
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Web Application Framework
Developer’s Guide

Sun Java™ Studio Enterprise 7 2004Q4

Part No. 819-0728-10
December 2004, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.Sun, Sun Microsystems, le logo Sun et Java sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.LA

DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Before You Begin 9

1. Overview and Architecture 15

Overview 15

What is the Web Application Framework? 15

Who Should Be Interested in the Web Application Framework? 16

What Does the Web Application Framework Do? 16

What Doesn’t the Web Application Framework Do? 17

The Three Tiers of the Web Application Framework Architecture 17

Model Tier 17

View Tier 19

Controller Tier 22

How Web Application Framework MVC Differs From Traditional MVC 23

2. Develop an Application 25

Create an Application 25

What is a Web Application Framework Application? 25

Application-Level Entities 26

Modules 26

Create a WAR File 28
 3

Use Component Libraries 30

Create a Page (ViewBean) 33

Create a ViewBean Class 33

Manage JSPs 34

Add Child View Components 36

Execute a Page from the IDE 38

Create Pagelet (ContainerView) Components 38

Create a ContainerView Class 39

Handle Requests 39

Request Lifecycle 39

Front Controller Events 40

Application Events 42

Write Event Handling Logic 47

Render a Response 48

3. Programming Guide 53

Using the RequestContext 53

Getting the RequestContext 53

Getting the Servlet Request and Response Objects 54

Getting the Session Object 55

Other Available Objects 55

RequestCompletionListener Interface 56

Using the Message Writer 56

Using ViewBeanManager 56

Using ModelManager 57

Getting and Saving Models in the Session 58

ModelTypeMap 59

Exceptions to Using the ModelManager 60

Using SQLConnectionManager 60
4 Web Application Framework Developer’s Guide • December 2004

Using the RequestManager 62

Logging 63

Logging Messages 63

Log Levels 63

Logging to Standard Out 65

Making Log Messages Stand Out 65

Working With Values 65

Working With DisplayField Values 65

Working With Model Values 67

Getting Values Using the J2EE API 68

Using Display Events 69

Container Display Events 70

Child Display Events 70

Content Tag 71

Using ViewBeans 72

forwardTo() Method 72

Page Session 72

Client Session 73

Using ContainerViews 74

IDE Support for ContainerViews 74

ContainerView API 75

Using ContainerViews in Your Application 77

Default Model 77

Child View Paths 77

Using TiledViews 78

Using TreeViews 79

Using Executing Models 79

Using BeanAdapterModel 80
Contents 5

Using ObjectAdapterModel 81

Using WebActions 81

WebAction Types 82

WebAction Events 82

Auto-Retrieving Models 83

Pagination Using WebActions 84

When to Use WebActions 84

Interoperating With Web Application Framework Applications 85

Interoperating From an External Application 85

Interoperating From Within the Same Application 86

4. Deploy an Application 87

Configure the Application 87

Module Servlet Configuration 88

ViewBean Display URL Configuration 94

SQLConnectionManager Configuration 95

Package the Application 98

Deploy the Application 99

Access a Web Application Framework Application 99

Cross-Module Navigation 100

A. Troubleshooting 103

Symptom 103

Probable Cause 103

Probable Solution 103

Symptom 104

Probable Cause 104

Probable Solution 104

Symptom 105
6 Web Application Framework Developer’s Guide • December 2004

Probable Cause 105

Probable Solution 105

Index 107
Contents 7

8 Web Application Framework Developer’s Guide • December 2004

Before You Begin

The Web Application Framework Overview introduces the Web Application Framework
and discusses what it is, how it works, and what sets it apart from other Web
application frameworks.

Before You Read This Book
Before starting, you should be familiar with concepts used in building web
applications using existing J2EE web technologies, such as servlets and JavaServlet
Pages™ (JSP™ pages).

The following resources can provide additional information :

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

Note – Sun is not responsible for the availability of third-party Web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.
 9

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/j2ee/tutorial
http://java.sun.com/j2ee/download.html#platformspec

How This Book Is Organized
Chapter 1, “Overview and Architecture” on page 15, provides an overview of the
Web Application Framework architecture, and attention to how the various parts are
combined to write a Web Application Framework application.

Chapter 2, “Develop an Application” on page 25, explains in detail the creation and
usage of application components that can then be assembled into a complete
functional application.

Chapter 3, “Programming Guide” on page 53, describes common programming
scenarios and explains how to use certain fundamental objects in the Web
Application Framework.

Chapter 4, “Deploy an Application” on page 87, covers the preparation of a Web
Application Framework application for deployment in most J2EE containers, as well
as deployment-time configuration of a Web Application Framework application.

Chapter A, “Troubleshooting” on page 103, outlines known Troubleshooting issues
including symptom, probable cause, probable solution, and comments for each
known issue.

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
10 Web Application Framework Developer’s Guide • December 2004

Related Documentation
Java Studio Enterprise documentation includes books and tutorials delivered in
Acrobat Reader (PDF) format, release notes, online help, and tutorials delivered in
HTML format.

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM
web site and from the Documentation link from the Sun Java Studio Enterprise
Developers Source portal (http://developers.sun.com/jsenterprise).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet.

■ Sun Java Studio Enterprise 7 Release Notes - part no. 819-0905-10

Describes last-minute release changes and technical notes.

■ Sun Java Studio Enterprise 7 Installation Guide (PDF format) - part no. 817-7971-10

Describes how to install the Sun Java Studio Enterprise 7 integrated development
environment (IDE) on each supported platform and includes other pertinent
information, such as system requirements, upgrade instructions, server
information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Building J2EE Applications - part no. 819-0819-10

Describes how to assemble EJB modules and web modules into a J2EE application
and how to deploy and run a J2EE application.

■ Web Application Framework documentation (PDF format)

■ Web Application Framework Component Author’s Guide - part no. 819-0724-10

Describes the Web Application Framework component architecture and the
process to design, create, and distribute new components.

■ Web Application Framework Component Reference Guide - part no. 819-0725-10

Describes the components available in the Web Application Framework
Library.

■ Web Application Framework Overview - part no. 819-0726-10

Introduces the Web Application Framework and what it is, how it works, and
what sets it apart from other application frameworks.
Before You Begin 11

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://developers.sun.com/jsenterprise)

■ Web Application Framework Tutorial- part no. 819-0727-10

Introduces the mechanics and techniques to build a web application using the
Web Application Framework tools.

■ Web Application Framework Developer’s Guide - part no. 819-0728-10

Provides the steps to create and use application components that can be
assembled to develop an application using the Web Application Framework
and explains how to deploy the application in most J2EE containers.

■ Web Application Framework IDE Guide - part no. 819-0729-10

Describes the various parts of the Sun Java Studio Enterprise 7 2004Q4 IDE and
emphasizes the use of the visual tools for developing a Web Application
Framework application.

■ Web Application Framework Tag Library Reference - part no. 819-0730-10

Gives a brief introduction to the Web Application Framework tag library, as
well as a comprehensive reference to the tags available within the library.

Tutorials
Sun Java Studio Enterprise 7 tutorials help you understand the features of the IDE.
Each tutorial provides techniques and code samples that you can use or modify in
developing more substantial applications. All tutorials illustrate deployment with
Sun Java System Application Server.

All tutorials are available from the Tutorials and Code Camps link off the
Developers Source portal, which you can access from within the IDE by choosing
Help > Examples and Tutorials.

■ QuickStart guides provide an introduction to the Sun Java Studio IDE. Start with
a QuickStart tutorial if you are either new to the Sun Java Studio IDE or want a
quick introduction to a particular feature. These tutorials describe how to develop
simple web and J2EE applications, generate web services, and how to get started
with UML modeling and Refactoring. QuickStarts take minutes to complete.

■ Tutorials focus on a single feature of the Sun Java Studio IDE. Try these if you are
interested in the details of a particular feature. Some tutorials build an application
from the ground up, while others build on provided source files, depending on
the focus of the example. You can complete a tutorial in an hour or less.

■ Narrated Tutorials use video to illustrate a feature or technique. Try a narrated
tutorials for a visual overview of the IDE or an in-depth presentation of a
particular feature. You can complete a narrated tutorial in a few minutes. You can
also start and stop a narrated tutorial at any point you wish.
12 Web Application Framework Developer’s Guide • December 2004

Online Help
Online help is available in the Sun Java Studio Enterprise 7 IDE. You can open help
by pressing the help key (F1 in Microsoft Windows environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the book’s title (Web Application Framework Developer’s Guide) and its
part number (819-0728-10) in the subject line of your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Tutorials HTML at the Examples and Code Camps link from the Developers
Source portal at http://developers.sun.com/jsenterprise

Release notes HTML at http://docs.sun.com
Before You Begin 13

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com

14 Web Application Framework Developer’s Guide • December 2004

CHAPTER 1

Overview and Architecture

This chapter provides an overview of the Web Application Framework architecture,
and attention to how the various parts are combined to write a Web Application
Framework application.

The name of the technology underlying the Web Application Framework is JATO.
There are occasional references to JATO throughout this document, especially in
class and other programmatic names. Consider the names Web Application
Framework and JATO to be equal to one another.

Overview

What is the Web Application Framework?
The Web Application Framework is a mature, powerful, standards-based J2EE Web
application framework geared toward enterprise Web application development. The
Web Application Framework unites familiar concepts such as display fields,
application events, component hierarchies, and a page-centric development
approach, with a state-of-the-art design based on the Model-View-Controller and
Service-to-Workers patterns.
15

Who Should Be Interested in the Web Application
Framework?
The Web Application Framework is primarily intended to address the needs of J2EE
developers building medium, large, and massive-scale Web applications. Although
the Web Application Framework can be, and has been used for small Web
applications, its primary advantages are not as readily apparent at that scale. The
Web Application Framework especially shines when applications will be maintained
for a long period, undergo many changes, and grow in their scope. In short, the Web
Application Framework excels at helping develop enterprise applications.

Because the Web Application Framework provides core facilities for reusable
components, it is well-suited to third party developers who want to provide off-the-
shelf components that can be easily integrated into Web applications. These same
features make the Web Application Framework suitable as a platform for building
vertical Web offerings, particularly because these extension capabilities provide a
well-defined way for both end users and original developers to extend and leverage
existing vertical features.

What Does the Web Application Framework Do?
The Web Application Framework helps developers build enterprise Web
applications using state-of-the-art J2EE design patterns. It provides a design-pattern-
based skeleton upon which enterprise architects can hang other portions of their
architectures. Web application developers find an easy development approach, and
enterprise architects find a clearly delineated design that integrates in a well-defined
way with other enterprise tiers and components.

The Web Application Framework helps developers build reusable components by
providing both low- and high-level infrastructure and design patterns. Developer-
defined components are first-class objects that interact with the Web Application
Framework runtime as if they were native components. Components can be
arbitrarily combined and reused throughout an application, across applications, and
across projects and companies.

The Web Application Framework helps introduce new J2EE developers to Web
application development, and empowers advanced J2EE developers by providing
them a powerful toolkit with which to develop advanced features not possible with
other frameworks.
16 Web Application Framework Developer’s Guide • December 2004

What Doesn’t the Web Application Framework
Do?
The Web Application Framework is not an enterprise tier framework, meaning that
it does not directly assist developers in creating EJBs, Web services, or other types of
enterprise resources. Although the Web Application Framework is geared toward
enterprise application development, it is properly a client of these enterprise tier
resources, and thus provides a formal, first-class mechanism to access these
resources.

Note – For a broader introduction to the Web Application Framework, see the Web
Application Framework Overview.

The Three Tiers of the Web Application
Framework Architecture
The Web Application Framework uses the time-tested Model-View-Controller, or
MVC, pattern as one of its key architectural foundations. The original MVC pattern
was developed to help developers write stateful client-side applications in Smalltalk.
This pattern has been adapted for use in the J2EE Web tier, in a largely stateless
manner. The Web Application Framework's MVC pattern is full-fledged and
complete. This makes the Web Application Framework significantly different from
other Web tier frameworks that advertise MVC compliance, but which actually use
only parts of that pattern in significant ways.

The following points briefly explain the three parts of the MVC architecture, referred
to in this document as tiers, and how they fit into the Web Application Framework:

Model Tier
In MVC terms, a Model is a presentation-neutral arbiter of data. This data can be
tailored to support a given presentation, or tailored to represent application-specific
data structures.

In the Web Application Framework, the bias is toward making Models that represent
application data, with minimal dependence on the way the data is presented.
Instead, Views are chosen that best match the format of the data.
Chapter 1 Overview and Architecture 17

Types of Models

There are a number of Model types in the Web Application Framework:

Model Type Description

Model The most general type of Model. All Model components ultimately must
implement this minimal interface. This interface specifies the most fundamental
Model behavior, which is the ability to get and set field values.

ContextualModel A type of model that can hold data in named contexts. The definition of a context
is Model-specific.

DatasetModel A type of Model that contains distinct rows of data. DatasetModels can be
positioned to a particular row via iterator-like methods.

MultiDatasetModel A specialization of DatasetModel and similar to ContextualModel, this type allows
access to named datasets.

ExecutingModel A type of Model that can be executed to retrieve or update data in a backing store.

RetrievingModel A sub-type of ExecutingModel that specifically supports a data retrieval operation.
(Although this type might appear related to SQL, it is not SQL-specific.)

InsertingModel A sub-type of ExecutingModel that specifically supports a data insertion
operation. (Although this type might appear related to SQL, it is not SQL-specific.)

UpdatingModel A sub-type of ExecutingModel that specifically supports a data updating
operation. (Although this type might appear related to SQL, it is not SQL-specific.)

DeletingModel A sub-type of ExecutingModel that specifically supports a data deletion operation.
(Although this type might appear related to SQL, it is not SQL-specific.)

TreeModel A Model that stores data in a generalized hierarchical structure rather than a
Cartesian structure. Provides iteration over this data structure.

BeanAdapterModel A Model that uses one or more JavaBeans as a backing data store.

ObjectAdapterModel A Model that uses any Java object graph as a backing data store.

QueryModel A JDBC -based Model that uses an RDBMS as a backing data store using SQL
statements.

StoredProcModel A JDBC-based Model that uses RDBMS stored procedures to get and set data.

WebServiceModel A specialization of ObjectAdapterModel that uses a Web service via JAX-RPC to
get and set data.

CustomModel An abstract Model type that allows developers to implement their own
data storage mechanism.

CustomTreeModel An abstract Model type that allows developers to implement custom storage for
hierarchical data.

SimpleCustomModel A concrete Model that provides ready-to-use storage and dataset capability
18 Web Application Framework Developer’s Guide • December 2004

View Tier
In MVC terms, a View is a presentation-specific way of displaying data from a
Model. There is a relationship between a Model and View such that changes in a
Model are automatically reflected in any Views attached to it, and changes in the
View-presented data are automatically pushed back to associated Models.

The Web Application Framework uses the same basic definition of a View: a View
presents Model data.

If you are familiar with writing a client-side application in Swing, Visual Basic,
Delphi, or Powerbuilder, you will find Web Application Framework's notion of a
View easy to understand. In these other environments, developers create frames,
windows, and dialogs that contain child components. These child components are
GUI widgets or containers for other GUI widgets, and they can be arbitrarily nested
to any level.

Web Application Framework View components are almost exactly analogous. Just as
you find various types of GUI widgets in a client-side application, such as display
fields, panels, trees, and complex subcomponents, there are various types of Web
Application Framework View components that fulfill these same roles. The Web
Application Framework has specializations of Views that act as display fields,
containers that can contain other Views, and a combination of these that can act as
complex View components.

Types of Views

Objects that are Web Application Framework Views are actually objects that
implement the com.iplanet.jato.view.View interface or one of its derived
interfaces.

The following table shows the primary types of Views available in the Web
Application Framework:

Name Description

View The most general type of View. All View components ultimately must implement
this minimal interface. This interface specifies no specific View behavior.
Therefore, you are unlikely to find useful instances of the View interface.

ContainerView A type of View that can contain other Views. This interface adds methods specific
to management of child View components.

TiledView A special type of View that can present its child View components in a number of
repeated tiles, or repeated regions. Examples of tiles might be rows or columns of
a table, or tabs in a tabbed component. There is no assumption of tile layout made;
simply the notion of repetition of tiles is encoded in this interface.
Chapter 1 Overview and Architecture 19

Pages and ViewBeans

As explained above, the Web Application Framework embraces existing J2EE
standards and technologies where possible and advantageous. One of the J2EE
technologies useful to the Web Application Framework is Java Server Pages (JSP)
technology. JSPs are natural for application developers to use, and are convenient to
author and change quickly.

The Web Application Framework embraces JSPs as a primary way for application
developers to create pages in their applications. However, there must be some glue
between the existing JSP technology base and the Web Application Framework.
ViewBeans fulfill this role, and are in some sense where JSP technology meets Web
Application Framework technology.

The following sections explain the relationship of ViewBeans to JSPs and the Web
Application Framework.

ViewBeans and Their Relationship to JSPs

If you have ever written a J2EE Web application using JSPs, you probably used what
are commonly called helper beans to manage complexity in your JSP. Helper beans
are commonly used with JSPs to keep Java code and complex data structures out of
the JSP, where they are hard to maintain and debug. Instead, these complex features
are put into the helper bean, and the bean is associated with and used by the JSP via
a <jsp:useBean> tag.

TreeView A type of ContainerView that helps present information in a tree format.

ViewBean A specialization of ContainerView that can serve as the top, or root, of a View
component hierarchy.

DisplayField A special type of View that has a value associated with it. The value of a display
field can be presented on a page, and generally submitted back to the application
by a user. There are a few special types of DisplayField, including
BooleanDisplayField, ChoiceDisplayField, and CommandField.

CommandField A special type of DisplayField that represents a user- or user-agent-activatable
element in a rendered response. For example, in HTML, buttons and links would
be represented in the server-side Web Application Framework application by
CommandFields. When a CommandField is activated, a new request is sent to the
server and a corresponding event or object is invoked on the server in response to
that request.

Name Description
20 Web Application Framework Developer’s Guide • December 2004

Similarly, in a Web Application Framework application, developers want to avoid
complexity in the JSP because of the inherent difficulties maintaining and debugging
JSPs. Therefore, the Web Application Framework embraces the helper bean pattern
and extends it to support the greater feature set required to make the framework
functional and productive.

Specifically, the Web Application Framework uses ViewBeans to manage complexity
in the JSP, and to provide a place for application developers to put application-
oriented Java code. Like other helper beans, application developers can work with
ViewBeans using traditional bean-oriented techniques, since ViewBeans are placed
into JSP page scope and can be accessed just like any other helper bean. However,
despite the name, ViewBeans are not exactly like helper beans.

The most significant difference is that (most) consumers of a ViewBean (for example,
Web Application Framework JSP tags) do not use bean-like properties to access
application data. Instead, Web Application Framework tags use the Web Application
Framework-specific View API to interact with a hierarchy of View child components.
In addition to the richer interactions made possible by this approach, it also
represents a significant performance advantage, a clear advantage for enterprise
applications that need to scale to massive levels.

ViewBeans and Their Relationship to Views

In addition to fulfilling a role similar to that of JSP helper beans, ViewBeans are
special View components that function as root views in the Web Application
Framework View component hierarchy. That is, they are top-level View components
that contain other View components, and as such have no parent. In terms of Swing
or other client-side development technologies, ViewBeans function like a window,
frame, or dialog component.

The ViewBean interface extends from the ContainerView interface. This means that
ViewBeans can contain other View components in a nested fashion, just like a root
directory on a hard disk contains other directories. In addition to having all the
behavior of a regular ContainerView, the ViewBean interface adds methods that are
specific to its role as the root of a View component hierarchy.

Because of these attributes, ViewBeans can be thought of primarily as pages in your
application. Just as your client-side application consists of a number of windows and
dialogs, your Web-based application consists of a number of pages, and each of
these pages has a ViewBean associated with it. When you count the number of Web
Application Framework pages in your application, you will find the same number of
ViewBean objects.

What makes a ViewBean special, as compared to a regular ContainerView?

