
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Building J2EE™ Applications

Sun Java™ Studio Enterprise 7 2004Q4

Part No. 819-0819-10
December 2004, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Enterprise JavaBeans, JavaServer Pages, docs.sun.com, JavaHelp, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Enterprise JavaBeans, JavaServer Pages, docs.sun.com, JavaHelp, et Solaris sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 11

1. Assembly, Deployment, and Execution Basics 19

Assembly Basics 19

J2EE Applications Are Modular 20

J2EE Applications Are Supported by the J2EE Runtime Environment 21

J2EE Applications Are Distributed 24

Visual Representations of Modules and Applications 27

Web Modules 28

EJB Modules 29

J2EE Applications 30

Property Sheets 30

Deployment Basics 31

Execution Basics 33

Using This Book 33

2. Scenario: A Web Module 35

The Interactions in This Module 36

Programming This Module 38

Creating the Welcome Page 38
 3

Programming the Servlet Methods 41

Mapping URLs to the Servlets 46

Other Assembly Tasks 49

3. Scenario: An EJB Module 57

The Interactions in This Module 58

Programming This Module 60

Creating Remote Interfaces for the Session Enterprise Bean 61

Creating Local Interfaces for the Entity Enterprise Beans 62

Using the Local Interfaces in the Session Enterprise Bean 63

Assembling the EJB Module 65

4. Scenario: Web Module and EJB Module 75

The Interactions in This Application 76

Programming This Application 76

Creating the J2EE Application 77

Setting the Web Context for the Web Module 79

Linking the EJB Reference 80

Additional Assembly Tasks 83

5. Scenario: Web Module and Queue-Mode Message-Driven Bean 87

The Interactions in This Application 88

Programming the Message-Driven Communication 89

Setting up the Application Server 89

Programming the Web Module 92

Programming the EJB Module 98

Assembling the J2EE Application 101

6. Transactions 103

Default Transaction Boundaries 103
4 Building J2EE Applications • December 2004

Redefining the Transaction Boundaries 105

7. Security 109

Web Module Security 110

EJB Module Security 118

J2EE Application Security 124

8. Deploying and Executing J2EE Modules and Applications 127

Visual Representations of Servers 127

The Server Registry Node 128

The Installed Servers Node 129

The Server Product Nodes 129

The Sun Java System Application Server Nodes 129

The Default Server Nodes 133

Server-Specific Properties 133

Using Server Instance Nodes to Deploy and Execute 134

A. How the IDE Supports Deployment of J2EE Modules and Applications 137

The Deployment Process 137

The Server Plug-In Concept 138

The Deployment Process 140

Deploying Components Other Than Web Modules and J2EE Applications 141

Index 143
Contents 5

6 Building J2EE Applications • December 2004

Figures

FIGURE 1-1 Multitiered Application Using J2EE Components and Modules 25

FIGURE 1-2 Web Module Node and Subnodes 29

FIGURE 1-3 EJB Module Node and Subnodes 29

FIGURE 1-4 J2EE Application Node and Its Subnodes 30

FIGURE 1-5 Runtime window 32

FIGURE 2-1 The CatalogWebModule Web Module 35

FIGURE 2-2 Welcome Files Property Editor 41

FIGURE 2-3 EJB Reference Property Editor With Unlinked Reference 45

FIGURE 2-4 EJB Reference Property Editor With Linked Reference 46

FIGURE 2-5 Servlet Mappings Property Editor 48

FIGURE 2-6 Servlet Mappings Property Editor 49

FIGURE 2-7 Error Pages Property Editor 50

FIGURE 2-8 JSP Files Property Editor 52

FIGURE 2-9 Servlet Mappings Property Editor 53

FIGURE 2-10 Add Environment Entry Dialog Box 55

FIGURE 3-1 The CatalogData EJB Module 57

FIGURE 3-2 Add EJB Reference Dialog Box 65

FIGURE 3-3 EJB Module CMP Resource Property Editor 69

FIGURE 3-4 Add Resource Reference Dialog Box 71

FIGURE 3-5 Add Resource Reference Dialog Box, Server-Specific Tab 72

FIGURE 4-1 The CatalogApp J2EE Application 75
 7

FIGURE 4-2 Property Sheet for CatalogWebModule 80

FIGURE 4-3 Unlinked EJB Reference 82

FIGURE 4-4 EJB Reference Linked by Override 83

FIGURE 4-5 J2EE Application Environment Entries Property Editor 84

FIGURE 4-6 Overriding an Environment Entry Value 85

FIGURE 5-1 J2EE Application With Queue-Mode Message-Driven Bean 87

FIGURE 5-2 Adding a Resource Environment Reference for CheckoutQueue 95

FIGURE 5-3 Supplying JNDI Name for the Queue Reference 96

FIGURE 5-4 Resource Reference for Queue Connection Factory 97

FIGURE 5-5 JNDI Name for the QueueConnectionFactory Reference 98

FIGURE 5-6 Message-Driven Bean Property Sheet 99

FIGURE 5-7 The Message-Driven Bean Connection Factory Property Editor 100

FIGURE 6-1 Default Transaction Attribute Settings 104

FIGURE 6-2 Complex Transaction 105

FIGURE 6-3 Modified Transaction Settings 107

FIGURE 7-1 The Security Roles ME and EveryoneElse Declared for the Web Module 111

FIGURE 7-2 Defining a Web Resource Named allItems 113

FIGURE 7-3 The allItems Resource in the Add Security Constraints Dialog Box 114

FIGURE 7-4 Specifying Constraints for the Web Resource Named allItems 115

FIGURE 7-5 The Security Role Reference Named roleRefMe Mapped to the Role ME 117

FIGURE 7-6 EJB Module’s Security Roles Property Editor 119

FIGURE 7-7 EJB Method Permissions Property Editor 120

FIGURE 7-8 The Security Role Reference everyOne Declared 122

FIGURE 7-9 The everyOne Security Role Reference in the EJB Module Property Editor 123

FIGURE 7-10 EJB Module’s Security Role Reference Property Editor 124

FIGURE 7-11 Security Roles in the J2EE Application’s Security Roles Property Editor 125

FIGURE 7-12 The Role Named myself is Mapped to the Role Named Me 126

FIGURE 8-1 Server Registry Node 128

FIGURE 8-2 EJB Module’s Sun Java System AS Section 134

FIGURE A-1 Server Plug-Ins Enable the IDE to Communicate With J2EE Runtime Environments 139
8 Building J2EE Applications • December 2004

Before You Begin

The Java Community Process, supported by Sun Microsystems, Inc., has evolved
standards for designing distributed, enterprise applications with the Java™ 2
Platform, Enterprise Edition (J2EE™ platform). The J2EE platform documentation
listed in “Before You Read This Book” on page 10 covers these standards for
application design and architecture.

This book is about how you implement these architectures with the Sun™ Java
Studio Enterprise 7 2004Q4 developer tools. It is about using the integrated
development environment (IDE) to combine components and create J2EE modules,
making sure that all of the components interact in the way that the application
design specifies. It is also about combining J2EE modules to create J2EE applications,
making sure that the distributed interactions between the modules function in the
way that the application design calls for.

Screen shots vary slightly from one platform to another. Although almost all
procedures use the interface of the Java Studio Enterprise software, occasionally you
might be instructed to enter a command at the command line. Here too, there are
slight differences from one platform to another. For example, a Microsoft Windows
command might look like this:

A UNIX® command might look like this:

c:>cd MyWorkDir\MyPackage

% cd MyWorkDir/MyPackage
 9

Before You Read This Book
This book is intended for anyone who uses the Java Studio Enterprise IDE to
assemble, deploy, or execute J2EE applications. The first chapter summarizes the
J2EE platform concepts of assembly and deployment, and it should benefit anyone
seeking a general understanding of assembly and deployment.

This book assumes a familiarity with the following subjects:

■ Java programming language
■ Enterprise JavaBeans™ (EJB™) technology concepts
■ J2EE application assembly and deployment concepts

This book requires a knowledge of J2EE concepts, as described in the following
resources:

■ Java 2 Platform, Enterprise Edition Blueprints
http://java.sun.com/reference/blueprints

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/learning/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products

Familiarity with the Java API for XML-Based RPC (JAX-RPC) is helpful. For more
information, see this web page:

http://java.sun.com/xml/jaxrpc

Note – Sun is not responsible for the availability of third-party Web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.
10 Building J2EE Applications • December 2004

http://java.sun.com/products
http://java.sun.com/j2ee/learning/tutorial
http://java.sun.com/reference/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/xml/jaxrpc
http://java.sun.com/xml/jaxrpc
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/reference/blueprints
http://java.sun.com/products
http://java.sun.com/j2ee/learning/tutorial

How This Book Is Organized
The J2EE platform makes possible a component-oriented approach to developing
enterprise applications. Application developers encapsulate business logic in EJB
components and web components. After creating components, developers assemble
their components into modules, which are units of logic that perform recognizable
business tasks. After assembling modules, developers assemble their modules into
J2EE applications. J2EE applications perform entire business processes.

This book is about using the Java Studio Enterprise development environment to
assemble components into modules, and modules into applications. The book
presents this information in a series of “scenarios.”

Chapter 1 summarizes the J2EE concepts of assembly and deployment. It defines the
J2EE units of modules and applications and examines module and application
deployment descriptors. This chapter also explains how to assemble modules and
applications in the IDE. In particular, this chapter explains how to use module and
application property sheets to set up module and application deployment
descriptors.

Chapter 2 describes a scenario that shows how to assemble a web module. This
chapter includes a short description of a web module that is used as the front end of
a J2EE application. This chapter then shows how to program the web module.

Chapter 3 describes a scenario that shows how to assemble an EJB module. This
chapter includes a short description of an EJB module that is used in a J2EE
application. This chapter then shows how to program the EJB module.

Chapter 4 describes a scenario that shows how to assemble a J2EE application by
combining a web module and an EJB module. This chapter includes a short
description of a J2EE application that combines a web module and an EJB module.
This chapter then shows how to assemble the application. This scenario features
synchronous interaction between the two modules, using Java Remote Method
Invocation (RMI).

Chapter 5 describes a scenario that shows how to set up asynchronous
communications between modules using a message-driven enterprise bean (MDB).
This chapter includes a short description of asynchronous communication used in a
business application. This chapter then shows how to program both the sending and
receiving sides of the application. The scenario in this chapter features a web module
communicating with an EJB module, but the example can be applied to other
combinations of modules.
Before You Begin 11

Chapter 6 explains how to program container-managed transactions with the IDE.

Chapter 7 explains how to secure the resources in a J2EE application using the IDE.
This chapter shows how to set up security roles at the module level and how to use
the security roles to restrict access to web module resources and enterprise bean
methods. This chapter also shows how to map security roles when modules are
assembled into an application.

Chapter 8 explains how to deploy and execute assembled applications. In particular,
it explains how to tailor an application for a specific server product before
deployment.

Appendix A looks at the mechanism the IDE uses to interact with web and
application servers. It includes a detailed account of the deployment process.

Typographic Conventions

Related Documentation
Java Studio Enterprise documentation includes books and tutorials delivered in
Acrobat Reader (PDF) format, release notes, online help, and tutorials delivered in
HTML format.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
12 Building J2EE Applications • December 2004

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM
web site and from the Documentation link from the Sun Java Studio Enterprise
Developers Source portal (http://developers.sun.com/jsenterprise).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet.

■ Sun Java Studio Enterprise 7 2004Q4 Release Notes - part no. 819-0905-10

This document describes last-minute release changes and technical notes.

■ Sun Java Studio Enterprise 7 Installation Guide (PDF format) - part no. 817-7971-10

This document describes how to install the Sun Java Studio Enterprise 7
integrated development environment (IDE) on each supported platform and
includes other pertinent information, such as system requirements, upgrade
instructions, server information, command-line switches, installed subdirectories,
database integration, and information on how to use the Update Center.

■ Building J2EE Applications - part no. 819-0819-10

Describes how to assemble EJB modules and web modules into a J2EE application
and how to deploy and run a J2EE application.

■ Web Application Framework documentation (PDF format)

■ Sun Java Studio Enterprise 7 Web Application Framework Component Author’s Guide
- part no. 819-0724-10

This document describes the Web Application Framework component
architecture and the process to design, create, and distribute new components.

■ Sun Java Studio Enterprise 7 Web Application Framework Component Reference
Guide - part no. 819-0725-10

This document describes the components available in the Web Application
Framework Library.

■ Sun Java Studio Enterprise 7 Web Application Framework Overview - part no. 819-
0726-10

This document introduces the Web Application Framework and what it is, how
it works, and what sets it apart from other application frameworks.

■ Sun Java Studio Enterprise 7 Web Application Framework Tutorial - part no. 819-
0727-10

This document introduces the mechanics and techniques to build a web
application using the Web Application Framework tools.
Before You Begin 13

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://developers.sun.com/jsenterprise)

■ Sun Java Studio Enterprise 7 Web Application Framework Developer’s Guide - part
no. 819-0728-10

This document provides the steps to create and use application components
that can be assembled to develop an application using the Web Application
Framework and explains how to deploy the application in most J2EE
containers.

■ Sun Java Studio Enterprise 7 Web Application Framework IDE Guide - part no. 819-
0729-10

This document describes the various parts of the Sun Java Studio Enterprise 7
2004Q4 IDE and emphasizes the use of the visual tools for developing a Web
Application Framework application.

■ Sun Java Studio Enterprise 7 Web Application Framework Tag Library Reference -
part no. 819-0730-10

This document gives a brief introduction to the Web Application Framework
tag library, as well as a comprehensive reference to the tags available within
the library.

■ Sun Java System Web Server 6.1 documentation

Documentation for Sun Java System Web Server 6.1, including Getting Started,
Installation and Migration, and Administrator’s Guides, are available at
http://docs.sun.com/db/prod/s1websrv#hic

Tutorials
Sun Java Studio Enterprise 7 tutorials help you understand the features of the IDE.
Each tutorial provides techniques and code samples that you can use or modify in
developing more substantial applications. All tutorials illustrate deployment with
Sun Java System Application Server.

All tutorials are available from the Tutorials and Code Camps link off the
Developers Source portal, which you can access from within the IDE by choosing
Help → Examples and Tutorials.

■ QuickStart guides provide an introduction to the Sun Java Studio IDE. Start with
a QuickStart tutorial if you are either new to the Sun Java Studio IDE or want a
quick introduction to a particular feature. These tutorials describe how to develop
simple web and J2EE applications, generate web services, and how to get started
with UML modeling and Refactoring. QuickStarts take minutes to complete.

■ Tutorials focus on a single feature of the Sun Java Studio IDE. Try these if you are
interested in the details of a particular feature. Some tutorials build an application
from the ground up, while others build on provided source files, depending on
the focus of the example. You can complete a tutorial in an hour or less.
14 Building J2EE Applications • December 2004

http://java.sun.com/j2ee/blueprints
http://docs.sun.com/db/prod/s1websrv#hic

■ Narrated Tutorials use video to illustrate a feature or technique. Try narrated
tutorials for a visual overview of the IDE or an in-depth presentation of a
particular feature. You can complete a narrated tutorial in a few minutes. You can
also start and stop a narrated tutorial at any point you wish.

Online Help
Online help is available in the Sun Java Studio Enterprise 7 IDE. You can open help
by pressing the help key (F1 in Microsoft Windows environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (819-0819-10) of your document in the subject line of
your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Tutorials HTML at the Examples and Code Camps link from the Developers
Source portal at http://developers.sun.com/jsenterprise

Release notes HTML at http://docs.sun.com
Before You Begin 15

http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com
http://docs.sun.com
http://developers.sun.com/jsenterprise
http://docs.sun.com

16 Building J2EE Applications • December 2004

CHAPTER 1

Assembly, Deployment, and
Execution Basics

The modular nature of developing with the Java 2 Platform, Enterprise Edition (J2EE
platform) means that you combine smaller units to create larger ones. You combine
components to create modules, and you combine modules to create applications.
Combining smaller J2EE software units to create larger units is known as assembly.

The modules and applications that you assemble need runtime services, such as
container-managed persistence, container-managed transactions, and container-
managed security validation, which are provided by the J2EE platform. When you
assemble a module or an application, you must determine which runtime services
are required. You must specify those services in a J2EE deployment descriptor.

This chapter describes some basic characteristics of J2EE modules and applications
that influence the assembly process. It also introduces the basics of assembling with
the Java Studio Enterprise developer tools.

Assembly Basics
J2EE assembly is a process that includes many separate tasks. When you assemble an
application or a module correctly, you can deploy the application or module to a
J2EE application server and execute the module or application.

The greatest obstacle to successful assembly is the variability of the assembly
process. Every module or application you assemble requires a different combination
of runtime services and, therefore, a different set of assembly tasks. There are no
standard procedures for assembling modules and applications. You must understand
what a correctly assembled module or application is before you begin the assembly
process. This section provides background information on the J2EE platform that
helps you recognize a correctly assembled module or application.
17

J2EE Applications Are Modular
A J2EE application is a set of modules. The modules in the application are sets of
components. The J2EE platform’s mechanism for combining components into
modules and modules into applications is the deployment descriptor. The
deployment descriptor is a “list of ingredients” for a module or an application.

■ The deployment descriptor for an application lists the modules in the application.

■ The deployment descriptor for a module lists the components in the module.

To understand why the J2EE platform uses deployment descriptors, consider how
the source code for an application is deployed and executed. At development time,
components exist as many source files in your development environment. These
source files cannot be executed until you deploy them to a J2EE application server.
The components must execute in the runtime environment that is provided by the
application server.

Deploying an application compiles the source files that are listed in the application’s
deployment descriptor and installs the compiled files in directories that are managed
by the application server. The source files are actually compiled into a J2EE
application when you deploy. After you deploy, you can execute the deployed
application in the application server’s environment.

The deployment descriptor is a development time mechanism for listing the files
that will be deployed together as a module or an application. When you assemble a
module or an application at development time, you do not actually modify the
source files. You prepare a deployment descriptor that describes your module or
application for the deployment process.

Deployment descriptors are XML files. They use specific XML tags to identify an
application and the modules that make up the application (or to identify a module
and the components that make up the module). CODE EXAMPLE 1-1 shows the
deployment descriptor for a J2EE application named CatalogApp. This deployment
descriptor lists the modules in the CatalogApp application.

CODE EXAMPLE 1-1 Deployment Descriptor for CatlaogApp

<!DOCTYPE application PUBLIC “-//Sun Microsystems, Inc.//DTD J2EE Application
 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 <?xml version="1.0" encoding="UTF-8"?>
 <display-name>CatalogApp</display-name>
 <description>J2EE Application CatalogApp</description>
 <module>
 <ejb>CatalogData.jar</ejb>
 <alt-dd>CatalogData.xml</alt-dd>
 </module>
 <module>
 <web>
18 Building J2EE Applications • December 2004

The CatalogApp application contains two modules, which are named
CatalogData and CatalogWebModule. The deployment descriptor identifies the
modules with <module> tags.

When you deploy the CatalogApp application, the application server reads the
application’s deployment descriptor. Each of the modules that are listed in the
CatalogApp deployment descriptor has its own module-level deployment
descriptor. The application server proceeds to read the deployment descriptors for
the two modules. These deployment descriptors identify the source files for the J2EE
components in the two modules. CODE EXAMPLE 1-2 and CODE EXAMPLE 1-3 show the
module-level deployment descriptors.

When you work with the Java Studio Enterprise integrated development
environment (IDE), the IDE prepares the deployment descriptors for you. You do not
write the deployment descriptor tags, but you should understand that the IDE
prepares the deployment descriptors for you while you work in the IDE.

J2EE Applications Are Supported by the J2EE
Runtime Environment
At runtime, J2EE applications use services that are provided by a J2EE application
server. These services include container-managed persistence, container-managed
transactions, and container-managed security validation.

Applications, and the modules in applications, must tell the application server which
services they need. The mechanism for telling the application server which services
are needed is the deployment descriptor.

For example, consider J2EE container-managed transactions. To use the container-
managed transaction service, you must tell the J2EE application server what
transaction services are needed. When you assemble enterprise beans into an
Enterprise JavaBeans (EJB) module, you define transaction boundaries by setting
each enterprise bean’s transaction attribute property. The IDE includes the value of
each enterprise bean’s transaction attribute property in the deployment descriptor.

 <web-uri>CatalogWebModule.war</web-uri>
 <context-root>catalog</context-root>
 </web>
 <alt-dd>CatalogWebModule.xml</alt-dd>
 </module>
</application>

CODE EXAMPLE 1-1 Deployment Descriptor for CatlaogApp (Continued)
Chapter 1 Assembly, Deployment, and Execution Basics 19

CODE EXAMPLE 1-2 shows the deployment descriptor for an EJB module named
CatalogData (the CatalogData module is one of the two modules listed in
CODE EXAMPLE 1-1). The tags with the transaction attribute values appear at the end
of the deployment descriptor.

