
SunSHIELD Basic Security Module
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-1789–10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SunSHIELD, SHIELD, and Solaris are trademarks,
registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, SunSHIELD, SHIELD, et Solaris sont des marques de
fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les
marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 9

1. Installation 13

Enabling BSM 13

Disabling BSM 14

BSM and Client-Server Relationships 15

2. Administering Auditing 17

More on Auditing 18

Audit Startup 18

Audit Classes and Events 19

Kernel Events 19

User-Level Events 19

Audit Records 20

Audit Flags 20

Definitions of Audit Flags 20

Audit Flag Syntax 22

Prefixes to Modify Previously Set Audit Flags 23

The audit_control File 23

Sample audit_control File 24

User Audit Fields in the audit_user File 25

3

Process Audit Characteristics 26

Process Preselection Mask 26

Audit ID 27

Audit Session ID 27

Terminal ID 27

How the Audit Trail Is Created 27

audit_data File 28

Audit Daemon’s Role 28

What Makes a Directory Suitable 29

Keeping Audit Files Manageable 29

The audit_warn Script 29

Using the auditreduce Command 31

Controlling Audit Costs 33

Cost of Increased Processing Time 33

Cost of Analysis 33

Cost of Storage 33

Auditing Normal Users 35

Auditing Efficiently 35

H How to Combine and Reduce audit Files 36

Learning About the Audit Trail 36

More About the Audit Files 37

Handling Nonactive Files Marked not_terminated 39

H How to Create Audit Partitions and Export Them 39

H How to Configure Auditing 41

H How to Plan Audit Configuration 42

Preventing Audit Trail Overflow 45

H How to Prevent Audit Trail Overflow 45

The auditconfig Command 46

4 SunSHIELD Basic Security Module Guide ♦ February 2000

Setting Audit Policies 48

H How to Change Which Events Are in Which Audit Classes 49

Changing Class Definitions 49

3. Audit Trail Analysis 51

Auditing Features 51

Audit User ID 52

Audit Session ID 52

Self-Contained Audit Records 52

Tools for Merging, Selecting, Viewing, and Interpreting Audit Records 52

Audit Record Format 53

Order of Audit Tokens 54

Human-Readable Audit Record Format 54

header Token 55

trailer Token 56

arbitrary Token 56

arg Token 56

attr Token 57

exit Token 57

file Token 57

groups Token 58

in_addr Token 58

ip Token 58

ipc Token 58

ipc_perm Token 59

iport Token 59

opaque Token 59

path Token 59

process Token 60

Contents 5

return Token 60

seq Token 61

socket Token 61

subject Token 61

text Token 62

Using the auditreduce Command 62

How auditreduce Helps in a Distributed System 62

Using auditreduce 63

Other Useful auditreduce Options 64

Using praudit 65

4. Device Allocation 67

Risks Associated With Device Use 67

Components of the Device-Allocation Mechanism 68

Using the Device-Allocation Utilities 69

The Allocate Error State 70

The device_maps File 70

The device_allocate File 71

Device-Clean Scripts 73

Object Reuse 73

Writing New Device-Clean Scripts 75

Setting Up Lock Files 75

H How to Set Up Lock Files for a Device to Be Made Allocatable 75

Managing and Adding Devices 78

H How to Manage Devices 78

H How to Add a New Allocatable Device 78

Using Device Allocations 79

H How to Allocate a Device 80

H How to Deallocate a Device 80

6 SunSHIELD Basic Security Module Guide ♦ February 2000

A. Audit Record Descriptions 81

Audit Record Structure 81

Audit Token Structure 82

acl token 84

arbitrary Token 84

arg Token 85

attr Token 86

exec_args Token 86

exec_env Token 86

exit Token 87

file Token 87

groups Token (Obsolete) 88

header Token 88

in_addr Token 89

ip Token 89

ipc Token 89

ipc_perm Token 90

iport Token 91

newgroups Token 91

opaque Token 92

path Token 92

process Token 92

return Token 93

seq Token 93

socket Token 94

socket-inet Token 94

subject Token 95

text Token 95

Contents 7

trailer Token 96

Audit Records 96

General Audit Record Structure 97

Kernel-Level Generated Audit Records 97

User-Level Generated Audit Records 186

Event-to-System Call Translation 203

B. BSM Reference 219

Index 225

8 SunSHIELD Basic Security Module Guide ♦ February 2000

Preface

The SolarisTM SHIELDTM Basic Security Module (BSM) provides additional security
features, defined as C2 in the Trusted Computer System Evaluation Criteria (TCSEC),
that are not supplied in standard UNIX®. The features provided by the BSM are the
security auditing subsystem and a device-allocation mechanism that provides the
required object-reuse characteristics for removable or assignable devices. C2
discretionary-access control, as well as C2 identification and authentication features,
are provided by the standard Solaris system.

Who Should Use This Book
The SunSHIELD Basic Security Module Guide is intended for the system
administrator whose duties include setting up and maintaining BSM. Familiarity
with basic system administration concepts and with a text editor are helpful.

How This Book Is Organized
Chapter 1 describes enabling and disabling the BSM. Topics include how to enable
the Solaris system to use these additional security features, and how clients and
servers interact in an enabled environment.

Chapter 2 explains the system management and configuration of the auditing
subsystem. Topics include managing audit trail storage, determining global and
per-user preselection, and setting site-specific configuration options.

9

Chapter 3 explains processes for audit trail analysis and postprocessing. Topics
discussed include overall audit record structure and formats, the audit trail printing
utility, and the audit record selection and merging utility.

Chapter 4 describes the allocation mechanism for removable or assignable devices.
Topics discussed include setting up and administering allocatable device files and
using the allocation mechanism by nonprivileged users.

Appendix A describes in detail the content of the audit records generated.

Appendix B lists and describes the man pages added for the Solaris SunSHIELDTM

Basic Security Module.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

10 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Preface 11

12 SunSHIELD Basic Security Module Guide ♦ February 2000

CHAPTER 1

Installation

Starting with the Solaris 2.3 release, BSM has been included in the full release and is
part of the release media. You do not need to install BSM separately because BSM is
now enabled or disabled by running one of two simple scripts. All of the BSM
software is included in the initial system installation, provided you install the
following packages:

� SUNWcar– Core architecture

� SUNWcsr– Core (root)

� SUNWcsu– Core (user)

� SUNWhea– Header files

� SUNWman– Online manual pages

The following procedures should be performed only by root. Additionally, the
commands should be run only on a server or standalone system and never on a
diskless client.

� “Enabling BSM” on page 13

� “Disabling BSM” on page 14

� “BSM and Client-Server Relationships” on page 15

Enabling BSM
After becoming root, bring the system into the single-user mode using telinit (see
the init (1M) man page).

/etc/telinit 1

13

In single-user mode, change directories to the /etc/security directory, and
execute the bsmconv script located there. The script sets up a standard Solaris
machine to run BSM after a reboot.

cd /etc/security
./bsmconv

After the script finishes, halt the system with the telinit command. Then reboot
the system to bring it up as a multiuser BSM system.

/etc/telinit 6

Note - The bsmconv script adds a line to /etc/system to disable the ability to
abort the system using the Stop-a keyboard sequence. If you want to retain the
ability to abort the system using the Stop-a keyboard sequence, you must comment
out the line that reads “set abort_enable = 0 ” in /etc/system .

Disabling BSM
If at some point BSM is no longer required, you can disable it by running
bsmunconv (see the bsmconv (1M) man page). Again, first bring the system into the
single-user mode using telinit , then change to the /etc/security directory and
run bsmunconv .

/etc/telinit 1
cd /etc/security
./bsmunconv

After unconverting the system, reboot it to run as a multiuser Solaris machine.

/etc/telinit 6

Note - The bsunmconv script removes the line in /etc/system that disables the
ability to abort the system using the Stop-a keyboard sequence. If you want to
continue to disable the ability to abort the system using the Stop-a keyboard
sequence after running the bsunconv script, you must reenter a line that reads “set
abort_enable = 0 ” in /etc/system .

14 SunSHIELD Basic Security Module Guide ♦ February 2000

BSM and Client-Server Relationships
The Solaris 2.1 release required two additional procedures for adding and deleting
diskless clients from a BSM-enabled system. Starting with the inclusion of BSM in
the Solaris 2.3 release, those procedures are no longer necessary. Enabling BSM on a
server now automatically enables the BSM features on all of that server’s clients.

Installation 15

16 SunSHIELD Basic Security Module Guide ♦ February 2000

CHAPTER 2

Administering Auditing

This chapter describes how to set up and administer auditing. Auditing enables
system administrators to monitor the actions of the users. The auditing mechanism
enables an administrator to detect potential security breaches. Auditing can reveal
suspicious or abnormal patterns of system usage and provides the means to trace
suspect actions back to a specific user. Auditing can serve as a deterrent: if users
know that their actions are likely to be audited, they might be less likely to attempt
malicious activities.

� “More on Auditing” on page 18

� “Audit Startup” on page 18

� “Audit Classes and Events” on page 19

� “Audit Flags” on page 20

� “Process Audit Characteristics” on page 26

� “How the Audit Trail Is Created” on page 27

� “Controlling Audit Costs” on page 33

� “Auditing Normal Users” on page 35

� “Auditing Efficiently” on page 35

� “Learning About the Audit Trail” on page 36

� “Preventing Audit Trail Overflow” on page 45

� “Setting Audit Policies” on page 48

� “Changing Class Definitions” on page 49

17

More on Auditing
Successful auditing depends on two other security features: identification and
authentication. At login, after a user supplies a user name and password, a unique
audit ID is associated with the user’s process. The audit ID is inherited by every
process started during the login session. Even if a user changes identity (see the
su (1M) man page), all actions performed are tracked with the same audit ID.

Auditing makes it possible to:

� Monitor security-relevant events that take place on the system

� Record the events in an audit trail

� Detect misuse or unauthorized activity (by analyzing the audit trail)

During system configuration, the system administrator selects which activities to
monitor. The administrator can also fine-tune the degree of auditing that is done for
individual users.

After audit data is collected, audit-reduction and interpretation tools allow the
examination of interesting parts of the audit trail. For example, you can choose to
look at audit records for individual users or groups, look at all records for a certain
type of event on a specific day, or select records that were generated at a certain time
of day.

The rest of this chapter describes how to set up and administer auditing. Chapter 4
describes how to interpret the audit data.

Audit Startup
Auditing is enabled by starting up the audit daemon, (see the auditd (1M) man
page). This can be done manually be executing /usr/sbin/auditd as root.

The existence of a file with the path name /etc/security/audit_startup
causes the audit daemon to be run automatically when the system enters multiuser
mode. The file is actually an executable script that is invoked as part of the startup
sequence just prior to the execution of the audit daemon (see the
audit_startup (1M) man page). A default audit_startup script that
automatically configures the event to class mappings and sets the audit policies is set
up during the BSM package installation.

18 SunSHIELD Basic Security Module Guide ♦ February 2000

Audit Classes and Events
Security-relevant actions can be audited. The system actions that are auditable are
defined as audit events in the /etc/security/audit_event file. Each auditable
event is defined in the file by a symbolic name, an event number, a set of
preselection classes, and a short description (see the audit_event (4) man page).

Most events are attributable to an individual user. However, some events are
nonattributable because they occur at the kernel-interrupt level or before a user is
identified and authenticated. Nonattributable events are auditable as well.

Each audit event is also defined as belonging to an audit class or classes. By assigning
events to classes, an administrator can more easily deal with large numbers of events.
When naming a class, you simultaneously addresses all of the events in that class.
The mapping of audit events to classes is configurable and the classes themselves are
configurable. These configuration changes can be made in the audit_event file.

Whether or not an auditable event is recorded in the audit trail depends on whether
the administrator preselects a class for auditing that includes the specific event. Out
of 32 possible audit classes, 18 are defined. The 18 classes include the two global
classes: all and no .

Kernel Events
Events generated by the kernel (system calls) have event numbers between 1 and
2047. The event names for kernel events begin with AUE_, followed by an uppercase
mnemonic for the event. For example, the event number for the creat() system call
is 4 and the event name is AUE_CREAT.

User-Level Events
Events generated by application software outside the kernel range from 2048 to
65535. The event names begin with AUE_, followed by a lowercase mnemonic for the
event. Check the file, /etc/security/audit_event , for exact numbers of
individual events. Table 2–1 shows general categories of user-related events.

Administering Auditing 19

TABLE 2–1 Audit Event Categories

Number Range Type of Event

2048–65535 User-level audit events

2048–32767 Reserved for SunOS user-level programs

32768–65536 Available for third-party applications

Audit Records
Each audit record describes the occurrence of a single audited event and includes such
information as who did the action, which files were affected, what action was
attempted, and where and when it occurred.

The type of information saved for each audit event is defined as a set of audit tokens.
Each time an audit record is created for an event, the record contains some or all of
the tokens defined for it, depending on the nature of the event. The audit record
descriptions in Appendix A list all the audit tokens defined for each event and what
each token means.

Audit records are collected in a trail (see the audit.log (4) man page) and can be
converted to a human readable format by praudit (see the praudit (1M) man
page). See Chapter 3 for details.

Audit Flags
Audit flags indicate classes of events to audit. Machine-wide defaults for auditing are
specified for all users on each machine by flags in the audit_control file, which is
described in “The audit_control File” on page 23.

The system administrator can modify what is audited for individual users by putting
audit flags in a user’s entry in the audit_user file. The audit flags are also used as
arguments to auditconfig (see the auditconfig (1M) man page).

Definitions of Audit Flags
Each predefined audit class is shown in Table 2–2 with the audit flag (which is the
short name that stands for the class), the long name, a short description, and a longer

20 SunSHIELD Basic Security Module Guide ♦ February 2000

definition. The system administrator uses the audit flags in the auditing
configuration files to specify which classes of events to audit. Additional classes can
be defined and existing classes can be renamed by modifying the audit_class file
(see the audit_class (4) man page).

TABLE 2–2 Audit Classes

Short
Name

Long Name Short Description

no no_class Null value for turning off event preselection

fr file_read Read of data, open for reading, and so forth

fw file_write Write of data, open for writing, and so forth

fa file_attr_acc Access of object attributes: stat , pathconf , and so forth

fm file_attr_mod Change of object attributes: chown , flock , and so forth

fc file_creation Creation of object

fd file_deletion Deletion of object

cl file_close close system call

pc process Process operations: fork , exec , exit , and so forth

nt network Network events: bind , connect , accept , and so forth

ip ipc System V IPC operations

na non_attrib Nonattributable events

ad administrative Administrative actions

lo login_logout Login and logout events

ap application Application-defined event

io ioctl ioctl system call

ex exec Program execution

Administering Auditing 21

TABLE 2–2 Audit Classes (continued)

Short
Name

Long Name Short Description

ot other Miscellaneous

all all All flags set

Audit Flag Syntax
Depending on the prefixes, a class of events can be audited whether it succeeds or
fails, or only if it succeeds, or only if it fails. The format of the audit flag is shown
here.

prefixflag

Table 2–3 shows prefixes that specify whether the audit class is audited for success or
failure or both.

TABLE 2–3 Prefixes Used in Audit Flags

Prefix Definition

none Audit for both success and failure

+ Audit for success only

- Audit for failure only

To give an example of how these work together, the audit flag lo means “all
successful attempts to log in and log out and all failed attempts to log in.” (You
cannot fail an attempt to logout.) For another example, the -all flag refers to all
failed attempts of any kind, and the +all flag refers to all successful attempts of any
kind.

Caution - The −all flag can generate large amounts of data and fill up audit file
systems quickly, so use it only if you have extraordinary reasons to audit everything.

22 SunSHIELD Basic Security Module Guide ♦ February 2000

Prefixes to Modify Previously Set Audit Flags
Use the following prefixes in any of three ways: in the flags line in the
audit_control file to modify already specified flags, in flags in the user’s entry
in the audit_user file, or with auditconfig (see the auditconfig (1M) man
page) .

The prefixes in the following table, along with the short names of audit classes, turn
on or turn off previously specified audit classes. These prefixes only turn on or off
previously specified flags.

TABLE 2–4 Prefixes Used to Modify Already-Specified Audit Flags

Prefix Definition

^- Turn off for failed attempts

^+ Turn off for successful attempts

^ Turn off for both failed and successful attempts

The ^- prefix is used in the flags line in the following example from an
audit_control file.

In the sample screen below, the lo and ad flags specify that all logins and
administrative operations are to be audited when they succeed and when they fail.
The -all means audit “all failed events.” Because the ^- prefix means “turn off
auditing for the specified class for failed attempts,” the ^-fc flag modifies the
previous flag that specified auditing of all failed events; the two fields together mean
“audit all failed events, except failed attempts to create file system objects.”

flags:lo,ad,-all,^-fc

The audit_control File
An audit_control file on each machine is read by the audit daemon (see the
audit_control (4) man page). The audit_control file is located in the
/etc/security directory. A separate audit_control file is maintained on each
machine because machines in the distributed system can mount their audit file
systems from different locations or in a different order. For example, the primary

Administering Auditing 23

audit file system for machineA might be the secondary audit file system for
machineB.

You specify four kinds of information in four kinds of lines in the audit_control
file:

� The audit flags line (flags:) contains the audit flags that define what classes of
events are audited for all users on the machine. The audit flags specified here are
referred to as the machine-wide audit flags or the machine-wide audit preselection mask.
Audit flags are separated by commas, with no spaces.

� The nonattributable flags line (naflags:) contains the audit flags that define what
classes of events are audited when an action cannot be attributed to a specific user.
The flags are separated by commas, with no spaces.

� The audit threshold line (minfree:) defines the minimum free-space level for all
audit file systems. See “What Makes a Directory Suitable” on page 29. The
minfree percentage must be greater than or equal to 0. The default is 20 percent.

� The directory definition lines (dir:) define which audit file systems and directories
the machine will use to store its audit trail files. There can be one or more
directory definition lines. The order of the dir: lines is significant, because
auditd opens audit files in the directories in the order specified (see the
audit (1M) man page). The first audit directory specified is the primary audit
directory for the machine, the second is the secondary audit directory where the
audit daemon puts audit trail files when the first one fills, and so forth.

The administrator creates an audit_control file during the configuration process
on each machine.

After the audit_control file is created during system configuration, the
administrator can edit it. After a change, the administrator runs audit -s to
instruct the audit daemon to reread the audit_control file.

Note - The audit -s command does not change the preselection mask for existing
processes. Use autoconfig , setaudit (see the getuid (2) man page), or auditon
for existing processes.

Sample audit_control File
Following is a sample audit_control file for the machine dopey . dopey uses two
audit file systems on the audit server blinken , and a third audit file system
mounted from the second audit server winken , which is used only when the audit
file systems on blinken fill up or become unavailable. The minfree value of 20
percent specifies that the warning script is run when the file systems are 80 percent
filled and the audit data for the current machine will be stored in the next available
audit directory, if any (see the audit_warn (1M) man page). The flags specify that
all logins and administrative operations are to be audited (whether or not they

24 SunSHIELD Basic Security Module Guide ♦ February 2000

succeed), and that failures of all types, except failures to create a file system object,
are to be audited.

flags:lo,ad,-all,^-fc
naflags:lo,nt
minfree:20
dir:/etc/security/audit/blinken/files
dir:/etc/security/audit/blinken.1/files
#
Audit filesystem used when blinken fills up
#
dir: /etc/security/audit/winken

User Audit Fields in the audit_user
File
If it is desirable to audit some users differently from others, the administrator can
edit the audit_user file to add audit flags for individual users. If specified, these
flags are combined with the system-wide flags specified in the audit control file to
determine which classes of events to audit for that user. The flags the administrator
adds to the user’s entry in the audit_user file modify the defaults from the
audit_control file in two ways: by specifying a set of event classes that are never
to be audited for this user or by specifying a set of event classes that are always to
be audited.

Three fields are in the audit_user file entry for each user. The first field is the
username, the second field is the always-audit field, and the third is the never-audit
field. The two auditing fields are processed in sequence, so auditing is enabled by
the first field and turned off by the second.

Note - Avoid the common mistake of leaving the all set in the never-audit field.
This causes all auditing to be turned off for that user, overriding the flags set in the
always-audit field.

Using the never-audit flags for a user is not the same as removing classes from the
always-audit set. For example, suppose (as shown in the examples below), you have a
user fred for whom you want to audit everything except successful reads of file
system objects. (This is a good way to audit almost everything for a user while
generating only about three-quarters of the audit data that would be produced if all
data reads were also audited.) You also want to apply the system defaults to fred .
Here are two possible audit_user entries.

Administering Auditing 25

The correct entry:

fred:all,^+fr:

The incorrect entry:

fred:all:+fr

The first example says, “always audit everything except successful file-reads.” The
second example says “always audit everything, but never audit successful
file-reads.” The second example is incorrect because it overrides the system default.
The first example achieves the desired effect: any earlier default applies, as well as
what’s specified in the audit_user entry.

Note - Successful events and failed events are treated separately, so a process can
(for example) generate more audit records when an error occurs than when the event
is successful.

Process Audit Characteristics
The following audit characteristics are set at initial login:

� Process preselection mask

� Audit ID

� Audit Session ID

� Terminal ID (port ID, machine ID)

Process Preselection Mask
When a user logs in, login combines the machine-wide audit flags from the
audit_control file with the user-specific audit flags (if any) from the audit_user
file, to establish the process preselection mask for the user’s processes. The process
preselection mask specifies whether events in each audit event class are to generate
audit records.

The algorithm for obtaining the process preselection mask is as follows: the audit
flags from the flags: line in the audit_control file are added to the flags from
the always-audit field in the user’s entry in the audit_user file. The flags from the
never-audit field from the user’s entry in the audit_user file are then subtracted
from the total:

user’s process preselection mask = (flags: line + always audit flags) - never audit flags

26 SunSHIELD Basic Security Module Guide ♦ February 2000

Audit ID
A process also acquires its audit ID when the user logs in, and this audit ID is
inherited by all child processes started by the user’s initial process. The audit ID
helps enforce accountability. Even after a user becomes root, the audit ID remains the
same. The audit ID that is saved in each audit record always allows the
administrator to trace actions back to the original user who had logged in.

Audit Session ID
The audit session ID is assigned at login and inherited by all descendant processes.

Terminal ID
The terminal ID consists of the host name and the Internet address, followed by a
unique number that identifies the physical device on which the user logged in. Most
of the time the login is through the console and the number that corresponds to the
console device is 0.

How the Audit Trail Is Created
The audit trail is created by the audit daemon (see the auditd (1M) man page). The
audit daemon starts on each machine when the machine is brought up. After
auditd starts at boot time, it is responsible for collecting the audit trail data and
writing the audit records into audit files, which are also called audit log files. See the
audit.log (4) man page for a description of the file format.

The audit daemon runs as root. All files it creates are owned by root. Even when
auditd has no classes to audit, auditd continuously operates, looking for a place to
put audit records. The auditd operations continue even if the rest of the machine’s
activities are suspended because the kernel’s audit buffers are full. The audit
operations can continue because auditd is not audited.

Only one audit daemon can run at a time. An attempt to start a second one results in
an error message, and the new one exits. If there is a problem with the audit
daemon, you should try using audit -t to terminate auditd gracefully, then
restart it manually.

The audit_warn script is run by auditd whenever the daemon switches audit
directories or encounters difficulty (such as a lack of storage). As distributed, the
audit_warn script sends mail to an audit_warn alias and sends a message to the

Administering Auditing 27

console. Your site should customize audit_warn to suit your needs. Customizing
the audit_warn script is described in “The audit_warn Script” on page 29.

audit_data File
When auditd starts on each machine, it creates the file
/etc/security/audit_data . The format of the file consists of a single entry with
the two fields separated by a colon (see the audit_data (4) man page). The first
field is the audit daemon’s process ID, and the second field is the path name of the
audit file to which the audit daemon is currently writing audit records. Here is an
example:

cat /etc/security/audit_data
116:/etc/security/audit/blinken.1/files/19910320100002.not_terminated.lazy

Audit Daemon’s Role
The following list summarizes what the audit daemon, auditd , does.

� auditd opens and closes audit log files in the directories specified in the
audit_control file, in the order in which they are specified.

� auditd reads audit data from the kernel and writes it to an audit file.

� auditd executes the audit_warn script when the audit directories fill past limits
specified in the audit_control file. The script, by default, sends warnings to the
audit_warn alias and to the console.

� With the system default configuration, when all audit directories are full, processes
that generate audit records are suspended. In addition, auditd writes a message
to the console and to the audit_warn alias. (The auditing policy can be
reconfigured with autoconfig .) At this point only the system administrator can
log in to write audit files to tape, delete audit files from the system, or do other
cleanup.

When the audit daemon starts as the machine is brought up to multiuser mode, or
when the audit daemon is instructed by the audit -s command to reread the file
after the file has been edited, auditd determines the amount of free space necessary
and reads the list of directories from the audit_control file. It then uses those
directories as possible locations for creating audit files.

The audit daemon maintains a pointer into this list of directories, starting with the
first. Every time the audit daemon needs to create an audit file, it puts the file into
the first available directory in the list, starting at the audit daemon’s current pointer.
The pointer can be reset to the beginning of the list if the administrator enters the
audit -s command. When you use the audit -n command to instruct the

28 SunSHIELD Basic Security Module Guide ♦ February 2000

daemon to switch to a new audit file, the new file is created in the same directory as
the current file.

