
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Web Application Framework
Overview

Sun Java™ Studio Enterprise 7 2004Q4

Part No. 819-0726-10
December 2004, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.Sun, Sun Microsystems, le logo Sun et Java sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.LA

DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Before You Begin 5

1. Web Application Framework Overview 11

Introduction: The Challenges of Building Web Applications 11

Building Web Applications: Pre-J2EE 11

Building Web Applications: Post-J2EE 12

Emergence of the J2EE Application Framework 13

The Criteria of an Enterprise Application Framework 14

What is the Web Application Framework? 15

Overview 15

Who Should Be Interested in the Web Application Framework? 16

What Does the Web Application Framework Do? 16

What Doesn't the Web Application Framework Do? 17

How Does the Web Application Framework Work? 17

Use of Design Patterns 17

Types of Functionality 19

How is the Web Application Framework Different From Other Web Application
Frameworks? 22

Based on J2EE Standards 22

A Familiar Paradigm 23
 3

Application Consistency 23

Symmetrical Display/Submit Handling 24

Formal Model Entity 25

Application Events 26

Hierarchical Views and Component Scoping 27

Efficient Object Management 29

Support for Parallel Content 29

Ready-to-Use, High-Level Features 31

Tool-ready 32

Enterprise-class Performance 33

Conclusion 33

2. Web Application Framework Design and Architecture FAQ 35

Who Should be Interested in the Web Application Framework? 35

Why Use the Web Application Framework When You Already Have J2EE?
36

Isn't the Web Application Framework Just Another Proprietary Web
Application Framework (JAPWAF)? 36

How is the Web Application Framework Different From Other J2EE
frameworks? 37

The Web Application Framework Has the Notion of a Display Field. This Isn't
Like the J2EE Blueprints or Other J2EE Architectures I've Seen—Why Not
Just Pull Values Directly From a Helper Bean? 39

Do the Web Application Framework Applications Require the Use of EJBs?
42

How are the Web Application Framework Applications Structured? 43

How are the Request Flow and URL Format Implemented? 44

How Does a View Bean Relate to a Session or Entity Bean? 44

With the JSP Scope Set to Request to Simplify Threadsafe Coding and Force
Beans to be Constructed and Destroyed With Each Request, Will There be
Negative Performance Impact? 44

Index 47
4 Web Application Framework Overview • December 2004

Before You Begin

The Web Application Framework Overview introduces the Web Application Framework
and discusses what it is, how it works, and what sets it apart from other Web
application frameworks.

Before You Read This Book
Before starting, you should be familiar with concepts used in building web
applications using existing J2EE web technologies, such as servlets and JavaServlet
Pages™ (JSP™ pages).

The following resources can provide additional information :

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

Note – Sun is not responsible for the availability of third-party Web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.
 5

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/j2ee/tutorial
http://java.sun.com/j2ee/download.html#platformspec

How This Book Is Organized
Chapter 1, “Web Application Framework Overview” on page 11, provides an
overview of the Web Application Framework.

Chapter 2, “Web Application Framework Design and Architecture FAQ” on page 35,
provides answers to a number of questions often asked by people new to the Web
Application Framework about its design and architecture

Typographic Conventions

Related Documentation
Java Studio Enterprise documentation includes books and tutorials delivered in
Acrobat Reader (PDF) format, release notes, online help, and tutorials delivered in
HTML format.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
6 Web Application Framework Overview • December 2004

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM
web site and from the Documentation link from the Sun Java Studio Enterprise
Developers Source portal (http://developers.sun.com/jsenterprise).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet.

■ Sun Java Studio Enterprise 7 Release Notes - part no. 819-0905-10

Describes last-minute release changes and technical notes.

■ Sun Java Studio Enterprise 7 Installation Guide (PDF format) - part no. 817-7971-10

Describes how to install the Sun Java Studio Enterprise 7 integrated development
environment (IDE) on each supported platform and includes other pertinent
information, such as system requirements, upgrade instructions, server
information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Building J2EE Applications - part no. 819-0819-10

Describes how to assemble EJB modules and web modules into a J2EE application
and how to deploy and run a J2EE application.

■ Web Application Framework documentation (PDF format)

■ Web Application Framework Component Author’s Guide - part no. 819-0724-10

Describes the Web Application Framework component architecture and the
process to design, create, and distribute new components.

■ Web Application Framework Component Reference Guide - part no. 819-0725-10

Describes the components available in the Web Application Framework
Library.

■ Web Application Framework Overview - part no. 819-0726-10

Introduces the Web Application Framework and what it is, how it works, and
what sets it apart from other application frameworks.

■ Web Application Framework Tutorial- part no. 819-0727-10

Introduces the mechanics and techniques to build a web application using the
Web Application Framework tools.

■ Web Application Framework Developer’s Guide - part no. 819-0728-10

Provides the steps to create and use application components that can be
assembled to develop an application using the Web Application Framework
and explains how to deploy the application in most J2EE containers.
Before You Begin 7

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://developers.sun.com/jsenterprise)

■ Web Application Framework IDE Guide - part no. 819-0729-10

Describes the various parts of the Sun Java Studio Enterprise 7 2004Q4 IDE and
emphasizes the use of the visual tools for developing a Web Application
Framework application.

■ Web Application Framework Tag Library Reference - part no. 819-0730-10

Gives a brief introduction to the Web Application Framework tag library, as
well as a comprehensive reference to the tags available within the library.

Tutorials
Sun Java Studio Enterprise 7 tutorials help you understand the features of the IDE.
Each tutorial provides techniques and code samples that you can use or modify in
developing more substantial applications. All tutorials illustrate deployment with
Sun Java System Application Server.

All tutorials are available from the Tutorials and Code Camps link off the
Developers Source portal, which you can access from within the IDE by choosing
Help > Examples and Tutorials.

■ QuickStart guides provide an introduction to the Sun Java Studio IDE. Start with
a QuickStart tutorial if you are either new to the Sun Java Studio IDE or want a
quick introduction to a particular feature. These tutorials describe how to develop
simple web and J2EE applications, generate web services, and how to get started
with UML modeling and Refactoring. QuickStarts take minutes to complete.

■ Tutorials focus on a single feature of the Sun Java Studio IDE. Try these if you are
interested in the details of a particular feature. Some tutorials build an application
from the ground up, while others build on provided source files, depending on
the focus of the example. You can complete a tutorial in an hour or less.

■ Narrated Tutorials use video to illustrate a feature or technique. Try a narrated
tutorials for a visual overview of the IDE or an in-depth presentation of a
particular feature. You can complete a narrated tutorial in a few minutes. You can
also start and stop a narrated tutorial at any point you wish.

Online Help
Online help is available in the Sun Java Studio Enterprise 7 IDE. You can open help
by pressing the help key (F1 in Microsoft Windows environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.
8 Web Application Framework Overview • December 2004

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the book’s title (Web Application Framework Overview) and its part
number (819-0726-10) in the subject line of your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Tutorials HTML at the Examples and Code Camps link from the Developers
Source portal at http://developers.sun.com/jsenterprise

Release notes HTML at http://docs.sun.com
Before You Begin 9

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com

10 Web Application Framework Overview • December 2004

CHAPTER 1

Web Application Framework
Overview

This chapter provides an overview of the Web Application Framework and includes
the following sections:

■ Introduction: The Challenges of Building Web Applications

■ What is the Web Application Framework?

■ How Does the Web Application Framework Work?

■ How is the Web Application Framework Different From Other Web Application
Frameworks?

■ Conclusion

Introduction: The Challenges of Building
Web Applications

Building Web Applications: Pre-J2EE
J2EE™, and in particular its Web-tier components (Servlets and JSPs), has been
successful because it addresses the core frustrations of first-generation Web
developers. In the pre-J2EE world, these developers had to contend with vastly
different programming models, APIs, and server eccentricities just to build simple
applications. Enterprise scale applications were all the more difficult because so
many factors had to be considered just to select a technology that might support an
application's requirements. Actually building an application was an additional
problem, complicated by platform immaturity, API mismatches, cross-platform
integration issues, and lack of highly-scalable development and maintenance
models.
11

Although server vendors solved many of the programming and development
scalability issues by providing powerful, high-level application frameworks, these
frameworks shared only few basic assumptions, and no common contracts or
infrastructure. These frameworks were generally tied to the server vendor's
proprietary server infrastructure, and while they made it possible to build highly
functional, robust enterprise applications, it was not possible to change vendors or
easily take advantage of technology provided by other vendors. Moving from one
vendor's platform to another was essentially impossible without rewriting the
application.

Enterprise architects adopted several strategies to avoid vendor lock-in, the most
widespread of which was adding heavy doses of abstraction into the architecture.
Although this strategy solved some of the problems—enterprise business objects and
processes could be decoupled from Web-container details—it created others. These
abstractions added significant, sometimes massive, complexity to the application,
and introduced both development and deployment penalties. Debugging this
complex infrastructure became exponentially more difficult as architects tried to
distance themselves further and further from proprietary APIs. Web developer skills
became less and less reusable, as each new project introduced new architectures and
constraints that were incompatible with those they had previously encountered.

Each application was a world unto itself, and there was very little consistency,
especially when the foundation application framework did not provide a strong
direction for developers and architects alike. And while some constraints were
helpful in focusing application development efforts, some frameworks became so
high-level that developers had to work around features to accomplish advanced, or
in some cases routine, tasks.

Building Web Applications: Post-J2EE
The advent of J2EE solved many of the problems endemic to first-generation Web
application development. For the first time, developers could depend upon standard
contracts between the container and their application components, and all J2EE-
compliant containers were guaranteed to provide the same well-designed API.
Architects and developers were liberated from the chaotic mix of proprietary
frameworks, APIs, and containers.

