Traditional Chinese Solaris System Administrator’s Guide
Contents

Preface 5

1 Starting the Traditional Chinese Solaris Software 9
 Installing Traditional Chinese Solaris Software 10
 Applications Defaults Files 10

2 System Environment 11
 Changing the Default Locale 11
 Locale and Category Terminology 12
 Keybinding for the `htt` Input Server 12
 Customizing Keybinding Control Keys 13
 Interfacing With the Traditional Chinese Solaris Localization Facility 13

3 Setting Up Traditional Chinese Solaris Printing Facilities 15
 Line Printer Support 15
 Traditional Chinese Solaris Code Filters 16
 Laser Printer Support 19
 Using the `xetops` Utility 20

4 TTY Environment and Support 21
 TTY Streams 21
 Traditional STREAMS 21
 Traditional Chinese Solaris STREAMS 22
 TTY Utilities 22
Preface

Traditional Chinese Solaris System Administrator’s Guide provides system administration information specific to Traditional Chinese Solaris™ operation in the Common Desktop Environment (CDE) and the OpenWindows™ environment. This guide also includes some additional information that advanced users and developers can use to access and control the features of the Traditional Chinese Solaris operating environment.

Who Should Use This Book

You should read this guide if:

- You need specific instructions on how to set up features for users.
- You are a system administrator who has not used the Traditional Chinese Solaris operating environment, CDE, or the OpenWindows 3.x environment before.
- You are a developer who needs information on accessing and controlling the Traditional Chinese features of the Traditional Chinese Solaris operating environment.
- You are an advanced user who wants to use or customize the Traditional Chinese Solaris operating environment.
- You want information on a variety of details internal to the operation of the Traditional Chinese Solaris operating environment.

You should already be familiar with Sun’s standard product documentation and the documentation of the window system that you are using, either CDE or OpenWindows. This guide adds only Traditional Chinese features.
Before You Read This Book

Before you read this book, please review the product overview and any last-minute changes that arrived too late to be included in this document:

- Traditional Chinese Solaris Release Overview

Make sure to install your system properly as described in the document appropriate to your hardware platform:

- Solaris Advanced Installation Guide
- Information Library for Solaris 8 (SPARC Platform Edition)
- Information Library for Solaris 8 (Intel Platform Edition)

Each chapter of this manual addresses a different aspect of administration of the Traditional Chinese Solaris operating environment. Some chapters give step-by-step instructions for using or customizing product features.

Chapter 1, “Starting the Traditional Chinese Solaris Software,” introduces the Traditional Chinese Solaris operating environment, including CDE and the locales included in the product.

Chapter 4, “TTY Environment and Support,” covers setting terminals to use the proper protocols for the input and display of Traditional Chinese characters.

Appendix A, “OpenWindows Information,” describes administration tasks relating to modifications made to the OpenWindows 3.x environment to localize it for Traditional Chinese and types of mail transmission and storage available.

Related Books

The following books are related to the topic of this book and may prove helpful for further reading.
For information on how to use the window system and associated applications:

- Solaris User’s Guide
- Solaris Advanced User’s Guide

For information about how to develop applications for this Traditional Chinese Solaris release:
- International Language Environments Guide

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with on-screen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Command-line placeholder: replace with a real name or value</td>
<td>To delete a file, type rm filename.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, or words to be emphasized</td>
<td>Read Chapter 6 in User’s Guide. These are called class options. You must be root to do this.</td>
</tr>
</tbody>
</table>
Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell prompt</td>
<td><code>machine_name%</code></td>
</tr>
<tr>
<td>C shell superuser prompt</td>
<td><code>machine_name#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell prompt</td>
<td><code>$</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser prompt</td>
<td><code>#</code></td>
</tr>
</tbody>
</table>
Starting the Traditional Chinese Solaris Software

The Traditional Chinese Solaris operating environment must be specially set up for using Traditional Chinese text facilities. This chapter describes the steps required to set up the environment for running the Traditional Chinese Solaris operating environment.

The Traditional Chinese Solaris operating environment provides two window environments, the Common Desktop Environment (CDE) and OpenWindows. CDE is a fully internationalized environment; it does not require most of the administration tasks that OpenWindows requires to handle Traditional Chinese. For information on starting OpenWindows, see Appendix A, “OpenWindows Information.” The Traditional Chinese Solaris product includes the following locales:

- `C` – ASCII English environment
- `zh_TW.BIG5` – Traditional Chinese environment in Big5 code
- `tchinese` – Symbolic links to `zh_TW` locale
- `zh_TW.EUC` – Symbolic links to `zh_TW` locale
- `zh_TW.UTF-8` – Traditional Chinese environment in Unicode 3.0.
- `C`
Note – The zh_TW.BIG5, zh_TW.EUC and zh_TW.UTF-8 locales support CDE but do not support the OpenWindows environment.