CODE EXAMPLE 1-2 EJB Module Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <display-name>CatalogData</display-name>
 <enterprise-beans>
 <session>
 <display-name>CatalogManagerBean</display-name>
 <ejb-name>CatalogManagerBean</ejb-name>
 <home>CatalogBeans.CatalogManagerBeanHome</home>
 <remote>CatalogBeans.CatalogManagerBean</remote>
 <ejb-class>CatalogBeans.CatalogManagerBeanEJB</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ItemBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>CatalogBeans.ItemBeanLocalHome</local-home>
 <local>CatalogBeans.ItemBeanLocal</local>
 <ejb-link>ItemBean</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ItemDetailBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>CatalogBeans.ItemDetailBeanLocalHome</local-home>
 <local>CatalogBeans.ItemDetailBeanLocal</local>
 <ejb-link>ItemDetailBean</ejb-link>
 </ejb-local-ref>
 </session>
 <entity>
 <display-name>ItemBean</display-name>
 <ejb-name>ItemBean</ejb-name>
 <local-home>CatalogBeans.ItemBeanLocalHome</local-home>
 <local>CatalogBeans.ItemBeanLocal</local>
 <ejb-class>CatalogBeans.ItemBeanEJB</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <abstract-schema-name>ItemBean</abstract-schema-name>
 <cmp-field>
 <field-name>itemsku</field-name>
 </cmp-field>
20 Building J2EE Applications • December 2004

 <cmp-field>
 <field-name>itemname</field-name>
 </cmp-field>
 <primkey-field>itemsku</primkey-field>
 <query>
 <query-method>
 <method-name>findAll</method-name>
 <method-params/>
 </query-method>
 <ejb-ql>SELECT Object (I) FROM ItemBean AS I</ejb-ql>
 </query>
 </entity>
 <entity>
 <display-name>ItemDetailBean</display-name>
 <ejb-name>ItemDetailBean</ejb-name>
 <local-home>CatalogBeans.ItemDetailBeanLocalHome</local-home>
 <local>CatalogBeans.ItemDetailBeanLocal</local>
 <ejb-class>CatalogBeans.ItemDetailBeanEJB</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <abstract-schema-name>ItemDetailBean</abstract-schema-name>
 <cmp-field>
 <field-name>itemsku</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>description</field-name>
 </cmp-field>
 <primkey-field>itemsku</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <description>This value was set as a default by Sun Java Studio
Enterprise.</description>
 <method>
 <ejb-name>CatalogManagerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <description>This value was set as a default by Sun Java Studio
Enterprise.</description>
 <method>
 <ejb-name>ItemBean</ejb-name>
 <method-name>*</method-name>

CODE EXAMPLE 1-2 EJB Module Deployment Descriptor (Continued)
Chapter 1 Assembly, Deployment, and Execution Basics 21

When the application that contains this EJB module is deployed and executed, the
application server recognizes the transaction boundaries that are specified in the
deployment descriptor. The application server opens and commits transactions (or
rolls them back) at the specified points.

The other runtime services are handled much like container-managed transactions.
Each service has its own deployment descriptor tags that indicate exactly what
service is required. The IDE writes these tags for you automatically. You do not need
to learn the tags that are used in the deployment descriptors.

J2EE Applications Are Distributed
In addition to being modular and making use of the J2EE platform’s runtime
services, J2EE applications are distributed. Each module in an application can be
deployed to a different machine to create a distributed application. FIGURE 1-1 shows
an application that is composed of two modules. This application implements a
typical multitiered application architecture.

 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <description>This value was set as a default by Sun Java Studio
Enterprise.</description>
 <method>
 <ejb-name>ItemDetailBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

CODE EXAMPLE 1-2 EJB Module Deployment Descriptor (Continued)
22 Building J2EE Applications • December 2004

FIGURE 1-1 Multitiered Application Using J2EE Components and Modules

The web module is deployed on a machine that is dedicated to HTTP interactions
with users. The application server provides the HTTP connections. Using the HTTP
connections, the application server sends the web pages that are defined in the web
module to browsers running on user desktop machines.

The EJB module is deployed on another machine, which is dedicated to database
operations. The web module uses Java Remote Method Invocation (RMI) to
communicate with the EJB module. The application server provides the runtime
support for the Java RMI interaction.

The J2EE platform provides several technologies that support distributed
interactions between modules. The J2EE platform’s distributed technologies include
those listed as follows:

■ Web-based communications over HTTP connections. This technology is often
used between end users and applications.

■ Synchronous method invocation, using Java Remote Method Invocation for
Internet Inter-ORB Protocol (RMI-IIOP). This technology is used to call
enterprise bean methods.

■ Asynchronous messaging, using the Java Message Service (JMS). Messages can
be addressed to queues or to topics.

The J2EE platform provides different types of components that support different
types of interaction. For example, the J2EE platform uses message-driven enterprise
beans to support asynchronous messaging between modules.
Chapter 1 Assembly, Deployment, and Execution Basics 23

Deciding which technology to use for the distributed interactions in an application is
an application design task. Deciding which type of component to use is also a design
task. When you assemble an application, you must know what type of interaction
was designed and how to implement it. You implement interactions by performing
such assembly tasks as setting up EJB references to implement Java RMI interactions
and setting up queues to implement JMS messaging interactions.

The J2EE platform also supports interactions between J2EE modules and external
resources such as data sources. The J2EE technologies that support these interactions
include the following:

■ Java DataBase Connectivity (JDBC) technology

■ Container-managed persistence

When you assemble an application, make sure that any external resources that are
used by the application are identified. The development time mechanism for
identifying external resources is the deployment descriptor.

CODE EXAMPLE 1-3 shows the deployment descriptor for a web module named
CatalogWebModule. This module and an EJB module named CatalogData are
assembled into a J2EE application. The technology that is used for the interaction
between the two modules is Java RMI. The Java RMI interaction requires a remote
EJB reference. The remote EJB reference is declared near the end of
CODE EXAMPLE 1-3, with the <ejb-ref> tag.

CODE EXAMPLE 1-3 Web Module Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <servlet>
 <servlet-name>AllItemsServlet</servlet-name>
 <servlet-class>AllItemsServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>DetailServlet</servlet-name>
 <servlet-class>DetailServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>AllItemsServlet</servlet-name>
 <url-pattern>/servlet/AllItemsServlet</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>DetailServlet</servlet-name>
 <url-pattern>/servlet/DetailServlet</url-pattern>
 </servlet-mapping>
 <session-config>
24 Building J2EE Applications • December 2004

When you work in the Java Studio Enterprise IDE, you do not code the deployment
descriptors for your modules and applications. You work with the IDE’s visual
representations of components, modules, and applications, and the IDE prepares the
deployment descriptors for you.

Visual Representations of Modules and
Applications
Most explanations of J2EE assembly focus on the contents of deployment descriptor
files, such as the files shown in CODE EXAMPLE 1-1, CODE EXAMPLE 1-2, and
CODE EXAMPLE 1-3. These explanations tell you how to code the XML. The Java
Studio Enterprise IDE provides visual representations of components, modules, and
applications. Instead of coding deployment descriptor files, you work with the
Filesystems window nodes that represent components, modules, and applications.

 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>
 index.jsp
 </welcome-file>
 <welcome-file>
 index.html
 </welcome-file>
 <welcome-file>
 index.htm
 </welcome-file>
 </welcome-file-list>
 <ejb-ref>
 <ejb-ref-name>ejb/CatalogManagerBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>CatalogBeans.CatalogManagerBeanHome</home>
 <remote>CatalogBeans.CatalogManagerBean</remote>
 <ejb-link>CatalogManagerBean</ejb-link>
 </ejb-ref>
</web-app>

CODE EXAMPLE 1-3 Web Module Deployment Descriptor (Continued)
Chapter 1 Assembly, Deployment, and Execution Basics 25

When you assemble in the IDE, the Filesystems window creates a visual
representation of the module or application you are creating. The nodes that
represent applications have subnodes for their modules, and the nodes that
represent modules have subnodes for their components. While you work with the
visual representation, the IDE creates a matching deployment descriptor.

Each node has a property sheet that enables you to configure the component,
module, or application that the node represents. Most of the properties map to
deployment descriptor tags. (There are more properties than deployment descriptor
tags.) You configure a component, module, or application for deployment by setting
its properties and the IDE adds tags to its deployment descriptor. These tags identify
the services that are needed from the application server.

The sections that follow introduce the IDE’s visual representations of modules and
applications.

Web Modules
Web modules have a standard directory structure (for more information, see Building
Web Components), and this structure is represented in the Filesystems window.
FIGURE 1-2 shows a web module in the Filesystems window. The nodes and subnodes
of a web module represent the individual directories and files in the module.

The top-level node for a web module represents the web module’s top-level
directory. For the IDE to recognize a directory as a web module, you must mount the
directory as a Filesystems window file system. If you mount a web module directory
in the Filesystems window as a subdirectory of another file system, the IDE will not
recognize the web module directory as a web module.

The top-level node has a subnode for a WEB-INF directory. The WEB-INF directory
has subnodes for a lib subdirectory, which is used for web components in Java
Archive (JAR) file format, like third-party libraries and tag libraries, and a classes
subdirectory, which is used for any web components in .java file format, like
servlets. The WEB-INF node also has a web subnode that represents the module’s
deployment descriptor file. This directory structure is standard for a web module.

Web modules also have nodes for components and resources that are added by
developers. FIGURE 1-2 shows a node for an HTML page named index.html. The
classes directory contains nodes for two servlet classes, which are named
AllItemsServlet and ItemDetailServlet.
26 Building J2EE Applications • December 2004

FIGURE 1-2 Web Module Node and Subnodes

Notice that this representation of a web module corresponds to a specific directory
and its contents. The deployment descriptor is a file named web.xml, which is
represented in the Filesystems window by the web node. The web.xml file is part of
the web module’s source code.

EJB Modules
EJB modules are represented differently from web modules. The top-level node for
an EJB module does not represent a particular directory and its contents. Instead, the
EJB module node represents the module’s deployment descriptor. The EJB module
node functions as a list of enterprise beans. These enterprise beans can be in one
directory or in many directories in different file systems. The top-level node, which
represents the deployment descriptor, tracks where the source code for the
components is located.

Representing EJB modules with logical nodes enables you to combine enterprise
beans from different directories in one EJB module. It also keeps the configuration
information in the deployment descriptor separate from the source code. When you
deploy an EJB module, a deployment descriptor XML file is generated and the
source files for the components that are identified in the deployment descriptor are
compiled into an EJB JAR file.

FIGURE 1-3 shows an EJB module in the Filesystems window. This module has
subnodes for three enterprise beans that have been included in the module. Each of
these enterprise beans can be in a different directory. It is even possible for a single
enterprise bean to be in several different directories. For example, the source code
for the enterprise bean’s interfaces could be in one directory and the classes that
implement those interfaces could be in a different directory.

FIGURE 1-3 EJB Module Node and Subnodes
Chapter 1 Assembly, Deployment, and Execution Basics 27

J2EE Applications
J2EE applications are also represented by logical nodes. Like an EJB module node,
the top-level J2EE application node does not represent a single directory or file
system. Instead, the application node represents a deployment descriptor for the
application and functions as a list of the modules that make up the application. The
source code for these modules can be in more than one directory or file system.

The IDE maintains the application-level deployment descriptor separately from the
source code. You can include the same source code in more than one J2EE
application. The deployment process compiles all the source files and associates the
compiled versions with the deployment descriptor in an Enterprise Archive (EAR)
file.

FIGURE 1-4 shows a J2EE application in the Filesystems window. The modules shown
FIGURE 1-2 and FIGURE 1-3 have been added to the application. The modules are
represented by subnodes of the application node.

FIGURE 1-4 J2EE Application Node and Its Subnodes

Property Sheets
Every node that represents a J2EE module, application, or EJB has a property sheet.
The property sheet has properties that let you specify what services the module or
application needs from the application server. These properties correspond to the
tags that appear in the module or application deployment descriptor. When you set
the values of properties, you supply the information that will be used in the
deployment descriptor. You work with the property sheet instead of editing and
formatting the XML deployment descriptor with a text editor.

■ In the case of a web module, the deployment descriptor exists as a file, and the
file appears in the Filesystems window, which is illustrated in FIGURE 1-2. The
values that you specify in the web module deployment descriptor are associated
with the source files.
28 Building J2EE Applications • December 2004

■ In the case of an EJB module or a J2EE application, the deployment descriptor file
is not generated until you deploy the module or application. Deployment
compiles the source files and generates an archive file, an EJB JAR or an EAR file.
The deployment descriptor file is included in the archive. The deployment
descriptor is associated with a specific archived copy of the source files.

The property sheets can be viewed in a couple of ways:

■ Right-click the the desired node and select Properties.

■ Click Windows → Properties. A window displays property sheet information for
whichever node is highlighted.

The properties have property editors that help you select the correct values. When
you have the property sheet open, you open the editors by clicking the ellipsis (…)
button for individual properties. Procedures for using the property editors vary
widely—some let you browse for IDE nodes, some let you open another level of
dialog, and so on. For the more complex property editors, online help is available.

The property sheets have several sections. The section labeled Properties lists the
standard properties defined by the J2EE specifications. Other sections have the
names of application server products. These sections collect additional information
that is not defined in the J2EE specifications but is required by a specific application
server product. These sections are the property sheet’s server-specific sections. When
you assemble a module or application, work with the standard properties and the
server-specific properties for the server product that you are using.

Deployment Basics
Deployment is the process of compiling the source files that make up a J2EE
application and installing the compiled files into directories that are managed by a
J2EE application server. Deployment is carried out by the application server or by
software distributed with the server, such as a deployment tool or an administration
tool.

The IDE communicates with application servers. It provides commands that deploy
modules or applications to an application server and executes the modules or
applications. You can deploy and execute without leaving the IDE. Deployment is
performed by the plug-in or the application server software, and execution happens
in the application server’s environment, but you manage deployment and execution
in the IDE.

After you execute an application and test it, you can modify the source code,
redeploy the application, and execute the new version. You can continue this process
as long as necessary.
Chapter 1 Assembly, Deployment, and Execution Basics 29

The actual procedure for deploying an application that you have assembled is
simple. Right-click the application node and choose the Deploy command. Before
you deploy, however, the IDE must be set up to work with an application server. The
steps for setting up an application server are summarized in the following list:

Install the application server.

1. Install the server plug-in that enables communication between the IDE and the
application server. The plug-in for Sun Java System Application Server Standard
Edition 7 2004Q2 is installed with the IDE. Plug-ins are available for other widely
used application server products. Installing a plug-in creates application server
nodes in the Runtime window, as shown in FIGURE 1-5. (To learn more about the
plug-in, see Appendix A.)

FIGURE 1-5 Runtime window

2. Use the menu commands of the application server nodes to establish
communications between the IDE and the application server.

3. Use the application’s property sheet to specify the application server to which
your application will be deployed.
30 Building J2EE Applications • December 2004

4. Right-click the application node and choose the Deploy command. The
deployment software reads the deployment descriptor represented by the
application node and deploys the source files that are listed in the deployment
descriptor.

Most installations of the IDE include Sun Java System Application Server Standard
Edition 7 2004Q2, and the installer automatically configures the IDE to work with
the application server. The Sun ONE Application Server 7 Getting Started Guide
explains this in detail.

Execution Basics
After you deploy an application, you can execute the application. The IDE associates
the Filesystems node that represents the application with the deployed copy of the
application. You can right-click the node and choose the Execute command, and the
IDE instructs the application server to execute the deployed copy of the application.

Many IDE nodes, including the J2EE application nodes, have Execute commands.
When you right-click a node and choose Execute, the IDE, if necessary, deploys the
application and then executes it. The results of the Execute command depend on the
type of application. For example, if the application includes a web module, the
Execute command will start a web browser and open the application’s URL.

You can also execute deployed applications entirely in the application server’s
environment, without using the IDE. For example, to execute a deployed application
that includes a web module, start a web browser and open one of the application’s
web pages.

Using This Book
The Java Community Process, supported by Sun Microsystems, Inc., has evolved
standards for designing distributed, enterprise applications with J2EE components.
The J2EE platform documentation listed in “Before You Read This Book” on page 10
covers these standards for application design and architecture.
Chapter 1 Assembly, Deployment, and Execution Basics 31

This book is about how you implement these architectures with the Java Studio
Enterprise IDE. It is about using the IDE to combine components and create J2EE
modules, making sure that all of the components interact in the way that the
application design specifies. It is also about combining J2EE modules to create J2EE
applications, making sure that the distributed interactions between the modules
function in the way that the application design requires.

This book covers assembly by presenting several examples, or scenarios. Each
scenario presents a realistic combination of components or modules and shows you
how to assemble them into a module or an application. The business problems
described in the scenarios are realistic, but this book is not meant to be an exhaustive
guide to designing J2EE applications.

The purpose of these scenarios is to show you how to program specific types of
interactions between components and modules. Once you have decided on your
application design, you can use the scenarios in this book to help you program the
interactions between the components and modules in your application.

You probably will not find everything you need in a single scenario because each
scenario focuses on one or two types of J2EE interactions, and your real-world J2EE
application can include dozens or hundreds of components and interactions. For
each type of interaction, however, you should find an example in this book.

For example, to program one common type of J2EE application with a web module
and an EJB module, you can look at Chapter 2, which covers assembling a web
module, Chapter 3, which covers assembling an EJB module, and Chapter 4, which
covers assembling a web module and an EJB module into a J2EE application. Then,
to see how you set up transactions, look at Chapter 6, and for security, look at
Chapter 7.

This book is your guide to developing distributed enterprise applications with the
Java Studio Enterprise development environment. It shows you how to develop J2EE
modules, how to program your modules for different types of interactions, and how
to request enterprise services, such as security checking and transaction
management, from the J2EE platform.
32 Building J2EE Applications • December 2004

CHAPTER 2

Scenario: A Web Module

FIGURE 2-1 shows a web module and the interactions in which it participates. This
module is part of a Java 2 Platform, Enterprise Edition (J2EE platform) application,
and the interactions shown in the figure are typical for web modules in J2EE
applications. The web module interacts with users over HTTP connections
(represented in the figure by the arrows labeled #1) and with middle-tier services
provided by Enterprise JavaBeans (EJB) modules (represented by the arrows
labeled #3). Inside the web module, the web components interact with each other
(represented by the arrows labeled #2). This chapter describes this web module and
explains how to program the interactions shown in FIGURE 2-1.

FIGURE 2-1 The CatalogWebModule Web Module
33

The Interactions in This Module
This scenario describes one possible use of the web module and interactions that are
illustrated in FIGURE 2-1. In this scenario, the module is the front end for a J2EE
application that supports a retail web site. The web module contains the web pages
that are displayed to online shoppers who visit the site. The module also processes
shopper input on those pages. Displaying pages and processing input are typical
tasks for a web module in a J2EE application.

From the shopper’s point of view, this application is a series of web pages. Shoppers
use web browsers to view the application’s home page. Shoppers also provide input
with the text fields, buttons, and other controls that appear on the web pages. From
the developer’s point of view, the application is a set of web components that receive
HTTP requests and return HTTP responses.

The web module in this scenario contains only a few components and processes only
two different requests. Although simple, these components and requests show you
how web components provide the necessary interaction between users, web module,
and EJB module. The specific interactions that are covered in this scenario are
outlined in the following list:

1. An online shopper opens a connection to the application by starting a web
browser and opening the application’s root URL. This action opens the
application’s home page. A real-world shopping site’s home page displays many
options, including requests for displaying items by category, requests for keyword
search, requests for information about live customer service, and so on. In this
simple example, the home page shows only one option, which is a link to another
page that displays the entire catalog.

2. The shopper clicks the link. This action generates a request that is processed by
the servlet that is named in the request, AllItemsServlet. AllItemsServlet
processes the request by calling a business method of an EJB module, the
getAllItems method, which returns the data.

3. AllItemsServlet prepares the data that is returned from the EJB module for
display in the shopper’s browser. The servlet combines the individual field values
that are returned from the EJB module with HTML tags that format the field
values. AllItemsServlet writes this combination of field values and HTML
tags to an output stream that is returned to the user’s web browser. The shopper’s
web browser processes the HTML output and displays the catalog. In the catalog
display, each item name is displayed as an HTML link to detailed information
about the item.
34 Building J2EE Applications • December 2004

4. The shopper browses the displayed catalog and clicks one of the links. This
request is processed by another servlet, DetailServlet. DetailServlet calls
another business method of the EJB module, getOneItemDetail, for the item
detail.

5. DetailServlet processes the data returned from the EJB module for display in
the shopper’s web browser. Like AllItemsServlet, DetailServlet prepares
an output stream that combines field values and HTML tags. The shopper’s web
browser processes this output stream and displays it as another web page.