However, with freedom came responsibility. Although J2EE is a solid foundation for
an application framework, it is not one itself. The J2EE specification avoids
recommendations in the application development space. J2EE leaves architects and
developers the significant task of designing (or adopting) an application
infrastructure that suits their application development needs. J2EE alone cannot
suffice.
12 Web Application Framework Overview • December 2004

Emergence of the J2EE Application Framework
To develop real-world applications, especially large-scale enterprise Web
applications, developers inevitably find that they must create some kind of
framework. The underlying Web-specific platform is already provided by J2EE, but
the delta required for actual application development must come from somewhere,
and developing a framework internally can be both time-consuming and error-
prone.

Thus, an abundance of reusable (and not so reusable) Web application frameworks
built on J2EE have appeared, each of which tries to address some range of developer
needs. For example, some frameworks focus exclusively on the rendering of data to
the client, while others focus on validation of input data. Still others attempt to unify
fat client and thin client GUI development.

Because J2EE abolished the de facto architectures used during first-generation Web
application development, each J2EE project must now evaluate and choose an
application architecture best suited to its requirements. Common concepts and
terminology have evolved to assist discussions of these architectures, including such
examples as Type I and Type II servlet architectures, Service to Workers delegation,
and MVC-based UIs. However, while these concepts are fundamental and
important, they are very broad, and applicable to the entire range of applications,
from the very small to the very large. Furthermore, none of them truly address the
details of how to build a Web application in a repeatable, maintainable, and scalable
way.

To underscore this last point, nearly all contemporary application frameworks claim
to use a Type II, Service-to-Workers, and MVC-based architecture, yet these
frameworks are strikingly different in implementation, extensibility, and the
constraints they place on developers. Knowing the underlying architecture only
helps introduce the framework to developers. It has a surprisingly small ongoing
role in helping the developer learn the framework, or even compare it to other
frameworks, especially when these frameworks target different application scales.

Contemporary frameworks go beyond the space in which there is sufficient
terminology to effectively describe their features. Thus, a much more detailed
analysis is necessary to truly understand what one framework offers over another,
and in particular, what a framework offers in regard to enterprise application
development. Simply working from a checklist of features is grossly insufficient.
Chapter 1 Web Application Framework Overview 13

The Criteria of an Enterprise Application
Framework
Reliance on tested and proven architectures is extraordinarily important when
building Web applications, more so than in other application development domains.
For example, fat client applications are quite forgiving in their response to sub-
optimal architectural or technological choices. Even the most heavily abstracted
client-side application architecture will run with sufficient performance when it has
a modern workstation all to itself.

The same is not at all true when that same application has to be run over a loosely
coupled network, on shared hardware which is supporting hundreds or thousands
of simultaneous users. In this domain, the wrong choice of architecture or
technology can make the difference between an application that responds in a timely
manner to requests, and one that does not respond at all, or one that scales well in
both development and production, versus one that might only do one or the other,
but not both.

Failings in some of these factors can be forgivable in the small-to-medium
application development space, where a handful of developers work closely on an
application. In such cases, architectures can be much more fluid because the scope of
future changes and contact with other teams is limited, and team members can
easily coordinate to tweak issues as they arise. Coding standards and best practices
are easily shared ad hoc, and retrofitting older portions of the application is a matter
of a few hours of work. Teams tend to have similar levels of expertise, remain stable,
and stay together for an extended period. Performance is usually not a critical factor,
as the user base for these applications is small or forgiving of slower response times.

Development of enterprise applications is the antithesis of the small-to-medium
application development model. Team communication is unwieldy; application
changes have massive ripple effects; best practices are seldom disseminated outside
of sub-teams; retrofitting parts of the application becomes simply impossible;
developer turnover is high; and developer expertise varies widely. Finally,
performance is absolutely critical, since it might play a determining role in whether
a user will continue to use the application or abandon it for a perhaps less
convenient, but more responsive, alternative.

Any framework facilitating enterprise Web application development must then
account for these constraints in both its design and implementation. More
importantly, it must minimize—and in ideal cases, eliminate—the impact of these
constraints on the application development effort.

Therefore, any enterprise framework must do the following:

■ Provide application consistency, so that developer skills can be reused across
teams, across projects, and across companies. There should be an obvious starting
approach to developing an application, but this approach must not limit
developer capability.
14 Web Application Framework Overview • December 2004

■ Provide both high- and low-level features, so that teams can find the right balance
to suit their requirements and complete a project within time constraints.

■ Provide concrete ways of increasing application maintainability, so that architects
and developers do not have to do this work themselves (conceivably in any
number of different ways).

■ Guide the naïve developer, since not all developers are created equal, and some
might not have experience in the Web-based application domain, or even the
enterprise development domain.

■ Complement the advanced developer, so that advanced features can be created by
using the underlying J2EE platform directly, without hacking around framework
features.

■ Appeal to the enterprise architect, so that the advanced architectural elements
needed to incorporate are readily available in the framework, or compatible with
the framework. The enterprise architect should be comfortable that the
framework makes prudent architectural choices, preferably the same ones he or
she would make given the resources.

Most importantly, the framework must be proven, mature, robust, and well-
performing in an enterprise setting. The users of the framework must know what to
expect, and be confident that the framework meets these requirements before
beginning any development work.

The remainder of this chapter describes how the Web Application Framework, with
its goal of being a truly enterprise-class Web application framework, addresses these
issues and meets these criteria.

What is the Web Application
Framework?

Overview
The Web Application Framework is a mature, powerful, standards-based J2EE Web
application framework geared toward enterprise Web application development. The
Web Application Framework unites familiar concepts such as display fields,
application events, component hierarchies, and a page-centric development
approach, with a state-of-the-art design based on the Model-View-Controller and
Service-to-Workers patterns.
Chapter 1 Web Application Framework Overview 15

The Web Application Framework is based upon the collective experience of
industry-leading software engineers, consultants, Web application developers, and
enterprise Web architects. It has been in development since January 2000, and
available to customers since June 2000. Since that time, the Web Application
Framework has been used in dozens of real-world enterprise Web applications, and
is being used successfully in production sites supporting millions of users, and
millions of dollars in financial transactions every day.

Who Should Be Interested in the Web Application
Framework?
The Web Application Framework is primarily intended to address the needs of J2EE
developers building medium, large, and massive-scale Web applications. Although
the Web Application Framework can be and has been used for small Web
applications, its primary advantages are not as readily apparent at that scale. The
Web Application Framework especially shines when applications are maintained for
a long period, undergo many changes, and grow in their scope. In short, the Web
Application Framework excels at helping develop enterprise applications.

Because the Web Application Framework provides core facilities for reusable
components, it is well-suited to third party developers wishing to provide off-the-
shelf components that can be easily integrated into Web applications. These same
features make the Web Application Framework very suitable as a platform for
building vertical Web offerings, particularly because these extension capabilities
provide a well-defined way for both end users and original developers to extend
and leverage existing vertical features.

What Does the Web Application Framework Do?
The Web Application Framework helps developers build enterprise Web
applications using state-of-the-art J2EE design patterns. It provides a design-pattern-
based skeleton on which enterprise architects can hang other portions of their
architectures. Web application developers find an easy development approach, and
enterprise architects find a clearly delineated design that integrates in a well-defined
way with other enterprise tiers and components.

The Web Application Framework helps developers build reusable components by
providing both low- and high-level infrastructure and design patterns, as well as a
full component model. Developer-defined components are first-class objects that
interact with the Web Application Framework as if they were native components.
Components can be arbitrarily combined and reused throughout an application,
across applications, and across projects and companies.
16 Web Application Framework Overview • December 2004

Finally, the Web Application Framework helps introduce new J2EE developers to
Web application development, and empowers advanced J2EE developers by
providing them a powerful toolkit with which to develop advanced features not
possible with other frameworks.

What Doesn't the Web Application Framework
Do?
The Web Application Framework is not an enterprise tier framework, meaning that
it does not directly assist developers in creating EJBs, Web Services, or other types of
enterprise resources. Although the Web Application Framework is geared toward
enterprise application development, it is properly a client of these enterprise tier
resources, and thus provides a formal, first-class mechanism to access these
resources.

How Does the Web Application
Framework Work?

Use of Design Patterns
The Web Application Framework is based on industry accepted, state-of-the-art
design patterns and techniques, and as a J2EE presentation tier framework, it
implements and relies heavily upon the Core J2EE Patterns published by JavaSoft.
The following table lists the Web Application Framework's use of the published J2EE
design patterns.

Intercepting
Filter Presentation

Core J2EE Patterns (see
http://java.sun.com/blue
prints/corej2eepatterns/
index.html)

Java BluePrints Pattern Catalog (see
http://java.sun.com/blueprints/
patterns/catalog.html) *

Web
Application
Framework
Implements

Intercepting
Filter

Presentation X X Servlet 2.3
Filters

Front
Controller

Presentation X X X

Composite
View

Presentation X X X
Chapter 1 Web Application Framework Overview 17

http://java.sun.com/blueprints/patterns/catalog.html
http://java.sun.com/blueprints/patterns/catalog.html
http://java.sun.com/blueprints/corej2eepatterns/index.html
http://java.sun.com/blueprints/corej2eepatterns/index.html

* Note that the J2EE BluePrints sample applications (for example, Pet Store)
implement many business and integration tier patterns, but effectively only as
demonstrations of these patterns. Furthermore, many of these patterns are directed
toward use of EJBs, which the J2EE BluePrints applications assume, but to which the
Web Application Framework is agnostic. For a number of reasons, the Web

View Helper Presentation X X X

Dispatcher
View

Presentation X X

Service To
Worker

Presentation X X

Business
Delegate

Presentation
& Business

X X X

Session
Facade

Business X X **

Service
Locator

Business X X **

Value List
Handler

Business X X **

Composite
Entity

Business X X **

Transfer
Object
Assembler

Business X **

Transfer
Object

Business X X **

Service
Activator

Integration X **

Data Access
Object

Integration X X X

Fast Lane
Reader

X X

Model-
View-
Controller

Presentation X X

Adapter All X

Command Presentation X

Intercepting
Filter Presentation

Core J2EE Patterns (see
http://java.sun.com/blue
prints/corej2eepatterns/
index.html)

Java BluePrints Pattern Catalog (see
http://java.sun.com/blueprints/
patterns/catalog.html) *

Web
Application
Framework
Implements
18 Web Application Framework Overview • December 2004

Application Framework offers alternatives to EJB use in some specific cases, and
these alternatives use some of the business and integration tier patterns, though
from Web tier entities.

