
Solaris 8 Software Developer
Supplement

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-5184–10
October 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, JDK, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, JDK, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 5

1. What’s New at a Glance 9

2. Drivers for Network Devices 11

Generic LAN Driver Overview 11

Type DL_ETHER: Ethernet V2 and ISO 8802-3 (IEEE 802.3) 12

Types DL_TPRand DL_FDDI: SNAP Processing 13

Type DL_TPR: Source Routing 13

Style 1 and 2 Providers 14

Implemented DLPI Primitives 14

Implemented ioctl Functions 16

GLD Driver Requirements 16

Network Statistics 18

Declarations and Data Structures 22

gld_mac_info Structure 22

gld_stats Structure 25

Entry Point and Service Routines 27

Arguments Used by GLD Routines 27

Entry Points 28

Service Routines 31

3

3. High Availability Drivers 35

Driver Hardening 35

Device Driver Instances 36

Exclusive Use of DDI Access Handles 36

Detecting Corrupted Data 37

Containment of Faults 38

DMA Isolation 39

Handling Stuck Interrupts 39

Additional Driver Hardening Considerations 40

Serviceability 42

Checking the Current Device State 42

Correct Behavior When a Device Has Failed 42

Periodic Health Checks 44

4. Software Developer 45

Additional Partial Locales for European Solaris Software 45

Localization in the Base and Multilingual Solaris Product 46

5. Java for Developers 51

Enhancements in Java 2 Standard Edition for Solaris v. 1.2.2_05a 51

Java Servlet Support in Apache Web Server 52

Java Development Kit (JDK) 1.1.8_10 52

6. Summary of Changes to Solaris 8 Books 53

System Interface Guide 53

Linkers and Libraries Guide 53

Solaris Modular Debugger Guide Updates 54

4 Solaris 8 Software Developer Supplement ♦ October 2000

Preface

The Solaris 8 Software Developer Supplement describes new or changed functionality
in SolarisTM Update releases. The information here supplements or supersedes
information in the previous releases of Solaris 8 documentation sets. Solaris
documentation is available on the Solaris 8 Documentation CD included with this
release.

Note - The Solaris operating environment runs on two types of hardware, or
platforms - SPARCTM and IA (Intel Architecture). The Solaris operating environment
also runs on both 64–bit and 32–bit address spaces. The information in this document
pertains to both platforms and address spaces unless called out in a special chapter,
section, note, bullet, figure, table, example, or code example.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

5

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

6 Solaris 8 Software Developer Supplement ♦ October 2000

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Preface 7

8 Solaris 8 Software Developer Supplement ♦ October 2000

CHAPTER 1

What’s New at a Glance

This chapter highlights new features added to the SolarisTM 8 Update releases.

Note - For the most up-to-date man pages, use the man command. The Solaris 8
Update release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

TABLE 1–1 Solaris 8 Update Features

Feature

First
Released
in...

Drivers

The Generic LAN driver (GLD) can be used to implement much of the STREAMS and Data
Link Provider Interface (DLPI) functionality for a SolarisTM network driver. Until the Solaris 8
10/00 release, the GLD module was only available for Solaris Intel Platform Edition network
drivers. Now GLD is available for Solaris SPARCTM Platform Edition network drivers as well.

For more information, see Chapter 2.

10/00

Chapter 3 provides a detailed description of how to design drivers to support High
Availability through driver hardening and ensuring serviceability. This material extends
information provided the Solaris 8 Writing Device Drivers.

For more information, see Chapter 3.

10/00

Software Developer

9

TABLE 1–1 Solaris 8 Update Features (continued)

Feature

First
Released
in...

Additional partial locales for European Solaris software includes the addition of UTF-8 locales
for Russian and Polish and two new locales for Catalan.

For more information, see “Additional Partial Locales for European Solaris Software” on page
45.

10/00

A number of new features have been added for linkers and libraries.

For more information, see “Linkers and Libraries Guide” on page 53.

10/00

Java

32–bit: With the addition of the mod_jserv module and related files, the Apache web server
now supports JavaTM Servlets.

For more information, see “Java Servlet Support in Apache Web Server” on page 52.

10/00

The JDKTM 1.2.2_05a contains the following new features:
� Scalability improvements to over 20 CPUs

� Improved JIT compiler optimizations

� Text rendering performance improvements

� poller class demo package

� Swing improvements

For more information, see “Enhancements in Java 2 Standard Edition for Solaris v. 1.2.2_05a”
on page 51.

10/00

The Solaris 8 10/00 software release includes the JDK 1.1.8_10 which is improved with bug
fixes since the last release.

10/00

Early Access

This release includes an Early Access (EA) directory with EA software. For more information,
see the Readme on the Solaris Software CD 2 of 2.

10/00

10 Solaris 8 Software Developer Supplement ♦ October 2000

CHAPTER 2

Drivers for Network Devices

Note - For the most up-to-date man pages, use the man command. The Solaris 8
Update release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

The following functionality is new for the Solaris 8 10/00 release.

The Generic LAN driver (GLD) implements much of the STREAMS and Data Link
Provider Interface (DLPI) functionality for a SolarisTM network driver.

Until Solaris 8 10/00 release, the GLD module was only available for Solaris Intel
Platform Edition network drivers. Now GLD is available for Solaris SPARCTM Platform
Edition network drivers, as well.

For more information, see the man pages: gld(7D) , kstat(7D) , dlpi(7P) ,
attach(9E) , gld(9E) , open(9E) , gld(9F) , gld_mac_info(9S) ,
gld_stats(9S) , kstat(9S) .

Generic LAN Driver Overview
GLD is a multi-threaded, clonable, loadable, kernel module providing support for
Solaris local area network device drivers. Local area network (LAN) device drivers in
Solaris are STREAMS-based drivers that use DLPI to communicate with network
protocol stacks. These protocol stacks use the network drivers to send and receive
packets on a local area network. A network device driver must implement and
adhere to the requirements imposed by the DDI/DKI specification, STREAMS
specification, DLPI specification, and programmatic interface of the device itself.

11

GLD implements most STREAMS and DLPI functionality required of a Solaris LAN
driver. Several Solaris network drivers are implemented using GLD.

A Solaris network driver implemented using GLD is made up of two distinct parts: a
generic component that deals with STREAMS and DLPI interfaces, and a
device-specific component that deals with the particular hardware device. The
device-specific module indicates its dependency on the GLD module (which is found
at /kernel/misc/gld) and registers itself with GLD from within the driver’s
attach(9E) function. After it is successfully loaded, the driver is DLPI-compliant.
The device-specific part of the driver calls gld(9F) functions when it receives data
or needs some service from GLD. GLD makes calls into the gld(9E) entry points of
the device-specific driver through pointers provided to GLD by the device-specific
driver when it registered itself with GLD. The gld_mac_info(9S) structure is the
main data interface between GLD and the device-specific driver.

The GLD facility currently supports devices of type DL_ETHER, DL_TPR, and
DL_FDDI. GLD drivers are expected to process fully formed MAC-layer packets and
should not perform logical link control (LLC) handling.

In some cases, you might need or want to implement a full DLPI-compliant driver
without using the GLD facility. This is true for devices that are not ISO 8802-style
(IEEE 802) LAN devices, or where you need a device type or DLPI service not
supported by GLD.

Type DL_ETHER: Ethernet V2 and ISO 8802-3
(IEEE 802.3)
For devices designated type DL_ETHER, GLD provides support for both Ethernet V2
and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a data link service
user to access and use any of a variety of conforming data link service providers
without special knowledge of the provider’s protocol. A service access point (SAP) is
the point through which the user communicates with the service provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and
denote that the user wants to use 8802-3 mode. If the value of the SAP field of the
DL_BIND_REQis within this range, GLD computes the length (not including the
14-byte media access control [MAC] header) of each subsequent DL_UNITDATA_REQ
message on that Stream and transmits 8802-3 frames having that length in the MAC
frame header type field. Such lengths never exceed 1500.

All frames received from the media that have a type field in the range [0-1500] are
assumed to be 8802-3 frames and are routed up all open Streams that are in 8802-3
mode (those Streams bound to a SAP value in the [0-255] range). If more than one
Stream is in 8802-3 mode, the incoming frame is duplicated and routed up each such
Stream.

12 Solaris 8 Software Developer Supplement ♦ October 2000

Streams bound to SAP values greater than 1500 (Ethernet V2 mode) receive incoming
packets whose Ethernet MAC header type value exactly matches the value of the
SAP to which the Stream is bound.

Types DL_TPRand DL_FDDI: SNAP Processing
For media types DL_TPRand DL_FDDI, GLD implements minimal Sub-Net Access
Protocol (SNAP) processing for any Stream bound to a SAP value greater than 255.
SAP values in the range [0-255] are LLC SAP values and are carried naturally by the
media packet format. SAP values greater than 255 require a SNAP header,
subordinate to the LLC header, to carry the 16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA. For
outgoing packets with SAP values greater than 255, GLD creates an LLC+SNAP
header that always looks like:

AA AA 03 00 00 00 XX XX

where ‘‘XX XX’’ represents the 16-bit SAP, corresponding to the Ethernet V2 style
‘‘type.’’ This is the only class of SNAP header supported—non-zero OUI fields and
LLC control fields other than 03 are considered to be LLC packets with SAP 0xAA.
Clients wanting to use SNAP formats other than this one must use LLC and bind to
SAP 0xAA.

Incoming packets are examined to ascertain whether they fall into the format
specified above. Packets that do fall into this format are matched to Streams bound
to the packet’s 16-bit SNAP type, as well as being considered to match the LLC
SNAP SAP 0xAA.