The HTML outputs that are written by AllItemsServlet and DetailServlet
contain only text. Although simple, these examples show you how web components
can process HTTP requests by making remote method calls to obtain data from an
EJB module and then writing the data into an HTML output stream. An experienced
web designer or web programmer can use this type of operation to write much more
complex output.

The interaction between the web module and the EJB module is implemented by
Java Remote Method Invocation (RMI) method calls. Java RMI is required by the
design of the EJB module. For more information about the design of the EJB module,
see “The Interactions in This Module” on page 56.

For instructions on creating the web components, writing enterprise business logic
in web components, and similar tasks, see Building Web Components.
Chapter 2 Scenario: A Web Module 35

Programming This Module
TABLE 2-1 summarizes the programming that is required to create the web module
that is described in the preceding section and illustrated in FIGURE 2-1.

The sections that follow show you how to perform many of these programming
tasks. The method signatures specify the inputs and outputs of each interaction. The
procedure sections show you how to connect these inputs and outputs to other
components and other modules. Instructions for creating a web module or adding
the web components to the module are not included. To learn about these tasks, see
the online help or Building Web Components.

Creating the Welcome Page
The design for the retail web site calls for shoppers to begin their interaction with
the site at a home page. The home page, a typical web site feature, provides an entry
point for users that identifies the site and presents the options that are available to
them. Shoppers view the home page and choose the features they want to use.

TABLE 2-1 Programming Required for This Scenario

Application Element Programming Required

Application server None.

Web module Create the web module.
Create the welcome page, index.html. This page includes an
HTML link that executes the servlet AllItemsServlet.
Create two servlets, AllItemsServlet and ItemDetailServlet.
Code the processRequest methods that process HTTP requests
and generate HTTP responses. These processRequest methods:
1. Perform a Java Naming and Directory Interface (JNDI) lookup to

call EJB module business methods.
2. Write the data obtained from the EJB module into the servlet’s

response.
The HTML page output by AllItemsServlet contains an HTML
link to ItemDetailServlet.
Set up URL patterns for each servlet.

J2EE application For instructions on adding a web module to a J2EE application, see
Chapter 4.
36 Building J2EE Applications • December 2004

The shopper’s first action is to start a browser and open the URL for the shopping
site. Inside the web module, this URL has been mapped to the application’s context
root. If you want the application to display the home page whenever users open the
site’s URL, identify the home page as the welcome page.

Creating the HTML Page

In the Filesystems window’s hierarchy of nodes, the HTML file for the welcome
page must be at the same level as the web module’s WEB_INF node. For an example,
see FIGURE 1-2.

To create an HTML file at the correct level, use the following procedure:

1. Right-click the node for the file system that contains the green WEB-INF node,
and choose New → All Templates.

The New wizard’s Choose Template page opens.

2. Choose the HTML File template.

a. In the Select a Template field, expand the JSPs & Servlets node and select the
HTML File node.

b. Click Next.

The New wizard’s New Object Name page opens.

3. In the name field, type index. Click Finish.

The integrated development environment (IDE) creates the new HTML file and
represents it in the Filesystems window with a new node named index. The Source
Editor opens with the cursor in the new file.

4. Type the HTML code for your welcome page.

CODE EXAMPLE 2-1 shows the HTML code for the simple welcome page that is used
in this scenario.

CODE EXAMPLE 2-1 Welcome Page for the Catalog Display Module

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
 <head>
 <title>Online Catalog</title>
 </head>
 <body>
<h2>
Inventory List Application
</h2>

Chapter 2 Scenario: A Web Module 37

This welcome page presents only one option to users, which is a text link named
Display the Catalog. This link uses a URL pattern to specify one of the servlets
in the module, AllItemsServlet. When a user clicks this link, the browser sends
another request to the web module. The request is processed by executing
AllItemsServlet. The next page the user sees is the page that is output by
AllItemsServlet. To see the page that is output by AllItemsServlet, refer to
CODE EXAMPLE 2-2.

The welcome page for a real-world web site includes many links to different
functions, but each link follows the principle that is demonstrated in this example.
Pages that are displayed to the user contain links or actions that generate HTTP
requests. Each request is processed by some component in the web module, and the
web module responds by writing out another page for the user to see.

In this example, the link specifies a servlet, but not a method of the servlet. When a
request specifies only a servlet name, the default action is to execute the servlet’s
doGet method. You can also write links that specify one of the servlet’s other
methods, such as doPost. For more information on servlet methods, see Building
Web Components.

Identifying Your Page as the Module’s Welcome Page

When you create a web module in the IDE, the module has a Welcome Files property
that lists the default names for the welcome page files. FIGURE 2-2 shows the
Welcome Files property editor with the default names. When a user accesses the root
URL for the application, the application server searches the module directory for
files with these names. The first file found is displayed as the welcome page.

The easiest way to create a welcome file for a module is to create a file with one of
these default names. In this scenario, for example, you created a file named
index.html.

<p>
Display the Catalog

</body>
</html>

CODE EXAMPLE 2-1 Welcome Page for the Catalog Display Module (Continued)
38 Building J2EE Applications • December 2004

FIGURE 2-2 Welcome Files Property Editor

To use a file with a different name for the module’s welcome page, use the following
procedure:

1. In the Filesystems window, right-click the web node and select Properties.

The property sheet opens.

2. In the Deployment section, click the Welcome Files ellipsis (…) button.

The Welcome Files property editor displays.

3. Enter the name of the welcome page in the Item field and click Add. Click OK.

Programming the Servlet Methods
The servlets in this scenario obtain data from the EJB module by calling enterprise
bean methods. There are two programming tasks for these method calls: coding the
calling method and setting up a resource references, in the calling servlet, for the
called enterprise bean. Coding the method body code is covered first.

Note – The servlets in this example are created with the IDE servlet template.
Servlets created with this template are HttpServlets, and they contain methods
named processRequest. Both the doGet and doPost methods call
processRequest, so you add the code that processes a request to the
processRequest method.
Chapter 2 Scenario: A Web Module 39

The Method Body

CODE EXAMPLE 2-2 shows the implementation of the processRequest method in
AllItemsServlet. This method executes when a user clicks the Display the
Catalog link that appears on the welcome page.

The URL pattern on the welcome page names the servlet AllItemsServlet, but
the URL pattern does not specify a method. In this case, the application server
performs the default action and executes the servlet’s doGet method. The doGet
method calls the processRequest method.

CODE EXAMPLE 2-2 shows you how AllItemsServlet obtains the catalog data from
the EJB module and displays it to the user. There are three steps:

1. AllItemsServlet uses a JNDI lookup to obtain a remote reference to a session
enterprise bean in the CatalogData EJB module. For more information about the
CatalogData module, see Chapter 3.

2. AllItemsServlet calls the getAllItems method, a business method of the
session bean.

3. The servlet writes the data that is returned by the remote method call into the
HTML output stream. The outlet stream is returned to the user’s browser
window.

CODE EXAMPLE 2-2 The processRequest Method for the Servlet AllItemsServlet

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 /* output your page here */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>AllItemsServlet</title>");
 out.println("</head>");
 out.println("<body>");

 out.println("<h2>The Inventory List</h2>");

 out.println("<table>");
 out.println("<tr>");
 out.println("<td>Item</td>");
 out.println("<td>Item SKU</td>");
 out.println("<td>Detail</td>");
 out.println("</tr>");
40 Building J2EE Applications • December 2004

 CatalogBeans.CatalogManagerBeanHome catHome;
 CatalogBeans.CatalogManagerBean catRemote;

 try {
 InitialContext ic = new InitialContext();
 Object objref = ic.lookup("java:comp/env/ejb/CatalogManagerBean");
 catHome = (CatalogBeans.CatalogManagerBeanHome) objref;
 catRemote = catHome.create();

 java.util.Vector allItems = catRemote.getAllItems();

 Iterator i = allItems.iterator();
 while (i.hasNext()) {

 CatalogBeans.iDetail itemDetail = (CatalogBeans.iDetail)i.next();
 out.println("<tr>" +
 "<td>" +
 itemDetail.getItemname() + "</td>" +

 "<td>" +
 itemDetail.getItemsku() + "</td>" +

 "<td>" +
 "<a href=\"" + response.encodeURL("itemDetail?sku=" +
 itemDetail.getItemsku()) +
 "\"> " +
 "Get Item Detail" +
 "" + "</td>" + "</tr>");
 }
 }
 catch (javax.naming.NamingException nE) {
 System.out.println("Naming Exception on Lookup" + nE.toString());
 }
 catch (javax.ejb.CreateException cE) {
 System.out.println("CreateException" + cE.toString());
 }
 catch (java.rmi.RemoteException rE) {
 System.out.println("RemoteException" + rE.toString());
 }
 catch (Exception e) {
 System.out.println(e.toString());
 }

 out.println("</table>");

 out.println("</body>");

CODE EXAMPLE 2-2 The processRequest Method for the Servlet AllItemsServlet (Continued)
Chapter 2 Scenario: A Web Module 41

The lookup statement specifies CatalogManagerBean, but this string is actually
the name of the reference, not the enterprise bean that is referenced. The enterprise
bean’s name is often used as the reference name to make it easier to remember which
bean is meant. The referenced enterprise bean is actually specified in the resource
reference, which is covered in the next section.

The EJB Resource References

A web component, like AllItemsServlet, that calls methods of an enterprise bean
in an EJB module does so by means of EJB references. The two parts of an EJB
reference are as follows:

■ JNDI lookup code, which uses the JNDI naming facility to obtain a remote
reference to a named enterprise bean.

■ A resource reference, which is part of the deployment descriptor, tells the
application server to which specific bean the lookup code refers.

In this scenario, the lookup code is in the processRequest method of
AllItemsServlet (see CODE EXAMPLE 2-2). You can compile this code, but without
the resource reference, it cannot return a reference at runtime. The resource reference
maps the reference name that is used in the lookup statement to the actual name of
an enterprise bean.

To set up an EJB resource reference for a web module, use the following procedure:

1. Right-click the web module’s web node and choose Properties. In the References
section, click the EJB References ellipsis (…) button.

The EJB references property editor opens.

2. Click the Add button.

The Add EJB Reference dialog opens. Use this dialog to set up the resource reference.

 out.println("</html>");

 out.close();
}

CODE EXAMPLE 2-2 The processRequest Method for the Servlet AllItemsServlet (Continued)
42 Building J2EE Applications • December 2004

3. To set up the reference, type the resource reference name that is used in the
lookup statement and the names of the home and remote interfaces that are used
in the method calls.

FIGURE 2-3 shows the Add EJB Reference dialog box with these values in the fields.
For the reference to work at runtime and the JNDI lookup to return a remote
reference to an enterprise bean, the reference must be linked to a specific enterprise
bean in the same application. The reference must be linked before you deploy and
execute the application, but it need not be done now.

At this point in development, you can leave the reference unlinked and link it later,
after you assemble the web module into a J2EE application. In some circumstances,
you might choose to resolve the reference at this stage of development. Consider the
following conditions:

■ If the enterprise bean is not in your development environment, you cannot link
the reference. Supply the names of the interfaces and click OK. You cannot
compile the JNDI lookup code unless you have copies of the interfaces mounted
in your development environment.

FIGURE 2-3 shows the Add EJB Reference dialog box setting up an unlinked
reference. The Home Interface and Remote Interface are specified, but the
Referenced EJB Name field is empty. The reference will be linked later on the
application property sheet.

FIGURE 2-3 EJB Reference Property Editor With Unlinked Reference

■ If the enterprise bean is available in your development environment, you can link
the reference now. Click the Browse button next to the Referenced EJB Name field.
Use the dialog box that appears to select the called enterprise bean. Click OK.
Chapter 2 Scenario: A Web Module 43

FIGURE 2-4 shows the reference named ejb/CatalogManagerBean linked to
CatalogManagerBean.

FIGURE 2-4 EJB Reference Property Editor With Linked Reference

Even if the called enterprise bean is available, you might choose not to link the
reference now. There are many reasons to wait. For example, if there is any chance
that your web component will be used in more than one application, you do not
want to link the reference on the web module’s property sheet. A developer who
reuses the web module can relink the reference to some other enterprise bean that
implements the same interfaces. Relinking the reference changes the value in the
web.xml deployment descriptor file and affects every use of the source code.

In this scenario, the reference is left unlinked, as shown in FIGURE 2-3. The reference
is linked after the J2EE application is created, on the application node’s property
sheet. See “Linking the EJB Reference” on page 79.

Mapping URLs to the Servlets
The link you set up on the welcome page is formatted with the following HTML tag:

Display the Catalog
44 Building J2EE Applications • December 2004

When a shopper clicks this link, the application server appends the URL pattern in
the HTML tag to a URL path and executes the resulting URL. For the link to work
properly, the URL that is generated by the application server must map to the servlet
that you want to execute. The next section explains how URLs are mapped to
servlets.

Note – For more information on creating a servlet, refer to the Sun Java Studio
Enterprise 7 Web Application Framework Developer’s Guide.

Understanding Servlet Mappings

In a deployed web module, the URLs for servlets and other web resources in the
web module are the result of appending names to a URL path. For modules that are
deployed to the Sun Java System Application Server Standard Edition 7, the URL
path has this general form:

http://hostname:port/web-context/URL-pattern

The elements in this path are determined as follows:

■ The host name is the name of the machine that the application server is running
on, and the port is the port that is specified for that server instance’s HTTP
requests. The port number is assigned when the application server is installed.

■ The web context is a string that you specify as a property of the web module after
you add the module to a J2EE application. The web context qualifies all of the
web resources in the module.

■ The URL pattern is a string that identifies a specific servlet or JavaServer Pages
(JSP) page. You set up the URL pattern on the web module property sheet. You
can do this before you assemble the web module into a J2EE application.

In other words, the URL patterns that you assign in your web module are relative to
a web context that you will assign later when you add the module to a J2EE
application. The URLs in this scenario use a format that makes them relative to the
web context. Whatever web context you supply when you assemble the application,
these links will work properly when the application executes. For information on
setting the web context, see “Setting the Web Context for the Web Module” on
page 77.
Chapter 2 Scenario: A Web Module 45

Examining Default Servlet Mappings

When you create a servlet, by default, the Servlet wizard uses the class name that
you supply on the first page of the Servlet wizard for the servlet name and maps the
servlet name to a URL pattern that includes the servlet name. FIGURE 2-5 shows the
Servlet Mappings property editor for the web module with the default settings for
AllItemsServlet.

FIGURE 2-5 Servlet Mappings Property Editor

If you deploy the web module with this servlet mapping, AllItemsServlet is
mapped to the following URL:

http://hostname:port/web-context/servlet/AllItemsServlet

Editing Servlet Mappings

If you want to map a different URL to the servlet, use the Servlet Mappings property
editor to edit the mapping. In this scenario, you change the URL pattern from the
default value to a more meaningful value.

To edit the servlet mapping, use the following procedure:

1. Right-click the web module’s web node and choose Properties. In the Deployment
section, click the Servlet Mappings ellipsis (…) button.

The Servlet Mappings property editor opens. The Servlet Mappings property editor
lists all servlets in the module and any mappings that are set up for them.

2. Select the current mapping for allItemsServlet and click the Edit button.

The Edit Servlet Mapping dialog box opens.
46 Building J2EE Applications • December 2004

3. In the URL Pattern field, type /allItems and Click OK.

FIGURE 2-6 shows the Servlet Mappings property editor with new mappings for
AllItemsServlet and ItemDetailServlet.

FIGURE 2-6 Servlet Mappings Property Editor

After you edit the servlet mappings, AllItemsServlet can be executed with the
following URL:

http://hostname:port/web-context/allItems

Notice that the new URL pattern is the string you used in the HTML tag that creates
the link on the welcome page (see CODE EXAMPLE 2-1). Clicking the link now
executes AllItemsServlet.

Other Assembly Tasks
The preceding sections cover the assembly tasks that are required to assemble
CatalogWebModule. This section covers web module assembly tasks that are not
required by the CatalogWebModule scenario.

Your web modules might require you to perform some of these other assembly tasks.
This section covers several web module assembly tasks that you are likely to
perform.

Setting Up Error Pages

If you want to specify error pages for a web module, you must identify the error
pages in the module’s deployment descriptor within the Error Pages property editor.
Chapter 2 Scenario: A Web Module 47

To set up error pages for your web module, use the following procedure:

1. Right-click the web node and choose Properties. In the Deployment section, click
the Error Pages ellipsis (…) button.

The Error Pages property editor opens.

2. Identify an error by HTTP error code or Java exception class and map it to a
specific error page. Click Add.

You can identify errors either by an HTTP error code or a Java exception class.
Notice that the editor has two Add buttons, one for each category of error. For either
type, you specify the error and map it to a page. FIGURE 2-7 shows the property
editor after HTTP error code 404 has been mapped to a specific error page.

FIGURE 2-7 Error Pages Property Editor

Setting Up JSP Pages

If the web module you are assembling contains JSP page components, you have
several ways to execute those components. If you create a new JSP page named
myJsp, you can execute it in any of the following ways.
48 Building J2EE Applications • December 2004

Executing JSP Pages With HTML Links

If you want to execute a JSP page from an HTML link, set up the link like the
following example:

Execute myJsp

Executing JSP Pages Programmatically

If you create a JSP page with the IDE, no deployment descriptor entry is created for
the JSP page. If your business logic accesses the JSP page programmatically, you do
not need the deployment descriptor entry. For example, the following code is from a
servlet that executes myJsp. Notice that the code identifies the JSP page to be
executed by supplying its actual file name (myJsp.jsp).

Using URL to JSP Mappings

The preceding examples execute a JSP page by specifying its actual file name,
myJsp.jsp. You can also map a URL pattern to a JSP page and then execute the
page by referring to its URL pattern. This is a two-step process. You first set up a
servlet name for the JSP file.

To set up a URL mapping for a JSP page, use the following procedure:

1. Right-click the web node and choose Properties. In the Deployment section, click
the JSP Files ellipsis (…) button.

The JSP Files property editor opens.

2. Click the Add button.

The Add JSP File dialog box opens.

a. In the JSP File field, type the file name of the JSP file you are setting up.

b. In the Servlet Name field, type the servlet name you are mapping to the JSP
file.

CODE EXAMPLE 2-3 Code for Executing a JSP Page Programmatically

...
response.setContentType("text/html");
 RequestDispatcher dispatcher;
 dispatcher = getServletContext().getRequestDispatcher ("/myJsp.jsp");
 dispatcher.include(request, response);
...
Chapter 2 Scenario: A Web Module 49

c. Click OK.

The Add JSP File dialog box closes.

FIGURE 2-8 shows the JSP Files property editor after the servlet name
itemDetailPage has been mapped to the file myJsp.jsp.

FIGURE 2-8 JSP Files Property Editor

3. Click OK again to close the JSP Files property editor and return to the property
sheet.

4. Still in the property sheet, click the Servlet Mappings ellipsis (…) button.

The Servlet Mappings property editor opens.

5. Click the Add button.

The Add Servlet Mapping dialog box opens.

6. In the Add Servlet Mapping dialog box, map a URL pattern to the new servlet
name.

a. In the Servlet Name field, type the servlet name you mapped to the JSP file.

b. In the URL Pattern field, type the URL pattern you are mapping to the servlet
name and, ultimately, to the JSP file.

c. Click OK.

The Add Servlet Mapping dialog box closes.

FIGURE 2-9 shows the Servlet Mappings property editor with the URL pattern
ItemDetail mapped to the servlet name ItemDetailPage. The servlet name
ItemDetailPage is already mapped to the JSP file myJsp.jsp.
50 Building J2EE Applications • December 2004

FIGURE 2-9 Servlet Mappings Property Editor

d. Click OK again to close the Servlet Mappings property editor.

After this mapping, the JSP page that is defined by the file myJSP.jsp can be
executed with the following URL:

http://hostname:port/web-context/ItemDetail

Setting Up Resource Environment Entry References

Environment entries are data that you store in the EJB module deployment
descriptor of your web service. Environment entries are available to your web
service for use as parameters to the methods that create or find target objects.
Because environment entries are stored in the deployment descriptor, they can be
configured at deployment time to values appropriate for the runtime environment.
For more information on environment entries, refer to Building Web Services.

There are two parts to an environment entry:

■ A JNDI lookup. The web component that uses the environment entry uses the
JNDI naming facility to look up the entry’s value.

■ A resource environment reference in the web module’s deployment descriptor.
The resource environment reference declares the reference to the application
server. The deployment descriptor also contains a value for the environment
entry.
Chapter 2 Scenario: A Web Module 51

JNDI Lookup for Resource Environment Entry References

A web component that uses the value of an environment entry needs lookup code
like the code in CODE EXAMPLE 2-4.

The comments in the code explain what each line does.

Resource Reference for Environment Entries

To set up a resource reference for an environment entry, use the following procedure:

1. Right-click the web node and choose Properties. In the References section, click
the Environment Entries ellipsis (…) button.

The Environment Entries property editor opens.