■ ViewBeans are the only View components that can be directly associated with a
JSP (via the <jato:useViewBean> tag).
Chapter 1 Overview and Architecture 21

■ Because ViewBeans are an abstraction of a single page in an application, they
have logic and methods that manage page-specific functions, such as storage of
page-specific application values.

■ ViewBeans expose methods that allow application developers to initiate
rendering a response to a client (they can serve as controllers of the request).

■ ViewBeans are the only components in your application that are visible and can
be accessed by application clients.

Pagelets and ContainerViews

As mentioned above, the View tier is generally comprised of an arbitrarily nested
hierarchy of View components. Many of these components will be one of many
types of ContainerViews, such as TiledViews or TreeViews, or other high-level
components like data grids, input forms, headers and footers, and more. The general
term for all these variations is pagelet, or a part of a page. Where ViewBeans are
analogous to a page, ContainerViews are analogous to pagelets.

Pagelets might have their own JSP fragment associated with them, or might use their
parent page (or pagelet) for rendering. When a pagelet uses a JSP fragment, instead
of declaring a specific reliance on a type like a full JSP does, the association between
a fragment and its pagelet peer is done by name. This allows a single pagelet to be
rendered by several JSP fragments, dynamically, at the whim of the application. This
allows for extremely flexible dynamic page generation.

Controller Tier
The Controller coordinates activity between Models and Views, and for the
application as a whole. Whereas Model and View components can frequently be
instances of off-the-shelf types, Controllers are typically custom written to an
application.

In some J2EE architectures, the Controller role is fulfilled by a monolithic class,
mapping, or other store of information using a highly centralized approach.
Although this approach can be convenient for newcomers to visualize the
application, it has serious drawbacks in terms of maintainability and the ability to
compose an application from componentized pieces. Therefore, the Web Application
Framework uses an inherently distributed approach in which the Controller role is
further subdivided into Controller objects and logic units that are more closely
related to a specific task or application component.

Unlike the View and Model tiers discussed above, there is no one single object or
interface that corresponds to the Controller role in the MVC pattern in the Web
Application Framework, at least not in a global sense. The reasons for this are
generally described in the remainder of this document as various Web Application
22 Web Application Framework Developer’s Guide • December 2004

Framework features are discussed. However, suffice to say at this point that the Web
Application Framework adopts a distributed approach to fulfilling the Controller
role in the pattern, and with this come a number of advantages, including the ability
to create reusable components and to aggregate an application from components
over time.

How Web Application Framework MVC Differs
From Traditional MVC
Traditional (stateful, client-side) MVC architectures generally use a publish-and-
subscribe event model to relate objects to one another. However, this approach
requires stateful objects, an approach which in the Web tier generally will not scale
to large numbers of users. Because the lifecycle of a request in the J2EE Web tier is
well described and predictable, and because scalability is a primary requirement, the
Web Application Framework avoids stateful server-side objects. This approach
requires moving away from event listeners as a way to relate MVC objects to one
another. The Web Application Framework maintains relationships between the tiers
in MVC, but these relationships are not traditional event listener relationships.
Chapter 1 Overview and Architecture 23

24 Web Application Framework Developer’s Guide • December 2004

CHAPTER 2

Develop an Application

This chapter explains in detail the creation and usage of application components that
can then be assembled into a complete functional application.

Create an Application

What is a Web Application Framework
Application?
The Web Application Framework notion of application is essentially the same as the
J2EE notion of a Web-tier application. In short, a Web Application Framework
application is a J2EE Web-tier application with some Web Application Framework-
specific features. As such, Web Application Framework applications use the
standard Web Application aRchive (WAR) structure as their basis. Therefore, when
you create a Web Application Framework application, you are creating a Web
Application Framework-specific WAR file, and implicitly defining a single
ServletContext for that application. Each Web Application Framework
application has a single standard web.xml file, containing some Web Application
Framework-specific data.

Because a Web Application Framework application is in the end a J2EE application
in a WAR file structure, you can use other J2EE features within the same application.
For example, it is perfectly feasible and acceptable to use non-Web Application
Framework JSPs or servlets in the same WAR file. To a limited extent and as
permitted by the J2EE specification, these non-Web Application Framework
application components can interoperate with Web Application Framework
25

application components. For more information, see the section “Interoperating With
Web Application Framework Applications” on page 85 in Chapter 3, Programming
Guide.

A Web Application Framework application is also a logical entity which describes a
related set of components that interact to serve a specific function. In more concrete
terms, an application is a set of pages, Views, Models, and application specific code
that are deployed as a single unit as a single WAR file. Any changes to any of the
parts of the application generally require the re-deployment of the entire application
(as a WAR file, per the J2EE specification). The application WAR file will contain all
relevant libraries, classes, and resources required for that application to function,
with the notable exception of those libraries provided by the J2EE container.

Application-Level Entities
In addition to the Web Application Framework runtime library, web.xml file, and
other assorted WAR file artifacts, each Web Application Framework application
generally has an application servlet. This servlet serves as a base class for the
various module servlets in the application (see below), and therefore provides an
opportunity to perform application-level event handling, initialization, or other
tasks related to each request.

Modules
Because real-world applications can become extremely large, and have different
parts with slightly different functional requirements, the Web Application
Framework adds an application sub-unit called a module. A Web Application
Framework application consists of one or more Web Application Framework
modules deployed as a single unit. All Web Application Framework applications
must have at least one module.

Do not confuse the Web Application Framework usage of the term module with
J2EE use of the term, which can be used as a synonym for a J2EE Web application as
a whole. For example, you might see a J2EE Web application or WAR file described
as a Web module. In this document, all references to application will refer
specifically to a J2EE Web application or WAR file as a whole, and all uses of the
module will refer to Web Application Framework-specific modules, which have no
analogue in J2EE.

In physical terms, a module is a single Java package under the application WAR
file's WEB-INF/classes directory (the remainder of this section will refer to paths
relative to this directory). A module package is an arbitrary package chosen by the
developer, and can consist of any number of subdirectories. For example, both main
and com.mycompany.main might be module packages.
26 Web Application Framework Developer’s Guide • December 2004

Perhaps the most important distinction between a module package and any other
arbitrary package is that only ViewBeans inside a module package will be accessible
to clients of the application (see more below). This is accomplished primarily via a
servlet mapping in the application's web.xml file. This mapping maps the module's
module servlet (explained below) to a URL path. Generally, this URL path is a
simple name and not fully qualified. For example, although a module package might
actually be com.mycompany.main, to an external client, it might be identified only
by the URL path /main. This reduces complexity for the users of the application,
and reduces the length of URLs. The URL mapping need not share any similarity to
the module package. In the example above, a URL path of /foo would also have
been possible.

Clients can only request logical page names (not class names), which are
automatically mapped to ViewBean class names by the module servlet. Therefore, it
follows that only ViewBeans are directly accessible to external clients. For security
and other reasons, all ViewBeans within a module package must exist directly
within that package. ViewBeans within subpackages are not accessible (the
subpackage must be declared as a module for those ViewBeans to become
accessible), though they can be used in other ways by the application (for example,
as subclasses).

Module Servlet

Each module has a single module servlet that handles all client requests for objects
within that module. The module servlet acts as a front controller, intercepting all
client requests and firing events as needed before dispatching the request to an
application component. For example, the module servlet has events related to the
beginning and end of a request, session initiation and timeout, and various error
conditions. These events are described in the section on Handle Requests.

A module servlet generally derives from the application's application servlet.
Because the application servlet is the superclass, the module can override or add
behavior specified for the entire application as needed. For example, this becomes
useful if a particular module has different requirements for handling certain events,
such as session timeout. The module author can specialize the module's behavior as
needed, yet still leverage common application-wide front controller behavior.

There is no strict requirement that a module servlet derive from the application's
application servlet base class. It can instead just directly derive from the Web
Application Framework's com.iplanet.jato.ApplicationServletBase class.
However, there is seldom need to avoid the derivation, and the Web Application
Framework IDE toolset will automatically create module servlets that derive from
the application servlet base class.
Chapter 2 Develop an Application 27

Package Structure

In general, a Web Application Framework application's WEB-INF/classes directory
looks like the following:

Each module is a self-contained sub-package of the overall application. Pages and
objects in one module can interact with objects in other modules via cross-module
navigation and/or simple class references. Cross-module navigation is covered later
in this document.

Create a WAR File
Web Application Framework applications are packaged like any other J2EE Web-tier
application in a standard Web Application Archive (WAR) file. Web Application
Framework applications have certain assumptions as to where certain files will be
located within the WAR file. The following is the recommended layout for Web
Application Framework WAR files:

/Base application package (may be multiple directories deep)
<Application servlet>
 <Other application classes/objects/files>
 /<module 1>
 <Module servlet>
 <Other module classes/objects/files>
 /<module 2>
 <Module servlet>
 <Other module classes/objects/files>
 ...
 /<module n>
 <Module servlet>
 <Other module classes/objects/files>
28 Web Application Framework Developer’s Guide • December 2004

There are two parallel directory hierarchies—one for JSP files, and one for module
classes. These two directory hierarchies should remain in parallel, although strictly,
they need not. Specifically, each ViewBean is configured with the URL of its JSP peer
during development, and this URL is arbitrary. However, to avoid naming collisions
between modules which might be developed by different groups, the parallel
directory structure illustrated above should be maintained.

/[base application package]
 /[module 1]
 [Module JSP files]
 /[module 2]
 [Module JSP files]
 ...
 /[module n];
 [Module JSP files]
/[other static resources]
/WEB-INF
 web.xml (the application deployment descriptor)
 /classes
 /[base application package]
 [Application servlet class]
 [Other application classes/objects/files]
 /[module package 1]
 [Module servlet]
 [Other module classes/objects/files]
 /[module package 2]
 [Module servlet]
 [Other module classes/objects/files]
 ...
 /[module package n]
 [Module servlet]
 [Other module classes/objects/files]
 /lib
 [Web Application Framework runtime jar file]
 [other Web Application Framework component libraries]
 [other application jar/zip files]
 /tld
 /com_iplanet_jato
 jato.tld (the Web Application Framework tag library descriptor)
Chapter 2 Develop an Application 29

Use Component Libraries
Although earlier versions of the Web Application Framework had rich support for
certain types of application components, version 2.0 formalizes this support and
extends it to most types of framework objects. Beginning with version 2.0, Views,
Models, and Commands—as well as supporting classes—can all be designated
components. With this designation, these objects become introspectable and
manipulatable by the IDE toolset to allow for highly-productive visual development
of a Web Application Framework application.

The Web Application Framework defines a basic set of components, and Sun
Microsystems and other developers are expected to provide additional component
libraries that significantly extend the features and power of the core framework. For
information on creating your own reusable components and component libraries, see
Web Application Framework Component Author’s Guide.

What is a Web Application Framework Component?

Since its inception, the Web Application Framework has supported a component
model for certain types of objects. However, this component model relied on
developers to learn each component's API and write code to use that component in
his or her application. Although this level of functionality was sufficient and
provided a significant productivity advantage over contemporary competitors
(which had, and still have, no component models), Web Application Framework
version 2.0 has significantly extended its component model to encompass all types of
primary application objects (Views, Models, and Commands) and to allow rich IDE-
based development of Web Application Framework applications.

In version 2.0 terms, a component is one of the various types of supported
component classes in conjunction with metadata information. This metadata is
encapsulated in a Web Application Framework-specific class called a
ComponentInfo class. At design-time, the development environment can inspect
the ComponentInfo and present the component in an easy-to-use visual fashion.

The metadata stored in ComponentInfo classes is intended to enable automated use
of the component in a development environment, such as the Sun Java Studio
Enterprise 7 IDE. Developers can still manually create and use various types of
components in their applications without defining a ComponentInfo class.

There are two types of Web Application Framework components. The first type is
referred to as a distributable component. Distributable components are packaged in
a component library and are generally deployed as part of a set of components.
Distributable components have explicit ComponentInfo classes associated with
them, and are specifically developed to be deployed for use by other developers.
30 Web Application Framework Developer’s Guide • December 2004

By contrast, the second type of Web Application Framework component is referred
to as an application-specific component, or a non-distributable component (do not
confuse the term distributable in this context with the J2EE use of distributable to
describe applications that run on multiple VMs; the reference is to distribution to
other developers in this context). These components are only reusable within the
application in which they are defined. They generally do not have explicit
ComponentInfos associated with them, and exist as first-class objects in the current
application. As an example, whenever you build a ContainerView or Model in your
application, you are building an non-distributable component for use within that
application. Because the IDE toolset knows how to manipulate these components
directly, they are usable within the same application without any additional work by
the developer. However, it generally takes some additional work to turn non-
distributable components into distributable components (such as adding an explicit
ComponentInfo class).

There is also another special classification of component, which is the extensible
component. Extensible components are components that can be subclassed to create
new types of components. Non-extensible components can have instances created of
them, but cannot be extended to add new behavior. As of the current version of the
Web Application Framework, all non-distributable components are derived from
extensible components (though they are not themselves extensible components).
Only certain distributable components are extensible components.

If all of this sounds confusing at first, don't worry. The IDE toolset will automatically
manage these subtleties for you so you can just concentrate on building your
application. As an application developer, you will generally never need to worry
about whether a component is extensible or not, or whether it has a ComponentInfo
class.

Web Application Framework Component Library

The Web Application Framework Component Library contains the core interfaces,
runtime classes, and many basic components that you will use to create a Web
Application Framework application. The component library is packaged as a single
JAR file, and should appear in your application's WEB-INF/lib directory.

When creating a Web Application Framework application using the IDE toolset, the
current version of the component library is automatically added to the application's
WEB-INF/lib directory. If you open an application created in a previous version of
the IDE toolset, you might be prompted to upgrade the application, including the
Web Application Framework runtime library.
Chapter 2 Develop an Application 31

Other Component Libraries

In addition to the Web Application Framework Component Library, you might add
additional component libraries to your application simply by placing them in your
application's WEB-INF/lib directory. The IDE toolset will automatically recognize
and mount the component library (it might take a minute or two), after which you
will have the library's new components available for use within your application.

Unpacking of Tag Libraries

As part of a Web Application Framework component library, a library developer
might provide one or more tag libraries to support rendering of the library's View
components. Tag libraries are declared in the component library's component
manifest file, and when the IDE toolset recognizes the component library, its tag
library descriptors (.tld files) are automatically unpacked from the library JAR file
for use by the application. In addition, the IDE toolset automatically adds tag library
entries to the web.xml file.

Tag library descriptor files are unpacked to a special location under the application's
WEB-INF/tld directory based on the name of the library to ensure that same-named
files from different libraries do not conflict. In this scheme, library names are
converted to directory names by replacing dots (".") with underscores ("_"). For
example, the component library's internal library name is com.iplanet.jato,
which is translated to com_iplanet_jato when unpacking the tag library
descriptor. The Web Application Framework component library's tag descriptor file
ultimately appears under the WEB-INF/tld/com_iplanet_jato directory in your
application.

The tag descriptor's derived physical directory name is automatically registered to a
logical resource name in the web.xml file for use by the application. This logical
name is chosen by the component library author. In the Web Application Framework
component library's case, the descriptor is registered as the resource /WEB-
INF/jato.tld.

The tag descriptor unpacking mechanism makes use of timestamps to determine if
an existing file should be overwritten when a new version of the library is added to
an application. This feature ensures that upgrading of an application's component
libraries is just a single step for a developer.

Unpacking of Additional Files

In addition to unpacking tag descriptor files automatically, the IDE toolset can also
unpack any other additional files the library author wants when a component library
is added to an application. These additional files can include JAR files, static HTML
files, image files, JSPs, or any other type of file. This is completely automatic when a
32 Web Application Framework Developer’s Guide • December 2004

new component library is added to an application in the IDE, but be sure to read
each component library's documentation and keep an eye out for additional files
that might appear suddenly in your application directory structure after adding a
new library.

Create a Page (ViewBean)
As outlined above, a single logical page in your application generally consists of two
parts: the ViewBean, and an associated JSP. The emphasis in the IDE toolset is on the
ViewBean half, since it is a Java class and is a natural fit for the types of authoring
tasks (such as configuration of components) required by the developer. Therefore,
the JSP can be considered the subordinate half of a logical page object, and the
following sections emphasize the tasks required to create a ViewBean first, and how
to create and manage its set of JSPs second.

Create a ViewBean Class
Creating a ViewBean is straightforward. If you are using the IDE toolset, it is as
simple as selecting New -> Web Application Framework (JATO) -> Page (ViewBean)
in the IDE, and selecting a choice from the ViewBean list of the New View Wizard.

You must create ViewBeans in a Web Application Framework module package for
them to be accessible to clients of your application. ViewBeans outside a module
package can be used as superclasses for other ViewBeans inside module packages,
but cannot themselves be accessed by clients.

When you create the ViewBean using the wizard, you will generally create a
companion, or peer, JSP file to render that ViewBean. This JSP file will appear under
your application's document root, and be automatically associated with your
ViewBean by a <jato:useViewBean> tag declaration. By convention, the path to the JSP
mirrors the package name of the ViewBean, so that a ViewBean placed in a
com.mycompany.main package will have a JSP created in a com/mycompany/main
subdirectory of the application document root. See more about a ViewBean's JSP
associations in the sections below.

If you are creating a ViewBean manually, you can simply create a subclass of
com.iplanet.jato.view.BasicViewBean or another ViewBean class in one of
your application's module packages. However, a ViewBean created manually is not
manipulatable in the IDE as anything but a plain Java file—you have to manually
add all components and event handlers to the ViewBean yourself. You also need to
add and associate JSP files with the ViewBean manually.
Chapter 2 Develop an Application 33

Naming

Previous versions of the Web Application Framework used a strict naming
convention to map request page names to ViewBean class names. This restriction has
been removed beginning with version 2.1 and ViewBeans can be name just like any
other class. For existing applications that need to maintain backward compatibility,
there is a web.xml setting that can toggle the use of the strict convention. For more
information, see Chapter 4, “Deploy an Application” on page 87.

By default, the IDE toolset creates applications that allow ViewBeans without the
strict naming convention, meaning ViewBean classes can assume any name you
want.

Code

If you double-click the ViewBean class in the IDE, or open it with a text editor, you
see that the ViewBean generally has some preexisting code from its initial creation,
plus some code in protected blocks that cannot be edited (in the IDE at least).

Do not use another editor to edit the protected code blocks in your ViewBean or
other Web Application Framework object. Your changes will just be overwritten the
next time you make a change to the class in the IDE. If you need to add code to a
particular spot within the protected areas, either rethink what you are trying to do
(chances are you don't really need to add code there), or use the Code Generation
tab for the ViewBean or one of its child components to add code in a standard way.

You can generally add any other code or methods to the ViewBean that you want, or
override some of its methods that do not have a visual IDE representation. Some of
the more interesting methods you might want to override for advanced techniques
are getDisplayURL(), mapRequestParameters(), setRequestContext(),
securityCheck(), beginChildDisplay(), and handleRequest().

Code within your ViewBean classes generally does not need to be thread-safe, as
each request thread gets a private copy of a ViewBean. Also note that ViewBeans are
request-scoped objects, so do not try to save data in a ViewBean instance between
requests.

Manage JSPs
The most common technique for rendering a ViewBean as a response to a client
request is to use what is called a peer JSP. This JSP contains custom Web Application
Framework tags that associate it with its peer ViewBean. At runtime, the JSP and the
ViewBean work together to render a dynamic response to the current request. This
combination of JSP + ViewBean allows for powerful layout and content capabilities
(the strengths of JSP technology) while keeping JSPs easy to maintain and code-free.
34 Web Application Framework Developer’s Guide • December 2004

Each JSP can only be associated with a single ViewBean, but a ViewBean can be
associated with many JSPs at the same time. These other JSPs can contain variations
on the content and layout used to render the ViewBean; this is the parallel content
feature discussed in the section “Display URLs and Parallel Content” on page 50.
However, despite the presence of this feature, ViewBeans predominantly use only a
single JSP in most applications.

JSPs have what is frequently referred to as a uses relationship with their peer
ViewBeans. In other words, JSPs use their peer ViewBeans while rendering a
response. ViewBeans, however, do not use their associated JSPs in the same fashion;
that is, their relationship is not symmetrical. During rendering, the JSP pulls data
from the ViewBean. The ViewBean is called by the JSP to provide this data, but it
never calls the JSP for anything. The JSP is in the driver's seat when it comes to the
rendering or display process.