What Makes a Directory Suitable
A directory is suitable to the audit daemon if it is accessible to the audit daemon,
which means that it must be mounted, that the network connection (if remote)
permits successful access, and that the permissions on the directory allow access.
Also, in order for a directory to be suitable for audit files, it must have sufficient free
space remaining. You can edit the minfree: line in the audit_control file to
change the default of 20 percent. To give an example of how the minfree
percentage is applied, if the default minimum free space of 20 percent is accepted, an
email notice is sent to the audit_warn alias whenever a file system becomes more
than 80 percent full.

When no directories on the list have enough free space left, the daemon starts over
from the beginning of the list and picks the first accessible directory that has any
space available until the hard limit is reached. In the default configuration, if no
directories are suitable, the daemon stops processing audit records, and they
accumulate within the kernel until all processes generating audit records are
suspended.

Keeping Audit Files Manageable
To keep audit files at a manageable size, a cron job can be set up that periodically
switches audit files (see the cron (1M) man page). Intervals might range from once
per hour to twice per day, depending on the amount of audit data being collected.
The data can then be filtered to remove unnecessary information, and then
compressed.

The audit_warn Script
Whenever the audit daemon encounters an unusual condition while writing audit
records, it invokes the /etc/security/audit_warn script. See the
audit_warn (1M) man page. This script can be customized by your site to warn of
conditions that might require manual intervention or to handle them automatically.
For all error conditions, audit_warn writes a message to the console and sends a
message to the audit_warn alias. This alias should be set up by the administrator
after enabling BSM.

Administering Auditing 29

When the following conditions are detected by the audit daemon, it invokes
audit_warn .

� An audit directory has become more full than the minfree value allows. (The
minfree or soft limit is a percentage of the space available on an audit file
system.)

The audit_warn script is invoked with the string soft and the name of the
directory whose space available has gone below the minimum. The audit daemon
switches automatically to the next suitable directory and writes the audit files
there until this new directory reaches its minfree limit. The audit daemon then
goes to each of the remaining directories in the order listed in audit_control ,
and writes audit records until each is at its minfree limit.

� All the audit directories are more full than the minfree threshold.

The audit_warn script is invoked with the string allsoft as an argument. A
message is written to the console and mail is sent to the audit_warn alias.

When all audit directories listed in audit_control are at their minfree limits,
the audit daemon switches back to the first one, and writes audit records until the
directory completely fills.

� An audit directory has become completely full with no space remaining.

The audit_warn script is invoked with the string hard and the name of the
directory as arguments. A message is written to the console and mail is sent to the
audit_warn alias.

The audit daemon switches automatically to the next suitable directory with any
space available, if any. The audit daemon goes to each of the remaining directories
in the order listed in audit_control and writes audit records until each is full.

� All the audit directories are completely full. The audit_warn script is invoked
with the string allhard as an argument.

In the default configuration, a message is written to the console and mail is sent to
the audit_warn alias. The processes generating audit records are suspended. The
audit daemon goes into a loop, waiting for space to become available, and
resumes processing audit records when that happens. While audit records are not
being processed, no auditable activities take place—every process that attempts to
generate an audit record is suspended. This is one reason why you would want to
set up a separate audit administration account that could operate without any
auditing enabled. The administrator could then operate without being suspended.

� An internal error occurs: another audit daemon process is already running (string
ebusy), a temporary file cannot be used (string tmpfile), the auditsvc()
system call fails (string auditsvc), or a signal was received during auditing
shutdown (string postsigterm).

Mail is sent to the audit_warn alias.

� A problem is discovered with the audit_control file’s contents. By default, mail
is sent to the audit_warn alias and a message is sent to the console.

30 SunSHIELD Basic Security Module Guide ♦ February 2000

Using the auditreduce Command
Use auditreduce to merge audit records from one or more input audit files or to
perform a post selection of audit records. See the auditreduce (1M) man page. To
merge the entire audit trail, the system administrator enters the command on the
machine on which all the audit file systems for the distributed system are mounted.

When multiple machines running BSM are administered as part of a distributed
system, each machine performs auditable events, and each machine writes audit
records to its own machine-specific audit file. This procedure simplifies software and
is robust in the face of machine failures. However, without auditreduce , you
would have to look at every one of the files to determine what a particular user did
because each machine produces its own set of audit files.

The auditreduce command makes the job of maintaining the whole audit trail
practical. Using auditreduce (or shell scripts you write yourself to provide a
higher-level interface), you can read the logical combination of all audit files in the
system as a single audit trail without regard to how the records were generated or
where they are stored.

The auditreduce program operates on the audit records produced by the audit
daemon. Records from one or more audit files are selected and merged into a single,
chronologically ordered output file. The merging and selecting functions of
auditreduce are logically independent. auditreduce selects messages from the
input files as the records are read, before the files are merged and written to disk.

Without options, auditreduce merges the entire audit trail (which consists of all of
the audit files in all of the subdirectories in the audit root directory
/etc/security/audit) and sends all the audit records to standard output.
Making the records human-readable is done by the praudit command.

Following are some of the actions performed by some of the options to the
auditreduce command.

� You can request that the output contain audit records generated by only certain
audit flags.

� You can request audit records generated by one particular user.

� You can request audit records generated on specific dates.

With no arguments, auditreduce looks in all subdirectories below
/etc/security/audit , the default audit root directory, for a files directory in
which the date.date.hostname files reside. The auditreduce command is very useful
when the audit data for different hosts (Figure 2–1) or for different audit servers
(Figure 2–2) reside in separate directories.

Administering Auditing 31

/etc/security/audit

host1 host2 hostn

files files files

date.date.hostndate.date.host2date.date.host1

. . .

Figure 2–1 Audit Trail Separated by Host

The audit data cannot be in the default directory — perhaps because the partition for
/etc/security/audit is very small or because you want to store audit data on
another partition without symbolically linking that partition to
/etc/security/audit . You can give auditreduce another directory (-R) to
substitute for /etc/security/audit , or you can specify one particular
subdirectory (-S):

auditreduce -R /var/audit-alt
auditreduce -S /var/audit-alt/host1

audit root directory

server1 server2 servern

files files files

date.date.hostndate.date.host1

. . .

date.date.host2
date.date.host3

date.date.host1
date.date.host2
date.date.host3

Figure 2–2 Audit Trail Separated by Server

You can direct auditreduce to treat only certain files by specifying them as
command arguments:

32 SunSHIELD Basic Security Module Guide ♦ February 2000

auditreduce /var/audit/bongos/files/1993*.1993*.bongos

The auditreduce (1M) man page for auditreduce lists other options and
provides additional examples for using the command.

Controlling Audit Costs
Because auditing consumes system resources, you must control the degree of detail
that is recorded. When you decide what to audit, consider the following costs of
auditing:

� Costs of increased processing time

� Costs of analysis of audit data

� Costs of storage of audit data

Cost of Increased Processing Time
The cost of increased processing time is the least significant of the costs of auditing.
The first reason is that auditing generally does not occur during
computational-intensive tasks—image processing, complex calculations, and so forth.
The other reason that processing cost is usually insignificant is that single-user
workstations have plenty of extra CPU cycles.

Cost of Analysis
The cost of analysis is roughly proportional to the amount of audit data collected.
The cost of analysis includes the time it takes to merge and review audit records, and
the time it takes to archive them and keep them in a safe place.

The fewer records you generate, the less time it takes to analyze them, so upcoming
sections describe how you can reduce the amount of data collected, while still
providing enough coverage to achieve your site’s security goals.

Cost of Storage
Storage cost is the most significant cost of auditing. The amount of audit data
depends on the following:

� Number of users

Administering Auditing 33

� Number of machines

� Amount of use

� Degree of security required

Because the factors vary from one situation to the next, no formula can determine in
advance the amount of disk space to set aside for audit data storage.

Full auditing (with the all flag) can fill up a disk in no time. Even a simple task like
compiling a program of modest size (for example, 5 files, 5000 lines total) in less than
a minute could generate thousands of audit records, occupying many megabytes of
disk space. Therefore, it is very important to use the preselection features to reduce
the volume of records generated. For example, omitting the fr class instead of all
classes can reduce the audit volume by more than two-thirds. Efficient audit file
management is also important after the audit records are created, to reduce the
amount of storage required.

The following sections give some ideas about how to reduce the costs of storage by
auditing selectively to reduce the amount of audit data collected, while still meeting
your site’s security needs. Also discussed are how to set up audit file storage and
archiving procedures to reduce storage requirements.

Before configuring auditing, understand the audit flags and the types of events they
flag. Develop a philosophy of auditing for your organization that is based on the
amount of security your site requires, and the types of users you administer.

Unless the process audit preselection mask is modified dynamically, the audit
characteristics in place when a user logs in are inherited by all processes during the
login session, and, unless the databases are modified, the process preselection mask
applies in all subsequent login sessions.

Dynamic controls refer to controls put in place by the administrator while processes
are running. These persist only while the affected processes (and any of their
children) exist, but will not continue in effect at the next login. Dynamic controls
apply to one machine at a time, since the audit command only applies to the
current machine where you are logged in. However, if you make dynamic changes
on one machine, you should make them on all machines at the same time.

Each process has two sets of one-bit flags for audit classes. One set controls whether
the process is audited when an event in the class is requested successfully; the other
set when an event is requested but fails (for any reason). It is common for processes
to be more heavily audited for failures than for successes, since this can be used to
detect attempts at browsing and other types of attempts at violating system security.

In addition to supplying the per-user audit control information in the static
databases, you can dynamically adjust the state of auditing while a user’s processes
are active on a single machine.

To change the audit flags for a specific user to a supplied value, use the
auditconfig command with the -setpmask , -setsmask , or -setumask options.
The command changes the process audit flags for one process, one audit session ID,

34 SunSHIELD Basic Security Module Guide ♦ February 2000

or one audit user ID respectively. See the auditconfig (1M) man page and “The
auditconfig Command” on page 46.

Auditing Normal Users
The administrator sets up auditing for the default configuration. You might want all
users and administrators to be audited according to the system-wide audit flags you
specified in the audit_control file. To fine-tune auditing for individual users, you
modify the users’ entries in the audit_user file. See the audit_control (4) and
audit_user (4) man pages. You can also choose to add audit flags to users’ entries
at the time you add new users, and you should probably set up auditing for the new
user just after you unlock the account and configure the security attributes for that
user.

Auditing Efficiently
Techniques in this section can allow you to achieve your organization’s security goals
while auditing more efficiently:

� Random auditing of only a certain percentage of users at any one time

� Real-time monitoring of the audit data for unusual behaviors. (You set up
procedures to monitor the audit trail as it is generated for certain activities and to
trigger higher levels of auditing of particular users or machines when suspicious
events occur.)

� Reducing the disk-storage requirements for audit files by combining, reducing,
and compressing them, and developing procedures for storing them offline

Another technique is to monitor the audit trail in real time. You can write a script to
trigger an automatic increase in the auditing of certain users or certain machines in
response to detection of unusual events.

To monitor the audit trail in real time and watch for unusual events, write a script
that monitors creation of audit files on all the audit file servers and processes them
with the tail command (see the tail (1) man page). The output of tail -0f ,
piped through praudit , yields a stream of audit records as soon as they are
generated. This stream can be analyzed for unusual message types or other
indicators and delivered to the auditor or used to trigger automatic responses. The
script should be written to constantly watch the audit directories for the appearance
of new not_terminated audit files, and also the termination of outstanding tail
processes when their files are no longer being written to (that is, have been replaced
by new ones).

Administering Auditing 35

How to Combine and Reduce audit Files
♦ Use auditreduce with the -O option to combine several audit files into one

and save them in a specified output file.

Although auditreduce can do this type of combination and deletion automatically
(see the -C and -D options in the auditreduce (1M) man page), it is often easier to
select the files manually (perhaps with find) and use auditreduce to combine just
the named set of files. When auditreduce is used this way, it merges all the
records from its input files into a single output file. The input files should then be
deleted, and the output file kept in a directory named
/etc/security/audit/ server-name/files so that auditreduce can find it.

auditreduce -O combined-filename

The auditreduce program can also reduce the number of records in its output file
by eliminating the less interesting ones as it combines the input files. You might use
auditreduce to eliminate all except the login/logout events in audit files over a
month old, assuming that if you needed to retrieve the complete audit trail, you
could recover it from backup tapes.

auditreduce -O daily.summary -b 19930513 -c lo; compress *daily.summary
mv *daily.summary /etc/security/summary.dir

Learning About the Audit Trail
This section describes where audit files are stored, how they are named, and how to
manage audit file storage throughout a distributed system.

The audit trail is created when the audit daemon, auditd , is started, and is closed
when a new audit trail file is created, or when the audit daemon is terminated. The
audit trail can consist of audit files in several audit directories, or an audit directory
can contain several audit trails.

Most often the audit directories are separate audit file system partitions. Even though
they can be included in other file systems, this is not recommended.

As a rule, locate primary audit directories in dedicated audit file systems mounted
on separate partitions. Normally, all audit file systems are subdirectories of
/etc/security/audit . These should be dedicated audit file systems to ensure

36 SunSHIELD Basic Security Module Guide ♦ February 2000

that normal use of the partition is not interrupted, if the audit directories become
filled with audit files.

Even though you can physically locate audit directories within other file systems that
are not dedicated to auditing, do not do this except for directories of last resort.
Directories of last resort are directories where audit files are written only when there
is no other suitable directory available.

One other scenario where locating audit directories outside of dedicated audit file
systems could be acceptable is in a software development environment where
auditing is optional, and where it is more important to make full use of disk space
than to keep an audit trail. Putting audit directories within other file systems would
never be acceptable in a security-conscious production environment.

A diskfull machine should have at least one local audit directory, which it can use as
a directory of last resort, if unable to communicate with the audit server.

Mount audit directories with the read-write (rw) option. When mounting audit
directories remotely (using NFS software), also use the intr option.

List the audit file systems on the audit server where they reside. The export list
should include all machines in the configuration.

More About the Audit Files
Each audit file is a self-contained collection of records; the file’s name identifies the
time span during which the records were generated and the machine that generated
them.

Audit File Naming
Audit files that are complete have names of the following form:

start-time.finish-time.machine

where start-time is the time of the first audit record in the audit file, finish-time is the
time of the last record, and machine is the name of the machine that generated the
file. An example of these names can be found in “Example of a Closed Audit File
Name” on page 38.

If the audit log file is still active, it has a name of the following form:

start-time.not_terminated. machine

Administering Auditing 37

How Audit File Names Are Used
The file name time stamps are used by auditreduce to locate files containing
records for the specific time range that has been requested; this is important because
there can be a month’s supply or more of audit files on line, and searching them all
for records generated in the last 24 hours would be unacceptably expensive.

Time-Stamp Format and Interpretation
The start-time and end-time are time stamps with one-second resolution; they are
specified in Greenwich mean time. The format is four digits for the year, followed by
two for each month, day, hour, minute, and second, as shown below.

YYYYMMDDHHMMSS

The time stamps are in GMT to ensure that they will sort in proper order even across
a daylight savings time boundary. Because they are in GMT, the date and hour must
be translated to the current time zone to be meaningful; beware of this whenever
manipulating these files with standard file commands rather than with
auditreduce .

Example of a File Name for a Still-Active File
The format of a file name of a still-active file is shown below:

YYYYMMDDHHMMSS.not_terminated. hostname

Here is an example:

19900327225243.not_terminated.lazy

The audit log files are named by the beginning date, so the example above was
started in 1990, on March 27, at 10:52:43 p.m, GMT. The not_terminated in the file
name means either that the file is still active or that auditd was unexpectedly
interrupted. The name lazy at the end is the host name whose audit data is being
collected.

Example of a Closed Audit File Name
The format of the name of a closed audit log file is shown below:

YYYYMMDDHHMMSS.YYYYMMDDHHMMSS.hostname

38 SunSHIELD Basic Security Module Guide ♦ February 2000

Here is an example:

19900320005243.19900327225351.lazy

The example above was started in 1990, on March 20, at 12:52:43 a.m., GMT. The file
was closed March 27, at 10:53:51 p.m., GMT. The name lazy at the end is the host
name of the machine whose audit data is being collected.

Whenever auditd is unexpectedly interrupted, the audit file open at the time gets
the not_terminated end file name time stamp. Also, when a machine is writing to
a remotely mounted audit file and the file server crashes or becomes inaccessible, the
not_terminated end time stamp remains in the current file’s name. The audit
daemon opens a new audit file and keeps the old name intact.

Handling Nonactive Files Marked
not_terminated
The auditreduce command processes files marked not_terminated , but because
such files can contain incomplete records at the end, future processing can generate
errors. To avoid errors, clean the files of any incomplete records. Before cleaning the
files, make sure that auditd is not currently writing to the files you want to clean.
To check, look at the audit_data file to determine the current process number of
auditd . If that process is still running, and if the file name in audit_data is the
same as the file in question, do not clean the file.

You can clean a file with the -O option of auditreduce . This creates a new file
containing all the records that were in the old one, but with a proper file name time
stamp. This operation loses the previous file pointer that’s kept at the beginning of
each audit file.

Or you can write a program to read through the file, locate the last record, rename
the file, and clear out any incomplete records. A program can also keep the previous
file pointer intact and determine which file to use next.

How to Create Audit Partitions and Export Them
1. Assign at least one primary audit directory to each machine.

The primary audit directory is the directory where a machine places its audit files
under normal conditions.

2. Assign at least one secondary audit directory to each machine that is located on
a different audit file server than the primary directory.

The secondary audit directory is where a machine places audit files if the primary
directory is full or inaccessible, because of network failure, NFS server crash, or
some other reason.

Administering Auditing 39

3. On every diskfull machine create a local audit directory of last resort
(preferably a dedicated audit file system) that is used when the network is
inaccessible or the primary and secondary directories are unusable.

4. Spread the directories used as primary and secondary destinations evenly over
the set of audit servers in the system.

5. Create audit file systems according to the requirements discussed in this
section.

The /etc/security directory contains subdirectories with all the audit files and
also contains several other files related to audit control. Because the
/etc/security directory contains the per-machine audit_data file, which
must be available for successful startup of the audit daemon at boot time, the
/etc/security directory must be part of the root file system.

The audit post-selection tools look in directories under /etc/security/audit
by default. For this reason, the path name of the mount point for the first audit
file system on an audit server is in the form:
/etc/security/audit/ server-name (where server-name is the name of the audit
server). If more than one audit partition is on an audit server, the name of the
second mount point is: /etc/security/audit/ server-name.1 , the third is
/etc/security/audit/ server-name.2 , and so forth.

For example, the names of the audit file systems available on the audit server
winken are /etc/security/audit/winken and
/etc/security/audit/winken.1 .

On the audit server, each audit file system must also have a subdirectory named
files . This files subdirectory is where the audit files are located and where
the auditreduce commands look for them. For example, the audit file system
on audit server winken should have a files subdirectory whose full path name
is: /etc/security/audit/winken/files .

You should make sure that the local audit_control file on each machine tells
the audit daemon to put the audit files in the files subdirectory. Here is the
dir: line for the audit_control file on a machine mounting the audit file
system from eagle :

dir: /etc/security/audit/eagle/files

The extra level of hierarchy is required to prevent a machine’s local root file
system from filling with audit files when (for whatever reason) the
/etc/security/audit/ server-name[.suffix] directory is not available on the
audit server. Because the files subdirectory is present on the audit server and
there are no files subdirectory on any of the clients, audit files cannot be created
unintentionally in the local mount-point directory if the mount fails.

Make sure that each audit directory contains nothing except audit files.

6. Assign the required permissions to the audit file systems.

40 SunSHIELD Basic Security Module Guide ♦ February 2000

The permissions that must appear on the /etc/security/audit/ server-name
directory and the files directory that must be created beneath it on the audit
server are shown in Table 2–5.

TABLE 2–5 Audit File Permissions

Owner Group Permissions

root staff 2750

Example audit_control File Entries

When you add the dir: entries in the audit_control file, make sure the full path
down to the files subdirectory is specified. The following example shows an
audit_control file dir: entry for the server blinken , which is storing its audit
files on its own local disk.

cat /etc/security/audit_control
dir:/etc/security/audit/blinken.1/files
dir:/etc/security/audit/blinken.2/files

How to Configure Auditing
The following steps are included here to provide an overview of what is required to
set up audit directories and specify which audit classes will be audited.

1. Format and partition the disks to create the dedicated audit partitions.

A rule of thumb is to assign 100 MBytes of space for each machine that is on the
distributed system; but remember that the disk space requirements at your site
will be based on how much auditing you perform and can be far greater than this
figure per machine.

2. Assign the audit file systems to the dedicated partitions.

Each diskfull machine should have a backup audit directory on the local machine
in case its NFS-mounted audit file systems are not available.

3. While each machine is in single-user mode, run tunefs -m 0 on each
dedicated audit partition to reduce reserved file system space to 0 percent.

Administering Auditing 41

A reserved space percentage (called the minfree limit) is specified for audit
partitions in the audit_control file. The default is 20 percent, and this
percentage is tunable. Because this value is set by each site in the
audit_control file, you should remove the automatically reserved file system
space that is set aside by default for all file systems.

4. Set the required permissions on each of the audit directories on the audit
servers, and make a subdirectory in each audit directory called files .

Use chown and chmod to assign each audit directory and each files
subdirectory the required permissions.

5. If using audit servers, export the audit directories with the /etc/dfs/dfstab
file.

6. Create the audit_control file entries for all the audit directories in the
audit_control file on each machine, specifying the files subdirectory.

7. On each audit client, create the entries for the audit file systems in the
/etc/vfstab file.

8. On each audit client, create the mount point directories and use chmod and
chown to set the correct permissions.

How to Plan Audit Configuration
First, plan for audit trail storage.

1. In the /etc/security/audit_class file, define the classes needed at your
site.

If the default classes are suitable, you do not need to define new ones. See the
audit_class (4) man page.

2. Set up event-to-class mapping in /etc/security/audit_event .

This step is not needed if the default mapping suits your site’s needs. See the
audit_event (4) man page.

3. Determine how much auditing your site needs to do.

Balance your site’s security needs against the availability of disk space for audit
trail storage.

See “Controlling Audit Costs” on page 33, “Auditing Efficiently” on page 35, and
“Learning About the Audit Trail” on page 36 for guidance on how to reduce
storage requirements while still maintaining site security, as well as how to
design audit storage.

42 SunSHIELD Basic Security Module Guide ♦ February 2000

4. Determine which machines will be audit servers and which will be clients of
the audit servers.

5. Determine the names and locations of audit file systems.

6. Plan which machines will use which audit file systems on the audit servers.

After dealing with storage, decide who and what to audit.

1. Determine which audit classes you want to be audited system-wide and which
flags to use to select the audit classes.

2. Determine if some users will be audited more than others, then decide which
flags to use to modify a user’s audit characteristics.

See “Process Audit Characteristics” on page 26.

3. Determine the minimum free space (minfree), also called the soft limit, that
should be on an audit file system before a warning is sent.

When the amount of space available goes below the minfree percentage, the
audit daemon switches to the next suitable audit file system and sends a notice
that the soft limit has been exceeded. (What makes an audit file system suitable is
defined in “What Makes a Directory Suitable” on page 29.)

A certain amount of auditing is configured by default on each machine. The
default audit_control file contains the lines shown in Table 2–6, which set the
audit directory as /var/audit , one system-wide audit flag (lo), a minfree
threshold of 20 percent, and one nonattributable flag.

TABLE 2–6 audit_control File Entries

dir:/var/audit
flags:lo
minfree:20
naflags:ad

4. Edit the /etc/security/audit_control file.

a. Specify which audit file systems to use for audit trail storage on this
machine.
Make a dir: entry for each audit directory available to the current machine.
See “Learning About the Audit Trail” on page 36 for how to set up the audit
directory scheme for the distributed system.

Administering Auditing 43

b. Specify the system-wide audit flags that will apply to all users’ processes in
the flags: field.
The system-wide audit flags in the flags: field will apply to all users’
processes, and you should set the flag the same on every machine.

c. Change the minfree percentage, if desired, to reduce or enlarge the audit
threshold.

d. Specify the naflags: that will apply to events that cannot be attributed to
a particular user.

5. Use auditconfig to modify the audit policy, if you want modification.

See the auditconfig (1M) man page or “The auditconfig Command” on
page 46. The policy variable is a dynamic kernel variable, so its value is not saved
when the system is brought down. Therefore, you should set the desired policy
using the appropriate startup script.

6. Set the cnt policy or set up an audit administration account.

In the event of an audit trail overflow, either the cnt policy must be enabled,
which allows further system functioning, or an account must be available that can
work without being audited. To set up such an account:

a. In the /etc/passwd file, add the following entry.

audit::0:1::/:/sbin/sh

Note - This entry must be placed below the entry for the root user for
processes owned by root to function properly.

b. To add a corresponding entry into the /etc/shadow file, type the following.

pwconv
pwconv: WARNING user audit has no password

The password for the audit account will be established in Step d.

c. In the /etc/security/audit_user file, add the following entry to turn
off auditing for the account.

audit:no:all

44 SunSHIELD Basic Security Module Guide ♦ February 2000

d. Set a password for the new account using passwd .

passwd audit

Remember that actions taken through this account are not audited. To protect
system integrity, choose a password that is not easily compromised. This
example uses an account name of audit . Choose a name more appropriate
for your site if you set up such an account.

Preventing Audit Trail Overflow
If all audit file systems fill up, the audit_warn script sends a message to the
console that the hard limit has been exceeded on all audit file systems and also sends
mail to the alias. By default, the audit daemon remains in a loop sleeping and
checking for space until some space is freed. All auditable actions are suspended.

A site’s security requirements can be such that the loss of some audit data is
preferable to having system activities suspended due to audit trail overflow. In that
case, you can build automatic deletion or moving of audit files into the audit_warn
script or set the auditconfig policy to drop records.

