Contents

Intro(1M) 5
ap(1M) 6
apboot(1M) 7
apcheck(1M) 10
apconfig(1M) 11
apdb(1M) 16
apdisk(1M) 18
apinst(1M) 21
apnet(1M) 22
Intro(7) 26
ap(7D) 27
ap_dmd(7D) 28
mether(7D) 30
mfddi(7D) 32
Maintenance Commands
<table>
<thead>
<tr>
<th>NAME</th>
<th>Intro – AP administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This section describes commands, scripts, and programs executed in the alternate pathing environment.</td>
</tr>
<tr>
<td>LIST OF COMMANDS</td>
<td></td>
</tr>
<tr>
<td><code>ap(1M)</code></td>
<td>alternate pathing</td>
</tr>
<tr>
<td><code>apboot(1M)</code></td>
<td>set up system files for boot metadisk</td>
</tr>
<tr>
<td><code>apcheck(1M)</code></td>
<td>determine accessibility of a metadisk</td>
</tr>
<tr>
<td><code>apconfig(1M)</code></td>
<td>display and manage AP configuration</td>
</tr>
<tr>
<td><code>apdb(1M)</code></td>
<td>manage AP database</td>
</tr>
<tr>
<td><code>apdisk(1M)</code></td>
<td>manage disk path groups</td>
</tr>
<tr>
<td><code>apinst(1M)</code></td>
<td>identify disk host adapter instances, <code>/dev/dsk</code> targets</td>
</tr>
<tr>
<td><code>apnet(1M)</code></td>
<td>manage network path groups</td>
</tr>
</tbody>
</table>
Alternate pathing (AP) enables you to define and control alternate physical paths to peripheral devices. If a path to a device becomes unavailable, your Sun server can use an alternate path.

SEE ALSO

Sun Enterprise Server Alternate Pathing 2.3.1 User Guide

apconfig(1M), apdb(1M), apdisk(1M), apnet(1M)
NAME
apboot – set up system files for boot metadisk

SYNOPSIS
apboot [-n] [-o] [-k system-name] [-v vfstab-name] device

 apboot [-n] [-o] [-v vfstab-name] [-m metadisk]

 apboot [-n] [-o] [-v vfstab-name] [-u metadisk]

DESCRIPTION
Use apboot(1M) to edit /etc/vfstab and /etc/system to make the system bootable from either the boot disk file systems on an AP metadisk or the boot disk file systems on a physical disk device that is not alternately pathed. The apboot command enables AP to manage a mirrored boot device when both that boot device and its mirror are under AP control.

In addition to editing /etc/vfstab/ and /etc/system, apboot checks the current configuration of system swap and dump devices. If either is configured as a partition of the boot disk, apboot calls swap(1M) or dump(1M), as appropriate, to ensure that swap and dump devices are consistent with the boot device.

Finally, apboot modifies the boot-device property of the OpenBoot™ PROM (OBP) so that all paths to the boot-device (and its mirror, if applicable) are listed in the order in which they will be tried during an automatic or manual reboot. The default order in an alternately pathed mirrored system is: Primary root, Primary mirror, Alternate root, Alternate mirror. This is a change from previous versions of AP to improve redundancy and serviceability. The default order in an alternately pathed, non-mirrored system is: Primary root, Alternate root. Use the eeprom(1M) command to view the boot-device property setting.

OPTIONS
The following options are supported:

- **−n**

 Print what would be done without actually doing it.

- **−k system-name**

 Edit system-name instead of the default /etc/system file.

- **−v vfstab-name**

 Use or edit vfstab-name instead of the default /etc/vfstab table of file system defaults.

- **−m metadisk**

Last modified September 2000
AP 2.3.1
Enable boot mirror support for the specified AP metadisk.

-o

Suppress automatic update of the boot-device property in OpenBoot™ PROM.

-u metadisk

Disable boot mirror support for the specified AP metadisk.