Packets received for any LLC SAP are passed up all Streams that are bound to an
LLC SAP, as described for media type DL_ETHERabove.

Type DL_TPR: Source Routing
For type DL_TPRdevices, GLD implements minimal support for source routing.
Source routing enables a station that is sending a packet across a bridged medium to
specify (in the packet MAC header) routing information that determines the route
that the packet will take through the network.

Functionally, the source routing support provided by GLD learns routes, solicits and
responds to requests for information about possible multiple routes, and selects
among the multiple routes that are available. It adds Routing Information Fields to the
MAC headers of outgoing packets and recognizes such fields in incoming packets.

GLD’s source routing support does not implement the full Route Determination Entity
(RDE) specified in Section 9 of ISO 8802-2 (IEEE 802.2). However, it is designed to

Drivers for Network Devices 13

interoperate with any such implementations that might exist in the same (or
abridged) network.

Style 1 and 2 Providers
GLD implements both Style 1 and Style 2 providers. A physical point of attachment
(PPA) is the point at which a system attaches itself to a physical communication
medium. All communication on that physical medium funnels through the PPA. The
Style 1 provider attaches the Stream to a particular PPA based on the major/minor
device that has been opened. The Style 2 provider requires the DLS user to explicitly
identify the desired PPA using DL_ATTACH_REQ.In this case, open(9E) creates a
Stream between the user and GLD, and DL_ATTACH_REQsubsequently associates a
particular PPA with that Stream. Style 2 is denoted by a minor number of zero. If a
device node whose minor number is not zero is opened, Style 1 is indicated and the
associated PPA is the minor number minus 1. If both Style 1 and Style 2 open s, the
device is cloned.

Implemented DLPI Primitives
GLD implements several DLPI primitives. The DL_INFO_REQprimitive requests
information about the DLPI Stream. The message consists of one M_PROTOmessage
block. GLD returns device-dependent values in the DL_INFO_ACKresponse to this
request, based on information the GLD-based driver specified in the
gldm_mac_info(9S) structure passed to gld_register() . However, GLD returns
the following values on behalf of all GLD-based drivers:

� Version is DL_VERSION_2.

� Service mode is DL_CLDLS— GLD implements connectionless-mode service.

� Provider style is DL_STYLE1 or DL_STYLE2, depending on how the Stream was
opened.

� No optional Quality Of Service (QOS) support is present and the QOS fields are
zero.

Note - Contrary to the DLPI specification, GLD returns the device’s correct address
length and broadcast address in DL_INFO_ACKeven before the Stream has been
attached to a PPA.

The DL_ATTACH_REQprimitive is called to associate a PPA with a Stream. This
request is needed for Style 2 DLS providers to identify the physical medium over
which the communication will transpire. Upon completion, the state changes from
DL_UNATTACHEDto DL_UNBOUND.The message consists of one M_PROTOmessage
block. This request cannot be issued when using the driver in Style 1 mode; Streams
opened using Style 1 are already attached to a PPA by the time the open completes.

14 Solaris 8 Software Developer Supplement ♦ October 2000

The DL_DETACH_REQprimitive requests to detach the PPA from the Stream. This is
only allowed if the Stream was opened using Style 2.

The DL_BIND_REQand DL_UNBIND_REQprimitives bind and unbind a DLSAP to
the Stream. The PPA associated with each Stream initializes upon completion of the
processing of the DL_BIND_REQ. Multiple Streams can be bound to the same SAP;
each such Stream receives a copy of any packets received for that SAP.

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable and disable
reception of individual multicast group addresses. A set of multicast addresses can
be iteratively created and modified on a per-Stream basis using these primitives. The
Stream must be attached to a PPA for these primitives to be accepted.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives enable and disable
promiscuous mode on a per-Stream basis, either at a physical level or at the SAP
level. The DL Provider routes all received messages on the media to the DLS user
until either a DL_DETACH_REQor a DL_PROMISCOFF_REQis received or the Stream
is closed. Physical level promiscuous mode can be specified for all packets on the
medium or for multicast packets only.

Note - The Stream must be attached to a PPA for these promiscuous mode
primitives to be accepted.

The DL_UNITDATA_REQprimitive is used to send data in a connectionless transfer.
Because this is an unacknowledged service, there is no guarantee of delivery. The
message consists of one M_PROTOmessage block followed by one or more M_DATA
blocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is received and is to be passed
upstream. The packet is put into an M_PROTOmessage with the primitive set to
DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQprimitive returns the MAC address currently associated
with the PPA attached to the Stream, in the DL_PHYS_ADDR_ACKprimitive. When
using style 2, this primitive is only valid following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the MAC address currently
associated with the PPA attached to the Stream. This primitive affects all other
current and future Streams attached to this device. Once changed, all Streams
currently or subsequently opened and attached to this device can obtain this new
physical address. The new physical address remains in effect until this primitive is
used to change the physical address again or the driver is reloaded.

Note - The physical address of a PPA can be changed by the superuser while other
Streams are bound to the same PPA.

The DL_GET_STATISTICS_REQprimitive requests a DL_GET_STATISTICS_ACK
response containing statistics information associated with the PPA attached to the

Drivers for Network Devices 15

Stream. Style 2 Streams must be attached to a particular PPA using DL_ATTACH_REQ
before this primitive is successful.

Implemented ioctl Functions
GLD implements the ioctl ioc_cmd function described below. If GLD receives an ioctl
command that it does not recognize, it passes it to the device-specific driver’s
gldm_ioctl() routine, as described in gld(9E).

The DLIOCRAWioctl function is used by some DLPI applications, most notably the
snoop1M command. The DLIOCRAWcommand puts the Stream into a raw mode,
which, upon receipt, causes the full MAC-level packet to be sent upstream in an
M_DATAmessage instead of being transformed into the DL_UNITDATA_IND form
normally used for reporting incoming packets. Packet SAP filtering is still performed
on Streams that are in raw mode. If a Stream user wants to receive all incoming
packets, it must also select the appropriate promiscuous mode(s). After successfully
selecting raw mode, the application is also allowed to send fully formatted packets to
the driver as M_DATAmessages for transmission. DLIOCRAWtakes no arguments.
Once enabled, the Stream remains in this mode until closed.

GLD Driver Requirements
GLD-based drivers must include the header file <sys/gld.h> . They must also
include the following declaration:

char _depends_on[] = "misc/gld";

GLD implements the open(9E) and close(9E) functions and the required
STREAMS put(9E) and srv(9E) functions on behalf of the device-specific driver.
GLD also implements the getinfo(9E) function for the driver.

The mi_idname element of the module_info(9S) structure is a string specifying
the name of the driver. This must exactly match the name of the driver module as it
exists in the file system.

The read-side qinit(9S) structure should specify the following elements:

qi_putp NULL

qi_srvp gld_rsrv

qi_qopen gld_open

qi_qclose gld_close

The write-side qinit(9S) structure should specify these elements:

16 Solaris 8 Software Developer Supplement ♦ October 2000

qi_putp gld_wput

qi_srvp gld_wsrv

qi_qopen NULL

qi_qclose NULL

The devo_getinfo element of the dev_ops(9S) structure should specify
gld_getinfo as the getinfo(9E) routine.

The driver’s attach(9E) function does all the work of associating the
hardware-specific device driver with the GLD facility and preparing the device and
driver for use.

The attach(9E) function allocates a gld_mac_info(9S) (macinfo) structure using
gld_mac_alloc() . The driver usually needs to save more information per device
than is defined in the macinfo structure; it should allocate the additional required
data structure and save a pointer to it in the gldm_private member of the
gld_mac_info(9S) structure.

The attach(9E) routine must initialize the macinfo structure as described in
gld_mac_info(9S) and then call gld_register() to link the driver with the
GLD module. The driver should map registers if necessary and be fully initialized
and prepared to accept interrupts before calling gld_register() . The
attach(9E) function should add interrupts but not enable the device to generate
them. The driver should reset the hardware before calling gld_register() to
ensure it is quiescent. The device must not be started or put into a state where it
might generate an interrupt before gld_register() is called. That will be done
later when GLD calls the driver’s gldm_start() entry point, described in
gld(9E) . After gld_register() succeeds, the gld(9E) entry points might be
called by GLD at any time.

The attach(9E) routine should return DDI_SUCCESSif gld_register()
succeeds. If gld_register() fails, it returns DDI_FAILURE , and the
attach(9E))routine should deallocate any resources it allocated before calling
gld_register() . It then also returns DDI_FAILURE . Under no circumstances
should a failed macinfo structure be reused; it should be deallocated using
gld_mac_free() .

The detach(9E) function should attempt to unregister the driver from GLD. This is
done by calling gld_unregister() described in gld(9F) . The detach(9E)
routine can get a pointer to the needed gld_mac_info(9S) structure from the
device’s private data using ddi_get_driver_private(9F). The gld_unregister()
checks certain conditions that could require that the driver not be detached. If the
checks fail, gld_unregister() returns DDI_FAILURE , in which case the driver’s
detach(9E) routine must leave the device operational and return DDI_FAILURE .

If the checks succeed, gld_unregister() ensures that the device interrupts are
stopped (calling the driver’s gldm_stop() routine if necessary), unlinks the driver

Drivers for Network Devices 17

from the GLD framework, and returns DDI_SUCCESS. In this case, the detach(9E)
routine should remove interrupts, deallocate any data structures allocated in the
attach(9E) routine (using gld_mac_free() to deallocate the macinfo structure),
and return DDI_SUCCESS. It is important to remove the interrupt before calling
gld_mac_free() .