For a JSP to be associated with a ViewBean, it must minimally have a valid
<jato:useViewBean> tag declaration that calls out the ViewBean's class. At runtime,
when the ViewBean is forwarded to display itself, it must select a JSP with a
matching <jato:useViewBean> tag and return the JSP's URL relative to the
application's document root as its display URL (via the getDisplayURL() and/or
getDefaultDisplayURL() methods).

In the Web Application Framework IDE toolset, each ViewBean node has a sub-
category node called JSPs. One or more JSP nodes can appear underneath this node,
and each of these JSPs are associated with the current ViewBean via a
<jato:useViewBean> tag declaration that calls out the ViewBean's class name.

Each of these associated JSPs is assumed to be managed by the ViewBean. Managed
means that these JSPs should be automatically synchronized with the ViewBean as
child View components are added. (This idea of managing a JSP is purely a design-
time notion and has no runtime meaning.) More on this feature in the sections
below.

The primary use to the developer for these JSP nodes is to allow him or her to easily
open a ViewBean's JSP file, and assuming there is more than one managed JSP, to
select a default for the ViewBean's display. The developer can right-click on any JSP
node in the JSPs category and select the Set as Default JSP menu item to select that
JSP as the ViewBean's current default. There can be only one default at a time.

Setting a particular JSP as the ViewBean's default results in the URL for that JSP
being set as the ViewBean's default display URL, via the
setDefaultDisplayURL() method. You might notice the generated code that calls
this method in your ViewBean in one of the protected code blocks.

When a ViewBean is executed during runtime, the default JSP is used to render the
ViewBean unless the developer has overridden the ViewBean's
getDisplayURL() method to return a different value. Therefore, during
development, you can usually switch between JSPs for alternate test runs by setting
a different default JSP and recompiling the ViewBean.
Chapter 2 Develop an Application 35

Add Child View Components
A ViewBean is generally useless without adding some child View components to it
to represent display fields on the page. Therefore, a major part of authoring a page is
adding child View components to the ViewBean and configuring them to access
Model data.

You can easily add a child View component to your ViewBean by right-clicking on
its Visual Components node and selecting Add Visual Component... You will be
presented with a component chooser dialog that shows you the currently available
View Components in the application and each of its mounted application libraries.
Alternatively, you can choose a component to add from the Component Palette.

Child View components basically come in two different types. The first type is Views
that implement the com.iplanet.jato.view.DisplayField interface and
effectively act as leaves on the tree of View components. DisplayFields usually
represent a single primitive piece of data, such as a String or Integer, and frequently
can be changed by the user and submitted back to the server. A good example of a
DisplayField View component is the Basic Text Field component that comes with the
Standard Component Library.

Occasionally, some DisplayField components are complex, meaning they also
implement the ContainerView interface and have child View components
themselves. Generally developers interact with these components as DisplayFields
and have no idea that they are themselves compound components.

The various DisplayField components provided in the Standard Component Library
all have the ability to be associated with a Model via a ModelReference and a Model
field binding. For more information, see Chapter 3, Programming Guide, “Working
With Values” on page 65.

The second type of View component is the ContainerView (or, alternatively, pagelet),
which really encompasses a couple of subtypes including the TiledView and
TreeView, and other types provided by third parties. ContainerViews are special
types of Views that can contain other Views (including other ContainerViews), and
they function as compound components. Through ContainerViews, View
components can be nested to any arbitrary level in what is commonly called a View
component hierarchy. In client-side application terms, a ContainerView is the
equivalent of a panel component, like JPanel in Swing. A TiledView component is
roughly described as a table component (though it is not limited to that use), and a
TreeView component is equivalent to a tree component like JTree in Swing.

Various types of ContainerViews might have custom properties and methods to
allow developers to more easily interact with them, rather than needing to work
with or understand the complex set of components they contain. ContainerViews are
most frequently application-specific non-distributable components, meaning they
are generally types within the current application that can be partially implemented
or extended by the developer.
36 Web Application Framework Developer’s Guide • December 2004

In terms of adding a ContainerView component to a ViewBean (or another
ContainerView), there is no real difference from adding any other type of View
component. ContainerViews expose properties that can be configured just like other
View components. The one difference is that ContainerViews generally expose their
inner complexity for purposes of interacting with the ViewBean's JSP. Specifically,
developers can generally see children of ContainerViews and individually
synchronize and lay out those components.

After a child View component has been added to the ViewBean or other
ContainerView, the developer simply needs to configure it via its property sheet. As
each property is filled out, the generated code in the ViewBean will be updated to
configure the component at runtime. Also, as each child View component is added
to the ViewBean, a matching JSP tag is added to the ViewBean's managed JSP(s).
This tag will be minimally configured, and added with only basic regard to the static
content layout in the JSP. The developer must add any additional desired attributes
to this tag and arrange it to suit the page's layout. See the following section for more
details.

Synchronize to the JSP

Just because a child View component is added to a ViewBean, it might not or should
not necessarily be rendered when the ViewBean is displayed. For example, some
View components should only appear on certain JSPs associated with a ViewBean, or
might be used only by application code for their association with a Model field.

Each child View component must have a representation in a JSP associated with a
ViewBean to be rendered with that ViewBean. This representation is normally a
custom JSP tag provided by the component author. For example, when you add a
Basic Text Field component to a ViewBean in the IDE, the toolset automatically adds
a <jato:textField> tag to the JSP so that component will be rendered when the
ViewBean is displayed.

Therefore, inherent in the notion of adding View components to a ViewBean is the
idea of synchronizing one or more of the ViewBean's managed JSPs to the set of
child View components. Each JSP basically has the ability to use only the fields that
are relevant to it, so the developer needs a way to easily manage the JSP
representation of each child View component.

The Synchronize to ViewBean... feature aims to make this JSP management easier. By
right-clicking on a JSP node in a ViewBean and selecting this menu item, you open a
dialog that you can use to select each of the child View components you want to
appear in that particular JSP. When you press OK, the changes are made in the
JSP—deleted component tags are removed, and inserted component tags are added.
You can then open the JSP file itself and arrange these tags to work within your JSP's
overall layout (inserted tags are added near the end of the file).
Chapter 2 Develop an Application 37

This feature is simply a convenience. You can manually synchronize a ViewBean to a
JSP by adding, editing, or removing tags in the JSP file. In fact, some View
components might not support automated synchronization, and will require manual
synchronization to appear in the rendered output.

JSP tags are added to a JSP based on the content type of the JSP. Developers have the
ability to select a tag template for each content type their component supports, so
depending on the dialect of your JSP, you might see different JSP tags for the same
View component when using different content types. Pay attention to the features
each set of tags supports, as they might also differ by content type

Execute a Page from the IDE
Generally, when writing a Web Application Framework application, you want to be
able to run the current page to see how it is working and to test its JSP's layout.
Instead of manually packaging the application, deploying it in your container, then
opening a browser to the correct URL, you can do this all in one step by simply
executing the ViewBean.

First, make sure your application has been fully compiled at least once by selecting
Build All... from the application node. (All the files in your current module will be
compiled for you when you execute the ViewBean.) Right-click on the desired
ViewBean and select the Execute Page (Redeploy) menu item or toolbar button.
Depending on which J2EE server you have selected as your default for Web
applications (see Sun Java Studio Enterprise 7 help), this will automatically deploy
your application and load a browser with the correct URL for that ViewBean. If you
have made any changes to application code, you must execute the page with the
Redeploy option, or your changes will not be reflected in the application. The only
exception to this is changes to the JSP, which are automatically detected.

You can only execute ViewBeans in a Web Application Framework module.
Remember, ViewBeans outside a module cannot be accessed by application clients.

Create Pagelet (ContainerView)
Components
This section describes creating View components from extensible components
contained within a component library. Extensible components are components that
are meant to be extended (subclassed) to create new types of components. After a
new component type has been defined (using the extensible component as the basis),
many instances of it might be used within a given application.
38 Web Application Framework Developer’s Guide • December 2004

Create a ContainerView Class
There is really nothing different about creating a ContainerViews class; the process is
analogous to creating a ViewBean class. The only difference is that ContainerViews,
like all pagelets, cannot be executed on their own. They must be designated as
children of another component and placed inside a page to be run.

One other difference is that ContainerViews and the other types of pagelets might
opt not to create a JSP fragment, and instead delegate all rendering to its parent
component. This means that custom tags that represent the pagelet and its children
are placed in the parent's JSP (or its parent if it does not have one of its own, and so
on) instead of in a standalone JSP fragment.

Primary Models

Many types of ContainerViews use the notion of a primary model, or a model that
drives their rendering. For example, TiledView implementations generally require a
primary model of type DatasetModel to proceed from tile to tile, and to know when
to stop iterating. In the same way, TreeView implementations also require a primary
model of type TreeModel to display a hierarchical view of that data.

Handle Requests
Handling and responding to client requests is inarguably the reason Web
Application Framework applications exist. This section outlines the various features
Web Application Framework provides for handling and responding to client
requests.

Request Lifecycle
In general, each request consists of two parts: the submit phase and the display
phase.

When a user accesses a page in a Web Application Framework, he or she generates
an HTTP request to the server where the application is running. This client request is
initially handled by the application's module servlet, which acts as the front
controller for a particular application module. The module servlet fires various
request lifecycle events (for example, session timeout detection) and then determines
a ViewBean class to invoke based on the information submitted from the client. The
ViewBean class the servlet invokes is normally the same class that was responsible
Chapter 2 Develop an Application 39

for generating the user's previous response. In this way, transitions between pages
(ViewBeans) occur in a Web Application Framework on the server only, as directed
by the application developer.

When a page is asked to respond to a request, its ViewBean's
invokeRequestHandler() method is called by the module servlet. That is the first
point of entry to the application proper. This begins the submit phase. During the
submit phase, submitted values are mapped to View components and Models, then
an event handler is invoked to process the request and prepare a result. The submit
phase generally ends when the application (or the framework) calls the
forwardTo() method on the same or another ViewBean from inside an event
handler, thus beginning the display phase.

During the display phase, a number of things happen, the most important of which
is that the JSP associated with the ViewBean is rendered. This causes a callback to
the associated ViewBean's beginDisplay() method. The ViewBean and all its
children then render as the JSP is processed, finally completing with the
endDisplay() method being called on the ViewBean. The request is not yet
complete, however, as the forwardTo() method returns to whatever code called it.
When that code completes, the call stack unwinds and the response is sent to the
client.

Just before the call stack unwinds, the module servlet fires more request lifecycle
events, and any registered RequestCompletionListeners are called so that they can
do things like add last-minute information to the session (but not affect the response
in any way). This completes the request.

Front Controller Events
Before each request is dispatched to an individual RequestHandler (the ViewBean or
one of its children), it is processed by the front controller. In concrete terms, the front
controller is the module servlet. The module servlet normally derives from the
application's application servlet, which normally derives from
com.iplanet.jato.ApplicationServletBase (it is possible that there could be
some variation from this scheme, but ultimately, all Web Application Framework
servlets must derive from ApplicationServletBase). ApplicationServletBase
fires a number of events during request processing. Developers can respond to these
events by overriding the event callback methods in the application or module
servlet. These events offer the opportunity to consolidate general request processing
logic in a single location.

The following table lists events fired by the module servlet (more information is
available in the JavaDoc for com.iplanet.jato.ApplicationServletBase):
40 Web Application Framework Developer’s Guide • December 2004

To use these events, application developers simply override these event methods
and perform whatever logic is required. The most common behavior is to redirect
the request to a different page than that which was originally requested by the client.
This is common for error or session timeout conditions. However, these events are
fired as request processing occurs, and they provide no specific mechanism to
communicate to the main request processing logic that normal processing should
stop.

Therefore, there is a technique commonly used in these circumstances. The Web
Application Framework provides a special exception class,
com.iplanet.jato.CompleteRequestException, that can be thrown anywhere
during request processing, without actually causing an error condition to be raised
to the client. The common use of this exception is to redirect processing of a request
to another ViewBean, or perhaps by sending a result directly back to the client using
the Servlet API, and then throw a CompleteRequestException so that the
original request stops in its tracks. This exception essentially tells the request
processing infrastructure of the Web Application Framework that the developer has
handled the response already and further processing is not necessary. The following
is an example of using this technique to redirect a request to a different ViewBean in
the case of a session timeout:

Event Method Description

onAfterRequest Fired after the current request is complete. Can be used to clean up
request-specific resources or finalize data in the session.

onBeforeRequest Fired when a new request is received. Can be used to verify some
portion of the request (such as a user principal parameter), or redirect
the request upon some condition.

onInitializeHandler Fired to allow application-specific initialization of a RequestHandler
instance (normally a ViewBean). Can be used to handle common
initialization of ViewBeans, perhaps based on some request attribute.

onNewSession Fired when a request without a session is received and a new session
is created for the client. Can be used to prepopulate the user session
with data.

onRequestHandlerNotFound Fired when the requested RequestHandler (i.e. ViewBean) was not
found. Typically used to respond to.

onRequestHandlerNotSpecified Fired when a RequestHandler (i.e. ViewBean) was not specified in the
request

onSessionTimeout Fired when a request with an expired session ID is received. Typically
used to reinitialize the client's session or redirect to a login page.

onUncaughtException Fired when an unexpected exception occurs during request
processing. Typically used to present an error page to the client.
Chapter 2 Develop an Application 41

If you neglect to throw the CompleteRequestException in a scenario in which
the response has already been handled, you will generally either get a J2EE or
application error, or cause the first response to be completely ignored by the
container, thereby defeating the purpose of handling the event.

Unlike other places you place code in your application, code in the module or
application servlet must be threadsafe. Therefore, you must avoid using member
variables (static or otherwise) to store request-scoped data in the servlet.

Application Events
After the front controller has fired various events for a request and determined
which RequestHandler (for example, ViewBean) should dispatch the request, the
ViewBean is invoked to complete the handling of the request. Specifically, the
ViewBean's responsibility is to determine which of its subcomponents is responsible
for handling the request, and to invoke that component to actually handle the event.
This process is called request dispositioning.

An argument can be made at this point that the logical Controller role is at least
partially filled by the ViewBean, which might seem confusing to some because it has
been stated that the ViewBean is (also) a View component. This is part of what
makes a ViewBean special, its dual nature as both a View and partial Controller of
the request. This situation is actually quite intuitive—much like a window or dialog
object in a client-side application determines which GUI widgest contained within it
should receive a mouse click event, the ViewBean is responsible for determining
which View component within it should respond to a request event.

This approach follows naturally from the fact that the Web Application Framework
uses a component model to provide aggregation of an application from components.
Just like Swing visual components have logic to help them determine which of their

public void onSessionTimeout(RequestContext requestContext)
{
 // Obtain a ViewBean in the application
 ViewBean viewBean=
requestContext.getViewBeanManager().getViewBean(SessionTimeoutViewBean.class);
 // Forward the request to a ViewBean
 viewBean.forwardTo(requestContext);

 // Abort normal request processing
 throw new CompleteRequestException();
}

42 Web Application Framework Developer’s Guide • December 2004

child components was clicked, so the Web Application Framework has similar logic.
Without this ability, it would be impossible to create View components that can be
assembled and wired together to create a View hierarchy.

During request dispositioning, the ViewBean and each of its contained
ContainerViews in turn examine the
javax.servlet.http.HttpServletRequest object to determine if it is the
component responsible for handling this request. Once a responsible component is
found, the request is dispatched to it, which generally causes a business logic event
to be fired.

This abstract description might leave you wondering what is meant by the term
responsible component. The responsible component is the first View component that
implements com.iplanet.jato.RequestHandler to return a non-null result
from the acceptRequest() method when it is called during request processing. A
component normally decides whether to return an object from this method by
examining the request parameters and determining if they contain a name-value pair
that corresponds to an event that should be handled by this component. The details
of this process are beyond the scope of this document, but the most important part
to understand is that CommandFields are the key decision makers in this process.
CommandFields is explained in the next section.

CommandFields

CommandFields are special types of Views that correspond to a component on a
page that can be activated by the client to initiate a request to the server. Although
any type of View could theoretically implement the CommandField interface, this
wouldn't make much sense. Instead, only certain types of Views, such as button
display fields, should implement this interface. For example, in HTML terms, both
buttons (<input type="submit">) and links () are represented in the
application by CommandFields in the Web Application Framework, because these
are components that users click (activate) and cause another request to be sent to the
server.

CommandFields can be added to a ViewBean or other container just like any other
View component, and the Web Application Framework component library contains
both button and HREF/link CommandField components. The difference is that the
framework understands that these types of components are special and therefore
they are treated in a specific way. Specifically, they are examined during request
dispositioning to determine if they were the source of the current request.

The end result of this process is that, for example, when a user clicks a button on a
form in an HTML application, the result is that the button component in the
application is called upon to determine how to handle that request. The button
component has special properties that tell the parent component what to do to
invoke business logic for that request. Specifically, an activated button or other
CommandField specifies a developer-defined Command object that should be
Chapter 2 Develop an Application 43

invoked for the current request. Alternatively, a CommandField can specify that a
default Command object be invoked to handle the current request (by not specifying
an alternative).

Command Descriptor Property

The developer specifies which Command object will be invoked when the field is
activated via the field's Request Handler property. A CommandDescriptor is a Web
Application Framework object that encodes the information needed at runtime to
construct a particular instance of a Command class and invoke it. Minimally, the
CommandDescriptor specifies which Command class should be instantiated at
runtime. (the Command class is only constructed if the corresponding
CommandField is activated.)

By omitting a value for a field's Request Handler property, the developer implicitly
indicates to the framework that it should use a default Command object to handle
the request.

This choice of Command objects leads to two alternate ways of handling a Web
Application Framework business logic event: via a request event handler method on
the parent of the CommandField (if the default Command is used), or via a
developer-defined Command object. Both alternatives are explained in the following
sections.

Request Event Method Handlers

The most common approach for handling request events is to use a request event
method handler. The developer implements a method with a certain naming
convention and signature that will automatically be called when the corresponding
CommandField is activated. This is much analogous to implementing an event
handler method for a client-side application.

The advantages of this approach are that it is easy to understand and maintain,
keeps code localized to a relevant object, and allows the developer to write simple
procedural logic. The disadvantage of this approach is that this event logic is not
reusable between different fields or pages, though of course these methods can call
common methods that are reusable in this fashion.

In the Web Application Framework, this event handler method is implemented in
the parent of the responsible CommandField. This is more intuitive than it might
sound. For example, if you create a new ViewBean and add a button component to it
as a child, you would implement the request event handler method in the parent of
the button component, the ViewBean.
44 Web Application Framework Developer’s Guide • December 2004

You could not implement this method anywhere else, because you are creating an
instance of the button component within the container—you cannot add a new
method to an instance! This fact underscores the fact that there is a close relationship
between a ContainerView type and its child component instances, and that both the
container and its children work together to form a functional component.

The signature of the request event handling method is the following, where
<childName> is the local (unqualified) name of the child component:

public void handle<childName>Request(RequestInvocationEvent
event)

For example, in the example above, if you added a button component named submit
to your ViewBean, you would need to implement the following method in your
ViewBean in to handle events from the button:

public void handleSubmitRequest(RequestInvocationEvent event)

(The name of the child component is automatically uppercased as needed to create a
conventional method name.)

Although you can add this method to a ContainerView class manually, the
advantage of using the Web Application Framework module for Sun Java Studio is
that you can simply right-click and choose the handleRequest event from the popup-
menu. This adds the appropriate method stub to your class for you.

Important: This style of event handling is only used if the developer does not specify
a value for the CommandField's Request Handler property. If the developer specifies
a descriptor for a CommandField, the framework assumes that the Command object
specified in the descriptor will handle the request completely. The IDE might still
allow you to add an event handler stub to your View, but it will not be invoked if a
descriptor is specified!

See the sections below for information on how to actually implement business logic
in your event handler methods.

Command Event Handlers

The alternative to a request event handler method is to implement a Command
object directly, and associate it with a CommandField directly by supplying a value
for the field's Request Handler property.