EXAMPLES

EXAMPLE 1 Using apboot with Metadisks

The following command edits /etc/system and /etc/vfstab to specify that the boot disk file systems are now on metadisk mc3t0d0.

 apboot mc3t0d0

EXAMPLE 2 Using apboot with Physical Devices

The following command edits /etc/system and /etc/vfstab to specify that the boot disk file systems are now under the physical path /dev/dsk/c3t0d0.

 apboot c3t0d0

EXAMPLE 3 Using apboot with Mirrored Devices

The following commands edit /etc/system and /etc/vfstab to specify that the boot disk file systems are now on metadisk mc3t0d0, with a mirror on mc1t0d1.

 apboot mc3t0d0
 apboot -m mc1t0d1

EXAMPLE 4 Using apboot to Disable Mirrored Devices

The following command disables AP support for the mirror device created in the previous example.

 apboot -u mc1t0d1

FILES

The following files are used by this utility:

/etc/system Kernel patch file
/etc/vfstab Table of file system defaults
SEE ALSO boot(1M), dumpadm(1M), eeprom(1M), swap(1M), system(4), and vfstab(4) in the SunOS Reference Manual
<table>
<thead>
<tr>
<th>NAME</th>
<th>apcheck – determine accessibility of a metadisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>apcheck <code>special</code></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td><code>apcheck</code>(1M) ascertains whether a metadisk is usable. If it is able to locate dual paths, <code>apcheck</code> exits with a zero status; if not, it exits with a non-zero status.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Do not execute <code>apcheck</code> on the command line; it is intended for use only by other commands or by authorized service providers.</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>The following options are supported:</td>
</tr>
<tr>
<td></td>
<td><code>special</code> This option represents the device node to be checked. This device node may reside under <code>/dev/ap/dsk</code> or <code>/dev/ap/rdsk</code>.</td>
</tr>
</tbody>
</table>
NAME
apconfig – display and manage AP configuration

SYNOPSIS
apconfig
apconfig −D
apconfig −F
apconfig −N [−u]
apconfig −P metanetwork_interface −a physical_interface
apconfig −P primary_disk_controller −a physical_disk_controller
apconfig −P primary_disk_controller −a physical_disk_controller −a physical_disk_controller
apconfig −R
apconfig −S [−u]

DESCRIPTION
apconfig(1M) displays and helps you manage the alternate pathing (AP) 2.3.1 system configuration.

OPTIONS
The following options are supported:
−D
Display location and status information for all known copies of the host database.
−F
Force the state (attached or detached) of every committed path group alternate to match the physical state of the system. Use this option if the two states differ. It refreshes the dynamic reconfiguration (DR) flags for every disk I/O port and physical network interface defined for all committed path groups.
−N [−u]
Display network AP information only. For each path group, apconfig −N displays the metanetwork interface and the corresponding physical network interfaces.
If you specify the −u option, apconfig displays uncommitted path group information only. If you do not specify the −u option, apconfig displays committed path group information only. See "Character flags after metadevice names" and "Character flags after physical device paths", below.

Last modified September 2000
AP 2.3.1
−P metanetwork_interface −a physical_interface

Switch to the new physical path specified by −a for the metanetwork specified by −P.

−P primary_disk_controller −a physical_disk_controller

Switch to the new physical path specified by −a for the metadisk(s) associated with the primary path specified by −p.

This command will automatically disable path optimization for this path group on a Sun StorEdge™ T3 disk tray. Recommended prior to any DR activity.

Note - Path names for disk controllers consist of the I/O port name and the instance number separated by a colon (:), for example, pln:0. This naming convention differs from previous versions of AP. The addition of the colon (:) delimiter allows AP to provide support for a wider variety of disk controllers. This change does not apply to network path names.

−P primary_disk_controller −a physical_disk_controller −a physical_disk_controller

Re-enables path optimization for the T3. This command is only effective after path optimization has been disabled and both paths are again available.