2. Click the Add button.

The Add Environment Entry dialog box opens.

3. Declare the environment entry reference.

a. In the Name field, type the reference name that is used in the lookup
statement.

b. In the Type field, select the data type of the environment entry.

c. In the Value field, type an initial value for the environment entry.

FIGURE 2-10 shows the Add Environment Entry dialog box with values that match
the lookup statement in CODE EXAMPLE 2-4.

CODE EXAMPLE 2-4 Lookup Statement for an Environment Entry

try {
// Obtain Initial Context--Opens Communication With JNDI Naming:
Context ic = new InitialContext();
// Request Lookup of Environment Entry Named “Cache Size”:
Integer cacheSize = (Integer)
 ic.lookup(“java:comp/env/NumberOfRecordsCached“);

}
catch(Exception e) {

System.out.println(e.toString());
e.printStackTrace();
return;

}
52 Building J2EE Applications • December 2004

FIGURE 2-10 Add Environment Entry Dialog Box

4. Click OK to close the dialog box and process your environment entry definition.

5. Click OK again to close the Environment Entries property editor.
Chapter 2 Scenario: A Web Module 53

54 Building J2EE Applications • December 2004

CHAPTER 3

Scenario: An EJB Module

FIGURE 3-1 shows an Enterprise JavaBeans (EJB) module and the interactions in
which it participates. This module is part of a Java 2 Platform, Enterprise Edition
(J2EE platform) application, and the interactions in the figure are typical for EJB
modules in J2EE applications. The EJB module interacts with a client module (this
interaction is represented in the figure by arrow labeled #1). The EJB module also
interacts with an external resource, in this case a relational database management
system (this interaction is represented by the arrows labeled #3). This EJB module,
like most EJB modules, contains more than one enterprise bean, and the enterprise
beans interact with each other (these interactions are represented by the arrows
labeled #2).

FIGURE 3-1 The CatalogData EJB Module
55

The Interactions in This Module
This scenario describes one possible use of the EJB module and the interactions that
are illustrated in FIGURE 3-1. In this scenario, the EJB module is the back end for a
J2EE application that supports a retail web site. The EJB module contains a set of
enterprise beans that interact with the catalog database. The web module that serves
as the application’s front end calls methods of this EJB module to get the data that it
displays to users. Handling method calls and interacting with a database are typical
tasks for an EJB module in a J2EE application.

The web module in the application functions as a client of the CatalogData EJB
module. Shoppers use web pages that are generated by the web module to request
the data they want to view. The web module is responsible for calling the
CatalogData module to obtain the data and then formatting the data and
displaying it to the shoppers.

The EJB module is responsible for getting the requested data from the database and
passing it to the client module. The EJB module must be able to process requests for
data and then return the correct data. The EJB module in this scenario contains only
three enterprise beans and provides only two business methods. The business
methods process only two types of requests. Although simple, these components
and interactions show you how EJB modules provide the necessary interaction
between client modules and databases. The specific interactions that are covered in
this scenario are outlined in the following list:

1. The client module requests some data by calling a method of the CatalogData
EJB module. In this simple scenario, the client can request either a list of all the
items in the catalog or detailed information about one item.

2. The catalog data EJB module processes the request by generating a database
query that will get the requested data.

3. The catalog data EJB module executes the query and returns the data to the client
module. The client module then formats the data and displays it to the user.

The interactions between the client module and the CatalogData EJB module
determine the J2EE technologies you choose to implement them and the internal
architecture of the CatalogData EJB module. Consider the following points:

■ The interaction between client modules and the CatalogData module is
synchronous. Online shoppers who ask to see the catalog wait for the application
to display it.
56 Building J2EE Applications • December 2004

■ The internal design of the EJB module is determined by the session-oriented
nature of the interactions between the client modules and the CatalogData EJB
module. An online shopper can look at a display of the whole catalog and then
request detail for a single item. With multiple shoppers looking at the catalog
simultaneously, the EJB module must match requests to user sessions and return
the correct data to each session. To fulfill this need, the module has a single
stateful session enterprise bean. The session bean manages all requests that are
submitted by client modules. It handles the requests by calling methods of the
entity beans, which generate database queries.

This architecture is common for an EJB module. (For more information about
modelling sessions with session beans, see Building Enterprise JavaBeans Components.)

For generating the database queries, the J2EE platform provides a type of enterprise
bean known as the entity enterprise bean. Entity beans model database tables, and
they have methods that execute queries. In this scenario, the catalog data is stored in
two tables, and the catalog data module has two entity beans. Each entity bean
models one of the tables. The entity beans handle connections, query language, and
other aspects of the CatalogData EJB module’s interaction with the database.
Chapter 3 Scenario: An EJB Module 57

Programming This Module
TABLE 3-1 summarizes the programming that is required to create the CatalogData
EJB module that is described in the preceding section and illustrated in FIGURE 3-1.

The sections that follow show you how to perform many of these programming
tasks. The method signatures in the interfaces specify the inputs and outputs of each
interaction. The procedure sections show you how to connect these inputs and
outputs to other components, other modules, and the catalog database. Instructions
for creating the enterprise beans, adding business methods, and implementing the
business methods with Java code are not included. To learn about these tasks, see the
online help or Building Enterprise JavaBeans Components.

TABLE 3-1 Programming Required for This Scenario

Application
Element Programming Required

Application
server

None.

EJB module Create a session enterprise bean (CatalogManagerBean) with remote
interfaces. The remote interfaces are appropriate for methods that are
called remotely by other modules. Add business methods to the session
bean that return catalog data to the caller. One of these business
methods returns all items in the catalog. The other returns detail for any
item specified by the client.
Create two entity enterprise beans (ItemBean and ItemDetailBean)
to represent the two database tables that contain the catalog data. Create
local interfaces for these entity enterprise beans. Local interfaces are
appropriate for methods that are called by other enterprise beans in the
same module. Add a method to ItemBean that returns all items in the
catalog. ItemDetailBean has an automatically generated
findByPrimayKey method that returns detail on a specific item. The
session bean calls these methods to obtain the catalog data.
Create two transfer classes, one for Item data, one for ItemDetail data.
The CatalogData EJB module returns instances of these classes to the
caller.
Create the CatalogData EJB module, which is represented in the
Filesystems window by an EJB module node. Add the three enterprise
beans to the module. Use the CatalogData EJB module’s property
sheet to specify the data source for the catalog data.

J2EE application To see how you add an EJB module to a J2EE application, see Chapter 4.
58 Building J2EE Applications • December 2004

Creating Remote Interfaces for the Session
Enterprise Bean
The design for the CatalogData EJB module calls for client modules to get catalog
data by making remote calls to methods of the stateful session bean. To make the
remote calls possible, the session bean must have remote interfaces. You generate the
remote interfaces when you create the session bean with the Session Bean wizard.
CODE EXAMPLE 3-1 shows the completed home and remote interfaces for the stateful
session bean.

These interfaces define two interactions between the CatalogData EJB module and
client modules. Clients can get a list of all the items that are in the catalog by calling
the getAllItems method. Clients can also specify an item and get detailed
information for it by calling the getOneItemDetail method.

Most real-world shopping applications provide more functionality than this
example. These real-world applications have more than two business methods in
their interfaces.

When an EJB module returns references to entity bean instances, the application
server tracks any changes that the client module makes to the entity bean instances
and automatically generates database updates. Passing remote references to clients
consumes network resources and should only be done when the client can update
the data. In this scenario, the client only displays the data, and there is no need to
use this feature. The CatalogData module returns instances of ordinary Java
classes. These classes, known as transfer classes, have the same fields as the entity
beans. The CatalogData module copies data from entity bean instances to transfer
class instances and returns the transfer class instances to the client for display. For
more information on using transfer classes with entity enterprise beans, see Building
Enterprise JavaBeans Components.

CODE EXAMPLE 3-1 Home and Remote Interfaces for the Session Bean

public interface CatalogManagerBeanHome extends javax.ejb.EJBHome {
 public CatalogBeans.CatalogManagerBean create()
 throws javax.ejb.CreateException, java.rmi.RemoteException;
}

public interface CatalogManagerBean extends javax.ejb.EJBObject {
 public java.util.Vector getAllItems() throws java.rmi.RemoteException;
 public CatalogBeans.idDetail getOneItemDetail(java.lang.String sku)
 throws java.rmi.RemoteException;
}

Chapter 3 Scenario: An EJB Module 59

For more information about client modules using remote interfaces to call the
CatalogData module’s methods, see “Programming the Servlet Methods” on
page 39.

The getAllItems and getOneItemDetail methods are implemented with calls to
methods of the entity beans. The entity beans generate the appropriate queries and
return the requested data as entity bean instances. To see the implementation of the
getAllItems method, see CODE EXAMPLE 3-3.

Creating Local Interfaces for the Entity Enterprise
Beans
To obtain the data that clients request, CatalogManagerBean calls methods of the
two entity beans. Because these calls are within the module, there is no need for the
entity beans to have the resource-consuming remote interfaces. Instead, you can
generate local interfaces for the entity beans. Local interfaces are faster and more
efficient than remote interfaces. Use local interfaces whenever a remote interaction is
not required.

Generate the local interfaces when you create the entity beans with the Entity Bean
wizard. CODE EXAMPLE 3-2 shows the completed local interfaces for the Item entity
bean. The interfaces for the ItemDetail bean are similar.

CatalogManagerBean calls the findAll method to obtain a list of all the items in
the catalog.

Note – If you plan to test individual enterprise beans with the integrated
development environment’s (IDE) test application feature, you must generate both
remote and local interfaces. The test application feature will generate a web module
client that exercises the methods of the enterprise bean, and the web module client
requires the remote interfaces.

CODE EXAMPLE 3-2 Local Home and Local Interfaces for the ItemBean Enterprise Bean

public interface LocalItemBeanHome extends javax.ejb.EJBLocalHome {
 public CatalogBeans.LocalItemBean findByPrimaryKey(java.lang.Integer aKey)
 throws javax.ejb.FinderException;
 public java.util.Collection findAll() throws javax.ejb.FinderException;
}

public interface LocalItemBean extends javax.ejb.EJBLocalObject {
 public CatalogBeans.iDetail getIDetail();
}

60 Building J2EE Applications • December 2004

Using the Local Interfaces in the Session
Enterprise Bean
Client modules request catalog data by calling one of the CatalogManagerBean
business methods. These methods are declared in the CatalogManagerBean
interface, which is shown in CODE EXAMPLE 3-1. The implementations of these
business methods call entity bean methods. To make these calls to the entity beans,
CatalogManagerBean needs local EJB references to the local interfaces you created
for the entity bean. You must program two separate parts of these local EJB
references.

■ Java Naming and Directory Interface (JNDI) lookup code. Both of the session
bean business methods include code that uses the JNDI naming facility to obtain
a reference to an entity bean’s LocalHome.

■ A declaration of the reference. This part is used by the runtime environment to
identify the specific bean referred to by the lookup code.

JNDI Lookup Code for Local EJB References

CODE EXAMPLE 3-3 shows the implementation of the getAllItems method session
bean. Clients of the CatalogData EJB module call this method to get a list of all the
items in the online catalog. The method implementation shows you how
CatalogManagerBean gets the catalog data by interacting with the entity beans.
There are three steps in this code:

1. CatalogManagerBean uses JNDI lookup to obtain a local reference to the
ItemBean local home interface.

2. CatalogManagerBean calls the ItemBean.findAll method.

3. CatalogManagerBean copies the catalog data from entity bean instances to
transfer class instances, adds the transfer class instances to a vector, and returns
the vector to the client.

Comments in CODE EXAMPLE 3-3 identify these steps.

CODE EXAMPLE 3-3 The getAllItems Method of CatalogManagerBean

public java.util.Vector getAllItems() {
 java.util.Vector itemsVector = new java.util.Vector();
 try{
 if (this.itemHome == null) {
 try {
 // Use JNDI lookup to obtain reference to Entity
 // Bean LocalHome.
 InitialContext iC = new InitialContext();
 Object objref = iC.lookup("java:comp/env/ejb/ItemBean");
Chapter 3 Scenario: An EJB Module 61

The string specified in the lookup statement is the name of the reference and not the
name of the referenced enterprise bean. The name of the enterprise bean is often
used as the reference name to make it easier to remember which enterprise bean is
meant. The actual mapping of reference name to enterprise bean is done with the
resource reference, which is covered in the next step.

Local EJB Resource References

After you write the JNDI lookup code, set up a local EJB resource reference. The
local EJB resource reference maps the reference name used in the lookup statement
to an actual enterprise bean name. The referenced enterprise bean must be in the
same module as the calling bean.

To set up a local EJB resource reference, use the following procedure:

1. Right-click the logical node of the calling bean and choose Properties. In the
References section, click the EJB Local References ellipsis (…) button.

The EJB Local References property editor opens.

 itemHome = (LocalItemBeanHome) objref;
 }
 catch (Exception e){
 System.out.println("lookup problem" + e);
 }
 }
 // Use the local reference to call findAll();
 java.util.Collection itemsColl = itemHome.findAll();
 if (itemsColl == null) {
 itemsVector = null;
 }
 else {
 // Copy data to transfer class instances.
 java.util.Iterator iter = itemsColl.iterator();
 while (iter.hasNext()) {
 iDetail detail;
 detail=((CatalogBeans.LocalItemBean)iter.next()).getIDetail();
 itemsVector.addElement(detail);
 }
 }
 }
 catch (Exception e) {
 System.out.println(e);
 }
 return itemsVector;
}

CODE EXAMPLE 3-3 The getAllItems Method of CatalogManagerBean (Continued)
62 Building J2EE Applications • December 2004

2. Click the Add button.

The Add EJB Local Reference dialog box opens.

3. Define the reference in the dialog box.

a. In the Referenced Name field, type the reference name used in the lookup
statement.

FIGURE 3-2 shows the reference name that was used in CODE EXAMPLE 3-3.

b. Map the reference name to an enterprise bean.

Click the Browse button next to the Reference EJB Name field. This action opens a
browser that lets you select the matching enterprise bean. FIGURE 3-2 shows the
field with ItemBean selected.

FIGURE 3-2 Add EJB Reference Dialog Box

Assembling the EJB Module
After you create the enterprise beans, create the CatalogData EJB module and add
the enterprise beans. Configure your EJB module by selecting property values that
request specific runtime services from the application server.

Different application server products need different information for deployment,
and the EJB module properties include some server-specific properties. This scenario
uses some of the server-specific properties for the Sun Java System Application
Server.
Chapter 3 Scenario: An EJB Module 63

Creating the EJB Module

There are two ways to create an EJB module in the IDE. Both procedures create an
EJB module node at the location you specify.

Your EJB module node represents the deployment descriptor for your module.
Enterprise beans you add to the module appear as subnodes of the module node,
but the IDE does not copy the source files for the enterprise beans to the directory
that holds the module node. Keep this in mind when you decide where to put your
EJB module.

■ If you keep all of the source code for your module in a single file system, consider
putting your EJB module node at the top level of that file system.

■ If the source code for the module is in different file systems, such as file systems
that are owned by different developers, consider creating a set of directories that
contain only modules and J2EE applications. Keep these directories separate from
the directories that contain the source code.

To create an EJB module beginning with an enterprise bean node, use the following
procedure:

1. Right-click the enterprise bean node and choose Create New EJB Module.

The New EJB Module dialog box opens.

2. Name the module and select a location in the file system for it.

a. In the Name field, type the new module’s name. In this scenario, the EJB
module is named CatalogData.

b. In the Select a package location for the new EJB module field, choose the file
system, directory, or package where you want to create the new module.

c. Click OK.

A node representing your new module is created under the file system, directory,
or node you selected. The enterprise bean you right-clicked in Step 1 is
automatically included in the new module.

You can add more enterprise beans to the module. See “Adding Enterprise Beans
and Other Resources to the Module” on page 65.

To create an EJB module from a file system, package, or directory node, use the
following procedure:

1. Right-click any Filesystems window node and choose New → All Templates.

The New wizard’s Choose Template page opens.
64 Building J2EE Applications • December 2004

2. Choose the EJB Module template.

a. In the Select a Template field, expand the J2EE node and select the EJB Module
node.

b. Click Next.

The New Object Name page opens.

3. Define the new EJB module.

a. In the Name field, type the module name.

In this scenario, the module is named CatalogData.

b. Click Finish.

The Add EJB to EJB Module page opens.

c. In the Select the EJB(s) to add to this EJB Module field, select the enterprise
beans you are adding to the module and click OK. If you choose to click
Cancel, you may add enterprise beans at any time using the procedures in the
following section, “Adding Enterprise Beans and Other Resources to the
Module.”

The IDE creates the module and represents it in the Filesystems window with an
EJB module under the file system, package, or directory you selected in Step 1.

Both of these procedures create an EJB module node in the location you chose. Keep
in mind that the IDE stores deployment descriptor information about the module in
this directory, but the source code for the components in the module is not copied
into this directory.

Adding Enterprise Beans and Other Resources to the Module

Once you have created a module, you can add enterprise beans to it.

To add an enterprise bean to an EJB module, use the following procedure:

1. Right-click the module node and choose Add EJB.

The Add EJB to EJB Module dialog box opens.

2. Select one or more enterprise beans.

a. In the Select the EJB(s) to add to this EJB Module field, select the enterprise
beans you are adding to the module.

b. Click OK.

The IDE adds the selected enterprise beans to the module. In the Filesystems
window, the IDE adds nodes representing the selected beans under the module
node.
Chapter 3 Scenario: An EJB Module 65

When you add an enterprise bean to a module, the IDE manages any dependencies
of the enterprise bean on other types of resources (Java classes, image files, and so
on). It automatically adds these resources to the module definition.

For the few exceptions to this standard, see “Identifying Extra Files” on page 71.

Specifying a Data Source for the Entity Enterprise Beans

In this scenario, the CatalogData EJB module accesses a database to get the catalog
data. J2EE applications access databases through J2EE application servers, using
connection pooling and other services provided by the application server. The
database must be set up as an application server resource with a JNDI name.
Defining a database as an application server resource maps the databases JNDI name
to the actual database URL.

A J2EE application that accesses a database must be configured with a resource
reference that contains the database JNDI name. The way you set up the resource
reference depends on the type of entity bean you are working with:

■ If you are working with a container-managed entity bean, the application server
determines how you identify the database. With most application servers,
including the Sun Java System Application Server, you use one of the module’s
server-specific properties to identify the data source by JNDI name.

■ If you are working with a bean-managed entity bean, you must write JNDI
lookup code and set up a matching resource reference that maps the lookup name
to the JNDI name.

Note – At development time, you can open a live connection to a database in the
IDE and use the Entity Bean wizard to create an entity bean that models a database
table. This type of connection is covered in Building Enterprise JavaBeans Components.
This section covers specifying the database that will be used at runtime.

Using the Server-Specific Tabs for Container-Managed Entity Beans

For container-managed entity beans, you use the EJB module’s CMP resource
property editor to specify the data source by JNDI name. The IDE creates the
resource reference for you automatically. The CMP Resource property editor
contains the JNDI name for the default Pointbase database.
66 Building J2EE Applications • December 2004

To configure container-managed entity beans to use a database, use the following
procedure:

1. Right-click the EJB Module node and choose Properties. In the Sun Java System
AS section, click the CMP Resource ellipsis (...) button.

The CMP Resource property editor opens.

2. Type the values that identify the database for the EJB module and its entity beans.

FIGURE 3-3 shows the CMP Resource property editor with values that give the
CatalogData EJB module access to the Pointbase database named sample.

FIGURE 3-3 EJB Module CMP Resource Property Editor

Note – Most installations of the IDE include the Sun Java System Application Server
and the PointBase database server. Installing the IDE sets up the PointBase database
named sample as an application server resource with a JNDI name of
jdo/PointbasePM. In this scenario, the CatalogData EJB module is configured to
use the sample database.

This procedure is for using the IDE with the Sun Java System Application Server and
the installed PointBase database. If you are using another database product or
another application server product, you must adapt the procedure.

■ If you are using the IDE with the Sun Java System Application Server and a
database product other than PointBase, you must use the application server’s
administration tools to define your database to the application server as a Java
DataBase Connectivity (JDBC) data source with a JNDI name. After you do this,
you can use the procedure to configure your EJB module with the data source
JNDI name.

■ If you are using an application server other than the Sun Java System Application
Server, the database must be set up as a data source resource of the application
server and given a JNDI name. The procedures for this depend on the application
server product.
Chapter 3 Scenario: An EJB Module 67

After the database is set up with a JNDI name, you can configure your EJB
module with the JNDI name. In the EJB Module property sheet, use the server-
specific tab for the application server product you are using. The property name
may be different from the CMP Resource.

If you are going to deploy your application in a managed test environment or a
production environment, system administration will probably be responsible for
setting up databases as application server resources and assigning JNDI names. In
this case, obtain the data source’s JNDI name from system administration.