The advantages of this technique are that it allows reuse of application-specific or
library-provided behavior, provides point-and-click application assembly, and to
some, keeps View components cleaner by eliminating event handler methods. The
disadvantages of this approach are that it causes a proliferation of Command classes
(potentially one for every CommandField instance), it decouples event handling
Chapter 2 Develop an Application 45

logic from objects that generate those events (less encapsulation of component
behavior), requires more up-front design, and might require more code to
accomplish the same task as a request event method handler.

To use this approach, developers simply create a Java class that implements the
com.iplanet.jato.command.Command interface (by hand or by using the wizard
in the Web Application Framework toolset). Once this work is done, the Command
is available to be specified in the Command Class property of a CommandField's
Request Handler property.

See the sections below for information on how to actually implement business logic
in your Command objects.

Which Event Handling Approach Should I Use?

A general recommendation on deciding which request event handling approach to
use is to be practical about which techniques solves the application requirements. It
has been found that most applications will actually use both styles.

In general, when you want to encapsulate event handling logic within a component,
are creating a component for reuse, or simply want to create a functional object
quickly without worrying about abstracting every detail of the event handling,
request event handler methods might be the more appropriate choice.

If, by contrast, you want to abstract away the details of event handling into common
classes, need reusability of complex logic, or want to provide pre-built request event
handling logic that can easily be assembled into an application, use Command
objects.

Another thing to consider is that, in general, Command objects take more work up
front to create, but might pay off later in terms of reusability. Request event handler
methods are quick, easy, and familiar to many application developers that have used
Swing or other client-side application development technologies, but might require
more care to make important logic reusable.

In the end, there are no absolute rules, and no need to decide one way or another,
even within the same object. The Web Application Framework gives you the
flexibility to decide on a per-field basis which approach works best, and developers
are encouraged to be open to the best approach for the job at hand.
46 Web Application Framework Developer’s Guide • December 2004

Write Event Handling Logic
Regardless of how you elect to handle a request event, using either an event handler
method or a Command object, you must write some logic to have your application
do something meaningful. In general, your event handling logic will follow a
routine pattern:

1. Execute business logic

a. Obtain values submitted by the user

b. Process these values

c. Prepare objects with results and for display

2. Render a response to the client

Event handling logic is typically procedural in nature—each request is primarily
handled by a single method body, though this logic might make references to any
objects or methods it wants (just like any other Java code).

Forward References

Web Application Framework objects such as ViewBeans can be forward-referenced
within event handling logic, to allow configuration of these objects for the
forthcoming display cycle. For example, it is possible for a developer to obtain a
value from a field on the current page and then set this value on a different field on
a different page within his event handling logic. This technique should seem familiar
to developers who have used client-side application development technologies,
where GUI widgets are stateful and can be referenced from more or less anywhere in
the application at any time.

Business Logic

With exception of the use of the Web Application Framework API, it is assumed that
most developers are already familiar with the general concept of writing application
business logic. Because the use of the Web Application Framework API is covered in
Chapter 3, “Programming Guide” on page 53, this skips to the discussion of how the
developers reply to a client request after their business logic executes.

In addition to using the Web Application Framework API, developers have full
freedom to use the J2EE APIs provided by their container from within their event
handling logic. For example, it is perfectly feasible and acceptable to use Servlet,
JDBC, JNDI, EJB, JavaMail, or other J2EE technologies or APIs within the scope of a
Web Application Framework event handler. However, in some cases, the Web
Chapter 2 Develop an Application 47

Application Framework provides features that make using these APIs considerably
easier. Some of these capabilities are described in Chapter 3, “Programming Guide”
on page 53.

Render a Response
After executing business logic in response to a request, the developer must
determine the response that should be sent to the client, and depending on the
desired technique, actually render this response. You will always be sending some
kind of response to a client request, be it another page or an error message. In most
cases, the response will be another page that follows logically from the executed
request. For example, if the user clicks a button to add an item to his shopping cart,
the response would probably be to show a page with the details of the user's
shopping cart.

Every request comes to a crucial point in which it transitions from focusing on the
request, and begins to focus on sending a response to the request. In Web
Application Framework terms, this turning point in the request lifecycle is
commonly referred to as the switch from the submit cycle to the display cycle.
During the submit cycle, submitted values are mapped to View components and
Models, and an event handler is invoked to process the results and prepare a result.
During the display cycle, the result is rendered, or displayed, to the client.

Pageflow

The ubiquitous thin-client style of chaining pages together is frequently called
pageflow. The user flows from one page to another by invoking an action on the first
page, which sends a request to the server and results in a response page being sent
back to the client.

There are many approaches to addressing pageflow. Some frameworks take the
position that pageflow is a first-class requirement that should be directly addressed
by a prospective framework. For example, these frameworks might specify that
business logic return a JSP URL that should be used to render the response. A
common problem with these approaches is that the response rendering mechanism
then becomes very brittle—it is hard to send a response using anything except this
mechanism. If this mechanism assumes a JSP or URL will be invoked to render a
response, it becomes hard to satisfy certain application requirements that are at odds
with this approach. For example, some application requests might result in sending
back a binary response (such as a PDF file). These scenarios are difficult to solve if
the framework assumes that the application cannot directly respond to the client.

By contrast, the Web Application Framework enables an easy pageflow mechanism,
but leaves the decision of how to render a response in the hands of the developer.
Specifically, Web Application Framework developers have the ability to easily
48 Web Application Framework Developer’s Guide • December 2004

forward to or include any ViewBean in the response, forward to or include any
arbitrary URL, or send a result back directly to a client using the standard Servlet
API.

Display a ViewBean

The most common approach to rendering a result is to forward the request to
another ViewBean (this terminology derives from the underlying J2EE Servlet
feature which allows forwarding of a request to response URL). In Web Application
Framework terms, this is frequently referred to as displaying the ViewBean. Because
ViewBeans generally have a URL for a peer resource such as a JSP associated with
them, the framework can handle the details of actually invoking the appropriate JSP
for a ViewBean if it simply knows which ViewBean should be used to display a
response.

Therefore, after executing business logic for a given request, the developer might
simply obtain a reference to the desired target ViewBean using the
ViewBeanManager, and call the ViewBean's forwardTo() method to cause that
ViewBean to be rendered as a response to the client:

As you can see, the transition between the submit cycle and the display cycle is
triggered by the developer's call to forwardTo(). This represents a significant
opportunity—the developer could trigger this call at any point during his event
handler. Furthermore, the forwardTo() method eventually returns, after which the
developer has the opportunity to do some additional work during the display cycle
(however, this is fairly uncommon).

Despite the emphasis on the submit and display phases, these phases are essentially
logical in nature—they are just aspects of a single request to the application.

public void handleSubmitRequest(RequestInvocationEvent event)
{
 // Do business logic here (this is still the submit cycle)
 ...

 // Display a ViewBean as a result
 ViewBean targetViewBean=
 event.getRequestContext().getViewBeanManager().getViewBean(
 ResponseViewBean.class);
 targetViewBean.forwardTo(event.getRequestContext()); // Start display cycle

 // Finish up (this occurs during the display cycle)
 ...
}

Chapter 2 Develop an Application 49

Display URLs and Parallel Content

So, how does a ViewBean know which JSP it should use to be displayed? There are
two methods that allow the ViewBean to specify which URL should be used to
render it when forwardTo() is called.

The first method is ViewBean.getDisplayURL(). This method returns a String
containing the URL that should be forwarded to using the Servlet API
RequestDispatcher mechanism. (this URL need not call out a JSP; it could instead
call out a static HTML page (if it did not need to dynamically display data) or a page
written using another (non-JSP) dynamic rendering mechanism. However, in
practice, the majority of display URLs will refer to JSPs as these are the readily
available J2EE mechanism.)

The value of the display URL is solely under the discretion of the ViewBean. For
example, a ViewBean might use some information in the request, such as the client's
locale, to decide between two different URLs, one in Spanish and another in French.
In the core BasicViewBean implementation, if the developer does not provide
alternative logic for the getDisplayURL() method, the method will simply return
the value of the getDefaultDisplayURL() method. This value can be set by the
developer in code, or automatically in the IDE by simply selecting a JSP under a
ViewBean node, right-clicking, and selecting the Set Default option.

This ability for the ViewBean to decide on a particular URL from a set of URLs is the
Web Application Framework's parallel content feature. Parallel content refers to the
fact that developers frequently want to render the same dynamic data in several
different ways. Using a single JSP, there is no way to accomplish this without using
heavy conditionality or pulling static content out of the JSP. These approaches
usually result in productivity and maintenance problems. Therefore, the Web
Application Framework provides the ability to have multiple JSPs (or other URLs)
associated with the same ViewBean. This allows the developer to provide parallel
pages that present essentially the same dynamic data, but perhaps in radically
different ways.

One use of this feature is to create pages that contain static content in different
languages. For example, it would be difficult to create a single JSP that could present
a ViewBean data in both English and Japanese. Not only are the character sets and
languages extremely different, but the layout of the Japanese page will differ
considerably from its English counterpart. Instead of writing a single, highly
complex JSP, the developer can instead write two much simpler JSPs. Each one will
refer to the same ViewBean, but will present the data in different ways. The
ViewBean can make a decision on which JSP to use to display itself by examining the
locale or the user's language preference and return the appropriate URL from its
getDisplayURL() method.

Another use for parallel content is to target different device types. For example, a
ViewBean could be rendered as either an HTML document or a WML document. It
is not possible to create a common JSP to render both because the markup languages
50 Web Application Framework Developer’s Guide • December 2004

have incompatible differences. Instead, a developer can create JSPs in each markup
language and allow the ViewBean to decide which to use. Again, the ViewBean
would use some information to decide which URL to return from its
getDisplayURL() method.

It would be remiss to imply that this decision making machinery is already built and
ready to use in the core BasicViewBean class, when in fact it is not. There is a good
reason for this: it is not possible for the Web Application Framework to know the
range of application-specific variables that might play into the decision to display a
particular URL over another. Furthermore, the URL scheme used to differentiate
different versions of a JSP (say, English versus Japanese) is a decision the application
developer must make. For these and other reasons, being prescriptive has been
avoided in this area.

Therefore, when parallel content is required, the getDispayURL() method should
be overridden by developers to supply the requisite decision logic. Also, it is
expected that application developers and component providers will provide
ViewBean components that build in a particular set of heuristics and schemes for
determining and locating parallel JSPs. The users of such components would buy
into a particular mechanism, with full knowledge of that decision, and with the
ability to use different components with different mechanism as desired.

Although it is possible for other objects to call a ViewBean's
setDefaultDisplayURL() method to change the URL that ViewBean will use
during that request, this technique is discouraged because it violates the semantics
of this method and leads to dependencies between objects that are hard to maintain.

J2EE Restrictions

The Servlet specification declares that it is illegal to call
RequestDispatcher.forward() within a given request more than once, if the
request has previously been committed to the client. This has implications for the
ViewBean.forwardTo() method.

Generally, this restriction means that it is not possible to call
ViewBean.forwardTo() multiple times within a single request. The only
exception is if the current response has not yet been committed to the client. The
response is committed to the client's output stream when the response buffer is filled
to capacity and must be flushed to make room for more response data. After the first
flush to the client, the response is considered committed, and trying to forward
again will cause an IllegalStateException to be thrown by the servlet
container. When using JSPs to render a response, the response buffer is configurable
by setting an attribute in the page, so the developer has limited control over this
restriction.
Chapter 2 Develop an Application 51

However, it would typically be uncommon to forward more than once within a
given request—the developer chooses the response once and only once—so this
restriction will not affect most applications. One possible exception is if the
application encounters an error during the display cycle, after a forward, and needs
to display an error page. When these conditions occur, be sure to set the response
buffer size large enough to accommodate this eventuality.
52 Web Application Framework Developer’s Guide • December 2004

CHAPTER 3

Programming Guide

This chapter describes common programming scenarios and explains how to use
certain fundamental objects in the Web Application Framework.

In general, the information here is supplemental to the Web Application Framework
JavaDoc. Refer to the JavaDoc for detailed API usage information.

Using the RequestContext
The RequestContext is the primary object that provides Web Application
Framework-related services during a request. It can be obtained from virtually
anywhere and at anytime within a Web Application Framework request, and used to
access both J2EE and Web Application Framework features.

Getting the RequestContext
There are two main ways of getting the current RequestContext instance. First, if the
current object such as a ViewBean or Model in which you are writing code
implements the com.iplanet.jato.RequestParticipant interface, it likely
already has an instance of the RequestContext before control is passed to your code.
Both the ViewBeanManager and ModelManager will automatically set the
RequestContext on ViewBeans and Models that implement the
RequestParticipant interface before returning these objects to the caller.
BasicViewBeans, BasicContainerViews, BasicTiledViews, and BasicTreeViews in
particular all have a method called getRequestContext() that can be used at
virtually any point inside these objects to obtain the RequestContext. One notable
exception is that this method cannot be used during the construction of one of these
objects, since the RequestContext cannot be set on these objects until they are fully
constructed.
53

The second main technique for obtaining the RequestContext (and some of its
primary sub-objects) is to use the static methods in the
com.iplanet.jato.RequestManager class.

The following table lists these methods and their descriptions.

These static methods can be used to obtain the Web Application Framework
RequestContext from inside any object or method in the context of a request, and is
most useful to avoid having to add a RequestContext parameter to your object's
method calls. These methods can be used without any performance impact on your
application; specifically, they do not cause any thread synchronization.

None of these methods can be used outside the scope of a request. For example, you
cannot use them to obtain a session object inside an object's static initializer, or
inside a servlet's init() method.

The servlet event methods specify the RequestContext as a parameter, and many of
the event objects used when firing other application events have a RequestContext
member. You can use the instance provided in this fashion instead of using one of
the other techniques described above.

Getting the Servlet Request and Response Objects
Because a Web Application Framework application is ultimately a servlet-based
application, it has access to the current request's
javax.servet.http.HttpServletRequest and
javax.servet.http.HttpServletResponse objects. You can obtain the request
and response objects through the RequestContext's getRequest() and
getResponse() methods. You can also conveniently obtain these objects via the
RequestManager methods described above.

Method Description

getRequestContext() Returns the current request's RequestContext object. This method can only be used
within the scope of a request.

getRequest() Returns the current request's javax.servlet.http.HttpServletRequest
object. This method can only be used within the scope of a request.

getResponse() Returns the current request's javax.servlet.http.HttpServletResponse
object. This method can only be used within the scope of a request.

getSession() Returns the current request's javax.servlet.http.HttpSession object. This
method can only be used within the scope of a request.
54 Web Application Framework Developer’s Guide • December 2004

With only a few cautions (on the response object primarily, explained elsewhere),
you can use the request and response objects just as you would within any servlet-
or JSP-based J2EE application.

Getting the Session Object
You can obtain the javax.servlet.http.HttpSession object if you have either
the current request's HttpServletRequest object (see above), or directly via the
RequestManager method getSession() described above.

Other Available Objects
In addition to the objects mentioned above and a few other conveniences, the
RequestContext also provides access to three key Web Application Framework-
specific manager objects.

The following table shows these three key objects.

Method Description

com.iplanet.jato.ViewBeanManager Obtained via a call to getViewBeanManager().
The ViewBeanManager helps manage ViewBean
instances within the current request. All ViewBeans
should be obtained via this object.

com.iplanet.jato.ModelManager Obtained via a call to getModelManager().
The ModelManager helps manage Model instances
within the current request. All Models should be
obtained via this object (or through a ModelReference).

com.iplanet.jato.SQLConnectionManager Obtained via a call to getSQLConnectionManager().
For applications that use JDBC to communicate to
RDBMS backends, the SQLConnectionManager
provides a thin utility layer on top of the J2EE
container's database connection support. Use of the
SQLConnectionManager is not mandatory, but is
recommended.
Chapter 3 Programming Guide 55

RequestCompletionListener Interface
Objects that are interested in being notified of the completion of the current request
can register themselves with the RequestContext as RequestCompletionListeners.
Registered listeners will receive notification at the end of the current request
processing, regardless of the outcome of the current request (for example, regardless
of whether the request completed normally or ended in an error).

Objects can use this mechanism to perform last minute tasks, such as saving state in
the session, closing open request-scoped resources, or virtually anything else,
provided the task does not affect the output stream. Objects must register themselves as
RequestCompletionListeners on each request if so interested.

Using the Message Writer
The RequestContext also provides a useful tool called the message writer. The
message writer is a java.io.PrintWriter whose contents are accumulated
during the course of a request and then appended to the rendered page right before
it is sent to the client. This mechanism works much like the console does in a non-
server based application, and is extremely useful for debugging purposes. Interested
objects can write to the message writer via the getMessageWriter() method on
the RequestContext. ViewBeans also have a convenience method called
appMessage() that can be used to obtain and use the message writer in a single
step.

The output of the message writer is necessarily HTML-specific, and so might be
incompatible with pages rendered in a different markup language. Furthermore, the
message writer is automatically appended by the ViewBean JSP tag at the end of a
page, and so will not appear if a page is rendered using some other non-JSP
mechanism. See the sidebar for information on how to turn off the message writer.

The appearance of messages written to the message writer can be turned on or off
using a configuration parameter in the web.xml file. This allows you to turn on
messages during development, but turn them off during deployment. For complete
information, see Chapter 4, “Deploy an Application” on page 87.

Using ViewBeanManager
When two different parts of the application want to work with a ViewBean instance,
they always want to use the same instance. Within a given request, ViewBeans are
singletons, meaning that there is only one instance per type of ViewBean in any
56 Web Application Framework Developer’s Guide • December 2004

given request. To ensure singleton instances, ViewBean's are managed by the
ViewBeanManager, which is an instance of
com.iplanet.jato.ViewBeanManager.

The ViewBeanManager is available from the RequestContext by calling the
getViewBeanManager() method. Each request receives a new ViewBeanManager
instance. Because the ViewBeanManager is available via the RequestContext, and the
RequestContext is widely available using one of several techniques (described
previously), you can generally obtain a ViewBean instance from anywhere in your
application code, not just inside Web Application Framework-specific objects or
methods.

After obtaining the ViewBeanManager, getting a ViewBean instance is as easy as
calling the getViewBean() method with the class of the desired ViewBean. For
example, this code returns the singleton instance of the Login ViewBean:

requestContext.getViewBeanManager().getViewBean(Login.class);

The ViewBeaManager also has a method that will return a ViewBean by class name,
but this method does not provide the compile-time safety of the method shown
above.

The getLocalViewBean() method deserves additional explanation, although it is
not generally used by application developers. This method obtains a ViewBean
instance that corresponds to the supplied logical name (this name is also referred to
as the ViewBean's local name). A local view bean name is the unqualified name of
the ViewBean class without the ViewBean suffix. For example, if a module has a
ViewBean class com.foo.Page1, the local ViewBean name is simply Page1.
Because the local ViewBean name is automatically qualified by the current module's
base package name, local names can only be used to obtain references to ViewBeans
within the module whose servlet initially handled the current request.

Using ModelManager
When two different parts of the application want to work with a Model instance,
they frequently want to use the same instance so that they access the same data. To
allow for sharing of Model instances within a request, the RequestContext contains a
ModelManager object, which should be used to obtain nearly all Model instances
(possible exceptions to this are noted in a following section).

The ModelManager provides a convenient lookup mechanism for Model instances
based on their type and an optional instance name. All lookups within the same
request will return the same Model instance specified by type and instance name.
With the exception of Models that are specifically stored in the session (see section
below), Models obtained via the ModelManager are instantiated and shared on each
Chapter 3 Programming Guide 57

request. This is generally more efficient for the application when Model data does
not need to be stored between requests and can be easily obtained again when/if
needed, because storing objects in the session is an expensive operation.

The key method in ModelManager is getModel() and its variations. In general, it is
recommended that you provide a Model class as the parameter to getModel()
versus providing a Model class name—this allows for compile-time checking of the
method call.

Although it is possible, it is fairly uncommon to provide an instance name when
retrieving a Model from the ModelManager. If you use one of the getModel()
method variations that does not specify an instance name, the ModelManager will
use a default instance name based on the Model's class name, which is generally
sufficient for most applications. However, there are specific cases when you want to
use two different instances of the same Model type within the same request, and so
this feature can be very useful.