Note - Path names for disk controllers consist of the I/O port name and the instance number separated by a colon (:), for example, pln:0. This naming convention differs from previous versions of AP. The addition of the colon (:) delimiter allows AP to provide support for a wider variety of disk controllers. This change does not apply to network path names.

−R

This option has no effect and remains for backward compatibility only. With AP 2.3.1, device nodes are automatically created at the time the database is committed using apdb −C.

−S [−u]

Display alternate pathing information for disk path groups only. For each path group, apconfig shows the names for the metadisk, its physical
devices, and the disk I/O ports through which each physical device is accessed.

If you specify the −u option, apconfig displays only uncommitted path group information. Otherwise, it displays only committed path group information. See "Character flags after metadevice names" and "Character flags after physical device paths", below.

Character flags after metadevice names

When you specify −N or −S, one or more of the following letters may be displayed after each metanetwork or metadisk name:

D Marked for deletion. The metadisk or metanetwork remains in the database and continues to be used by AP until a commit is done. See apdb(1M).

U Uncommitted. Note that you cannot use a metadisk or metanetwork until a commit has been done.

R Marked for use as a root device (−S only).

M Marked as the mirror for a boot device (−S only).

X The physical paths for this metadisk lead to different disks—that is, different supported dual-ported disk array storage devices (−S only). For a list of supported devices, see the Sun Enterprise Server Alternate Pathing 2.3.1 User Guide.

Character flags after physical device paths.

When you specify −N or −S, one or more of the following letters may be displayed after each physical network path or physical disk I/O port path:

N Automatic switching is not allowed for this physical device.

X The physical paths for this metadisk lead to different disks (that is, different storage array device disks). (−S only.)

A The active alternate (to select another alternate, use the −P and −a options). Optimized T3 path groups have "A" flags displayed for both alternates.

DR Marked as being drained by the DR daemon. A switch cannot be made to a device path in this state. See the Sun Enterprise Server Alternate Pathing 2.3.1 User Guide.

DE Marked as detached by the DR daemon.
The primary path for disk path groups. This primary path cannot be changed. (-S only.)

Path has been tried as active.

Marked as offline. See `apdisk(1M)` and `apnet(1M)`.

EXAMPLES

EXAMPLE 1
Displaying Committed Disk Path Groups

The following command displays all of the committed disk path groups in the AP database. Path optimization is not enabled on the T3.

```sh
# apconfig -S
 c6  pln:0  P
 c2  pln:3  A
 metadiskname(s):
     mc2t5d0
     mc2t4d0  R
     mc2t3d0
     mc2t2d0
     mc2t1d0
     mc2t0d0
```

EXAMPLE 2
Displaying Committed T3 Disk Path Groups with Path Optimization Enabled

The following command displays all of the committed T3 disk path groups in the AP database when path optimization is enabled.

```sh
# apconfig -S
 c6  pln:0  P  A
 c2  pln:3  A
 metadiskname(s):
     mc2t5d0
     mc2t4d0  R
     mc2t3d0
     mc2t2d0
     mc2t1d0
     mc2t0d0
```

EXAMPLE 3
Displaying Uncommitted Network Path Groups

The following example displays all of the uncommitted network path groups in the AP database:

```sh
# apconfig -N -u
 metanetwork:  mether0  U
 physical devices:
     qfe1  A
     qfe0
```
EXAMPLE 4 Switching the Active Path Group

The following example switches the active alternate of the disk path group for which the primary path is pln:1. The new active alternate of that path group is pln:0. Executing this command disables path optimization on the T3.

 # apconfig -P pln:1 -a pln:0

EXAMPLE 5 Switching the Network Path Group

The following example switches the active alternate of the network path group identified by the metanetwork interface mether0. The new active alternate of that network path group is qe1.

 # apconfig -P mether0 -a qe1

EXAMPLE 6 Displaying AP Database Information and Location

The following example displays the location and status information of all known copies of the AP database.