Network Statistics
Solaris network drivers must implement statistics variables. GLD itself tallies some
network statistics, but other statistics must be counted by each GLD-based driver.
GLD provides support for GLD-based drivers to report a standard set of network
driver statistics. Statistics are reported by GLD using the kstat(7D) and
kstat(9S) mechanisms. The DL_GET_STATISTICS_REQDLPI command can also
be used to retrieve the current statistics counters. All statistics are maintained as
unsigned, and all are 32 bits unless otherwise noted.

GLD maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface
(64 bits).

rbytes Total bytes successfully received on the interface.

obytes64 Total bytes requested to be transmitted on the
interface (64 bits).

obytes Total bytes requested to be transmitted on the
interface.

ipackets64 Total packets successfully received on the
interface (64 bits).

ipackets Total packets successfully received on the
interface.

opackets64 Total packets requested to be transmitted on the
interface (64 bits).

opackets Total packets requested to be transmitted on the
interface.

multircv Multicast packets successfully received, including
group and functional addresses (long).

multixmt Multicast packets requested to be transmitted,
including group and functional addresses (long).

18 Solaris 8 Software Developer Supplement ♦ October 2000

brdcstrcv Broadcast packets successfully received (long).

brdcstxmt Broadcast packets requested to be transmitted
(long).

unknowns Valid received packets not accepted by any
Stream (long).

noxmtbuf Packets discarded on output because transmit
buffer was busy, or no buffer could be allocated
for transmit (long).

blocked Number of times a received packet could not be
put up a Stream because the queue was
flow-controlled (long).

xmtretry Number of times transmit was retried after
having been delayed due to lack of resources
(long).

promisc Current ‘‘promiscuous’’ state of the interface
(string).

The device-dependent driver counts the following statistics, keeping track of them in
a private per-instance structure. When GLD is asked to report statistics, it calls the
driver’s gldm_get_stats() entry point, as described in gld(9E) , to update the
device-specific statistics in the gld_stats(9S) structure. GLD then reports the
updated statistics, using the named statistics variables shown below.

ifspeed Current estimated bandwidth of the interface in
bits per second (64 bits).

media Current media type in use by the device (string).

intr Times interrupt handler was called and claimed
the interrupt (long).

norcvbuf Times a valid incoming packet was known to
have been discarded because no buffer could be
allocated for receive (long).

ierrors Total packets received that could not be
processed because they contained errors (long).

oerrors Total packets that were not successfully
transmitted because of errors (long).

Drivers for Network Devices 19

missed Packets known to have been dropped by the
hardware on receive (long).

uflo Times FIFO underflowed on transmit (long).

oflo Times receiver overflowed during receive (long).

The following group of statistics applies to networks of type DL_ETHER. These are
maintained by device-specific drivers of that type, as above.

align_errors Packets received with framing errors (not an
integral number of octets) (long).

fcs_errors Packets received with CRC errors (long).

duplex Current duplex mode of the interface (string).

carrier_errors Number of times carrier was lost or never
detected on a transmission attempt (long).

collisions Ethernet collisions during transmit (long).

ex_collisions Frames where excess collisions occurred on
transmit, causing transmit failure (long).

tx_late_collisions Number of times a transmit collision occurred
late (after 512 bit times) (long).

defer_xmts Packets without collisions where first transmit
attempt was delayed because the medium was
busy (long).

first_collisions Packets successfully transmitted with exactly one
collision.

multi_collisions Packets successfully transmitted with multiple
collisions.

sqe_errors Number of times SQE test error was reported.

macxmt_errors Packets encountering transmit MAC failures,
except carrier and collision failures.

macrcv_errors Packets received with MAC errors, except align,
fcs, and too-long errors.

20 Solaris 8 Software Developer Supplement ♦ October 2000

toolong_errors Packets received larger than the maximum
permitted length.

runt_errors Packets received smaller than the minimum
permitted length (long).

The following group of statistics applies to networks of type DL_TPR; these are
maintained by device-specific drivers of that type, as shown above.

line_errors Packets received with non-data bits or FCS errors.

burst_errors Number of times an absence of transitions for
five half-bit timers was detected.

signal_losses Number of times loss of signal condition on the
ring was detected.

ace_errors Number of times an AMP or SMP frame, in
which A is equal to C is equal to 0, was followed
by another such SMP frame without an
intervening AMP frame.

internal_errors Number of times the station recognized an
internal error.

lost_frame_errors Number of times the TRR timer expired during
transmit.

frame_copied_errors Number of times a frame addressed to this
station was received with the FS field ‘A’ bit set
to 1.

token_errors Number of times the station acting as the active
monitor recognized an error condition that
needed a token transmitted.

freq_errors Number of times the frequency of the incoming
signal differed from the expected frequency.

The following group of statistics applies to networks of type DL_FDDI; these are
maintained by device-specific drivers of that type, as shown above.

mac_errors Frames detected in error by this MAC that had
not been detected in error by another MAC.

mac_lost_errors Frames received with format errors such that the
frame was stripped.

Drivers for Network Devices 21

mac_tokens Number of tokens received (total of
non-restricted and restricted).

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since this MAC was
reset or a token was received.

mac_ring_ops Number of times the ring has entered the
‘‘Ring_Operational’’ state from the ‘‘Ring Not
Operational’’ state.

Declarations and Data Structures
gld_mac_info Structure
The GLD MAC information (gld_mac_info) structure is the main data interface
between the device-specific driver and GLD. It contains data required by GLD and a
pointer to an optional additional driver-specific information structure.

Allocate the gld_mac_info structure using gld_mac_alloc() and deallocate it
using gld_mac_free() . Drivers cannot make any assumptions about the length of
this structure, which might be different in different releases of Solaris, GLD, or both.
Structure members private to GLD, not documented here, should not be set or read
by the device-specific driver.

The gld_mac_info(9S) structure contains the following fields.

caddr_t gldm_private; /* Driver private data */
int (*gldm_reset)(); /* Reset device */
int (*gldm_start)(); /* Start device */
int (*gldm_stop)(); /* Stop device */
int (*gldm_set_mac_addr)(); /* Set device phys addr */
int (*gldm_set_multicast)(); /* Set/delete multicast addr */
int (*gldm_set_promiscuous)(); /* Set/reset promiscuous mode */
int (*gldm_send)(); /* Transmit routine */
u_int (*gldm_intr)(); /* Interrupt handler */
int (*gldm_get_stats)(); /* Get device statistics */
int (*gldm_ioctl)(); /* Driver-specific ioctls */
char *gldm_ident; /* Driver identity string */
uint32_t gldm_type; /* Device type */
uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */
uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */
uint32_t gldm_addrlen; /* Physical address length */
int32_t gldm_saplen; /* SAP length for DL_INFO_ACK */
unsigned char *gldm_broadcast_addr; /* Physical broadcast addr */
unsigned char *gldm_vendor_addr; /* Factory MAC address */
t_uscalar_t gldm_ppa; /* Physical Point of */

22 Solaris 8 Software Developer Supplement ♦ October 2000

/* Attachment (PPA) number */
dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */
ddi_iblock_cookie_t gldm_cookie; /* Device’s interrupt */

/* block cookie */

These members of the gld_mac_info structure are visible to the device driver.

gldm_private This structure member is private to the
device-specific driver and is not used or modified
by GLD. Conventionally this is used as a pointer
to private data, pointing to a driver-defined and
driver-allocated per-instance data structure.

The following group of structure members must be set by the driver before calling
gld_register() , and should not thereafter be modified by the driver. Because
gld_register() might use or cache the values of some of these structure
members, changes made by the driver after calling gld_register() might cause
unpredictable results.

gldm_reset Pointer to driver entry point; see gld(9E) .

gldm_start Pointer to driver entry point; see gld(9E)

gldm_stop Pointer to driver entry point; see gld(9E) .

gldm_set_mac_addr Pointer to driver entry point; see gld(9E) .

gldm_set_multicast Pointer to driver entry point; see gld(9E) .

gldm_set_promiscuous Pointer to driver entry point; see gld(9E) .

gldm_send Pointer to driver entry point; see gld(9E) .

gldm_intr Pointer to driver entry point; see gld(9E) .

gldm_get_stats Pointer to driver entry point; see gld(9E) .

gldm_ioctl Pointer to driver entry point; may be NULL; see
gld(9E) .

gldm_ident Pointer to a string containing a short description
of the device. It is used to identify the device in
system messages.

gldm_type Type of device the driver handles. The values
currently supported by GLD are DL_ETHER(ISO

Drivers for Network Devices 23

8802-3 (IEEE 802.3) and Ethernet Bus), DL_TPR
(IEEE 802.5 Token Passing Ring), and DL_FDDI
(ISO 9314-2 Fibre Distributed Data Interface).
This structure member must be correctly set for
GLD to function properly.

gldm_minpkt Minimum Service Data Unit size — the minimum
packet size, not including the MAC header, that
the device will transmit. This can be zero if the
device-specific driver can handle any required
padding.

gldm_maxpkt Maximum Service Data Unit size—the maximum
size of packet, not including the MAC header,
that can be transmitted by the device. For
Ethernet, this number is 1500.

gldm_addrlen The length in bytes of physical addresses
handled by the device. For Ethernet, Token Ring,
and FDDI, the value of this structure member
should be 6.

gldm_saplen The length in bytes of the SAP address used by
the driver. For GLD-based drivers, this should
always be set to -2 , to indicate that 2-byte SAP
values are supported and that the SAP appears
after the physical address in a DLSAP address.
See ‘‘Message DL_INFO_ACK’’ in the DLPI
specification for more details.

gldm_broadcast_addr Pointer to an array of bytes of length
gldm_addrlen containing the broadcast address
to be used for transmit. The driver must allocate
space to hold the broadcast address, fill it in with
the appropriate value, and set
gldm_broadcast_addr to point at it. For
Ethernet, Token Ring, and FDDI, the broadcast
address is normally 0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length
gldm_addrlen containing the vendor-provided
network physical address of the device. The
driver must allocate space to hold the address,
fill it in with information read from the device,
and set gldm_vendor_addr to point at it.