** The Web Application Framework minimally implements the J2EE presentation tier
patterns, but, as should be expected from a presentation-tier-only framework, does
not necessarily implement Business and Integration tier patterns. The bulk of these
patterns are left as recommended best practice to enterprise and integration tier
developers, and these patterns are completely compatible and can be integrated with
the framework's presentation tier patterns.

In addition to the use of patterns listed above, the Web Application Framework is
based on an N-tier JSP/servlet architecture, and has been designed entirely around
interfaces and object contracts that reflect these patterns—it is an integrated set of
cooperating design patterns first, and an implementation of those patterns second.

Primary among Web Application Framework's patterns is the Model-View-
Controller (MVC) pattern. Where other frameworks claim to be MVC frameworks,
the reality is that they usually focus on one, or perhaps two of the pattern's
components, but seldom on all three. Furthermore, other frameworks often claim
that JSPs, perhaps with a custom tag library, comprise a full and proper View tier.
They many times also claim that application-specific business objects comprise a full
and proper Model tier.

These claims are specious.

The Web Application Framework addresses all three components of the MVC
pattern fully. It defines formal View and Model entities with concrete relationships,
and provides an advanced logical Controller role that allows applications to scope
controller logic in appropriate ways. The Web Application Framework's View tier
incorporates JSP technology, but is not synonymous with it. In the same way, the
Web Application Framework's Model tier incorporates other J2EE technologies, but
is not synonymous with any of them. For these and other reasons explained below,
the Web Application Framework provides unprecedented extensibility for
developers that other frameworks simply cannot match.

Types of Functionality
There are three logical groupings of the Web Application Framework functionality.

■ Web Application Framework Core
■ Web Application Framework Components
■ Web Application Framework Extensions
Chapter 1 Web Application Framework Overview 19

Web Application Framework Core

The Web Application Framework core is what is usually referred to as simply The
Web Application Framework. It defines fundamental interfaces, object contracts, and
primitives, as well as the minimal infrastructure required for the Web Application
Framework applications. The Web Application Framework core does not provide a
component library, but provides the enabling technology for component authors.
Included in the Web Application Framework core are View-based primitives like
ContainerViews, TiledViews, and TreeViews, as well as Model-based primitives like
DatasetModels, QueryModels, and TreeModels. The Web Application Framework
core also provides primitives for request dispatching and reusable Command
objects. Using these primitives, developers can easily create application-specific or
reusable components that can be shared within or across projects. The Web
Application Framework core also includes high-level features that allow developers
to immediately begin building highly functional applications. These features are
covered in more detail in the sections below.

Web Application Framework Components

The Web Application Framework components leverage the Web Application
Framework core infrastructure to provide high-level, reusable components for
application development. These components can come in a variety of flavors
intended for different usage scopes. For example, horizontal Web Application
Framework components tend to be the most generic components available, with
their strength being flexibility and customizability. These types of components are
usable by many different Web Application Framework user populations, across
projects and companies, and are generally not biased toward any particular look and
feel. Vertical Web Application Framework components are tailored to a particular
usage scenario, allowing them to provide high-level features and high ease-of-use.
These types of components are less broadly usable, but because their scope is better
defined, they can keep parameterization to a minimum and use a particular look and
feel. All Web Application Framework components can use all of the facilities
provided by the Web Application Framework core, and build upon its high-level
features like WebActions, SQL-based Model implementations, and TreeViews.

Web Application Framework Extensions

Finally, the Web Application Framework extensions provide access to non-J2EE
facilities in a Web Application Framework-compatible way. In many cases, the Web
Application Framework extensions allow container-specific features to be used from
the Web Application Framework applications seamlessly. Extensions differ from the
Web Application Framework components in that they focus on technology
integration rather than application development.
20 Web Application Framework Overview • December 2004

Technical Overview

The Web Application Framework, or more properly the Web Application Framework
core, is pure Java, and comes packaged as an industry-standard JAR file.

The Web Application Framework defines several top-level packages as follows:

com.iplanet.jato—Request handling infrastructure

com.iplanet.jato.command—Command-related interfaces and
implementations

com.iplanet.jato.taglib—Custom JSP tag library

com.iplanet.jato.model—General Model-related interfaces and
implementations

com.iplanet.jato.view—General View-related interfaces and
implementations

Each of these packages contain subpackages of more specific derivations, such as
HTML-specific View implementations, and SQL-specific Model implementations.
There are no formal packages or classes for the Web Application Framework
components or the Web Application Framework extensions, which are purely logical
classifications.

In writing a Web Application Framework application, developers derive application-
specific subclasses from existing Web Application Framework classes, or implement
certain Web Application Framework interfaces in an application-specific way. In
most cases, developers will use the existing Web Application Framework core
implementations as superclasses, thus inheriting a great deal of useful behavior.
(Component developers might be more likely to implement a set of Web Application
Framework interfaces directly.)

Application objects are organized around the central concept of a page. Each page
consists of a rendering specification—normally a JSP containing static content and
markup plus custom Web Application Framework tag—and one class comprising
the root of the page's View hierarchy. Each request to the server returns a page as the
result. The page flow through an application is determined by the control logic
written by the developer. There is no fixed relationship between one page and
another other than that provided by the developer.

In the HTML world, each rendered page generally contains one or more links or
buttons which the user can activate. Each activation of a link or button sends data
back to the server, and results in invocation of a Command object specific to that
activation. This Command object can take action itself, or delegate handling of the
request to developer-defined event methods. Ultimately, the request is forwarded to
a resource that is responsible for rendering a response to the client.
Chapter 1 Web Application Framework Overview 21

In most cases, this resource is an HTML-based JSP page which uses the Web
Application Framework tag library to render dynamic content. The tag library uses
the Web Application Framework View components to obtain the data it renders.
These View objects are associated with one or more Model objects, and draw data
from them as needed. Thus, the Web Application Framework Views act as a
hierarchical facade to any number of Models. These Views can be reused across
multiple pages and with different Models. Models can generally be used by any
number of Views since they have no display or View dependencies.

After receiving a response in the form of a page, the user activates a link or button
and a request is sent back to the Web Application Framework application. The
request is sent back to the same objects that rendered the page. This allows the Web
Application Framework infrastructure to map the submitted data back into the same
Views (and thus Models) from which it originated, providing virtual persistence of
this data. The developer interacts with the application objects and the submitted
data as if there had never been an intervening response-request cycle. Once the data
has been mapped back into the originating objects, the Command object specific to
that link or button press is activated, and the cycle begins again.

How is the Web Application Framework
Different From Other Web Application
Frameworks?
The following sections outline some major differences between the Web Application
Framework and other contemporary Web application frameworks.

Based on J2EE Standards
Many frameworks adopt servlets as a viable technology while eschewing JSP, or vice
versa. Still others say they adopt these standards, but in reality, they are merely
proprietary containers that can be run in a J2EE container using rudimentary servlet-
level integration.

The Web Application Framework embraces J2EE standards like servlets and JSPs
directly, while still allowing developers to freely use the features J2EE provides. The
Web Application Framework is not a container within a container, nor is it a layer
meant to abstract the developer from J2EE. Instead, it adds to J2EE features that
facilitate enterprise Web application development, while still letting developers
interact with as much as or as little J2EE/Web Application Framework as they
prefer.
22 Web Application Framework Overview • December 2004

A Familiar Paradigm
The Web Application Framework provides display fields, application events,
component hierarchies, and a page-centric development approach, all of which are
time-tested and very comfortable to developers familiar with client-side application
development using Swing, Delphi, Visual Basic, or PowerBuilder. While there are
differences due to the Web paradigm, these familiar constructs lend a natural feel to
the Web Application Framework for these developers, and significantly speed
application development. They also mean that the Web Application Framework is
particularly well-suited to integration with application builders, such as Forte for
Java or JBuilder (for more information on the topic of application builder
integration, see the Tool-ready section).

Application Consistency
Many contemporary Web application frameworks are extremely flexible, and in
some cases, this is the fundamental intent of the design. They consciously strive to
be non-prescriptive about certain aspects of an application, like its Model tier.
Instead, they focus on one or two areas of application design, most commonly the
Controller and View portions of an MVC architecture, and leave the rest to the
developer.

Some architects and developers might argue that flexibility is never a drawback, but
when considering enterprise development, it certainly can be. While it might
initially sound strange to characterize flexibility as a drawback, there is an inverse
relationship between flexibility and application consistency. A framework that is
maximally flexible, like the J2EE API itself, leads to applications that vary widely in
the way in which they are developed.