Installing Traditional Chinese Solaris Software

Make sure the Traditional Chinese Solaris operating environment is installed as directed in the documents appropriate to your hardware platform:

- Solaris Advanced Installation Guide
- Solaris 8 (SPARC Platform Edition) Information Library
- Solaris 8 (Intel Platform Edition) Information Library

Applications Defaults Files

The Traditional Chinese CDE includes three directories for applications defaults. One is for system-wide defaults, and two are specific to locale features:

- The /usr/dt/app-defaults/C directory stores system wide application defaults. These values are for the C locale.
- The /usr/dt/app-defaults/zh_TW directory stores application defaults that are specific to the zh_TW locale.
- The /usr/dt/app-defaults/zh_TW.BIG5 directory stores application default values specific to the zh_TW.BIG5 locale.
- The /usr/dt/app-defaults/zh_TW.UTF-8 directory stores application default values specific to the zh_TW.UTF-8 locale.

The /usr/openwin/lib/locale/zh_TW.UTF-8/app-defaults/Htt file has all htt resource default values that depend on the zh_TW.UTF-8 locale.
System Environment

Users can change their locale settings with shell environment variables. Each category names an existing locale. The `setlocale()` function directly sets or queries the setting of these categories. Internationalized functions use these settings to access the appropriate tables for the desired locale.

Environment variables can indirectly set the categories: when `setlocale()` sets the categories to the default setting for that site, it uses the setting of each environment variable to set the associated categories. The `setlocale()` function does not change the settings of environment variables, it only reads their settings.

Changing the Default Locale

You can change the default locale system-wide with the following procedure. For OpenWindows users, a default setting of `zh_TW.BIG5` will revert to the C locale.

1. **Edit the `/etc/default/init` file by adding or changing the line.**
 Substitute `C`, `zh_TW.BIG5`, `zh_TW` or `zh_TW.UTF-8` for `locale`.

   ```
   LANG=locale
   ```

2. **Have all users exit CDE.**

3. **Type the following commands:**
   ```
   % su
   # /usr/dt/bin/dtconfig -kill
   ```

4. **Type the following commands:**
   ```
   % su
   # reboot
   ```
Locale and Category Terminology

The terms locale and category relate to each other as follows:

- A locale includes specification of a language, territory, code set, and other features. The Traditional Chinese Solaris operating environment includes the following locales:
 - C—For the ASCII English environment, the locale must be set to C.
 - zh_TW—For the Traditional Chinese environment in EUC, the locale must be set to zh_TW.
 - zh_TW.BIG5—For the Traditional Chinese environment in Big5, the locale must be set to zh_TW.BIG5.
 - zh_TW.UTF-8—For the Traditional Chinese environment in Unicode, the locale must be set to zh_TW.UTF-8.

- A category is a set of features that comprises a locale. For example, character displays or time/date representations, whose behavior depends on the locale. Traditional Chinese Solaris categories include the following:
 - LC_CTYPE sets the character-type for classification and conversion.
 - LC_TIME sets the locale for representation of date and time.
 - LC_NUMERIC sets the number representation locale (used also for I/O).
 - LC_MONETARY sets the currency representation locale.
 - LC_MESSAGES sets the language locale for messages to users.
 - LC_COLLATE sets the locale-dependent collation of strings.

The environmental variable LC_ALL explicitly sets the same locale for all categories; it has the highest priority. If categories or LC_ALL are not set, the LANG environmental variable will determine the category setting.

Keybinding for the htt Input Server

In reference to the Traditional Chinese window system input server, the keybinding process links certain keys on the keyboard with certain actions by an application. You can keybind a complex action by an application, for example closing its open windows, to a single key or sequence of keys like Control-H or Esc w c.
All input conversion mode Control-key commands associated with EUC and Big5 non-ASCII input conversion are set in /usr/lib/mle/zh_TW/keybind.dat. The default commands are listed in the table in Chapter 4, “Entering Traditional Chinese Input,” in Traditional Chinese Solaris User’s Guide.

Customizing Keybinding Control Keys

Keybindings can be changed by changing the names of the keys in this file and then restarting the htt input server. You can make and use your own customized keybind.dat file as follows:

1. Make a customized copy named keybind.dat in another directory.

2. Set the environment variable MLE_PATH to the path name of the directory containing this customized file.

3. Start the input server.

The directory set in MLE_PATH is then searched for a keybind.dat file and the commands in that file are set for the user.

If MLE_PATH is not set or does not contain a usable keybind.dat file, /usr/lib/mle/zh_TW/keybind.dat is used.

To change the keybindings, edit the keybinding file to replace default keys with new keys. Key combinations and ON/OFF toggling also can be used.