How to Prevent Audit Trail Overflow
If your security policy requires that all audit data be saved, do the following:

1. Set up a schedule to regularly archive audit files and to delete the archived
audit files from the audit file system.

2. Manually archive audit files by backing them up on tape or moving them to an
archive file system.

3. Store context-sensitive information that will be needed to interpret audit
records along with the audit trail.

4. Keep records of what audit files are moved off line.

5. Store the archived tapes appropriately.

6. Reduce the volume of audit data you store by creating summary files.

Administering Auditing 45

You can extract summary files from the audit trail using options to
auditreduce , so that the summary files contain only records for certain
specified types of audit events. An example of this is a summary file containing
only the audit records for all logins and logouts. See Chapter 3.

The auditconfig Command
The autoconfig command provides a command line interface to get and set audit
configuration parameters. See the auditconfig (1M) man page. Some of the
options to auditconfig are:

-chkconf

Check the configuration of kernel audit event to class mappings and report any
inconsistencies.

-conf

Reconfigure kernel event to class mappings at runtime to match the current
mappings in the audit_event file.

-getcond

Retrieve the machine-auditing condition. Table 2–7 shows the possible responses.

TABLE 2–7 Possible Auditing Conditions

Response Meaning

auditing Auditing is enabled and turned on.

no audit Auditing is enabled but turned off.

disabled The audit module is not enabled.

46 SunSHIELD Basic Security Module Guide ♦ February 2000

-setcond condition

Set the machine-auditing condition: auditing or noaudit .

-getclass event_number

Get the preselection classes to which the specified event is mapped.

-setclass event_number audit_flags

Set the preselection classes to which the specified event is mapped.

-lsevent

Display the currently configured (runtime) kernel and user audit event information.

-getpinfo pid

Get the audit ID, preselection mask, terminal ID, and audit session ID of the specified
process.

-setpmask pid flags

Set the preselection mask of the specified process.

-setsmask asid flags

Set the preselection mask of all processes with the specified audit session ID.

-setumask auid flags

Set the preselection mask of all processes with the specified user audit ID.

-lspolicy

Display the list of audit policies with a short description of each one.

-getpolicy

Get the current audit policy flags.

-setpolicy policy_flag[,policy_flag]

Set the audit policy flags to the specified policies (see “Setting Audit Policies” on
page 48).

Administering Auditing 47

Setting Audit Policies
You can use auditconfig with the -setpolicy flag to change the default
Solaris-BSM audit policies. The auditconfig command with the -lspolicy
argument shows the audit policies that you can change. The policy flags are
described below.

arge

Record the environment and arguments on execv (see the exec (2) man page). The
default is not to record these.

argv

Record command-line arguments to execv . The default is not to record these.

cnt

Do not suspend auditable actions when the queue is full; just count how many audit
records are dropped. The default is suspend.

group

Include the supplementary groups token in audit records. The default is that group
token is not included.

path

Add secondary path tokens to audit record. These secondary paths are typically the
path names of dynamically linked shared libraries or command interpreters for shell
scripts. By default they are not included.

trail

Include the trailer token in all records. The default is that the trailer token is
not recorded.

seq

Include a sequence number in every audit record. The default is to not include. (The
sequence number could be used to analyze a crash dump to find out whether any
audit records are lost.)

48 SunSHIELD Basic Security Module Guide ♦ February 2000

How to Change Which Events Are in Which
Audit Classes
This procedure describes how to modify the default event to class mappings.

1. Edit the /etc/security/audit_event file to change the class mapping for
each event to be changed.

2. Reboot the system or run auditconfig -conf to change the runtime kernel
event-to-class mappings.

Changing Class Definitions
The file /etc/security/audit_class stores class definitions. Site-specific
definitions can be added and default definitions can be changed. Each entry in the
file has the form:

mask:name:description

Each class is represented as a bit in the mask, which is an unsigned integer, giving 32
different available classes plus two meta-classes of all and no ; all is a conjunction
of all allowed classes; no is the invalid class. Events mapped to this class are not
audited. Events mapped solely to the no class are not audited, even if the all class
is turned on. Below is a sample audit_class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0xffffffffff:all:all classes

If the no class is turned on in the system kernel, the audit trail is flooded with
records for the audit event AUE_NULL.

Administering Auditing 49

50 SunSHIELD Basic Security Module Guide ♦ February 2000

CHAPTER 3

Audit Trail Analysis

Using the tools described in this chapter, you can develop shell scripts to manage
and report on the audit files and then run these scripts periodically. Audit
management tasks might include compressing files, combining multiple audit files
into one, moving files to different locations on disks in the distributed system, or
archiving old files to tape. The scripts can also monitor storage usage, although the
audit daemon does some of that automatically.

Another auditing task is to examine the audit trail, which is the logical combination
of all the audit files. You can use the auditing tools to interactively query the audit
data files for specific information.

� “Auditing Features” on page 51

� “Tools for Merging, Selecting, Viewing, and Interpreting Audit Records” on page
52

� “Audit Record Format” on page 53

� “Using the auditreduce Command” on page 62

� “Using praudit ” on page 65

Auditing Features
The following features of Solaris BSM auditing are provided to interpret the audit
records:

� The audit ID assigned to a user’s processes stays the same even when the user ID
changes.

� Each session has an audit session ID.

� Full path names are saved in audit records.

51

Because each audit record contains an audit ID that identifies the user who generated
the event, and because full path names are recorded in audit records, you can look at
individual audit records and get meaningful information without looking back
through the audit trail.

Audit User ID
Solaris BSM processes have an additional user identification attribute not associated
with processes in the standard Solaris release: the audit ID. A process acquires its
audit ID at login time, and this audit ID is inherited by all child processes.

Audit Session ID
Solaris BSM processes have an audit session ID assigned at login time. The ID is
inherited by all child processes.

Self-Contained Audit Records
The Solaris BSM audit records contain all the relevant information about an event
and do not require you to refer to other audit records to interpret what occurred. For
example, an audit record describing a file event contains the file’s full path name
starting at the root directory and a time and date stamp of the file’s opening or
closing.

Tools for Merging, Selecting, Viewing,
and Interpreting Audit Records
Solaris BSM provides two tools that allow you to merge, select, view, and interpret
audit records. The tools can be used directly or in conjunction with third-party
application programs.

� The auditreduce command allows you to choose sets of records to examine. For
instance, you can select all records from the past 24 hours to generate a daily
report; you can select all records generated by a specific user to examine that
user’s activities; or you can select all records caused by a specific event type to see
how often that type occurs.

� The praudit command allows you to display audit records interactively and
create very basic reports. praudit displays records in one of several

52 SunSHIELD Basic Security Module Guide ♦ February 2000

human-readable but otherwise non-interpreted forms. You can accomplish more
sophisticated display and reporting by postprocessing the output from praudit
(with sed or awk, for instance) or by writing programs that interpret and process
the binary audit records.

The following sections describe the audit record format, the praudit , and
auditreduce commands in more detail, and provide some hints and procedures for
using the tools.

Audit Record Format
A Solaris BSM audit record consists of a sequence of audit tokens, each of which
describes an attribute of the system.

Appendix A gives a detailed description of each audit token. The appendix also lists
all the audit records generated by Solaris BSM auditing. The definitions are sorted in
order of the short descriptions, and a cross-reference table translates event names to
event descriptions.

Binary Format

Audit records are stored and manipulated in binary form; however, the byte order
and size of data is predetermined to simplify compatibility between different
machines.

Audit Event Type

Each auditable event in the system generates a particular type of audit record. The
audit record for each event has certain tokens within the record that describe the
event. An audit record does not describe the audit event class to which the event
belongs; that mapping is determined by an external table, the
/etc/security/audit_event file.

Audit Token Types

Each token starts with a one-byte token type, followed by one or more data elements
in an order determined by the type. The different audit records are distinguished by
event type and different sets of tokens within the record. Some tokens, such as the
text token, contain only a single data element, while others, such as the process
token, contain several (including the audit user ID, real user ID, and effective user
ID).

Audit Trail Analysis 53

Order of Audit Tokens
Each audit record begins with a header token and ends (optionally) with a
trailer token. One or more tokens between the header and trailer describe the
event. For user-level and kernel events, the tokens describe the process that
performed the event, the objects on which it was performed, and the objects’ tokens,
such as the owner or mode.

Each user-level and kernel event typically has at least the following tokens:

� header

� subject

� return

Many events also include a trailer token, but it is optional.

Human-Readable Audit Record Format
This section shows each audit record format as it appears in the output produced by
the praudit command. This section also gives a short description of each audit
token. For a complete description of each field in each token, see Appendix A.

The following token examples show the form that praudit produces by default.
Examples are also provided of raw (-r) and short (-s) options. When praudit
displays an audit token, it begins with the token type, followed by the data from the
token. Each data field from the token is separated from other fields by a comma.
However, if a field (such as a path name) contains a comma, this cannot be
distinguished from a field-separating comma. Use a different field separator or the
output will contain commas. The token type is displayed by default as a name, like
header , or in -r format as a decimal number.

The individual tokens are described in the following order:

� “header Token” on page 55

� “trailer Token” on page 56

� “arbitrary Token” on page 56

� “arg Token” on page 56

� “attr Token” on page 57

� “exit Token” on page 57

� “file Token” on page 57

� “groups Token” on page 58

� “in_addr Token” on page 58

� “ip Token” on page 58

� “ipc Token” on page 58

54 SunSHIELD Basic Security Module Guide ♦ February 2000

� “ipc_perm Token” on page 59

� “iport Token” on page 59

� “opaque Token” on page 59

� “path Token” on page 59

� “process Token” on page 60

� “return Token” on page 60

� “seq Token” on page 61

� “socket Token” on page 61

� “subject Token” on page 61

� “text Token” on page 62

header Token
Every audit record begins with a header token. The header token gives
information common to all audit records. The fields are:

� A token ID

� The record length in bytes, including the header and trailer tokens

� An audit record structure version number

� An event ID identifying the type of audit event

� An event ID modifier with descriptive information about the event type

� The time and date the record was created

When displayed by praudit in default format, a header token looks like the
following example from ioctl :

header,240,1,ioctl(2),es,Tue Sept 1 16:11:44 1992, + 270000 msec

Using praudit -s , the event description (ioctl (2) in the default praudit example
above) is replaced with the event name (AUE_IOCTL), like this:

header,240,1,AUE_IOCTL,es,Tue Sept 1 16:11:44 1992, + 270000 msec

Using praudit -r , all fields are displayed as numbers (that can be decimal, octal, or
hex), where 158 is the event number for this event.

20,240,1,158,0003,699754304, + 270000 msec

Notice that praudit displays the time to millisecond resolution.

Audit Trail Analysis 55

trailer Token
This token marks the end of an audit record and allows backward seeks of the audit
trail. The fields are:

� A token ID

� A pad number that marks the end of the record (does not show)

� The total number of audit record characters including the header and trailer
tokens

A trailer token is displayed by praudit as follows:

trailer,136

arbitrary Token
This token encapsulates data for the audit trail. The item array can contain a number
of items. The fields are:

� A token ID

� A suggested format, such as decimal

� A size of encapsulated data, such as int

� A count of the data array items

� An item array

An arbitrary token is displayed by praudit as follows:

arbitrary,decimal,int,1
42

arg Token
This token contains system call argument information. A 32-bit integer system call
argument is allowed in an audit record. The fields are:

� A token ID

� An argument ID of the relevant system call argument

� The argument value

� The length of an optional descriptive text string (does not show)

� An optional text string

An arg token is displayed by praudit as follows:

argument,1,0x00000000,addr

56 SunSHIELD Basic Security Module Guide ♦ February 2000

attr Token
This token contains information from the file vnode . The attr token is usually
produced during path searches and accompanies a path token, but is not included
in the event of a path-search error. The fields are:

� A token ID

� The file access mode and type

� The owner user ID

� The owner group ID

� The file system ID

� The inode ID

� The device ID that the file might represent

An attr token is displayed by praudit as follows:

attribute,100555,root,staff,1805,13871,-4288

exit Token
An exit token records the exit status of a program. The fields are:

� A token ID

� A program exit status as passed to the exit() system call

� A return value that describes the exit status or indicates a system error number

An exit token is displayed by praudit as follows:

exit,Error 0,0

file Token
This token is generated by the audit daemon to mark the beginning of a new audit
trail file and the end of an old file as the old file becomes deactivated. The audit
record containing this token links successive audit files into one audit trail. The fields
are:

� A token ID

� A time and date stamp of a file opening or closing

� A byte count of the file name (does not show)

� The file name

A file token is displayed by praudit as follows:

Audit Trail Analysis 57

file,Tue Sep 1 13:32:42 1992, + 79249 msec,
/baudit/localhost/files/19920901202558.19920901203241.quisp

groups Token
A groups token records the groups entries from a process’s credential. The fields
are:

� A token ID

� An array of groups entries of size NGROUPS_MAX (16)

A groups token is displayed by praudit as follows:

group,staff,wheel,daemon,kmem,bin,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1

in_addr Token
An in_addr token gives a machine Internet Protocol address. The fields are:

� A token ID

� An Internet address

An in_addr token is displayed by praudit as follows:

ip addr,129.150.113.7

ip Token
The ip token contains a copy of an Internet Protocol header. The fields are:

� A token ID

� A 20-byte copy of an IP header

An ip token is displayed by praudit as follows:

ip address,0.0.0.0

ipc Token
This token contains the System V IPC message/semaphore/shared-memory handle
used by a caller to identify a particular IPC object. The fields are:

� A token ID

� An IPC object type identifier

� The IPC object handle

An ipc token is displayed by praudit as follows:

58 SunSHIELD Basic Security Module Guide ♦ February 2000

IPC,msg,3

ipc_perm Token
An ipc_perm token contains a copy of the System V IPC access information. Audit
records for shared memory, semaphore, and message IPCs have this token added.
The fields are:

� A token ID

� The IPC owner’s user ID

� The IPC owner’s group ID

� The IPC creator’s user ID

� The IPC creator’s group ID

� The IPC access modes

� The IPC sequence number

� The IPC key value

An ipc_perm token is displayed by praudit as follows:

IPC perm,root,wheel,root,wheel,0,0,0x00000000

iport Token
This token contains a TCP (or UDP) address. The fields are:

� A token ID

� A TCP/UDP address

An iport token is displayed by praudit as follows:

ip port,0xf6d6

opaque Token
The opaque token contains unformatted data as a sequence of bytes. The fields are:

� A token ID

� A byte count of the data array

� An array of byte data

An opaque token is displayed by praudit as follows:

opaque,12,0x4f5041515545204441544100

path Token
A path token contains access path information for an object. The fields are:

Audit Trail Analysis 59

� A token ID

� A byte count of the path length (does not show)

� An absolute path

A path token is displayed by praudit as follows:

path,/an/anchored/path/name/to/test/auditwrite/AW_PATH

process Token
The process token contains information describing a process. The fields are:

� A token ID

� The user audit ID

� The effective user ID

� The effective group ID

� The real user ID

� The real group ID

� The process ID

� The session ID

� A terminal ID made up of:

� A device ID

� A machine ID

A process token is displayed by praudit as follows:

process,root,root,wheel,root,wheel,0,0,0,0.0.0.0

return Token
A return token gives the return status of the system call and the process return
value. This token is always returned as part of kernel-generated audit records for
system calls. The fields are:

� A token ID

� The system call error status

� The system call return value

A return token is displayed by praudit as follows:

return,success,0

60 SunSHIELD Basic Security Module Guide ♦ February 2000

seq Token
This token is optional and contains an increasing sequence number used for
debugging. The token is added to each audit record when the seq policy is active.
The fields are:

� A token ID

� A 32-bit unsigned long-sequence number

A seq token is displayed by praudit as follows:

sequence,1292

socket Token
A socket token describes an Internet socket. The fields are:

� A token ID

� A socket type field (TCP/UDP/UNIX)

� The local port address

� The local Internet address

� The remote port address

� The remote Internet address

A socket token is displayed by praudit as follows:

socket,0x0000,0x0000,0.0.0.0,0x0000,0.0.0.0

subject Token
This token describes a subject (process). The fields are:

� A token ID

� The user audit ID

� The effective user ID

� The effective group ID

� The real user ID

� The real group ID

� The process ID

� The session ID

� A terminal ID made up of:

� A device ID
� A machine ID

Audit Trail Analysis 61

A subject token is displayed by praudit as follows:

subject,cjc,cjc,staff,cjc,staff,424,223,0 0 quisp

text Token
A text token contains a text string. The fields are:

� A token ID

� The length of the text string (does not show)

� A text string

A text token is displayed by praudit as follows:

text,aw_test_token

Using the auditreduce Command
The auditreduce command merges audit records from one or more input audit
files. You would usually enter this command from the machine on which all the
audit trail files for the entire distributed system are mounted.

Without options, auditreduce merges the entire audit trail (all of the audit files in
all of the subdirectories in the audit /etc/security/audit directory) and sends
the merged file to standard output.

The praudit command, described in “Using praudit ” on page 65 makes the
records human-readable.

These are some of the capabilities provided by options to the auditreduce
command:

� Giving output containing audit records generated only by certain audit flags

� Showing audit records generated by one particular user

� Collecting audit records generated on specific dates

How auditreduce Helps in a Distributed System
When multiple machines running Solaris BSM are administered as part of a
distributed system, each machine performs auditable events, and each machine
writes audit records to its own machine-specific audit file. This simplifies software
and is robust in the face of machine failures.

62 SunSHIELD Basic Security Module Guide ♦ February 2000

The auditreduce command makes the job of maintaining the whole audit trail
practical. Using auditreduce (or shell scripts you write yourself to provide a
higher-level interface), you can read the logical combination of all audit files in the
system as a single audit trail, without regard to how the records were generated or
where they are stored.

The auditreduce program operates on the audit records produced by the audit
daemon. Records from one or more audit files are selected and merged into a single,
chronologically ordered output file. The merging and selecting functions of
auditreduce are logically independent. auditreduce selects messages from the
input files as the records are read, before the files are merged and written to disk.
Refer to the auditreduce (1M) man page.

Using auditreduce
This section describes a few common uses of auditreduce to analyze and manage
data.

How to Display the Whole Audit Log
To display the whole audit trail at once, pipe the output of auditreduce into
praudit .

#auditreduce | praudit

How to Print the Whole Audit Log
With a pipe to lp , the output goes to the printer.

auditreduce | praudit | lp

How to Display User Activity from a Selected Date
In the following example, the system administrator checks to see when a user named
fred logged in and logged out on April 13, 1990, by requesting the lo event class.
The short-form date is in the form yymmdd. (The long form is described in the
auditreduce (1M) man page.)

auditreduce -d 900413 -u fred -c lo | praudit

How to Copy Login/Logout Messages to a Single File
In this example, login/logout messages for a particular day are summarized in a file.
The target file is written in a directory other than the normal audit root.

auditreduce -c lo -d 870413 -O /usr/audit_summary/logins

Audit Trail Analysis 63

The -O option creates an audit file with 14-character timestamps for both start-time
and end-time, and the suffix logins :

/usr/audit_summary/19870413000000.19870413235959.logins

How to Clean Up a not_terminated Audit File
Occasionally, if an audit daemon dies while its audit file is still open, or a server
becomes inaccessible and forces the machine to switch to a new server, an audit file
remains in which the end-time in the file name is the string not_terminated , even
though the file is no longer used for audit records. When such a file is found, you
can manually verify that the file is no longer in use and clean it up by specifying the
name of the file with the correct options.

auditreduce -O machine 19870413120429.not_terminated .machine

This creates a new audit file with the correct name (both time stamps), the correct
suffix (machine, explicitly specified), and copies all the messages into it.

Other Useful auditreduce Options
auditreduce has many additional options described in the man page. Notice that
the uppercase options select operations or parameters for files , and the lowercase
options select parameters for records . This subsection shows how to utilize other
useful options.

The date-time options -b and -a allow you to specify records before or after a
particular day and time. A day begins at yyyymmdd00:00:00 and ends at
yyyymmdd23:59:59. The six parameters of a day are: year, month, day, hour, minute,
and second.

If -a is not specified, auditreduce defaults to 00:00:00, January 1, 1970. If -b is not
specified, auditreduce defaults to the current time of day (GMT). The -d option
selects a particular 24-hour period, as shown in “How to Copy Login/Logout
Messages to a Single File” on page 63.

The auditreduce -a command with the date shown in the following screen
example sends all audit records created after midnight on July 15, 1991, to praudit .

auditreduce -a 91071500:00:00 | praudit

The auditreduce -b command with the same date shown above sends all audit
records created before midnight on July 15, 1991 to praudit .

auditreduce -b 91071500:00:00 | praudit

64 SunSHIELD Basic Security Module Guide ♦ February 2000

The message type selection for auditreduce (-m option) accepts either numeric
message identifiers or AUE_xxxxx codes. auditreduce rejects an incorrect format,
but does not describe the correct format.

Using praudit
The praudit command reads audit records from standard input and displays them
on standard output in human-readable form. Usually, the input is either piped from
auditreduce or a single audit file. Input can also be produced with cat to
concatenate several files or tail for a current audit file.

praudit can generate three output formats: default, short (-s option), and raw (-r
option). By default, output is produced with one token per line. The -l option
requests a whole record on each line. The -d option changes the delimiter used
between token fields, and between tokens, if -l is also specified.

In -s format, the type is the audit event table name for the event (such as
AUE_IOCTL), and in -r format, it is the event number (in this case, 158). That is the
only distinction between -s and default format. In -r format, all numeric values
(user IDs, group IDs, and so forth) are displayed numerically (in decimal, except for
Internet addresses, which are in hex, and for modes, which are in octal). Here is the
output from praudit for a header token:

header,240,1,ioctl(2),es,Tue Sept 1 16:11:44 1992, + 270000 msec

And here is the output from praudit -r for the same header token:

20,240,1,158,0003,699754304, + 270000 msec

It is sometimes useful to manipulate the output as lines of text; for example to
perform selections that cannot be done with auditreduce . A simple shell script can
process the output of praudit . The following example is called praudit_grep :

#!/bin/sh
praudit | sed -e ’1,2d’ -e ’$s/^file.*$//’ -e ’s/^header/^aheader/’ \\
| tr ’\\012\\001’ ’\\002\\012’ \\
| grep "$1" \\
| tr ’\\002’ ’\\012’

The example script marks the header tokens by prefixing them with Control-A. (Note
that the ^a is Control-a, not the two characters ^ and a. Prefixing is necessary to
distinguish them from the string header that might appear as text.) The script then
combines all the tokens for a record onto one line while preserving the line breaks as
Control-a, runs grep , and restores the original new lines.

Audit Trail Analysis 65

In the default output format of praudit , each record can always be identified
unambiguously as a sequence of tokens (each on a separate line) beginning with a
header token. Each record, therefore, is easily identified and processed with awk,
for example.

66 SunSHIELD Basic Security Module Guide ♦ February 2000

CHAPTER 4

Device Allocation

The Trusted Computer System Evaluation Criteria’s (TCSEC) object-reuse requirement
for computing systems at C2 level and above is fulfilled by the device-allocation
mechanism. This chapter describes what you need to know about managing devices.

You must decide whether any devices should be allocatable, and if so, which ones, if
the defaults are not appropriate for your site’s security policy.

� “Risks Associated With Device Use” on page 67

� “Components of the Device-Allocation Mechanism” on page 68

� “Using the Device-Allocation Utilities” on page 69

� “The Allocate Error State” on page 70

� “The device_maps File” on page 70

� “The device_allocate File” on page 71

� “Device-Clean Scripts” on page 73

� “Setting Up Lock Files” on page 75

� “Managing and Adding Devices” on page 78

� “Using Device Allocations” on page 79

Risks Associated With Device Use
For one example of the security risks associated with the use of various I/O devices,
consider how cartridge devices are typically used. Often several users share a single
tape drive, which can be located in an office or lab away from where an individual
user’s own machine is located. This means that, after the user loads a tape into the
tape drive, some length of time can elapse before the user can return to the machine

67

to invoke the command that reads or writes data to or from the tape. Then another
time lapse occurs before the user is able to take the tape out of the drive. Because
tape devices are typically accessible to all users, during the time when the tape is
unattended, an unauthorized user can access or overwrite data on the tape. The
device-allocation mechanism makes it possible to assign certain devices to one user
at a time, so that the device can be accessed only by that user while it is assigned to
that user’s name.

The device-allocation mechanism ensures the following for tape devices and provides
related security services for other allocatable devices:

� Prevents simultaneous access to a device

� Prevents a user from reading a tape just written to by another user, before the first
user has removed the tape from the tape drive

� Prevents a user from gleaning any information from the device’s or the driver’s
internal storage after another user is finished with the device

Components of the Device-Allocation
Mechanism
The components of the allocation mechanism that you must understand in order to
manage device allocation are:

� The allocate , deallocate , dminfo , and list_devices commands

� The /etc/security/device_allocate file (see the device_allocate (4)
man page)

� The /etc/security/device_maps file (see the device_maps (4) man page)

� The lock files that must exist for each allocatable device in /etc/security/dev

� The changed attributes of the device-special files that are associated with each
allocatable device

� Device-clean scripts for each allocatable device

How any user invokes the allocate , deallocate , dminfo , and list_devices
commands is described in “Using the Device-Allocation Utilities” on page 69. All of
the options and other descriptions are defined in the man pages.

The device_allocate file, the device_map file, and the lock files are specific to
each machine. The configuration files are not administered as NIS databases because
tape drives, diskette drives, and the printers are all connected to specific machines.