24 Solaris 8 Software Developer Supplement ♦ October 2000

gldm_ppa PPA number for this instance of the device.
Normally this should be set to the instance
number, returned from
ddi_get_instance(9F) .

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie Interrupt block cookie returned by
ddi_get_iblock_cookie(9F) ,
ddi_add_intr(9F) ,
ddi_get_soft_iblock_cookie(9F) , or
ddi_add_softintr(9F) . This must correspond
to the device’s received interrupt, from which
gld_recv() is called.

gld_stats Structure
The GLD statistics (gld_stats) structure is used to communicate statistics and state
information from a GLD-based driver to GLD when returning from a driver’s
gldm_get_stats() routine, as discussed in gld(9E) and gld(7D) . The members
of this structure, filled in by the GLD-based driver, are used when GLD reports the
statistics. In the tables below, the name of the statistics variable reported by GLD is
noted in the comments. See gld(7D) for a more detailed description of the meaning
of each statistic.

Drivers cannot make any assumptions about the length of this structure, which might
be different in different releases of Solaris, GLD, or both. Structure members private
to GLD, not documented here, should not be set or read by the device-specific driver.

The following structure members are defined for all media types:

uint64_t glds_speed; /* ifspeed */
uint32_t glds_media; /* media */
uint32_t glds_intr; /* intr */
uint32_t glds_norcvbuf; /* norcvbuf */
uint32_t glds_errrcv; /* ierrors */
uint32_t glds_errxmt; /* oerrors */
uint32_t glds_missed; /* missed */
uint32_t glds_underflow; /* uflo */
uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */
uint32_t glds_crc; /* fcs_errors */
uint32_t glds_duplex; /* duplex */
uint32_t glds_nocarrier; /* carrier_errors */
uint32_t glds_collisions; /* collisions */
uint32_t glds_excoll; /* ex_collisions */
uint32_t glds_xmtlatecoll; /* tx_late_collisions */
uint32_t glds_defer; /* defer_xmts */

Drivers for Network Devices 25

uint32_t glds_dot3_first_coll; /* first_collisions */
uint32_t glds_dot3_multi_coll; /* multi_collisions */
uint32_t glds_dot3_sqe_error; /* sqe_errors */
uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */
uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */
uint32_t glds_dot3_frame_too_long; /* toolong_errors */
uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

uint32_t glds_dot5_line_error /* line_errors */
uint32_t glds_dot5_burst_error /* burst_errors */
uint32_t glds_dot5_signal_loss /* signal_losses */
uint32_t glds_dot5_ace_error /* ace_errors */
uint32_t glds_dot5_internal_error /* internal_errors */
uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */
uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */
uint32_t glds_dot5_token_error /* token_errors */
uint32_t glds_dot5_freq_error /* freq_errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */
uint32_t glds_fddi_mac_lost; /* mac_lost_errors */
uint32_t glds_fddi_mac_token; /* mac_tokens */
uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */
uint32_t glds_fddi_mac_late; /* mac_late */
uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Most of the above statistics variables are counters denoting the number of times the
particular event was observed. Exceptions are:

glds_speed Estimate of the interface’s current bandwidth in
bits per second. For interfaces that do not vary in
bandwidth or for those where no accurate
estimation can be made, this object should
contain the nominal bandwidth.

glds_media Type of media (wiring) or connector used by the
hardware. Currently supported media names
include GLDM_AUI, GLDM_BNC, GLDM_TP,
GLDM_10BT, GLDM_100BT, GLDM_100BTX,
GLDM_100BT4, GLDM_RING4, GLDM_RING16,
GLDM_FIBER, and GLDM_PHYMII.
GLDM_UNKNOWNcan also be specified.

glds_duplex Current duplex state of the interface. Supported
values are GLD_DUPLEX_HALFand
GLD_DUPLEX_FULL. GLD_DUPLEX_UNKNOWNcan
also be specified.

26 Solaris 8 Software Developer Supplement ♦ October 2000

Entry Point and Service Routines
Arguments Used by GLD Routines

macinfo Pointer to a gld_mac_info(9S) structure.

macaddr Pointer to the beginning of a character array containing a
valid MAC address. The array will be of the length
specified by the driver in the gldm_addrlen element of
the gld_mac_info(9S) structure.

multicastaddr Pointer to the beginning of a character array containing a
multicast, group, or functional address. The array will be
of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S)
structure.

multiflag Flag indicating whether reception of the multicast address
is to be enabled or disabled. This argument is specified as
GLD_MULTI_ENABLEor GLD_MULTI_DISABLE.

promiscflag Flag indicating what type of promiscuous mode, if any, is
to be enabled. This argument is specified as
GLD_MAC_PROMISC_PHYS, GLD_MAC_PROMISC_MULTI,
or GLD_MAC_PROMISC_NONE.

mp gld_ioctl() uses mp as a pointer to a STREAMS
message block containing the ioctl to be executed.
gld_send() uses it as a pointer to a STREAMS message
block containing the packet to be transmitted.
gld_recv() uses it as a pointer to a message block
containing a received packet.

stats Pointer to a gld_stats(9S) structure to be filled in
with the current values of statistics counters.

q Pointer to the queue(9S) structure to be used in the
reply to the ioctl.

dip Pointer to the device’s dev_info structure.

name Device interface name.

Drivers for Network Devices 27

Entry Points
These entry points must be implemented by a device-specific network driver
designed to interface with GLD.

As described in gld(7D) , the main data structure for communication between the
device-specific driver and the GLD module is the gld_mac_info(9S) structure.
Some of the elements in that structure are function pointers to the entry points
described here. The device-specific driver must, in its attach(9E) routine, initialize
these function pointers before calling gld_register() .

int prefix_reset(gld_mac_info_t * macinfo);

gldm_reset() resets the hardware to its initial state.

int prefix_start(gld_mac_info_t * macinfo);

gldm_start() enables the device to generate interrupts and prepares the driver to
call gld_recv() for delivering received data packets to GLD.

int prefix_stop(gld_mac_info_t * macinfo);

gldm_stop() disables the device from generating any interrupts and stops the
driver from calling gld_recv() for delivering data packets to GLD. GLD depends
on the gldm_stop() routine to ensure that the device will no longer interrupt, and
it must do so without fail. This function should always return GLD_SUCCESS.

int prefix_set_mac_addr(gld_mac_info_t * macinfo, unsigned char * macaddr);

gldm_set_mac_addr() sets the physical address that the hardware is to use for
receiving data. This function should program the device to the passed MAC address
macaddr. If sufficient resources are currently not available to carry out the request,
return GLD_NORESOURCES. Return GLD_NOTSUPPORTEDif the requested function is
not supported.

int prefix_set_multicast(gld_mac_info_t * macinfo, unsigned char * multicastaddr,
int multiflag);

gldm_set_multicast() enables and disables device-level reception of specific
multicast addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE,
then the function sets the interface to receive packets with the multicast address
pointed to by the second argument. If multiflag is set to GLD_MULTI_DISABLE, the
driver is allowed to disable reception of the specified multicast address.

This function is called whenever GLD wants to enable or disable reception of a
multicast, group, or functional address. GLD makes no assumptions about how the
device does multicast support and calls this function to enable or disable a specific

28 Solaris 8 Software Developer Supplement ♦ October 2000

multicast address. Some devices might use a hash algorithm and a bitmask to enable
collections of multicast addresses; this procedure is allowed, and GLD filters out any
superfluous packets. If disabling an address could result in disabling more than one
address at the device level, it is the responsibility of the device driver to keep
whatever information it needs in order to avoid disabling an address that GLD has
enabled but not disabled.

gldm_set_multicast() will not be called to enable a particular multicast address
that is already enabled, nor will it disable an address that is not currently enabled.
GLD keeps track of multiple requests for the same multicast address and only calls
the driver’s entry point when the first request to enable, or the last request to disable,
a particular multicast address is made. If sufficient resources are currently not
available to carry out the request, GLD returns GLD_NORESOURCES. Return
GLD_NOTSUPPORTEDif the requested function is not supported.

int prefix_set_promiscuous(gld_mac_info_t * macinfo, int promiscflag);

gldm_set_promiscuous() enables and disables promiscuous mode. This function
is called whenever GLD wants to enable or disable the reception of all packets on the
medium, or of all multicast packets on the medium. If the second argument
promiscflag is set to the value of GLD_PROMISC_PHYS, then the function enables
physical-level promiscuous mode, resulting in the reception of all packets on the
medium. If promiscflag is set to GLD_PROMISC_MULTI, then reception of all multicast
packets will be enabled. If promiscflag is set to GLD_PROMISC_NONE, then
promiscuous mode is disabled.

In the case of a request for promiscuous multicast mode, drivers for devices that
have no multicast-only promiscuous mode must set the device to physical
promiscuous mode to ensure that all multicast packets are received. In this case the
routine should return GLD_SUCCESS. The GLD software filters out any superfluous
packets. If sufficient resources are currently not available to carry out the request,
return GLD_NORESOURCES. Return GLD_NOTSUPPORTEDif the requested function is
not supported.