Creating Resource Factory References Explicitly for Bean-Managed
Entity Beans

If your EJB module contains entity beans that use bean-managed persistence instead
of container-managed persistence, your entity beans already include JDBC and Java
Transcription API (JTA) code that prepares and executes database queries. This topic
is covered in Building Enterprise JavaBeans Components. This code must include a
JNDI lookup that obtains a resource factory reference to the data source. The lookup
uses the data source’s JNDI name to obtain the reference. Like other types of J2EE
references, this type of reference has two parts:

■ A JNDI lookup. Each entity bean includes code that uses the JNDI lookup
statement to obtain a reference to a named resource.

■ A declaration of the reference. The declaration maps the reference name used in
the lookup statement to the data source’s JNDI name.

Any data source you specify with an explicit lookup must be a named resource of
the application server with an assigned JNDI name. The application server has the
information to map the JNDI name to the actual database URL.

JNDI Lookup Code for Resource Factory References

CODE EXAMPLE 3-4 shows the code that you use in a Bean-Managed Persistence
(BMP) entity enterprise bean to look up a data source:

CODE EXAMPLE 3-4 JNDI Lookup for a Database

try {
 // Obtain Initial Context--Opens Communication With JNDI Naming:
 Context ic = new InitialContext();
 // Request Lookup of Resource--In This Example a JDBC data source:
 javax.sql.Datasource hrDB = (javax.sql.DataSource)
 ic.lookup(“java:comp/env/jdbc/Local_HR_DB“);
}
catch(Exception e) {
68 Building J2EE Applications • December 2004

Declaring Resource References

In addition to writing the lookup statement, you must set up a resource reference for
the data source resource.

To set up a resource reference for a data source reference, use the following
procedure:

1. Right-click the logical node of the enterprise bean and choose Properties. In the
References section, click the Resource References ellipsis (…) button.

The Resource References property editor opens.

2. Click the Add button.

The Add Resource Reference dialog box opens.

3. Supply the information that identifies the data source.

a. In the Name field, type the reference name used in the lookup statement.

FIGURE 3-4 shows the reference name that was used in CODE EXAMPLE 3-4.

FIGURE 3-4 Add Resource Reference Dialog Box

b. Click the Sun ONE App Server tab.

 System.out.println(e.toString());
 e.printStackTrace();
 return;
}

CODE EXAMPLE 3-4 JNDI Lookup for a Database
Chapter 3 Scenario: An EJB Module 69

c. Map the reference name to a data source.

FIGURE 3-5 shows the JNDI Name field with the value jdbc/jdbc-pointbase,
which is the default name JNDI name for the PointBase database that is included
in most installations of the IDE.

FIGURE 3-5 Add Resource Reference Dialog Box, Server-Specific Tab

This procedure is for using the IDE with the Sun Java System Application Server and
the installed PointBase database. If you are using another database product or
another application server product, you must adapt the procedure as follows:

■ If you are using the IDE with the Sun Java System Application Server and a
database product other than PointBase, use the administration tools of the
application server to define your database to the application server as a JDBC
data source with a JNDI name. After you do this, you can use this procedure to
configure your EJB module with the data source JNDI name.

■ If you are using an application server other than the Sun Java System Application
Server, the database that you use must be set up with the application server as a
data source resource with a JNDI name. The procedures for this action depend on
the application server product. After the database is set up with a JNDI name,
you can configure your EJB module with the JNDI name. In the Add Resource
Reference dialog box, use the server-specific tab for the application server product
you are using.
70 Building J2EE Applications • December 2004

Other Module Assembly Tasks

The preceding sections cover the assembly tasks that are required to assemble the
CatalogData EJB module. This section describes some EJB module assembly tasks
that were not covered in the CatalogData scenario.

Your EJB modules might require you to perform some of these other assembly tasks.
This section covers several web module assembly tasks that you are likely to
perform.

For each module, determine what assembly tasks are required. Questions that you
might ask about a module include the following:

■ Have all the references in the module been linked? Your module might contain
some references to components in other modules. These references can only be
linked after the module has been assembled into a J2EE application.

■ Have generic security roles been set up for the module? Have any security role
references in the module’s enterprise beans been linked to these generic security
roles? Have method permissions been mapped to these generic security roles? For
more information on these issues, see Chapter 7.

■ Have container-managed transactions been defined? For more information on this
issue, see Chapter 6.

Some EJB module tasks that were not covered in the CatalogData EJB module
scenario are described in the following sections.

Identifying Extra Files

In most cases, the IDE recognizes the dependencies of the enterprise beans that are
in an EJB module and includes all of the needed files in the EJB Java archive (JAR)
files that it generates at deployment time. There are some dependencies, however,
that the IDE does not recognize. These unrecognized dependencies include:

■ Enterprise beans in your module that use a help file without calling it directly

■ Enterprise beans in your module that access a class dynamically and use the class
name only as a string and not as a class declaration

In these and similar cases, the IDE does not recognize the dependency of the
enterprise bean and does not include the help file or class file in the archive files it
creates. Identify these files so they are included in the archive and are available at
run time.

To identify extra files, use the following procedure:

1. Right-click the EJB module node and choose Properties. In the Properties section,
click the Extra Files ellipsis (…) button.

The Extra Files property editor opens.
Chapter 3 Scenario: An EJB Module 71

2. Select any extra file that should be deployed or archived as part of this module.

a. In the Source field, select the extra files that belong in the module.

b. Click the Add button to add the selected files to the list of extra files.

3. Click OK to close the editor and process your selections.

Excluding Duplicate JAR Files

In some cases, you want to prevent the IDE from acting on some of the file
dependencies it recognizes. For example, an enterprise bean in your module has a
dependency on a commonly used JAR file that you know will be present in the
runtime environment. You can prevent the IDE from adding an unnecessary copy of
the commonly used JAR file by identifying that JAR file as a duplicate JAR file.

To exclude a duplicate JAR file, use the following procedure:

1. Right-click the EJB module node and choose Properties. In the Properties section,
click the Library Jars to Exclude ellipsis (…) button.

The Library Jars to Exclude property editor opens. It displays the mounted JAR files.

2. Select the JAR files that should be excluded and click the Add button to move
them to the list of library JARs to exclude.

3. Click OK to close the property editor and process your selections.
72 Building J2EE Applications • December 2004

CHAPTER 4

Scenario: Web Module and EJB
Module

FIGURE 4-1 shows a web module and an Enterprise JavaBeans (EJB) module
assembled into a Java 2 Platform, Enterprise Edition (J2EE platform) application.
Most of the interactions that appear in the figure are covered in Chapter 2 and
Chapter 3. For example, the HTTP requests and responses between the user’s web
browser and the web module are covered in Chapter 2. The interaction between the
modules, which is represented in the figure by the arrows labeled #1, is new.

FIGURE 4-1 The CatalogApp J2EE Application
73

The Interactions in This Application
This scenario describes one possible use of the J2EE application and the interactions
that are illustrated in FIGURE 4-1. This scenario continues the online shopping
application that was described in Chapter 2 and Chapter 3. The programming
required for the HTTP interactions with users is already complete in the web
module. The programming required for the interactions with the database is already
complete in the EJB module. This scenario explains how to combine the two modules
into a J2EE application that performs end-to-end interactions.

There is one interaction between the modules that requires assembly work. This
interaction is the remote method call from the web module to the EJB module. Most
of the code needed for this interaction is already in the web module or the EJB
module. The code already in the modules is summarized as follows:

■ The web module contains Java Naming and Directory Interface (JNDI) lookup
code and an EJB resource reference. For more information about this code, see
“The EJB Resource References” on page 42.

■ The EJB module contains remote interfaces that support remote method calls. For
more information about this code, see “Creating Remote Interfaces for the Session
Enterprise Bean” on page 59.

The procedures in this chapter show you how to assemble the two modules into a
J2EE application and configure the interaction between the modules. After the
application is assembled, you can deploy and execute the application.

Programming This Application
TABLE 4-1 summarizes the programming required to create and assemble the J2EE
application that is described in this scenario.

TABLE 4-1 Programming Required for This Scenario

Application Element Programming Required

Application server None.
74 Building J2EE Applications • December 2004

The sections that follow demonstrate these programming tasks.

Creating the J2EE Application
There are two ways to create a J2EE application in the integrated development
environment (IDE). Both procedures create an application node in the location that
you specify.

Your J2EE application node represents the deployment descriptor for your
application. Modules you add to the application appear as subnodes of the
application, but the IDE does not copy the source files for the modules to the
directory that holds the application node. Keep this in mind when you decide where
to put your J2EE application node.

■ If you keep all of the source code for your application in a single file system,
consider putting your application node at the top level of that file system.

■ If the source code for the application is in different file systems, such as file
systems that are owned by different developers, consider creating a set of
directories that contain only J2EE applications and modules. Keep these
directories separate from the file systems that contain the source code.

To create a J2EE application from a module node, use the following procedure:

1. Right-click an EJB module node and choose New Application.

The New Application dialog box opens.

2. Name the J2EE application and select a location in the file system for it.

a. In the name field, type the new application’s name.

In this scenario, the new J2EE application is named CatalogApp.

b. In the Select a package location for the new Application field, choose the file
system, directory, or node where you want to create the new application.

Web module See Chapter 2.

EJB module See Chapter 3.

J2EE application Create the CatalogApp J2EE application. This action creates a J2EE
application node in the Java Studio Enterprise Filesystems window.
Add the web module and the EJB module to the application.
Specify the web context for the web module.
Make sure the EJB references of the web module are correctly linked
to enterprise beans in the EJB module.

TABLE 4-1 Programming Required for This Scenario (Continued)

Application Element Programming Required
Chapter 4 Scenario: Web Module and EJB Module 75

c. Click OK.

A node representing the new application is created under the file system,
directory, or node you selected. The module you right-clicked in Step 1 is
automatically included in the new application.

You can add more modules to the application. For the procedures, see “Adding
Modules to the J2EE Application” on page 76.

To create an EJB module from a file system, package, or directory node, use the
following procedure:

1. Right-click any Filesystems window node and choose New → All Templates.

The New wizard’s Choose Template page opens.

2. Select the J2EE Application template.

a. In the Select a Template field, expand the J2EE node and select the Application
node.

b. Click Next.

The New Object Name page opens.

3. Define the new J2EE application.

a. In the Name field, type the new application’s name.

In this scenario, the application is named CatalogApp.

b. Click Finish.

The IDE creates the application and represents it in the Filesystem window with a
J2EE application node under the file system, package, or directory you selected in
Step 1.

Both of these procedures create an application node in the location you chose. Keep
in mind that the IDE stores deployment descriptor information about the application
in this directory, but the source code for the components in the application’s
modules is not copied into this directory.

Adding Modules to the J2EE Application

Once you have created a J2EE application, you can add modules to it. To add a
module to an application, use the following procedure:

1. Right-click the application and choose Add Module.

The Add Module to Application dialog box opens.
76 Building J2EE Applications • December 2004

2. Select one or more modules.

a. In the Select the Module(s) to add to this Application field, select the modules
you are adding to the application.

■ To add a web module, select the module’s WEB-INF node.
■ To add an EJB module, select the module node.

b. Click OK.

The IDE adds the selected modules to the J2EE application. In the Filesytems
window, the IDE adds nodes representing the selected modules under the J2EE
application node.

When you add a module to a J2EE application, the IDE notes any dependencies of
the module on other types of resources (Java classes, image files, and so on) and
automatically includes those resources in the application.

Setting the Web Context for the Web Module
When you deploy a J2EE application to a J2EE application server, URLs are mapped
to the web resources in the web module. URLs are mapped by appending URL
patterns to a URL path. For the Sun Java System Application Server, the URL path
has this general form:

http://hostname:port/web-context/URL-pattern

The elements in this path are determined as follows:

■ The host name is the name of the machine on which the application server is
running, and the port is the port number that is specified for that server instance’s
HTTP requests. The port number is assigned when the application server is
installed.

■ The web context is a string that you specify in this procedure. The web context
qualifies all of the web resources in the module.

■ The URL pattern is a string that identifies a specific servlet or JavaServer Pages
(JSP) page. You assign the URL pattern on the web module property sheet. You
can do this before you assemble the web module into a J2EE application. For
information on this procedure, see “Mapping URLs to the Servlets” on page 44.

In other words, the URL patterns that you assigned in the web module property
sheet are relative to the web context that you assign in this procedure.
Chapter 4 Scenario: Web Module and EJB Module 77

To set the web context, use the following procedure:

1. Right-click the included web module node (this web module node is under the
J2EE application node) and choose Properties.

2. Click the Web Context ellipses (...) button and type the string you want to use.

FIGURE 4-2 shows the CatalogWebModule property sheet described in this scenario.
The web context property is set to catalog.

FIGURE 4-2 Property Sheet for CatalogWebModule

When the web context property is set to catalog, URLs for web resources in the
CatalogApp J2EE application will have this general form:

http://hostname:port/catalog/URL-pattern

If you do not supply a web context, it defaults to blank. If you let the web context for
CatalogApp J2EE application default to blank, the URLs for web resources in the
application would have this general form:

http://hostname:port/URL-pattern
78 Building J2EE Applications • December 2004

Linking the EJB Reference
CatalogWebModule contains JNDI lookup code and an EJB resource reference. The
CatalogWebModule code and the deployment descriptor specify interfaces of type
CatalogManagerBeanHome and CatalogManagerBean. For information on how
the lookup code and the resource reference are set up, see “The EJB Resource
References” on page 42.

The CatalogData EJB module contains remote interfaces of type
CatalogManagerBeanHome and CatalogManagerBean and a bean class named
CatalogManagerBeanBean that implements the interfaces. For information on
creating the interfaces, see “Creating Remote Interfaces for the Session Enterprise
Bean” on page 59.

Before executing the CatalogApp J2EE application, you must link the EJB reference
in the web module to the enterprise bean in the EJB module.

In some circumstances, you link the reference on the web module’s property sheet
before creating the application. The reference in CatalogWebModule was not linked
in the web module property sheet. In this scenario, the reference is linked on the
CatalogApp property sheet.

To link an EJB reference on the application node property sheet, use the following
procedure:

1. Right-click the application node and choose Properties. In the Properties section,
click the EJB References ellipsis (…) button.

The EJB References property editor opens.

2. Check the status of the EJB references.

This editor shows you all of the references that have been declared in the
application. The references are identified by module and reference name.

FIGURE 4-3 shows the EJB References property editor for the CatalogApp J2EE
application. There is one EJB reference, which is declared in CatalogWebModule.
The reference is named ejb/CatalogManagerBean, and it is not resolved.
Chapter 4 Scenario: Web Module and EJB Module 79

FIGURE 4-3 Unlinked EJB Reference

If a reference is not resolved, the Value field is empty and the Error Status field
displays an icon that represents an error.

3. Link any unresolved references.

Click the Override Value field. The field displays a list of the enterprise beans in the
application that implement the interfaces that are specified in the reference. Select
one of these enterprise beans.

FIGURE 4-4 shows the same EJB reference as FIGURE 4-3, but the reference has been
linked with an override. When the application executes, the method calls coded in
CatalogWebModule will call the enterprise bean specified in the Override Value
field. In FIGURE 4-4, the Override Value field specifies an enterprise bean in the
CatalogData EJB module, named CatalogBeans.CatalogManagerBean.
80 Building J2EE Applications • December 2004

FIGURE 4-4 EJB Reference Linked by Override

When a reference is resolved, the Override Value field displays the name of the
linked enterprise bean, and the Error Status field is empty.

Additional Assembly Tasks
The preceding sections cover the assembly tasks that are required to assemble the
CatalogApp J2EE application. This section covers other J2EE application assembly
tasks that are not required by the CatalogApp scenario.

Your J2EE applications might require you to do some of these other assembly tasks.
This section covers an application assembly task that you are likely to perform.

Overriding Environment Entries

If an application contains environment entries, you might need to override the
values that were set for them on the module property sheets. You do this on the
application’s Environment Entries property editor.
Chapter 4 Scenario: Web Module and EJB Module 81

To override an environment entry value, use the following procedure:

1. Right-click the application node and choose Properties. In the Properties section,
click the Environment Entries ellipsis (…) button.

The Environment Entries property editor opens. This editor shows you all of the
environment entries that have been declared in the application. The environment
entries are identified by reference name and module.

2. Study the environment entries in the application.

FIGURE 4-5 shows the Environment Entries property editor for the CatalogApp
application. The property editor displays an environment entry that was declared in
the web module. (To see how this environment entry was declared in the web
module, see “Setting Up Resource Environment Entry References” on page 51.)

The Value field displays 100, which is the initial value that was set on the web
module’s property sheet.

FIGURE 4-5 J2EE Application Environment Entries Property Editor
82 Building J2EE Applications • December 2004

3. When the initial values are not appropriate for the assembled application,
override them.

a. For the environment entry you are overriding, click the Override Value field
and the ellipsis (...) button.

The Override Value dialog box opens.

b. In the Value field, type the override value. Click OK to close the dialog box and
return to the property editor.

FIGURE 4-6 shows the Environment Entries property editor with a value in the
override field.

FIGURE 4-6 Overriding an Environment Entry Value

If you have the web module source files in your development environment, you can
change the environment entry’s value on the web module property sheet. But, if
there is any chance that the web module will be used in more than one application,
it is better to override this value on the application property sheet. If another
developer reuses the web module in another application and changes the value of
the environment entry on the web module property sheet, it would change the value
in your application when you redeployed.

Viewing and Editing Deployment Descriptors

In general, you should control the contents of deployment descriptors by working
with module and application property sheets. By setting properties, you control the
contents of the deployment descriptor. The IDE does allow you to view the actual
XML deployment descriptors for modules and applications.
Chapter 4 Scenario: Web Module and EJB Module 83

Viewing a Module Deployment Descriptor

You can view deployment descriptors for J2EE applications, included web modules,
and included EJB modules. To view a deployment descriptor, use the following
procedure:

● Right-click a J2EE application node, included EJB module node (an EJB module
node underneath a J2EE application node), or an included web module, and
choose View Deployment Descriptor.

The IDE opens the deployment descriptor in the Source Editor in read-only mode.

Editing Module Deployment Descriptors

To edit an EJB module deployment descriptor, use the following procedure:

● Right-click an EJB module node and choose Deployment Descriptor → Final Edit.

A warning box appears. Click Yes, and the IDE opens the deployment descriptor in
the Source Editor.

To edit a web module deployment descriptor, use the following procedure:

● Right-click the web module’s web node and choose Edit.

The IDE opens the deployment descriptor in the Source Editor.
84 Building J2EE Applications • December 2004

CHAPTER 5

Scenario: Web Module and Queue-
Mode Message-Driven Bean

FIGURE 5-1 shows a web module and an Enterprise JavaBeans (EJB) module
assembled into a Java 2 Platform, Enterprise Edition (J2EE platform) application. The
interaction between the modules is asynchronous messaging. The web module sends
a message to a queue, and a message-driven enterprise bean in the EJB module reads
the message from the queue. Sending the message to the queue is represented in the
figure by the arrow labeled #1. Reading the message from the queue is represented
by the arrow labeled #2. The message-driven bean reads the message and then
initiates processing by calling methods of other enterprise beans in the module.

FIGURE 5-1 J2EE Application With Queue-Mode Message-Driven Bean
85

The Interactions in This Application
This scenario describes one possible use of the J2EE application and the interactions
illustrated in FIGURE 5-1. This scenario continues the retail web site application, but it
explores a different type of interaction, which is implemented in a different EJB
module.

In this scenario, a shopper interacts with web pages that are defined in the web
module by selecting items and adding them to a shopping cart. Once the shopper is
ready to complete the purchase, synchronous interaction with the EJB module is
performed. Chapter 2, Chapter 3, and Chapter 4 show you how to implement this
type of logic in a J2EE application.

Eventually the shopper is ready to check out. The shopper reviews the contents of
the shopping cart, selects a shipping method, approves the total amount, and
provides a credit card number. The shopper reviews and approves the order and
leaves the site. Sometime later, the application processes the order and notifies the
shopper by email. The specific interactions in this checkout scenario are outlined in
the following process:

1. The web module displays a page that shows the items ordered, the delivery
address, the shipping method, and the payment method. The shopper approves
the order.

2. When the shopper approves the order, the web module sends a message to a
message queue. The message identifies the order to be processed.

3. The message queue is outside the application. It is maintained by the application
server.

4. The queue notifies a message-driven enterprise bean in an EJB module that
performs order processing. The queue notifies the message-driven bean by the
onMessage event, passing the message as a parameter.

5. The message-driven bean does not contain the business logic for processing the
order. It only examines the message and initiates order completion processing.

The message-driven bean initiates order completion processing by calling
business methods of other enterprise beans in the module, which is a typical way
of using a message-driven bean. The details of the order are saved in a database.