68 SunSHIELD Basic Security Module Guide ♦ February 2000

Using the Device-Allocation Utilities
This section describes what the administrator can do with the options to allocate ,
deallocate , and list_devices that are usable only by root . The commands are
detailed on their respective man pages.

allocate -F device_special_filename

Reallocates the specified device. This option is often used with the -U option to
reallocate the specified device to the specified user. Without the -U option, the device
is allocated to root .

allocate -U username

Causes the device to be allocated to the user specified rather than to the current user.
This option allows you to allocate a device for another user while you are root ,
without having to assume that user’s identity.

deallocate -F device_special_filename

Devices that a user has allocated are not automatically deallocated when the process
terminates or when the user logs out. When a user forgets to deallocate a tape drive,
you can force deallocation using the -F option while you are root.

deallocate -I

Forces deallocation of all allocatable devices. This option should be used only at
system initialization.

list_devices

Run list_devices to get a listing of all the device-special files that are associated
with any device listed in the device_maps file.

list_devices -U username

List the devices that are allocatable or allocated to the user ID associated with the
specified user name. This allows you to check which devices are allocatable or
allocated to another user while you are root .

Device Allocation 69

The Allocate Error State
The allocate error state is mentioned in the man pages for the allocate components.
An allocatable device is in the allocate error state if it is owned by user bin and group
bin with a device-special file mode of 0100. If a user wants to allocate a device that
is in the allocate error state, you should try to force the deallocation of the device,
using the deallocate command with the -F option, or use allocate -U to
assign it to the user, then investigate any error messages that appear. When the
problems with the device are corrected, you must rerun the deallocate -F or
allocate -F commands to clear the allocate error state from the device.

The device_maps File
You can look at the /etc/security/device_maps file to determine the device
names, device types, and device-special files that are associated with each allocatable
device. See the device_maps (4) man page. Device maps are created by the system
administrator when setting up device allocation. A rudimentary file is created by
bsmconv when the BSM is enabled. This initial map file should be used only as a
starting point. The system administrator is expected to augment and customize
device_maps for the individual site.

This file defines the device-special file mappings for each device, which in many
cases is not intuitive. This file allows various programs to discover which
device-special files map to which devices. You can use the dminfo command, for
example, to get the device name, the device type, and the device-special files to
specify when setting up an allocatable device; dminfo uses the device_maps file.

Each device is represented by a one-line entry of the form:

device-name:device-type:device-list

Lines in the file can end with a \ to continue an entry on the next line. Comments
can also be included. A # makes a comment of all further text until the next newline
not immediately preceded by a \. Leading and trailing blanks are allowed in any of
the fields.

device-name

The name of the device, for example st0 , fd0 , or audio . The device name specified
here must correspond to the name of the lockfile used in the /etc/security/dev
directory.

70 SunSHIELD Basic Security Module Guide ♦ February 2000

device-type

The generic device type (the name for the class of devices, such as st , fd , audio).
The device-type logically groups related devices.

device-list

A list of the device-special files associated with the physical device. The device-list
must contain all of the special files that allow access to a particular device. If the list
is incomplete, a malevolent user can still obtain or modify private information. Also,
as in the example below, either the real device files located under /devices or the
symbolic links in /dev , provided for binary compatibility, are valid entries for the
device-list field.

For an example of entries for SCSI tape st0 and diskette fd0 in a device_maps
file, see the following screen.

fd0:\
fd:\
/dev/fd0 /dev/fd0a /dev/fd0b /dev/rfd0 /dev/rfd0a /dev/rfd0b:\

.

.

.
st0:\

st:\
/dev/rst0 /dev/rst8 /dev/rst16 /dev/nrst0 /dev/nrst8 /dev/nrst16:\

The device_allocate File
Modify the device_allocate file to change devices from allocatable to
non-allocatable or to add new devices. Table 4–1 shows a sample
device_allocate file.

TABLE 4–1 Sample device_allocate File

st0;st;;;;/etc/security/lib/st_clean
fd0;fd;;;;/etc/security/lib/fd_clean
sr0;sr;;;;/etc/security/lib/sr_clean
audio;audio;;;*;/etc/security/lib/audio_clean

Device Allocation 71

The administrator defines which devices should be allocatable during initial
configuration of the Basic Security Module. You can decide to accept the default
devices and their defined characteristics, as shown in Table 4–1. Whenever you add a
device to any machine after the system is up and running, you must decide whether
to make the new device allocatable.

The entries for devices in the device_allocate file can be modified by the
administrator after installation. Any device that needs to be allocated before use
must be defined in the device_allocate file on each machine. Currently, cartridge
tape drives, diskette drives, CD-ROM devices, and audio chips are considered
allocatable and have device-clean scripts.

Note - If you add a XylogicsTM tape drive or an Archive tape drive, they can also use
the st_clean script supplied for SCSI devices. Other devices that you can make
allocatable are modems, terminals, graphics tablets, and the like, but you need to
create your own device-clean scripts for such devices, and the script must fulfill
object-reuse requirements for that type of device.

An entry in the device_allocate file does not mean the device is allocatable,
unless the entry specifically states the device is allocatable. Notice in Table 4–1 an
asterisk (*) in the fifth field of the audio device entry. An asterisk in the fifth field
indicates to the system that the device is not allocatable; that is, the system
administrator does not require a user to allocate the device before it is used nor to
deallocate it afterward. Any other string placed in this field indicates that the device
is allocatable.

In the device_allocate file, represent each device by a one-line entry of the form:

device-name; device-type; reserved; reserved; alloc; device-clean

For example, the following line shows the entry for device name st0:

st0;st;;;;;/etc/security/lib/st_clean

Lines in device_allocate can end with a \ to continue an entry on the next line.
Comments can also be included. A # makes a comment of all further text until the
next newline not immediately preceded by a \. Leading and trailing blanks are
allowed in any of the fields.

The following paragraphs describe each field in the device_allocate file in detail.

device-name

Specifies the name of the device; for example, st0 , fd0 , or sr0 . When making a new
allocatable device, look up the device-name from the device-name field in the
device_maps file or use the dminfo command. (The name is also the DAC file
name for the device.)

72 SunSHIELD Basic Security Module Guide ♦ February 2000

device-type

Specifies the generic device type (the name for the class of devices, such as st , fd ,
and sr). This field groups related devices. When making a new allocatable device,
look up the device-type from the device-type field in the device_maps file or use the
dminfo command.

reserved

These fields are reserved for future use.

alloc

Specifies whether or not the device is allocatable. An asterisk (*) in this field indicates
that the device is not allocatable. Any other string, or an empty field, indicates that
the device is allocatable.

device-clean

Supplies the path name of a program to be invoked for special handling, such as
cleanup and object-reuse protection during the allocation process. The device-clean
program is run any time the device is acted on by deallocate , such as when a
device is forcibly deallocated with deallocate -F .

Device-Clean Scripts
The device-clean scripts address the security requirement that all usable data is
purged from a physical device before reuse. By default, cartridge tape drives,
diskette drives, CD-ROM devices, and audio devices require device-clean scripts,
which are provided. This section describes what the device-clean scripts do.

Object Reuse
Device allocation satisfies part of the object-reuse requirement. The device-clean
scripts make sure that data left on a device by one user is cleared before the device is
allocatable by another user.

Device-Clean Script for Tapes
The three supported tape devices and the device-clean script for each are shown in
Table 4–2.

Device Allocation 73

TABLE 4–2 Device-Clean Script for the Three Supported Tape Devices

Tape Device Type Device-Clean Script

SCSI 1/4-inch tape st_clean

Archive 1/4-inch tape st_clean

Open-reel 1/2-inch tape st_clean

The script uses the rewoffl option to mt to affect the device cleanup. See the mt(1)
man page. If the script runs during system boot, it queries the device to see if the
device is online and has media in it. The 1/4-inch tape devices that have media
remaining, are placed in the allocate error state to force the administrator to clean up
the device manually.

During normal system operation, when allocate or deallocate is executed in
the interactive mode, the user is prompted to remove the media from the device
being deallocated. The script pauses until the media is removed from the device.

Device-Clean Scripts for Diskettes and CD-ROM Devices
The device-clean scripts for the diskettes and CD-ROM devices are shown in Table
4–3.

TABLE 4–3 Device-Clean Scripts for the Diskette and CD-ROM Device

Disk Device Type Device-Clean Script

diskette fd_clean

CD-ROM sr_clean

The scripts use the eject command to remove the media from the drive. See the
eject (1) man page. If eject fails, the device is placed in the allocate error state.

Device-Clean Script for Audio
The audio device is cleaned up with an audio-clean script. The script performs an
AUDIO_DRAIN ioctl system call to flush the device, then an AUDIO_SETINFO

74 SunSHIELD Basic Security Module Guide ♦ February 2000

ioctl system call to reset the device configuration to default. In addition, the script
retrieves the audio chip registers using the AUDIOGETREG ioctl system call. Any
registers deviating from default are reset using the AUDIOSETREG ioctl system call.

Writing New Device-Clean Scripts
If you add more allocatable devices to the system, you might need to create your
own device-clean scripts. The deallocate command passes a parameter to the
device-clean scripts. The parameter, shown here, is a string that contains the device
name (see the device_allocate (4) man page):

st_clean -[I|F|S] device-name

Device-clean scripts must return 0 for success and greater than 0 for failure. The
options -I , -F , and -S help the script determine its running mode.

-I is needed during system boot only. All output must go to the system console.
Failure or inability to forcibly eject the media must put the device in the allocate
error state.

-F is for forced cleanup. This option is interactive and assumes that the user is
available to respond to prompts. A script with this option must attempt to complete
the cleanup if one part of the cleanup fails.

-S is for standard cleanup. This option is interactive and assumes that the user is
available to respond to prompts.

Setting Up Lock Files
The lock files are zero-length files created in /etc/security/dev — one for each
allocatable device. If no lock file exists for an allocatable device, the device cannot be
allocated, and no one can access the device.

How to Set Up Lock Files for a Device to Be Made
Allocatable
1. Use the dminfo command to get the device name for the device from its entry

in the device_maps file.

See “The device_maps File” on page 70 and the dminfo (1M) and
device_maps (4) man pages. For example, the device name for device type st is
st0 . Use the device name as the name of the lock file.

Device Allocation 75

2. Use the touch command to create an empty lock file for the device, using the
device name.

untouchable# cd /etc/security/dev
untouchable# touch device-name
untouchable# chmod 600 device-name
untouchable# chown bin device-name
untouchable# chgrp bin device-name

How the Allocate Mechanism Works
This section gives an example of how the allocate mechanism works.

The allocate command first checks for the presence of a lock file under the device
name for the specified device in the /etc/security/dev directory. If the file is
owned by allocate , then the ownership of the lock file is changed to the name of
the user entering the allocate command.

The allocate command then checks for an entry for the device in the
device_allocate file, and checks whether the entry shows the device as
allocatable.

The first listing in the screen example below shows that a lock file exists with owner
bin , group bin , and mode 600 for the st0 device in /etc/security/dev . The
second listing shows that the associated device-special files are set up properly, with
owner bin , group bin , and mode 000:

untouchable% ls -lg /etc/security/dev/st0
-rw------- 1 bin bin 0 Dec 6 15:21 /etc/security/dev/st0
untouchable% ls -lg /devices/sbus@1,f8000000/esp@0,800000
c--------- 1 bin bin 18, 4 May 12 13:11 st@4,0:
c--------- 1 bin bin 18, 20 May 12 13:11 st@4,0:b
c--------- 1 bin bin 18, 28 May 12 13:11 st@4,0:bn
c--------- 1 bin bin 18, 12 May 12 13:11 st@4,0:c

.

.

.
c--------- 1 bin bin 18, 0 May 12 13:11 st@4,0:u
c--------- 1 bin bin 18, 16 May 12 13:11 st@4,0:ub
c--------- 1 bin bin 18, 24 May 12 13:11 st@4,0:ubn
c--------- 1 bin bin 18, 8 May 12 13:11 st@4,0:un

In this screen, user vanessa allocates device st0 .

76 SunSHIELD Basic Security Module Guide ♦ February 2000

untouchable% whoami
vanessa
untouchable% allocate st0

When the user vanessa enters the allocate command to allocate the tape st0 ,
allocate first checks for the existence of an /etc/security/dev/st0 file. If no
lock file exists or if the lock file is owned by a user other than allocate , then
vanessa could not allocate the device.

If it finds the lock file for the device with the correct ownership and permissions, the
allocate command then checks to make sure the device has an entry in the
device_allocate file and that the entry specifies that the device is allocatable.

In this example, the default device_allocate entry for the st0 device specifies
that the device is allocatable. Because the allocate command finds that all the
above conditions are met, the device is allocated to vanessa .

The allocate command changes the ownership and permissions of the
device-special files associated with the device in the /dev directory. To allocate the
st0 device to vanessa , the mode on its associated device-special files is changed to
600 and the owner is changed to vanessa .

The allocate command also changes the ownership of the lock file associated with
the device in the /etc/security/dev directory. To allocate the st0 device to
vanessa , the owner of /etc/security/dev/st0 is changed to vanessa .

After the user vanessa executes the allocate command using the device name
st0 , the following screen example shows that the owner of /etc/security/dev is
changed to vanessa and that the owner of the associated device-special files is now
vanessa as well, and that vanessa now has permission to read and write the files.

untouchable% whoami
vanessa
untouchable% allocate st0
untouchable% ls -lg /etc/security/dev/st0
-rw------- 1 vanessa staff 0 Dec 6 15:21 /etc/security/dev/st0
untouchable% ls -la /devices/sbus@1,f8000000/esp@0,800000
.
.
.
crw------- 1 vanessa 18, 4 May 12 13:11 st@4,0:
crw------- 1 vanessa 18, 12 May 12 13:11 st@4,0:b
crw------- 1 vanessa 18, 12 May 12 13:11 st@4,0:bn
crw------- 1 vanessa 18, 12 May 12 13:11 st@4,0:c
.
.
.
crw------- 1 vanessa 18, 4 May 12 13:11 st@4,0:u
crw------- 1 vanessa 18, 12 May 12 13:11 st@4,0:ub

(continued)

Device Allocation 77

(Continuation)

crw------- 1 vanessa 18, 12 May 12 13:11 st@4,0:ubn
crw------- 1 vanessa 18, 12 May 12 13:11 st@4,0:un

Managing and Adding Devices
The procedures in this section show how to manage devices and how to add devices.

How to Manage Devices
1. Determine which devices are listed in the device_allocate file and which

devices can be made allocatable.

2. Define which devices, if any, should be made allocatable.

3. Decide which normal users, if any, should be allowed to allocate devices.

4. Edit the device_allocate file and add the new device.

How to Add a New Allocatable Device
1. Create an entry for any new allocatable device on the machine in the

device_allocate file.

This procedure is described in “The device_allocate File” on page 71.

2. Create an empty lock file for each allocatable device in the
/etc/security/dev directory.

This procedure is described in “Setting Up Lock Files” on page 75.

3. Create a device-clean script, if needed, for each new device.

If you add a Xylogics or an Archive tape drive, you can use the st_clean script;
otherwise, create your own. How to create a device-handling script is described
in “Device-Clean Scripts” on page 73.

78 SunSHIELD Basic Security Module Guide ♦ February 2000

4. Make all device-special files for the device to be owned by user bin , group
bin , and mode 000 .

You can run the dminfo command to get a listing from the device_maps file of
all the device-special files that are associated with the device you are making
allocatable.

Using Device Allocations
The procedures and commands in this section show how to manage devices and
how to add devices. The device-allocation and device-deallocation commands are
entered from the command line in a Command Tool or Shell Tool window:

� allocate assigns a device to a user.

You can specify the device in either of the two ways shown in Table 4–4.

TABLE 4–4 Device-Specification Options for allocate

Option Action

device-name Allocate the device that matches the device name

-g device-type Allocate the device that matches the device group type

� deallocate releases a previously allocated device.

� list_devices enables you to see a list of all allocatable devices, devices
currently allocated, and allocatable devices not currently allocated.

The list_devices command requires one of the three options shown in Table
4–5.

Device Allocation 79

TABLE 4–5 Options for the list_devices Command

Option Action

-l List all allocatable devices or information about the device.

-n List devices not currently allocated or information about the device.

-u List devices currently allocated or information about the device.

How to Allocate a Device
♦ Use the allocate command with a device specified by name, as in the

example, or by type, with -g switch.

sar1% allocate st0

If the command cannot allocate the device, an error message displays in the console
window. A list of all error messages appears in the allocate (1M) man page.

How to Deallocate a Device
♦ Deallocate a tape drive by using the deallocate command followed by the

device file name.

sar1% deallocate st0

Deallocation allows other users to allocate the device when you are finished.

80 SunSHIELD Basic Security Module Guide ♦ February 2000

APPENDIX A

Audit Record Descriptions

This appendix has two parts. The first part describes each component of an audit
record structure and each audit token structure. The second part defines all of the
audit records generated by the Basic Security Module by event description.

� “Audit Record Structure” on page 81

� “Audit Token Structure” on page 82

� “Kernel-Level Generated Audit Records” on page 97

� “User-Level Generated Audit Records” on page 186

� “Event-to-System Call Translation” on page 203

Audit Record Structure
An audit record is a sequence of audit tokens. Each token contains event information
such as user ID, time, and date. A header token begins an audit record, and an
optional trailer concludes the record. Other audit tokens contain audit-relevant
information. Figure A–1 shows a typical audit record.

81

header token

arg token

data token

subject token

return token

Figure A–1 Typical Audit Record

Audit Token Structure
Logically, each token has a token type identifier followed by data specific to the
token. Each token type has its own format and structure. The current tokens are
shown in Table A–1. The token scheme can be extended.

TABLE A–1 Basic Security Module Audit Tokens

Token Name Description

“acl token” on page 84 Access Control List information

“arbitrary Token” on page 84 Data with format and type information

“arg Token” on page 85 System call argument value

“attr Token” on page 86 Vnode tokens

“exec_args Token” on page 86 Exec system call arguments

“exec_env Token” on page 86 Exec system call environment variables

“exit Token” on page 87 Program exit information

“file Token” on page 87 Audit file information

“groups Token (Obsolete)” on page 88 Process groups information (obsolete)

“header Token” on page 88 Indicates start of record

82 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–1 Basic Security Module Audit Tokens (continued)

Token Name Description

“in_addr Token” on page 89 Internet address

“ip Token” on page 89 IP header information

“ipc Token” on page 89 System V IPC information

“ipc_perm Token” on page 90 System V IPC object tokens

“iport Token” on page 91 Internet port address

“newgroups Token” on page 91 Process groups information

“opaque Token” on page 92 Unstructured data (unspecified format)

“path Token” on page 92 Path information (path)

“process Token” on page 92 Process token information

“return Token” on page 93 Status of system call

“seq Token” on page 93 Sequence number token

“socket Token” on page 94 Socket type and addresses

“socket-inet Token” on page 94 Socket port and address

“subject Token” on page 95 Subject token information (same structure as
process token)

“text Token” on page 95 ASCII string

“trailer Token” on page 96 Indicates end of record

An audit record always contains a header token. The header token indicates where
the audit record begins in the audit trail. Every audit record contains a subject
token, except for audit records from some nonattributable events. In the case of

Audit Record Descriptions 83

attributable events, these two tokens refer to the values of the process that caused the
event. In the case of asynchronous events, the process tokens refer to the system.

acl token
The acl token records information about ACLs. It consists of four fixed fields. The
fixed fields are: a token ID that identifies this token as an acl token, a field that
specifies the ACL type, an ACL ID field, and a field that lists the permissions
associated with this ACL. The acl token appears as follows:

token ID ACL type ACL ID ACL permissions

1 byte 4 bytes 4 bytes 4 bytes

Figure A–2 acl Token Format

arbitrary Token
The arbitrary token encapsulates data for the audit trail. It consists of four fixed
fields and an array of data. The fixed fields are: a token ID that identifies this token
as an arbitrary token, a suggested format field (for example, hexadecimal), a size
field that specifies the size of data encapsulated (for example, short), and a count field
that gives the number of following items. The remainder of the token is composed of
one or more items of the specified type. The arbitrary token appears as follows:

token ID print format item size number items item 1

1 byte 1 byte 1 byte 1 byte

0 0 0 item n

Figure A–3 arbitrary Token Format

The print format field can take the values shown in Table A–2.

TABLE A–2 arbitrary Token Print Format Field Values

Value Action

AUP_BINARY Print date in binary

AUP_OCTAL Print date in octal

AUP_DECIMAL Print date in decimal

84 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–2 arbitrary Token Print Format Field Values (continued)

Value Action

AUP_HEX Print date in hex

AUP_STRING Print date as a string

The item size field can take the values shown in Table A–3.

TABLE A–3 arbitrary Token Item Size Field Values

Value Action

AUR_BYTE Data is in units of bytes (1 byte)

AUR_SHORT Data is in units of shorts (2 bytes)

AUR_LONG Data is in units of longs (4 bytes)

arg Token
The arg token contains system call argument information: the argument number of
the system call, the augment value, and an optional descriptive text string. This token
allows a 32-bit integer system-call argument in an audit record. The arg token has 5
fields: a token ID that identifies this token as an arg token, an argument ID that tells
which system call argument the token refers to, the argument value, the length of a
descriptive text string, and the text string. Figure A–4 shows the token form.

token ID argument # argument value text length text

1 byte 1 byte 4 bytes 2 bytes n bytes

Figure A–4 arg Token Format

Audit Record Descriptions 85

attr Token
The attr token contains information from the file vnode . This token has 7 fields: a
token ID that identifies this as an attr token, the file access mode and type, the
owner user ID, the owner group ID, the file system ID, the inode ID, and device ID
the file might represent. See the statvfs (2) man page for further information about
the file system ID and the device ID.

This token usually accompanies a path token and is produced during path searches.
In the event of a path-search error, this token is not included as part of the audit
record since there is no vnode available to obtain the necessary file information.
Figure A–5 shows the attr token format.

token ID file mode owner UID owner GID file system ID file inode ID device ID

1 byte 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Figure A–5 attr Token Format

exec_args Token
The exec_args token records the arguments to an exec system call. The
exec_args record has two fixed fields: a token ID field that identifies this as an
exec_args token, and a count that represents the number of arguments passed to
the exec call. The remainder of the token is composed of zero or more
null-terminated strings. Figure A–6 shows an exec_args token.

token ID count env_args

1 byte 4 bytes count null-terminated strings

Figure A–6 exec_args Token Format

Note - The exec_args token is output only when the audit policy argv is active.
See “Setting Audit Policies” on page 48 for more information.

exec_env Token
The exec_env token records the current environment variables to an exec system
call. The exec_env record has two fixed fields: a token ID field that identifies this as
an exec_env token, and a count that represents the number of arguments passed to
the exec call. The remainder of the token is composed of zero or more
null-terminated strings. Figure A–7 shows an exec_env token.

86 SunSHIELD Basic Security Module Guide ♦ February 2000

token ID count env_args

1 byte 4 bytes count null-terminated strings

Figure A–7 exec_env Token Format

Note - The exec_env token is output only when the audit policy arge is active. See
“Setting Audit Policies” on page 48 for more information.

exit Token
The exit token records the exit status of a program. The exit token contains the exit
status of the program and a return value. The status field is the same as that passed
to the exit system call. The return value field indicates a system error number or a
return value to further describe the exit status. Figure A–8 shows an exit token.

token ID status return value

1 byte 4 bytes 4 bytes

Figure A–8 exit Token Format

file Token
The file token is a special token generated by the audit daemon to mark the
beginning of a new audit trail file and the end of an old file as it is deactivated. The
audit daemon builds a special audit record containing this token to “link” together
successive audit files into one audit trail. The file token has four fields: a token ID
that identifies this token as a file token, a time and date stamp that identifies the
time the file was created or closed, a byte count of the file name including a null
terminator, and a field holding the file null-terminated name. Figure A–9 shows a
file token.

token ID date & time name length previous/next file name

1 byte 8 bytes 2 bytes n bytes

Figure A–9 file Token Format

Audit Record Descriptions 87

groups Token (Obsolete)
This token has been replaced by the newgroups token, which provides the same
type of information but requires less space. A description of the groups token is
provided here for completeness, but the application designer should use the
newgroups token. Notice that praudit does not distinguish between the two
tokens, as both token IDs are labelled groups when ASCII style output is displayed.