For forward compatibility, gldm_set_promiscuous() routines should treat any
unrecognized values for promiscflag as though they were GLD_PROMISC_PHYS.

int prefix_send(gld_mac_info_t * macinfo, mblk_t * mp);

gldm_send() queues a packet to the device for transmission. This routine is passed
a STREAMS message containing the packet to be sent. The message might include
multiple message blocks, and the send routine must chain through all the message
blocks in the message to access the entire packet to be sent. The driver should be
prepared to handle and skip over any zero-length message continuation blocks in the
chain. The driver should check that the packet does not exceed the maximum
allowable packet size, and it must pad the packet, if necessary, to the minimum
allowable packet size. If the send routine successfully transmits or queues the packet,
it should return GLD_SUCCESS.

Drivers for Network Devices 29

The send routine should return GLD_NORESOURCESif it cannot immediately accept
the packet for transmission; in this case GLD will retry it later. If gldm_send() ever
returns GLD_NORESOURCES, the driver must, at a later time when resources have
become available, call gld_sched() . It then informs GLD that it should retry
packets that the driver previously failed to queue for transmission. (If the driver’s
gldm_stop() routine is called, the driver is absolved from this obligation until it
later again returns GLD_NORESOURCESfrom its gldm_send() routine. However,
extra calls to gld_sched() will not cause incorrect operation.)

If the driver’s send routine returns GLD_SUCCESS, then the driver is responsible for
freeing the message when the driver and the hardware no longer need it. If the send
routine copied the message into the device, or into a private buffer, then the send
routine can free the message after the copy is made. If the hardware uses DMA to
read the data directly out of the message data blocks, then the driver must not free
the message until the hardware has completed reading the data. In this case the
driver will probably free the message in the interrupt routine, or in a buffer reclaim
operation at the beginning of a future send operation. If the send routine returns
anything other than GLD_SUCCESS, then the driver must not free the message.
Return GLD_NOLINKif gldm_send() is called when there is no physical connection
to the network or link partner.

int prefix_intr(gld_mac_info_t * macinfo);

gldm_intr() is called when the device might have been interrupted. Because it is
possible to share interrupts with other devices, the driver must check the device
status to determine whether it actually caused an interrupt. If the device that the
driver controls did not cause the interrupt, then this routine must return
DDI_INTR_UNCLAIMED. Otherwise, it must service the interrupt and should return
DDI_INTR_CLAIMED. If the interrupt was caused by successful receipt of a packet,
this routine should put the received packet into a STREAMS message of type
M_DATAand pass that message to gld_recv() .

gld_recv() will pass the inbound packet upstream to the appropriate next layer of
the network protocol stack. It is important to correctly set the b_rptr and b_wptr
members of the STREAMS message before calling gld_recv() .

The driver should avoid holding mutex or other locks during the call to
gld_recv() . In particular, locks that could be taken by a transmit thread cannot be
held during a call to gld_recv() : the interrupt thread that calls gld_recv() will
in some cases carry out processing that includes sending an outgoing packet,
resulting in a call to the driver’s gldm_send() routine. If the gldm_send() routine
were to try to acquire a mutex being held by the gldm_intr() routine at the time it
calls gld_recv() , this would result in a panic due to recursive mutex entry.

The interrupt code should increment statistics counters for any errors. This includes
failure to allocate a buffer needed for the received data and any hardware-specific
errors, such as CRC errors or framing errors.

30 Solaris 8 Software Developer Supplement ♦ October 2000

int prefix_get_stats(gld_mac_info_t * macinfo, struct gld_stats * stats);

gldm_get_stats() gathers statistics from the hardware, driver private counters, or
both, and updates the gld_stats(9S) structure pointed to by stats. This routine is
called by GLD when it gets a request for statistics, and provides the mechanism by
which GLD acquires device-dependent statistics from the driver before composing its
reply to the statistics request. See gld_stats(9S) and gld(7D) for a description of
the defined statistics counters.

int prefix_ioctl(gld_mac_info_t * macinfo, queue_t * q, mblk_t * mp);

gldm_ioctl() implements any device-specific ioctl commands. This element can
be specified as NULL if the driver does not implement any ioctl functions. The driver
is responsible for converting the message block into an ioctl reply message and
calling the qreply(9F) function before returning GLD_SUCCESS. This function
should always return GLD_SUCCESS; any errors the driver might want to report
should be returned by the message passed to qreply(9F) . If the gldm_ioctl
element is specified as NULL, GLD will return a message of type M_IOCNAKwith an
error of EINVAL.

Return Values
In addition to the return values described above, and subject to the restrictions above,
these additional values might be returned by some of the GLD entry point functions:

GLD_BADARG If the function detected an unsuitable argument,
for example, a bad multicast address, a bad MAC
address, or a bad packet or packet length.

GLD_FAILURE On hardware failure.

GLD_SUCCESS On success.

Service Routines

gld_mac_info_t * gld_mac_alloc(dev_info_t * dip);

gld_mac_alloc() allocates a new gld_mac_info(9S) structure and returns a
pointer to it. Some of the GLD-private elements of the structure might be initialized
before gld_mac_alloc() returns; all other elements are initialized to zero. The
device driver must initialize some structure members, as described in
gld_mac_info(9S) , before passing the mac_info pointer to gld_register() .

Drivers for Network Devices 31

void gld_mac_free(gld_mac_info_t * macinfo);

gld_mac_free() frees a gld_mac_info(9S) structure previously allocated by
gld_mac_alloc() .

int gld_register(dev_info_t * dip, char * name, gld_mac_info_t * macinfo);

gld_register() is called from the device driver’s attach(9E) routine and is
used to link the GLD-based device driver with the GLD framework. Before calling
gld_register() , the device driver’s attach(9E) routine must first use
gld_mac_alloc() to allocate a gld_mac_info(9S) structure, and then initialize
several of its structure elements. See lgld_mac_info(9S) for more information. A
successful call to gld_register() performs the following actions:

� Links the device-specific driver with the GLD system

� Sets the device-specific driver’s private data pointer (using
ddi_set_driver_private(9F)) to point to the macinfo structure

� Creates the minor device node

� Returns DDI_SUCCESS

The device interface name passed to gld_register() must exactly match the
name of the driver module as it exists in the file system.

The driver’s attach(9E) routine should return DDI_SUCCESSif gld_register()
succeeds. If gld_register() does not return DDI_SUCCESS, the attach(9E)
routine should deallocate any resources it allocated before calling gld_register() ,
and also return DDI_FAILURE .

int gld_unregister(gld_mac_info_t * macinfo);

gld_unregister() is called by the device driver’s detach(9E) function, and if
successful, performs the following tasks:

� Ensures that the device’s interrupts are stopped, calling the driver’s
gldm_stop() routine if necessary

� Removes the minor device node

� Unlinks the device-specific driver from the GLD system

� Returns DDI_SUCCESS

If gld_unregister() returns DDI_SUCCESS, the detach(9E) routine should
deallocate any data structures allocated in the attach(9E) routine, using
gld_mac_free() to deallocate the macinfo structure, and return DDI_SUCCESS. If
gld_unregister() does not return DDI_SUCCESS, the driver’s detach(9E)
routine must leave the device operational and return DDI_FAILURE .

void gld_recv(gld_mac_info_t * macinfo, mblk_t * mp);

32 Solaris 8 Software Developer Supplement ♦ October 2000

gld_recv() is called by the driver’s interrupt handler to pass a received packet
upstream. The driver must construct and pass a STREAMS M_DATAmessage
containing the raw packet. gld_recv() determines which STREAMS queues, if any,
should receive a copy of the packet, duplicating it if necessary. It then formats a
DL_UNITDATA_IND message, if required, and passes the data up all appropriate
STREAMS.

The driver should avoid holding mutex or other locks during the call to
gld_recv() . In particular, locks that could be taken by a transmit thread cannot be
held during a call to gld_recv() : the interrupt thread that calls gld_recv() will
in some cases carry out processing that includes sending an outgoing packet,
resulting in a call to the driver’s gldm_send() routine. If the gldm_send() routine
were to try to acquire a mutex being held by the gldm_intr() routine at the time it
calls gld_recv() , this would result in a panic because of recursive mutex entry.

void gld_sched(gld_mac_info_t * macinfo);

gld_sched() is called by the device driver to reschedule stalled outbound packets.
Whenever the driver’s gldm_send() routine has returned GLD_NORESOURCES, the
driver must later call gld_sched() to inform the GLD framework that it should
retry the packets that previously could not be sent. gld_sched() should be called
as soon as possible after resources are again available, to ensure that GLD resumes
passing outbound packets to the driver’s gldm_send() routine in a timely way. (If
the driver’s gldm_stop() routine is called, the driver is absolved from this
obligation until it later again returns GLD_NORESOURCESfrom its gldm_send()
routine; however, extra calls to gld_sched() will not cause incorrect operation.)

uint_t gld_intr(caddr_t);

gld_intr() is GLD’s main interrupt handler. Normally, it is specified as the
interrupt routine in the device driver’s call to ddi_add_intr(9F) . The argument to
the interrupt handler (specified as int_handler_arg in the call to ddi_add_intr(9F))
must be a pointer to the gld_mac_info(9S) structure. gld_intr() will, when
appropriate, call the device driver’s gldm_intr() function, passing that pointer to
the gld_mac_info(9S) structure. However, if the driver uses a high-level
interrupt, it must provide its own high-level interrupt handler and trigger a soft
interrupt from within that. In this case, gld_intr() can be specified as the soft
interrupt handler in the call to ddi_add_softintr() . gld_intr() will return a
value appropriate for an interrupt handler.