Interfacing With the Traditional Chinese Solaris Localization Facility

At the C shell level, each environment variable can be set to locale (zh_TW, zh_TW.BIG5 or zh_TW.UTF-8 for Traditional Chinese, or C for ASCII) by a shell command as follows:

- C shell users can enter a shell command as follows:

`system$ setenv LC_TIME locale`

- Bourne shell (sh) users can use `set` or `export`:

```
$ set -a LC_TIME
$ LC_TIME=locale
```

or
Making zh_TW, zh_TW.BIG5 or zh_TW.UTF-8 the locale allows the user’s environment to display time in Traditional Chinese format and text. A user can also define a mix of locales for the working environment. For example, characters can be typed and converted in Traditional Chinese, time can be displayed in French format, and messages can appear in English.

Many users work in a single cultural environment. The LC_ALL and LANG environment variables set the system default for all categories. For example, these C shell commands set the system default for all categories to locale.

```
system% setenv LC_ALL locale
system% setenv LANG locale
```

System administrators or users can set the default and the `setenv` syntax can be used in programming.

This setting is put into effect the next time a `setlocale()` function call in an application program line sets a category to the default setting:

```
setlocale(LC_XXX""
```

```
Setting Up Traditional Chinese Solaris Printing Facilities

The Traditional Chinese Solaris operating environment supports printing Traditional Chinese output through the following types of printing facilities:

- Line printer containing built-in Traditional Chinese fonts
- PostScript-based printer containing built-in scalable fonts
- Any PostScript-based printer for bitmap printing

The system administrator installs printer(s) as described in the printer product documentation. Then users can print Traditional Chinese text using procedures described in this chapter.

Follow the printer documentation for physically connecting the printer. Then use the following instructions.

Line Printer Support

For the Traditional Chinese Solaris operating environment to run a line printer, the printer must recognize at least one of the appropriate code sets:

- EUC
- Big5
Traditional Chinese Solaris Code Filters

EUC to Big5 Filter

A printer that does not support EUC needs filters that convert EUC files for printing. For example, the following command sequence tells LP, the print service, that printer lp1 accepts only Big5 format files. This command line also installs printer lp1 on port ttya. The lpd(8) man page explains this command more fully.

```
ladmin -p lp1 -v /dev/ttya -I BIG5
accept lp1
enable lp1
```

An `lpfilter` command line like the following can be used in the process of printing files whose format is not supported by the printer:

```
lpfilter -f filter-name -P pathname
```

The above command tells LP that a converter called `filter-name` (for example euctobig5) is available through the filter description file named `pathname`. This filter takes default type file input and converts it to Big5 format by using euctobig5. The content of `pathname` can be as follows:

- **Input types:** simple
- **Output types:** BIG5
- **Command:** euctobig5

To print an EUC format file, use the following command:

```
system% lp -d lp1 EUC-filename
```

To print a Big5 format file, use the following command:

```
system% lp -d lp1 -T BIG5 Big5-filename
```

Using Configuration Files for Printing With an Epson Dot Matrix Printer

Traditional Chinese Solaris software provides configurable files that allow users to configure the available built-in font ranges according to their own equipment. Traditional Chinese Solaris software provides a configuration file that defines the built-in fonts in the Epson dot matrix printers.

Modify the configuration file according to your printing equipment before using it:

- Modify `/usr/lib/lp/files/cns.epson.conf` if you are working with a zh_TW file.
Modify `/usr/lib/lp/files/big5.epson.conf` if you are working with a `zh_TW.BIG5` file.

**Printing a CNS File to an Epson Dot Matrix Printer**

For instance, the following configuration file, `/usr/lib/lp/files/cns.epson.conf`, is used for setting up an Epson LQ-1070C+ Chinese dot matrix printer. In the example, the Epson LQ-1070C+ is composed of built-in Traditional Chinese fonts for CNS 11643 plane 1 and plane 2. You can specify available fonts in different planes and in different directories.

```
@(#)cns.epson.conf 1.5 96/04/10 SMI; ALE
CNS Print Filter Configuration File for Epson Dot Matrix Printers
#
ACCEPT CODE RANGE:
 PLANE 1:
 0x2121 - 0x234e
 0x2421 - 0x2570
 0x4421 - 0x7d4b
 PLANE 2:
 0x2121 - 0x7244

FONT FILES:
 PLANE 1:
 PLANE 2:
 PLANE 3:
 PLANE 4:
 PLANE 5:
 PLANE 6:
 PLANE 7:
 PLANE 8:
 PLANE 9:
 PLANE 10:
 PLANE 11:
 PLANE 12:
 PLANE 13:
 PLANE 14:
```

Setting Up Traditional Chinese Solaris Printing Facilities  17
An `lpfilter` command line such as the following can be used to print files whose format is not supported by the printer:

```
lpfilter -f filter-name -F filename
```

The above command tells LP that a converter called `filter-name` (for example `cns.epson.filter`) is available through the filter description file named `filename`.

If you are installing an Epson dot matrix printer, the content of the filter description file, `cns.epson.fd`, should be as follows:

- **Input types:** simple
- **Output types:** EUC
- **Command:** `cns.epson.filter`

This filter takes the default type file input and converts it to a dot matrix data stream by using the `cns.epson.filter`.

For example, the following command sequence tells LP, the printer service, that printer `lp2` accepts only EUC format files. This command line also installs printer `lp2` on the bidirectional parallel port `/dev/bpp0`. The `lpadmin(1)` man page explains this command more fully.