The groups token records the groups entries from the process’s credential. The
groups token has two fixed fields: a token ID field that identifies this as a groups
token, and a count that represents the number of groups contained in this audit
record. The remainder of the token consists of zero or more group entries. Figure
A–10 shows a groups token.

token ID groups

1 byte n groups x 4 bytes

Figure A–10 groups Token Format

Note - The groups token is output only when the audit policy group is active. See
“The auditconfig Command” on page 46 for more information.

header Token
The header token is special in that it marks the beginning of an audit record and
combines with the trailer token to bracket all the other tokens in the record. The
header token has six fields: a token ID field that identifies this as a header token, a
byte count of the total length of the audit record, including both header and trailer, a
version number that identifies the version of the audit record structure, the audit
event ID that identifies the type of audit event the record represents, an event ID
modifier that contains ancillary descriptive information concerning the type of the
event, and the time and date the record was created. Figure A–11 shows a header
token.

token ID byte count version # event ID ID modifier date and time

1 byte 4 bytes 1 byte 2 bytes 2 bytes 8 bytes

Figure A–11 header Token Format

The event modifier field has the following flags defined:

88 SunSHIELD Basic Security Module Guide ♦ February 2000

0x4000 PAD_NOTATTR nonattributable event
0x8000 PAD_FAILURE fail audit event

For the Solaris 7 release, the header token can be displayed with a 64-bit time
stamp, in place of the 32-bit time stamp.

in_addr Token
The in_addr token contains an Internet address. This 4-byte value is an Internet
Protocol address. The token has two fields: a token ID that identifies this token as an
in_addr token and an Internet address. Figure A–12 shows an in_addr token.

token ID Internet Address

1 byte 4 bytes
Figure A–12 in_addr Token Format

For the Solaris 8 release, the Internet Address can be displayed as a IPv4 address
using 4 bytes, or as an IPv6 address using 16 bytes to describe the type, and 16 bytes
to descibe the address.

ip Token
The ip token contains a copy of an Internet Protocol header but does not include
any IP options. The IP options can be added by including more of the IP header in
the token. The token has two fields: a token ID that identifies this as an ip token and
a copy of the IP header (all 20 bytes). The IP header structure is defined in
/usr/include/netinet/ip.h . Figure A–13 shows an ip token.

token ID IP header

1 byte 20 bytes
Figure A–13 ip Token Format

ipc Token
The ipc token contains the System V IPC message/semaphore/shared-memory
handle used by the caller to identify a particular IPC object. This token has three

Audit Record Descriptions 89

fields: a token ID that identifies this as an ipc token, a type field that specifies the
type of the IPC object, and the handle that identifies the IPC object. Figure A–14
shows an ipc token.

token ID IPC object type IPC object ID

1 byte 1 byte 4 bytes

Figure A–14 ipc Token Format

Note - The IPC object identifiers violate the context-free nature of the Solaris CMW
audit tokens. No global “name” uniquely identifies IPC objects; instead, they are
identified by their handles, which are valid only during the time the IPC objects are
active. The identification should not be a problem since the System V IPC
mechanisms are seldom used and they all share the same audit class.

The IPC object type field can have the values shown in Table A–4. The values are
defined in /usr/include/bsm/audit.h .

TABLE A–4 IPC Object Type Field

Name Value Description

AU_IPC_MSG 1 IPC message object

AU_IPC_SEM 2 IPC semaphore object

AU_IPC_SHM 3 IPC shared memory object

ipc_perm Token
The ipc_perm token contains a copy of the System V IPC access information. This
token is added to audit records generated by shared memory, semaphore, and
message IPC events. The token has eight fields: a token ID that identifies this token
as an ipc_perm token, the user ID of the IPC owner, the group ID of the IPC owner,
the user ID of the IPC creator, the group ID of the IPC creator, the access modes of
the IPC, the sequence number of the IPC, and the IPC key value. The values are
taken from the ipc_perm structure associated with the IPC object. Figure A–15
shows an ipc_perm token format.

90 SunSHIELD Basic Security Module Guide ♦ February 2000

token ID owner uid owner gid creator uid creator gid ipc mode sequence ID IPC key

1 byte 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Figure A–15 ipc_perm Token Format

iport Token
The iport token contains the TCP (or UDP) port address. The token has two fields:
a token ID that identifies this as an iport token and the TCP/UDP port address.
Figure A–16 shows an iport token.

token ID port ID

1 byte 2 bytes

Figure A–16 iport Token Format

newgroups Token
This token is the replacement for the groups token. Notice that praudit does not
distinguish between the two tokens, as both token IDs are labelled groups when
ASCII output is displayed.

The newgroups token records the groups entries from the process’s credential. The
newgroups token has two fixed fields: a token ID field that identifies this as a
newgroups token, and a count that represents the number of groups contained in
this audit record. The remainder of the token is composed of zero or more group
entries. Figure A–17 shows a newgroups token.

token ID count groups

1 byte 2 bytes count* 4 bytes

Figure A–17 newgroups Token Format

Note - The newgroups token is output only when the audit policy group is active.
See “The auditconfig Command” on page 46 for more information.

Audit Record Descriptions 91

opaque Token
The opaque token contains unformatted data as a sequence of bytes. The token has
three fields: a token ID that identifies this as an opaque token, a byte count of the
amount of data, and an array of byte data. Figure A–18 shows an opaque token.

token ID data length data bytes

1 byte 2 bytes n bytes

Figure A–18 opaque Token Format

path Token
The path token contains access path information for an object. The token contains a
token ID and the absolute path to the object based on the real root of the system. The
path has the following structure: a byte count of the path length and the path. Figure
A–19 shows a path token.

token ID object path

1 byte

path length path

2 bytes n bytes

Figure A–19 path Token Format

process Token
The process token contains information describing a process as an object such as
the recipient of a signal. The token has 9 fields: a token ID that identifies this token
as a process token, the invariant audit ID, the effective user ID, the effective group
ID, the real user ID, the real group ID, the process ID, the audit session ID, and a
terminal ID. Figure A–20 shows a process token.

92 SunSHIELD Basic Security Module Guide ♦ February 2000

session IDprocess ID terminal ID

4 bytes

device ID machine ID

4 bytes 4 bytes

token ID audit ID user ID group ID real user ID real group ID process ID

1 byte 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Figure A–20 process Token Format

The audit ID, user ID, group ID, process ID, and session ID are long instead of short.

Note - The process token fields for the session ID, the real user ID, or the real
group ID might be unavailable. The entry is then set to -1.

For the Solaris 7 release, the process token can be displayed using a 64-bit device
ID, in place of the 32-bit value.

For the Solaris 8 release, the terminal ID can report an IPv6 address by changing the
format to use either 4 or 8 bytes to describe the device, 16 bytes to describe the type,
and 16 bytes to descibe the address.

return Token
The return token contains the return status of the system call (u_error) and the
process return value (u_rval1). The token has three fields: a token ID that identifies
this token as a return token, the error status of the system call, and the system call
return value. This token is always returned as part of kernel-generated audit records
for system calls. The token indicates exit status and other return values in application
auditing. Figure A–21 shows a return token.

token ID process error process value

1 byte 1 byte 4 bytes
Figure A–21 return Token Format

seq Token
The seq token (sequence token) is an optional token that contains an increasing
sequence number. This token is for debugging. The token is added to each audit
record when the AUDIT_SEQpolicy is active. The seq token has 2 fields: a token ID

Audit Record Descriptions 93

that identifies this token as a seq token, and a 32-bit unsigned long field that contains
the sequence number. The sequence number is incremented every time an audit
record is generated and put onto the audit trail. Figure A–22 shows a seq token.

token ID sequence number

1 byte 4 bytes

Figure A–22 seq Token Format

socket Token
The socket token contains information describing an Internet socket. The socket
token has 6 fields: a token ID that identifies this token as a socket token, a socket
type field that indicates the type of socket referenced (TCP/UDP/UNIX), the local
port address, the local Internet address, the remote port address, and the remote
Internet address. Figure A–23 shows a socket token.

token ID socket type local port local Internet
address

remote Internet
address

remote port

1 byte 2 bytes 2 bytes 4 bytes 4 bytes2 bytes

Figure A–23 socket Token Format

For the Solaris 8 release, the Internet Address can be displayed as a IPv4 address
using 4 bytes, or as an IPv6 address using 16 bytes to describe the type, and 16 bytes
to descibe the addresses.

socket-inet Token
The socket-inet token describes a socket connection to a local port, which is used
to represent the socket information in the Internet namespace. The socket-inet
token has 4 fields: a token ID that identifies this token as a socket-inet token, a
socket family field that indicates the Internet family (AF_INET , AF_OSI, and so on),
the address of the local port, and the address of the socket. Figure A–24 shows a
socket-inet token.

token ID socket family local port socket address

1 byte 2 bytes 2 bytes 4 bytes

Figure A–24 socket-inet Token Format

94 SunSHIELD Basic Security Module Guide ♦ February 2000

subject Token
The subject token describes a subject (process). The structure is the same as the
process token. The token has 9 fields: an ID that identifies this as a subject token,
the invariant audit ID, the effective user ID, the effective group ID, the real user ID,
the real group ID, the process ID, the audit session ID, and a terminal ID. This token
is always returned as part of kernel-generated audit records for system calls. Figure
A–25 shows the token.

session IDprocess ID terminal ID

4 bytes

device ID machine ID

4 bytes 4 bytes

token ID audit ID user ID group ID real user ID real group ID process ID

1 byte 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Figure A–25 subject Token Format

The audit ID, user ID, group ID, process ID, and session ID are long instead of short.

Note - The subject token fields for the session ID, the real user ID, or the real
group ID might be unavailable. The entry is then set to -1.

For the Solaris 7 release, the process token can be displayed using a 64-bit device
ID, in place of the 32-bit value.

For the Solaris 8 release, the terminal ID can report an IPv6 address by changing the
format to use either 4 or 8 bytes to describe the device, 16 bytes to describe the type,
and 16 bytes to descibe the address.

text Token
The text token contains a text string. The token has three fields: a token ID that
identifies this token as a text token, the length of the text string, and the text string
itself. Figure A–26shows a text token.

token ID text length text string

1 byte 1 byte n bytes

Figure A–26 text Token Format

Audit Record Descriptions 95

trailer Token
The two tokens, header and trailer , are special in that they distinguish the
endpoints of an audit record and bracket all the other tokens. A header token
begins an audit record. A trailer token ends an audit record. It is an optional
token that is added as the last token of each record only when the AUDIT_TRAIL
audit policy has been set.

The trailer token is special in that it marks the termination of an audit record.
Together with the header token, the trailer token delimits an audit record. The
trailer token supports backward seeks of the audit trail. The trailer token has
three fields: a token ID that identifies this token as a trailer token, a pad number
to aid in marking the end of the record, and the total number of characters in the
audit record, including both the header and trailer tokens. Figure A–27 shows a
trailer token.

token ID pad number byte count

1 byte 2 bytes 4 bytes

Figure A–27 trailer Token Format

The audit trail analysis software ensures that each record contains both header and
trailer . In the case of a write error, as when a file system becomes full, an audit
record can be incomplete and truncated. auditsvc , the system call responsible for
writing data to the audit trail, attempts to put out complete audit records. See the
auditsvc (2) man page. When file system space runs out, the call terminates without
releasing the current audit record. When the call resumes, it can then repeat the
truncated record.

Audit Records
This section presents all of the audit records. The audit records generated by kernel
events are described first (see “Kernel-Level Generated Audit Records” on page 97).
The audit records generated by user-level eventes are described next (see
“User-Level Generated Audit Records” on page 186).

“Event-to-System Call Translation” on page 203 includes two tables that include all
possible audit events and identifies which kernel or user event created the audit
event. Table A–205 maps audit events to system calls. Table A–206 maps audit events
to an application or command.

96 SunSHIELD Basic Security Module Guide ♦ February 2000

General Audit Record Structure
The audit records produced by Basic Security Module have a sequence of tokens.
Certain tokens are optional within an audit record, according to the current audit
policy. The group , sequence , and trailer tokens fall into this category. The
administrator can determine if these are included in an audit record with the
auditconfig command -getpolicy option.

Kernel-Level Generated Audit Records
These audit records are created by system calls that are used by the kernel. The
records are sorted alphabetically by system call. The description of each record
includes:

� The name of the system call

� A man page reference (if appropriate)

� The audit event number

� The audit event name

� The audit event class

� The mask for the event class

� The audit record structure

Audit Record Descriptions 97

TABLE A–5 accept(2)

Event Name Event ID Event Class Mask

AUE_ACCEPT 33 nt 0x00000100

Format (if the socket address is not part of the AF_INET family):

header-token

arg-token (1, "fd", file descriptor)

text-token ("bad socket address")

text-token ("bad peer address")

subject-token

return-token

Format (if the socket address is part of the AF_INET family):

header-token

If there is no vnode for this file descriptor:

[arg-token] (1, "Bad fd", file descriptor)

or if the socket is not bound:

[arg-token (1, "fd", file descriptor)

text-token] ("socket not bound")

or if the socket address length = 0:

[arg-token (1, "fd", file descriptor)

text-token] ("bad socket address")

For all other conditions:

[socket-inet-token] ("socket address")

socket-inet-token ("socket address")

subject-token

return-token

98 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–6 access(2)

Event Name Event ID Event Class Mask

AUE_ACCESS 14 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–7 acl(2) - SETACL command

Event Name Event ID Event Class Mask

AUE_ACLSET 251 fm 0x00000008

Format:

header-token

arg-token (2, "cmd", SETACL)

arg-token (3, "nentries", number of ACL entries)

(0..n)[acl-token] (ACLs)

subject-token

return-token

Audit Record Descriptions 99

TABLE A–8 acct(2)

Event Name Event ID Event Class Mask

AUE_ACCT 18 ad 0x00000800

Format (zero path):

header-token

argument-token (1, "accounting off", 0)

subject-token

return-token

Format (non-zero path):

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–9 adjtime(2)

Event Name Event ID Event Class Mask

AUE_ADJTIME 50 ad 0x00000800

Format:

header-token

subject-token

return-token

100 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–10 audit(2)

Event Name Event ID Event Class Mask

AUE_AUDIT 211 no 0x00000000

Format:

header-token

subject-token

return-token

TABLE A–11 auditon(2) - get car

Event Name Event ID Event Class Mask

AUE_AUDITON_GETCAR 224 ad 0x00000800

Format:

header-token

subject-token

return-token

Audit Record Descriptions 101

TABLE A–12 auditon(2) - get event class

Event Name Event ID Event Class Mask

AUE_AUDITON_GETCLASS 231 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–13 auditon(2) - get audit state

Event Name Event ID Event Class Mask

AUE_AUDITON_GETCOND 229 ad 0x00000800

Format:

header-token

subject-token

return-token

102 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–14 auditon(2) - get cwd

Event Name Event ID Event Class Mask

AUE_AUDITON_GETCWD 223 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–15 auditon(2) - get kernal mask

Event Name Event ID Event Class Mask

AUE_AUDITON_GETKMASK 221 ad 0x00000800

Format:

header-token

subject-token

return-token

Audit Record Descriptions 103

TABLE A–16 auditon(2) - get audit statistics

Event Name Event ID Event Class Mask

AUE_AUDITON_GETSTAT 225 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–17 auditon(2) - GPOLICY command

Event Name Event ID Event Class Mask

AUE_AUDITON_GPOLICY 114 ad 0x00000800

Format:

header-token

subject-token

return-token

104 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–18 auditon(2) - GQCTRL command

Event Name Event ID Event Class Mask

AUE_AUDITON_GQCTRL 145 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–19 auditon(2) - set event class

Event Name Event ID Event Class Mask

AUE_AUDITON_SETCLASS 232 ad 0x00000800

Format:

header-token

[argument-token] (2, "setclass:ec_event", event number)

[argument-token] (3, "setclass:ec_class", class mask)

subject-token

return-token

Audit Record Descriptions 105

TABLE A–20 auditon(2) - set audit state

Event Name Event ID Event Class Mask

AUE_AUDITON_SETCOND 230 ad 0x00000800

Format:

header-token

[argument-token] (3, "setcond", audit state)

subject-token

return-token

TABLE A–21 auditon(2) - set kernal mask

Event Name Event ID Event Class Mask

AUE_AUDITON_SETKMASK 222 ad 0x00000800

Format:

header-token

[argument-token] (2, "setkmask:as_success", kernel mask)

[argument-token] (2, "setkmask:as_failure", kernel mask)

return-token

106 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–22 auditon(2) - set mask per session ID

Event Name Event ID Event Class Mask

AUE_AUDITON_SETSMASK 228 ad 0x00000800

Format:

header-token

[argument-token] (3, "setsmask:as_success", session ID mask)

[argument-token] (3, "setsmask:as_failure", session ID mask)

subject-token

return-token

TABLE A–23 auditon(2) - reset audit statistics

Event Name Event ID Event Class Mask

AUE_AUDITON_SETSTAT 226 ad 0x00000800

Format:

header-token

subject-token

return-token

Audit Record Descriptions 107

TABLE A–24 auditon(2) - set mask per uid

Event Name Event ID Event Class Mask

AUE_AUDITON_SETUMASK 227 ad 0x00000800

Format:

header-token

[argument-token] (3, "setumask:as_success", audit ID mask)

[argument-token] (3, "setumask:as_failure", audit ID mask)

subject-token

return-token

TABLE A–25 auditon(2) - SPOLICY command

Event Name Event ID Event Class Mask

AUE_AUDITON_SPOLICY 147 ad 0x00000800

Format:

header-token

[argument-token] (1, "policy", audit policy flags)

subject-token

return-token

108 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–26 auditon(2) - SQCTRL command

Event Name Event ID Event Class Mask

AUE_AUDITON_SQCTRL 146 ad 0x00000800

Format:

header-token

[argument-token] (3,"setqctrl:aq_hiwater", queue control param.)

[argument-token] (3,"setqctrl:aq_lowater", queue control param.)

[argument-token] (3,"setqctrl:aq_bufsz", queue control param.)

[argument-token] (3,"setqctrl:aq_delay", queue control param.)

subject-token

return-token

TABLE A–27 auditsvc(2)

Event Name Event ID Event Class Mask

AUE_AUDITSVC 136 ad 0x00000800

Format (valid file descriptor):

header-token

[path-token]

[attr-token]

subject-token

return-token

Format (not valid file descriptor):

header-token

argument-token (1, "no path: fd", fd)

subject-token

return-token

Audit Record Descriptions 109

TABLE A–28 bind(2)

Event Name Event ID Event Class Mask

AUE_BIND 34 nt 0x00000100

Format:

header-token

If there is no vnode for this file descriptor:

[arg-token] (1, "Bad fd", file descriptor)

or if the socket is not of the AF_INET family:

[arg-token (1, "fd", file descriptor)

text-token] ("bad socket address")

for all other conditions:

[arg-token (1, "fd", file descriptor)

socket-inet-token] ("socket address")

subject-token

return-token

TABLE A–29 chdir(2)

Event Name Event ID Event Class Mask

AUE_CHDIR 8 pc 0x00000080

Format:

header-token

path-token

[attr-token]

subject-token

return-token

110 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–30 chmod(2)

Event Name Event ID Event Class Mask

AUE_CHMOD 10 fm 0x00000008

Format:

header-token

argument-token (2, "new file mode", mode)

path-token

[attr-token]

subject-token

return-token

TABLE A–31 chown(2)

Event Name Event ID Event Class Mask

AUE_CHOWN 11 fm 0x00000008

Format:

header-token

argument-token (2, "new file uid", uid)

argument-token (3, "new file gid", gid)

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 111

TABLE A–32 chroot(2)

Event Name Event ID Event Class Mask

AUE_CHROOT 24 pc 0x00000080

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–33 close(2)

Event Name Event ID Event Class Mask

AUE_CLOSE 112 cl 0x00000040

Format:

<file system object>

header-token

argument-token (1, "fd", file descriptor)

[path-token]

[attr-token]

subject-token

return-token

112 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–34 connect(2)

Event Name Event ID Event Class Mask

AUE_CONNECT 32 nt 0x00000100

Format (if the socket address is not part of the AF_INET family):

header-token

arg-token (1, "fd", file descriptor)

text-token ("bad socket address")

text-token ("bad peer address")

subject-token

return-token

Format (if the socket address is part of the AF_INET family):

header-token

If there is no vnode for this file descriptor:

[arg-token] (1, "Bad fd", file descriptor)

or if the socket is not bound:

[arg-token (1, "fd", file descriptor)

text-token] ("socket not bound")

or if the socket address length = 0:

[arg-token (1, "fd", file descriptor)

text-token] ("bad socket address")

for all other conditions:

[socket-inet-token] ("socket address")

socket-inet-token ("socket address")

subject-token

return-token

Audit Record Descriptions 113

TABLE A–35 creat(2)

Event Name Event ID Event Class Mask

AUE_CREAT 4 fc 0x00000010

Format

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–36 doorfs(2) - DOOR_BIND

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_BIND 260 ip 0x00000200

Format:

header-token

arg-token (1, "door ID", door ID)

subject-token

return-token

114 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–37 doorfs(2) - DOOR_CALL

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_CALL 254 ip 0x00000200

Format:

header-token

arg-token (1, "door ID", door ID)

process-token (for process that owns the door)

subject-token

return-token

TABLE A–38 doorfs(2) - DOOR_CREATE

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_CREATE 256 ip 0x00000200

Format:

header-token

arg-token (1, "door attr", door attributes)

subject-token

return-token

Audit Record Descriptions 115

TABLE A–39 doorfs(2) - DOOR_CRED

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_CRED 259 ip 0x00000200

Format:

header-token

subject-token

return-token

TABLE A–40 doorfs(2) - DOOR_INFO

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_INFO 258 ip 0x00000200

Format:

header-token

subject-token

return-token

116 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–41 doorfs(2) - DOOR_RETURN

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_RETURN 255 ip 0x00000200

Format:

header-token

subject-token

return-token

TABLE A–42 doorfs(2) - DOOR_REVOKE

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_REVOKE 257 ip 0x00000200

Format:

header-token

arg-token (1, "door ID", door ID)

subject-token

return-token

Audit Record Descriptions 117

TABLE A–43 doorfs(2) - DOOR_UNBIND

Event Name Event ID Event Class Mask

AUE_DOORFS_DOOR_UNBIND 261 ip 0x00000200

Format:

header-token

arg-token (1, "door ID", door ID)

subject-token

return-token

TABLE A–44 enter prom

Event Name Event ID Event Class Mask

AUE_ENTERPROM 153 na 0x00000400

Format:

header-token

text-token (addr, "monitor PROM"|"kadb")

subject-token

return-token

118 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–45 exec(2)

Event Name Event ID Event Class Mask

AUE_EXEC 7 pc,ex 0x40000080

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–46 execve(2)

Event Name Event ID Event Class Mask

AUE_EXECVE 23 pc,ex 0x40000080

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 119

TABLE A–47 exit prom

Event Name Event ID Event Class Mask

AUE_EXITPROM 154 na 0x00000400

Format:

header-token

text-token (addr, "monitor PROM"|"kadb")

subject-token

return-token

TABLE A–48 exit(2)

Event Name Event ID Event Class Mask

AUE_EXIT 1 pc 0x00000080

Format:

header-token

subject-token

return-token

120 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–49 facl(2) - SETACL command

Event Name Event ID Event Class Mask

AUE_FACLSET 252 fm 0x00000008

Format (zero path):

header-token

arg-token (2, "cmd", SETACL)

arg-token (3, "nentries", number of ACL entries)

arg-token (1, "no path: fd", file descriptor)

(0..n)[acl-token] (ACLs)

subject-token

return-token

Format (non-zero path):

header-token

arg-token (2, "cmd", SETACL)

arg-token (3, "nentries", number of ACL entries)

path-token

[attr-token]

(0..n)[acl-token] (ACLs)

subject-token

return-token

Audit Record Descriptions 121

TABLE A–50 fchdir(2)

Event Name Event ID Event Class Mask

AUE_FCHDIR 68 pc 0x00000080

Format:

header-token

[path-token]

[attr-token]

subject-token

return-token

TABLE A–51 fchmod(2)

Event Name Event ID Event Class Mask

AUE_FCHMOD 39 fm 0x00000008

Format (valid file descriptor):

header-token

argument-token (2, "new file mode", mode)

[path-token]

[attr-token]

subject-token

return-token

Format (not valid file descriptor):

header-token

argument-token (2, "new file mode", mode)

argument-token (1, "no path: fd", fd)

subject-token

return-token

122 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–52 fchown(2)

Event Name Event ID Event Class Mask

AUE_FCHOWN 38 fm 0x00000008

Format (valid file descriptor):

header-token (2, "new file uid", uid)

argument-token (3, "new file gid", gid)

[path-token]

[attr-token]

subject-token

return-token

Format (non-file descriptor):

header-token

argument-token (2, "new file uid", uid)

argument-token (3, "new file gid", gid)

argument-token (1, "no path: fd", fd)

subject-token

return-token

TABLE A–53 fchroot(2)

Event Name Event ID Event Class Mask

AUE_FCHROOT 69 pc 0x00000080

Format:

header-token

[path-token]

[attr-token]

subject-token

return-token

Audit Record Descriptions 123

TABLE A–53 fchroot(2) (continued)

TABLE A–54 fcntl(2)

Event Name Event ID Event Class Mask

AUE_FCNTL(cmd=F_GETLK,
F_SETLK, F_SETLKW)

30 fm 0x00000008

Format (file descriptor):

header-token

argument-token (2, "cmd", cmd)

path-token

attr-token

subject-token

return-token

Format (bad file descriptor):

header-token

argument-token (2, "cmd", cmd)

argument-token (1, "no path: fd", fd)

subject-token

return-token

124 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–55 fork(2)

Event Name Event ID Event Class Mask

AUE_FORK 2 pc 0x00000080

Format:

header-token

[argument-token] (0, "child PID", pid)

subject-token

return-token

The fork() return values are undefined because the audit record
is produced at the point that the child process is spawned.

TABLE A–56 fork1(2)

Event Name Event ID Event Class Mask

AUE_FORK1 241 pc 0x00000080

Format:

header-token

[argument-token] (0, "child PID", pid)

subject-token

return-token

The fork1() return values are undefined because the audit record
is produced at the point that the child process is spawned.