Unlimited flexibility, or an ill-defined development direction, leave inexperienced
architects and developers to discover some technique—any technique—that seems to
accomplish the task at hand, even if this technique is ultimately flawed. When a
framework fails to provide at least one clear path to follow throughout the full range
of development tasks, developers are as likely as not to use a technique that
sabotages or offsets the advantages that the framework provides. Furthermore, each
isolated team will likely find a different technique to use, so that even within the
same application, one group cannot easily understand or maintain the work of
another group. In the worst case, a flawed technique in one portion of the
application will undermine the rest of the application to such a degree that the
application suffers performance or scalability issues. This situation easily arises
when an inexperienced architect or lead developer chooses a poor global direction
for the application. Such a choice might result in intractable architectural issues
throughout the application, in the worst case rendering the application ultimately
unworkable.
Chapter 1 Web Application Framework Overview 23

Unfortunately for Web application developers, it turns out that most frameworks are
flexible in ways that can easily be counterproductive, in both development and
production. As noted above, a good enterprise framework should guide naïve
developers in a positive direction without getting in the way of advanced
developers. Although many frameworks achieve the latter, they only do so because
they are non-prescriptive about certain aspects of the architecture or application
development, either because of design philosophy or due to a design flaw. This
leaves the developer to make many choices when starting a project, including many
which present significant danger to the overall project if improperly selected.

The Web Application Framework, by contrast, provides an implicit, proven direction
for both Web application architecture and application development, without
precluding the use of other approaches. It does this by providing well-defined points
of interaction with an application, as well as clearly defined ways in which to
extend, augment, or override existing behavior. The difference between using the
Web Application Framework and another framework to develop a Web application,
is that someone new to the Web Application Framework need not make a
(potentially bad) choice in order to get started. That user can see from the outset a
general approach, and after becoming more advanced and fluent in the Web
Application Framework and J2EE, other approaches and techniques become
apparent. Furthermore, whatever work the developer has done up to that point is
still consistent with more advanced techniques used later. As a result, applications
written in the Web Application Framework resemble one another more so than
applications written using other frameworks. They are more consistent, both in use
of high-level and low-level features, and thus are more maintainable.

Symmetrical Display/Submit Handling
Many contemporary application frameworks evolved from custom tag libraries, a
very well-received and popular technology. In some cases, they are little more than a
custom tag library and perhaps one or two additional interfaces. As a result, these
frameworks are myopic in that they are heavily biased toward the display of data to
the user, but provide little assistance for handling data from the user.

These frameworks perhaps address one set of developer needs well, but at the
expense of others. In a Type II architecture, rendering technologies like JSP have zero
involvement during the submit (request) cycle. This means that if the View
representation is defined only in a JSP, the submit-cycle logic cannot take advantage
of it. This logic instead just receives a raw list of parameters as inputs. Developers
are then left to use these values in their raw form, with little or no assistance. They
have suddenly stepped off the deep end into the most basic servlet techniques.

Frequently, in these frameworks, clear relationships between application objects are
unspecified and hard to maintain. Because these frameworks provide little or no
structure for incoming data, invoked components are forced to work in the dark, not
24 Web Application Framework Overview • December 2004

able to reliably know what data they are receiving on any given request invocation.
This can place a burden on the project that might not be readily apparent when the
project is started, but quickly becomes a major factor as the application grows.

The lack of symmetrical display and submit cycles commonly leads to a proliferation
of inter-object dependencies. Generally, this proliferation of relationships is reflected
in a proliferation of low-level controller logic necessary to do nothing more than
manually shuffle input data to a target object or backend. This can lead to an
asymmetric notion of a backend object or model being used to render a page, but not
used directly when handling a request from a previously rendered page. This
asymmetry places yet more burden on developers to micro-manage backend
components and concern themselves with the low-level details of running in a Web
application container.

Productivity and maintenance are the casualties of a display-centric architecture. By
contrast, the Web Application Framework assists with both the display and submit
cycles in a symmetrical fashion, by virtue of its formal View tier. Whereas other
frameworks loosely define their View tier as a JSP or some other kind of content
rendering technology, the Web Application Framework makes a distinction between
rendering specification (JSP) and View components. Only together are these
considered the full View tier. A Web Application Framework application defines
primarily a hierarchy of View components, and then references these components
from the rendering specification. The developer interacts with these View
components in the same way during both display and submit cycles. The View
components are the canonical View form.

Formal Model Entity
As noted in the previous section, many frameworks focus heavily on technology to
assist display of data to the user. The most common species of this type of
framework are those that focus on XML and XPath. Although enticing to developers
looking to use the latest cool technologies, these frameworks have little to offer the
developer during the submit cycle of the application, and frequently require
representation of application data in XML or some other display-oriented format.
The coercion of application data to a framework-centric representation is
burdensome at best, and in some cases, a fatal shortcoming.

Instead, the Web Application Framework perspective is that the application should
be able to represent its data in a View-agnostic way, and provide a formal
mechanism for obtaining that data without implying a particular data format.
Therefore, the Web Application Framework provides a formal Model entity that
defines a handful of standard methods that all Models must implement. Using an
arbitrary, Model-specific key, Model consumers (including the Web Application
Framework Views) can obtain Model data in a standard way, without any
assumptions about how that Model internally represents its data.
Chapter 1 Web Application Framework Overview 25

For this reason, the Web Application Framework components can interact with any
Model in the same way, allowing a different Model to be plugged into the same
View. Models become interchangeable, and therefore, so does the data they
represent. Marshaling of data to a particular format purely for display becomes
unnecessary, and the View tier need not understand the specific type of data with
which it interacts. Different types of Models can coexist within an application,
without the View tier being cognizant of any difference between their native data
formats. XML/XPath, JDBC, JDO, and other enterprise data all look the same to a
Model consumer, and thus the Web Application Framework is able to subsume the
development approach of any framework concentrating on one of these data
formats.

Finally, the interposition of a Model structure on an enterprise-tier resource enforces
a level of abstraction that not only makes the application design far more consistent,
but significantly eases the burden of maintenance. In formally defining the data
available from the enterprise tier, developers also define a formal yet loosely-
coupled contract between tiers of the application. This contract allows the
application to be easily modified in the future, and in a well-defined way. The
incidence of regressions is lower, and regressions are more readily apparent if they
occur.

Application Events
The Web Application Framework provides developers with a number of events for
application-related occurrences. There are three types of events: general request
events, specific request events, and display events.

General request events include events like onBeforeRequest(),
onSessionTimeout(), and onUncaughtException(). Developers can use these
events to respond to general application and request lifecycle occurrences, as well as
error conditions. By default, error-related events use a consistent, localized
mechanism to report errors to users, and can be overridden by developers to take
application-specific action.

Specific request events occur based on user action. When a user activates a link or
button (also known as a CommandField in the Web Application Framework) on a
page, the request results in the invocation of a Command object on the server
corresponding to that activation. Although users can provide their own Command
objects in response to such actions, the default Command implementation delegates
handling of the request to a request handling event method of the form
handle<name>Request(), where <name> is the name of the CommandField the
user activated. This event is invoked on the parent container of the CommandField,
and thus is scoped to the component that originally rendered the link or button.
Within this event handler, developers can take any action they like, either handling
the request as they wish, or delegating the handling of the request to another object.
26 Web Application Framework Overview • December 2004

The main difference between this Web Application Framework feature and similar
request-handling features provided by other Web application frameworks is that the
event is invoked on the component to which it pertains, and is fine-grained per link
or button. Other frameworks generally provide only one coarse-grained event
handler per HTML form, and the developer is left to make that code conditional
based on the user's action. This is both messy and hard to maintain as the set of
fields changes. That approach also makes use of modular, self-contained components
difficult, because the single event handler must be changed each time a new link or
button is added to or removed from the form, regardless of whether it is contained
within a component (for more information on this drawback, see the Hierarchical
Views and Component Scoping section).

Lastly, the Web Application Framework provides fine-grained, field-level display
events. Display events are invoked during the rendering of a page, and give the
developer hooks into the rendering process that simply would not otherwise be
possible. From these events, developers can access the tag handlers as well as the JSP
page context and output stream. Display events can be used to skip rendering of a
field or abort the currently rendering page altogether. They can also be used to
tweak the outgoing content rendered by the JSP, providing advanced content
filtering capabilities. Furthermore, display events encapsulate display logic pertinent
to a component inside that component, thus providing a high degree of reusability
for components even if they use advanced rendering techniques.

Most importantly, display events keep Java code or program-like structures out of
the JSP. Any kind of programmatic construct in the JSP is generally a maintenance
problem, both because it exposes application functionality to the JSP author, and
because parallel content must duplicate this functionality in potentially many places
(for more information on parallel content, see the Support for Parallel Content
section). Although these kinds of features might be a productivity benefit for small-
to medium-sized applications requiring little or no significant maintenance, or
having a limited lifespan, such applications are not typical in the enterprise. Many
frameworks emphasize this kind of application development, and many of their
features are targeted to filling out these capabilities with a full range of
programmatic constructs that mimic a traditional programming language. By
contrast, the Web Application Framework recognizes and leverages the advantages
of JSPs without compromising maintainability or the ability of the application
developer to finely control rendering of the JSP.

Hierarchical Views and Component Scoping
Most frameworks use a flat namespace for data field names in an HTML form. This
flat namespace severely limits how View components can be combined. For example,
two components using a field called name cannot be used on the same form. The
Chapter 1 Web Application Framework Overview 27

only resort is to contrive unique names for all fields, globally, throughout all
components and forms. Clearly, this workaround will not scale during development,
and curtails the development of a global component market.

The situation is even worse for frameworks that rely on tightly-coupled form-object
concordance. In this situation, an HTML form corresponds to a Java object, usually a
JavaBean, with accessor and mutator methods for each form field. Simple form field
names like name easily map to Java methods like getName() and setName(). But,
as noted above, developers will seldom be able to use these simple names if they
want to employ reusable components, and will instead need to use globally unique,
contrived names. Mapping of complex, contrived field names like
com.foo.componentA.name to Java method names is particularly inelegant. Such
names must comply with Java method naming standards, so the only viable options
would be getCom_foo_componentA_name() and
setCom_foo_componentA_name(). Workable, perhaps, but less than elegant or
maintainable.

