parameter within the standard parameter map.
This reserved parameter will be keyed as
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS and its type will be java.util.Map.
This expert property is only meaningful if the associated expert property
Command Class Name has also been set to something other than its default
value, and the non default class specified in the Command Class Name
property has been coded to look for the reserved parameter key
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS.

Property
Name Description Notes
116 Web Application Framework Component Reference Guide • December 2004

CHAPTER 50

Execute Model Command

The Execute Model Command automatically executes a model when invoked.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.ExecuteModelCommand.
Developers should only change the setting of this expert property if they
wish to set it to a subclass of the standard command class implementation.

Executing
Model
Reference

The reference of the model on which the specified operation will be
executed.

Req

Name The name of the component instance. Req

Model
Operation
Name

The name of the model operation that is to be executed.

User
Parameters

An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter. The parameters specified in this property will be
passed as a single reserved parameter within the standard parameter map.
This reserved parameter will be keyed as
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS and its type will be java.util.Map.
This expert property is only meaningful if the associated expert property
Command Class Name has also been set to something other than its default
value, and the non default class specified in the Command Class Name
property has been coded to look for the reserved parameter key
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS.
117

118 Web Application Framework Component Reference Guide • December 2004

CHAPTER 51

Forward Command

The Forward Command uses the servlet RequestDispatcher to forward to a resource
within the current application.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.ForwardCommand. Developers
should only change the setting of this expert property if they wish to set it
to a subclass of the standard command class implementation.

Name The name of the component instance. Req

Path The path to a resource within the current application. Generally this path
denotes a servlet, JSP, HTML, or other file.

Req

User
Parameters

An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter. The parameters specified in this property will be
passed as a single reserved parameter within the standard parameter map.
This reserved parameter will be keyed as
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS and its type will be java.util.Map.
This expert property is only meaningful if the associated expert property
Command Class Name has also been set to something other than its default
value, and the non default class specified in the Command Class Name
property has been coded to look for the reserved parameter key
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS.
119

120 Web Application Framework Component Reference Guide • December 2004

CHAPTER 52

Goto ViewBean Command

The Goto ViewBean Command displays a page component when invoked.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.GotoViewBeanCommand.
Developers should only change the setting of this expert property if they
wish to set it to a subclass of the standard command class implementation.

Name The name of the component instance. Req

Target
ViewBean
Class Name

The class name of the view bean that the will be displayed at the conclusion
of the request.

Req

User
Parameters

An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter. The parameters specified in this property will be
passed as a single reserved parameter within the standard parameter map.
This reserved parameter will be keyed as
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS and its type will be java.util.Map.
This expert property is only meaningful if the associated expert property
Command Class Name has also been set to something other than its default
value, and the non default class specified in the Command Class Name
property has been coded to look for the reserved parameter key
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS.
121

122 Web Application Framework Component Reference Guide • December 2004

CHAPTER 53

Include Command

The Include Command component uses the servlet RequestDispatcher to perform an
include of a resource within the current application.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.IncludeCommand. Developers
should only change the setting of this expert property if they wish to set it
to a subclass of the standard command class implementation.

Name The name of the component instance. Req

Path The path to a resource within the current application. Generally this path
denotes a servlet, JSP, HTML, or other file.

Req

User
Parameters

An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter. The parameters specified in this property will be
passed as a single reserved parameter within the standard parameter map.
This reserved parameter will be keyed as
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS and its type will be java.util.Map.
This expert property is only meaningful if the associated expert property
Command Class Name has also been set to something other than its default
value, and the non default class specified in the Command Class Name
property has been coded to look for the reserved parameter key
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS.
123

124 Web Application Framework Component Reference Guide • December 2004

CHAPTER 54

Redirect Command

The Redirect Command redirects the current request to any internal or external URL
using an HTTP 302 redirect response.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.RedirectCommand. Developers
should only change the setting of this expert property if they wish to set it
to a subclass of the standard command class implementation.

Name The name of the component instance. Req

User
Parameters

An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter. The parameters specified in this property will be
passed as a single reserved parameter within the standard parameter map.
This reserved parameter will be keyed as
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS and its type will be java.util.Map.
This expert property is only meaningful if the associated expert property
Command Class Name has also been set to something other than its default
value, and the non default class specified in the Command Class Name
property has been coded to look for the reserved parameter key
com.iplanet.jato.view.command.ViewCommandDescriptorBase.P
ARAM_USER_PARAMETERS.

URL The URL to which to redirect the request. Req
125

126 Web Application Framework Component Reference Guide • December 2004

CHAPTER 55

Regular Expression Validator

The Regular Expression Validator is a simple validator that uses JDK 1.4 regular
expressions to validate a value.