 # apconfig -D
 path: /dev/rdsk/c3t3d0s1
 major: 32
 minor: 145
 timestamp: Wed Sep 29 18:45:58 1999
 checksum: 2636010350
 default: yes
 corrupt: no
 inaccessible: no

 path: /dev/rdsk/c3t3d0s6
 major: 32
 minor: 150
 timestamp: Wed Sep 29 18:50:43 1999
 checksum: 2636010350
 default: no
 synced: yes
 corrupt: no
 inaccessible: no

SEE ALSO

Sun Enterprise Server Alternate Pathing 2.3.1 User Guide

apdb(1M), apdisk(1M), apnet(1M), ap_dmd(7D), mether(7D), mfddi(7D) in this reference manual
NAME
apdb – manage AP database

SYNOPSIS

```
apdb −c raw_disk_slice [−k system_file]
apdb −d raw_disk_slice [−k system_file] [−f]
apdb −m major_number −n minor_number [−f]
apdb −C
apdb −Z
```

DESCRIPTION
apdb(1M) helps you manage the AP database.

OPTIONS
The following options are supported:

−c raw_disk_slice
Create a database copy on the specified raw disk slice. You can create up to ten copies of the database. The minimum slice size is 300 Kbytes.

−d raw_disk_slice
Delete a database copy from the specified raw disk slice.

−f
Force the deletion of the specified database. This option is required for deleting each of the last two copies of the database. If you try to delete a database copy without this option when fewer than two database copies exist, AP displays an error message.

−k system_file
Patch the database copy information to the kernel file system_file, rather than the default file, /etc/system.

−m major_number −n minor_number
Remove a database copy by specifying its location as a major-minor pair. Use −m to specify the major number and −n for the minor number. This option pair is useful when there is no path to the database because the device no longer exists.

−C
Commit all uncommitted entries within the database.
Copy the database in memory to all database copies. Note that all database copies are in sync with memory and are automatically updated at system shutdown. The -Z option lets you update the database copies at your discretion.

EXAMPLES

EXAMPLE 1 Creating an AP Database Copy

The following command creates a copy of the AP system database on /dev/rdsk/c2t0d0s1.

 # apdb -c /dev/rdsk/c2t0d0s1

SEE ALSO

Sun Enterprise Server Alternate Pathing 2.3.1 User Guide

apconfig(1M), apdisk(1M), apnet(1M)
NAME | apdisk – manage disk path groups
SYNOPSIS | apdisk -c -p primary_disk_controller -a physical_disk_controller
 | apdisk -d primary_disk_controller
 | apdisk -z primary_disk_controller
 | apdisk -f physical_disk_controller
 | apdisk -n physical_disk_controller
 | apdisk -u -p primary_disk_controller -a physical_disk_controller
 | apdisk -w physical_disk_controller

DESCRIPTION | apdisk(1M) helps you manage disk path groups in the alternate pathing (AP) system.

OPTIONS | The following options are supported:
 | -c -p primary_disk_controller -a physical_disk_controller

Create database entries for disk arrays connected to two I/O ports. Give the I/O port names (for example, sf:0 and sf:1) as the primary_disk_controller and physical_disk_controller.

By default, path groups are created with path optimization enabled for Sun StorEdge™ T3 disk trays when two physical paths are available.

Note - Path names for disk controllers consist of the I/O port name and the instance number separated by a colon (:). This naming convention differs from previous versions of AP. The addition of the colon (:) delimiter allows AP to provide support for a wider variety of disk controllers. This change does not apply to network path names.

-d primary_disk_controller

Delete AP information for the specified disk path group. If the existing information is uncommitted, apdisk removes it immediately. If the existing information is already committed, it is only marked for deletion and existing metadevices continue to function until a commit is done, at which time the information is removed.