Drivers for Network Devices 33

34 Solaris 8 Software Developer Supplement ♦ October 2000

CHAPTER 3

High Availability Drivers

Note - For the most up-to-date man pages, use the man command. The Solaris 8
Update release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

This functionality is new in the Solaris 8 10/00 release.

Availability is a function of both failure rate and speed of repair. In many cases, the
failure of an individual device need not result in a total system failure. Redundant
hardware components, together with drivers designed to support High Availability,
can allow a system to continue operation even in the face of individual component
failure. In many cases, such drivers can allow the system to be repaired even while it
continues to provide service.

The programmatic elimination of driver failures resulting from device failures is
called driver hardening. A hardened driver can tolerate and protect the rest of the
system from errors that might otherwise propagate from a faulty device.

Functions within a driver that help isolate faults and assist in more rapid recovery
and repair improve the system Serviceability; this improves Availability by reducing
time to repair.

Additional information about how to create a Solaris device driver can be found in
Writing Device Drivers.

Driver Hardening
Hardening is the process of ensuring that a driver works correctly in spite of faults
in the I/O device that it controls or other faults originating outside the system core.
A hardened driver must not panic, hang the system, or allow the uncontrolled
spread of corrupted data as the result of any such faults.

35

The driver developer must take responsibility for:

� Correct use of the DDI functions

� Detecting and reporting any corruption of device I/O

� Handling devices with deviant interrupt logic

All Solaris drivers should be hardened. Hardened drivers obey these rules:

� Each piece of hardware should be controlled by a separate instance of the device
driver.

� Programmed I/O (PIO) must be performed only through the DDI access functions,
using the appropriate data access handle.

� The device driver must assume that data it receives from the device could be
corrupted. The driver must check the integrity of the data before using it.

� The driver must control the effects of any faults that it detects. Known bad data
must not be released to the rest of the system.

� The driver must ensure that all writes by the device into DMA buffers
(DDI_DMA_READ) are contained within pages of memory controlled entirely by the
driver. This prevents a DMA fault from corrupting an arbitrary part of the
system’s main memory.

� The device driver must not be an unlimited drain on system resources if the
device locks up. It should time-out if a device claims to be continuously busy. The
driver should also detect a pathological (stuck) interrupt request and take
appropriate action.

� The driver must free up resources after a fault. For example, the system must be
able to close all minor devices and detach driver instances even after the hardware
fails.

Device Driver Instances
The Solaris kernel allows multiple instances of a driver. Each instance has its own
data space but shares the text and some global data with other instances. The device
is managed on a per-instance basis. Hardened drivers should use a separate instance
for each piece of hardware unless the driver is designed to handle fail-over
internally. There can be multiple instances of a driver per slot, for example,
multi-function cards, which is standard behavior for Solaris device drivers.

Exclusive Use of DDI Access Handles
All programmed I/O (PIO) access by a hardened driver must use Solaris DDI access
functions from the ddi_get X, ddi_put X, ddi_rep_get X, and ddi_rep_put X
families of routines. The driver should not directly access the mapped registers by

36 Solaris 8 Software Developer Supplement ♦ October 2000

the address returned from ddi_regs_map_setup (9F). Using an access handle
ensures that an I/O fault is controlled and its effects confined to the returned value,
rather than possibly corrupting other parts of the machine state. (Avoid the
ddi_peek (9F) and ddi_poke (9F) routines because they do not use access handles.)

The DDI access mechanism is important because it provides an opportunity to
control how data is read into the kernel. DDI access routines provide protection by
constraining the effect of bus timeout traps.

Detecting Corrupted Data
The following sections consider where data corruption can occur and the steps you
can take to detect it.

Corruption of Device Management and Control Data
The driver should assume that any data obtained from the device, whether by PIO or
DMA, could have been corrupted. In particular, extreme care should be taken with
pointers, memory offsets, or array indexes read or calculated from data supplied by
the device. Such values can be malignant, meaning they can cause a kernel panic if
dereferenced. All such values should be checked for range and alignment (if
required) before use.

Even if a pointer is not malignant, it can still be misleading. For example, it can point
at a valid instance of an object, but not the correct one. Where possible, the driver
should cross-check the pointer with the pointed-to object, or otherwise validate the
data obtained through it.

Other types of data can also be misleading, such as packet lengths, status words, or
channel IDs. Each should be checked to the extent possible: a packet length can be
range-checked to ensure that it is not negative or larger than the containing buffer; a
status word can be checked for ”impossible” bits; and a channel ID can be matched
against a list of valid IDs.

Where a value is used to identify a Stream, the driver must ensure that the Stream
still exists. The asynchronous nature of STREAMS processing means that a Stream
can be dismantled while device interrupts are still outstanding.

The driver should not reread data from the device; the data should be read once,
validated, and stored in the driver’s local state. This avoids the hazard presented by
data that, although correct when initially read and validated, is incorrect when
reread later.

The driver should also ensure that all loops are bounded, so that a device returning a
continuous BUSYstatus, or claiming that another buffer needs to be processed, does
not lock up the entire system.

High Availability Drivers 37

Corruption of Received Data
Device errors can result in corrupted data being placed in receive buffers. Such
corruption is indistinguishable from corruption that occurs beyond the domain of the
device—for example, within a network. Typically, existing software is already in
place to handle such corruption; for example, through integrity checks at the
transport layer of a protocol stack or within the application using the device.

If the received data will not be checked for integrity at a higher layer—as in the case
of a disk driver, for example—it can be integrity-checked within the driver itself.
Methods of detecting corruption in received data are typically device-specific
(checksums, CRC, and so forth).

Detecting Faults
Any ancestor of a device driver can disable the data path to the device if it detects a
fault. When PIO access is disabled, any reads from the device return undefined
values, while writes are ignored. If DMA access is disabled, the device might be
prevented from accessing memory, or it might receive undefined data on reads and
have writes discarded.

A device driver can detect that a data path has been disabled using the following
DDI routines:

� ddi_check_acc_handle (9F)

� ddi_check_dma_handle (9F)

Each function checks whether any faults affecting the data path represented by the
supplied handle have been detected. If one of these functions returns DDI_FAILURE ,
indicating that the data path has failed, the driver should report the fault using
ddi_dev_report_fault (9F), perform any necessary cleanup, and, where possible,
return an appropriate error to its caller.

Containment of Faults
Preservation of system integrity requires that faults be detected before they alter the
system state. Consequently, the driver must test for faults whenever data returned
from the device is going to be used by the system.

� The ddi_check_acc_handle (9F) and ddi_check_dma_handle (9F) calls
should be made at significant junctures, such as just before passing a data block to
the upper layers.

� Data must not be forwarded out of the driver if the device has failed.

� The driver must consider other possible impacts of the failure on the integrity of
the system. The driver must ensure that kernel resources, such as memory, are not
permanently lost when data cannot be forwarded. Threads should not remain
blocked waiting for signals that will never be generated.

38 Solaris 8 Software Developer Supplement ♦ October 2000

� The driver should limit its processing while in the failed state (for example,
freeing messages in wput routines, attempting to permanently disable interrupts
from a failed board, and so forth).

DMA Isolation
A defective device might initiate an improper DMA transfer over the bus. This data
transfer could corrupt good data that was previously delivered. A device that fails
might generate a corrupt address that can contaminate memory that does not even
belong to its own driver.

In systems with an IOMMU, a device can write only to pages mapped as writable for
DMA. Therefore, pages that are to be the target of DMA writes should be owned
solely by one driver instance and not shared with any other kernel structure. While
the page in question is mapped as writable for DMA, the driver should be suspicious
of data in that page. The page must be unmapped from the IOMMU before it is
passed beyond the driver, or before any validation of the data.

You can use ddi_umem_alloc (9F) to guarantee that a whole aligned page is
allocated, or allocate multiple pages and ignore the memory below the first page
boundary. You can find the size of an IOMMU page by using ddi_ptob (9F).

Alternatively, the driver can choose to copy the data into a safe part of memory
before processing it. If this is done, the data must first be synchronized using
ddi_dma_sync (9F).

Calls to ddi_dma_sync (9F) should specify SYNC_FOR_DEVbefore using DMA to
transfer data to a device, and SYNC_FOR_CPUafter using DMA to transfer data from
the device to memory.

On some PCI-based systems with an IOMMU, devices may be able to use PCI dual
address cycles (64-bit addresses) to bypass the IOMMU. This gives the device the
potential to corrupt any region of main memory. Hardened device drivers must not
attempt to use such a mode and should disable it.

Handling Stuck Interrupts
The driver must identify stuck interrupts because a persistently asserted interrupt
severely affects system performance, almost certainly stalling a single-processor
machine.

Sometimes it is difficult for the driver to identify a particular interrupt as bogus. For
network drivers, if a receive interrupt is indicated but no new buffers have been
made available, no work was needed. When this is an isolated occurrence, it is not a
problem, as the actual work might already have been completed by another routine
(read service, for example).

High Availability Drivers 39

On the other hand, continuous interrupts with no work for the driver to process can
indicate a stuck interrupt line. For this reason, all platforms allow a number of
apparently bogus interrupts to occur before taking defensive action.

A hung device, while appearing to have work to do, might be failing to update its
buffer descriptors. The driver should defend against such repetitive requests.

In some cases, platform–specific bus drivers might be capable of identifying a
persistently unclaimed interrupt and can disable the offending device. However, this
relies on the driver’s ability to identify the valid interrupts and return the
appropriate value. The driver should therefore return a DDI_INTR_UNCLAIMED
result unless it detects that the device legitimately asserted an interrupt (that is, the
device actually requires the driver to do some useful work).