Getting and Saving Models in the Session
Occasionally, you will find that you need to store Model data between requests in
the HTTP session. The ModelManager provides an easy way to get and save Models
in the session for you as you look them up.

In general, you should bias your application to not store Model data between
requests because storing data in the session is typically expensive (in relative terms)
and can limit your application's scalability if overused.

There are several getModel() variations that take one or two additional session-
related boolean parameters. The first is the lookInSession parameter, which if
true will cause the ModelManager to check first its local Model cache, and then the
HTTP session, before instantiating a new Model instance. The second parameter is
storeInSession, which if true, will cause the ModelManager to schedule the
returned Model instance for setting in the session. The Model instance is not actually
set in the session until the end of the current request, to ensure that all changes to
the object in the current request are written to the session regardless of the J2EE
container's session implementation.

If you have a Model instance and decide that you want to add or remove it from the
session manually, you can call the ModelManager's addToSession() or
removeFromSession() methods with the Model instance. Of course, you can also
set a Model in the session yourself using the session API, but the addToSession()
method helps ensure that the object added to the session is later accessible using the
lookInSession parameter.
58 Web Application Framework Developer’s Guide • December 2004

ModelTypeMap
Although this feature is seldom used in later versions of the Web Application
Framework (and not in the IDE toolset at all), it deserves some mention. Keep in
mind that this feature is completely optional in your application and you should
only use it if you expect it to bring you some concrete advantage.

Early in the design cycle of the Web Application Framework, it was decided that it
would be useful to be able to lookup a Model instance (implementation) by
specifying just a Model interface. This ability would allow application developers to
create implementation-neutral Model interfaces and work exclusively with those
throughout the application, instead of relying on implementation details of the
Model in their application code. This provided the utmost in loose coupling between
the View and Model tiers, and allowed developers to plug in different Model
implementations without affecting the View tier at all.

Therefore, the com.iplanet.jato.ModelTypeMap class was added to allow for
mapping of interface type to implementation type within the ModelManager. When
a developer calls the ModelManager's getModel() methods, the ModelTypeMap is
used to transform the provided Model type to an implementation type. If no
mapping has been specified, the original type is returned without changes. This
originally provided a fallback mechanism, through which developers could specify
implementation types and still obtain valid Model instances.

In reality, most developers found the ModelTypeMap feature cumbersome and
limiting, and is therefore seldom used any more. However, it is still an assumed part
of the architecture of the ModelManger, and the application servlet still provides an
instance of an empty ModelTypeMap to the ModelManager when it is created.
Except for those rare cases where you think the ModelTypeMap will provide some
value to your application, you can essentially ignore it as just framework
infrastructure.

If you do find that you want to use the ModelTypeMap, you should add a static
initializer to your application servlet class and add one entry to the ModelTypeMap
for each mapping you want. For example:

This example shows how to add a static initializer to the servlet class and an entry to the map.

Then, in your application code, you would call
ModelManager.getModel(CustomerModel.class) to get the Model, but get
back an instance of CustomerModelImpl.

ModeTypeMapBase.addModelInterfaceMapping(
 apppkg.modulepkg.CustomerModel.class,
 apppkg.modulepkg.CustomerModelImpl.class);
Chapter 3 Programming Guide 59

Exceptions to Using the ModelManager
Most Model types provided with the Web Application Framework require some
initialization to be useful. The normal approach for configuring these Models is to
create a subclass that configures the Model appropriately when it is instantiated.
However, it might simply be easier to use some of the Model types as configured
instances (especially since the IDE toolset does not currently support some Model
types as extensible components.) These Models are
com.iplanet.jato.model.BeanAdapterModel,
com.iplanet.jato.model.SessionModel,
com.iplanet.jato.model.MultipleModelAdapter, and
com.iplanet.jato.model.ResourceBundleModel.

You might occasionally find it useful to instantiate some of these models in your
code, but then add them to the session using the ModelManager.addToSession()
method. This is a good fit for Models that require only one-time initialization but are
long-lived, and will allow these Models to be obtained from the ModelManager
seamlessly in subsequent requests so they can easily be bound to DisplayFields or
other Views.

Using SQLConnectionManager
A large segment of Web Application Framework applications use an RDBMS to store
at least some application data. J2EE provides the JDBC Standard Extension API to
make obtaining a database connection in scalable way feasible from within a J2EE
application. However, there are some additional concerns when actually developing
a real-world application.

Therefore, the Web Application Framework's SQLConnectionManager adds one
additional feature to help developers more easily work with database connections
through the lifetime of an application in development. Specifically, it is common for
an application in development to run in a container that does not readily support
database connection pools. Furthermore, using a connection pool requires additional
configuration of that pool in the container, separate from the deployment of the
application. This can make it hard to simply deploy a utility or demo application.

SQLConnectionManager adds a thin abstraction to the task of obtaining a JDBC
connection. It provides the ability to map datasource names to other values, and
easily switch between JNDI and java.sql.DriverManager connection lookup
techniques, for those cases where it is convenient to be able to do so.

When obtaining a connection from SQLConnectionManager, you provide a JDNI-like
datasource name that follows the JDBC Standard Extension convention, such as
jdbc/mydb. If the SQLConnectionManager is currently using a JNDI lookup to
60 Web Application Framework Developer’s Guide • December 2004

obtain JDBC connections, it will use this name as the key in the lookup. If instead the
SQLConnectionManager is using the DriverManager to obtain JDBC connections, it
will use this name to perform a local lookup in its datasource mapping table to
obtain a JDBC URL that can be used to obtain a connection.

You set the current connection lookup mode using the setUsingJNDI() method of
the SQLConnectionManager class. This method is normally called from the static
initializer of the SQLConnectionManagerImpl class in your application package. If
you provide a true value for this parameter, the SQLConnectionManager will lookup
JDBC connections using the standard JNDI/JDBC connection lookup technique. This
assumes that database connection pools have been already configured and registered
in your J2EE container.

If you provide a false value in the call to setUsingJNDI(), the
SQLConnectionManager will use its own local set of datasource mappings to obtain
a JDBC URL that can be sent to the java.sql.DriverManager to obtain a
connection. This technique is at least an order of magnitude less efficient that using
a connection pool, but is generally acceptable in development, or in certain classes of
applications that need to work standalone without additional container
configuration.

When using DriverManager connection lookups, you can add a datasource mapping
using the SQLConnectionManagerBase.addDataSourceMapping() method.
This mapping will specify a logical datasource name that should be mapped to a
physical JDBC URL. For example (using a PointBase URL):

This example shows how to specify the logical datasource name.

The addDataSourceMapping() method is normally called from the static
initializer of your application servlet class in your application package, so that the
mapping is initialized when the application is loaded by the container.
(Theoretically, you could add mappings at a later time, but there is little reason to do
so since the mapping needs to be consistent for the life of the application.) When
using JNDI connection lookups, there is no need to add datasource mappings,
though you can if for some reason you want to map one datasource name to another.

Under no circumstances should you use the DriverManager to obtain JDBC
connections in a production application! Such usage causes a new database
connection to be opened for every use of the connection, and will cause enormous
performance and scalability problems with your application. Make sure you use
SQLConnectionManager's JNDI lookup mechanism along with a database
connection pool in your container when you finally deploy your applications into
production.

SQLConnectionManagerBase.addDataSourceMapping("jdbc/sample",
 "jdbc:PointBase://localhost:9092/sample");
Chapter 3 Programming Guide 61

In your application, you can obtain a JDBC connection from
SQLConnectionManager directory using its getConection() or
obtainConnection() methods. The static obtainConnection() method is used to
obtain connections outside of the scope of a request, such as during application
initialization. You can also bypass SQLConnectionManager and go directly to a JNDI
lookup or to DriverManager if you want, but the Web Application Framework
classes that use JDBC, such as
com.iplanet.jato.model.sql.QueryModelBase, will always use
SQLConnectionManager to obtain database connections.

Using the RequestManager
The RequestManager provides a handful of static methods you can use to obtain key
request-scoped objects.

The following table shows these methods.

Note – The name RequestManager is used for the class that is a placeholder for a
number of features that are to be added in a future version of the Web Application
Framework. Its current status as just a collection of static utility methods is
temporary.

Method Description

getRequestContext() Returns the current request's RequestContext object. This method can only be used
within the scope of a request.

getRequest() Returns the current request's javax.servlet.http.HttpServletRequest
object. This method can only be used within the scope of a request.

getResponse() Returns the current request's javax.servlet.http.HttpServletResponse
object. This method can only be used within the scope of a request.

getSession() Returns the current request's javax.servlet.http.HttpSession object. This
method can only be used within the scope of a request.

getHandlingServlet() Returns the javax.servlet.Servlet instance that initially handled the current
request. For the foreseeable future, this servlet is expected to be a subclass of
com.iplanet.jato.ApplicationServletBase. This method can only be used
within the scope of a request.
62 Web Application Framework Developer’s Guide • December 2004

Logging
Logging support in the Web Application Framework is built on top of the standard
ServletContext-based logging feature, which itself is a fairly minimal. Therefore, the
Web Application Framework's logging feature is only intended to add minor
functionality to this existing baseline mechanism, and is not intended to supply a
full-featured logging solution such as that provided by Log4J or JDK 1.4's logging
package. Instead, it is meant to be lightweight and convenient to use for developers
who want to use their J2EE container's native logging features.

You can access the Web Application Framework's logging via the static methods in
the com.iplanet.jato.Log class. In addition to these methods, this class
provides the ability to filter messages based on log levels and to echo the log to the
standard out.

Logging Messages
To log a message, simply call one of various static log() methods in the
com.iplanet.jato.Log class, optionally providing a log level parameter. If a log
level is provided, the Log class determines if that message should be logged based
on the currently enabled log levels. If a log level is not provided, the currently
enabled log levels are not considered, and the message is always logged.

The messages that are allowed to pass are sent to the container via the
ServletContext's various log() methods, and generally appear in the container's log
and/or console.

Log Levels
The primary value added to the baseline ServletContext logging mechanism is the
ability to log messages using levels and to filter the current log output by these
levels. Log levels fall into a few major categories.

The following table shows these log level categories.
Chapter 3 Programming Guide 63

Except for the JATO_TRACE and JATO_QOS_TRACE log level, all log levels are
primarily for developer use. In other words, the core runtime will generally not log
at any of these log levels (with the exception of some of the error levels). However,
Web Application Framework components written by other authors might log at
these levels, so do not expect to have full control over them. The one exception to
this rule is the several USER_LEVEL_* log levels, which by convention should be
reserved for current application usage only. Distributable components should not
use these levels once published.

Multiple log levels can be enabled at a time by logically ORing multiple levels
together in a call to Log.setEnabledLevels(). For example, the following code
enables several log levels at once:

This example shows code that enables several log levels at once.

You can check if a level is currently enabled by calling the isLevelEnabled() method
with the level to check. In addition, there are several convenience log levels that
automatically include several others, such as the various ANY_* log levels, and the
DEFAULT_LOG_LEVELS level.

Finally, you can change log levels at any time from application code, a servlet init()
method, a static initializer, or basically anywhere you have static access to the Log
class at runtime. However, there is only one set of Log settings per deployed

Log Level Category Description

Error levels Levels that specify errors or warnings in the application. Includes the WARNING,
ERROR, and CRITICAL levels. All levels in this category can be enabled via the
ANY_ERROR level.

Debug levels Levels that are used by the developer for informational or debugging purposes.
Includes the STANDARD, TERSE_DEBUG (less information) and VERBOSE_DEBUG
(more information) levels. All levels in this category can be enabled via the
ANY_DEBUG level.

Trace levels Levels that are used by the developer and/or the Web Application Framework to
trace request execution. Includes the JATO_TRACE, JATO_QOS_TRACE and
APP_TRACE levels. All levels in this category can be enabled via the ANY_TRACE
level. The JATO_TRACE and JATO_QOS_TRACE levels are not for developer use
and are only used to view trace information logged by the framework itself.

User levels Levels that are defined and used by the developer in whatever fashion desired; the
meaning of each of these levels is application- and developer-defined. Includes the
USER_LEVEL_1, USER_LEVEL_2, and USER_LEVEL_3 levels. All levels in this
category can be enabled via the ANY_USER_LEVEL level.

Log.setEnabledLevels(STANDARD | ERROR | CRITICAL | JATO_TRACE);
64 Web Application Framework Developer’s Guide • December 2004

application, and the current settings are shared by all currently executing request
threads. Therefore, it generally wouldn't make sense to change the log levels on a
per-request basis.

There are no current plans to significantly improve the Web Application
Framework's logging facility, as it is meant to satisfy minimal requirements using
only baseline J2EE logging features. If you need a richer logging facility for your
application, you are encouraged to use Log4J or JDK 1.4's built-in logging package.

Logging to Standard Out
Because it can be difficult to easily access the J2EE container's log file, the Log class
has the ability to echo whatever is sent to the ServletContext log to the console's
System.out stream. This feature is frequently helpful during development since
the current container's console is readily visible on the developer's machine.

Making Log Messages Stand Out
Because the Web Application Framework logging outputs to the J2EE container's log,
which is probably also filled with other log messages, the Log class provides the
ability to set a message prefix via the setMessagePrefix() method. This prefix
will be appended to every messages logged via the Log class. With proper choice of
prefix, Web Application Framework log messages can be made to stand out from
other messages in the same log. The default prefix is three dashes followed by a
space, "--- ".

Working With Values
The following sections describe several ways for working with values in a Web
Application Framework application.

Working With DisplayField Values
The first, and most common, approach for obtaining values is to get them from
DisplayFields directly. For example, you can ask a TextField for its value by
obtaining a reference to the TextField and then calling its getValue() method. This
Chapter 3 Programming Guide 65

approach is comfortable for View developers, because they can interact directly with
the View hierarchy they are building, and all the information needed to get the data
is generally contained in a single file.

You can get a reference to a DisplayField or any other View (with the exception of
ViewBeans) by calling its parent's getChild() method, providing the unqualified
local name of the child View component. (This method is defined in the
ContainerView interface, and so is present for all types of container Views,
including ViewBeans.) Because getChild() returns an instance of View, and not
just display fields, you must cast the result to a usable type before using it.

The following is an example of getting a BasicDisplayField child from within a
ViewBean and getting its value:

This example shows how to get a BasicDisplayField child and its value from within a ViewBean.

Because this technique can require lots of casting, there is a convenience method
within the core ContainerView implementations (BasicContainerView,
BasicTiledView, and so on):

This example shows how to use that convenience method and avoid casting.

Because the value returned is a DisplayField instance, you can call getValue() on
it directly, even without casting it to the specific component type.

Finally, you can call another convenience method, getDisplayFieldValue(), to
get a value in a single step:

This example shows how to use a convenience method to get value in a single step.

There are also variants of this method that return specific types of objects, such as
getDisplayFieldStringValue(), getDisplayFieldBooleanValue(), and
getDisplayFieldIntValue().

The IDE toolset automatically generates child View component name constants in
your ViewBean or ContainerView classes, using the pattern CHILD_<childName>.
Therefore, it is not necessary to use string literals in the calls to getChild() or its

View childView=getChild("textField1");
Object value=((BasicDisplayField)childView).getValue();

DisplayField field=getDisplayField("textField1");
Object value=field.getValue();

Object value=getDisplayFieldValue("textField1");
66 Web Application Framework Developer’s Guide • December 2004

variations as shown above. Also, the IDE generates child View component accessor
methods such as get<childName>Child(), so that you can obtain a reference to a
View component without casting.

Setting DisplayField values is similar to getting them. Once you have a DisplayField
instance, you can call its setValue() or setValues() methods to change its
value. The core ContainerView implementations also provide a convenience method
setDisplayFieldValue() with several variants to allow developers to easily set
values.

The following is an example of getting DisplayField values, processing them, and
then setting the result on another DisplayField:

This example shows how to get and process DisplayField values, then set the result on another DisplayField.

Some ContainerView variations, such as TiledViews, might require the use of
additional methods to properly obtain and set data. These details are covered
elsewhere in this guide.

Working With Model Values
The second technique for getting application values is to go to a Model directly.
Normally, DisplayFields are bound to Models, which provide storage for their
values. This binding occurs via a ModelReference object, and a field name.
Generally, a DisplayField is bound to a Model field.

Thus, it follows that if you have a reference to a Model and know which field to get,
you can ask the Model for data directly using the Mode.getValue() or
Model.getValues() methods. The easiest way to get a reference to a Model within
an IDE-created View component is to use a ModelReference object. ModelReference
objects are created automatically as developers define bindings between
DisplayFields and Models, and they are available to methods in the class to use also
(this allows everyone to share the same Model reference).

Once you have a ModelReference instance, simply call its getModel() method to
obtain a Model reference. You can then get values from the Model:

int value1=getDisplayFieldIntValue("intField1");
int value2=getDisplayFieldIntValue("intField2");
int result=value1+value2;
setDisplayFieldValue("message",value1+"+"+value2+"="+result);
Chapter 3 Programming Guide 67

This example shows how to get values from a Model.

The IDE toolset automatically generates field name constants in Model classes
created within the IDE. You can use these constants instead of string literals to more
easily refer to fields within the model.

You can also call the Model.setValue() and Model.setValues() methods to set
values on a Model. You simply provide the field name along with the new value in
the call.

Some Model specializations, such as DatasetModel, might require the use of
additional methods to properly obtain and set data. These details are covered
elsewhere in this guide.

Getting Values Using the J2EE API
Finally, developers can obtain application data using the low-level J2EE/Servlet API.
The Servlet API defines the javax.servlet.http.HttpServletRequest class,
with methods such as getParameter() and getParameterValues() that can be
used to get values that were directly submitted in the request. You simply need to
know the names of the appropriate parameters to get their values.

Web Application Framework View components use a naming scheme to
automatically generate qualified names for DisplayField components. This qualified
name uses the name of the DisplayField prefixed in order of upward traversal to the
root by the names of its parents. These names are qualified by the dot (".") character
by default (see the deployment section for information on using a different value).

For example, if I have a ViewBean named Foo which contains a ContainerView
named bar, which further contains a text DisplayField named bat, the qualified name
of the field would be Foo.bar.bat. If this field existed within an HTML form, the
developer could get the value of this field by looking for the parameter named
Foo.bar.bat in the request.

Some ContainerView variants like TiledView add additional information to the
qualified name, to allow decoding of multiple values from the request. TiledView
adds a subscript to the field name to distinguish the row upon which it appears.
Depending on the number of tiles submitted in the request, there might be several
similar parameter names distinguished by subscripts. If in the above example, if bar
were a TiledView, you might see the following parameters in the request:

Model model=modelReference1.getModel();
Object value1=model.getValue("field1");
Object value2=model.getValue("field2");
68 Web Application Framework Developer’s Guide • December 2004

This example shows possible parameters if ‘bar’ in the foregoing example were a Tiled View.

See the documentation for each component to see how it generates child names that
are contained within it.

As you might suspect, the qualified names generated for components are what
allows the framework to automatically map parameters in the request back to
display fields during the submit cycle, and keep components from different authors
distinct from one another. If field names instead used a flat namespace, it would not
be possible to create ready-to-use components that could assembled to create an
application.

The core DisplayField implementations (BasicDisplayField, etc.) have methods
called getRequestValue() and getRequestValues() that can be used to obtain
the values that correspond to those fields from the request parameters. This is
generally a far more convenient way to obtain the value submitted for a field than
going to the request parameters directly using the field name. These methods can be
used to refer to the values originally submitted in the request, even if the current
field's value has changed.

You cannot set values in the request, as they are read-only.

Using Display Events
Many times when rendering a page, you will find that you want to modify the way
a View renders, or even skip displaying it at all. In other frameworks that are JSP-
centric, this is difficult or impossible to do without using complex control or other
logic in your JSP, where it is inherently hard to debug and maintain. Even solutions
like the JSP Standard Tag Library can result in complex code-like structures in your
JSP, essentially trading programming in Java for programming in JSP tags.

By contrast, the Web Application Framework provides what are called display
events to allow developers to perform complex display-oriented logic, but outside of
the JSP and instead in their View classes, where Java code makes sense. There are
two main display-related events, one triggered for the beginning of display of a
component, and one triggered for the end of display of a component. These events
differ based on whether the component is a ContainerView itself, or a child View.