-z primary_disk_controller
Undelete AP information for the specified disk path group. This option cancels a previous `apdisk -d` request that marked committed information for deletion.

```
- f physical_disk_controller
```

Mark the physical disk controller as offline. The corresponding metadisk interface can still be used if the other disk controller in the path group is functioning properly. Note that you cannot mark a physical disk controller as offline if it is currently the active alternate.

```
- n physical_disk_controller
```

Mark the physical disk controller as online. Note that this operation does not automatically cause the disk controller to become the active alternate.

```
- u -p primary_disk_controller -a physical_disk_controller
```

Update existing database entries for the disk path group identified by the primary path (for example, `sf:0`). Disk targets that are no longer accessible through one or more paths are removed, and new disk targets are added.

An update can result in the need to update the AP metadevice nodes in `/dev/ap/[r]dsk`. To update the metadevice nodes, use the following command:

```
apdb -C
```

```
- w physical_disk_controller
```

Clear the `tried` flag for the specified I/O controller path.

EXAMPLES

EXAMPLE 1 Creating Metadisk Nodes and AP Database Entries

The following commands create metadisk device nodes and AP database entries for disks that use the `pln:0` and `pln:1` interfaces, with `pln:0` specified as the primary path.

```
# apdisk -c -p pln:0 -a pln:1
# apdb -C
```
EXAMPLE 2 Deleting Database Entries

The following commands delete the AP database entries for disks with \texttt{sf:1} specified as the primary path.

\begin{verbatim}
apdisk -d sf:1
apdb -C
\end{verbatim}

EXAMPLE 3 Clearing the Tried Flag

The following command clears the tried flag for \texttt{sf:1}.

\begin{verbatim}
apdisk -w sf:1
\end{verbatim}

SEE ALSO

\textit{Sun Enterprise Server Alternate Pathing 2.3.1 User Guide}

\texttt{apdb(1M), apconfig(1M), apinst(1M), apnet(1M)} in this manual.
apinst – identify disk host adapter instances, /dev/dsk targets

apinst

apinst(1M) identifies all disk host bus adapters and provides the name:instance number, and /dev/dsk targets attached to each.

% apinst
pln:0
 /dev/dsk/c1t0d0
 /dev/dsk/c1t1d0
 /dev/dsk/c1t2d0
 /dev/dsk/c1t3d0
 /dev/dsk/c1t4d0
 /dev/dsk/c1t5d0
pln:1
 /dev/dsk/c2t0d0
 /dev/dsk/c2t1d0
 /dev/dsk/c2t2d0
 /dev/dsk/c2t3d0
 /dev/dsk/c2t4d0
 /dev/dsk/c2t5d0
sf:0
 /dev/dsk/c3t0d0
 /dev/dsk/c3t1d0
 /dev/dsk/c3t2d0
 /dev/dsk/c3t3d0
 /dev/dsk/c3t4d0
 /dev/dsk/c3t5d0
sf:1
 /dev/dsk/c4t0d0
 /dev/dsk/c4t1d0
 /dev/dsk/c4t2d0
 /dev/dsk/c4t3d0
 /dev/dsk/c4t4d0
 /dev/dsk/c4t5d0
NAME | apnet – manage network path groups
SYNOPSIS | apnet -c -a physical_interface [-a physical_interface]
apnet -d metanetwork_interface
apnet -z metanetwork_interface
apnet -f physical_interface
apnet -n physical_interface
apnet -m metanetwork_interface -a physical_interface
apnet -m metanetwork_interface -r physical_interface
apnet -t metanetwork_interface
apnet -w metanetwork_interface

DESCRIPTION | apnet(1M) helps you manage network path groups in the alternate pathing (AP) 2.3.1 system.

OPTIONS | The following options are supported:
-c -a physical_interface [-a physical_interface]

Create a metanetwork and network path group for the network connected to the specified network controller paths. If a second -a is given, apnet designates the specified network interface as the alternate for the metanetwork. (If you initially create a network path group with only one path, you can later add an additional path using apnet -m.)