6. When the order is processed, the application sends an email message to notify the
shopper.

The procedures in this chapter show you how to set up a message queue and a
queue connection factory and how to configure the sending module and the
receiving module to use the queue.
86 Building J2EE Applications • December 2004

Programming the Message-Driven
Communication
TABLE 5-1 summarizes the programming required to implement the message-driven
interaction described in this scenario and illustrated in FIGURE 5-1.

The sections that follow show you how to perform these programming tasks.

Other programming tasks are required to program the complete application. These
tasks include creating the web components and the web module, creating the session
and entity enterprise beans, and creating the EJB module. These tasks are covered in
other chapters that focus on those issues. This chapter focuses on the message-driven
interaction.

Setting up the Application Server
The design for the checkout interaction calls for the web module to send messages to
a queue and for the EJB module to read the messages from the queue and then
process the orders identified in the messages. This interaction requires a queue and a
queue connection factory.

TABLE 5-1 Programming Required by This Application

Application Element Setup Needed

Application Server Set up a queue name CheckoutQueue and a queue connection
factory name CheckoutQCF in the integrated development
environment (IDE) with the application server’s administration
tools.

Web Module Create the servlet CheckoutServlet that sends the message. Add
code to the processRequest method of CheckoutServlet that:
1. Uses Java Naming and Directory Interface (JNDI) lookups to

obtain references to CheckoutQueue and CheckoutQCF
2. Calls CheckoutQueue methods to format and send a message

EJB Module Create the message-driven enterprise bean CheckoutMDB.
Use the CheckoutMDB property sheet to configure CheckoutMDB as
a message destination for the CheckoutQueue.
Code the onMessage method of CheckoutMDB.
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 87

An application server resource representing the Java Message Service (JMS) queue
and queue connection factory must be created in the application server. The creation
of a queue is required to establish the mapping between the web module and the
message-driven bean. The queue and queue connection factory are resources of the
application server that are created outside the IDE.

■ If you are working in a stand-alone development environment, you must manage
your own queue and queue connection factory.

■ If you are working in a managed test environment or a production environment,
system administration will probably define, configure, and manage the queues
and queue connection factories. In this case, obtain the JNDI names for the queue
and queue connection factory. Nevertheless, reading the following instructions for
setting up queues and queue connection factories will help you understand how
the application uses these resources.

Before you can complete the procedures in this section, you must have an
application server and an IDE application server plug-in installed. You also need an
application server instance. The application server plug-in and the server instance
are represented by nodes that appear in the Runtime window. For more information
on the application server plug-in and application server instance nodes, see “The
Server Product Nodes” on page 127.

Setting up a Queue

This section explains how to set up a message queue for the Sun Java System
application server. Procedures for other application servers should be similar.

To add a queue to the Sun Java System application server, use the following
procedure:

1. Click the Runtime window.

2. Expand the Sun Java System Application Server 7 node.

3. Right-click the Unregistered JMS Resources node and choose Add New JMS
Resource.

The New wizard’s JMS Resources page opens.

4. Define the queue.

a. In the JNDI Name field, type jms/CheckoutQueue.

b. Make sure that the Resource Type field is set to javax.jms.Queue.

c. Click Next.

The New wizard’s Properties page opens.
88 Building J2EE Applications • December 2004

5. Define an imqDestinationName property.

a. Click Add.

The first property line is activated.

b. In the Name field, select imqDestinationName.

c. In the Value field, type Checkout.

Checkout is the name for the physical queue that you are creating. Your J2EE
application will use the JNDI name that you assigned, CheckoutQueue, to access
the queue named Checkout.

d. Click Finish.

The Do you want to continue with registration dialog box opens.

6. Register the queue.

a. Click Register.

The Java Resouce Registration dialog box opens.

b. In the Server Instance field, select the application server instance with which
you are registering the queue.

Select the application server to which you will deploy your J2EE application.

c. Click Register.

A message that reads Resource Registered Successfully displays.

d. Click Close.

Setting up a Queue Connection Factory

This section explains how to set up a queue connection factory for the Sun Java
System application server. Procedures for other application servers should be
similar.

To add a queue connection factory to the Sun Java System application server, use the
following procedure:

1. Right-click the Unregistered JMS Resources node and choose Add New JMS
Resource.

The New wizard’s JMS Resources page opens.
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 89

2. Define the queue connection factory.

a. In the JNDI Name field, type jms/CheckoutQCF.

b. Make sure that the Resource Type field is set to
javax.jms.QueueConnectionFactory.

c. Click Finish.

The Do you want to continue with registration dialog box opens.

3. Register the queue connection factory.

a. Click Register.

The Java Resource Registration dialog box opens.

b. In the Server Instance field, select the application server instance with which
you want to register the queue connection factory.

Select the application server instance you selected when you created the queue.

c. Click Register.

A message that reads Resource Registered Successfully displays.

d. Click Close.

Programming the Web Module
In this scenario, CheckoutServlet sends a message that requests final processing
of an order. The message identifies the order to be processed. To send a message,
CheckoutServlet calls methods of the queue connection factory and the queue.

To call queue and queue connection factory methods, CheckoutServlet needs
references to the queue and queue connection factory. CheckoutServlet uses JNDI
lookups to obtain queue and queue connection factory references from the
application server environment.

Like most J2EE reference lookups, the queue and queue connection factory reference
lookups have two parts:

■ JNDI lookup code. The servlet includes code that uses the JNDI naming facility
to obtain references to the queue or queue connection factory.

■ A declaration of the reference. This action maps the name that is used in a JNDI
lookup statement to the actual JNDI name of a queue or queue connection factory.

The queue and queue connection factory are named resources of the application
server. Your application components use JNDI names to obtain the references. To see
how JNDI names are assigned to the queue and queue connection factory, see
“Setting up the Application Server” on page 87.
90 Building J2EE Applications • December 2004

The JNDI Lookup Code

CODE EXAMPLE 5-1 shows the processRequest method of CheckoutServlet. The
processRequest method performs the JNDI lookups. After obtaining queue and
queue connection factory references, processRequest calls methods of the queue
and queue connection factory to create and send message. The code example
contains comments that identify these operations.

CODE EXAMPLE 5-1 is from a servlet, but any type of J2EE component can use similar
code to send a message. You can reuse this code in an application client or in an
enterprise bean that acts as a message sender.

For more information on creating and sending messages, see Building Enterprise
JavaBeans Components.

CODE EXAMPLE 5-1 The processRequest Method of CheckoutServlet

import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.jms.*;
import javax.naming.*;

// ...

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 //output your page here

 // Delete the default method body and insert the following lines:
 Context jndiContext = null;
 javax.jms.TextMessage msg = null;
 QueueConnectionFactory queueConnectionFactory = null;
 QueueConnection queueConnection = null;
 QueueSession queueSession = null;
 Queue queue = null;
 QueueSender queueSender = null;
 TextMessage message = null;

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 91

 try {
 // Connect to default naming service -- managed by app server
 jndiContext = new InitialContext();
 }
 catch (NamingException e) {
 out.println("Could not create JNDI " + "context: " +
 e.toString());
 }

 try {
 // Perform JNDI lookup for default QueueConnectionFactory and the
 // Queue created in this scenario.
 queueConnectionFactory = (QueueConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/CheckoutQCF");
 queue = (Queue)
 jndiContext.lookup("java:comp/env/jms/CheckoutQueue");
 }
 catch (NamingException e) {
 out.println("JNDI lookup failed: " + e.toString());
 }

 try {
 // Use references to connect to the queue and send a message.
 queueConnection =
 queueConnectionFactory.createQueueConnection();
 queueSession = queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queueSender = queueSession.createSender(queue);
 message = queueSession.createTextMessage();
 message.setText("Order #33454344");
 queueSender.send(message);
 }
 catch (JMSException e) {
 out.println("Exception occurred: " + e.toString());
 }
 finally {
 if (queueConnection != null) {
 try {
 queueConnection.close();
 }
 catch (JMSException e) {}
 } // end of if
 } // end of finally
 // and the end of code to insert

 out.close();
}

CODE EXAMPLE 5-1 The processRequest Method of CheckoutServlet (Continued)
92 Building J2EE Applications • December 2004

The Resource Environment Reference for the Queue

Resource environment references appear in the module’s deployment descriptor. A
resource environment reference maps the reference name used in the lookup
statement to a JNDI name in the application server environment.

To set up a resource environment reference for a queue, use the following procedure:

1. Right-click the web module’s web node and choose Properties. In the References
section, click the Resource Environment References ellipsis (…) button.

The Resource Environment Reference property editor opens.

2. Click the Add button.

The Add Resource Environment Reference dialog box opens.

3. Declare the Resource Environment Reference.

a. In the Name field, type the reference name that appears in the lookup
statement.

FIGURE 5-1 shows the value jms/CheckoutQueue in the Name field, which is the
reference name used in CODE EXAMPLE 5-1.

b. In the Type field, select javax.jms.Queue.

FIGURE 5-2 Adding a Resource Environment Reference for CheckoutQueue
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 93

4. Map the reference name to a JNDI name.

a. Click the Add dialog box’s Sun Java System App Server tab.

b. In the JNDI Name field, type the JNDI name of the queue.

FIGURE 5-3 shows the value jms/CheckoutQueue in the JNDI Name field. This
value maps the reference name on the Standard tab to the queue named
CheckoutQueue. To see how the queue was named, see “Setting up the
Application Server” on page 87.

FIGURE 5-3 Supplying JNDI Name for the Queue Reference

The Resource Reference for the Queue Connection Factory

To set up a resource reference for a queue connection factory, use the following
procedure:

1. Right-click the web module’s web node and choose Properties. In the References
section, click the Resource References ellipsis (…) button.

The Resource Reference property editor opens.

2. Click the Add button.

The Add Resource References dialog box opens.

3. Declare the resource reference.

a. In the Name field, type the reference name that appears in the lookup
statement.

FIGURE 5-4 shows the value jms/CheckoutQCF in the Name field, which is the
reference name used in CODE EXAMPLE 5-1.

b. In the Type field, select javax.jms.QueueConnectionFactory.
94 Building J2EE Applications • December 2004

FIGURE 5-4 Resource Reference for Queue Connection Factory

4. Map the reference name to a JNDI name.

a. Click the Add dialog box’s Sun Java System App Server tab.

b. In the JNDI Name field, type the JNDI name of the queue connection factory.

FIGURE 5-5 shows the value jms/CheckoutQCF in the JNDI Name field. This
value maps the reference name on the Standard tab to the queue connection
factory named CheckoutQCF. To see how the queue connection factory was
named, see “Setting up the Application Server” on page 87.

For information on the other authorization types, see the coverage of message-
driven beans in Building Enterprise JavaBeans Components.
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 95

FIGURE 5-5 JNDI Name for the QueueConnectionFactory Reference

Programming the EJB Module
In this checkout scenario, the business logic for processing a shopper’s checkout
request is in the Checkout EJB module. “Programming the Web Module” on
page 90 shows how the web module looks up a queue reference and a queue
connection factory reference and sends a message. To complete this interaction, a
message-driven bean in the EJB module must receive the message from the queue.

A message-driven bean does not use programmatic references. The message-driven
bean does not need JNDI lookup code. You use the property sheet of the message-
driven bean to specify the queue and queue connection factory that should be used.
Setting these properties sets up tags in the deployment descriptor.

The properties that you set to configure a message-driven bean are listed as follows:

■ The Message-Driven Destination property specifies the type of destination used
by the message-driven bean.

■ The Mdb Connection Factory property specifies the queue connection factory.

■ The JNDI Name property specifies the queue. This property is specific to the Sun
Java System application server. Other application servers will use different
properties to specify the queue.

When the application is deployed, the application server automatically uses the
queue connection factory specified in the deployment descriptor to open a
connection from the message-driven bean to the queue that is specified in the
deployment descriptor.
96 Building J2EE Applications • December 2004

Configuring the Message-Driven Destination Property

Before you specify the queue and queue connection factory, you must configure the
message-driven bean as a queue consumer.

To configure a message-driven bean as a queue consumer, use the following
procedure:

1. Right-click the logical node of the message-driven bean and choose Properties. In
the Properties section, click the Message-Driven Destination ellipsis (…) button.

The Message-Driven Destination property editor opens.

2. Identify the message-driven bean as a queue consumer.

a. In the Destination Type field, select Queue.

FIGURE 5-6 Message-Driven Bean Property Sheet

b. Click OK.

Specifying the Connection Factory

To configure a message-driven bean for a queue connection factory, use the
following procedure:

1. Right-click the logical node of the message-driven bean and choose Properties. In
the Sun Java System AS section, click the Mdb Connection Factory ellipsis (…)
button.

The Mdb Connection Factory property editor opens.

2. Specify the queue connection factory.

a. In the Jndi Name field, type the queue connection factory’s JNDI name.

FIGURE 5-7 shows the value jms/CheckoutQCF in the Jndi Name field.
jms/CheckoutQCF is the queue connection factory that was specified in the
sending web module.
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 97

b. If a user name and password are needed, type them in the Name and Password
fields.

FIGURE 5-7 The Message-Driven Bean Connection Factory Property Editor

c. Click OK.

Specifying the Queue

To configure a message-driven bean for a queue, use the following procedure:

1. Right-click the local node of the message-driven bean and choose Properties. In
the Sun Java System AS section, click the JNDI Name ellipsis (…) button.

The JNDI Name property editor opens.

2. Specify the queue.

In this scenario, use jms/CheckoutQueue. jms/CheckoutQueue is the queue that
was specified in the sending web module.

Coding the onMessage Method

The application server delivers messages to the message-driven bean by calling the
onMessage method of the bean. The message is delivered as a parameter of the
onMessage method. CODE EXAMPLE 5-2 shows the onMessage method. You can see
the message passed as a parameter and where you add your message-handling code.

CODE EXAMPLE 5-2 The onMessage Method

public void onMessage(javax.jms.Message aMessage) {
 // Process the message here.
 }
98 Building J2EE Applications • December 2004

In this scenario, as shown in FIGURE 5-1, the message-driven bean immediately calls a
business method of a session bean in the same EJB module. The session bean
controls the processing of the order, which is typical onMessage behavior. For more
information about writing onMessage methods, see Building Enterprise JavaBeans
Components.

The message-driven bean calls the session bean using an EJB local reference. For
information about how you implement method calls using EJB local references, see
“JNDI Lookup Code for Local EJB References” on page 61 and “Local EJB Resource
References” on page 62.

Assembling the J2EE Application
Figure FIGURE 5-1 shows a web module that sends messages and an EJB module that
receives messages assembled into a J2EE application. The modules are programmed
as described in this chapter. The application is created and the two modules are
added to the application. Both modules have been configured to use
CheckoutQueue and CheckoutQCF. For the message-driven interaction, there is no
need to open the J2EE application property sheet and perform any additional
assembly work.

For information about creating an application and adding modules, see “Creating
the J2EE Application” on page 75.
Chapter 5 Scenario: Web Module and Queue-Mode Message-Driven Bean 99

100 Building J2EE Applications • December 2004

CHAPTER 6

Transactions

This chapter covers the use of Enterprise JavaBeans (EJB) module property sheets to
program container-managed transactions. For bean-managed transactions, see
Building Enterprise JavaBeans Components.

Default Transaction Boundaries
Transaction boundaries are determined by the Transaction Attribute properties of the
enterprise beans involved in the transaction.

When you create an enterprise bean with the integrated development environment
(IDE) EJB wizards and select container-managed transactions, the wizard creates the
enterprise bean with the default value for the transaction attribute property. This
section shows you how to view the default transaction attribute settings and
interpret them.

To open the Transaction Settings property editor and review the default settings, use
the following procedure:

● Right-click the EJB module node and choose Properties. In the Properties section,
click the Transaction Settings ellipsis (…) button.

The Transaction Settings property editor opens.

FIGURE 6-1 shows the Transaction Settings property editor for the CatalogData EJB
module that was covered in Chapter 3. The values displayed in FIGURE 6-1 are the
default transaction attribute settings.
101

FIGURE 6-1 Default Transaction Attribute Settings

The default transaction attribute settings are displayed in the EJB or Method -
Trans-attribute field. To understand this display, notice the following features:

■ Every enterprise bean in the module appears in this display. Each enterprise bean
is represented by a node.

■ Each enterprise bean name is followed by the transaction attribute of the bean.
For example, the first node in FIGURE 6-1, CatalogManagerBean, is followed by
the word Required. Required is the default setting for the transaction attribute
property. In FIGURE 6-1, all of the enterprise beans have the default setting.

■ The nodes that represent enterprise beans can be expanded to display nodes that
represent the methods of each enterprise bean. In FIGURE 6-1, all of the enterprise
bean nodes are expanded.

■ Methods have their own transaction attribute values. The transaction attribute
values appear after the method names. If the transaction attribute value is null,
the method inherits its transaction attribute value from the enterprise beans.

■ In FIGURE 6-1, none of the method nodes displays a transaction attribute value. All
of the methods inherit the Required value, which is the default setting.
102 Building J2EE Applications • December 2004

Required is one of the transaction values defined in the Java 2 Platform, Enterprise
Edition Specification. The rules for methods that have the Required transaction
attribute are as follows:

■ If a method with the Required attribute is called without an active transaction,
the application server starts a new transaction.

■ If a method with the Required attribute is called with an active transaction in
progress, the application server executes the method within the active transaction.

This behavior is the default for enterprise bean methods.

Redefining the Transaction Boundaries
A business transaction in an EJB module often spans several enterprise beans. A
common architecture for enterprise bean business logic is one session bean and
several entity beans. Clients call the session bean, and then the session bean calls
methods of the entity beans.

For example, the client has data for two new related database records. The session
bean generates database inserts by calling create methods of the two entity beans.
The two database inserts must be in the same transaction. FIGURE 6-2 shows a
transaction of this type.

FIGURE 6-2 Complex Transaction
Chapter 6 Transactions 103

When you assemble these entity beans into an EJB module, you want the application
server to recognize the boundaries of the business transaction. You want the
application server to include all of the work that the EJB module performs after a
client call in a single database transaction. You want the application server to do the
following:

■ Open a transaction when a client calls the session bean

■ Keep the transaction open while the session bean calls the entity beans

■ Close the transaction when the last call from the session bean to an entity bean
returns and the session bean method that was called by the client completes

If the application server recognizes these transaction boundaries, all of the work
performed by the EJB module will be committed or rolled back together.

To configure transaction boundaries, open the Transaction Settings property editor.
Modify the transaction attributes of the enterprise beans involved in the transaction.

The procedure that follows demonstrates editing the transaction attribute settings.
This procedure changes the default transaction settings that are shown in FIGURE 6-1
to transaction attribute settings that produce the transaction boundaries shown in
FIGURE 6-2.

To modify transaction attributes, use the following procedure:

1. Right-click the EJB module node and choose Properties. In the Properties section,
click the Transaction Settings ellipsis (…) button.

The Transaction Settings property editor opens.

2. Change the transaction attributes of the session bean methods to RequiresNew.

You want to change the behavior of the CatalogManagerBean methods so that a
call to either of its business methods (getAllItems and getOneItemDetail)
starts a new transaction. Changing the transaction attribute to RequiresNew
accomplishes this result.

a. Click a session bean method to select it.

b. Change the value of the Trans-attribute field to RequiresNew.

Notice that the new transaction attribute value appears after the method node.

3. Change the transaction attributes of the entity bean methods to Mandatory.

You want to change the behavior of the entity bean methods so that these methods
execute within the boundaries of the transactions opened by the session bean
methods. Changing the transaction attribute to Mandatory accomplishes this result.
It tells the application server that these methods can only be executed if a transaction
is already in progress.

a. Click an entity bean method to select it.
104 Building J2EE Applications • December 2004

b. Change the value of the Trans-attribute field to Mandatory.

Notice that the new transaction attribute value appears after the method node.

4. Click OK to close the editor and save your changes.

FIGURE 6-3 shows the Transaction Settings property editor with the new transaction
attributes settings.

FIGURE 6-3 Modified Transaction Settings

The transaction boundaries now match the business transactions. The changes that
are visible in the property editor are described in the following list:

■ The transaction attributes of the session bean methods have been set to
RequiresNew because you want the container to open a new transaction
whenever a client calls one of these methods.

■ The transaction attributes of entity bean business methods have been set to
Mandatory, which means that these methods must be called with a transaction in
progress. You want these methods to be called after the session bean has opened a
transaction, and you want these methods to execute entirely within the
boundaries of the session bean’s transaction.

■ Notice that the transaction attributes were modified on the method level, and the
method nodes now display the new transaction attribute values after the method
names.
Chapter 6 Transactions 105

For each EJB module that you work with, you must analyze the business logic in the
module and determine what transaction boundaries are implied by the logic. Then
use the Transaction Attribute property editor to implement those transaction
boundaries. Set the transaction attributes of the enterprise beans, or the individual
methods, involved in those transactions to specify the transaction boundaries.
106 Building J2EE Applications • December 2004

CHAPTER 7

Security

Securing an application limits access to its features and functions. Limiting access to
its features and functions limits access to the data that the application manages.