Foo.bar[0].bat
Foo.bar[1].bat
Foo.bar[2].bat
Chapter 3 Programming Guide 69

Container Display Events
When a ContainerView is displayed during rendering of a JSP, its beginDisplay()
and endDisplay() methods are automatically called when the corresponding JSP
tags begin and end its display, respectively. While developers can override these
methods in subclasses, many superclasses have implemented these methods to
perform useful and necessary tasks upon display notification. For this reason,
developers must always call the super version of the method when they override
these methods, thereby making them harder to use during application assembly.

Therefore, the event methods reserved for application developer use (at least in
components derived from com.iplanet.jato.view.ContainerViewBase) are
the beginComponentDisplay() and endComponentDisplay() methods. These
methods will be triggered as appropriate by the superclass, and are more or less
guaranteed not to have any implementation in the superclass (or more precisely, no
implementation that can't be completely ignored by the application developer).
Application developers can find these methods listed as events in the Events context
menu on ContainerViews added as children to other ContainerViews.

Component developers should directly override the beginDisplay() and
endDisplay() methods to respond to these events, thereby leaving the component
versions for application assemblers.

Child Display Events
The container-related display events described in the section above allow the
ContainerView component itself to respond to display notifications, but frequently,
containers need to respond to rendering of their children. Thus, the ContainerView
defines the beginChildDisplay() and endChildDisplay() methods to be used
during rendering to tell the container that one of its children is about to be rendered.
The beginChildDisplay() method returns a boolean result, where true indicates
that the child should be rendered, and false indicates that the child should be
skipped.

Component developers can override these methods directly, but application
developers have an easier mechanism for responding to fine-grained child display.
The various extensible pagelet components included in the Web Application
Framework component library look for methods of a certain signature when
responding to the begin or end child display notification. If these events exist, they
are called each time the corresponding child is rendered. The signature of these
methods looks like the following:
70 Web Application Framework Developer’s Guide • December 2004

This example shows the signature of ChildDisplay methods.

Here, <child name> is the capitalized name of the child view. For example, if a page
has a child called foo, the application developer could respond to its rendering by
simply implementing the beginFooDisplay() method with the signature show
above.

The boolean return value in the case of the begin<child>Display() method
allows the developer to optionally skip rendering of the child. The String return
value in the case of the end<child>Display() method is the actual markup that
will be rendered for that child. The event object contains the markup calculated for
the child during JSP rendering, but developers can tweak or completely override the
markup in the end display event.

Use of the child display events is a powerful technique for creating dynamic pages,
and ensures that JSPs are kept as code free as possible. Common uses of display
events are: to skip display of a child based on user role or other per-user
information; to calculate a child's value just before it is rendered (each time it is
rendered); to execute a model to determine the number of rows it returned; to add
additional markup to a rendered HTML control; to dynamically change the color of
a table row; to periodically insert header information during TiledView rendering;
and many other users. Developers will find display events to be an indispensable
tool when writing enterprise applications, and because display-related code is kept
in one place in the ViewBean or ContainerView, every JSP that uses that component
can use the same logic.

Content Tag
In many cases, it is useful to be able to associate Web Application Framework
display events with arbitrary sections of a JSP, whether they include dynamic
content, static content, or a mixture of both types. The <jato:content> tag provides
exactly this feature. The name attribute of this tag is used to determine the display
event callback to the enclosing ContainerView.

When using the content tag, you implement display events in exactly the same
fashion as you would for any child View. The difference is that there is no child
View, and the content that will be rendered will come from whatever the content tag
encloses (or whatever the endDisplay event for that tag returns).

public boolean begin<child name>Display(ChildDisplayEvent event)
 throws ModelControlException;
public String end<child name>Display(ChildContentDisplayEvent
event)
 throws ModelControlException;
Chapter 3 Programming Guide 71

A common use for content tags is to conditionalize rendering of a portion of a page,
or to inject arbitrary markup into a page at a specific point. For example, content
tags are one easy way to change the color of each tile of a TIledView as it is
rendered.

Using ViewBeans
ViewBeans are just special types of ContainerViews and inherit most of their
behavior from the superclass. The section “Using ContainerViews” on page 74,
contains most of what developers need to know about using ViewBeans. The
following sections detail the additional ViewBean specifics.

forwardTo() Method
ViewBeans, as pages, are the primary artifact developers create in their applications.
As such, they have key methods for controlling the request. Although developers are
free to directly use servlet features such as RequestDispatcher to render a
response to a client, in practice it is much easier to use the forwardTo() method on
a ViewBean to begin rendering of a page. The primary reason this approach is easier
is because each ViewBean knows which JSP it is associated with, and so can handle
the details of forward the servlet request for you. Furthermore, it keeps application
developers thinking about pages instead of lower-level J2EE primitives.

The forwardTo() method offers an opportunity for a ViewBean to perform some
logic before beginning the display phase. The most notable technique is for the
ViewBean to dynamically select the JSP it wants to render before actually forwarding
the request. For example, a ViewBean can determine that the current request comes
from a WAP device, and so it instead will render a WML JSP as the response instead
of an HTML JSP. This ability to render the same ViewBean using multiple associated
JSPs is called parallel content, and is covered in Chapter 2, Develop an Application,
under “Display URLs and Parallel Content” on page 50.

Page Session
Often, developers need to retain some information between requests, but putting
this information in the server-side HTTP session can get the application out of sync
if the user uses the browser's Back button. Instead, ViewBeans have what is called a
page session to help solve this problem. Page session works much like the HTTP
session, except page session attributes are stored in the rendered response to the
72 Web Application Framework Developer’s Guide • December 2004

client and resubmitted on the next request. If the user uses the Back button, the page
session is automatically kept in sync because each version of the page session for the
specifically rendered page is cached in each page on the client.

Page session is most often used to track a user's context in an application, much as
an HTML hidden field might be used by traditional Web applications. However, the
advantage of page session over hidden fields is that it is automatically appended to
all links and forms, and might contain complex objects, not just strings.
Furthermore, because browsers have a limitation on the length of URLs sent to them
during an HTTP GET request, the page session mechanism can compress the page
session if it reaches a certain size (the compression is normally around 40-50%
effective).

A given set of page session attributes is specific to a single ViewBean. Page session
attributes are not shared between ViewBeans. That application will need to copy
page session attributes from the handling page to the displaying next if the
attributes should be preserved for the next request.

The page session API is covered in detail in the
com.iplanet.jato.view.ViewBean JavaDoc.

Important: The page session is no more secure than any other unencrypted value
send to the client, such as values stored in an HTML hidden field. It is merely
encoded, not encrypted, when sent to the client, so a determined malicious user
could craft a request that contained a modified or bogus page session. Be sure to
take this fact into account when deciding what your application stores in the page
session.

Client Session
The client session is similar in concept to the page session, but it is shared by all
pages (and other objects) in the application. Like the page session, it is automatically
appended to all Web Application Framework URLs, and might be automatically
compressed if it becomes large.

The client session is available from the RequestContext. The API is detailed in the
com.iplanet.jato.ClientSession JavaDoc.

Important: The page session is no more secure than any other unencrypted value
send to the client, such as values stored in an HTML hidden field. It is merely
encoded, not encrypted, when sent to the client, so a determined malicious user
could craft a request that contained a modified or bogus client session. Be sure to
take this fact into account when deciding what your application stores in the client
session.
Chapter 3 Programming Guide 73

Using ContainerViews
ContainerViews are analogous to panel components in other visual development
environments. They provide a way to group a set of contained components so that
they can be manipulated as a group. ContainerViews also form the basis for most
complex components (both distributable and non-distributable).

There are several standard specializations of ContainerView that add additional
behavior, such as the ability to repeatedly render its contained components. For
more information, see the section “Using TiledViews” on page 78.

The ability to add additional behavior to ContainerViews beyond the basic ability to
contain other components is what makes them so powerful and versatile.

IDE Support for ContainerViews
The Web Application Framework IDE toolset helps developers build
ContainerViews as easily as selecting them from a list and adding a ContainerView
subclass into their application. However, if you have studied the
com.iplanet.jato.view.ContainerView interface, you might have noticed
that it does not contain the methods that would allow an automated tool to describe
components that should be created as children. The interface is, rather, written from
the perspective of runtime framework requirements, and the framework does not
care how child components are actually created and managed by the ContainerView
at runtime.

Therefore, IDE support for creating ContainerView-based components relies upon a
convention. To create a new extensible ContainerView component that the IDE can
manipulate, the component must provide the following methods. However, if the
component ultimately derives from
com.iplanet.jato.view.ContainerViewBase, these conventions are already
satisfied, and you need not worry about them. This convention also applies to all
specializations of ContainerView, including ViewBeans and TiledViews.

The following table shows the methods provided by the component to create a new
extensible Container View component that the IDE can manipulate.
74 Web Application Framework Developer’s Guide • December 2004

At a future time, these methods might be included in an additional interface to be
implemented by IDE-supported ContainerView components. However, this interface
is not a requirement at this time.

ContainerView API
The discussion below focuses on the default ContainerView implementation
(ContainerViewBase) provided as part of the Web Application Framework
component library, as it implements the conventions described in the previous
section, IDE Support for ContainerViews. However, the ContainerView interface is
the minimal requirement for a ContainerView components, and implementations
might differ. See the JavaDoc for the com.iplanet.jato.view.ContainerView
class to understand the minimum requirements for implementing a ContainerView
component.

The baseline ContainerView API focuses on the ability to contain other View
components, including other ContainerViews. Inherent in this feature is the notion
of parent and child components. A parent component contains one or more child

Method Description

void registerChild(String name, Class type) This method will be called during initialization of the
component to register all its child component's names
and types. This information can then be used to satisfy
certain ContainerView interface and implementation
methods without requiring instantiation of the child
components.

View createChildReserved(String name) This factory method will be called to create the named
child component as needed. The implementation of this
method will automatically be generated by the IDE
toolset as the developer adds child components to and
manipulates child components in the container.

View createChild(String name)* This alternate factory method will be called to create
the named child component as needed. The
implementation of this method will not be
automatically generated by the IDE toolset, but is
conventionally left available for the developer to
manually add components to the container through
code.
*Unlike the other two methods in this list, this method
is not required by the IDE toolset, but its inclusion is
strongly encouraged in new component types, as Web
Application Framework developers are generally
accustomed to its presence.
Chapter 3 Programming Guide 75

components. A child component can also be a parent to its own children, etc., so that
an arbitrarily complex containership hierarchy can be established simply by adding
components as children of other components. Methods such as
ContainerView.getChildNames(), ContainerView.getChildType(), and
ContainerView.getChild() are the core methods that allow consumers of the
ContainerView (both developers and the framework) to work with its child
components.

To define a component as a child of a ContainerView, there are generally two steps.
If you are using the IDE toolset, these steps will automatically be managed for you
(via code generation) as you visually add child components to your ViewBeans or
other visual components.

The first step is to invoke the registerChild() method on the parent component
to register a name-type mapping. This step is necessary to help the ContainerView
make decisions about its child components without actually needing to instantiate
them. This feature is important for efficiency reasons, as the framework does not
want to have to create child component objects on every request, regardless of
whether they will be used or not during that request. The information gathered via
registration is used to satisfy calls to the ContainerView.getChildType() and
ContainerView.getNumChildren() methods without instantiating all child
components.

The second step is to tell the ContainerView how to instantiate a given child by
name. Each ContainerView has two methods for this purpose, createChild() and
createChildReserved(). These methods are identical in behavior, but the latter
is reserved for automated tool use. These methods are factory methods that
instantiate, configure, and return the child specified by the name parameter. This
method is called at most once per child during a request, as the implementation of
the component will cache the component returned by this method. Not all child
components will be instantiated on every request, or at the same time during a
request. This method is called lazily to instantiate the child component on an as-
needed basis. For example, if you call the getChild() method to obtain a reference
to a child and it hasn't been instantiated yet within that request, createChild()
(or createChildReserved()) will be called to obtain a child component instance.
Additional calls to getChild() within that request will not result in a call to
createChild(), since the component has already been instantiated and cached by
the container.

You should never call createChild() or createChildReserved() directly to
obtain a child component instance. Instead, call getChild(),
getDisplayField(), or an IDE-generated accessor method (for example,
getFooChild()) to obtain a reference to a component. Also, in general, you cannot
reliably call any of these methods or obtain a child component reference from within
the ContainerView's constructor. The only caveat to this prohibition is if the
RequestContext has been set on the ContainerView before the call to obtain a child
component (or if all child components have static access to the RequestContext).
76 Web Application Framework Developer’s Guide • December 2004

This helps ensure that the ContainerView and all its children have access to
whatever request resources they require (such as Models) to be properly instantiated
and configured.

Using ContainerViews in Your Application
ContainerViews are in many ways just like any other child component you might
add to a page (or other ContainerView)—they have properties that can be set and
have display events associated with them.

Default Model
All ContainerViews have what is called a default model. This is a model that should
act as the default storage for any child components that do not have Model storage
otherwise specified. Unless otherwise specified, the default model is an instance of
com.iplanet.jato.model.DefaultModel, which implements a basic in-
memory storage mechanism.

The advantage of using the default model is that it does not require a complex
Model binding, and allows the field to take any value the developer wants.
Furthermore, DisplayField values are submitted and stored in the default model as
is, so the developer has considerable flexibility in inspecting and manipulating the
values before sending them to a backend system or another Model.

In the current Web Application Framework implementation of the various
BasicDisplayField types, if a ModelReference is not explicitly set on the component,
it uses its parent's default model.

Child View Paths
This name of a child in a call to ContainerView.getChild(String) might be a
qualified view path, using forward slashes ("/") as delimiters. All components in the
path except the last must refer to a ContainerView or a derivative of ContainerView
(such as TiledView). Both relative and absolute paths are possible. If a name path
begins with a forward slash, the name is assumed to be relative to the root (the
ViewBean). If the path does not begin with a forward slash, the name is assumed to
refer to a child relative to the current container. Two dots ("..") can be used to refer to
the container that is the parent of the current container.
Chapter 3 Programming Guide 77

Using TiledViews
TiledViews are special types of ContainerViews that render their children repeatedly.
Each repetition is called a tile. Tiles are most commonly used to generate rows in a
table, but they can also be used to generate a set of tabs, a breadcrumb control, or
any other structure that requires an iterative rendering. In addition to the standard
ability to manage children, TiledViews provide methods such as next(), first(),
and last() to control iteration through a set of tiles.

Each TiledView must be associated with a primary model of type DatasetModel.
DatasetModels provide data in a tabular fashion, and when a TiledView is rendered,
it essentially acts like an iterator over the associated primary model's data. At each
row of the model, child Views are rendered. If these children (particularly
DisplayField children) are bound to the primary model, their values will change
with each tile iteration.

The TiledView's nextTile() method is used during rendering to move to each tile
as needed. This method returns a boolean value that indicates whether the
TiledView moved to a new tile, and the default implementation uses the primary
model's next() method to determine if any more data is available to render. A
common technique is to override the nextTile() method to perform additional
checks or to initialize data needed for that tile's rendering.

During the submit phase, a TiledView must first be positioned to a given tile before
that tile's DisplayField values can be read. If you place a CommandField component
inside a TiledView and want to read its value when handling a request initiated by
its activation, you must use the following code snippet to position the TiledView to
the correct row before getting the CommandField's value:

Here, event is the RequestInvocationEvent parameter provided to your request
event handler.

Nesting TiledViews (putting a TiledView within a TiledView) works for rendering of
read-only data, but generally does not work as expected if data from the inner
TiledView is submitted back to the application. The submitted data is present in the
request parameters, but cannot be mapped properly to target models for reasons
beyond the scope of this guide. Instead, a technique that might work for your
application is to set the inner TiledView to use a SimpleCustomModel (or its own
default model) as its primary model. Then, ignore that data that is pushed into the
model, and instead iterate over the nested TiledViews while calling the
getRequestValue() method on each BasicDisplayField child. This will return

getPrimaryModel().setLocation(
 ((TiledViewRequestInvocationEvent)event).getTileNumber());
78 Web Application Framework Developer’s Guide • December 2004

the servlet parameter value submitted for that combination of TiledView positions
without you having to do a lot of string parsing to manually construct the parameter
names.

Using TreeViews
TreeViews are special types of ContainerViews that render children in a hierarchical
way. In addition to the standard ability to manage children, they provide support for
determining the current node location when rendering a hierarchy of data, and have
state data associated with them that determines which nodes are expanded or
collapsed.

Each TreeView must be associated with a primary model of type TreeModel.
TreeModels provide data in a hierarchical fashion, and when a TreeView is rendered,
it essentially acts like an iterator over the associated primary model's data. At each
node of the tree, child Views can be shown, hidden, or customized based on rules
developers declare in the associated JSP tags. For this reason, TreeViews are
relatively complex compared to other types of ContainerViews (but are considerably
easier to use than trying to accomplish the same tasks manually).

The TreeView works heavily in conjunction with the Web Application Framework
tag library, and has several tags defined just for it's special requirements. The tag
library reference documentation covers these tags in detail.

Using Executing Models
In addition to containing data, most models act as business delegates and need to
support operations to obtain data from or modify data in some back-end system.
Therefore, the Web Application Framework defines the notion of executing models
as models that can also have operations invoked on them.

There are several types of executing models in the Web Application Framework. The
most basic type is represented by the
com.iplanet.jato.model.ExecutingModel interface. This interface exposes a
single method, execute(), that can be used to invoke arbitrary name operations on
the model. Each model that implements this interface must document the operations
it supports so that developers can call the execute() method with the appropriate
operation name.
Chapter 3 Programming Guide 79

However, there are a handful of operations common to most models. These
operations fall into four types: retrieve, insert, update, or delete. (These types are
akin to SQL operations, but have no formal relationship, though they might be
mapped to SQL operations in the case of a JDBC-based model.) The ability to process
these operations is represented by the RetrievingModel, InsertingModel,
UpdatingModel, and DeletingModel interfaces. Models that implement these
interfaces declare that they support this type of execution interaction; thus no
operation name is required to be specified by callers.

Although the most general type of executing model interface, ExecutingModel,
allows nearly any operation to be invoked on the model, the more specific interface
types allow the framework to work with models in a generic but well-understood
way. In fact, these specific types are the foundation for the WebActions feature.
However, they also provide significant value to Web Application Framework
developers in that they clearly define the semantics of the models they build or with
which they interact.

In general, executing models (of all types) will be executed by developers at specific
points in their applications. For example, a request event handler might get some
data from the current request, put it into a model that implements UpdatingModel,
and then call update() on that model to push that data into the back-end system
represented by that model. However, WebActions (covered below) can also execute
specific types of models at certain points in the application automatically, freeing the
developer from having to write code to move data into and out of models.

Using BeanAdapterModel
The BeanAdapterModel allows developers to use one or more JavaBeans as the
backing datastore for a model. This allows DisplayFields to be bound to JavaBean
properties, and is a convenient approach when you have an application object model
and want to leverage automatic binding of these objects to a view.

The JavaBeans to use in the model can be set by the developer explicitly via the
setBean() or setBeans() methods, or obtained via lookup mechanism in the
standard J2EE request, session, or application scopes. This feature allows for easy
interoperation of the model with other J2EE components. To automatically have the
model look up its beans, specify the scope using the Bean Scope property or the
setBeanScope() method.

The BeanAdapterModel supports the DatasetModel interface, allowing arrays of
JavaBeans to be used in the model, one element per row. It also supports pagination
via WebActions. Developers that create subclasses of BeanAdapterModel can also
implement alternative executing model methods to allow them to obtain beans from
EJBs, object-relational mapping layers, or some other system that provides data as
80 Web Application Framework Developer’s Guide • December 2004

JavaBeans. This allows BeanAdapterModel to be used in a wide variety of situations
and as a flexible but simple way to integrate non-Web Application Framework
objects into an application.

Using ObjectAdapterModel
See the JavaDoc for com.iplanet.jato.model.object.ObjectAdapterModel
for usage information.