Audit Record Descriptions 125

TABLE A–57 fstatfs(2)

Event Name Event ID Event Class Mask

AUE_FSTATFS 55 fa 0x00000004

Format (file descriptor):

header-token

[path-token]

[attr-token]

subject-token

return-token

Format (non-file descriptor):

header-token

argument-token (1, "no path: fd", fd)

subject-token

return-token

TABLE A–58 getaudit(2)

Event Name Event ID Event Class Mask

AUE_GETAUDIT 132 ad 0x00000800

Format:

header-token

subject-token

return-token

126 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–59 getaudit_addr()

Event Name Event ID Event Class Mask

AUE_GETAUDIT_ADDR 267 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–60 getauid(2)

Event Name Event ID Event Class Mask

AUE_GETAUID 130 ad 0x00000800

Format:

header-token

subject-token

return-token

Audit Record Descriptions 127

TABLE A–61 getmsg(2)

Event Name Event ID Event Class Mask

AUE_GETMSG 217 nt 0x00000100

Format:

header-token

argument-token (1, "fd", file descriptor)

argument-token (4, "pri", priority)

subject-token

return-token

TABLE A–62 getmsg - accept

Event Name Event ID Event Class Mask

AUE_SOCKACCEPT 247 nt 0x00000100

Format:

header-token

socket-inet-token

argument-token (1, "fd", file descriptor)

argument-token (4, "pri", priority)

subject-token

return-token

128 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–63 getmsg - receive

Event Name Event ID Event Class Mask

AUE_SOCKRECEIVE 250 nt 0x00000100

Format:

header-token

socket-inet-token

argument-token (1, "fd", file descriptor)

argument-token (4, "pri", priority)

subject-token

return-token

TABLE A–64 getpmsg(2)

Event Name Event ID Event Class Mask

AUE_GETPMSG 219 nt 0x00000100

Format:

header-token

argument-token (1, "fd", file descriptor)

subject-token

return-token

Audit Record Descriptions 129

TABLE A–65 getportaudit(2)

Event Name Event ID Event Class Mask

AUE_GETPORTAUDIT 149 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–66 inst_sync(2)

Event Name Event ID Event Class Mask

AUE_INST_SYNC 264 ad 0x00000800

Format:

header-token

arg-token (2, "flags", flags value)

subject-token

return-token

130 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–67 ioctl(2)

Event Name Event ID Event Class Mask

AUE_IOCTL 158 io 0x20000000

Format (good file descriptor):

header-token

path-token

[attr-token]

argument-token (2, "cmd" ioctl cmd)

argument-token (3, "arg" ioctl arg)

subject-token

return-token

Format (socket):

header-token

[socket-token]

argument-token (2, "cmd" ioctl cmd)

argument-token (3, "arg" ioctl arg)

subject-token

return-token

Format (non-file file descriptor):

header-token

argument-token (1, "fd", file descriptor)

argument-token (2, "cmd", ioctl cmd)

argument-token (3, "arg", ioctl arg)

subject-token

return-token

Format (bad file name):

header-token

argument-token (1, "no path: fd", fd)

argument-token (2, "cmd", ioctl cmd)

argument-token (3, "arg", ioctl arg)

subject-token

return-token

Audit Record Descriptions 131

TABLE A–68 kill(2)

Event Name Event ID Event Class Mask

AUE_KILL 15 pc 0x00000080

Format (valid process):

header-token

argument-token (2, "signal", signo)

[process-token]

subject-token

return-token

Format (zero or negative process):

header-token

argument-token (2, "signal", signo)

argument-token (1, "process", pid))

subject-token

return-token

TABLE A–69 lchown(2)

Event Name Event ID Event Class Mask

AUE_LCHOWN 237 fm 0x00000008

Format:

header-token

argument-token (2, "new file uid", uid)

argument-token (3, "new file gid", gid)

path-token

[attr-token]

subject-token

return-token

132 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–69 lchown(2) (continued)

TABLE A–70 link(2)

Event Name Event ID Event Class Mask

AUE_LINK 5 fc 0x00000010

Format:

header-token

path-token (from path)

[attr-token] (from path)

path-token (to path)

subject-token

return-token

TABLE A–71 lstat(2)

Event Name Event ID Event Class Mask

AUE_LSTAT 17 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 133

TABLE A–72 lxstat(2)

Event Name Event ID Event Class Mask

AUE_LXSTAT 236 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–73 memcntl(2)

Event Name Event ID Event Class Mask

AUE_MEMCNTL 238 ot 0x80000000

Format:

header-token

argument-token (1, "base", base address)

argument-token (2, "len", length)

argument-token (3, "cmd", command)

argument-token (4, "arg", command args)

argument-token (5, "attr", command attributes)

argument-token (6, "mask", 0)

subject-token

return-token

134 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–74 mkdir(2)

Event Name Event ID Event Class Mask

AUE_MKDIR 47 fc 0x00000010

Format:

header-token

argument-token (2, "mode", mode)

path-token

[attr-token]

subject-token

return-token

TABLE A–75 mknod(2)

Event Name Event ID Event Class Mask

AUE_MKNOD 9 fc 0x00000010

Format:

header-token

argument-token (2, "mode", mode)

argument-token (3, "dev", dev)

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 135

TABLE A–76 mmap(2)

Event Name Event ID Event Class Mask

AUE_MMAP 210 no 0x00000000

Format (valid file descriptor):

header-token

argument-token (1, "addr", segment address)

argument-token (2, "len", segment length)

[path-token]

[attr-token]

subject-token

return-token

Format (not valid file descriptor):

header-token

argument-token (1, "addr", segment address)

argument-token (2, "len", segment length)

argument-token (1, "no path: fd", fd)

subject-token

return-token

136 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–77 modctl(2) - bind module

Event Name Event ID Event Class Mask

AUE_MODADDMAJ 246 ad 0x00000800

Format:

header-token

[text-token] driver major number)

[text-token] (driver name)

text-token (root dir.|"no rootdir")

text-token (driver major number|"no drvname")

argument-token (5, "", number of aliases)

(0..n)[text-token] (aliases)

subject-token

return-token

TABLE A–78 modctl(2) - configure module

Event Name Event ID Event Class Mask

AUE_MODCONFIG 245 ad 0x00000800

Format:

header-token

text-token (root dir.|"no rootdir")

text-token (driver major number|"no drvname")

subject-token

return-token

Audit Record Descriptions 137

TABLE A–79 modctl(2) - load module

Event Name Event ID Event Class Mask

AUE_MODLOAD 243 ad 0x00000800

Format:

header-token

[text-token] (default path)

text-token (filename path)

subject-token

return-token

TABLE A–80 modctl(2) - unload module

Event Name Event ID Event Class Mask

AUE_MODUNLOAD 244 ad 0x00000800

Format:

header-token

argument-token (1, "id", module ID)

subject-token

return-token

138 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–81 mount(2)

Event Name Event ID Event Class Mask

AUE_MOUNT 62 ad 0x00000800

Format (UNIX file system):

header-token

argument-token (3, "flags", flags)

text-token (filesystem type)

path-token

[attr-token]

subject-token

return-token

Format (NFS file system):

header-token

argument-token (3, "flags", flags)

text-token (filesystem type)

text-token (host name)

argument-token (3, "internal flags", flags)

Audit Record Descriptions 139

TABLE A–82 msgctl(2)

Event Name Event ID Event Class Mask

AUE_MSGCTL 84 ip 0x00000200

Format:

header-token

argument-token (1, "msg ID", message ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

TABLE A–83 msgctl(2) - IPC_RMID command

Event Name Event ID Event Class Mask

AUE_MSGCTL_RMID 85 ip 0x00000200

Format:

header-token

argument-token (1, "msg ID", message ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

140 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–84 msgctl(2) - IPC_SET command

Event Name Event ID Event Class Mask

AUE_MSGCTL_SET 86 ip 0x00000200

Format:

header-token

argument-token (1, "msg ID", message ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

TABLE A–85 msgctl(2) - IPC_STAT command

Event Name Event ID Event Class Mask

AUE_MSGCTL_STAT 87 ip 0x00000200

Format:

header-token

argument-token (1, "msg ID", message ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

Audit Record Descriptions 141

TABLE A–86 msgget(2)

Event Name Event ID Event Class Mask

AUE_MSGGET 88 ip 0x00000200

Format:

header-token

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

TABLE A–87 msgrcv(2)

Event Name Event ID Event Class Mask

AUE_MSGRCV 89 ip 0x00000200

Format:

header-token

argument-token (1, "msg ID", message ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

142 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–88 msgsnd(2)

Event Name Event ID Event Class Mask

AUE_MSGSND 90 ip 0x00000200

Format:

header-token

argument-token (1, "msg ID", message ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the msg ID is
not valid.

TABLE A–89 munmap(2)

Event Name Event ID Event Class Mask

AUE_MUNMAP 214 cl 0x00000040

Format:

header-token

argument-token (1, "addr", address of memory)

argument-token (2, "len", memory segment size)

subject-token

return-token

Audit Record Descriptions 143

TABLE A–90 old nice(2)

Event Name Event ID Event Class Mask

AUE_NICE 203 pc 0x00000080

Format:

header-token

subject-token

return-token

TABLE A–91 open(2) - read

Event Name Event ID Event Class Mask

AUE_OPEN_R 72 fr 0x00000001

Format:

header-token

path-token

[attr-token]

subject-token

return-token

144 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–92 open(2) - read,creat

Event Name Event ID Event Class Mask

AUE_OPEN_RC 73 fc,fr 0x00000011

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–93 open(2) - read,creat,trunc

Event Name Event ID Event Class Mask

AUE_OPEN_RTC 75 fc,fd,fr 0x00000031

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 145

TABLE A–94 open(2) - read,trunc

Event Name Event ID Event Class Mask

AUE_OPEN_RT 74 fd,fr 0x00000021

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–95 open(2) - read,write

Event Name Event ID Event Class Mask

AUE_OPEN_RW 80 fr,fw 0x00000003

Format:

header-token

path-token

[attr-token]

subject-token

return-token

146 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–96 open(2) - read,write,creat

Event Name Event ID Event Class Mask

AUE_OPEN_RWC 81 fr,fw,fc 0x00000013

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–97 open(2) - read,write,create,trunc

Event Name Event ID Event Class Mask

AUE_OPEN_RWTC 83 fr,fw,fc,fd 0x00000033

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 147

TABLE A–98 open(2) - read,write,trunc

Event Name Event ID Event Class Mask

AUE_OPEN_RWT 82 fr,fw,fd 0x00000023

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–99 open(2) - write

Event Name Event ID Event Class Mask

AUE_OPEN_W 76 fw 0x00000002

Format:

header-token

path-token

[attr-token]

subject-token

return-token

148 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–100 open(2) - write,creat

Event Name Event ID Event Class Mask

AUE_OPEN_WC 77 fw,fc 0x00000012

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–101 open(2) - write,creat,trunc

Event Name Event ID Event Class Mask

AUE_OPEN_WTC 79 fw,fc,fd 0x00000032

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 149

TABLE A–102 open(2) - write,trunc

Event Name Event ID Event Class Mask

AUE_OPEN_WT 78 fw,fd 0x00000022

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–103 p_online(2)

Event Name Event ID Event Class Mask

AUE_P_ONLINE 262 ad 0x00000800

header-token

arg-token (1, "processor ID", processor ID)

arg-token (2, "flags", flags value)

text-token (text form of flags value: P_ONLINE, P_OFFLINE, P_STATUS)

subject-token

return-token

150 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–104 pathconf(2)

Event Name Event ID Event Class Mask

AUE_PATHCONF 71 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–105 pipe(2)

Event Name Event ID Event Class Mask

AUE_PIPE 185 no 0x00000000

Format:

header-token

subject-token

return-token

Audit Record Descriptions 151

TABLE A–106 priocntlsys(2)

Event Name Event ID Event Class Mask

AUE_PRIOCNTLSYS 212 pc 0x0000080

Format:

header-token

argument-token (1, "pc_version", priocntl version num.)

argument-token (3,"cmd", command)

subject-token

return-token

TABLE A–107 process dumped core

Event Name Event ID Event Class Mask

AUE_CORE 111 fc 0x0000010

Format:

header-token

path-token

[attr-token]

argument-token (1, "signal", signal)

subject-token

return-token

152 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–108 processor_bind(2)

Event Name Event ID Event Class Mask

AUE_PROCESSOR_BIND 263 ad 0x00000800

Format (no processor bound):

header-token

arg-token (1, "ID type", type of ID)

arg-token (2, "ID", ID value)

text-token ("PBIND_NONE")

process-token (for process whose threads are bound to the processor)

subject-token

return-token

Format (with processor bound):

header-token

arg-token (1, "ID type", type of ID)

arg-token (2, "ID", ID value)

arg-token (3, "processor ID", processor ID)

process-token (for process whose threads are bound to the processor)

subject-token

return-token

Audit Record Descriptions 153

TABLE A–109 putmsg(2)

Event Name Event ID Event Class Mask

AUE_PUTMSG 216 nt 0x00000100

Format:

header-token

argument-token (1, "fd", file descriptor)

argument-token (4, "pri", priority)

subject-token

return-token

TABLE A–110 putmsg-connect

Event Name Event ID Event Class Mask

AUE_SOCKCONNECT 248 nt 0x00000100

Format:

header-token

socket-inet-token

argument-token (1, "fd", file descriptor)

argument-token (4, "pri", priority)

subject-token

return-token

154 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–111 putmsg-send

Event Name Event ID EventClass Mask

AUE_SOCKSEND 249 nt 0x00000100

Format:

header-token

socket-inet-token

argument-token (1, "fd", file descriptor)

argument-token (4, "pri", priority)

subject-token

return-token

TABLE A–112 putpmsg(2)

Event Name Event ID Event Class Mask

AUE_PUTPMSG 218 nt 0x00000100

Format:

header-token

argument-token (1, "fd", file descriptor)

subject-token

return-token

Audit Record Descriptions 155

TABLE A–113 readlink(2)

Event Name Event ID Event Class Mask

AUE_READLINK 22 fr 0x00000001

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–114 recvfrom(3SOCKET)

Event Name Event ID Event Class Mask

AUE_RECVFROM 191 nt 0x00000100

Format:

header-token

sock-inet-token

argument-token (3, "len", message length)

[argument-token] (4, "flags", flags)

sock-inet-token (from address)

argument-token (6, "tolen", address length)

subject-token

return-token

The sock_inet token for a bad socket is reported as:
argument-token (1, "fd", socket descriptor)

156 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–115 recvmsg(3SOCKET)

Event Name Event ID Event Class Mask

AUE_RECVMSG 190 nt 0x00000100

Format:

header-token

sock-inet-token

argument-token (3, "flags", message flags)

sock-inet-token (from address)

subject-token

return-token

The sock_inet token for a bad socket is reported as:
argument-token (1, "fd", socket descriptor)

TABLE A–116 rename(2)

Event Name Event ID Event Class Mask

AUE_RENAME 42 fc,fd 0x00000030

Format:

header-token

path-token (from name)

[attr-token] (from name)

[path-token] (to name)

subject-token

return-token

Audit Record Descriptions 157

TABLE A–117 rmdir(2)

Event Name Event ID Event Class Mask

AUE_RMDIR 48 fd 0x00000020

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–118 semctl(2)

Event Name Event ID Event Class Mask

AUE_SEMCTL 98 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

158 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–119 semctl(2) - getall

Event Name Event ID Event Class Mask

AUE_SEMCTL_GETALL 105 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

TABLE A–120 semctl(2) - GETNCNT command

Event Name Event ID Event Class Mask

AUE_SEMCTL_GETNCNT 102 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

Audit Record Descriptions 159

TABLE A–121 semctl(2) - GETPID command

Event Name Event ID Event Class Mask

AUE_SEMCTL_GETPID 103 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore
ID is not valid.

TABLE A–122 semctl(2) - GETVAL command

Event Name Event ID Event Class Mask

AUE_SEMCTL_GETVAL 104 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

160 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–123 semctl(2) - GETZCNT command

Event Name Event ID Event Class Mask

AUE_SEMCTL_GETZCNT 106 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore
ID is not valid.

TABLE A–124 semctl(2) - IPC_RMID command

Event Name Event ID Event Class Mask

AUE_SEMCTL_RMID 99 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

Audit Record Descriptions 161

TABLE A–125 semctl(2) - IPC_SET command

Event Name Event ID Event Class Mask

AUE_SEMCTL_SET 100 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore
ID is not valid.

TABLE A–126 semctl(2) - SETALL command

Event Name Event ID Event Class Mask

AUE_SEMCTL_SETALL 108 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

162 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–127 semctl(2) - SETVAL command

Event Name Event ID Event Class Mask

AUE_SEMCTL_SETVAL 107 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore
ID is not valid.

TABLE A–128 semctl(2) - IPC_STAT command

Event Name Event ID Event Class Mask

AUE_SEMCTL_STAT 101 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

Audit Record Descriptions 163

TABLE A–129 semget(2)

Event Name Event ID Event Class Mask

AUE_SEMGET 109 ip 0x00000200

Format:

header-token

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the system call
failed.

TABLE A–130 semop(2)

Event Name Event ID Event Class Mask

AUE_SEMOP 110 ip 0x00000200

Format:

header-token

argument-token (1, "sem ID", semaphore ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the semaphore ID
is not valid.

164 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–131 sendmsg(3N)

Event Name Event ID Event Class Mask

AUE_SENDMSG 188 nt 0x00000100

Format:

header-token

sock-inet-token

sock-inet-token (to address)

argument-token (3, "flags", message flags)

subject-token

return-token

The sock_inet token for a bad socket is reported as:
argument-token (1, "fd", socket descriptor)

TABLE A–132 sendto(3N)

Event Name Event ID Event Class Mask

AUE_SENDTO 184 nt 0x00000100

Format:

header-token

sock-inet-token

argument-token (3, "len", message length)

[argument-token] (4, "flags", flags)

argument-token (6, "tolen", address length)

sock-inet-token (to address)

subject-token

return-token

The sock_inet token for a bad socket is reported as:
argument-token (1, "fd", socket descriptor)

Audit Record Descriptions 165

TABLE A–133 setaudit(2)

Event Name Event ID Event Class Mask

AUE_SETAUDIT 133 ad 0x00000800

Format (valid program stack address):

header-token

argument-token (1, "setaudit:auid", audit user ID)

argument-token (1, "setaudit:port", terminal ID)

argument-token (1, "setaudit:machine", terminal ID)

argument-token (1, "setaudit:as_success", preselection mask)

argument-token (1, "setaudit:as_failure", preselection mask)

argument-token (1, "setaudit:asid", audit session ID)

subject-token

return-token

Format (not valid program stack address):

header-token

subject-token

return-token

166 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–134 setaudit_addr()

Event Name Event ID Event Class Mask

AUE_SETAUDIT_ADDR 266 ad 0x00000800

Format:

header-token

argument-token (1, "auid", audit user ID)

argument-token (1, "port", terminal ID)

argument-token (1, "type", machine address type)

argument-token (1, "as_success", preselection mask)

argument-token (1, "as_failure", preselection mask)

argument-token (1, "asid", audit session ID)

subject-token

return-token

TABLE A–135 setauid(2)

Event Name Event ID Event Class Mask

AUE_SETAUID 131 ad 0x00000800

Format:

header-token

argument-token (2, "setauid", audit user ID)

subject-token

return-token

Audit Record Descriptions 167

TABLE A–136 setegid(2)

Event Name Event ID Event Class Mask

AUE_SETEGID 214 pc 0x00000080

Format:

header-token

argument-token (1, "gid", group ID)

subject-token

return-token

TABLE A–137 seteuid(2)

Event Name Event ID Event Class Mask

AUE_SETEUID 215 pc 0x00000080

Format:

header-token

argument-token (1, "gid", user ID)

subject-token

return-token

168 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–138 old setgid(2)

Event Name Event ID Event Class Mask

AUE_SETGID 205 pc 0x00000080

Format:

header-token

argument-token (1, "gid", group ID)

subject-token

return-token

TABLE A–139 setgroups(2)

Event Name Event ID Event Class Mask

AUE_SETGROUPS 26 pc 0x00000080

Format:

header-token

[argument-token] (1, "setgroups", group ID)

subject-token

return-token

One argument-token for each group set.

Audit Record Descriptions 169

TABLE A–140 setpgrp(2)

Event Name Event ID Event Class Mask

AUE_SETPGRP 27 pc 0x00000080

Format:

header-token

subject-token

return-token

TABLE A–141 setregid(2)

Event Name Event ID Event Class Mask

AUE_SETREGID 41 pc 0x00000080

Format:

header-token

arg-token (1, "rgid", real group ID)

arg-token (2, "egid", effective group ID)

subject-token

return-token

170 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–142 setreuid(2)

Event Name Event ID Event Class Mask

AUE_SETREUID 40 pc 0x00000080

Format:

header-token

arg-token (1, "ruid", real user ID)

arg-token (2, "euid", effective user ID)

subject-token

return-token

TABLE A–143 setrlimit(2)

Event Name Event ID Event Class Mask

AUE_SETRLIMIT 51 ad 0x00000800

Format:

header-token

subject-token

return-token

Audit Record Descriptions 171

TABLE A–144 setsockopt(3SOCKET)

Event Name Event ID Event Class Mask

AUE_SETSOCKOPT 35 nt 0x00000100

Format:

header-token

sock-inet-token

argument-token (2, "level", protocol level)

[argument-token] (3, "optname", option name)

argument-token (4, "val", option value)

argument-token (5, "optlen", option length)

subject-token

return-token

The sock_inet token for a non-socket operation is reported as:
argument-token (1, "fd", file descriptor)

TABLE A–145 old setuid(2)

Event Name Event ID Event Class Mask

AUE_OSETUID 200 pc 0x00000080

Format:

header-token

argument-token (1, "uid", user ID)

subject-token

return-token

Because of a current bug in the audit software, this token is
reported as AUE_OSETUID.

172 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–146 shmat(2)

Event Name Event ID Event Class Mask

AUE_SHMAT 96 ip 0x00000200

Format:

header-token

argument-token (1, "shmid", shared memory ID)

argument-token (2, "shmaddr", shared mem addr)

[ipc-token]

[ipc_perm-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the shared memory
segment ID is not valid.

TABLE A–147 shmctl(2)

Event Name Event ID Event Class Mask

AUE_SHMCTL 91 ip 0x00000200

Format:

header-token

argument-token (1, "shmid", shared memory ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the shared
memory segment ID is not valid.

Audit Record Descriptions 173

TABLE A–148 shmctl(2) - IPC_RMID command

Event Name Event ID Event Class Mask

AUE_SHMCTL_RMID 92 ip 0x00000200

Format:

header-token

argument-token (1, "shmid", shared memory ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the shared
memory segment ID is not valid.

TABLE A–149 shmctl(2) - IPC_SET command

Event Name Event ID Event Class Mask

AUE_SHMCTL_SET 93 ip 0x00000200

Format:

header-token

argument-token (1, "shmid", shared memory ID)

[ipc-token]

[ipc_perm-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the shared memory
segment ID is not valid.

174 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–150 shmctl(2) - IPC_STAT command

Event Name Event ID Event Class Mask

AUE_SHMCTL_STAT 94 ip 0x00000200

Format:

header-token

argument-token (1, "shmid", shared memory ID)

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included if the shared
memory segment ID is not valid.

TABLE A–151 shmdt(2)

Event Name Event ID Event Class Mask

AUE_SHMDT 97 ip 0x00000200

Format:

header-token

argument-token (1, "shmaddr", shared mem addr)

subject-token

return-token

Audit Record Descriptions 175

TABLE A–152 shmget(2)

Event Name Event ID Event Class Mask

AUE_SHMGET 95 ip 0x00000200

Format:

header-token

arg-token (0, "shmid", shared memory ID)

[ipc_perm-token]

[ipc-token]

subject-token

return-token

The ipc and ipc_perm tokens are not included for failed events.

176 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–153 shutdown(2)

Event Name Event ID Event Class Mask

AUE_SHUTDOWN 46 nt 0x00000100

Format (if the socket address is not part of the AF_INET family):

header-token

arg-token (1, "fd", file descriptor)

text-token] ("bad socket address")

text-token] ("bad peer address")

subject-token

return-token

Format (if the socket address is part of the AF_INET family):

header-token

If there is no vnode for this file descriptor:

[arg-token] (1, "Bad fd", file descriptor)

or if the socket is not bound:

[arg-token (1, "fd", file descriptor)

text-token] ("socket not bound")

or if the socket address length = 0:

[arg-token (1, "fd", file descriptor)

text-token] ("bad socket address")

for all other conditions:

[socket-inet-token] ("socket address")

socket-inet-token ("socket address")

subject-token

return-token

Audit Record Descriptions 177

TABLE A–154 sockconfig()

Event Name Event ID Event Class Mask

AUE_SOCKCONFIG 183 nt 0x00000100

Format:

header-token

argument-token (1, "domain", socket domain)

[argument-token] (2, "type", socket type)

argument-token (3, "protocol", socket protocol)

text-token

subject-token

return-token

TABLE A–155 socket(3socket)

Event Name Event ID Event Class Mask

AUE_SOCKET 183 nt 0x00000100

Format:

header-token

argument-token (1, "domain", socket domain)

[argument-token] (2, "type", socket type)

argument-token (3, "protocol", socket protocol)

subject-token

return-token

178 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–156 stat(2)

Event Name Event ID Event Class Mask

AUE_STAT 16 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–157 statfs(2)

Event Name Event ID EventClass Mask

AUE_STATFS 54 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 179

TABLE A–158 statvfs(2)

Event Name Event ID Event Class Mask

AUE_STATVFS 234 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–159 stime(2)

Event Name Event ID Event Class Mask

AUE_STIME 201 ad 0x00000800

Format:

header-token

subject-token

return-token

180 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–160 symlink(2)

Event Name Event ID Event Class Mask

AUE_SYMLINK 21 fc 0x00000010

Format:

header-token

text-token (symbolic link string)

path-token

[attr-token]

subject-token

return-token

TABLE A–161 sysinfo(2)

Event Name Event ID Event Class Mask

AUE_SYSINFO 39 ad 0x00000800

Format:

header-token

argument-token (1, "cmd", command)

text-token (name)

subject-token

return-token

Audit Record Descriptions 181

TABLE A–162 system booted

Event Name Event ID Event Class Mask

AUE_SYSTEMBOOT 113 na 0x00000400

Format:

header-token

text-token ("booting kernel")

return-token

TABLE A–163 umount(2) - old version

Event Name Event ID Event Class Mask

AUE_UMOUNT 12 ad 0x00000800

Format:

header-token

path-token

[attr-token]

subject-token

return-token

182 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–164 unlink(2)

Event Name Event ID Event Class Mask

AUE_UNLINK 6 fd 0x00000020

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–165 old utime(2)

Event Name Event ID Event Class Mask

AUE_UTIME 202 fm 0x00000008

Format:

header-token

path-token

[attr-token]

subject-token

return-token

Audit Record Descriptions 183

TABLE A–166 utimes(2)

Event Name Event ID Event Class Mask

AUE_UTIMES 49 fm 0x00000008

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–167 utssys(2) - fusers

Event Name Event ID Event Class Mask

AUE_UTSSYS 233 ad 0x00000800

Format:

header-token

path-token

[attr-token]

subject-token

return-token

184 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–168 vfork(2)

Event Name Event ID Event Class Mask

AUE_VFORK 25 pc 0x00000080

Format:

header-token

argument-token (0, "child PID", pid)

subject-token

return-token

The fork return values are undefined because the audit record is
produced at the point that the child process is spawned.