Java 2 Platform, Enterprise Edition (J2EE platform) applications are secured by
working with application resources and user roles. The two concepts are defined in
the following list:

■ Resources are visible or callable features of the applications. For Enterprise
JavaBeans (EJB) modules, resources are public EJB methods declared on home or
remote interfaces. For web modules, resources are URL patterns that are mapped
to JavaServer Pages (JSP), servlet methods, and other components.

■ Roles are names that are associated with users.

J2EE applications are secured by mapping resource to roles. When a resource is
called, the caller must supply a role name that is authorized to access the resource. If
the caller cannot supply an authorized role, the call is rejected. In J2EE applications,
the application server verifies the caller’s role before allowing the caller to execute
the resource.

The authorized combinations of roles and resources are declared in deployment
descriptors. The application server reads them from the deployment descriptors and
applies them. This process is known as declarative security.

The tasks that you perform to secure a J2EE application are described in the
following list:

■ You declare the roles.
■ You specify which roles are permitted to access the resources.
107

For example, suppose you are developing a web module that works with human
resources data. The specification for the module tells you which web resources are
available to all employees for maintenance of their personal information and which
web resources are available only to human resources clerical roles, to human
resources supervisory roles, to auditing roles, and so on. You declare security roles
that represent these types of users and map the resources in your web module to
these roles.

Securing an EJB module is similar. The specification for the module identifies
different types of users and tells you which types of user are allowed to access the
data that is returned by the enterprise bean methods. You declare security roles that
represent these groups of users and map the EJB methods in the module to the
appropriate roles.

In general, you set up J2EE security on module property sheets. You declare a set of
roles for the module. You map the module’s resource to the set of roles declared in
the module.

When modules are assembled into an application and deployed, you map the roles
declared in the modules to the actual user names and group names in the
application server environment. You map the roles to users and groups on the J2EE
application’s property sheet. You perform this mapping when the application is
deployed into an environment, like a production environment, that has declared
users and groups.

The sections that follow show you how to use the integrated development
environment (IDE) to set up security for web modules and EJB modules and how to
merge several sets of security declarations when you assemble modules into an J2EE
application.

Web Module Security
Web modules have several property editors and dialog boxes for declaring security
roles and mapping security roles to web resources. This section covers these
property editors and dialog boxes in two separate tasks:

■ Declaring security roles for web modules

■ Defining the web resources that you want to secure and mapping the resources to
security roles

Each task is covered in its own section.
108 Building J2EE Applications • December 2004

Declaring Security Roles for Web Modules

To declare web module security roles, use the following procedure:

1. Right-click the web module’s web node and choose Properties. In the Security
section, click the Security Roles ellipsis (…) button.

The Security Roles property editor opens.

2. Click the Add button.

The Add Security Role dialog box opens.

3. Define a new security role.

a. In the Role Name field, type a name for the new security role.

b. In the Description field, type a brief description of the role.

A description is useful when you merge the security roles of several modules that
are assembled into an application. It is also useful when you map security roles to
the users and groups that are in an application server environment.

c. Click OK to close the dialog box.

FIGURE 7-1 shows the Security Roles property editor after two roles have been
declared, ME and EveryoneElse.

FIGURE 7-1 The Security Roles ME and EveryoneElse Declared for the Web Module

4. Click OK again to close the property editor.
Chapter 7 Security 109

Defining Web Resources and Mapping Resources to Security
Roles

To define and secure a web resource, use the following procedure:

1. Right-click the module’s web node and choose Properties. In the Security section,
click the Security Constraints ellipsis (…) button.

The Security Constraints property editor opens.

2. Click the Add button.

The Add Security Constraint dialog box opens.

3. Click the Add button on the Add Security Constraint dialog box.

The Add Web Resource Collection dialog box opens.

4. Define a web resource.

a. In the Resource Name field, type a name for the resource.

b. In the URL patterns field, type a URL pattern.

The URL pattern must already be defined in the module. FIGURE 7-2 shows field
values that define the URL pattern /allItems as a web resource. This URL
pattern is already mapped to the servlet AllItemsServlet. The values in
FIGURE 7-2 set up a web resource for executing AllItemsServlet. To see how
the URL pattern /allItems is mapped to the servlet AllItemsServlet, see
“Mapping URLs to the Servlets” on page 44 and “Setting Up JSP Pages” on
page 48.
110 Building J2EE Applications • December 2004

FIGURE 7-2 Defining a Web Resource Named allItems

Notice that you can define the web resource to apply to all of the HTTP methods
associated with the URL pattern or just a subset of them.

c. Click OK to close this dialog box and return to the Add Security Constraint
window.

FIGURE 7-3 shows the Add Security Constraint window after two web resources
are set up, under the names allItems and itemDetail.
Chapter 7 Security 111

FIGURE 7-3 The allItems Resource in the Add Security Constraints Dialog Box

5. Secure the resource by specifying any constraints on access to the resource.

a. Click a resource to select it.

b. Use the fields on the Add Security Constraints dialog box to describe the
constraints on accessing the resource.

c. To use security roles as constraints, click the Apply Authorization Constraint
check box, and then select one or more of the roles in the Roles field.

In FIGURE 7-4, the allItems resource is selected. The EveryoneElse role is also
selected. These selection specify that the allItems resource must be called with
the EveryoneElse role. Callers with other roles will be rejected.
112 Building J2EE Applications • December 2004

FIGURE 7-4 Specifying Constraints for the Web Resource Named allItems

d. Click OK to save the constraints you have specified and return to the Security
Constraints property editor.

6. Click OK again to save your work and return to the property sheet.

Programmatic Security for Web Modules

If any of the web components in your module use programmatic security, you must
map the security role references used in the method code to security roles declared
on the module property sheet.

Web components that use the programmatic security feature contain code that
accesses the caller’s credential directly and performs verification beyond the
verification that is performed by the application server’s declarative security
mechanism. CODE EXAMPLE 7-1 shows a few lines of method code. This code uses a
security role reference name roleRefMe.
Chapter 7 Security 113

CODE EXAMPLE 7-1 Method Code Using the roleRefMe Security Role Reference

Security role references like roleRefMe are placeholders for actual reference names.
The method code is written before the roles are declared at the module level, and the
actual role name is not known. When the module is assembled, the security role
reference is declared and mapped to a declared security role.

To declare a security role reference and map it to a security role, use the following
procedure:

1. Right-click the module’s web node and choose Properties. In the Deployment
section, click the Servlets ellipsis (…) button.

The Servlets property editor opens.

2. Select the servlet that contains the security role reference and click the Edit
button.

The Edit Servlet dialog box opens.

3. Click in the Security Role References field and click Add.

The Add Security Role Reference dialog box opens.

4. Declare the security role reference and map the security role reference to a role.

a. In the Role Ref Name field, type the role reference name that was used in the
method code.

b. In the Role Ref Link field, type the name of the existing security role to which
the reference name will be linked.

c. Click OK to close the dialog box and return to the Edit Servlet dialog box.

FIGURE 7-5 shows the Edit Servlet dialog box. The security role reference named
roleRefMe is mapped to the role ME.

...
context.isCallerInRole(roleRefMe);
...
114 Building J2EE Applications • December 2004

FIGURE 7-5 The Security Role Reference Named roleRefMe Mapped to the Role ME

When the method code executes, it will map the role reference to the role ME and test
the caller’s credential for the role named Me. Security roles must be declared on the
module property sheet before you can perform this type of mapping.
Chapter 7 Security 115

EJB Module Security
EJB modules have several property editors and dialog boxes for declaring security
roles and mapping security roles to enterprise bean methods. This section covers
these property editors and dialog boxes in two separate tasks:

■ Declaring security roles for EJB modules
■ Mapping enterprise bean methods to security roles

Each task is covered in its own section.

Declaring EJB Module Security Roles

To declare security roles for an EJB module, use the following procedure:

1. Right-click the EJB module node and choose Properties. In the Properties section,
click the Security Roles ellipsis (…) button.

The Security Roles property editor opens.

2. Click the Add button.

The Add Security Role dialog box opens.

3. Type in the values that define a role.

a. In the Name field, type a name for the role.

b. In the Description Field, type a description of the role.

A description is useful when you merge the security roles of several modules that
are assembled into an application. It is also useful when you map security roles to
the users and groups that are in a deployment environment.

c. Click OK.

The Add dialog box closes and you return to the Security Roles property editor.
FIGURE 7-6 shows the Security Roles property editor after two roles have been
declared, Me and EveryOneElse.
116 Building J2EE Applications • December 2004

FIGURE 7-6 EJB Module’s Security Roles Property Editor

Mapping Security Roles to Method Permissions

After declaring security roles for the module, use the roles to limit access to the
enterprise bean methods in the module.

Note – To map security roles, work with included EJB nodes. These subnodes of an
EJB module represent enterprise beans in the module.

To map security roles to method permissions, use the following procedure:

● Right-click an included EJB node and choose Properties. In the Properties section,
click the Method Permissions ellipsis (…) button.

This Method Permissions property editor opens.

The Method Permissions property editor is a table, with a row for each of the
enterprise bean’s methods and a column for each security role that has been declared
for the module. FIGURE 7-7 shows the property editor for CatalogManagerBean.
The two security roles declared in CatalogData EJB module, EveryoneElse and
Me, are represented by columns.
Chapter 7 Security 117

FIGURE 7-7 EJB Method Permissions Property Editor

There are many ways to use the Method Permissions property editor.

■ The buttons in the upper panel let you apply permissions globally. You can allow
any user to call any method or deny all access.

■ A finer focus of control is available if you select Set Role(s) for Access to All
Methods. You can use the small table below this option to choose from the roles
declared for the module. If you put a check in a column, the role will be given
permission to execute all of the enterprise bean’s methods. In FIGURE 7-7, the
EveryOneElse column is checked. As a result, users with this role can execute
any of the enterprise bean’s methods. The Me column was not checked. Users with
the Me role cannot execute any of the enterprise bean’s methods.
118 Building J2EE Applications • December 2004

■ The finest focus of control is available when you work in the lower table. Click in
a row, and you can define permissions for just one method. Setting permissions
for one method is entirely independent of the settings for the other methods in
the editor.

For example, you could click the second row, for the getAllItems method, and
set the Access field to All Users. This setting lets any role execute the
getAllItems method. You could then click the row that represents another
method, set the Access field to Set Role, and select roles individually for the
selected method.

Programmatic Security for EJB Modules

If any of the enterprise beans in your module use programmatic security, you must
map the security references used in the method code to the security roles declared in
the EJB module’s property sheet.

Enterprise beans that use the programmatic security feature contain method code
that accesses the caller’s credential directly and performs verification beyond the
verification that is performed by the application server’s declarative security
mechanism. CODE EXAMPLE 7-2 shows a few lines of method code. This code uses a
security role reference name everyOne.

CODE EXAMPLE 7-2 Method Code Using the everyOne Security Role Reference

Security role references are placeholders for actual reference names. The method
code is written before the roles are declared at the module level, and the actual role
name is not known. When the module is assembled, the security role reference is
declared and mapped to a declared security role.

To declare a security role reference and map it to a security role, use the following
procedure:

1. Right-click an EJB logical node and choose Properties. In the Reference section,
click the Security Role References ellipsis (…) button.

The Security Role References property editor opens.

2. Click the Add button.

The Add Security Role dialog box opens.

...
context.isCallerInRole(everyOne);
...
Chapter 7 Security 119

3. Declare the security role reference and link it to a security role.

a. In the Name field, type the security role reference name that is used in the
method code.

b. In the Security Role Link field, type the name of security role. You can also
choose to leave the field blank, which leaves the reference declared but
unlinked.

c. Click OK.

The Add Security Role dialog box closes, and you return to the Security Role
References property editor. FIGURE 7-8 shows the Security Role References property
editor displaying the security role reference used in CODE EXAMPLE 7-2, named
everyOne. The role is unlinked.

FIGURE 7-8 The Security Role Reference everyOne Declared

In this scenario, the everyOne security role reference is linked in the EJB module’s
Security Roles property editor. You perform this mapping when the enterprise bean
is assembled into an EJB module.

To link a security role reference in the EJB module’s Security Role References
property editor, use the following procedure:

1. Right-click an EJB module node and choose Properties. In the Properties section,
click the Security Role References ellipsis (…) button.

The Security Role References property editor opens.

2. Evaluate the references in the module.

The EJB module Security Role References property editor shows all of the security
role references in the module and indicates whether they are linked or unlinked. In
FIGURE 7-9, the everyOne reference is unlinked.
120 Building J2EE Applications • December 2004

FIGURE 7-9 The everyOne Security Role Reference in the EJB Module Property Editor

3. Link the unlinked roles.

a. Click a reference to select it.

b. In the Security Role Link field, select the appropriate security role.

c. Click OK.

FIGURE 7-10 shows the EJB module Security Role References property editor. The
security role reference named everyOne link has been mapped to the security role
named EveryOneElse.
Chapter 7 Security 121

FIGURE 7-10 EJB Module’s Security Role Reference Property Editor

J2EE Application Security
When you assemble a J2EE application, determine whether it has been secured. Look
for the following conditions:

■ If security roles are not defined in one or more modules in your application, you
must define security roles at the module level. See “Web Module Security” on
page 108 and “EJB Module Security” on page 116.

■ If the modules are secured, they might contain similar roles with different names
in different modules. If this is true, you must map all of the equivalent roles to the
same role in the J2EE application’s property sheet.

To map security roles at the J2EE application level, use the following procedure:

● Right-click the application node and choose Properties. In the Properties section,
click the Security Roles ellipsis (…) button.

The J2EE application’s Security Roles property editor opens. FIGURE 7-11 shows this
editor with the security roles that are defined in the modules.
122 Building J2EE Applications • December 2004

FIGURE 7-11 Security Roles in the J2EE Application’s Security Roles Property Editor

The security roles that are declared in the modules are displayed in the first two
columns. Each role is identified by its module and role name. Each module-level
security role is mapped to a default application-level role. The application-level roles
have the same names as the module-level role. The application-level roles are
displayed in the Equivalent To column.

For example, the first security role displayed in the editor is EveryOneElse from
the CatalogData module. This role is mapped to an application level role that is
named EveryOneElse.

FIGURE 7-11 shows a discrepancy in the security role mapping. CatalogWebModule
has a role named myself and the CatalogData module has a role named Me. These
roles are equivalent, and you would prefer to have only one application-level role.

In the FIGURE 7-12, this discrepancy is resolved by remapping the role myself to the
role Me.
Chapter 7 Security 123

FIGURE 7-12 The Role Named myself is Mapped to the Role Named Me

Both module-level roles, Me and myself, are now mapped to the same application-
level role, Me.

You can also create an entirely new role at the application level and map several
module-level roles to it. Suppose one of the modules in your applications has a role
named sa and the other has a role named sadmin. You decide to resolve this
discrepancy by creating a new application-level role named sysadmin. To do this,
click Edit Application Roles and declare a new application-level role named
sysadmin.

After declaring the sysadmin role, return to the Security Roles property editor.
Remap both of the module-level roles by clicking in their “Equivalent To” column.
This action will display the application-level roles. Select the sysadmin role.
124 Building J2EE Applications • December 2004

CHAPTER 8

Deploying and Executing J2EE
Modules and Applications

The integrated development environment’s (IDE) deployment and execution feature
supports the iterative development of enterprise applications. You can develop and
assemble an application, deploy the application, and execute the application, all
without leaving the IDE.

After you execute your application, you can modify the source code or the
properties, redeploy the application, and execute it again. You do not need to
reassemble before you redeploy, unless your testing uncovers a problem with the
assembly.

This chapter describes the basics of deploying and executing assembled applications
from within the IDE.

Visual Representations of Servers
To deploy an application to an application server, you must interact with the
application server. To simplify your interaction with the application server, the IDE
represents application servers as nodes in the Runtime window.

Like other window nodes, the application server nodes have property sheets and
menu commands. You use these property sheets and menu commands to deploy and
execute your applications from inside the IDE. Depending on the application server
product you are working with, you might also be able to administer the application
server.

This section identifies and describes the server nodes. It also describes some basic
tasks you can perform with these nodes.
125

The Server Registry Node
FIGURE 8-1 shows the Runtime window with the nodes you use for server
configuration, deployment, and execution. The top level node is the Server Registry
node. This node groups the other server-related nodes. It has no commands or
properties of its own.

FIGURE 8-1 Server Registry Node

The Server Registry in FIGURE 8-1 is from an installation of the IDE on the Microsoft
Windows platform. This particular installation is a stand-alone installation by a user
with administrative, or superuser, privileges. When the IDE is installed by a system
administrator for a user who does not have administrative privileges, the host names
and port numbers displayed by the nodes are different. The host names and port
numbers will also be different for multi-user installations.

For a complete description of the different installation options, see Sun Java Studio
Enterprise 7 Installation Guide.
126 Building J2EE Applications • December 2004

The Installed Servers Node
The Installed Servers node groups the server product nodes. It has no commands or
properties of its own. In FIGURE 8-1, the Installed Servers node has subnodes for two
server products that are included in most installations of the IDE, the Sun Java
System Application Server and the Tomcat web server.

The Server Product Nodes
Below the Installed Servers node are nodes for specific web and application server
products. Each of these server product nodes represents an installed IDE server
plug-in.

The server product nodes have contextual menus and property sheets. The
capabilities of each sever product node are determined by the server product and the
plug-in module.

Procedures vary with server product, but, in general, to use an application server,
configure the appropriate server product node to recognize a specific installation of
the server product. You may also use the server product node to create a server
instance.

In FIGURE 8-1, the Installed Servers node has subnodes for the two plug-ins that are
included in most installations of the IDE, the Sun Java System Application Server
Standard Edition 7 plug-in and the Tomcat web server plug-in. The next section
describes the Sun Java System Application Server Standard Edition 7 node and its
subnodes.

For information on setting up other application server products with the IDE, see the
Sun ONE Application Server 7 Getting Started Guide.

The Sun Java System Application Server Nodes
This section identifies and describes the nodes that represent the Sun Java System
Application Server in the Runtime window.

The Sun Java System Application Server 7 Node

The Sun Java System Application 7 server node is for administering the application
server.
Chapter 8 Deploying and Executing J2EE Modules and Applications 127

Installing the IDE creates an application server domain. It also creates an admin
server instance that administers the application server domain. In most cases, you
can do all of your work in the installed application server domain and admin server.

■ You can deploy and execute your applications in the application server domain
that is created by installing the IDE.

■ You can administer this domain with the admin server instance that is created by
installing the IDE.

The Server Registry shown in FIGURE 8-1 contains the application server domain and
admin server that were created by installing the IDE. The admin server instance is
represented by the node just below the Sun Java System Application Server 7 node
that is labeled localhost:4848. You can view the application server domain name by
opening the admin server node’s property sheet.

If you need to, and if you have root or administrative privileges, you can use the Sun
Java System Application Server 7 node to create additional application server
domains and admin servers.

The Admin Server Node

Below the Sun Java System Application Server 7 node is an admin server node. In
FIGURE 8-1, the admin server node is labeled localhost:4848. Admin server nodes
represent instances of the Sun Java System Application Server’s admin server. Each
admin server instance administers an application server domain.

Application server domains and admin server instances are created by installing the
IDE with the Sun Java System Application Server and administering the Sun Java
System Application Server. The type of installation you work with determines how
the application server domain and server instance are created. Some of the
possibilities are described in the following list:

■ If you install the IDE with root or administrator privileges, the installation will
create an initial server domain and admin server instance. FIGURE 8-1 shows a
server domain and admin server instance that was created by the installation
process.

■ If you have standard user privileges, a system administrator will create a server
domain and an admin server instance for your use. You can administer your
domain with the admin server node.

The host name displayed with the admin server node is the name of the machine on
which the application server is running. FIGURE 8-1 shows a stand-alone, single-user
installation, and the application server domain is running on the local host. In a
multi-user installation, the application server might be running on another machine.
128 Building J2EE Applications • December 2004

The port number that is displayed with the admin server is the port number for
communicating with the admin server. This port number is set when the application
server domain and admin server instance are created. FIGURE 8-1 shows the default
port number for a single-user installation on the Microsoft Windows platform.

Some of the tasks you perform with the admin server node are starting and stopping
server instances in the server domain that is controlled by the admin server.

Server Instance Node

Below the admin server node is an application server instance node. In FIGURE 8-1,
the application server instance node is labeled server1(localhost:8080). The
application server instance node represents a server instance.

When you deploy a module or an application, you deploy to a specific server
instance. You must have a server instance node and the instance it represents must
be running before you can deploy and execute.

FIGURE 8-1 shows a server instance that was created by installing the IDE. You can
also create server instances by administering you application server domain.