Using WebActions
WebActions are special behaviors built into the Web Application Framework View
components that allow them to provide automatic model execution and pagination.
Specifically, the BasicViewBean, BasicContainerView, and BasicTiledView
components support WebActions as implementations of the
com.iplanet.jato.view.WebActionHandler interface.

Hand in hand with the WebAction View components are WebAction models. These
are not new types of models, but rather the association of a model with a WebAction
View component. Models are associated with WebAction View components via the
following properties: Auto Deleting Models, Auto Executing Models, Auto Inserting
Models, Auto Retrieving Models, and Auto Updating Models. These properties
mirror the standard categories of executing models, meaning any models that
implement one or more of the standard ExecutingModel interfaces can be used as
WebAction models.

Once a model is associated with WebAction component, it can be executed in the
context of a WebAction by calling its handle handleWebAction(int) method.
Developers can call this method directly from event handlers, or it can be called
automatically, such as by a WebAction Command component. Here is a typical
usage of a WebAction within a request event handler method:

public void handleButton1Request(RequestInvocationEvent event)
 throws Exception
{
 handleWebAction(WebActions.ACTION_NEXT);
 getParentViewBean().forwardTo(getRequestContext());
}

Chapter 3 Programming Guide 81

The generally correct behavior after executing a WebAction is to reload the current
page, though for certain WebActions such as ACTION_UPDATE, ACTION_INSERT,
and ACTION_DELETE, it might make sense to forward to a different page.

WebAction Types
Developers must specify the type of WebAction that should occur when calling the
handleWebAction(int) method.

The following table outlines the available types of WebActions.

WebAction Events
Because WebActions can occur in contexts where the application developer might
have no way to prepare a model for execution or respond to error conditions (such
as within a try...catch block), there are a number of WebAction events that
developers can implement.

The following table shows these WebAction events.

WebAction Type Description

ACTION_FIRST Execute all auto-retrieving dataset models, and move to the first row of the
dataset.

ACTION_NEXT Execute all auto-retrieving dataset models, and move to the next group of rows (as
defined by a previous action).

ACTION_PREVIOUS Execute all auto-retrieving dataset models, and move to the prior group of rows
(as defined by a previous action).

ACTION_LAST Execute all auto-retrieving dataset models, and move to the last group of rows.

ACTION_UPDATE Execute all updating web action models.

ACTION_INSERT Execute all inserting web action models.

ACTION_DELETE Execute all deleting web action models.

ACTION_CLEAR Execute no models, resulting in a blank resulting page.

ACTION_EXECUTE Execute all executing web action models.

ACTION_REFRESH Re-execute the current auto-retrieving dataset models.
82 Web Application Framework Developer’s Guide • December 2004

Auto-Retrieving Models
The most common use of WebActions is to automatically execute a model when a
WebAction View component renders. Rather than requiring the developer to insert
code into the application at a specific point to execute a model for display of a page
or pagelet (such as the beginComponentDisplay() event), associating one or
more models as retrieving WebAction models allows the component to retrieve data
automatically when display begins.

The various WebAction View components automatically try to execute any
retrieving WebAction models when they begin rendering. If there are no retrieving
WebAction models, no models are automatically executed. Similarly, auto-retrieval
of models can be manually controlled via the
setAutoRetrieveEnabled(boolean) method. Setting this value to false skips
auto-execution.

There might be cases where you might want to manually execute an auto-retrieving
model instead of waiting for it to be executed when its associated WebAction View
component is displayed. (For example, this is common if you want to know the
number of rows of data in a model before you begin rendering a child component
with an associated auto-retrieving model). In such cases, you can execute the model
manually and then call setAutoRetrieveEnabled(false) on the associated
View component. The View component will render normally.

WebAction Event Description

beforeWebActionModelExecutes() Called before each WebAction model is executed, regardless of the
WebAction context (for example, retrieve, insert, update, delete).
Developers can use this method to prime the models for execution,
perhaps by setting request-specific values on them.

afterWebActionModelExecutes() Called after each WebAction model is executed, regardless of the
WebAction context (for example, retrieve, insert, update, delete).
Can be used to check, summarize, or even sort model data before it
is rendered by the View.

afterAllWebActionModelsExecute() Called after all WebAction models are executed for the current
invocation of handleWebAction(), regardless of the WebAction
context (for example, retrieve, insert, update, delete). Can be used
to take last minute action before the View is rendered in association
with a WebAction.

onWebActionExecutionError() Called when an error occurs executing a WebAction model. Can be
used to take corrective action or to abort the request.
Chapter 3 Programming Guide 83

Auto-retrieving models are executed each time the associated View component is
rendered on a page. To see any benefit to auto-execution, you generally need to bind
a component's child DisplayField components to the model that will be auto-
executed.

Pagination Using WebActions
One of the most valuable WebAction features is the ability to paginate through sets
of data using arbitrary models. The pagination WebActions (ACTION_FIRST,
ACTION_NEXT, ACTION_PREVIOUS, and ACTION_LAST) use retrieving WebAction
models to allow users to page through sets of data that might be too large to display
on a single page.

As long as a model implements the RetrievingModel and DatasetModel
interfaces (or the combined RetrievingDatasetModel interface), it can be used
with the pagination WebActions. This means that you can essentially any kind of
model with these actions, regardless of its data's origin. For example, models using
JDBC, XML, Web services, CICS mainframe data, or just about any other data source
can be paginated using WebActions—providing they implement the
RetrievingModel and DatasetModel interfaces.

There is nothing special you need to do to enable pagination support; just use these
WebActions like any other WebActions, keeping in mind the additional model type
restrictions. Among the components shipped with the Web Application Framework
component library, the various custom model components, JDBC QueryModel,
BeanAdapterModel, ObjectAdapterModel, and WebServiceModel generally support
pagination as both RetrievingModel and DatasetModel implementations.

When to Use WebActions
WebActions are a purely value-added feature of some of the standard Web
Application Framework components. As such, they are at the developer's discretion
to use as desired. In general, the auto-retrieval and pagination WebActions are the
most useful, the former because of the lessening of developer code, and the latter
because of the general difficulty of writing pagination code.

As a general rule of thumb, use WebActions when they make things easier.
However, if you feel constrained by them for some reason, feel free to do things
manually—all of the behavior the WebActions provide can be replicated using
existing Web Application Framework features, though arguably without the same
level of convenience.
84 Web Application Framework Developer’s Guide • December 2004

Interoperating With Web Application
Framework Applications
Because Web Application Framework applications are ultimately J2EE Web
applications, other Web applications can interoperate with them in well-defined
ways. The techniques for interoperation with Web Application Framework
applications depend on how the application components will be accessed.

Interoperating From an External Application
An external application is a completely separate application in a different servlet
context, application server, Web server, J2EE or non-J2EE container, and so on.

This type of interoperation is the same as it would be for any other Web
application—Web Application Framework applications are invokable through a
standard HTTP URL. If you want to pass parameters to a Web Application
Framework application, you can append query parameters to the HTTP invocation
and access these from within the invoked Web Application Framework component.

However, this type of invocation will result in a first-touch request, a request that does
not invoke a request event handler. In most cases, this is fine. In some cases, though,
you might want to simulate a button press or HREF (hyperlink) click. If so, you need
to include at least one name-value pair as a query parameter or posted value.

Each request resulting from a Web Application Framework button or HREF includes
a parameter that signals to the application's request handling infrastructure that it
should invoke a request event handler. The name of this parameter is the fully-
qualified name of the button or HREF. For example, a button name SubmitButton
on PgFoo would generate a parameter like this:

Therefore, to simulate this button press, you would send an HTTP request to the
Web Application Framework application that looks something like this:

PgFoo.SubmitButton=Submit

http://<host>/fooapp/main/PageFoo?PageFoo.SubmitButton=
Submit&...
Chapter 3 Programming Guide 85

This would typically result in the handleSubmitButtonRequest() method being
invoked on PageFoo. If you want to populate any of the other fields on the same
page, as most request event handler methods would expect, you need to append
additional parameters to the query string or posted content.

If you want to invoke a request event handler within a child TiledView of a page,
you need to also include a row number subscript in the parameter name:

This would invoke the request event handler in the TiledView named
FooTiledView as if the button press had occurred on the fourth tile (tile numbers
are zero-based).

Interoperating From Within the Same Application
In some cases, a single Web application might contain both Web Application
Framework and other J2EE components, such as non-Web Application Framework
servlets and JSPs. The advantage of interoperating with the Web Application
Framework from within the same application is that the application components can
share session and other objects via the request and servlet context attributes. This
makes it much easier to move seamlessly between components.

In most situations, you can simply follow the same basic guidelines for
interoperating from an external application. However, you instead need to forward
to or include the Web Application Framework component in the request using the
standard javax.servlet.RequestDispatcher mechanism. When forwarding or
including in this manner, you must be sure to request the standard Web Application
Framework URL and not any of the Web Application Framework JSPs directly (the
request must proceed via the module servlet to provide the proper Web Application
Framework context):

PageFoo.FooTiledView[3].SubmitButton=Submit

String target="/fooapp/main/PageFoo?PageFoo.SubmitButton=
Submit&...";
RequestDispatcher dispatcher=
 request.getServletContext().getRequestDispatcher(target);
dispatcher.forward(request,response);
86 Web Application Framework Developer’s Guide • December 2004

CHAPTER 4

Deploy an Application

This chapter covers the preparation of a Web Application Framework application for
deployment in most J2EE containers, as well as deployment-time configuration of a
Web Application Framework application.

It assumes general familiarity with Web Application Framework, as well as Web
Application Archive (WAR) files, deployment descriptors, and your J2EE container's
specific deployment method.

Note – Web Application Framework applications can be run in any Servlet 2.2/JSP
1.1-compliant (J2EE 1.2) Web container.

Configure the Application
In addition to packaging a Web Application Framework application, it must be
configured before it can be deployed.

If you are using the Web Application Framework IDE toolset, all of the following
configuration is automatically managed for you.

This section is intended to provide information to developers who want to create
Web Application Framework applications or objects by hand, or for developers who
want to understand the details of how the framework operates.
87

Module Servlet Configuration

General Configuration

The Web Application Framework servlet infrastructure established by
ApplicationServletBase includes the ability to configure arbitrary properties on
each module servlet using reflection. Parameters are specified in the application
deployment descriptor (web.xml) as either context or servlet init parameters using
a special name format:

For example:

The specified class name might contain an asterisk wild card character to allow
parameters to be set on more than one object:

Each parameter might only contain a single asterisk, and will match any classes
whose class name matches the string before and/or after the asterisk.

The class name expression might also be omitted if the parameter should apply to all
module servlets:

jato:<class name expression>:<param name>

<context-param>
 <param-name>jato:fooapp.main.MainModuleServlet:foo</param-name>
 <param-value>bar</param-value>
</context-param>

<context-param>
 <param-name>jato:fooapp.*:foo</param-name>
 <param-value>bar</param-value>
</context-param>

<context-param>
 <param-name>jato:enabledLogLevels</param-name>
 <param-value>ALL</param-value>
</context-param>
88 Web Application Framework Developer’s Guide • December 2004

To have a parameter set on it, the module servlet class must have a setter method
that conforms to the JavaBeans method naming convention. For example, a
parameter named foo would cause the servlet to call a method called setFoo() to
set the parameter value. The value is converted to the appropriate type for the setter
method. If the type cannot be converted, an error message is written to the servlet
context indicating the exception.

The following table shows the module servlet parameters that are currently
available.

Parameter Name Type Description Required

allowShortViewBeanNames boolean Versions of Web Application Framework prior to 2.1
required that ViewBean classes be named with a
ViewBean name suffix, for example, FooViewBean.
Beginning with version 2.1, ViewBeans do not require
this suffix.
The mechanism that looks up ViewBeans from the
request's path info must know whether to enforce the
ViewBean suffix or not. By default, this parameter is
false by default for backward compatibility, but
newer application can enable this feature to avoid
this requirement.
Note: It is possible to set this parameter on a per-
module basis, so parts of the application using the
older and newer naming conventions can coexist.

No
Chapter 4 Deploy an Application 89

enabledLogLevels String A comma-delimited list of log levels that should be
enabled. Possible values:
NONE
MANDATORY
STD
STANDARD
VERBOSE_DEBUG
TERSE_DEBUG
ANY_DEBUG
JATO_TRACE
JATO_QOS_TRACE
APP_TRACE
ANY_TRACE
WARNING
ERROR
CRITICAL
ANY_ERROR
USER_LEVEL_1
USER_LEVEL_2
USER_LEVEL_3
ANY_USER_LEVEL
ALL
DEFAULT

No

echoLogToSystemOut boolean Sets the state of logging to System.out in addition to
the servlet context.

No

enforceStrictSessionTimeout boolean During development of an application, redeploying
an application generally times out any sessions
associated with it, which can make iterative
development difficult. When set to false, this
parameter allows session timeouts to avoid causing
the user's browser to be unusable for the current
application until closed and reopened.

No

generateUniqueURLs boolean Enables or disables generation of unique URLs
during page rendering. Unique URLs help defeat
problematic caching strategies of proxies and
browsers. For example, if the browser is caching
dynamic pages inappropriately, enabling this feature
will generally cause the browser to avoid showing
inappropriately cached dynamic pages by making it
think that every page comes from a unique URL. This
feature is disabled by default because it incurs a
small runtime cost.

No

Parameter Name Type Description Required
90 Web Application Framework Developer’s Guide • December 2004

Module URL Configuration

Each module servlet has an associated module URL. This URL is a standard servlet
URL path mapping, and must be configured in the application's deployment
descriptor (or equivalent). When each page in a Web Application Framework
application is rendered, the Web Application Framework tag library renders
references to the current module's URL into the HTML output, so that submitted
forms or activated links return to the module and ViewBean that rendered the
original output. Therefore, the module URL for each module must be configured in
a standard way that makes it accessible to the Web Application Framework
infrastructure. Additionally, to allow cross-module navigation within the
application, the module URLs of each module servlet must be available to each of
the other module servlets. Therefore, the module URL is the only module servlet
parameter that must be configured before the application can be run.

The moduleURL parameter is configured like other module servlet parameters, but
has some additional restrictions, as follows:

■ The moduleURL parameter must be only package-specific (must use the asterisk
wildcard style of parameter naming)

logMessagePrefix String Sets the log message prefix (used to make log
messages stand out better).

No

moduleURL String The URL for the module servlet. See detailed
description below.

Yes

qualifiedViewNameSeparator char Since the initial version of Web Application
Framework, the period (".") has been used to separate
qualified view names. This separator might make it
more difficult for developers to use JavaScript in their
HTML pages, however, so instead application
developers might set an alternative value here, such
as underscore ("_"). Developers must take care not to
use the separator character in normal child view
names.

No

showMessageBuffer boolean Enables or disables showing the application message
buffer at the bottom of the rendered HTML page.
This feature is useful for debugging, but should be
turned off in deployment.

No

useTaglibTEI boolean Previous versions of J2EE containers had problems
generating Tag Extra Information (TEI) declared in
the Web Application Framework TLD. Beginning
with version 2.1, TEI has been enabled by default, but
developers with applications running in older
container versions might want to disable this feature
to maintain compatibility.

No

Parameter Name Type Description Required
Chapter 4 Deploy an Application 91

Because the moduleURL parameter is used also by the ViewBeans in each
module, each of which share the same package name, the moduleURL parameter
must be named as follows:

■ The moduleURL parameter must be configured as a context parameter, not a
servlet init parameter

Whereas other module servlet parameters can be configured as either context
parameters or servlet init parameters, the moduleURL parameter must be
configured as a context parameter (see below for an example). The reason for this
restriction is that the moduleURL parameters for each module servlet must be
available to all other module servlets.

■ The value of the moduleURL parameter must correspond to the module servlet
URL mapping

The URLs rendered into a Web Application Framework page are relative URLs.
Because of the standard Web Application Framework URL format, which specifies
the page name at the end of the URL path, the moduleURL must be configured as
follows:

Similarly, the module servlet URL must be mapped to the following URL:

Technically, the URL path of the module need not be named after the module
package—it could be any arbitrary name. Although this is what is recommended for
simplicity, the main constraint is that the URL path used in the moduleURL
parameter be the same as that used in the servlet mapping URL pattern.

Given the above rules and assuming the following,

■ A base application package of fooapp
■ A module in package fooapp.main

<param-name>jato:[module package name].*:moduleURL</param-name>

<context-param>
 <param-name>jato:[app package].[module package].*:moduleURL</param-name>
 <param-value>../[module package]</param-value>
</context-param>

<servlet-mapping>
 <servlet-name>[servlet name]</servlet-name>
 <url-pattern>/[module package]/*</url-pattern>
</servlet-mapping>
92 Web Application Framework Developer’s Guide • December 2004

a basic application would have the following deployment descriptor:

Adding a second module named Module2 to this application would result in the
following:

<web-app>

 <context-param>
 <param-name>jato:fooapp.main.*:moduleURL</param-name>
 <param-value>../main</param-value>
 </context-param>

 <servlet>
 <servlet-name>MainModuleServlet</servlet-name>
 <servlet-class>fooapp.main.MainModuleServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>MainModuleServlet</servlet-name>
 <url-pattern>/main/*</url-pattern>
 </servlet-mapping>

...

</web-app>
Chapter 4 Deploy an Application 93

ViewBean Display URL Configuration
Each ViewBean in a Web Application Framework application has a peer JSP, and the
URL of this JSP is referred to as the display URL of the ViewBean. Each ViewBean has
a default display URL it expects to use, and this URL is available/settable via the
ViewBean.getDefaultDisplayURL() and
ViewBean.setDefaultDisplayURL(String) methods. Developers are normally
expected to set the default display URL in a ViewBean's constructor.

<web-app>

 <context-param>
 <param-name>jato:fooapp.main.*:moduleURL</param-name>
 <param-value>../main</param-value>
 </context-param>

 <context-param>
 <param-name>jato:fooapp.module2.*:moduleURL</param-name>
 <param-value>../module2</param-value>
 </context-param>

 <servlet>
 <servlet-name>MainModuleServlet</servlet-name>
 <servlet-class>fooapp.main.MainModuleServlet</servlet-class>
 </servlet>

 <servlet>
 <servlet-name>Module2Servlet</servlet-name>
 <servlet-class>fooapp.module2.Module2Servlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>MainModuleServlet</servlet-name>
 <url-pattern>/main/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>Module2Servlet</servlet-name>
 <url-pattern>/module2/*</url-pattern>
 </servlet-mapping>

 ...

</web-app>
94 Web Application Framework Developer’s Guide • December 2004

However, in some cases, it might be useful or necessary to override the default
display URL of a ViewBean at application deployment time. In this case, the
deployer can set a context parameter in the deployment descriptor that will set the a
ViewBean's default display URL at runtime:

This parameter is set using the naming convention established above for module
servlet parameters (however, it is not a module servlet parameter):

Note – Using this mechanism to override ViewBean display URLs is not generally
recommended, as it introduces some overhead. Instead, the affected ViewBeans
should be recompiled with the appropriate display URL directly, if possible.

SQLConnectionManager Configuration
The Web Application Framework contains a manager object called
SQLConnectionManager. An instance of this object will be available to an
application from the RequestContext on any given request. The purpose of this
class is to make the task of obtaining a JDBC Connection object easier for
developers and the built-in Web Application Framework objects.

The basic usage of the SQLConnectionManager is that callers ask it for a JDBC
Connection using what is called a datasource name. This datasource name is an
arbitrary, logical name for a pre-configured database connection. This class also
standardizes this task regardless of the technique used to obtain the connection.
Finally, the class provides a level of indirection that can be useful when switching
between development, test, and deployment environments.

In standard Java applications, JDBC Connections are normally obtained via a call
to the java.sql.DriverManager. Callers provide a JDBC URL specific to the
database they want to use, and the DriverManager matches an available JDBC

Parameter Name Type Description

defaultDisplayURL String The display URL for the specified
ViewBean.

<context-param>
 <param-name>jato:fooapp.module1.FooViewBean:defaultDisplayURL</param-name>
 <param-value>/fooapp/module1/Foo-Alternate.jsp</param-value>
</context-param>
Chapter 4 Deploy an Application 95

driver with the specified URL, obtains a database connection from the driver, and
returns it to the caller. The caller then uses the connection as long as it wants before
closing it.