Note - metanetwork_interface refers to an AP metadevice such as mether0. physical_interface refers to an actual physical device such as hme0.

Note - For backwards compatibility with older versions of AP the -p option can be used for physical_interface instead of -a, however, the -p option has no significance other than indicating an alternate.

-d metanetwork_interface

Delete the specified metanetwork and corresponding network path group. If the path group is currently uncommitted, apnet removes the metanetwork
and the path group immediately. If the path group is committed, the metanetwork and path group are only marked for deletion, and the metanetwork interface continues to function until a commit is performed.

−z metanetwork_interface

Undelete the specified metanetwork and path group. This option cancels a previous apnet -d request that marked a committed path group for deletion.

−f physical_interface

Mark the specified physical interface as offline, making it unavailable to the metanetwork interface.

Note - A physical interface cannot be marked as offline if it is active.

−n physical_interface

Mark the specified physical interface as online, making it available to the metanetwork interface.

−m metanetwork_interface −a physical_interface

Add the physical interface as an alternate path for the specified metanetwork. You can use this option only if there is currently only one interface associated with the metanetwork.

Note - When an alternate is added (−a) or removed (−r) from a committed path group, a commit operation must be performed before the change takes effect. In practice, the existing metanetwork interface is marked for deletion, and a new metanetwork interface is created without affecting usage of the existing interface.

−m metanetwork_interface −r physical_interface

Remove the physical interface from the specified metanetwork.

Note - When an alternate is added (−a) or removed (−r) from a committed path group, a commit operation must be performed before the change takes effect. In practice, the existing metanetwork interface is marked for deletion, and a new metanetwork interface is created without affecting usage of the existing interface.
-t metanetwork_interface

Make the next alternate path the temporary active path. This option is intended for scripts that are trying alternate paths in sequence until a working path is found. The command returns an error if the sequencing wraps back to the original primary.

-w metanetwork_interface

Make the current temporary active path the actual active path.

EXAMPLES

EXAMPLE 1 Creating a Network Path Group and Metanetwork Interface

The following command creates a network path group and a metanetwork interface, mether0, which has hme0 and qfe1 as its alternates.

```
# apnet -c -a hme0 -a qfe1
# apdb -C
```

EXAMPLE 2 Deleting a Network Path Group and Metanetwork Interface

The following example deletes the network path group and metanetwork interface mether0:

```
# apnet -d mether0
# apdb -C
```

SEE ALSO

Sun Enterprise Server Alternate Pathing 2.3.1 User Guide

apconfig(1M), apdb(1M), apdisk(1M)
Device and Network Interfaces
<table>
<thead>
<tr>
<th>NAME</th>
<th>Intro – AP special files</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This section describes AP files for your Sun Enterprise server.</td>
</tr>
<tr>
<td>LIST OF FUNCTIONS</td>
<td></td>
</tr>
<tr>
<td>ap(7D)</td>
<td>alternate pathing librarian driver, /dev/ap</td>
</tr>
<tr>
<td>ap_dmd(7D)</td>
<td>AP disk metadriver</td>
</tr>
<tr>
<td>mether(7D)</td>
<td>AP network Ethernet metadriver</td>
</tr>
<tr>
<td>mfddi(7D)</td>
<td>AP network FDDI metadriver</td>
</tr>
</tbody>
</table>
NAME | ap – alternate pathing librarian driver, /dev/ap

DESCRIPTION | The AP driver provides a pseudo-driver interface to the kernel alternate pathing (AP) Librarian features.

FILES | The following files are used:
| /kernel/drv/ap | AP driver module
| /kernel/drv/ap.conf | AP driver configuration file

SEE ALSO | Sun Enterprise Alternate Pathing 2.3.1 User Guide
| ap_dmd(7D), mether(7D), mfddi(7D)
NAME	ap_dmd – AP disk metadriver
SYNOPSIS | ap_dmd@ target,lun:partition
DESCRIPTION | ap_dmd(7D) works with the AP software to support alternate pathing for physical devices handled by the ssd(7D) disk driver. ap_dmd can support one or two active physical paths to the physical device. See ssd(7D) in the SunOS Reference Manual.