Property
Name Description Notes

Name The name of the component instance. Req

Validation
Rule

The JDK 1.4 regular expression used for validation. Before being validated,
data is converted to a string using the
com.iplanet.jato.util.TypeConverter class.

Req
127

128 Web Application Framework Component Reference Guide • December 2004

CHAPTER 56

Request Attribute Factory

The Request Attribute Factory is a factory that acquires an object from request scope.

Property
Name Description Notes

Attribute
Name

The name of the attribute used to retrieve the object from request scope.

Name The name of the component instance. Req
129

130 Web Application Framework Component Reference Guide • December 2004

CHAPTER 57

Session Attribute Factory

The Session Attribute Factory is a factory that acquires an object from session scope.

Property
Name Description Notes

Attribute
Name

The name of the attribute used to retrieve the object from session scope.

Name The name of the component instance. Req
131

132 Web Application Framework Component Reference Guide • December 2004

CHAPTER 58

Simple Choice

A simple Choice implementation.

Property
Name Description Notes

Label The label of the choice that is displayed to the end user. Req

Name The name of the component instance. Req

Value The value of the choice. Req
133

134 Web Application Framework Component Reference Guide • December 2004

CHAPTER 59

Model Reference

A Model Reference configures an instance of
com.iplanet.jato.model.SimpleModelReference.

Property
Name Description Notes

Instance
Name

The name of the model instance within this request. If no instance name is
specified, the default instance will be used. All references that specify the
same instance name (including the default) will share the same model
instance.

Look in
Session

Determines whether the model will be obtained from the HTTP session. If
this value is true, but the model is not available from the session, a new
model instance will be created and stored in the session if the Store In
Session property is set to true.

Model Class
Name

The fully qualified name of the model class. Req

Name The name of the component instance. Req

Store in
Session

Determines whether the model will be stored in the HTTP session if a new
instance of the model is created (a new instance my not be created if the
Look in Session property is set to true). The model will be stored in the
session using the specified instance name, or the default instance name.
135

136 Web Application Framework Component Reference Guide • December 2004

CHAPTER 60

Type Validator

A Type Validator validates based on successful conversion to a specified type.

Property
Name Description Notes

Name The name of the component instance. Req

Validation
Rule

The fully qualified class name used for validation. During validation, the
provided value is converted to this type using the
com.iplanet.jato.util.TypeConverter class. Validation fails if
conversion to this type fails.

Req
137

138 Web Application Framework Component Reference Guide • December 2004

CHAPTER 61

User-Defined Command

The User-defined Command component represents a reference to any command
component within the current application or its component libraries.

Property
Name Description Notes

Command
Class Name

The fully qualified name of the command class. Req

Name The name of the component instance. Req

Operation
Name

The name of the operation that will be passed into the command's
execute() method via the CommandEvent parameter.

Parameters An array of developer-defined parameters which can be any Java type,
including a Java expression. The parameters will be passed into the
specified command component's execute() method via the
CommandEvent parameter.
139

140 Web Application Framework Component Reference Guide • December 2004

CHAPTER 62

WebAction Command

The Web Action Command invokes a WebAction on the specified
WebActionHandler component.

Property
Name Description Notes

Command
Class Name

The name of the command class that will handle the request. By default this
is set to the standard implementation
com.iplanet.jato.view.command.WebActionCommand. Developers
should only change the setting of this expert property if they wish to set it
to a subclass of the standard command class implementation.

Name The name of the component instance. Req

Operation
Name

The WebAction to perform. Req

WebAction
Handler
Path

A qualified path that indicates which WebActionHandler visual component
to invoke. This path is resolved relative to the parent of the command field
component that invoked this command. For example, if the developer
associates a button in a container view component with this command, the
WebAction would be invoked on the parent container view.
The syntax of this path follows the standard view name path expression
syntax, using forward slashes ("/") as delimiters. All components in the
path except the last must refer to a ContainerView or a derivative of
ContainerView (such as TiledView). Both relative and absolute paths are
possible. If a name path begins with a forward slash, the name is assumed
to be relative to the page (the ViewBean). If the path does not begin with a
forward slash, the name is assumed to refer to a child relative to the current
container. Two dots ("..") may be used to refer to the container that is the
parent of the current container.
141

142 Web Application Framework Component Reference Guide • December 2004

Index
A
application attribute factory, 113

B
Basic Command, 109
Basic Container View component, 19
Basic TiledView (tiled view) component, 21
Basic TreeView (tree view) component, 23
Basic ViewBean (Page), 25
bean adapter model, 81
Bean Adapter Model Design Actions, 82
Bean Adapter Model Design Actions (Fields), 82
Bean Adapter Model Design Actions (Update