Any framework that relies on a single object as a facade for form field names
precludes the use of View components altogether—all data used on that page or
form must be reflected by a single object interface, regardless of whether portions of
that form are used on multiple pages. A developer could create an object, solely for
use by a form, which then delegates to other more reusable objects, but this requires
tedious and hard-to-maintain data-shuffling code and is not a true component
architecture. Furthermore, it requires a compilation step to make changes in the form
or page, a critical shortcoming of frameworks that want to work with application
builders.

The Web Application Framework, by contrast, provides a hierarchical namespace for
HTML form fields that is not based on tightly-coupled form-object concordance.
Each display field View is created separately as a child of a parent container View,
and uses a simple local name within that container. It thus implicitly inherits a
qualified, unique global name. These qualified field names are guaranteed never to
conflict with other field names, even if local names are identical in other containers.
Therefore, independent View components can be arbitrarily combined and will
never conflict with one another. The Web Application Framework automatically
manages the mapping of form data associated with these qualified field names back
into components during the submit cycle, so developers never have to think about
how they combine components. They simply use them and the Web Application
Framework takes care of the details.

Furthermore, developers do not use these qualified names during authoring of a JSP
page. Instead, the Web Application Framework provides what are called context tags.
These tags define nested container and component scopes. Developers use local
names in the JSP within these scopes, and these names are automatically and
transparently translated to qualified names at runtime using the current context. Not
only can View components then be arbitrarily combined, but rendering specification
fragments (JSP fragments & pagelets) can be arbitrarily combined in a parent page.
28 Web Application Framework Overview • December 2004

The Web Application Framework developers have then two types of View
component reuse at their disposal, and these types can be combined in several
permutations. This is simply not possible in other frameworks.

Efficient Object Management
Many frameworks focus heavily on object reuse within the application, with the
intent of being more efficient and scalable because they avoid object allocation.
Unfortunately, this approach is today wrongheaded, and has been debunked in
several well-know forums. While it might not have been true in the JDK 1.0
timeframe, object allocation in modern JVMs is extremely cheap, especially when
compared to process-wide synchronization points. For maximum scalability, a
framework must avoid synchronization between concurrent threads as much as
possible.

Frameworks that go to lengths to share objects are unknowingly limiting their
scalability. Furthermore, they increase their complexity significantly, and require
great care to avoid bugs related to multithreading. In many cases, these frameworks
also impose multithreaded programming concerns on application developers, who
are more often than not unequipped to undertake such tasks. Perhaps a greater
concern is the fact that these bugs might not reveal themselves until the application
built on the framework is in production and under heavy load.

For these reasons, the Web Application Framework takes a pragmatic approach. It
reuses objects where it makes sense, but allows other objects to be allocated as
needed. The common request handling infrastructure of the Web Application
Framework relies on shared object instances managed by the container, but objects
used by the developer during normal request handling are allocated lazily as
needed. Not only does this approach reduce complexity and eliminate an entire class
of potential bugs for the Web Application Framework itself, it does the same for
application code. Developers need not worry about stomping on shared data, and
debugging becomes much easier.

The Web Application Framework has proven that this approach is maximally
effective in production deployments, in which hundreds of requests per second are
handled without significant latency or memory effects due to object allocation.

Support for Parallel Content
Most contemporary frameworks provide internationalization support by giving
developers access to Java resource bundles. JSP authors replace static content in the
JSP with custom tags that instead obtain localized content at runtime from a resource
bundle backed by a property file.
Chapter 1 Web Application Framework Overview 29

While this is a useful approach, it has significant drawbacks when used alone,
among these being that the JSP page author cannot author a page in a natural way
using a standard HTML editor, but must instead edit content in property files.
Furthermore, this approach largely assumes that the markup surrounding the
localized content is unchanged, when in reality it might be heavily influenced by the
device or language being targeted. Therefore, certain types of internationalization
are best addressed using an alternative approach called parallel content.

The Web Application Framework provides full support for parallel content, which is
the use of parallel sets of JSPs, with each JSP in the set customized to a particular
language, target device, output markup (for example, XML, HTML, or WML), or any
combination of these. Each of these JSPs references the same View components, and
thus contains only variations of content and markup. The application can then
choose the most appropriate JSP to render at runtime based on user preference or
any other desired criteria.

Parallel content works very well when trying to localize content for both Western
and Asian languages, where page layout might be affected heavily, or when trying to
render to different device types like a standard browser or an Internet-enabled cell
phone. The advantage is that the business logic and View structure remain
consistent across localized versions of the page, while allowing for (sometimes
significant) rendering differences.

Some frameworks assume a static association between JSP and application
component, or try to automate page flow using a declarative specification of the
component-JSP relationship. While this latter approach has its advantages in certain
limited cases (yet many more significant drawbacks), it does not allow the flexibility
needed for use of parallel content. Other frameworks that emphasize programmatic
constructs in the JSP make the use of parallel content extremely difficult. Developers
using these frameworks must copy and maintain programmatic constructs across
multiple parallel JSPs. Because the Web Application Framework provides display
events to keep programmatic constructs out of the JSP, display logic never has to be
replicated across parallel JSPs in a Web Application Framework application.

The Web Application Framework provides full support for parallel content, making
it extremely easy for applications to select at runtime a JSP to render based on any
developer-defined criteria. The lookup for parallel JSPs is also developer-defined, so
parallel content can be organized in a way that makes sense to the application.
Together with resource-bundle-based internationalization strategies, the parallel
content feature of the Web Application Framework provides the most flexible
internationalization support possible.
30 Web Application Framework Overview • December 2004

Ready-to-Use, High-Level Features
The Web Application Framework provides not only low-level infrastructure for use
by applications and components, but also high-level features that developers can use
to rapidly build highly functional applications.

Among these features are WebActions, which allow developers to perform common,
high-level tasks with a minimum of code. For example, developers can invoke the
Next and Previous WebActions to automatically paginate through rows of data in a
DatasetModel, across requests. The dataset position is automatically managed across
requests by the WebAction infrastructure, with no additional code necessary from
the developer. Any model implementing the DatasetModel interface can be used
with these WebActions.

Another high-level feature that the Web Application Framework provides is a set of
SQL-based Model implementations that automatically manage Model-oriented
access to JDBC resources. These implementations use SQL queries and stored
procedures to retrieve and persist data in an RDBMS, all without the developer
worrying about detailed JDBC use or the inconsistencies in JDBC driver usage. Of
course, developers can use JDBC directly from within a Web Application Framework
application if they wish, but the presence of these value-added implementations in
the Web Application Framework core allows developers to very rapidly build
functional enterprise applications out of the box.

Other frameworks simply do not provide this level of functionality, out of the box or
otherwise. Although developers can use object-relational mapping tools with any
framework, including the Web Application Framework, they minimally require a
conscious decision to use complex business objects in the application architecture.
By contrast, the Web Application Framework SQL-based Models allow developers to
abstract these details away from the application domain and put them behind a
standard Model interface.

The rest of the application is not directly dependent on JDBC or SQL, and thus
becomes far more maintainable and consistent.

Finally, the Web Application Framework provides TreeView and TreeModel
primitives that drastically simplify development of hierarchical data displays. These
primitives are complemented by a set of look-and-feel-agnostic custom tags, which
allow developers to structure a JSP document into portions that will be selectively
rendered for a given tree node. Since these tags output no markup themselves, they
can be used in JSP fragments and pagelets to provide a pluggable and customizable
component look and feel. No other contemporary framework has anything rivaling
these components.
Chapter 1 Web Application Framework Overview 31

Tool-ready
Unlike other frameworks, the Web Application Framework was designed from the
ground up to ultimately be used with GUI application builders to create Web
applications. Almost all other contemporary frameworks lack the features that make
highly functional application builder integration feasible. Because they define no
formal fields, components, or Models, nor provide a page-centric development
approach, there is only limited opportunity for manipulation in a GUI builder.
Instead, such integration is likely limited to one-way code generation from
templates, with nothing but simple manual code editing to follow.

While tool-readiness has been part of its fundamental design, the Web Application
Framework does not yet provide this capability, for several reasons. Before ever
focusing on GUI application development, the framework must be correct, robust,
and amenable to API-based manipulation. Developers must be able to do everything
they need, including using very advanced techniques, via a well-designed API.
Frameworks that focus on tool support from the beginning are generally biased
toward only that type of manipulation, and fail to provide a well-designed, easy to
use, and flexible API underlying that infrastructure. This means that developers
cannot go below the tool-oriented layer to do things like build reusable components,
or manipulate application objects in advanced ways.

Furthermore, focus on tool support tends to lead designs in a direction that might
incur performance penalties. Perhaps the most common implementation approach
leading to performance issues is the use of shared objects. Shared runtime objects are
common in application-builder-oriented designs, but because they require
significant synchronization at runtime, they ultimately limit scalability. Projects
should not need to give up production scalability for development scalability;
instead, the two should both be achievable.

The Web Application Framework perspective is that if the framework is first
designed around interfaces and object contracts, GUI builder support is easy to add
at a later stage (and in fact, this work is being pursued today in the Web Application
Framework). What results is a framework that provides both development
productivity using application builders, but also supports advanced uses that truly
make the framework ready for the enterprise. This also means that scalability and
performance are not compromised by a tool-centric design early in the process, and
that even if application builder support requires some performance penalty,
developers have the ability to make a conscious choice of development versus
production scalability.