This AP metadriver supports alternate controller paths to a physical device. These paths are associated with a metadisk device, which is one of the file system special nodes associated with a particular metadriver. ap_dmd can support one or two active physical paths to the physical device.

The ap_dmd driver enables the AP Librarian, ap(7D), to configure or unconfigure physical controller paths to a disk device by using an interface that allows APSET, APUNSET, and APSWITCH commands. These commands are issued by ap(7D) at the request of the user-invoked AP commands. To change the controller path information associated with a particular ap_dmd device, use apconfig(1M), apdb(1M) and apdisk(1M). For more information, see the Sun Enterprise Server Alternate Pathing 2.3.1 User Guide.

All device operations supported by the ssd driver are also valid on ap_dmd devices that have been created by using AP commands. See the other AP commands for details regarding other components of the AP software, and the ssd(7D) man page for information about block/character file accesses, I/O requests, disk partitioning schemes, and ioctls.

ERRORS	ENXIO	No physical path to the target device exists.
Other	For information on other errors, see ssd(7D).	

FILES	The following files are used by this utility:
ap_dmd.conf | driver configuration file
/dev/ap/dsk/\texttt{\textasciitilde}mcnt\texttt{\textasciitilde}d\texttt{\textasciitilde}nsn | block files
/dev/ap/rdsk/\texttt{\textasciitilde}mcnt\texttt{\textasciitilde}d\texttt{\textasciitilde}nsn | raw files

where \texttt{\textasciitilde}m identifies the device as a metadevice and:

\texttt{\textasciitilde}c\texttt{n} | Controller number
\texttt{\textasciitilde}t\texttt{n} | Target number
\texttt{\textasciitilde}d\texttt{n} | Logical unit number
n Slice (partition) number

DIAGNOSTICS See `ssd(7D)` in the *SunOS Reference Manual*.

SEE ALSO *Sun Enterprise Server Alternate Pathing 2.3.1 User Guide*

`apconfig(1M)`, `apdb(1M)`, `apdisk(1M)`, `apnet(1M)`, `ap(7D)`, `mether(7D)`, and `mfddi(7D)` in this reference manual
NAME
mether – AP network metadriver

SYNOPSIS
/dev/mether

DESCRIPTION
mether(7D) is the multithreaded, loadable, clonable, STREAMS metanetwork
device driver that supports the connectionless Data Link Provider Interface,
dlpi(7P), for Ethernet drivers. For a list of supported devices see Release Notes
Supplement Solaris 8 8/00.

The mether driver works with the AP software to support alternate pathing
for physical network devices.

Device operations of mether are an extension of the operations of the
underlying network drivers. The mether driver normally operates as a
transparent pass-through module; it neither interprets nor modifies any of the
STREAMS DLPI type messages. However, it does intercept and modify the
DL_ATTACH_REQ and DL_INFO_ACK messages.

DL_ATTACH_REQ messages are captured and used to drive the initial
connection between logical and physical devices. DL_INFO_ACK messages are
captured and responded to with a prebuilt response to eliminate the possibility
of the message response timing out due to induced message delays.

The cloning, character-special device /dev/mether is used to access all
device-specific instances of the mether driver within the system.

mether and AP
The mether driver provides an interface to support Alternate Pathing. The
APSET interface enables a user to provide a mapping between physical path and
logical path. APUNSET provides an interface to remove a
physical-to-logical path mapping, and APSWITCH provides a mechanism to
switch a logical path from its existing physical path to a new physical path.
For a more complete description of this AP capability, see the Sun Enterprise Server Alternate Pathing 2.3.1 User Guide.

mether and DLPI
The mether driver is a "style 2" Data Link Service provider. All DLPI
processing is handled by the underlying physical device driver. See the man
page that corresponds to each underlying driver.