Admin Server and Server Instance Startup

To start the admin server and server instance, use the following procedure:

1. If you so choose, you may set the application server home directory. Right-click
the application server and choose Properties. Click the Sun Java System
Application Server Home ellipses (...) button and choose the preferred home
directory.

2. Right-click the Admin Server node and choose Start.

A progress monitor window opens. When the admin server starts, the progress
monitor closes. A server instance node is displayed below the admin server node.

3. Right-click server instance node and choose Status.

The Status dialog box opens. The Status field displays the status of the server
instance, which is Stopped.

4. Click Start Server.

The Status dialog box displays a message to tell you that it is starting the application
server instance. When the server instance starts, the Status field displays Running.

5. Click Close.

The server instance is ready for use.

The contextual menu lists other tasks you can perform with the admin server node.
Chapter 8 Deploying and Executing J2EE Modules and Applications 129

The Registered Resource Nodes

Below the server instance node is a set of nodes that represent the named resources
available to applications running in the server instance. FIGURE 8-1 shows nodes for
the resources that are used in and created by the scenarios in this book:

■ Under the nodes labeled Registered JDBC Connection Pools, Registered JDBC
DataSources, and Registered Persistence Managers are nodes that represent the
installed PointBase database named sample. These resources were preconfigured
when the IDE was installed. In one scenario, the CatalogData Enterprise
JavaBeans (EJB) module is configured to use the PointBase sample database by
typing in these resource names. For the procedure that configures the
CatalogData EJB module, see “Specifying a Data Source for the Entity
Enterprise Beans” on page 66.

■ Under the node labeled Registered JMS Resources are nodes for queue and queue
connection factory resources that were created in a scenario in this manual. For
the procedures that create and register these resources, see “Setting up the
Application Server” on page 87. For procedures that use these resources to
configure an application, see “Programming the Web Module” on page 90 and
“Programming the EJB Module” on page 96.

The Deployed Application Nodes

Underneath the registered resource nodes is a set of nodes that represent modules
and applications deployed to the server instance. FIGURE 8-1 shows a node for an
application named CatalogApp. The scenarios in this manual cover programming
and deploying CatalogApp. For the procedure that deploys CatalogApp, see
“Creating the J2EE Application” on page 75.

The Unregistered Resource Nodes

Below the deployed application nodes is a set of nodes that represent unregistered
server resources. These nodes are subnodes of the admin server node, and they
represent resources that are not yet registered with a server instance.

These nodes have menu commands for creating and registering new resources. A
scenario in this book uses the Unregistered JMS Resources node to create a queue
and queue connection factory. For the procedure that creates resources, see “Setting
up the Application Server” on page 87.
130 Building J2EE Applications • December 2004

The Default Server Nodes
These nodes identify the server instances that are currently designated as the default
server instances. When you deploy an application, it is deployed to the default
server instance unless you specify otherwise on the application’s property sheet.

In FIGURE 8-1, the default nodes show that the default server for Java 2 Platform,
Enterprise Edition (J2EE platform) applications is a Sun Java System Application
Server.

To make a server instance the default server, use one of the following procedures:

● Right-click the server instance node and then choose Set As Default.

● Right-click the J2EE Applications node under Default Servers and choose Set
Default Server. The Select Default Application Server dialog box opens. Select the
server instance to be used as the default Application Server.

Server-Specific Properties
The modules and applications that you work with have property sheets. You use the
property sheets to identify the services your modules and applications need from the
application server.

Many property sheets have server-specific sections. The server-specific sections list
the properties defined for specific server products.

For example, FIGURE 8-2 shows the Sun Java System AS section of the CatalogData
EJB module property sheet. This section has a CMP resource property, and you use
this property to identify the data source for the CMP entity beans in the
CatalogData module. Notice that the data source named in FIGURE 8-2,
jdo/PointbasePM, appears in FIGURE 8-1 as Registered Persistence Manager of the
Sun Java System Application Server instance.
Chapter 8 Deploying and Executing J2EE Modules and Applications 131

FIGURE 8-2 EJB Module’s Sun Java System AS Section

Using Server Instance Nodes to Deploy
and Execute
This section outlines the procedures for deploying and executing a J2EE application
from within the IDE.

To deploy and execute an application, use the following procedure:

1. Begin with an assembled J2EE application. Review the application for
completeness of assembly.

2. Choose an application server instance.

The application node has an Application Server property. The initial setting of the
Application Server property is Default Application Server. If you proceed
with this setting, the IDE will deploy your application to the server instance that is
currently specified as the default server for J2EE applications.

You can also open the property editor for this property and choose a server instance
by name. The property editor is a browser dialog box that lets you review all server
instances in the server registry and select one.
132 Building J2EE Applications • December 2004

3. Deploy and execute the application by right-clicking the application node and
choosing the Execute command.

This action will begin the deployment process. Monitor the process on the output
window. When deployment is complete, the IDE will execute the application in the
application server’s environment. What you see depends on the application. For
example, if the application contains a web module, the application server will start a
web browser and open the application’s welcome page.

4. You can also deploy and execute in separate steps. Right-click the application and
choose the Deploy command. When deployment is complete, execute the
application yourself.

For example, if the application contains a web module, you can start a web browser
outside the IDE and open the application’s welcome page.
Chapter 8 Deploying and Executing J2EE Modules and Applications 133

134 Building J2EE Applications • December 2004

APPENDIX A

How the IDE Supports Deployment
of J2EE Modules and Applications

This appendix briefly describes the server plug-in. The server plug-in is the
integrated development environment’s (IDE) mechanism for deploying and
executing Java 2 Platform, Enterprise Edition (J2EE platform) modules and
applications. The server plug-in provides the following IDE features:

■ Server management nodes in the Runtime window
■ Server-specific deployment property sheets for each component, module, and

application
■ Deploy, execute, and debug J2EE applications or modules

This appendix focuses on the Deploy and Execute menu commands. It describes
processing required to deploy an application and explains how the plug-ins perform
this processing.

If you understand how the deployment facility works, you can use it effectively.
Procedures for using the deployment facility are included in several scenarios in this
book.

The Deployment Process
Deployment is the process of delivering the executable form of a module or an
application to a J2EE application server. The executable form that is delivered to the
server as an archive contains compiled versions of the source files that make up the
module or application. The compiled files are accompanied by a deployment
descriptor that describes the contents and organization of the archive. The archived
files are installed in directories that are managed by the application server.

When you execute a module or application, the application server executes the
installed copy of the application in a process that is controlled by the application
server. This process provides the necessary runtime environment.
 135

To deploy successfully, the application source files must be compiled in a manner
that is compatible with the specific application server product. The deployment
descriptor must include all the information that is required by the specific
application server product.

These needs are met by identifying a target application server for the product,
compiling the source files, and generating the deployment descriptor specifically for
the target application server.

The Server Plug-In Concept
To enable the IDE to deploy to a variety of web and application servers, the concept
of a server plug-in has been developed. A plug-in is an IDE module that manages
the interaction between the IDE and a specific server product. When you deploy an
application, you choose the server to which it will be deployed. The IDE uses the
appropriate plug-in to process your Deploy command. This plug-in enables the IDE
to generate the appropriate commands for the server’s deployment tool and include
the appropriate server-specific deployment descriptor files in the files it passes to the
server. This process is illustrated in FIGURE A-1.
136 Building J2EE Applications • December 2004

FIGURE A-1 Server Plug-Ins Enable the IDE to Communicate With J2EE Runtime
Environments

For the application developer who is deploying an application, the plug-ins provide:

■ Visual representations of server product nodes in the IDE. There is a plug-in for
each server product node. For more information on the appearance and use of
server product nodes, see “The Server Product Nodes” on page 127.

■ Visual representations of running server instances as subnodes of the server
product nodes. You can choose any server instance represented in the Runtime
window as the target for a deployment. For more information on the appearance
and use of the server instance nodes, see “Server Instance Node” on page 129.

■ Server-specific sections on component, module, and property sheets. These
sections show the non-standard properties required by a server product and
prompt developers for the values required by a server product.

■ A mechanism for processing Deploy commands specifically for the selected
server. The details of this processing are covered in the next section.
Appendix A How the IDE Supports Deployment of J2EE Modules and Applications 137

The Deployment Process
This section summarizes the processing performed when you deploy and execute an
application.

1. Assemble your application. Use property sheets to supply J2EE standard
deployment descriptor elements and the non-standard elements required by the
server.

2. After you assemble the application, specify a target server instance.

3. Choose the IDE’s Deploy command to begin the deployment process.

4. The IDE identifies all of the files needed to create a web archive (WAR) or
enterprise archive (EAR) file for the application. This file includes the J2EE
components identified in the deployment descriptor and any Java classes or static
resources used by those files. The IDE identifies all file dependencies in the
components.

5. The IDE identifies the server product to which the application is being deployed.

6. The plug-in validates the files for the WAR or EAR file.

7. The IDE generates the WAR or EAR file for the application. This file includes a
J2EE deployment descriptor, separate files with server-specific deployment tags,
and any stub or skeleton classes required for remote method invocations.

8. The plug-in passes the WAR or EAR file to the server.

Depending on the server product, the plug-in might automatically clean up
earlier deployments of the same application or attempt to resolve conflicts with
applications already deployed to the server instance.

9. The server takes over, reads the deployment descriptors and the server-specific
deployment files, and deploys the WAR or EAR file according to its own
standards.

When this process is complete, the IDE will automatically start a web browser and
open the application’s welcome page. If you chose to deploy and execute separately,
you can start a web browser and one of the application’s web pages.
138 Building J2EE Applications • December 2004

Deploying Components Other Than Web
Modules and J2EE Applications
Web modules and J2EE applications are the only items that can actually be deployed
to servers and executed. However, you might want to test smaller units of business
logic that you are developing. Java Studio Enterprise has the capability for a user to
to generate a test application and test clients for a single component. For more
information on these features, see Building Web Components and Building Enterprise
JavaBeans Components.
Appendix A How the IDE Supports Deployment of J2EE Modules and Applications 139

140 Building J2EE Applications • December 2004

Index
A
application servers

accessing databases with, 66
and environment entries, 51
and transactions, 101
creating instances, 128
in the IDE’s server registry, 126
in the Runtime window, 127
managing from within the IDE, 125
represented by nodes, 125
runtime services provided by, 19
server-specific properties, 131
setting up databases as server resources, 66, 67,

70
specifying for applications, 132

B
bean-managed persistence

code required for, 68
specifying databases for, 68

C
container-managed transactions

at runtime, 22
defining with transaction attribute, 20, 101, 104

context root property, 45, 77

D
data sources

databases defined as data source resources, 66
specifying, 68

databases

accessing through application servers, 66
accessing with entity enterprise beans, 60
for bean-managed persistence, 68
modeled by entity enterprise beans, 57
PointBase installed with the IDE, 66, 70
resource references for, 66
setting up as data source resources, 67, 70
specifying, 66

dependencies
of EJBs, 71
of modules, 77
recognized by the IDE, 66, 71

deployment
procedure for, 29
Sun Java Studio Enterprise mechanism for, 136
use of deployment descriptors, 28

deployment descriptors
are XML files, 18
EJB references in, 42
for EJB modules, 27, 29
for environment entry references, 51
for J2EE applications, 28, 29, 75, 76
for requesting application server services, 19, 26
for web modules, 27, 28
generated by the IDE, 19, 22, 25, 26, 28
in deployment process, 18, 28, 31
purpose of, 18
represented by property sheets, 28
used to identify external resources, 24

E
EJB modules

adding enterprise beans to, 65
 141

adding to J2EE application, 76
creating, 64
deployment descriptors, 29
in the Filesystems window, 27
internal design of, 57
locating in your filesystem, 64
nodes for, 64
properties of, 63
relationship of module node to source code, 27

EJB references
for EJB modules, 61
for local interfaces, 61
for remote interfaces, 39
in web components, 42
in web modules, 42
linking at the application level, 79
linking at the module level, 43
local, 61
unlinked at the module level, 43

enterprise bean references
linking in application property sheets, 79
linking in module property sheets, 42

entity enterprise beans
specifying data sources for, 68
used to access data sources, 57, 60

environment entries
overriding, 82
references for, 51
setting up on module property sheets, 51

error pages, setting up for web module, 48
executing with URLs, 45
execution

from within the IDE, 31
procedure for, 31

extra files, 71

H
home pages, 37

I
installed servers node, 127
iterative development, 125

J
J2EE applications

adding modules to, 76
are distributed, 22

assembling, 75
comprised of modules, 18
creating, 75
defined by deployment descriptors, 18
deploying, 29, 125, 132
deployment descriptors for, 29, 75
executing, 31, 132
in the Filesystems window, 28
locating in your filesystem, 75
nodes for, 25, 75
properties of, 75
relationship of node to source code, 28
setting web context for, 78
specifying an application server, 132
using external resources, 24
visual representations of, 25

JNDI lookups
examples of, 61
for EJB local references, 61
for EJB remote references, 40, 42
for environment entry references, 52
for local interfaces, 61
for queue connection factories, 91
for queues, 91
for resource references, 68

JNDI names
assigning to data sources, 66, 67, 70
for data sources, 66
for queue connection factories, 88
for queues, 88

JSP pages
appearance in web modules, 27
executing, 49
URLs for, 49

L
local EJB resource reference, 62
local interfaces

and generated test clients, 60
compared to remote interfaces, 60
creating, 60
JNDI lookup for, 61

local references, JNDI lookup for, 61

M
message-driven enterprise beans, configuring as

queue consumers, 96
messages
142 Building J2EE Applications • December 2004

creating, 91
sending, 91

method permissions, using security roles, 117
modules

combined into applications, 17
comprised of components, 18
defined by deployment descriptors, 18
deployment descriptors for, 19
in J2EE applications, 26
interactions among, 22, 23
nodes for, 25

N
nodes

for application servers, 125
for EJB modules, 27, 64
for enterprise beans in EJB modules, 27, 64
for installed application servers, 127
for J2EE applications, 75
for modules in J2EE applications, 75
for web components, 26
for web modules, 26
logical, 27

P
properties

mapped to deployment descriptor tags, 26
of EJB modules, 63, 101
of J2EE applications, 75
server-specific, 29, 63, 75, 131
standard, 29

property editors, 29
property sheets

for nodes, 26
represent deployment descriptor tags, 28

Q
queue connection factories

as application server resources, 88
calling methods of, 91
resource environment references for, 90
using custom, 89
using default, 89

queues
as application server resources, 88
calling methods of, 91
creating, 88

reading messages from, 96
resource environment references for, 90

R
references

for environment entries, 51
resource references for databases, 66

resource environment reference
for remote EJB reference, 42

resource reference
for local EJB reference, 62

resource references
EJB module property settings, 69
JNDI lookup for, 68
to specify databases, 66

S
security

for enterprise bean methods, 117
for web resources in web module, 108

security role references
mapping to security roles, 114
using in business logic, 114

security roles
and EJB method permissions, 116, 119, 120
for EJB modules, 116, 119, 120
for web modules, 109
mapped to security role references, 114
mapping to web resources, 110

server plug-ins
manage interaction between IDE and server, 136
represented by server product nodes, 127

server product nodes
configuring, 127
in Runtime window, 127
relationship to server plug-ins, 127

server registry in the Runtime window, 126
server-specific properties, 29, 63, 75
servlets, 45

alternate URL mapping, 46
appearance in web modules, 27
changing default URLs, 47
created by IDE’s servlet template, 39
default URL mapping, 46
default URLs for, 46
executing with URLs, 38
making remote calls to enterprise beans, 39
Index 143

Sun Java System application server
creating server instances, 128
default instance of, 129
default URL path for, 45
installed with the IDE, 67
server product node, 127

T
tag library appearance in web modules, 27
test clients require remote interfaces, 60
transaction attribute

default value for, 102
in deployment descriptor, 20
setting, 101, 104

transaction attribute property, 19
transaction boundaries

controlled by transaction attribute property, 101
default, 101
defined by transaction attribute property, 104
in deployment descriptors, 19
redefining, 103, 104

transactions
container-managed, 19

transfer classes defined, 59

U
URL patterns

as qualifier for web context, 45
default values for, 46
editing, 46
encapsulated in HTML links, 38
for JSP pages, 49
in overall URL paths, 45
in URLs for web resources, 45, 77
used in defining web resources, 111

URLs
changing URLs for servlets, 47
default URLs for servlets, 46
encapsulated in HTML links, 38
for databases, 66
for JSP pages, 49
for web resources, 45, 77
for welcome pages, 37
in HTML links, 38

W
web context

in URL for web resources, 45, 77
place in URL path, 45
setting up for J2EE application, 77
setting up for web module, 45, 77

web modules
adding to J2EE applications, 76
as front ends for J2EE applications, 34
deployment descriptors, 28
directory structure, 26
in the Filesystems window, 26
mounting in the Filesystems window, 26
processing HTTP requests, 34
returning HTML output, 34
setting up error pages, 48
setting web context for, 78
use of EJB references, 40

web resources
defining, 110
mapping to security roles, 112

web servers
creating instances, 128
in the Runtime window, 127
server-specific properties, 131

web.xml node, 26
WEB-INF node, 26
welcome files default names, 38
welcome page as a web site’s home page, 37

X
XML in deployment descriptors, 18
XML tags

for container-managed transactions, 20
written automatically by the IDE, 22
144 Building J2EE Applications • December 2004

	Building J2EE™ Applications
	Contents
	Figures
	Before You Begin
	Assembly, Deployment, and Execution Basics
	Assembly Basics
	J2EE Applications Are Modular
	J2EE Applications Are Supported by the J2EE Runtime Environment
	J2EE Applications Are Distributed

	Visual Representations of Modules and Applications
	Web Modules
	EJB Modules
	J2EE Applications
	Property Sheets

	Deployment Basics
	Execution Basics
	Using This Book

	Scenario: A Web Module
	The Interactions in This Module
	Programming This Module
	Creating the Welcome Page
	Creating the HTML Page
	Identifying Your Page as the Module’s Welcome Page

	Programming the Servlet Methods
	The Method Body
	The EJB Resource References

	Mapping URLs to the Servlets
	Understanding Servlet Mappings
	Examining Default Servlet Mappings
	Editing Servlet Mappings

	Other Assembly Tasks
	Setting Up Error Pages
	Setting Up JSP Pages
	Setting Up Resource Environment Entry References

	Scenario: An EJB Module
	The Interactions in This Module
	Programming This Module
	Creating Remote Interfaces for the Session Enterprise Bean
	Creating Local Interfaces for the Entity Enterprise Beans
	Using the Local Interfaces in the Session Enterprise Bean
	JNDI Lookup Code for Local EJB References
	Local EJB Resource References

	Assembling the EJB Module
	Creating the EJB Module
	Adding Enterprise Beans and Other Resources to the Module
	Specifying a Data Source for the Entity Enterprise Beans
	Other Module Assembly Tasks
	Identifying Extra Files
	Excluding Duplicate JAR Files

	Scenario: Web Module and EJB Module
	The Interactions in This Application
	Programming This Application
	Creating the J2EE Application
	Adding Modules to the J2EE Application

	Setting the Web Context for the Web Module
	Linking the EJB Reference
	Additional Assembly Tasks
	Overriding Environment Entries
	Viewing and Editing Deployment Descriptors

	Scenario: Web Module and Queue- Mode Message-Driven Bean
	The Interactions in This Application
	Programming the Message-Driven Communication
	Setting up the Application Server
	Setting up a Queue
	Setting up a Queue Connection Factory

	Programming the Web Module
	The JNDI Lookup Code
	The Resource Environment Reference for the Queue
	The Resource Reference for the Queue Connection Factory

	Programming the EJB Module
	Configuring the Message-Driven Destination Property
	Specifying the Connection Factory
	Specifying the Queue
	Coding the onMessage Method

	Assembling the J2EE Application

	Transactions
	Default Transaction Boundaries
	Redefining the Transaction Boundaries

	Security
	Web Module Security
	Declaring Security Roles for Web Modules
	Defining Web Resources and Mapping Resources to Security Roles
	Programmatic Security for Web Modules

	EJB Module Security
	Declaring EJB Module Security Roles
	Mapping Security Roles to Method Permissions
	Programmatic Security for EJB Modules

	J2EE Application Security

	Deploying and Executing J2EE Modules and Applications
	Visual Representations of Servers
	The Server Registry Node
	The Installed Servers Node
	The Server Product Nodes
	The Sun Java System Application Server Nodes
	The Sun Java System Application Server 7 Node
	The Admin Server Node
	Server Instance Node
	Admin Server and Server Instance Startup
	The Registered Resource Nodes
	The Deployed Application Nodes
	The Unregistered Resource Nodes

	The Default Server Nodes

	Server-Specific Properties
	Using Server Instance Nodes to Deploy and Execute

	How the IDE Supports Deployment of J2EE Modules and Applications
	The Deployment Process
	The Server Plug-In Concept
	The Deployment Process
	Deploying Components Other Than Web Modules and J2EE Applications

	Index