Finally, application-builder focused frameworks are usually consumers of
additional, sometimes nonstandard, technologies, meaning that they require
additional libraries outside their scope that cannot be guaranteed to be the right
version, or even available on a given platform. These other technologies must then
be made available manually by the project team, sometimes with difficulty because
32 Web Application Framework Overview • December 2004

of version clashes. The Web Application Framework perspective is that it is better to
be lean in this regard rather than require additional libraries which might conflict
with a project's deployment architecture.

Enterprise-class Performance
Because the Web Application Framework has been optimized to eliminate all
synchronization points, applications built on the Web Application Framework are as
scalable as the J2EE container in which they run. The Web Application Framework
introduces only a small, fixed amount of overhead to each application request,
whereas other frameworks that do costly synchronization might exact exponentially
more overhead or incur increasingly longer latencies as load increases.

Conclusion
The Web Application Framework provides features that have either no equivalent or
no equal in other contemporary Web application frameworks. The vast majority of
available frameworks focus on rendering of data, using various technologies like JSP
and XML. Only a very few actually attempt to address a significant range of
developer needs, and only the Web Application Framework attempts to address the
broad range of enterprise application development requirements. The Web
Application Framework has been designed through and through to complement
enterprise development, and minimize the impact of the unique challenges
enterprise development presents.

Thus, the Web Application Framework meets the criteria of an enterprise framework
in the following ways:

■ The Web Application Framework provides application consistency by enforcing
and encouraging the use of proven, state-of-the-art design patterns. For this
reason, developer skills can more easily be reused across teams, across projects,
and across companies. The Web Application Framework offers an obvious,
proven approach to developing applications, but also allows low-level interaction
with the underlying J2EE and Web Application Framework platform for
advanced developers.

■ The Web Application Framework provides both high- and low-level features,
from ready-to-use Model implementations to fundamental extensibility facilities,
so that teams can find the right balance of features that suit their requirements.

■ The Web Application Framework provides concrete ways of increasing
application maintainability, including a state-of-the-art request dispatching
mechanism that eliminates tedious data shuffling; enforcement of consistent
Chapter 1 Web Application Framework Overview 33

design patterns through well-defined object contracts; advanced component
development facilities, fine-grained application events and override points; and a
page-centric development model.

■ The Web Application Framework guides the naïve developer to create well-
designed, high-performance Web applications by offering a clear, understandable,
and proven application development approach, using already familiar application
development concepts.

■ The Web Application Framework complements the advanced developer by not
getting between him or her and the underlying J2EE platform, and by providing a
well-defined mechanism for extensibility.

■ The Web Application Framework appeals to the enterprise architect with its
enterprise-class design patterns, proven high-performance, and formal
mechanisms for abstracting and encapsulating access to enterprise-tier resources.

The Web Application Framework is mature, robust, stable, and extremely well-
performing. But most importantly, the Web Application Framework is proven. It is
being used successfully in production enterprise applications supporting millions of
users and millions of dollars in financial transactions every day, and has had ringing
endorsements from enterprise developers, architects, and project managers alike.
Above and beyond all the other reasons outlined here, the fact that the Web
Application Framework has already been proven in the enterprise most of all assures
those adopting the Web Application Framework that it meets all the criteria of an
enterprise-class Web application framework.
34 Web Application Framework Overview • December 2004

CHAPTER 2

Web Application Framework
Design and Architecture FAQ

This chapter provides answers to a number of questions often asked by people new
to the Web Application Framework about its design and architecture.

The questions included in this document are as follows:

■ Who Should be Interested in the Web Application Framework?

■ Why Use the Web Application Framework When You Already Have J2EE?

■ Isn't the Web Application Framework Just Another Proprietary Web Application
Framework (JAPWAF)?

■ How is the Web Application Framework Different From Other J2EE frameworks?

■ The Web Application Framework Has the Notion of a Display Field. This Isn't
Like the J2EE Blueprints or Other J2EE Architectures I've Seen—Why Not Just
Pull Values Directly From a Helper Bean?

■ Do the Web Application Framework Applications Require the Use of EJBs?

■ How are the Web Application Framework Applications Structured?

■ How are the Request Flow and URL Format Implemented?

■ How Does a View Bean Relate to a Session or Entity Bean?

■ With the JSP Scope Set to Request to Simplify Threadsafe Coding and Force Beans
to be Constructed and Destroyed With Each Request, Will There be Negative
Performance Impact?

Who Should be Interested in the Web Application
Framework?
The Web Application Framework is primarily intended to address the needs of J2EE
developers who build medium, large, and massive-scale enterprise-strength Web
applications. The Web Application Framework combines robust design patterns with
equally robust implementations of those patterns to provide an enterprise Web
35

application foundation. Because the Web Application Framework provides core
facilities for reusable JavaBean-like components, it is also suited for third party
developers wishing to provide off-the-shelf components that can easily be integrated
into Web applications. These same features make the Web Application Framework
very suitable as a platform for building vertical Web applications or offerings. This is
because its horizontal extension capabilities provide a well-defined way for both end
users and original developers to extend or leverage existing vertical features.

Why Use the Web Application Framework When
You Already Have J2EE?
J2EE is a relatively young technology, and though it is very exciting, it does not yet
provide the richness and rapid development model that some non-J2EE Web
technologies have developed over time. This is not necessarily a bad thing—being
free of non-standard application APIs is a huge benefit, and the freedom that J2EE
provides can make many Web development tasks easier and quicker, and the result
more maintainable.

However, because of the ongoing industry need to quickly build richly functional
Web applications, and the only minimal level to which J2EE (rightly) specifies such
tasks, there is still a need for additional application design patterns and added
functionality beyond J2EE for nearly any real-world Web development project,
especially enterprise Web applications. This is where the Web Application
Framework steps in: easy to understand and close to the metal, yet it provides
unprecedented design flexibility and consistency. Best of all, it is based entirely on
the pure, standards-compliant J2EE platform, so you do not sacrifice J2EE to use the
Web Application Framework. Instead, you benefit from both.

Isn't the Web Application Framework Just
Another Proprietary Web Application Framework
(JAPWAF)?
No. With proprietary Web application frameworks, you are tied not only to the
framework API—for which you do not have the source code—but also to the
vendor's underlying application server platform. If you want one and not the other,
you are out of luck, and moving an application from one vendor's solution to that of
another means a rewrite of your application from scratch.

The Web Application Framework is different.
36 Web Application Framework Overview • December 2004

■ The Web Application Framework is based entirely on the J2EE platform. There is
no container-specific code in the core Web Application Framework classes, which
means you can use the Web Application Framework in your favorite J2EE
container, without changes. The Web Application Framework has been tested in
containers such as Apache Tomcat, Caucho Resin, Allaire JRun, the Sun Java
System Application Server, the iPlanet Web Server, and IBM WebSphere, and it
works the same in all of them (barring container bugs, which might necessitate
slightly different usage). It has been determined that J2EE has delivered, and full
advantage of that fact is taken, with you as the beneficiary.

■ You have the full Web Application Framework source code. This means that you
can investigate, change, fix, tweak, or configure, every nook and cranny of the
framework, including the underlying design pattern, to make it suit your exact
needs (although it is hoped this will not be necessary). You are encouraged to see
how the Web Application Framework works, not only because it will help get
bugs fixed more quickly and easily, but because the Web Application Framework
can only benefit from detailed technical review and discussion.

■ The Web Application Framework is fundamentally a design pattern, based
entirely on interfaces and object contracts. A default implementation of these
interfaces is provided, but if you do not like the way this implementation works,
you can override the portions you do not like. Or, reimplement the interfaces
yourself to create a new type of Web Application Framework object that
integrates seamlessly into the rest of the framework. Your new Web Application
Framework objects can interact with other types of Web Application Framework
objects because they all obey the same contracts. Try that in your favorite
proprietary Web application framework.

How is the Web Application Framework Different
From Other J2EE frameworks?
In a survey of J2EE frameworks, both before and after the inception of the Web
Application Framework, it was found that other J2EE frameworks typically do not
address the full range of enterprise J2EE developers' needs. Instead, these
frameworks only try to solve limited portions of the broad range of enterprise
development needs, and thus come up lacking when used to build large, real-world
enterprise Web applications.

Perhaps the most common observed failing is the predominant focus on JSP
rendering and tag libraries. Apache Struts is possibly the most well-known example
of such a framework. Although JSPs are an integral part of any J2EE Web
application, and tag libraries are crucial to reduce JSP authoring costs, they cannot
be the primary focus of a framework that attempts to minimize developer work
while maximizing application maintainability, both of which are critical for real-
world enterprise development. For example, any kind of programmatic construct in
the JSP is a maintenance problem, because it exposes application functionality to the
Chapter 2 Web Application Framework Design and Architecture FAQ 37

JSP author, and because parallel content must duplicate this functionality in
potentially many places. Additionally, these constructs can seldom be as rich or
powerful as Java code, leading to an even worse problem of needing to create
scriptlets in the JSP to handle complex, but relatively common, situations. Apache
Struts emphasizes this kind of application development, and many of its features are
targeted to filling out such capabilities.

Although these types of features might be a productivity benefit for small- to
medium-sized applications that do not require significant maintenance or an
extended lifespan, clearly such applications are not typical in the enterprise. By
contrast, the Web Application Framework recognizes and leverages the advantages
of JSPs without compromising maintainability or the ability of the application
developer to finely control rendering of the JSP. It accomplishes these goals by
separating the view tier into a rendering specification (the JSP) and rendering logic
components (View components). The combination of these entities simultaneously
keeps programmatic constructs out of the JSP, where they are mixed with content
and are hard to maintain, while providing even greater control over rendering by
using fine-grained, view-related events.