Fields), 82
Button, 27

C
Check Box, 29
ClientSession Model, 107
Combo Box, 31
Command Chain, 111
Command components, 16
Component Overview, 13
component reference, 17
Custom model, 83
Custom Model (Fields), 83
Custom Model (Operations), 84
custom tree model, 87

D
Data-Driven Combo Box, 33
Data-Driven List Box, 35
Data-Driven Radio Buttons, 37
Dataset Locator, 79
Dataset Navigator, 77
Date View, 65
DateTime View, 69
Directory Search Model, 103

E
Execute Model Command, 117
Execute Model Goto Page Command (execute and

forward command), 115
Extensible Visual Components, 14
extensible visual components, supported, 13

F
File Upload, 39
Forward Command, 119

G
Go To Page Link, 71
Goto Page Command, 121

H
Hidden Field, 41
HTTP session model, 89
HTTP session model (Fields), 90
Hyperlink (HREF), 43
 143

I
Image, 45
Include Command, 123

J
JDBC ResultSet Model, 105
JDBC SQL query model, 91
JDBC SQL query model (Fields), 92
JDBC stored procedure model, 93
JDBC stored procedure model (Procedure Parameter

Fields), 94
JDBC stored procedure model (Result Set Column

Fields), 93

L
List Box, 47

M
Masked Text Field, 63
Model components, 15
model reference, 135

N
Non-Extensible Visual Components, 14
non-extensible visual components, supported, 13
Non-Visual Components, 17

O
Object adapter model, 95
Object Adapter Model Design Actions, 96
Object Adapter Model Design Actions

(Browse/Add Object Field Bindings), 96
Object Adapter Model Design Actions (Complete

Missing Operations), 96
Object Adapter Model Design Actions (Fields), 97
Object Adapter Model Design Actions

(Operations), 97

P
Password Field, 49
Preface, 7 to 11

R
Radio Buttons, 51
Redirect Command, 125

reference, component, 17
regular expression validator, 127
request attribute factory, 129
resource bundle model, 99
resource bundle model (Fields), 100

S
session attribute factory, 131
simple choice, 133
simple custom model, 85
simple custom model (Fields), 86
Simple Custom Model (Operations), 86
Static Text Field, 53
subclassing, 13

T
Text Area, 57
Text Field, 55
Time View, 67
type validator, 137

U
Update Fields, Bean Adapter Model Design

Actions, 82
User-defined Command, 139

V
Validating Text Area, 61
Validating Text Field, 59
Visual components, 13

W
Web Action Command, 141
Web Service Model (Fields), 102
Web Service Model (Operations), 102
Web service model (WS model), 101
144 Web Application Framework Component Reference Guide • December 2004

	Web Application Framework Component Reference Guide
	Contents
	Before You Begin
	Component Overview
	Visual Components
	Extensible Visual Components
	Non-Extensible Visual Components
	Model Components
	Command Components
	Non-Visual Components
	Component Reference

	Basic Container View (Pagelet)
	Basic Tiled View
	Basic Tree View
	Basic ViewBean (Page)
	Button
	Check Box
	Combo Box
	Data-Driven Combo Box
	Data-Driven List Box
	Data-Driven Radio Buttons
	File Upload
	Hidden Field
	Hyperlink (HREF)
	Image
	List Box
	Password Field
	Radio Buttons
	Static Text Field
	Text Field
	Text Area
	Validating Text Field
	Validating Text Area
	Masked Text Field
	Date View
	Time View
	DateTime View
	Go To Page Link
	Menu
	Static Breadcrumb
	Dataset Navigator
	Dataset Locator
	Bean Adapter Model
	Bean Adapter Model Design Actions
	Fields

	Custom Model
	Fields
	Operations

	Simple Custom Model
	Fields
	Operations

	Custom Tree Model
	HTTP Session Model
	Fields

	JDBC SQL Query Model
	Fields

	JDBC Stored Procedure Model
	Result Set Column Fields
	Procedure Parameter Fields

	Object Adapter Model
	Object Adapter Model Design Actions
	Fields
	Operations

	Resource Bundle Model
	Fields

	Web Service Model
	Fields
	Operations

	Directory Search Model
	Directory Search Model Design Actions
	Fields
	How to Use This Component

	JDBC ResultSet Adapter Model
	JDBC ResultSet Adapter Model Design Actions

	Client Session Model
	Fields

	Basic Command
	Command Chain
	Application Attribute Factory
	Execute Model and Goto Page Command
	Execute Model Command
	Forward Command
	Goto ViewBean Command
	Include Command
	Redirect Command
	Regular Expression Validator
	Request Attribute Factory
	Session Attribute Factory
	Simple Choice
	Model Reference
	Type Validator
	User-Defined Command
	WebAction Command
	Index