ERRORS
The mether device driver sets errno as listed for the following conditions:

EBUSY
An attempt was made to unload a busy device or to APUNSET an active device.

EEXIST
An attempt was made to APSET an existing logical-to-physical mapping and a logical path when the system was out of memory.

EIO
An attempt to switch between physical devices failed.
ENODEV No physical mapping exists.

ENOMEM System memory was exhausted during an attempt to create a mapping between a physical path and a logical path.

FILES

The following files are used by this utility:

- **mether.conf** driver configuration file
- **/dev/mether** metaEthernet special character device

DIAGNOSTICS

See dlpi(7P) in the *SunOS Reference Manual*.

SEE ALSO

Sun Enterprise Server Alternate Pathing 2.3.1 User Guide

apconfig(1M), apdb(1M), apnet(1M), ap(7D), ap_dmd(7D), and mfddi(7D) in this reference manual

driver.conf(4) and dlpi(7P) in the *SunOS Reference Manual*

The *SunOS Reference Manual* and other optional reference manuals (for example, the *SunFDDI Reference Manual*), as appropriate.
NAME

mfddi – AP network metadriver for FDDI

SYNOPSIS

/dev/mfddi

DESCRIPTION

mfddi(7D) is the multithreaded, loadable, clonable, STREAMS metanetwork
device driver that supports the connectionless Data Link Provider Interface,
dlpi(7P), for FDDI drivers. For a list of supported devices see Release Notes
Supplement Solaris 8 8/00.

The mfddi driver works with the AP software to support alternate pathing for
physical network devices.

Device operations of mfddi are an extension of the operations of the
underlying network drivers. The mfddi driver normally operates as a
transparent pass-through module; it neither interprets nor modifies any of the
STREAMS DLPI type messages nor the FDDI messages specific to Sun, such as
DL_IOC_FDG. However, it does intercept and modify the DL_ATTACH_REQ,
and DL_INFO_ACK messages.

DL_ATTACH_REQ messages are captured and used to drive the initial
connection between logical and physical devices. DL_INFO_ACK messages are
captured and responded to with a prebuilt response to eliminate the possibility
of the message response timing out due to induced message delays.

The cloning, character-special device /dev/mfddi is used to access all
device-specific instances of the mfddi driver within the system.

mfddi and AP

The mfddi driver provides an interface to support Alternate Pathing. The
APSET interface enables a user to provide a mapping between physical path
and logical path. APUNSET provides an interface to remove a
physical-to-logical path mapping, and APSWITCH provides a mechanism to
switch a logical path from its existing physical path to a new physical path.
For a more complete description of this AP capability, see the Sun Enterprise
Server Alternate Pathing 2.3.1 User Guide.

mfddi and DLPI

The mfddi driver is a 'style 2' Data Link Service provider. All DLPI
processing is handled by the underlying physical device driver. See the man
page that corresponds to each underlying driver.

ERRORS

The mfddi device driver sets errno as listed for the following conditions:

EPERM

An attempt was made to unload a busy device or to
APUNSET an active device.

EEXIST

An attempt was made to APSET an existing
logical-to-physical mapping and a logical path when the
system was out of memory.

EIO

An attempt to switch between physical devices failed.
ENODEV No physical mapping exists.
ENOMEM System memory was exhausted during an attempt to create a mapping between a physical path and a logical path.

FILES The following files are used by this utility:
mfddi.conf driver configuration file
/dev/mfddi metaFDDI special character device

SEE ALSO Sun Enterprise Server Alternate Pathing 2.3.1 User Guide
 apconfig(1M), apdb(1M), apnet(1M), ap(7D), ap_dmd(7D), and mether(7D) in this reference manual
 driver.conf(4) in the SunOS Reference Manual.

 The SunOS Reference Manual and other optional reference manuals (for example, the SunFDDI Reference Manual), as appropriate.