The legitimacy of other, more incidental, interrupts is much harder to certify. To this
end, an interrupt-expected flag is a useful tool for evaluating whether an interrupt is
valid. Consider an interrupt such as descriptor free, which can be generated if all the
device’s descriptors had been previously allocated. If the driver detects that it has
taken the last descriptor from the card, it can set an interrupt-expected flag. If this
flag is not set when the associated interrupt is delivered, it is suspicious.

Some informative interrupts might not be predictable, such as one indicating that a
medium has become disconnected or frame sync has been lost. The easiest method of
detecting whether such an interrupt is stuck is to mask this particular source on first
occurrence until the next polling cycle.

If the interrupt occurs again while disabled, this should be considered a false
interrupt. Some devices have interrupt status bits that can be read even if the mask
register has disabled the associated source and might not be causing the interrupt.
Driver designers can devise more appropriate algorithms specific to their devices.

Avoid looping on interrupt status bits indefinitely. Break such loops if none of the
status bits set at the start of a pass requires any real work.

Additional Driver Hardening Considerations
In addition to the requirements discussed in the previous sections, the driver
developer must consider a few other issues. These are:

� Thread interaction

� Threats from top-down requests

� Adaptive strategies

Thread Interaction
Kernel panics in a device driver are often caused by unexpected interaction of kernel
threads after a device failure. When a device fails, threads can interact in ways that
the designer had not anticipated.

40 Solaris 8 Software Developer Supplement ♦ October 2000

For example, if processing routines terminate early, they may fail to signal other
threads that are waiting on condition variables. Attempting to inform other modules
of the failure or handling unanticipated callbacks can result in undesirable thread
interactions. Examine the sequence of mutex acquisition and relinquishment that can
occur during device failures.

Threads that originate in an upstream STREAMS module can run into unfortunate
paradoxes if used to call back into that module unexpectedly. You might use
alternative threads to handle exception messages. For instance, a wput procedure
might use a read-side service routine to communicate an M_ERROR, rather than doing
it directly with a read-side putnext .

A failing STREAMS device that cannot be quiesced during close (because of the
fault) can generate an interrupt after the Stream has been dismantled. The interrupt
handler must not attempt to use a stale Stream pointer to try to process the message.

Threats From Top-Down Requests
While protecting the system from defective hardware, the driver designer also needs
to protect against driver misuse. Although the driver can assume that the kernel
infrastructure is always correct (a trusted core), user requests passed to it can be
potentially destructive.

For example, a user can request an action to be performed upon a user-supplied data
block (M_IOCTL) that is smaller than that indicated in the control part of the
message. The driver should never trust a user application.

The design should consider the construction of each type of ioctl that it can receive
with a view to the potential harm that it could cause. The driver should make checks
to be sure that it does not process malformed ioctls .

Adaptive Strategies
A driver can continue to provide service with faulty hardware, attempting to work
around the identified problem by using an alternative strategy for accessing the
device. Given that broken hardware is unpredictable and given the risk associated
with additional design complexity, adaptive strategies are not always wise. At most,
they should be limited to periodic interrupt polling and retry attempts. Periodically
retrying the device lets the driver know when a device has recovered. Periodic
polling can control the interrupt mechanism after a driver has been forced to disable
interrupts.

Ideally, a system always has an alternative device to provide a vital system service.
Service multiplexors in kernel or user space offer the best method of maintaining
system services when a device fails. Such practices are beyond the scope of this
chapter.

High Availability Drivers 41

Serviceability
To ensure serviceability, the driver must be enabled to do the following:

� Detect faulty devices and report the fault

� Remove a device (as supported by the Solaris hot-plug model)

� Add a new device (as supported by the Solaris hot-plug model)

� Perform periodic health checks to enable the detection of latent faults

Checking the Current Device State

A driver must check its device state at appropriate points in order to avoid
needlessly committing resources. The ddi_get_devstate (9F) function enables the
driver to determine the device’s current state, as maintained by the framework.

ddi_devstate_t ddi_get_devstate(dev_info_t * dip);

The driver is not normally called upon to handle a device that is OFFLINE.
Generally, the device state will reflect earlier device fault reports, possibly modified
by any reconfiguration activities that have taken place.

Correct Behavior When a Device Has Failed
The system must report a fault in terms of the impact it has on the ability of the
device to provide service. Typically, loss of service is expected when:

� A PIO or DMA error is detected

� Data corruption is detected

� The device is locked or hung (for example, when a command never completes)

� A condition has occurred that the driver does not handle because it was regarded
as impossible when the driver was designed

If the device state, returned by ddi_get_devstate (9F), indicates that the device is
not usable, the driver should reject all new and outstanding I/O requests, returning
(if possible) an appropriate error code (for example, EIO). For a STREAMS driver,
M_ERRORor M_HANGUP, as appropriate, should be put upstream to indicate that the
driver is not usable.

The state of the device should be checked at each major entry point, optionally
before committing resources to an operation, and after reporting a fault. If at any

42 Solaris 8 Software Developer Supplement ♦ October 2000

stage the device is found to be unusable, the driver should perform any cleanup
actions that are required (for example, releasing resources) and return in a timely
fashion. It should not attempt any retry or recovery action, nor does it need to report
a fault. The state is not a fault, and it is already known to the framework and
management agents. It should mark the current request and any other outstanding
or queued requests as complete, again with an error indication if possible.

The ioctl() entry point presents a problem in this respect: ioctl operations that
imply I/O to the device (for example, formatting a disk) should fail if the device is
unusable, while others (such as recovering error status) should continue to work. The
state check might therefore need to be on a per-command basis. Alternatively, you
can implement those operations that work in any state through another entry point
or minor device mode, although this might be constrained by issues of compatibility
with existing applications

Note that close() should always complete successfully, even if the device is
unusable. If the device is unusable, the interrupt handler should return
DDI_INTR_UNCLAIMEDfor all subsequent interrupts. If interrupts continue to be
generated, this will eventually result in the interrupt being disabled.

Fault Reporting
This following function notifies the system that your driver has discovered a device
fault.

void ddi_dev_report_fault(dev_info_t * dip, ddi_fault_impact_t impact,
ddi_fault_location_t location, const char * message);

The impact parameter indicates the impact of the fault on the device’s ability to
provide normal service, and is used by the fault management components of the
system to determine the appropriate action to take in response to the fault. This
action can cause a change in the device state. A service-lost fault will cause the
device state to be changed to DOWNand a service-degraded fault will cause the
device state to be changed to DEGRADED.

A device should be reported as faulty if:

� A PIO error is detected

� Corrupted data is detected

� The device has locked up

Drivers should avoid reporting the same fault repeatedly, if possible. In particular, it
is redundant (and undesirable) for drivers to report any errors if the device is
already in an unusable state (see ddi_get_devstate (9F)).

If a hardware fault is detected during the attach process, the driver must report the
fault using ddi_dev_report_fault (9F) as well as returning DDI_FAILURE .

High Availability Drivers 43

Periodic Health Checks
A latent fault is one that does not show itself until some other action occurs. For
example, a hardware failure occurring in a device that is a cold stand-by could
remain undetected until a fault occurs on the master device. At this point, it will be
discovered that the system now contains two defective devices and might be unable
to continue operation.

As a general rule, latent faults that are allowed to remain undetected will eventually
cause system failure. Without latent fault checking, the overall availability of a
redundant system is jeopardized. To avoid this, a device driver must detect latent
faults and report them in the same way as other faults.

The driver should ensure that it has a mechanism for making periodic health checks
on the device. In a fault-tolerant situation where the device can be the secondary or
fail-over device, early detection of a failed secondary device is essential to ensure
that it can be repaired or replaced before any failure in the primary device occurs.

Periodic health checks can:

� Run a quick access check on the board (write, read), then check the device with
the ddi_check_acc_handle (9F) routine.

� Check a register or memory location on the device whose value the driver expects
to have been deterministically altered since the last poll.

Features of a device that typically exhibit deterministic behavior include heartbeat
semaphores, device timers (for example, local lbolt used by download), and
event counters. Reading an updated predictable value from the device gives a
degree of confidence that things are proceeding satisfactorily.

� Time-stamp outgoing requests (transmit blocks or commands) when issued by the
driver.

The periodic health check can look for any over-age requests that have not
completed.

� Initiate an action on the device that should be completed before the next
scheduled check.

If this action is an interrupt, this is an ideal way of ensuring that the device’s
circuitry is still capable of delivering an interrupt.

44 Solaris 8 Software Developer Supplement ♦ October 2000

CHAPTER 4

Software Developer

This chapter describes new partial locales.

Note - For the most up-to-date man pages, use the man command. The Solaris 8
Update release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

Additional Partial Locales for European
Solaris Software
This functionality is new in the Solaris 8 10/00 release.

The current identified features are the addition of UTF-8 locales for Russian and
Polish and two new locales for Catalan. The locale names are as follows.

� ru_RU.UTF-8

� pl_PL.UTF-8

� ca_ES.ISO8859–1

� ca_ES.ISO8859–15

The additional locales are partial locales, because there is no language support
(translation of messages and GUI).