```
lpadmin -p lp2 -v /dev/bpp0 -I EUC
accept lp2
enable lp2
```

To print a file that contains Chinese characters in EUC format to an Epson dot-matrix printer, use the following command:

```
system% lp -d lp2 EUC-filename
```

### Printing a Big5 File to an Epson Dot Matrix Printer

Traditional Chinese Solaris software provides a configuration file that defines for `zh_TW.BIG5` files the built-in fonts in the Epson dot matrix printers. Modify the configuration file according to your printing equipment before using it. The contents of the `/usr/lib/lp/files/big5.epson.conf` configuration file can be as follows:

```
@(#)big5.epson.conf 1.6 96/05/06 SMI; ALE
#
Big5 Print Filter Configuration File for Epson Dot Matrix Printers
#
ACCEPT CODE RANGE:
```
An `lpfilter` command line such as the following can be used to print files whose format is not supported by the printer:

```
lpfilter -f filter-name -F filename
```

The above command tells LP that a converter called `filter-name` (for example `big5.epson.filter`) is available through the filter description file named `filename`.

If you are installing an Epson dot matrix printer, the content of the filter description file, `big5.epson.fd`, should be as follows:

```
Input types: simple
Output types: BIG5
Command: big5.epson.filter
```

This filter takes the default type file input and converts it to a dot matrix data stream by using the `big5.epson.filter`.

For example, the following command sequence tells LP, the printer service, that printer `lp2` accepts only `zh_TW.BIG5` format files. This command line also installs printer `lp2` on the bidirectional parallel port `/dev/bpp0`. The `lpadmin(1)` man page explains this command more fully.

```
lpadmin -p lp2 -v /dev/bpp0 -I BIG5
accept lp2
enable lp2
```

To print a file that contains Chinese characters in `zh_TW.BIG5` format to an Epson dot-matrix printer, use the following command:

```
system% lp -d lp2 BIG5-filename
```

---

**Laser Printer Support**

To print Traditional Chinese characters using a PostScript-based printer, a Traditional Chinese Solaris software application must have the Traditional Chinese Solaris `xetops` utility to print EUC or Big5 files or `xutops`.
Using the xetops Utility

The xetops utility produces a bitmapped graphics printed image.

The Traditional Chinese Solaris operating environment includes the xetops utility so any system can print Traditional Chinese on a PostScript printer.


A typical command line for printing a file named filename containing Traditional Chinese characters with or without ASCII/English characters, would be as follows:

```
system% pr filename | xetops | lp
```

Make filename the name of the file to print. This file can contain ASCII/English characters as well as Traditional Chinese.
TTY Environment and Support

This chapter assumes you are familiar with:

- How the Solaris operating environment communicates with external devices using STREAMS and ioctl.
- How different terminal types are supported by termcap and terminfo.

Refer to the termio(7) man page for background information on STREAMS and TTY drivers.

TTY Streams

The data path between a user’s shell and the terminal is called a stream. The data on a stream contain characters and control information that affect data handling, such as the control sequences that precede a change in code set or communication protocols. Data entering the stream from the terminal are raw or unprocessed. Data are sequentially processed by STREAMS modules for appropriate use by the shell or an application.

STREAMS provides a way to modularize the processing on a line, allowing processing instructions to be grouped in functional modules. These modules can be added or removed from the line so that different environments can be provided to a terminal according to the user’s needs.

Traditional STREAMS

The traditional STREAMS TTY environment contains a raw device driver, a line discipline module, and a stream head. The raw device driver provides an I/O
interface between the kernel and the hardware. Because it is closest to the physical hardware, it provides basic communication protocols, baud rate switching, and other low level services. The line discipline module is a set of instructions or disciplines that transforms the raw data to processed data. This includes handling the delete character, line kill character, and others. The stream head provides an interface between the user’s process and the stream.

Traditional Chinese Solaris STREAMS

The Traditional Chinese Solaris operating environment uses the modular nature of STREAMS to support Traditional Chinese. In addition to the traditional TTY modules, this product implements code conversion in STREAMS. Chinese input is typically supplied by many existing Traditional Chinese TTYs and is not available in the Traditional Chinese Solaris TTY environment.

The Traditional Chinese Solaris operating environment enhances the traditional modules. Its line discipline handles proper cursor movement for wide characters as well as normal protocols. The Traditional Chinese Solaris software code conversion modules convert between two different character code formats such as between Big5 and EUC.

Code conversion depends on the appropriate flags or parameters being set. For example, if a Big5 code terminal is being used, the input from the terminal is converted to EUC and the output to the terminal is converted to Big5 code.

The major modules that can be pushed onto the stream are ldterm and big5euc:

- **ldterm(7)** is a generic EUC line discipline module. It processes all normal line discipline functions and also handles proper cursor movement and backspacing for wide characters (EUC)
- **big5euc** controls code conversion between Big5 and EUC

TTY Utilities

**ioctl** (input/output control) calls are low-level routines for handling device input and output.

The **termcap** and **terminfo** databases are used by applications to configure their terminal display appropriately.
EUC ioctl Features

The Traditional Chinese Solaris operating environment uses ioctl(2) STREAMS commands for general EUC handling. The following is a summary of these ioctl calls and their effects:

<table>
<thead>
<tr>
<th>ioctl Request</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUC_WGET</td>
<td>Get cswidth values from TTY stream</td>
</tr>
<tr>
<td>EUC_WSET</td>
<td>Set cswidth values for TTY stream</td>
</tr>
<tr>
<td>EUC_OXLOFF</td>
<td>Set code conversion to OFF</td>
</tr>
<tr>
<td>EUC_OXLOFF</td>
<td>Set code conversion to ON</td>
</tr>
</tbody>
</table>

Character code conversion to and from the terminal is controlled by EUC_OXLOFF and EUC_OXLOFF.

termcap

termcap and terminfo are the databases used to tailor the terminal characteristics for an application. The following are extensions to the termcap database:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dv</td>
<td>Device type: language and codeset</td>
</tr>
<tr>
<td>ci</td>
<td>Init sequence for multiple codesets</td>
</tr>
<tr>
<td>s0</td>
<td>Shift into codeset 0</td>
</tr>
<tr>
<td>s1</td>
<td>Shift into codeset 1</td>
</tr>
<tr>
<td>s2</td>
<td>Shift into codeset 2</td>
</tr>
<tr>
<td>s3</td>
<td>Shift into codeset 3</td>
</tr>
</tbody>
</table>

terminfo

The following are extensions to terminfo. The s0-s3 string values are used as data announcement mechanisms for the respective code sets during terminal I/O.
### TABLE 4-3 terminfo Variables and Descriptions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Capname</th>
<th>Tc</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device_type</td>
<td>devt</td>
<td>dv</td>
<td>Device type: language and codeset</td>
</tr>
<tr>
<td>code_set_init</td>
<td>csin</td>
<td>ci</td>
<td>Init sequence for multiple codesets</td>
</tr>
<tr>
<td>set0_des_set</td>
<td>s0ds</td>
<td>s0</td>
<td>Shift into codeset 0</td>
</tr>
<tr>
<td>set1_des_set</td>
<td>s1ds</td>
<td>s1</td>
<td>Shift into codeset 1</td>
</tr>
<tr>
<td>set2_des_set</td>
<td>s2ds</td>
<td>s2</td>
<td>Shift into codeset 2</td>
</tr>
<tr>
<td>set3_des_set</td>
<td>s3ds</td>
<td>s3</td>
<td>Shift into codeset 3</td>
</tr>
</tbody>
</table>

### TTY Commands

The two commands for configuring and using the TTY environment are `setterm` and `/bin/stty`. `setterm` is used primarily to build the TTY stream for a particular terminal type, pushing the necessary modules onto the stream. `stty` changes the behavior of the modules in the stream.

#### setterm Command

`setterm` is used to configure the TTY STREAMS environment. It can inquire about and manipulate STREAMS modules for a particular TTY port. `setterm` allows users to tailor their TTY STREAMS environment using system-provided or user-provided STREAMS modules.

`setterm` uses a terminal device name that reflects the `devt` (device type) field in the terminfo database for configuring STREAMS modules for a TTY port. This device name is matched with an entry of the same name in the `setterm` configuration file, `/usr/share/lib/setterm/zh_TW/conf.file`. This entry contains detailed instructions on which modules to pop and push in order to properly configure the STREAMS environment.

`setterm` can also take the device type as a direct argument. This device type is similarly matched with an entry in `/usr/share/lib/setterm/zh_TW/conf.file`.

The `setterm` configuration file uses a special language for instructions on what actions to take. This language allows users to determine the names of modules on the
STREAMS stack, to push or pop modules on the stack, and to do other operations. `setterm` manipulates the STREAMS stack by making `ioctl` calls.

The Traditional Chinese Solaris operating environment provides special purpose modules to enable/disable code conversion and properly handle multibyte and wide characters. Pushing a module onto the stack, enables the corresponding conversion. The default state for conversion is enabled.

For more information, see the `setterm(1)` man page.

/bin/stty Command

The `-defeucw` option to the `/bin/stty` command is for modifying STREAMS modules to reflect changes in the user’s environment. It does not work with the `/usr/ucb` version of `stty`, which has not been internationalized.

The following command queries the user’s environment for information on EUC code-set width and sets that information in the line discipline:

```
/system% /bin/stty defeucw
```

For example, if the user has the environment variable `LC_CTYPE` set to `locale`, this option gets information on the number of bytes per character and the screen width per character for the code sets in the `zh_TW` environments and then sends this information to relevant modules in the stream.

TTY Setup Examples

The system administrator can add `setterm` in the startup script in `/etc/rcn.d` directory (where `n` is the run level), to run at the system boot time. Also, users can run the `setterm` command at login to configure the stream for their terminal, including the appropriate modules for Traditional Chinese input code conversion. The following examples using `setterm` work as commands typed at a system prompt or included in system files such as `.cshrc`, `.login`, and the startup script. Such commands can either explicitly set the device type or use the `terminfo` database.
Configuring STREAMS for Traditional Chinese Solaris Software

To explicitly configure the STREAMS module for a Big5 terminal use:

```
setterm -x big5
```

This usage is independent of terminfo.

Further consider using a VT-100 terminal (which is Big5 compatible) on a system with an entry like the following (which is appropriate for such a terminal) in the terminfo database:

```
vt100-b|VT-100-compatible with Big-5 chars, lines#40, .csin=E(BE)IE[71h, csin=E(BE)I, devt=PACKBig5, s0ds=E(H, sids=E$@, s2ds=E(H, use=cit600,
```

A configuring command that references this entry would be:

```
setterm -t vt100-b
```

For setterm to work properly in this application, 
```
/usr/share/lib/setterm/zh_TW/conf.file
```
must contain an entry that corresponds to the device type. This entry gives setterm instructions for placing appropriate conversion modules in the TTY stream; for example:

```
big5throw
 popto zs|mcp|mti|ptem \n push big5euc \n push ldterm \n push ttcompat \n run {stty defeucw} \n catch
#
GenericEUC|EUCthrow
 popto zs|mcp|mti|ptem \n push ldterm \n push ttcompat \n run {stty defeucw} \n catch
#
ASCIIthrow
 popto zs|mcp|mti|ptem \n push ldterm \n push ttcompat \n catch
#
```

For more information, refer to the `setterm(1)` man page. Once configured, conversion is enabled by default. Applications can also set features through `ioctl()` function calls.
Terminal Support

The Traditional Chinese Solaris operating environment supports Big5 terminals. The terminals should have built-in Traditional Chinese fonts and input methods.

Installing a Terminal

If you have not added a terminal to your system before, first try installing a terminal in ASCII mode only. For more information, see Solaris System Administration Guide.

Serial Port Interface for Adding Terminals

Serial Ports is available from the Admintool menu to configure serial ports for terminals. Serial Ports provides the easiest method of installing a terminal. Serial Ports is invoked by admintool. For more information on admintool, see Solaris System Administration Guide.

Accessing Serial Ports

Using Serial Ports Menus

A Chinese terminal that supports CNS 11643 is installed as you would install an ASCII terminal.

Command Line Interface for Adding Terminals

The following procedure is required to set up a terminal on ttya port via the command line:

1. **Determine the port monitor version number.**
   The port monitor version number will display.

   ```bash
 # ttyadm -V
   ```
2. Enter the following commands, substituting the port monitor version number for \texttt{ver}.
   (For more information on \texttt{sacadm(1M)} and \texttt{pmadm(1M)}, see their man pages.)
   
   \begin{verbatim}
   # pmadm -r -p zsmon -s ttya
   # sacadm -a -p zsmon -t ttymon -c /usr/lib/saf/ttymon -v \texttt{ver}
   \end{verbatim}

3. Use the \texttt{pmadm} command that matches your terminal type to add a login service:
   For EUC terminals, use the following command:
   
   \begin{verbatim}
   # pmadm -a -p zsmon -s ttya -i root -fu -v \texttt{ver} \texttt{-m} "ttyadm -S y \texttt{-T terminal_type} -d /dev/ttya -l 9600 -m ldterm,ttcompat -s /usr/bin/login"
   \end{verbatim}
   For Big5 code terminals, use the STREAMS module \texttt{big5euc} in the \texttt{ttyadm} command:
   
   \begin{verbatim}
   # pmadm -a -p zsmon -s ttya -i root -fu -v \texttt{ver} \texttt{-m} "ttyadm -S y \texttt{-T terminal_type} -d /dev/ttya -l 9600 -m big5euc,ldterm,ttcompat -s /usr/bin/login"
   \end{verbatim}

4. Turn on the terminal.
   Follow the documentation that accompanies the terminal.

5. Log in the terminal.

6. Check the correctness of the installation:
   
   \begin{verbatim}
   # setenv LANG locale
   # /bin/stty cs8 -istrip defeucw
   \end{verbatim}

   \textbf{Note} – These values show that the operating system is set to communicate with the
   terminal in “8-bit no-parity” mode. Make sure the terminal is set up in “8-bit no-parity” mode. Refer to the terminal’s setup manual for the proper way to set
terminal options.

---

### Setting a User’s TTY

To verify that your TTY is properly set up:

1. Type the \texttt{/bin/stty} command with the \texttt{-a} option:
   
   \texttt{system\% /bin/stty -a}

2. If the values from above (\texttt{cs8, -istrip}) are not listed, then use the following command to set them:
   
   \texttt{system\% /bin/stty cs8 -istrip defeucw}

   This is the last step in setting up a terminal.
Using Big5 TTY With EUC Locale

1. If you are using a Big5 type terminal, you must load the STREAMS module into the
   kernel by using the following command as a superuser:

   ```
 system% su
 Password: (Type superuser password here if required.)
 # modload /kernel/strmod/big5euc
   ```

2. Type the following command:

   ```
 system% setterm -x big5
   ```
OpenWindows Information

This appendix describes how to administer the Traditional Chinese OpenWindows environment.

Starting OpenWindows

This section describes the steps required to set up the Traditional Chinese environment and to start Traditional Chinese Solaris operation.

Setting .cshrc for the Required Environment

Each user’s environment variables and ~/.cshrc (in other words, $HOME/.cshrc) file command lines must be set as described in this section to use Traditional Chinese text. You must make sure the following three .cshrc file features (and consequently the users’ C shells) are set correctly before any user starts up the Traditional Chinese OpenWindows environment.

The following three conditions are prerequisites to using Traditional Chinese:

- OPENWINHOME shell variable set to the path to /usr/openwin
- LANG shell-environment language-locale variable set for Traditional Chinese
- TTY mode set appropriately for Traditional Chinese character codes

To set these features, make sure each user’s .cshrc file includes the following lines:

setenv LANG zh_TW
setenv OPENWINHOME /usr/openwin
set path=( /usr/SUNWale/bin $OPENWINHOME/bin $path )

...

if ($?USER != 0 && $?prompt != 0) then
   /bin/stty cs8 -istrip defeucw
endif

Only /bin/stty can set the required features. Do not use /usr/ucb/stty, as it does not set all required features.

Also, make sure each .cshrc file puts $OPENWINHOME/bin in the user's path before any other OpenWindows file. One way to ensure this is to put the following line in after other path assignments:

set path=(/usr/SUNWale/bin $OPENWINHOME/bin $path)

### htt Input Server and openwin-init Files

The htt input server must be running before any application that uses Traditional Chinese input can run. It is started at OpenWindows startup from each user’s home directory .openwin-init file. This file must contain the line:

toolwait $OPENWINHOME/bin/htt

This line must be ahead of the lines that start Traditional Chinese Solaris applications because they depend on the htt input server for Traditional Chinese operation. If .openwin-init is missing from the home directory, htt is started from the $OPENWINHOME/lib/locale/zh_TW/openwin-init file distributed with this Traditional Chinese Solaris operating environment. The htt(1) man page explains more about the operation of htt.

### Setting the .OWdefaults File

The .OWdefaults file in the user’s home directory specifies the language used for several Solaris features: display language, numbers, time/date, messages, and other basic Traditional Chinese OpenWindows properties. Some other entries in .OWdefaults affect the behavior and appearance of the user’s OpenWindows user interface.

Each user’s .OWdefaults file should contain the following five lines before running the Traditional Chinese OpenWindows environment. So add these five lines at the end of users’ existing .OWdefaults files. (Refer to the “Using Localization on the Workspace Properties Worksheet” section in Traditional Chinese Solaris User’s Guide.)
These fields can be set to zh_TW, for Traditional Chinese, or C, for English/ASCII operation. These five Traditional Chinese OpenWindows variables have the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BasicLocale</td>
<td>Specifies the country (locale) of the user interface. With the basic locale set, a user can set other specific settings, such as input language.</td>
</tr>
<tr>
<td>DisplayLang</td>
<td>Specifies the language for labels, messages, menu items, help text, and other displays.</td>
</tr>
<tr>
<td>InputLang</td>
<td>Specifies the language used for keyboard input.</td>
</tr>
<tr>
<td>TimeFormat</td>
<td>Specifies the representation format of the time and date.</td>
</tr>
<tr>
<td>NumericFormat</td>
<td>Specifies the character system for number input/display.</td>
</tr>
</tbody>
</table>

These five fields can be added to an .OWdefaults file by using the localization category (Locale) in the Workspace Properties worksheet as described in the “Using Localization on the Workspace Properties Worksheet” section in Traditional Chinese Solaris User’s Guide.

.xinitrc File

If you want to maintain your own .xinitrc, update it according to $OPENWINHOME/lib/Xinitrc.

Applications Defaults Files

Two directories for applications defaults are part of the Traditional Chinese OpenWindows environment. One is for system-wide defaults, and one is specific to locale features:

- The $OPENWINHOME/lib/app-defaults/C directory stores system-wide application defaults. These values are for the C locale.
- The $OPENWINHOME/lib/locale/zh_TW/app-defaults directory stores application defaults that are specific to the zh_TW locale.
- The $OPENWINHOME/lib/locale/zh_TW/app-defaults/Htt file has all htt resource default values that depend on the zh_TW locale.
- The $OPENWINHOME/lib/locale/zh_TW/app-defaults/Olwm file lists all olwm window manager resources default values that depend on the zh_TW locale. Such resource file names have the locale name suffixed to the resource name, for example ButtonFont.zh_TW. When a resource named with the locale suffix is lacking, the resource named without the suffix is used.

---

### Customizing Mail Transmission and Storage

As you compose a mail message on the keyboard, the Traditional Chinese Solaris Mail Tool sends the characters in EUC (8-bit) format to the workstation or TTY screen for display. But for transmitting the message across the network, receiving, and storing received messages, the tool has several standard transmission formats available.

#### Mail Transmission Formats

The initial default setting for mail transmission is the commonly used (7-bit) ISO 2022 encoding standard. This is the same as having the following command line in a user’s .mailrc file:

```bash
set encoding=zh_TW.iso2022-7
```

However, Mail Tool can instead transmit via EUC format as directed by the following command line in a user’s ~/.mailrc file:

```bash
set encoding=zh_TW.euc
```

To set Mail Tool to use one of these transmission formats, perform the following steps:

1. **Put the encoding=zh_TW.format command line in your .mailrc file.**
2. **Follow the directions in the following section “Making .mailrc Changes Take Effect.”**

#### Mail Reception and Storage Formats

The Traditional Chinese Solaris Mail Tool stores incoming mail in the /var/mail directory in whatever format the mail arrives in.
Then, as Mail Tool reads the messages from the spool file and sends them to the screen display, it converts the text from the original ISO 2022 to EUC format, for display on the screen.

When you then direct Mail Tool to save a message, its initial default setting is to save the message in EUC format, regardless of the format originally received. This initial default setting is the same as having the following command line in the user’s .mailrc file:

set folderconv

To have mail stored in its originally received format (ISO2022-7 or other formats) and not converted, use a command line, such as the following, in the user’s .mailrc file:

set nofolderconv

The following section explains how to make such command lines take effect.

Making .mailrc Changes Take Effect

Whenever Mail Tool is started up from the Workspace Programs menu, or a mailx session is started at a system prompt, the mail utility uses the settings in ~/.mailrc. After a Mail Tool or session is running it ignores changes in the .mailrc file. So changes to .mailrc affect only Mail Tool or mail sessions that are started after the changes are saved.

However, changes made to .mailrc after a mailx session has been started can be put into effect in that existing mailx session using the source .mailrc command issued inside the session, as follows:

```
$ mailx
(Ongoing mailx session during which .mailrc is changed, for example from another Shell Tool window.)

& source .mailrc
(Continuing mailx session during which new .mailrc settings are in effect.)

& q
```

In the above example, the user types q to “quit” the mailx program.

Report of Incoming Mail

comsat is the server process that listens for reports of incoming mail and notifies users, who have requested notification, when mail arrives. To be able to display Traditional Chinese for this notification, the following steps should be taken:
File /etc/inet/inetd.conf has a line:
comsat dgram udp wait root /usr/sbin/incomsat in.comsat

This line should be manually edited by superuser (root) or changed by running install_comsat:
comsat dgram udp wait root /usr/SUNWale/sbin/in.comsat in.comsat -l zh_TW
## Index

A	admintool, 27, applications default files, 10, 33
B	Big5 locale, 10, Big5 TTY, 29, big5.epson.filter command, 18, 19, /bin/stty command, 25, 28
C	category definition, 12, cns.epson.conf print filter, 16, cns.epson.filter command, 18, commands big5.epson.filter, 19, /bin/stty, 28, cns.epson.filter, 18, ioctl, 23, pmadm, 28, setterm, 24, TTY, 24, configuring a terminal port, 27, .cshrc, 31
D	default environment OpenWindows, 13, dot matrix printers, using with Chinese, 16, 19
E	EUC ioctl command, 23
H	htt, 32
I	installing a Big5 terminal a terminal, 27, Traditional Chinese Solaris, 10, ioctl command, 23
K	keybinding, customizing control keys, 13
L
laser printer support, 19
locale
  Chinese, 13
terminology, 12
  zh_TW.BIG5, 10
lpfilter command, 18, 19
terminfo database, 23
TTY
  commands, 24
  setting, 28
  setup examples, 25
  STREAMS, 21
  utilities, 22
  TTY, setting, 28

M
mail
  incoming reports, 35
  transmission formats, 34
Mail Tool, 34
.mailrc, 35
X
X start-up file, 33
.Xdefaults, 32
xetops print filter, 20
.xinitrc, 33

O
openwin-init file, 32

P
pmadm command, 28
printer support, 19

S
Serial Ports, 27,
setlocale, 11
setterm command, 24
setting
  a user’s TTY, 28
storage formats, mail, 34
STREAMS
  traditional, 21
  Traditional Chinese Solaris, 22

T
termcap database, 23
terminal port, configuring, 27
terminal support, 27