Another common failing of other frameworks is the lack of any formal notion of a
model or a view tier interface to backend components. For developers to quickly
build extensible Web applications, there must be a defined contract between the
view components that present application data and those that generate it.
Commonly seen in other frameworks is no specification of such a contract or
interface, so that developers are either forced to provide data in a view-tier specific
format (such as a concrete object instance), or write tedious code to marshall data
from the backend to the view. Again, given a small project, or a project that does not
require future changes to its backend tier, this might be acceptable.

The Web Application Framework, however, provides a formal contract between the
view and the backend via its Model interface, so that view components can be fully
independent from backend components. This ability also allows developers to
seamlessly change the backend associated with a view without any changes to the
view itself. This means that a view could render directly from a SQL query early in
an application's life span, but later render data from an EJB as the application's
enterprise tier matures, all without the view components knowing the difference.
For this reason, the Web Application Framework provides a full model-view-
controller architecture, while most other frameworks, in effect, only provide a view-
controller architecture.

Finally, it is common for other frameworks to simply not consider the submit cycle
of a Web application, so that interlinks and relationships between application
components are unspecified and difficult to maintain. This omission places a burden
on the developer that, unfortunately, might not be readily apparent when the project
is started. For example, although many frameworks provide structure for outgoing
data, they provide little or no structure for incoming data, so that invoked
components are forced to work in the dark, not able to reliably know what data they
are receiving on any given request invocation.
38 Web Application Framework Overview • December 2004

Additionally, multiple application paths to the same component force the
preparation of the data required by the target component into the callers. This
greatly hinders maintainability due to proliferation of inter-object dependencies.
Commonly, this proliferation of relationships is reflected in a proliferation of low-
level controller logic necessary to do nothing more than manually shuffle input data
to the target component or backend. This can lead to an asymmetric notion of a
backend component or model being used to render a page, but not used to directly
handle a request from a previously rendered page. This asymmetry places yet more
burden on the developer to micro-manage backend components and be concerned
with the low-level details of running in a Web application container.

Instead, the Web Application Framework incorporates this class of functionality into
its core design pattern and implementation. This frees the developer completely
from being concerned with the population of data to and from the rendered view
and the backing models. The result is that from the developer's perspective, models
remain stateful between requests without imposing the burden of actual statefulness
on the application (which would not scale).

In summary, the Web Application Framework addresses the full range of enterprise
developer needs, and avoids focusing on only one technology or a subset of those
needs. Other frameworks tend to take a narrower approach that might address one
or two aspects of enterprise development, but seldom all of the key aspects that are
necessary to build large-scale, real-world enterprise Web applications.

The Web Application Framework Has the Notion
of a Display Field. This Isn't Like the J2EE
Blueprints or Other J2EE Architectures I've
Seen—Why Not Just Pull Values Directly From a
Helper Bean?
The display field paradigm offers unique advantages over more primitive
techniques. Before explaining these advantages, note that there is no reason to use
display fields in an application as they have been envisioned. The container and child
view mechanisms are based entirely on the notion of embeddable arbitrary view
objects. A child view object could be as coarse grained as an entire shopping cart
display or application menu, or as fine-grained as individual display fields. This
flexibility allows application composition from modular pieces, as well as a more
traditional display field oriented approach. In short, you can just pull values directly
from a helper bean in the Web Application Framework, but hopefully you can be
convinced that there is a better way.
Chapter 2 Web Application Framework Design and Architecture FAQ 39

Each top-level ViewBean instance (or root view) is an instance of ContainerView,
and can contain any arbitrary set of sub-views, some of which can be display field
views. TiledViews are also sub-views, and can be arbitrarily nested, in addition to
containing child views themselves.

This hierarchy of views is somewhat more intricate than what the typical Web-tier
developer might expect. For example, many such developers might simply create a
helper bean which declares all of the methods necessary to obtain the values needed
to render a companion JSP. The source of those values would be encapsulated inside
the helper bean's methods. They would use the "*" notation in a <jsp:setProperty> tag
that would automatically map submitted request parameters to bean fields. This is
straightforward, but has some significant disadvantages for development and
maintenance.

Although the Web Application Framework is similar, the use of sub-views becomes
very important to maintain a strict model-view separation. For example, all display
field views are bound to a model. They have no notion of a value contained within
them. Furthermore, all display fields are now bound, though not all are data bound. In
some cases, this model is an instance of DefaultModel, which is simply in-memory
storage. In other cases, the bound model is a SQL query, a stored procedure, an EJB,
a business object, an XML DOM, or a SOAP procedure. The display field views are
completely separate from the storage and management of data and business
behavior.

Display fields are also model-agnostic, in that they can be bound to any model and
work without knowledge of the type of that bound model. This means that you need
not write application code to move values from some value source to a value
consumer—what is called data shuffling. Instead, you get this for free in the Web
Application Framework, unlike in the plain helper bean scenario in which you
would need to write (and maintain) target-specific code to get values from an EJB, a
JDBC ResultSet, and so on, inside each of the bean's accessors. In summary, display
fields provide the minimal indirection needed to allow seamless pluggability of
arbitrary models. Also, because the interaction of display fields with their associated
models occurs via the very general Model interface, the backend data can be
represented in its native format without requiring expensive marshalling to or from
a data format required only by the view tier.

In addition, display fields significantly improve the programming model from the
typical helper bean/taglib approach. Not only do they allow for intuitive
manipulation by the controlling logic, but they provide type-specific operations and
an interface to the HTML rendering, none of which is possible with other
approaches.

For example, one of the drawbacks to the typical taglib approach is that the helper
bean has no real input to the HTML rendering process. If one needs to control this
rendering, as is common, this failure frequently leads to a burdensome amount of
application-related logic and properties in the JSP as scriptlets. For example, you
might want to skip the rendering of a field because the current user is not authorized
40 Web Application Framework Overview • December 2004

to see it. In the typical JSP, the developer would have to provide a scriptlet to
circumvent the display, which puts Java code in the JSP. An alternative would be to
enhance the tag handler to conditionalize its display based on some standard
mechanism, like checking a condition variable. The problem with either approach is
that there is either no consistency or no partitioning of application-related data
versus display-related data. In other words, it lacks neatness and is less
maintainable.

The Web Application Framework gets around this limitation by providing the best of
both worlds. For example, a developer who wants to conditionalize the display of a
field, or customize the output of the field's HTML can, at the last moment,
implement a display event handler in the parent view, and that handler is
automatically invoked during HTML rendering. The developer can then skip the
display of that field, or manipulate the HTML output directly (for example,
changing a text box into plain text). Or, the developer can call methods on the
display field view that indicate the necessary action, and this action is automatically
taken into account when the field is rendered by the HTML rendering subsystem
(the JSP/taglib combination).

Thus, rather than placing display-related code in the JSP along with page content, or
in controlling business logic or in the business-oriented model, developers can either
augment the display field rendering process or easily direct it. This not only keeps
Java code out of the JSP, but it is far more powerful than scriptlets or other
approaches to controlling HTML rendering. Another benefit is that it is far more
consistent.

Display fields also allow the developer to work with an HTML page as if it were a
stateful server-side object. When the user clicks a button or HREF on the HTML
page, the request is ultimately routed back to the view that rendered that button or
HREF, and an event handler corresponding to that object is invoked. But, before
invoking the event handler, the Web Application Framework repopulates all the
display fields and views with the submitted request parameters. The effect is that
from the developer's point of view, the page remains stateful and simply responds to
commands from the user. The developer handles the event, for the most part, in the
same manor as in a fat client application, by implementing an event handler and
taking action based on the request and its updated field values. Because display
fields are always bound to a model, any changes in the value of the field are
automatically propagated to the model. This allows developers to choose the most
productive compromise between traditional fat client-like and formal MVC-like
programming styles.

It is important to note that the alternative approaches of using helper beans and
using display fields both implement the facade design pattern, in that the interface
to and from the HTML page is handled by these objects. The data values provided
via this interface can come from a number of sources, including multiple backing
EJBs, business objects, result sets, and so on, all of which can be referred to in
abstract terms as models. However, whereas the traditional helper bean would
Chapter 2 Web Application Framework Design and Architecture FAQ 41

manage these models via custom code, with little or no consistency or reusability,
the Web Application Framework abstracts them to a formal definition of a Model,
and specifies a clear contract between a model and a view bound to it.

This formal contract has several advantages.

■ It allows display fields to provide an easily mutable mapping between the facade
presented by the view and the set of models backing that facade. As XML-based
declarative features are included into the Web Application Framework (work
already in progress), display fields will allow declarative changes to this facade,
greatly simplifying application development and drastically reducing
development time.

■ Because this facade is so easily changeable, changes to backing models can be
propagated to the view portion of the application with extreme ease, and with
declarative support, without recompilation. Compare this to the traditional helper
bean approach in which developers would need to add accessors and mutators to
their helper bean and/or modify the code needed to obtain values from or send
values to the backing model. Because of these fine-grained changes and the
recompilation they require, development time, productivity, and object reuse
suffer significantly.

Do the Web Application Framework Applications
Require the Use of EJBs?
No. As in any other J2EE application, you can obtain a reference to an EJB and use it
directly from within a Web Application Framework application. However, while
EJBs are a component of J2EE, they are not a mandatory component. Furthermore,
they are a relatively complex addition to an application's architecture, and currently
have some significant drawbacks. A large number of Web developers are not
prepared to move to an EJB-based architecture, as it presents many unique
challenges and requires a significant additional investment in many areas of
application design and implementation. Therefore, requiring the use of EJBs would
be a disservice.