TABLE A–169 vtrace(2)

Event Name Event ID Event Class Mask

AUE_VTRACE 36 pc 0x00000080

Format:

header-token

subject-token

return-token

Audit Record Descriptions 185

TABLE A–170 xmknod(2)

Event Name Event ID Event Class Mask

AUE_XMKNOD 240 fc 0x00000010

Format:

header-token

path-token

[attr-token]

subject-token

return-token

TABLE A–171 xstat(2)

Event Name Event ID Event Class Mask

AUE_XSTAT 235 fa 0x00000004

Format:

header-token

path-token

[attr-token]

subject-token

return-token

User-Level Generated Audit Records
These audit records are created by applications that operate outside the kernel. The
records are sorted alphabetically by program. The description of each record includes:

� The name of the program

� A man page reference (if appropriate)

� The audit event number

186 SunSHIELD Basic Security Module Guide ♦ February 2000

� The audit event name

� The audit record structure

TABLE A–172 allocate-device success

Event Name Program
Event
ID

Event
Class Mask

AUE_allocate_succ /usr/sbin/allocate 6200 ad 0x00000800

Format:

header-token

text-token

path-token

subject-token

exit-token

TABLE A–173 allocate-device failure

Event Name Program
Event
ID

Event
Class Mask

AUE_allocate_fail /usr/sbin/allocate 6201 ad 0x00000800

Format:

header-token

text-token

subject-token

exit-token

Audit Record Descriptions 187

TABLE A–174 deallocate-device success

Event Name Program
Event
ID

Event
Class Mask

AUE_deallocate_succ /usr/sbin/deallocate 6202 ad 0x00000800

Format:

header-token

subject-token

newgroups-token

exit-token

TABLE A–175 deallocate-device failure

Event Name Program
Event
ID

Event
Class Mask

AUE_deallocate_fail /usr/sbin/deallocate 6203 ad 0x00000800

Format:

header-token

subject-token

newgroups-token

exit-token

188 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–176 allocate-list devices success

Event Name Program
Event
ID

Event
Class Mask

AUE_listdevice_succ /usr/sbin/allocate 6205 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

TABLE A–177 allocate-list devices failure

Event Name Program
Event
ID

Event
Class Mask

AUE_listdevice_fail /usr/sbin/allocate 6206 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

Audit Record Descriptions 189

TABLE A–178 at-create crontab

Event Name Program
Event
ID

Event
Class Mask

AUE_at_create /usr/bin/at 6144 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

TABLE A–179 at-delete atjob (at or atrm)

Event Name Program
Event
ID

Event
Class Mask

AUE_at_delete /usr/bin/at 6145 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

190 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–180 at-permission

Event Name Program
Event
ID

Event
Class Mask

AUE_at_perm /usr/bin/at 6146 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

TABLE A–181 crontab-crontab created

Event Name Program
Event
ID

Event
Class Mask

AUE_crontab_create /usr/bin/crontab 6148 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

Audit Record Descriptions 191

TABLE A–182 crontab-crontab deleted

Event Name Program
Event
ID

Event
Class Mask

AUE_crontab_delete /usr/bin/crontab 6149 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

TABLE A–183 cron-invoke atjob or crontab

Event Name Program
Event
ID

Event
Class Mask

AUE_cron_invoke /usr/bin/crontab 6147 ad 0x00000800

Format:

header-token

text-token (either: at-job; batch-job, crontab-job, queue-job #; or unknown job type #)

text-token (cron command)

subject-token

[group-token]

exit-token

192 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–184 crontab-modify

Event Name Program
Event
ID

Event
Class Mask

AUE_crontab_mod /usr/bin/crontab 6170 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

TABLE A–185 crontab-permission

Event Name Program
Event
ID

Event
Class Mask

AUE_crontab_perm /usr/bin/crontab 6150 ad 0x00000800

Format:

header-token

subject-token

[group-token]

exit-token

Audit Record Descriptions 193

TABLE A–186 halt(1m)

Event Name Program
Event
ID

Event
Class Mask

AUE_halt_solaris /usr/sbin/halt 6160 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–187 inetd

Event Name Program
Event
ID

Event
Class Mask

AUE_inetd_connect /usr/sbin/inetd 6151 na 0x00000400

Format:

header-token

subject-token

text-token (service name)

in_addr-token

iport-token

return-token

194 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–188 init(1m)

Event Name Program
Event
ID

Event
Class Mask

AUE_init_solaris /sbin/init ; /usr/
sbin/init ; /usr/sbin/
shutdown

6166 ad 0x00000800

Format:

header-token

subject-token

text-token (init level)

return-token

TABLE A–189 ftp access

Event Name Program
Event
ID

Event
Class Mask

AUE_ftpd /usr/sbin/in.ftpd 6165 lo 0x00001000

Format:

header-token

subject-token

text-token (error message, failure only)

return-token

Audit Record Descriptions 195

TABLE A–190 login - local

Event Name Program
Event
ID

Event
Class Mask

AUE_login /usr/sbin/login 6152 lo 0x00001000

Format:

header-token

subject-token

text-token (error message)

return-token

TABLE A–191 login - rlogin

Event Name Program
Event
ID

Event
Class Mask

AUE_rlogin /usr/sbin/login 6155 lo 0x00001000

Format:

header-token

subject-token

text-token (error message)

return-token

196 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–192 login - telnet

Event Name Program
Event
ID

Event
Class Mask

AUE_telnet /usr/sbin/login 6154 lo 0x00001000

Format:

header-token

subject-token

text-token (error message)

return-token

TABLE A–193 logout

Event Name Program
Event
ID

Event
Class Mask

AUE_logout /usr/sbin/login 6153 lo 0x00001000

Format:

header-token

subject-token

text-token

return-token

Audit Record Descriptions 197

TABLE A–194 mount

Event Name Program
Event
ID

Event
Class Mask

AUE_mountd_mount /usr/lib/nfs/mountd 6156 na 0x00000400

Format:

header-token

arg-token

text-token (remote client hostname)

path-token (mount dir)

attribute-token

path-token

attribute-token

subject-token

return-token

TABLE A–195 unmount

Event Name Program
Event
ID

Event
Class Mask

AUE_mountd_umount /usr/lib/nfs/mountd 6157 na 0x00000400

Format:

header-token

path-token (mount dir)

attribute-token

subject-token

return-token

198 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–196 passwd

Event Name Program
Event
ID

Event
Class Mask

AUE_passwd /usr/bin/passwd 6163 lo 0x00001000

Format:

header-token

subject-token

text-token (error message)

return-token

TABLE A–197 poweroff(1m)

Event Name Program
Event
ID

Event
Class Mask

AUE_poweroff_solaris /usr/sbin/poweroff 6169 ad 0x00000800

Format:

header-token

subject-token

return-token

Audit Record Descriptions 199

TABLE A–198 reboot(1m)

Event Name Program
Event
ID

Event
Class Mask

AUE_reboot_solaris /usr/sbin/reboot 6161 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–199 rexd

Event Name Program
Event
ID

Event
Class Mask

AUE_rexd /usr/sbin/rpc.rexd 6164 lo 0x00001000

Format:

header-token

subject-token

text-token (error message, failure only)

text-token (hostname)

text-token (username)

text-token (command to be executed)

exit-token

200 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–200 rexecd

Event Name Program
Event
ID

Event
Class Mask

AUE_rexecd /usr/sbin/in.rexecd 6162 lo 0x00001000

Format:

header-token

subject-token

text-token (error message, failure only)

text-token (hostname)

text-token (username)

text-token (command to be executed)

exit-token

TABLE A–201 rsh access

Event Name Program
Event
ID

Event
Class Mask

AUE_rshd /usr/sbin/in.rshd 6158 lo 0x00001000

Format:

header-token

subject-token

text-token (command string)

text-token (local user)

text-token (remote user)

return-token

Audit Record Descriptions 201

TABLE A–202 shutdown(1b)

Event Name Program
Event
ID

Event
Class Mask

AUE_shutdown_solaris /usr/ucb/shutdown 6168 ad 0x00000800

Format:

header-token

subject-token

return-token

TABLE A–203 su

Event Name Program
Event
ID

Event
Class Mask

AUE_su /usr/bin/su 6159 lo 0x00001000

Format:

header-token

subject-token

text-token (error message)

return-token

202 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–204 admin(1m)

Event Name Program
Event
ID

Event
Class Mask

AUE_uadmin_solaris /sbin/uadmin ; /usr/
sbin/uadmin

6167 ad 0x00000800

Format:

header-token

subject-token

text-token (function)

text-token (argument)

return-token

Event-to-System Call Translation
Table A–205 associates an audit event name with the system call or kernel event that
created it. Table A–206 associates an audit event with the application or command
that generated it.

TABLE A–205 Event-to-System Call Translation

Audit Event System Call

AUE_ACCEPT Table A–5

AUE_ACCESS Table A–6

AUE_ACLSET Table A–7

AUE_ACCT Table A–8

AUE_ADJTIME Table A–9

Audit Record Descriptions 203

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_AUDIT Table A–10

AUE_AUDITON_GETCAR Table A–11

AUE_AUDITON_GETCLASS Table A–12

AUE_AUDITON_GETCOND Table A–13

AUE_AUDITON_GETCWD Table A–14

AUE_AUDITON_GETKMASK Table A–15

AUE_AUDITON_GETSTAT Table A–16

AUE_AUDITON_GPOLICY Table A–17

AUE_AUDITON_GQCTRL Table A–18

AUE_AUDITON_SETCLASS Table A–19

AUE_AUDITON_SETCOND Table A–20

AUE_AUDITON_SETKMASK Table A–21

AUE_AUDITON_SETSMASK Table A–22

AUE_AUDITON_SETSTAT Table A–23

AUE_AUDITON_SETUMASK Table A–24

204 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_AUDITON_SPOLICY Table A–25

AUE_AUDITON_SQCTRL Table A–26

AUE_AUDITSVC Table A–27

AUE_BIND Table A–28

AUE_CHDIR Table A–29

AUE_CHMOD Table A–30

AUE_CHOWN Table A–31

AUE_CHROOT Table A–32

AUE_CLOSE Table A–33

AUE_CONNECT Table A–34

AUE_CORE Table A–107

AUE_CREAT Table A–35

AUE_DOORFS_DOOR_BIND Table A–36

AUE_DOORFS_DOOR_CALL Table A–37

AUE_DOORFS_DOOR_CREATETable A–38

Audit Record Descriptions 205

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_DOORFS_DOOR_CRED Table A–39

AUE_DOORFS_DOOR_INFO Table A–40

AUE_DOORFS_DOOR_RETURNTable A–41

AUE_DOORFS_DOOR_REVOKETable A–42

AUE_DOORFS_DOOR_UNBINDTable A–43

AUE_ENTERPROM Table A–44

AUE_EXEC Table A–45

AUE_EXECVE Table A–46

AUE_EXIT Table A–48

AUE_EXITPROM Table A–47

AUE_FACLSET Table A–49

AUE_FCHDIR Table A–50

AUE_FCHMOD Table A–51

AUE_FCHOWN Table A–52

AUE_FCHROOT Table A–53

206 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_FCNTL Table A–54

AUE_FORK Table A–55

AUE_FORK1 Table A–56

AUE_FSTATFS Table A–57

AUE_GETAUDIT Table A–58

AUE_GETAUID Table A–60

AUE_GETMSG Table A–61

AUE_GETPMSG Table A–64

AUE_GETPORTAUDIT Table A–65

AUE_INST_SYNC Table A–66

AUE_IOCTL Table A–67

AUE_KILL Table A–68

AUE_LCHOWN Table A–69

AUE_LINK Table A–70

AUE_LSTAT Table A–71

Audit Record Descriptions 207

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_LXSTAT Table A–72

AUE_MEMCNTL Table A–73

AUE_MKDIR Table A–74

AUE_MKNOD Table A–75

AUE_MMAP Table A–76

AUE_MODADDMAJ Table A–77

AUE_MODCONFIG Table A–78

AUE_MODLOAD Table A–79

AUE_MODUNLOAD Table A–80

AUE_MOUNT Table A–81

AUE_MSGCTL Table A–82

AUE_MSGCTL_RMID Table A–83

AUE_MSGCTL_SET Table A–84

AUE_MSGCTL_STAT Table A–85

AUE_MSGGET Table A–86

208 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_MSGRCV Table A–87

AUE_MSGSND Table A–88

AUE_MUNMAP Table A–89

AUE_NICE Table A–90

AUE_OPEN_R Table A–91

AUE_OPEN_RC Table A–92

AUE_OPEN_RT Table A–94

AUE_OPEN_RTC Table A–93

AUE_OPEN_RW Table A–95

AUE_OPEN_RWC Table A–96

AUE_OPEN_RWT Table A–98

AUE_OPEN_RWTC Table A–97

AUE_OPEN_W Table A–99

AUE_OPEN_WC Table A–100

AUE_OPEN_WT Table A–102

Audit Record Descriptions 209

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_OPEN_WTC Table A–101

AUE_OSETUID Table A–145

AUE_P_ONLINE Table A–103

AUE_PATHCONF Table A–104

AUE_PIPE Table A–105

AUE_PRIOCNTLSYS Table A–106

AUE_PROCESSOR_BIND Table A–108

AUE_PUTMSG Table A–109

AUE_PUTPMSG Table A–112

AUE_READLINK Table A–113

AUE_RECVFROM Table A–114

AUE_RECVMSG Table A–115

AUE_RENAME Table A–116

AUE_RMDIR Table A–117

AUE_SEMCTL Table A–118

210 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_SEMCTL_GETALL Table A–119

AUE_SEMCTL_GETNCNT Table A–120

AUE_SEMCTL_GETPID Table A–121

AUE_SEMCTL_GETVAL Table A–122

AUE_SEMCTL_GETZCNT Table A–123

AUE_SEMCTL_RMID Table A–124

AUE_SEMCTL_SET Table A–125

AUE_SEMCTL_SETALL Table A–126

AUE_SEMCTL_SETVAL Table A–127

AUE_SEMCTL_STAT Table A–128

AUE_SEMGET Table A–129

AUE_SEMOP Table A–130

AUE_SENDMSG Table A–131

AUE_SENDTO Table A–132

AUE_SETAUDIT Table A–133

Audit Record Descriptions 211

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_SETAUDIT_ADDR Table A–134

AUE_SETAUID Table A–135

AUE_SETEGID Table A–136

AUE_SETEUID Table A–137

AUE_SETGID Table A–138

AUE_SETGROUPS Table A–139

AUE_SETPGRP Table A–140

AUE_SETREGID Table A–141

AUE_SETREUID Table A–142

AUE_SETRLIMIT Table A–143

AUE_SETSOCKOPT Table A–144

AUE_SETUID Reported as AUE_OSETUID, see Table A–145

AUE_SHMAT Table A–146

AUE_SHMCTL Table A–147

AUE_SHMCTL_RMID Table A–148

AUE_SHMCTL_SET Table A–149

212 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_SHMCTL_STAT Table A–150

AUE_SHMDT Table A–151

AUE_SHMGET Table A–152

AUE_SHUTDOWN Table A–153

AUE_SOCKACCEPT Table A–62

AUE_SOCKCONFIG Table A–154

AUE_SOCKCONNECT Table A–110

AUE_SOCKET Table A–155

AUE_SOCKRECEIVE Table A–63

AUE_SOCKSEND Table A–111

AUE_STAT Table A–156

AUE_STATFS Table A–157

AUE_STATVFS Table A–158

AUE_STIME Table A–159

AUE_SYMLINK Table A–160

Audit Record Descriptions 213

TABLE A–205 Event-to-System Call Translation (continued)

Audit Event System Call

AUE_SYSINFO Table A–161

AUE_SYSTEMBOOT Table A–162

AUE_UMOUNT Table A–163

AUE_UNLINK Table A–164

AUE_UTIME Table A–165

AUE_UTIMES Table A–166

AUE_UTSSYS Table A–167

AUE_VFORK Table A–168

AUE_VTRACE Table A–169

AUE_XMKNOD Table A–170

AUE_XSTAT Table A–171

214 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–206 Event-to-Command Translation

Audit Event Command

AUE_allocate_succ Table A–172

AUE_allocate_fail Table A–173

AUE_deallocate_succ Table A–174

AUE_deallocate_fail Table A–175

AUE_listdevice_succ Table A–176

AUE_listdevice_fail Table A–177

AUE_at_create Table A–178

AUE_at_delete Table A–179

AUE_at_perm Table A–180

AUE_crontab_create Table A–181

AUE_crontab_delete Table A–182

AUE_cron_invoke Table A–183

AUE_crontab_mod Table A–184

AUE_crontab_perm Table A–185

AUE_halt_solaris Table A–186

AUE_inetd_connect Table A–187

Audit Record Descriptions 215

TABLE A–206 Event-to-Command Translation (continued)

Audit Event Command

AUE_init_solaris Table A–188

AUE_ftpd Table A–189

AUE_login Table A–190

AUE_rlogin Table A–191

AUE_telnet Table A–192

AUE_logout Table A–193

AUE_mountd_mount Table A–194

AUE_mountd_umount Table A–195

AUE_passwd Table A–196

AUE_poweroff_solaris Table A–197

AUE_reboot_solaris Table A–198

AUE_rexd Table A–199

AUE_rexecd Table A–200

AUE_rshd Table A–201

AUE_shutdown_solaris Table A–202

216 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE A–206 Event-to-Command Translation (continued)

Audit Event Command

AUE_su Table A–203

AUE_uadmin_solaris Table A–204

Audit Record Descriptions 217

218 SunSHIELD Basic Security Module Guide ♦ February 2000

APPENDIX B

BSM Reference

BSM brings a number of additional utilities to the Solaris operating environment.
The utilities are listed here in four sections, each of which has a table below. Each
table gives utility names and a short description of the task performed by each
utility. The sections are identified by the man page suffix.

TABLE B–1 Section 1M-Maintenance Commands

Command Task

allocate (1M) Allocate a device

audit (1M) Control the audit daemon

audit_startup (1M) Initialize the audit subsystem

audit_warn (1M) Run the audit daemon warning script

auditconfig (1M) Configure auditing

auditd (1M) Control audit trail files

219

TABLE B–1 Section 1M-Maintenance Commands (continued)

Command Task

auditreduce (1M) Merge and select audit records from audit trail files

auditstat (1M) Display kernel audit statistics

bsmconv (1M) Enable a Solaris system to use the Basic Security Module

bsmunconv(1M) Disable the Basic Security Module and return to the Solaris
operating environment (see the bsmconv (1M) man page)

deallocate (1M) Deallocate a device

dminfo (1M) Report information about a device entry in a device maps file

list_devices (1M) List allocatable devices

praudit (1M) Print contents of an audit trail file

TABLE B–2 Section 2-System Calls

System Call Task

audit (2) Write a record to the audit log

auditon (2) Manipulate auditing

220 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE B–2 Section 2-System Calls (continued)

System Call Task

auditsvc (2) Write audit log to specified file descriptor

getaudit (2) Get process audit information

getauid (2) Get user audit identity

setaudit(2) Get process audit information (see getaudit (2))

setauid(2) Get user audit identity (see getaudit (2))

TABLE B–3 Section 3-C Library Functions

Library Call Task

au_open (3BSM), au_close(3), au_write(3) Construct and write audit records

au_preselect (3BSM) Preselect an audit event

au_to_arg(3), au_to_attr(3), au_to_data(3),
au_to_groups(3), au_to_in_addr(3), au_to_ipc(3),
au_to_ipc_perm(3), au_to_iport(3), au_to_me(3),
au_to_opaque(3), au_to_path(3), au_to_process(3),
au_to_return(3), au_to_socket(3), au_to_text(3)

Create audit record tokens (see
au_to (3BSM) for all of these
functions)

au_user_mask (3BSM) Get user’s binary preselection mask

getacinfo (3BSM), getacdir(3), getacflg(3),
getacmin(3), getacna(3), setac(3), endac(3)

Get audit control file information

getauclassent (3BSM), getauclassnam(3),
setauclass(3), endauclass(3), getauclassnam_r(3),
getauclassent_r(3)

Get audit_class entry

BSM Reference 221

TABLE B–3 Section 3-C Library Functions (continued)

Library Call Task

getauditflags (3BSM), getauditflagsbin(3),
getauditflagschar(3)

Convert audit flag specifications

getauevent (3BSM), getauevnam(3),
getauevnum(3), getauevnonam(3), setauevent(3),
endauevent(3), getauevent_r(3), getauevnam_r(3),
getauevnum_r(3)

Get audit_user entry

getauusernam (3BSM), getauuserent(3),
setauuser(3), endauuser(3)

Get audit_user entry

getfauditflags (3BSM) Generate the process audit state

TABLE B–4 Section 4-Headers, Tables, and Macros

Files Task

audit.log (4) Gives format for an audit trail file

audit_class (4) Gives audit class definitions

audit_control (4) Controls information for system audit daemon

audit_data (4) Holds current information on the audit daemon

audit_event (4) Holds audit event definition and class mapping

audit_user (4) Holds per-user auditing data file

222 SunSHIELD Basic Security Module Guide ♦ February 2000

TABLE B–4 Section 4-Headers, Tables, and Macros (continued)

Files Task

device_allocate (4) Contains physical device information

device_maps (4) Contains physical device information

BSM Reference 223

224 SunSHIELD Basic Security Module Guide ♦ February 2000

Index

Special Characters
for comments in files 70, 72
* in device_allocate file 72, 73
+ audit flag prefix 22, 23
- audit flag prefix 22, 23
\ ending file lines 70, 72
^+ audit flag prefix 23
^- audit flag prefix 23

A
-a option of auditreduce command 64
accept audit record 97
access audit record 98
acct audit record 99
acl audit record 99
acl token 84
ad audit flag 21
adding devices 78
adjtime audit record 100
administering auditing

see also audit records; audit tokens; audit
trail

audit administration account 44, 45
audit classes

auditconfig command options 47
changing definitions 49
flags and definitions 21, 22
mapping events 19, 49
overview 19, 20
selecting for auditing 19

audit events
audit tokens 54
auditconfig command options 46, 47
categories 19
event-to-system call translation

table 203, 214
including in audit trail 19
kernel events 19, 46, 47, 54
mapping to classes 19, 49
numbers 19
overview 19, 20
record formats and 53
user-level events 19, 47, 54