In Web applications, the use of the DriverManager is highly inefficient because it
requires a new database connection to be opened and initialized for each application
request that requires database access. However, the JDBC 2.0 Standard Extension
(the javax.sql package) defines a standard J2EE mechanism for database
connection pooling. This allows connections to be reused over multiple requests, and
avoids the inefficiency of repeatedly opening connections to the database.

The JDBC 2.0 Standard Extension provides a JNDI mechanism through which Web
application developers can obtain a pooled JDBC Connection object. This mechanism
consists of allocating a JNDI context and asking it for a datasource by name. This
name, also called a datasource name, is of a standard form which begins with
"jdbc/". The idea is that instead of embedding JDBC URLs directly in an
application, the application deployer pre-configures a JDBC datasource with all the
necessary information—host, protocol, username, password, etc.—and makes it
available under a logical datasource name that begins with the prefix "jdbc/".
Application developers only reference this logical datasource name, which they
assume will be mapped appropriately in whatever container the application is
deployed.

Unfortunately, not all containers provide this datasource mechanism, and/or they
impose certain limitations on the datasource name. For example, one container
might allow arbitrary names after the standard "jdbc/" prefix, where another
container might require the addition of the application context name after the prefix.
This might not be a problem with an application developed and deployed in the
same container; however, it's fairly common for an application to be developed and
deployed under different containers, making this situation a potential problem.

This is where the SQLConnectionManager seeks to provide assistance.
SQLConnectionManager contains its own datasource mapping mechanism, which
allows the developer to use truly arbitrary datasource names in their application, yet
still allow these names to be operational within any given container. Additionally,
the SQLConnectionManager allows mapping of datasource names to either JNDI
datasource names or plain JDBC URLs. This feature allows a Web Application
Framework application to run in a container that does not support the JDBC 2.0
Standard Extension, albeit without the benefit of connection pooling.

In your application, you can obtain a JDBC connection from
SQLConnectionManager directly using its getConnection() or
obtainConnection() methods. The static obtainConnection() method is used to
obtain connections outside of the scope of a request, such as during application
initialization. You can also bypass SQLConnectionManager and go directly to a
JNDI lookup (or to DriverManager) if you want, but the Web Application
Framework classes that use JDBC, such as QueryModelBase, will always use
SQLConnectionManager to obtain database connections.
96 Web Application Framework Developer’s Guide • December 2004

Setting the SQLConnectionManager to use JNDI or the JDBC
DriverManager

As mentioned above, the SQLConnectionManager allows either use of plain JDBC
URLs (via the JDBC DriverManager) or JNDI datasource names when obtaining a
JDBC Connection using an arbitrary datasource name. These two modes are
mutually exclusive, and the current mode is selected by calling the
SQLConnectionManagerBase.setUsingJNDI(Boolean) static method. This
method need only be called once; call this method from the static initializer of your
application servlet class.

Calling the setUsingJNDI() method with a value of true will enable JNDI lookups
of datasource names. In this mode, all datasource names are assumed to map to
JNDI datasource names of the general form "jdbc/...". If the setUsingJNDI()
method is called with a value of false, the SQLConnectionManager will assume
that datasource names map directly to JDBC URLs, and will attempt to obtain a
JDBC Connection directly form the JDBC DriverManager.

Under no circumstances should you use the DriverManager to obtain JDBC
connections in a production application! Such usage causes a new database
connection to be opened for every use of the connection, and will cause enormous
performance and scalability problems with your application. Make sure you use
SQLConnectionManager's JNDI lookup mechanism along with a database
connection pool in your container when you finally deploy your applications into
production.

Add Datasource Mappings

Either of the above modes assumes that a mapping exists for the provided
datasource name. These mappings are set by calling the
SQLConnectionManagerBase.addDataSourceMapping(String, String)
static method. This method should generally be called from within the static
initializer of the application servlet class.

For example:

static
{
 setUsingJNDI(true);

 // Anyone asking for a connection under the name "jdbc/MyDS"
 // would cause the SQLConnectionManager to do a JNDI lookup for
 // a datasource under the name "jdbc/Foo/MyDS-Test"
 addDataSourceMapping("jdbc/MyDS","jdbc/Foo/MyDS-Test");
}

Chapter 4 Deploy an Application 97

or

If a Datasource Mapping Cannot be Found

The SQLConnectionManager provides a fallback mechanism if a mapping cannot
be found for a given datasource name. If a mapping cannot be found, it assumes that
the datasource name is the JNDI datasource name/JDBC URL that should be used to
obtain a connection. Therefore, the default mechanism is to use the literal datasource
name passed to the SQLConnectionManager. This means that unless the developer
adds mappings, the use of SQLConnectionManager is completely transparent.

Package the Application
Packaging of Web Application Framework applications follows the standard J2EE
guidelines for Web Application aRchive files. If you've developed your application
by following this guide's recommendations, you need do nothing more than use a
JAR or Zip tool to archive your application directory structure into a WAR file. The
WEB-INF directory and its peer directories and files should be at the root of the
archive. The name of the WAR file is arbitrary, though it needs to have a .war file
extension.

static
{
 setUsingJNDI(false);

 // Note, if we are not using JNDI, we will need to initialize our
 // JDBC drivers in the standard way
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Class.forName("oracle.jdbc.driver.OracleDriver");

 // Anyone asking for a connection under the name "jdbc/MyDS"
 // would cause the SQLConnectionManager to obtain a connection from
 // the JDBC DriverManager with the URL "jdbc:odbc:northwind"
 addDataSourceMapping("jdbc/MyDS","jdbc:odbc:northwind");
 addDataSourceMapping("jdbc/HerDS","jdbc:oracle:thin:@10.0.0.1:1521:foo");
}

98 Web Application Framework Developer’s Guide • December 2004

Deploy the Application
After configuring the application as described above, deploying a Web Application
Framework application is no different than deploying any other WAR-based J2EE
Web application. J2EE containers differ on the details of deploying such an
application; refer to your container's deployment documentation for specifics.
However, in many cases, you simply need to copy the WAR file to the container's
/webapps directory.

Some additional notes on deployment:

■ Each deployed application needs its own copy of the Web Application
Framework runtime in its WEB-INF/lib directory. In addition to being the only
supported configuration, this measure ensures that the application is entirely self-
contained and can be immediately installed in any container. It also ensures that
Web Application Framework version changes do not affect multiple applications.
If a shared copy of the runtime were used for several applications, all of these
applications would have to be upgraded to a new version of the runtime at the
same time.

■ The application source code should be packaged in the deployed WAR file when
possible (under the /WEB-INF directory). This is not a formal recommendation,
but it has several advantages. First, it aids troubleshooting efforts by providing an
exact image of the source that is actually being used in the application. Second, it
ensures that critical fixes can easily be made to deployed applications without
requiring a full development/source control environment.

■ If you use JDBC in your application, check before it is deployed to ensure that it
is using JNDI mode in the SQLConnectionManager.

■ You might want to configure your container or Web server to deny access to all
.jsp files from external clients if possible, since these files are only meant to be
accessed through Web Application Framework servlets.

Access a Web Application Framework
Application
After deploying your Web Application Framework application, it is available to be
accessed by HTTP clients. Web Application Framework applications use a standard
URL format of the following general form:

http://<host + container-specific path>/<servlet context
name>/<module name>/<page name>
Chapter 4 Deploy an Application 99

where:

■ The servlet context name is the name of the deployed WAR file (in most J2EE
containers).

■ The module name is the name of the module package within the application.

■ The page name is the name of the page to display within that module.

For example, given the following:

■ WAR file name: HelloWorld.war

■ Module name: greeting

■ Page name: Hello

■ ViewBean class: <app package>.greeting.Hello

■ JSP name: Hello.jsp

the URL to access the Hello page would be the following:

http://<host + container-specific
path>/HelloWorld/greeting/Hello

The base application package name does not factor into the URL. Additionally, the
requested page name must exist within the specified module. Trying to access a page
outside of the requested module is illegal. For more information, see “Cross-Module
Navigation” on page 100.

Many J2EE containers do not impose container-specific paths for access to the servlet
engine. For example, Sun Java System Application Server, Apache Tomcat, or
Caucho Resin would use the following URL:

http://<host>/HelloWorld/greeting/Hello

However, because some J2EE containers use a multi-tiered architecture with a
conventional Web server for external access, the URL might require additional path
information. For example, the example URL in iPlanet Application Server 6.x would
be this:

http://<host>/NASApp/HelloWorld/greeting/Hello

Cross-Module Navigation
Cross-module navigation refers to handling a request in one module but responding
with a page from another module. This scenario normally arises when moving from
one logically related area of the application to another.
100 Web Application Framework Developer’s Guide • December 2004

For the most part, the Web Application Framework runtime manages this switch
automatically for you, but it is important to understand the basic mechanics. The
crucial task in moving across modules is in making sure that the page ultimately
rendered to the client contains references back to the module in which that page is
contained. Otherwise, a request for a page in a different module would be sent back
to the server, causing a security exception. Once a request crosses module
boundaries, the target module's servlet will be the next servlet to handle a request
from the user. For example, if a user request triggered an event in PageOne of
module1, and this event forwarded the request to PageTwo in module2, module2's
module servlet would be the servlet to handle the next and all subsequent user
requests (until another request crossed another module boundary).

There is one subtlety of which developers should be aware when crossing module
boundaries within their applications. Normally, developers use the
ViewBeanManager available from the RequestContext to obtain ViewBean
references. The ViewBeanManager allows developers to provide a short name for
the ViewBean they want to retrieve via the getLocalViewBean() method.
However, this method must prepend a package name to the provided name to
derive a class name. This package name is always the package name of the module
servlet which handled the request. Therefore, it is not possible to obtain a ViewBean
from another module using this method; only ViewBeans within the current module
are available through this shortcut method. To obtain a reference to a ViewBean in
another module, use one of the other ViewBeanManager methods that expects a
class or fully-qualified class name.
Chapter 4 Deploy an Application 101

102 Web Application Framework Developer’s Guide • December 2004

APPENDIX A

Troubleshooting

This appendix outlines known Troubleshooting issues including symptom, probable
cause, probable solution, and comments for each known issue.

Symptom
javax.servlet.ServletException: Invalid request - request
handler "X" not found at
com.iplanet.jato.ApplicationServletBase.onRequestHandlerNotFound
(...)
...

Probable Cause
Misspelled the target page.

Probable Solution
In this example, the target page is spelled Login, not login.

Case sensitivity and plural form are common mistakes.

Comments

Because page names are always related to ViewBean class name, they generally
begin with an uppercase letter.
 103

Symptom
javax.servlet.ServletException: The request context is null -
this page must be accessed through a servlet at
org.apache.jasper.runtime.PageContextImpl.handlePageException(Pa
geContextImpl.java:457)
...

Probable Cause
Attempting to access a Web Application Framework JSP directly using the JSP's
URL.

Probable Solution
All access to Web Application Framework applications must go through a module
servlet (the front controller). This exception indicates that the user tried to access the
wrong resource.

Instead of this URL:

http://localhost:8081/JatoTutorial/jatotutorial/main/Login

use a URL like this:

http://localhost:8081/JatoTutorial/main/Login

Comments

The actual valid URL might vary depending on how the URL/servlet mappings are
configured in the application's web.xml file. If the application was created without
manual modification of the web.xml, the URL pattern should be as follows:

http://<server>:<port>/<ServletContext>/<module>/<targetPageName
>

104 Web Application Framework Developer’s Guide • December 2004

Symptom
com.iplanet.jato.NavigationException: Exception encountered
during forward
Root cause = [java.sql.SQLException: Cannot find the user
"ADMINISTRATOR".]
...

Probable Cause
This is specifically a database access SQL exception. In this case, the model
attempted to access the database without the proper username and password.

Probable Solution
If you are using JDBC URLs (rather than the JNDI lookup technique), provide the
appropriate username and password by setting them explicitly in the Model's
constructor (PointBase sample database example):

setDefaultConnectionUser("pbpublic");
setDefaultConnectionPassword("pbpublic");

In some cases, you can also provide the user name and password on the JDBC URL.

Comments

This problem can be avoided by using JNDI database connection lookup. See “Using
SQLConnectionManager” on page 60 in Chapter 3, Programming Guide.
Appendix A Troubleshooting 105

106 Web Application Framework Developer’s Guide • December 2004

Index
A
API, ContainerView, 75
application

configuring, 87
deploy, 99
develop, 25
events, 42
interoperating from within the same, 86
package, 98

application-level entities, 26
auto-retrieving models, 83

B
BeanAdapterModel, using, 80
book organization, 10
build enterprise Web applications, 16
business logic, 47

C
child display events, 70
child view

components, add, 36
paths, 77

client session, 73
code, 34
command

descriptor property, 44
event handlers, 45

CommandFields, 43
Component Libraries, use, 30
Component Library, 31

Component, what is it?, 30
container display events, 70
ContainerView API, 75
ContainerView class, create, 39
ContainerViews

and Pagelets, 22
IDE support for, 74
in your application, 77
using, 74

content tag, 71
Controller Tier, 22
Create an Application, 25
cross-module navigation, 28, 100

D
datasource mapping, if cannot be found, 98
datasource mappings, add, 97
default model, 77
Deploy an Application, 87 to 101
Develop an Application, 25 to 52
display events, using, 69
DisplayField values, working with, 65

E
event handling

approach to using, 46
logic, write, 47

events, application, 42
executing models, using, 79
external application, interoperating from an, 85
 107

F
files, additional, unpacking, 32
forward references, 47
forwardTo() Method, 72
front controller events, 40

H
helper beans, 20

I
IDE Support for ContainerViews, 74

J
J2EE

restrictions, 51
Web-tier application, 25

JATO, name of technology, 15
Java Server Pages (JSP) technology, 20
JSP

(Java Server Pages) technology, 20
synchronize to the, 37

JSPs, manage, 34

L
log levels, 63
log messages, making them stand out, 65
logging, 63
logging messages, 63
Logging to Standard Out, 65

M
message writer, using, 56
messages, logging, 63
Model Tier, 17
model values, working with, 67
model, default, 77
ModelManager

exceptions to using, 60
using, 57

models
auto-retrieving, 83
getting and saving in the session, 58
primary, 39

models, types of, 18
ModelTypeMap, 59

Model-View-Controller pattern, 17
Module Servlet, 27
Module Servlet Configuration, 88
Module URL Configuration, 91
Modules, 26
MVC, 17

N
naming convention, 34
navigation, cross-module, 28

O
ObjectAdapterModel, using, 81
objects, other available, 55
overview, 15
Overview and Architecture, 15 to 23

P
Package Structure, 28
Page (ViewBean), create, 33
page session, 72
page, execute from the IDE, 38
pageflow, 48
pagelet (ContainerView) components, create, 38
Pagelets and ContainerViews, 22
Pages and ViewBeans, 20
pagination using WebActions, 84
Preface, 9 to 13
primary models, 39
Programming Guide, 53 to 86

R
request event method handlers, 44
request lifecycle, 39
RequestCompletionListener interface, 56
RequestContext

getting the, 53
using the, 53

RequestManager, using, 62
requests, handle, 39
response, render a, 48

S
servlet request and response objects, getting, 54
108 Web Application Framework Developer’s Guide • December 2004

session object, getting the, 55
SQLConnectionManager

Configuration, 95
setting to use JNDI or the JDBC

DriverManager, 97
using, 60

T
Tag Libraries, unpacking, 32
TiledViews, using, 78
TreeViews, using, 79
Types of Models, 18

U
unpacking

additional files, 32
tag libraries, 32

URLs and parallel content, display, 50

V
values

getting, using the J2EE API, 68
working with, 65

View Tier, 19
ViewBean

Class, create, 33
display, 49
Display URL Configuration, 94
interface, 21

ViewBeanManager, using, 56
ViewBeans

and Pages, 20
their relationship to JSPs, 20
their relationship to views, 21
using, 72

views, types of, 19

W
WAR File, create, 28
WAR structure, 25
Web Application Framework

access application, 99
applications, interoperating with, 85
component, what is it?, 30
for developing enterprise applications, 16
for J2EE developers, 16

how its MVC differs from traditional MVC, 23
introduces new J2EE developers to Web

application development, 16
is not an enterprise tier framework, 17
three tiers of its architecture, 17
What Does it Do?, 16
What is it?, 15, 25
Who Should Be Interested in It?, 16

WebAction
Events, 82
types, 82

WebActions
pagination using, 84
using, 81
when to use, 84
Index 109

110 Web Application Framework Developer’s Guide • December 2004

	Web Application Framework Developer’s Guide
	Contents
	Before You Begin
	Overview and Architecture
	Overview
	What is the Web Application Framework?
	Who Should Be Interested in the Web Application Framework?
	What Does the Web Application Framework Do?
	What Doesn’t the Web Application Framework Do?

	The Three Tiers of the Web Application Framework Architecture
	Model Tier
	Types of Models

	View Tier
	Types of Views
	Pages and ViewBeans
	ViewBeans and Their Relationship to JSPs
	ViewBeans and Their Relationship to Views
	Pagelets and ContainerViews

	Controller Tier
	How Web Application Framework MVC Differs From Traditional MVC

	Develop an Application
	Create an Application
	What is a Web Application Framework Application?
	Application-Level Entities
	Modules
	Module Servlet
	Package Structure

	Create a WAR File
	Use Component Libraries
	What is a Web Application Framework Component?
	Web Application Framework Component Library
	Other Component Libraries

	Create a Page (ViewBean)
	Create a ViewBean Class
	Naming
	Code

	Manage JSPs
	Add Child View Components
	Synchronize to the JSP

	Execute a Page from the IDE

	Create Pagelet (ContainerView) Components
	Create a ContainerView Class
	Primary Models

	Handle Requests
	Request Lifecycle
	Front Controller Events
	Application Events
	CommandFields
	Command Descriptor Property
	Request Event Method Handlers
	Command Event Handlers
	Which Event Handling Approach Should I Use?

	Write Event Handling Logic
	Forward References
	Business Logic

	Render a Response
	Pageflow
	Display a ViewBean
	Display URLs and Parallel Content
	J2EE Restrictions

	Programming Guide
	Using the RequestContext
	Getting the RequestContext
	Getting the Servlet Request and Response Objects
	Getting the Session Object
	Other Available Objects
	RequestCompletionListener Interface
	Using the Message Writer

	Using ViewBeanManager
	Using ModelManager
	Getting and Saving Models in the Session
	ModelTypeMap
	Exceptions to Using the ModelManager

	Using SQLConnectionManager
	Using the RequestManager
	Logging
	Logging Messages
	Log Levels
	Logging to Standard Out
	Making Log Messages Stand Out

	Working With Values
	Working With DisplayField Values
	Working With Model Values
	Getting Values Using the J2EE API

	Using Display Events
	Container Display Events
	Child Display Events
	Content Tag

	Using ViewBeans
	forwardTo() Method
	Page Session
	Client Session

	Using ContainerViews
	IDE Support for ContainerViews
	ContainerView API
	Using ContainerViews in Your Application
	Default Model
	Child View Paths

	Using TiledViews
	Using TreeViews
	Using Executing Models
	Using BeanAdapterModel
	Using ObjectAdapterModel
	Using WebActions
	WebAction Types
	WebAction Events
	Auto-Retrieving Models
	Pagination Using WebActions
	When to Use WebActions

	Interoperating With Web Application Framework Applications
	Interoperating From an External Application
	Interoperating From Within the Same Application

	Deploy an Application
	Configure the Application
	Module Servlet Configuration
	General Configuration
	Module URL Configuration

	ViewBean Display URL Configuration
	SQLConnectionManager Configuration
	Setting the SQLConnectionManager to use JNDI or the JDBC DriverManager
	Add Datasource Mappings
	If a Datasource Mapping Cannot be Found

	Package the Application
	Deploy the Application
	Access a Web Application Framework Application
	Cross-Module Navigation

	Troubleshooting
	Symptom
	Probable Cause
	Probable Solution
	Comments

	Symptom
	Probable Cause
	Probable Solution
	Comments

	Symptom
	Probable Cause
	Probable Solution
	Comments

	Index