However, the use of EJBs is supported and facilitated. The Web Application
Framework provides valuable features based on a flexible and pluggable model-
view architecture, which compliments both Web-oriented and EJB-oriented
applications. As an alternative to using an EJB directly, for example, a developer
could use a model that is either backed or directly implemented by an EJB.
Integration of EJBs is as seamless as it is for any other kind of model in the Web
Application Framework, and provides automatic data binding and other high-level
features.
42 Web Application Framework Overview • December 2004

As an initial way to get started with EJBs, included in the Web Application
Framework is a class called BeanAdapterModel that maps the standard Model
interface onto arbitrary JavaBean properties. If you have a Customer EJB, you can
wrap it in this adapter model so that display fields can access its properties/values
directly without any additional code. Using this adapter, values are rendered from
the Customer bean on display and are pushed back into the bean on submit
automatically. You can also use this class to wrap access to local business objects as
well—the adapter does not care whether the objects it encapsulates are remote or
local.

How are the Web Application Framework
Applications Structured?
The Web Application Framework applications are fully independent entities
comprised of one or more modules. Each module is a functional slice or logical
grouping of the overall application. At least one module is required in an
application, but other modules are optional and can be added at any time.

Each Web Application Framework application defines what is called the application
servlet, which is the base class from which all module-specific servlets are expected
to derive. Only the module servlets are accessed by clients of the application. The
application servlet serves only as a common base class for the module servlets,
providing the opportunity to consolidate common application-level event handlers
in a single class. Module servlets allow for module-only specialization of these
events. Together, these servlets form the request handling infrastructure of each Web
Application Framework application.

Each module corresponds to a sub-package of the application, and in addition to
containing a minimal servlet infrastructure specific to that module, contains one or
more logical pages. Each module might also contain supporting models and other
non-Web Application Framework classes (of course, classes in a module can use
classes outside the module as usual).

Each logical page in the module consists minimally of one JSP and one ViewBean.
The ViewBean is the helper bean for the corresponding JSP, and in conjunction with
the Web Application Framework tag library, provides the display/application event
infrastructure. Each ViewBean contains an arbitrary hierarchy of reusable child view
objects which can be assembled to create full-fledged, data-bound pages within
minutes.
Chapter 2 Web Application Framework Design and Architecture FAQ 43

How are the Request Flow and URL Format
Implemented?
All requests are initially handled by a controller servlet (one per module, several per
application), and the URL of this servlet is chosen by the developer. This servlet
dispatches a request to a request-specific controller object (the ViewBean), which
then ultimately forwards the request to another resource (a JSP, ViewBean, or other
Web resource). The source code for the servlet and its dispatching mechanism is
fully under developer control, and developers are encouraged to learn the details of
this mechanism by reading the well-commented source.

How Does a View Bean Relate to a Session or
Entity Bean?
There is no direct relation. A view bean is a JSP worker or helper bean (a usebean).
Each view bean acts as the central support for its peer JSP. Session and entity beans
can be accessed from within the view bean or any of its associated models or views
if desired.

With the JSP Scope Set to Request to Simplify
Threadsafe Coding and Force Beans to be
Constructed and Destroyed With Each Request,
Will There be Negative Performance Impact?
In general, the overhead of supporting persistent application objects is typically
greater than that present in the current approach. Testing has shown that the
overhead from the current approach is insignificant when compared to what
proprietary, non-J2EE containers previously did, as well as the typical behavior
associated with a Web application. In essence, allocation of objects in modern JVMs
is a sufficiently cheap operation that justifies the benefits provided by this approach.
However, this does not mean that the implications of such an approach has been
ignored.

Although some non-J2EE containers provided persistent application objects for
efficiency reasons, these objects were not stateful to any client. Thus, each client's
stateful information had to be regenerated on each request. Equivalent application
objects have been carefully designed with as little overhead as possible. In most
cases this is equivalent to the useful, stateful information that must, in any case, be
recreated on each request. In addition, the Web Application Framework supports
optimized access to these objects so they are only created when needed. Therefore,
44 Web Application Framework Overview • December 2004

the Web Application Framework-based applications are generally more efficient than
non-J2EE applications in both processing and memory consumption and, in most
cases, significantly so.

It is not necessarily possible to design an infrastructure that could make use of
persistent application objects in a useful way. Both the Sun Java System Application
Server and other highly scalable servlet containers make use of multiple JVMs, and a
user's requests are not necessarily routed back to the same address space. This
means that persistent application objects would have to be reinitialized for each
request in any case. This is at least as much overhead, if not more, than simply
creating the objects again. Additionally, placing application objects in the session is
not a viable option, as it is an extremely expensive operation and minimally requires
deserialization, which is more expensive than simple object allocation.

Adding the layer of functionality to the Web Application Framework to support
persistent application objects significantly separates developers from the underlying
container. This generally violates the design principles of keeping things as close to
standard J2EE as possible.

Having made these objections, in the future, the ability to use persistent application
objects might still be provided if the possible benefits outweigh the drawbacks.
However, such functionality, if present, would be applicable to only a narrow range
of applications, and would not be helpful to the typical Web Application Framework
application.
Chapter 2 Web Application Framework Design and Architecture FAQ 45

46 Web Application Framework Overview • December 2004

Index
A
APIs (Pre-J2EE), 11
application consistency, 23
application development model, small-to-

medium, 14
Application Events, 26
application framework

criteria of an enterprise, 14
Applications, Web, Post-J2EE, 12
Applications, Web, Pre-J2EE, 11
architect, enterprise, 15

B
BluePrints sample, J2EE, 18
book organization, 6

C
components, build reusable, 16
consistency, application, 14

D
debugging (Pre-J2EE), 12
Design Patterns

Adapter, 18
Business Delegate, 18
Command, 18
Composite Entity, 18
Composite View, 17
Data Access Object, 18
Dispatcher View, 18
Fast Lane Reader, 18

Front Controller, 17
Intercepting Filter, 17
Model-View-Controller, 18
Service Activator, 18
Service Locator, 18
Service To Worker, 18
Session Facade, 18
Transfer Object, 18
Transfer Object Assembler, 18
use of, 17
Value List Handler, 18
View Helper, 18

developer
experienced, 15
inexperienced, 15

developers, new J2EE, 17
developers, third party, 16

E
Efficient Object Management, 29
Enterprise-class Performance, 33

F
fat client GUI development, 13
features, develop advanced, 17
features, high- and low-level, 15
Features, ready-to-use, high-level, 31
Formal Model Entity, 25
framework, enterprise, 14
Functionality, types of, 19
 47

G
GUI development, fat client and thin client, 13

H
hierarchical facade, 22
Hierarchical Views and Component Scoping, 27

J
J2EE Application Framework, emergence, 13
JSP page, HTML-based, 22
JSP scope set to request, 44

M
maintainability, 15
Model-View-Controller (MVC) pattern, 19

O
Overview, Application Framework, 11 to 34
overview, technical, 21

P
Parallel Content, support for, 29
performance, 14
Preface, 5 to 9
presentation tier patterns, J2EE minimally

implemented, 19

R
request flow and URL format, how implemented, 44

S
Service to Workers delegation, 13
servlet architectures, Type I and Type II, 13
subpackages, 21
Symmetrical Display, 24

T
tag library, 22
thin client GUI development, 13
threadsafe coding, 44
Tool-ready, 32
top-level packages, 21

U
UIs, MVC-based, 13

V
view bean relation to session or entity bean, 44

W
Web Application Framework

audience, 35
based on J2EE Standards, 22
Design and Architecture FAQ, 35
do applications require the use of EJBs?, 42
evolution, 16
for J2EE developers, 16
how are applications structured?, 43
how differs from other Web application

frameworks, 22
how does it work?, 17
how it is different from other J2EE

frameworks, 37
intended for whom?, 16
just another proprietary Web Application

Framework (JAPWAF)?, 36
what it does, 16
what it does not do, 17
why not pull values from a helper bean?, 39
why not use J2EE instead, 36

Web Applications
challenges of building, 11

Web applications, large-scale enterprise, 13
48 Web Application Framework Overview • December 2004

	Web Application Framework Overview
	Contents
	Before You Begin
	Web Application Framework Overview
	Introduction: The Challenges of Building Web Applications
	Building Web Applications: Pre-J2EE
	Building Web Applications: Post-J2EE
	Emergence of the J2EE Application Framework
	The Criteria of an Enterprise Application Framework

	What is the Web Application Framework?
	Overview
	Who Should Be Interested in the Web Application Framework?
	What Does the Web Application Framework Do?
	What Doesn't the Web Application Framework Do?

	How Does the Web Application Framework Work?
	Use of Design Patterns
	Types of Functionality
	Web Application Framework Core
	Web Application Framework Components
	Web Application Framework Extensions
	Technical Overview

	How is the Web Application Framework Different From Other Web Application Frameworks?
	Based on J2EE Standards
	A Familiar Paradigm
	Application Consistency
	Symmetrical Display/Submit Handling
	Formal Model Entity
	Application Events
	Hierarchical Views and Component Scoping
	Efficient Object Management
	Support for Parallel Content
	Ready-to-Use, High-Level Features
	Tool-ready
	Enterprise-class Performance

	Conclusion

	Web Application Framework Design and Architecture FAQ
	Who Should be Interested in the Web Application Framework?
	Why Use the Web Application Framework When You Already Have J2EE?
	Isn't the Web Application Framework Just Another Proprietary Web Application Framework (JAPWAF)?
	How is the Web Application Framework Different From Other J2EE frameworks?
	The Web Application Framework Has the Notion of a Display Field. This Isn't Like the J2EE Blueprints or Other J2EE Architectures I've Seen-Why Not Just Pull Values Directly From a Helper Bean?
	Do the Web Application Framework Applications Require the Use of EJBs?
	How are the Web Application Framework Applications Structured?
	How are the Request Flow and URL Format Implemented?
	How Does a View Bean Relate to a Session or Entity Bean?
	With the JSP Scope Set to Request to Simplify Threadsafe Coding and Force Beans to be Constructed and Destroyed With Each Request, Will There be Negative Performance Impact?

	Index