225

audit files 36, 39
auditreduce command 31, 33
combining 31, 33, 36
copying login/logout messages to

single file 63, 64
directory locations 37, 40
displaying in entirety 63
file token 57, 87
managing size of 29
minimum free space for file

systems 24
names 37, 39
nonactive files marked

not_terminated 39, 64
order for opening 24
overview 36, 37
permissions 40
printing 63
reducing 31, 33, 36
reducing storage-space

requirements 33, 35
switching to new file 29
time stamps 38

audit flags 20, 23
auditconfig command options 47
audit_control file line 24
audit_user file 25, 26
definitions 21, 22
machine-wide 20, 24
overview 20
policy flags 48
prefixes 23
process preselection mask 26
syntax 22

audit partitions 39, 41
audit records 20
audit trail creation 27, 29

audit daemon’s role 28, 29
audit_data file 28
directory suitability 29
managing audit file size 29
overview 27

audit trail overflow prevention 45, 46

auditreduce command 31, 33, 62, 65
-a option 64
-b option 64
capabilities 62
cleaning not_terminated files 39, 64
-d option 63
described 31, 52, 62
distributed systems 62
examples 63, 64
-O option 36, 39, 63, 64
options 31, 64, 65
time stamp use 38
without options 31, 33

audit_control file
audit_user file modification 25
overview 24
prefixes in flags line 23
problem with contents 30

audit_user file audit fields 25, 26
audit_warn script 28 to 30
configuration

audit trail overflow prevention 45,
46

auditconfig command 46, 47
overview 41, 42
planning 42, 45
setting audit policies 48

cost control 33, 35
analysis 33
processing time 33
storage 33, 35

efficiency 35, 36
normal users 35
overview 18
process audit characteristics 26, 27

audit ID 27
audit session ID 27
process preselection mask 26, 34, 35
terminal ID 27

startup 18
administrative audit class 21
all

audit class 22
audit flag

caution for using 22
described 22

in user audit fields 25

226 SunSHIELD Basic Security Module Guide ♦ February 2000

allhard string with audit_warn script 30
allocatable devices, see device allocation
allocate audit record

allocate-list device failure 189
allocate-list device success 188
deallocate device 187
deallocate device failure 188
device allocate failure 187
device allocate success 187

allocate command
see also device allocation

how the allocate mechanism works 76,
78

options 69
using 80

allocate error state 70
allocating devices, see device allocation
allsoft string with audit_warn script 30
always-audit flags

described 25, 26
process preselection mask 26

analysis 51, 66
audit record format 53, 62
auditing features 51, 52
auditreduce command 53, 62, 65
costs 33
praudit command 53, 65, 66
tools 52, 53

ap audit flag 21
application audit class 21
arbitrary token 56, 84
Archive tape drive clean script 72
arg token 56, 85
arge policy

exec_env token and 87
flag 48

argv policy
exec_args token and 86
flag 48

asterisk (*) in device_allocate file 72, 73
at audit record

at-create crontab 189
at-delete atjob 190
at-permission 190

attr token 57, 86
audio devices

device-clean scripts 75

audio devices, see device allocation,
device-clean scripts

AUDIOGETREG ioctl system call 75
AUDIOSETREG ioctl system call 75
audio_clean script 75
AUDIO_DRAIN ioctl system call 75
AUDIO_SETINFO ioctl system call 75
audit -n command 29
audit -s command

preselection mask for existing
processes 24

rereading audit files 28
resetting directory pointer 29

audit -t command 27
audit administration account 44, 45
audit attributes, see audit tokens
audit audit record 100
audit classes

auditconfig command options 47
changing definitions 49
flags and definitions 21, 22
mapping events 19, 49
overview 19, 20
selecting for auditing 19

audit daemon
audit trail creation 27 to 29
audit_startup file 18
audit_warn script

conditions invoking 30
described 28, 29
execution of 28

directories suitable to 29
enabling auditing 18
functions 28
order audit files are opened 24
rereading the audit_control file 24
terminating 27

audit events
see also audit classes

audit_event file
audit event type 53
overview 19, 20

categories 19
event-to-system call translation table 203,

214
including in audit trail 19

227

kernel events
audit tokens 54
auditconfig command options 46, 47
described 19

mapping to classes 19, 49
numbers 19
overview 19, 20
record formats and 53
user-level events

audit tokens 54
auditconfig command options 47
described 19

audit files 36, 39
see also audit trail; directories

auditreduce command 31, 33
combining 31, 33, 36
copying login/logout messages to single

file 63, 64
directory locations 37, 40
displaying in entirety 63
file token 57, 87
managing size of 29
minimum free space for file systems 24
names 37, 39

closed files 38
form 37
still-active files 38
time stamps 38
use 38

nonactive files marked
not_terminated 39, 64

order for opening 24
overview 36, 37
permissions 40
printing 63
reducing 31, 33, 36
reducing storage-space requirements 33,

35
switching to new file 29
time stamps 38

audit flags 20, 23
auditconfig command options 47
audit_control file line 24
audit_user file 25, 26
definitions 21, 22
machine-wide 20, 24
overview 20
policy flags 48

prefixes 22, 23
process preselection mask 26
syntax 22

audit ID 18, 27, 52
audit log files, see audit files
audit partitions 39, 41
audit policies

see also audit flags
auditconfig options 47
setting 48

audit records 81, 203
see also audit tokens; specific audit

records
audit directories full 28, 30, 96
converting to human-readable format 20,

31, 53, 65, 66
displaying 53
format or structure 53, 62, 81, 97
kernel-level generated 97, 186
overview 20
policy flags 48
reducing audit files 36
selecting 52
self-contained records 52
tools 52, 53
user-level generated 186, 203

audit server mount-point path names 40
audit session ID 27, 52
audit threshold 24
audit tokens

acl token 84
arbitrary token 56, 84
arg token 56, 85
attr token 57, 86
audit record format 53, 62, 81, 82
described 20
exec_args token 86
exec_env token 86
exit token 57, 86
file token 57, 87
groups token 58, 88
header token 54, 55, 88, 89
in_addr token 58, 89
ip token 58, 89
ipc token 58, 90
ipc_perm token 59, 90
iport token 59, 91

228 SunSHIELD Basic Security Module Guide ♦ February 2000

newgroups token 91
opaque token 59, 92
order in audit record 54
path token 59, 92
policy flags 48
process token 60, 92
return token 60, 93
seq token 61, 94
socket token 61, 94
socket-inet token 94
subject token 61, 95
table of 82, 83
text token 62, 95
trailer token 54, 56, 96
types 53

audit trail
see also audit files, audit records; audit

tokens
analysis 51, 66

audit record format 53, 62
auditing features 51, 52
auditreduce command 53, 62, 65
costs 33
praudit command 53, 65, 66
tools 52, 53

creating 27, 29, 36
audit daemon’s role 27 to 29
audit_data file 28
directory suitability 29
managing audit file size 29
overview 27

directory locations 37, 40
events included 19
merging all files 31, 33
monitoring in real time 35
overflow prevention 45, 46

auditconfig command
audit flags as arguments 20
options 46, 47
prefixes for flags 23
reducing storage-space requirements 35

auditd daemon
audit trail creation 27 to 29
audit_startup file 18
audit_warn script

conditions invoking 30
described 28, 29
execution of 28

directories suitable to 29
enabling auditing 18
functions 28
order audit files are opened 24
rereading the audit_control file 24
terminating 27

auditing, see administering auditing; audit
trail

auditon audit record
A_GETCAR command 101
A_GETCLASS command 101
A_GETCOND command 102
A_GETCWD command 102
A_GETKMASK command 103
A_GETSTAT command 103
A_GPOLICY command 104
A_GQCTRL command 104
A_SETCLASS command 105
A_SETCOND command 105
A_SETKMASK command 106
A_SETSMASK command 106
A_SETSTAT command 107
A_SETUMASK command 107
A_SPOLICY command 108
A_SQCTRL command 108

auditreduce command 31, 33
-a option 64
-b option 64
capabilities 62
cleaning not_terminated files 39, 64
-d option 63
described 31, 52, 62
distributed systems 62
examples 63, 64
-m option 65
-O option 36, 39, 63, 64
options 31, 64, 65
time stamp use 38
without options 31, 33

auditsvc
audit record 109
system call

fails 30, 96
audit_control file

audit daemon rereading after editing 24
audit_user file modification 25

229

dir: line
described 24
examples 25, 41
files subdirectory 40

examples 25, 41
flags: line

described 24
prefixes in 23
process preselection mask 26

minfree: line
audit_warn condition 30
described 24

naflags: line 24
overview 24
prefixes in flags line 23
problem with contents 30

audit_data file 28
audit_event file

see also audit events
audit event type 53
overview 19, 20

audit_startup file 18
audit_user file

prefixes for flags 23
process preselection mask 26
user audit fields 25, 26

audit_warn script 29, 30
allhard string 30
allsoft string 30
audit daemon execution of 28
auditsvc string 30
conditions invoking 30, 31
described 28, 29
ebusy string 30
hard string 30
postsigterm string 30
soft string 30
tmpfile string 30

AUE_... names 19
event-to-system call translation table 203,

214
automatically enabling auditing 18

B
-b option of auditreduce command 64
backslash (\) ending file lines 70, 72
Basic Security Module (BSM)

client-server relationships 14
disabling 14
enabling 13, 14
installing 13, 15
packages 13

binary audit record format 53
bind audit record 109
BSM, see Basic Security Module (BSM)
bsmconv script

devicemaps file creation 70
enabling BSM 13, 14

bsmunconv script 14

C
C2 TCSEC features 67
carat (^) in audit flag prefixes 23
cartridge tape drives, see tape drives
CD-ROM drives

see also device allocation
device-clean scripts 74

change password audit record 198
chdir audit record 110
-chkconf option of auditconfig command 46
chmod audit record 110
chown audit record 111
chroot audit record 111
cl audit flag 21
classes

auditconfig command options 47
changing definitions 49
flags and definitions 21, 22
mapping events 19, 49
overview 19, 20
selecting for auditing 19

clean scripts, see device-clean scripts
cleaning not_terminated files 39, 64
clients, enabling BSM for 15
close audit record 112
cnt policy 44, 45

flag 48
combining audit files 36

auditreduce command 31, 33
commands

see also specific commands
device-allocation utilities 69

comments

230 SunSHIELD Basic Security Module Guide ♦ February 2000

device_allocate file 72
device_maps file 70

-conf option of auditconfig command 46
configuring

audit trail overflow prevention 45, 46
auditconfig command 46, 48
overview 41, 42
planning 42, 45
setting audit policies 48

connect audit record 112
converting audit records to human-readable

format 20, 31, 53, 65, 66
copying login/logout messages to single

file 63, 64
cost control 33, 35

analysis 33
processing time 33
storage 33, 35

creat audit record 113
creating the audit trail 27, 29

audit daemon’s role 28, 29
audit_data file 28
directory suitability 29
managing audit file size 29
overview 27

cron job 29
crontab audit record

cron-invoke atjob or crontab 192
crontab-crontab created 191
crontab-crontab deleted 191
crontab-modify 192
crontab-permission 193

D
-d option

auditreduce command 63, 65
daemon, audit, see audit daemon
date-time auditreduce command options 64
deallocate command

allocate error state 70
described 69, 79
device-clean scripts and 75
using 80

debugging sequence number 61, 94
defaults

audit policies 48
audit_startup file 18

machine-wide 20
praudit output format 65, 66

header token 55
device allocation 67, 80

adding devices 78
allocatable devices 72, 78
allocate command

how the allocate mechanism
works 76, 78

options 69
using 80

allocate error state 70
allocating a device 80
components of the allocation

mechanism 68
deallocate command

allocate error state 70
described 69, 79
device-clean scripts and 75
using 80

device-clean scripts 73, 75
adding devices 78
audio devices 75
CD-ROM drives 74
described 73
diskette drives 74
options 75
tape drives 72, 73
writing new scripts 75

device_allocate file 71, 73
device_maps file 70, 71
list_devices command 69, 79
lock file setup 75, 78
managing devices 78
reallocating 69
risks associated with device use 68
using device allocations 80
utilities 69

device-clean scripts
adding devices 78
audio devices 75
CD-ROM drives 74
described 73
diskette drives 74
options 75
tape drives 72, 73
writing new scripts 75

231

devices
see also device allocation

adding 78
lock files 75, 78
managing 78

device_allocate file
format 72, 73
overview 71, 73

device_maps file
format 70, 71
overview 70

dir: line in audit_control file
described 24
example 25, 41
for files subdirectory 40

directories
audit daemon pointer 29
audit directories full 28, 30, 96
audit directory locations 37, 40
audit partitions 39, 41
audit_control file definitions 24
diskfull machines 37, 40
files subdirectory 40
mounting audit directories 37
permissions 40
suitable to audit daemon 29

disabling BSM 14
disk-space requirements 33, 35
diskette drives

see also device allocation
device-clean scripts 74

diskfull machines’ audit directory 37, 40
diskless clients, enabling BSM for 15
displaying

audit log in entirety 63
audit records 53

distributed systems’ auditreduce command
use 62

dminfo command 70
doorfs audit record

DOOR_BIND command 114
DOOR_CALL command 114
DOOR_CREATE command 115
DOOR_CRED command 115
DOOR_INFO command 116
DOOR_RETURN command 116
DOOR_REVOKE command 117
DOOR_UNBIND command 117

drives, see device allocation

E
ebusy string and audit_warn script 30
efficiency 35, 36
eject command 74
enabling

auditing 18
BSM 13, 14

ending
disabling BSM 14
signal received during auditing

shutdown 30
terminating audit daemon 27

enter prom audit record 118
errors

allocate error state 70
audit directories full 28, 30, 96
internal errors 30

/etc/security directory 40
/etc/security/audit directory 37, 40
/etc/security/audit/bsmconv script

enabling BSM 13, 14
devicemaps file creation 70

/etc/security/audit/bsmunconv script 14
/etc/security/audit_control file, see

audit_control file
/etc/security/audit_data file 28
/etc/security/audit_event file

see also audit events
overview 19, 20, 53

/etc/security/audit_startup file 18
/etc/security/audit_warn script 28 to 30
/etc/security/dev lock files 75, 78
event modifier field flags (header token) 88
event numbers 19
events

see also audit classes
categories 19
event-to-system call translation table 203,

214
including in audit trail 19
kernel events

audit tokens 54
auditconfig command options 46, 47
described 19

232 SunSHIELD Basic Security Module Guide ♦ February 2000

mapping to classes 19, 49
numbers 19
overview 19, 20
record formats and 53
user-level events

audit tokens 54
auditconfig command options 47
described 19

ex audit flag 21
exec audit class 21
exec audit record 118
execve audit record 119
exec_args token 86
exec_env token 86
exit audit record 120
exit prom audit record 119
exit token 57, 86
export list 37

F
-F option

allocate command 69, 75
fa audit flag 21
facl audit record 120
failure

audit flag prefix 22
turning off audit flags for 23

fc audit flag 21
fchdir audit record 121
fchmod audit record 122
fchown audit record 122
fchroot audit record 123
fcntl audit record 124
fd audit flag 21
fd_clean script 74
file systems, see audit files; directories
file token 57, 87
file vnode token 57, 86
files subdirectory 40
files, audit, see audit files
files, lock 75, 78
file_attr_acc audit class 21
file_attr_mod audit class 21
file_close audit class 21
file_creation audit class 21
file_deletion audit class 21
file_read audit class 21

file_write audit class 21
flags 20, 23

auditconfig command options 47
audit_control file line 24
audit_user file 25, 26
definitions 21, 22
machine-wide 20, 24
overview 20
policy flags 48
prefixes 22, 23
process preselection mask 26
syntax 22

flags: line in audit_control file
described 24
prefixes in 23
process preselection mask 26

fm audit flag 21
forced cleanup 75
fork audit record 124
fork1 audit record 125
fr audit flag 21
fstatfs audit record 125
ftpd login audit record 195
fw audit flag 21

G
getaudit audit record 126
getaudit_addr audit record 126
getauid audit record 127
-getclass option of auditconfig command 47
-getcond option of auditconfig command 46
getmsg audit record 127

socket accept 128
socket receive 128

-getpinfo option of auditconfig command 47
getpmsg audit record 129
-getpolicy option of auditconfig command 47
getportaudit audit record 129
graphics tablets, see device allocation
group policy

flag 48
groups token 58, 88
newgroups token 91

groups token 58, 88

233

H
halt: machine halt audit record 193
hard string with audit_warn script 30
hard-disk-space requirements 33, 35
header token

described 55, 88
event-modifier field flags 88
fields 55
format 88
order in audit record 54, 88
praudit display 55

human-readable audit record format
see also audit tokens

converting audit records to 20, 31, 53, 65,
66

described 53, 62

I
-I option

deallocate command 69, 75
IDs

audit 18, 27, 52
audit session 27, 52
audit user 52
auditconfig command options 47
terminal 27

in.ftpd audit record 195
in.rexecd audit record 200
in.rshd: rshd access denials/grants audit

record 201
inetd: inetd service request audit record 194
init: init service request audit record 194
installing BSM 13, 15
inst_sync audit record 130
Internet-related tokens

in_addr token 58, 89
ip token 58, 89
iport token 59, 91
socket token 61, 94
socket-inet token 94

in_addr token 58, 89
io audit flag 21
ioctl audit class 21
ioctl system calls 21, 75
ioctl: ioctl to special devices audit record 130
ip audit flag 21
ip token 58, 89

ipc audit class 21
ipc token 58, 90
ipc type field values (ipc token) 90
ipc_perm token 59, 90
iport token 59, 91
item size field values (arbitrary token) 85

K
kernel events

see also audit events
audit records 97, 186
audit tokens 54
auditconfig command options 46, 47
described 19

kill audit record 132

L
-l option

praudit command 65
lchown audit record 132
link audit record 133
list_devices command 69, 79
lo audit flag 21
lock files

how the allocate mechanism works 76,
78

setting up 75
log files, see audit files
login audit record

logout 197
rlogin 196
telnet login 196
terminal login 195

login/logout messages, copying to single
file 63, 64

login_logout audit class 21
-lsevent option of auditconfig command 47
-lspolicy option of auditconfig command 47,

48
lstat audit record 133
lxstat audit record 133

M
-m option of auditreduce command 65
machine halt audit record 193

234 SunSHIELD Basic Security Module Guide ♦ February 2000

machine reboot audit record 199
managing devices 78
mappings, class 19, 49
mask, process preselection

auditconfig command options 47
described 26
machine-wide 24
reducing storage costs 34, 35

memcntl audit record 134
minfree: line in audit_control file

audit_warn condition 30
described 24
determining space needed 43

minus (-) audit flag prefix 22, 23
mkdir audit record 134
mknod audit record 135
mmap audit record 135
modctl audit record

MODADDMAJBIND command 136
MODCONFIG command 137
MODLOAD command 137
MODUNLOAD command 138

modems, see device allocation
monitoring audit trail in real time 35
mount audit record 138
mountd audit record

NFS mount request 197
NFS unmount request 198

mounting audit directories 37
msgctl audit record 139

IPC_RMID command 140
IPC_SET command 140
IPC_STAT command 141

msgget audit record 141
msgrcv audit record 142
msgsnd audit record 142
mt command, device-cleanup option 74
munmap audit record 143

N
na audit flag 21
naflags: line in audit_control file 24
names

audit classes 21, 22

audit files
closed files 38
form 37
still-active files 38
time stamps 38
use 38

audit flags 21, 22
device names

device_allocate file 73
device_maps file 71

IDs
audit 18, 27
audit session 27, 52
auditconfig command options 47
terminal 27

kernel events 19
mount-point path names on audit

servers 40
user-level events 19

network audit class 21
never-audit flags 25, 26
newgroups token 91
NFS mount request audit record 197
NFS unmount request audit record 198
nice audit record 143
no audit flag 21
nonattributable flags in audit_control file 24
non_attrib audit class 21
normal users, auditing 35
not_terminated files, cleaning 39, 64
no_class audit class 21
nt audit flag 21
null audit class 21
numbers, event 19

O
-O option of auditreduce command 36, 39,

63, 64
object-reuse requirement 67, 73, 75

235

device-clean scripts
adding devices 78
audio devices 75
CD-ROM drives 74
described 73
diskette drives 74
tape drives 72, 73
writing new scripts 75

opaque token 59, 92
open audit record

read 144
read, create 144
read, create, truncate 145
read, truncate 145
read, write 146
read, write, create 146
read, write, create, truncate 147
read, write, truncate 147
write 148
write, create 148
write, create, truncate 149
write, truncate 149

ot audit flag 22
other audit class 22
overflow prevention for audit trail 45, 46

P
partitions, audit 39, 41
passwd audit record 198
path policy flag 48
path token 59, 92
pathconf audit record 150
pc audit flag 21
permissions for audit file systems 41
pipe audit record 151
plus (+) audit flag prefix 22, 23
policies

see also audit flags
auditconfig options 47
setting 48

postsigterm string and audit_warn script 30
pound sign (#) for comments in files 70, 72
poweroff audit record 199
praudit command

see also audit tokens

converting audit records to
human-readable format 20,
31

described 53
human-readable format 54, 62
output formats 65, 66
piping auditreduce output to 63
using 65, 66

prefixes in audit flags 22, 23
preselection mask

auditconfig command options 47
described 26
machine-wide 24
reducing storage costs 34, 35

primary audit directory 24, 39
print format field values (arbitrary token) 84
printing audit log 63
priocntlsys audit record 151
process audit characteristics 26, 27

audit ID 27
audit session ID 27
process preselection mask 26, 34, 35
terminal ID 27

process audit class 21
process dumped core audit record 152
process groups tokens

groups token 58, 88
newgroups token 91

process preselection mask
auditconfig command options 47
described 26
reducing storage costs 34, 35

process token 60, 92
processing time costs 33
processor_bind audit record 152
putmsg audit record 153

socket connect 154
socket send 154

putpmsg audit record 155
p_online audit record 150

R
-r praudit output format 65

header token 55
raw praudit output format 65

header token 55

236 SunSHIELD Basic Security Module Guide ♦ February 2000

readlink audit record 155
reallocating devices 69
reboot: machine reboot audit record 199
records, see audit records
recvfrom audit record 156
recvmsg audit record 156
reducing audit files 36

auditreduce command 31, 33
storage-space requirements 33, 35

rename audit record 157
return token 60, 93
rewoffl option of mt command 74
risks associated with device use 68
rmdir audit record 157
rpc.rexd audit record 200
rshd access denials/grants audit record 201

S
-S option of st_clean script 75
-s praudit output format 65

header token 55
/sbin/init audit record 194
SCSI devices

see also device allocation
st_clean script 72

secondary audit directory 24, 39
security risks associated with device use 68
selecting audit records 52
semctl audit record 158

GETALL command 158
GETNCNT command 159
GETPID command 159
GETVAL command 160
GETZCNT command 160
IPC_RMID command 161
IPC_SET command 161
IPC_STAT command 163
SETALL command 162
SETVAL command 162

semget audit record 163
semop audit record 164
sendmsg audit record 164
sendto audit record 165
seq policy flag 49
seq token 61, 94
servers, enabling BSM for clients 15
session ID 27, 52

setaudit audit record 165
setaudit_addr audit record 166
setauid audit record 167
-setclass option of auditconfig command 47
-setcond option of auditconfig command 47
setegid audit record 167
seteuid audit record 168
setgid audit record 168
setgroups audit record 169
setpgrp audit record 169
-setpmask option of auditconfig command 47
-setpolicy option of auditconfig command 47,

48
setregid audit record 170
setreuid audit record 170
setrlimit audit record 171
-setsmask option of auditconfig command 47
setsockopt audit record 171
setuid audit record 172
-setumask option of auditconfig command 47
SHIELD Basic Security Module, see Basic

Security Module (BSM)
shmat audit record 172
shmctl audit record 173

IPC_RMID command 173
IPC_SET command 174
IPC_STAT command 174

shmdt audit record 175
shmget audit record 175
short praudit output format 65

header token 55
shutdown audit record 176, 201
shutting down, see terminating
signal received during auditing shutdown 30
size

managing audit files 29
reducing audit files 36

auditreduce command 31, 33
storage-space requirements 33, 35

sockconfig audit record 177
socket accept audit record 128
socket audit record 178
socket connect audit record 154
socket receive audit record 128
socket send audit record 154
socket token 61, 94
socket-inet token 94

237

soft limit
audit_warn condition 30
determining space needed 43
minfree: line described 24

soft string with audit_warn script 30
Solaris SHIELD Basic Security Module, see

Basic Security Module
(BSM)

sr_clean script 74
standard cleanup 75
starting, see enabling
stat audit record 178
statfs audit record 179
statvfs audit record 179
stime audit record 180
storage costs 33, 35
storage overflow prevention 45, 46
st_clean script for tape drives 72, 74
su audit record 202
subject token 61, 95
success

audit flag prefix 22
turning off audit flags for 23

SUNWcar package 13
SUNWcsr package 13
SUNWcsu package 13
SUNWhea package 13
SUNWman package 13
symlink audit record 180
sysinfo audit record 181
system booted audit record 181
system calls

arg token 56, 85
auditsvc fails 30, 96
close 21
event numbers 19
event-to-system call translation table 203,

214
exec_args token 86
exec_env token 86
ioctl 21, 75
return token 60, 93

System V IPC
ipc audit class 21
ipc token 58, 90
ipc_perm token 59, 90

T
tail command 35
tape drives

see also device allocation
device-clean scripts 73
risks associated with use 68
st_clean script 72

TCP address 59, 91
TCSEC (Trusted Computer System Evaluation

Criteria) C2 features 67
temporary file cannot be used 30
terminal ID 27
terminals, see device allocation
terminating

audit daemon 27
signal received during auditing

shutdown 30
text token 62, 95
time stamps in audit files 38
time-date auditreduce command options 64
tmpfile string and audit_warn script 30
tokens, see audit tokens
trail policy flag 48
trail, see audit trail
trailer token

described 56, 96
fields 56
format 96
order in audit record 54, 96
praudit display 56

Trusted Computer System Evaluation Criteria
(TCSEC) C2 features 67

U
-U option

allocate command 69
uadmin audit record 202
UDP address 59, 91
umount: old version audit record 182
unlink audit record 182
user audit fields 25, 26
user ID (audit ID) 18, 27, 52
user-level events

see also audit events
audit records 186, 203
audit tokens 54

238 SunSHIELD Basic Security Module Guide ♦ February 2000

auditconfig command options 47
described 19

/usr/sbin/uadmin audit record 202
/usr/bin/at audit record

at-create crontab 189, 190
/usr/bin/crontab audit record

crontab-crontab created 191 to 193
/usr/bin/login audit record

terminal login 195 to 197
/usr/bin/passwd: change password audit

record 198
/usr/bin/su audit record 202
/usr/lib/nfs/mountd audit record

NFS mount request 197, 198
/usr/sbin/allocate audit record

deallocate device 187 to 189
/usr/sbin/auditd daemon, see audit

daemon
/usr/sbin/halt audit record 193
/usr/sbin/in.ftpd audit record 195
/usr/sbin/in.rexecd audit record 200
/usr/sbin/in.rshd audit record 201
/usr/sbin/inetd audit record 194
/usr/sbin/init audit record 194
/usr/sbin/poweroff audit record 199
/usr/sbin/reboot audit record 199

/usr/sbin/rpc.rexd audit record 200
/usr/sbin/shutdown audit record 194
/usr/ucb/shutdown audit record 201
utilities

device allocation 69, 70
utime audit record 183
utimes audit record 183
utssys - fusers audit record 184

V
vfork audit record 184
viewing, see displaying
vnode token 57, 86
vtrace audit record 185

W
writing new device-clean scripts 75

X
xmknod audit record 185
xstat audit record 186
Xylogics tape drive clean script 72

239