45

Localization in the Base and Multilingual Solaris
Product

Central Europe

TABLE 4–1 Central Europe

Locale User
Interface

Territory Codeset Language Support

cs_CZ.ISO8859-2 English Czech Republic ISO8859-2 Czech (Czech Republic)

de_AT.ISO8859-1 German Austria ISO8859-1 German (Austria)

de_AT.ISO8859-15 German Austria ISO8859-15 German (Austria, ISO8859-15 - Euro)

de_CH.ISO8859-1 German Switzerland ISO8859-1 German (Switzerland)

de_DE.UTF-8 German Germany UTF-8 German (Germany, Unicode 3.0)

de_DE.ISO8859-1 German Germany ISO8859-1 German (Germany)

de_DE.ISO8859-15 German Germany ISO8859-15 German (Germany, ISO8859-15 - Euro)

fr_CH.ISO8859-1 French Switzerland ISO8859-1 French (Switzerland)

hu_HU.ISO8859-2 English Hungary ISO8859-2 Hungarian (Hungary)

pl_PL.ISO8859-2 English Poland ISO8859-2 Polish (Poland)

pl_PL.UTF-8 English Poland UTF-8 Polish (Poland, Unicode 3.0)

sk_SK.ISO8859-2 English Slovakia ISO8859-2 Slovak (Slovakia)

46 Solaris 8 Software Developer Supplement ♦ October 2000

Eastern Europe

TABLE 4–2 Eastern Europe

Locale User
Interface

Territory Codeset Language Support

bg_BG.ISO8859-5 English Bulgaria ISO8859-5 Bulgarian (Bulgaria)

et_EE.ISO8859-15 English Estonia ISO8859-15 Estonian (Estonia)

hr_HR.ISO8859-2 English Croatia ISO8859-2 Croatian (Croatia)

lt_LT.ISO8859-13 English Lithuania ISO8859-13 Lithuanian (Lithuania)

lv_LV.ISO8859-13 English Latvia ISO8859-13 Latvian (Latvia)

mk_MK.ISO8859-5 English Macedonia ISO8859-5 Macedonian (Macedonia)

ro_RO.ISO8859-2 English Romania ISO8859-2 Romanian (Romania)

ru_RU.KOI8-R English Russia KOI8-R Russian (Russia, KOI8-R))

ru_RU.ANSI1251 English Russia ansi-1251 Russian (Russia, ANSI 1251)

ru_RU.ISO8859-5 English Russia ISO8859-5 Russia (Russia)

ru_RU.UTF-8 English Russia UTF-8 Russian (Russia Unicode 3.0)

sh_BA.ISO8859-2@bosnia English Bosnia ISO8859-2 Bosnian (Bosnia)

sl_SI.ISO8859-2 English Slovenia ISO8859-2 Slovenian (Slovenia)

sq_AL.ISO8859-2 English Albania ISO8859-2 Albanian (Albania)

sr_YU.ISO8859-5 English Serbia ISO8859-5 Serbian (Serbia)

tr_TR.ISO8859-9 English Turkey ISO8859-9 Turkish (Turkey)

Software Developer 47

South Europe

TABLE 4–3 South Europe

Locale User
Interface

Territory Codeset Language Support

ca_ES.ISO8859-1 English Spain ISO8859-1 Catalan (Spain)

ca_ES.ISO8859-15 English Spain ISO8859-15 Catalan (Spain, ISO8859-15 - Euro)

el_GR.ISO8859-7 English Greece ISO8859-7 Greek (Greece)

es_ES.ISO8859-1 Spanish Spain ISO8859-1 Spanish (Spain)

es_ES.ISO8859-15 Spanish Spain ISO8859-15 Spanish (Spain, ISO8859-15 - Euro)

es_ES.UTF-8 Spanish Spain UTF-8 Spanish (Spain, Unicode 3.0)

it_IT.ISO8859-1 Italian Italy ISO8859-1 Italian (Italy)

it_IT.ISO8859-15 Italian Italy ISO8859-15 Italian (Italy, ISO8859-15 - Euro)

it_IT.UTF-8 Italian Italy UTF-8 Italian (Italy, Unicode 3.0)

pt_PT.ISO8859-1 English Portugal ISO8859-1 Portuguese (Portugal)

pt_PT.ISO8859-15 English Portugal ISO8859-15 Portuguese Portugal, ISO8859-15 - Euro)

European Localization
Solaris 8 software supports the euro currency. Local currency symbols are still
available for backward compatibility.

48 Solaris 8 Software Developer Supplement ♦ October 2000

TABLE 4–4 User Locales To Support the Euro Currency

Region Locale Name ISO Codeset

Austria de_AT.ISO8859-15 8859-15

Belgium (French) fr_BE.ISO8859-15 8859-15

Belgium (Dutch) nl_BE.ISO8859-15 8859-15

Denmark da_DK.ISO8859--15 8859-15

Finland fi_FI.ISO8859-15 8859-15

France fr_FR.ISO8859-15 8859-15

Germany de_DE.ISO8859-15 8859-15

Ireland en_IE.ISO8859-15 8859-15

Italy it_IT.ISO8859-15 8859-15

Netherlands nl_NL.ISO8859-15 8859-15

Portugal pt_PT.ISO8859-15 8859-15

Spain ca_ES.ISO8859-15 8859–15

Spain es_ES.ISO8859-15 8859-15

Sweden sv_SE.ISO8859-15 8859-15

Great Britain en_GB.ISO8859-15 8859-15

U.S.A. en_US.ISO8859-15 8859-15

Software Developer 49

50 Solaris 8 Software Developer Supplement ♦ October 2000

CHAPTER 5

Java for Developers

This chapter describes new Java features.

Note - For the most up-to-date man pages, use the man command. The Solaris 8
Update release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

Enhancements in Java 2 Standard
Edition for Solaris v. 1.2.2_05a
The Java 2 Standard Edition v. 1.2.2_05a is the latest release of Java 2 platform for the
Solaris operating environment. It is a bug-fix release of v. 1.2.2_05 (without the "a") of
the same product and includes the following new features and enhancements.

Scalability improvements to over 20 CPUs

Improved handling of concurrency primitives and threads has increased the
performance of multithreaded programs and significantly reduced garbage-collection
pause times for programs that use many threads.

Improved JIT compiler optimizations

The JIT compiler performs the following new optimizations: inlining of virtual and
non-virtual methods, CSE within extended basic blocks, loop analysis to eliminate
array bounds checking, and fast type checks.

51

Text rendering performance improvements

Several graphics optimizations have significantly improved text rendering
performance for Java 2 Standard Edition on Solaris software platforms without Direct
Graphics Access (DGA) support. These platforms include Ultra 5; Ultra 10; the Solaris
Operating Environment, Intel Platform Edition; and all remote display systems.

poller class demo package

Provides Java applications with the ability to efficiently access the functions of the C
poll(2) routine and is provided as a demo package with a sample usage server.

Swing improvements

Significant improvements in quality and performance have been made to the Swing
classes. For additional information on these improvements, see the following URLs:

� http://Java.sun.com/products/jdk/1.2/changes.html

� http://java.sun.com/products/jdk/1.2/fixedbugs/index.html

Java Servlet Support in Apache Web
Server
With the addition of mod_jserv module and related files, the Apache web server
software now supports Java servlets. The following configuration files are now stored
in /etc/apache :

� zone.properties

� jserv.properties

� jserv.conf

The mod_jserv module, like the rest of Apache software, is open source code,
maintained by a group external to Sun. This group seeks to maintain compatibility
with previous releases of Apache and mod_jserv .

Java Development Kit (JDK) 1.1.8_10
The Solaris 8 10/00 software release includes the JDK 1.1.8_10 which is improved
with bug fixes since the last release.

52 Solaris 8 Software Developer Supplement ♦ October 2000

CHAPTER 6

Summary of Changes to Solaris 8 Books

Some Solaris 8 books have been revised and are included in the Solaris 8 10/00
Update Collection. This chapter describes changes to these books since the 6/00
Update release.

Note - For the most up-to-date man pages, use the man command. The Solaris 8
Update release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

System Interface Guide
For Solaris 8 6/00, the System Interface Guide is updated to incorporate bug fixes.
This release corrects several typographical errors in text and source code examples.
See System Interface Guide.

Linkers and Libraries Guide
The Linker and Libraries Guide has been updated with the following new
information for Solaris 8 10/00.

� The environment variable LD_BREADTH is ignored by the runtime linker. See the
section, “Initialization and Termination Routines.”

� The runtime linker and its debugger interface have been extended for better
runtime and core file analysis. This update is identified by a new version number.

53

See the rd_init() function in the section Agent Manipulation. This update
expands the rl_flags, rl_bend , and rl_dynamic fields of the
rd_loadobj_st structure. See the section, “Scanning Loadable Objects.”

� The validation of displacement relocated data in regard to its use, or possible use,
with copy relocations is now provided. See the section, “Displacement
Relocations.”

� 64-bit filters can be built solely from a mapfile using the link-editors -64
option. See the section, “Generating a Standard Filter.”

� Some explanatory notes on why $ORIGIN dynamic string token expansion is
restricted within secure applications are provided. See the section, “Security.”

� The search paths used to locate the dependencies of dynamic objects can be
inspected using dlinfo(3DL) .

� dlsym(3DL) and dlinfo(3DL) lookup semantics have been expanded with a
new handle RTLD_SELF.

� The runtime symbol lookup mechanism used to relocate dynamic objects can be
significantly reduced by establishing direct binding information within each
dynamic object. See the section, “External Bindings and Direct Binding.”

Solaris Modular Debugger Guide
Updates
This information is new in the Solaris 8 10/00 software release.

The following updates are included in the Solaris Modular Debugger Guide:

� The “Arithmetic Expansion” section of Chapter 3 has been updated to include
unary operators.

� Minor technical errors have been corrected.

54 Solaris 8 Software Developer Supplement ♦ October 2000

