Contents

1. **The hme Device Driver** 11
 - Hardware Overview 11
 - Operating Speeds and Modes 12
 - Auto-Negotiation 12
 - Internal Transceiver 13
 - External Transceiver 13

2. **Configuring the Driver Software for Sun hme FastEthernet Device Drivers** 15
 - Installing the Driver Software 15
 - Configuring the Host File 16
 - Booting From the Network 17
 - Optional Post-Installation Procedures 18
 - Setting Driver Parameters 18
 - `local-mac-address` Property 20

3. **Parameter Definitions** 21
 - Driver Parameter Values and Definitions 21
 - Defining the Current Status 23
 - Inter-Packet Gap Parameters 23
Defining an Additional Delay Before Transmitting a Packet Using `lance_mode` and `ipg0` 24

Operational Mode Parameters 25

Defining the Number of Back-to-Back Packets to Transmit 26

Reporting Transceiver Capabilities 27

Reporting the Link Partner Capabilities 28

4. Setting Parameters 29

Parameter Options 29

Setting Parameters Using `ndd` 30

Identifying Device Instances 30

Non-Interactive and Interactive Modes 30

Setting Parameters in the `/etc/system` File 33

Setting Parameters Using the `hme.conf` File 35

Setting Driver Parameters for PCI-Bus `hme` Interfaces Using `hme.conf` 36
Tables

TABLE 3-1 hme Driver Parameter, Status, and Descriptions 21
TABLE 3-2 Read-Only Parameters Defining the Current Status 23
TABLE 3-3 Read-Write Inter-Packet Gap Parameter Values and Descriptions 23
TABLE 3-4 Parameters Defining lance_mode and ipg0 24
TABLE 3-5 Operational Mode Parameters 25
TABLE 3-6 Back-to-Back Packet Transmission Capability 26
TABLE 3-7 Read-Only Transceiver Capabilities 27
TABLE 3-8 Read-Only Link Partner Capabilities 28
TABLE 4-1 Setting Variables in the /etc/system File 34
Preface

This book describes how to configure the hme driver for the SBus or PCI-bus based Sun™ Ultra™ workstations, Sun Enterprise™ servers, the SunSwift™ SBus Adapter, the SunFastEthernet™ Adapter 2.0, and the SunFastEthernet PCI Adapter.

Note that the 64-bit version of the Solaris operating environment uses the directory /kernel/drv/sparcv9. In this document and others, when /kernel/drv is mentioned, the /kernel/drv/sparcv9 directory also applies.

How This Book Is Organized

Chapter 1 describes the hme device driver and includes topics such as operating speeds and modes, auto-negotiation, the internal transceiver, and the external transceiver.

Chapter 2 describes configuring the hme device driver.

Chapter 3 describes the parameters and settings for the hme device driver.

Chapter 4 describes how to set the hme device driver parameter values using the ndd utility, as well as the /etc/system and hme.conf files.
Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output</td>
<td>Edit your .login file. Use <code>ls -a</code> to list all files. % You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, when contrasted with on-screen computer output</td>
<td>% su Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, words to be emphasized</td>
<td>Read Chapter 6 in the User's Guide. These are called class options. You must be superuser to do this.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Command-line variable; replace with a real name or value</td>
<td>To delete a file, type <code>rm filename</code>.</td>
</tr>
</tbody>
</table>

Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td><code>machine_name%</code></td>
</tr>
<tr>
<td>C shell superuser</td>
<td><code>machine_name#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td><code>$</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser</td>
<td><code>#</code></td>
</tr>
</tbody>
</table>

Related Documentation

- The Solaris on Sun Hardware Platform Guide provides an overview of the hme driver and the Fast Ethernet Parallel Port SCSI (FEPS) ASIC.
The IEEE 802.3u Ethernet Standard provides additional information about the Ethernet standard.

The Solaris on Sun Hardware Reference Manual Supplement explains the `ndd (1M)`, `prtconf (1M)`, `system (4)`, and `driver.conf (4)` man pages.

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on Fatbrain.com at:

http://www1.fatbrain.com/documentation/sun

Accessing Sun Documentation Online

The docs.sun.comSM web site enables you to access Sun technical documentation on the Web. You can browse the docs.sun.com archive or search for a specific book title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number (806-6084-10) of your document in the subject line of your email.
The hme Device Driver

The hme device driver handles the SUNW, hme device on these hardware devices:
- SunSwift SBus Adapter
- SunSwift PCI Adapter
- SunFastEthernet Adapter 2.0
- SunFastEthernet PCI Adapter
- Sun Ultra systems and Sun Enterprise servers

This chapter gives a hardware overview of the SUNW, hme device, provides information on the operating speeds and modes for the SUNW, hme device, and discusses auto-negotiation, the internal transceiver, and the external transceiver for the hme device driver. Note that the external transceiver is not present on the SunSwift SBus Adapter or the SunSwift PCI Adapter.

Hardware Overview

The SUNW, hme device provides 10BASE-TX or 100BASE-T networking interfaces using the Fast Ethernet Parallel Port SCSI (FEPS) ASIC and an internal transceiver. The driver automatically sets the link speed to 10 or 100 Mbps and conforms to the 100BASE-T IEEE 802.3u Ethernet standard. The FEPS (SBus based) or PFEX (PCI-bus based) ASIC provides the SBus or PCI interface and Media Access Control (MAC) functions. The internal transceiver, which connects to an RJ-45 connector on all of the above hardware devices, provides the physical layer functions.

In addition to the RJ-45 connector, a Media Independent Interface (MII) connector, which is an Ultra DB 40 connector, is also provided on some adapters. The MII connects to an external transceiver that may use any physical media, such as copper or fiber, as specified in the 100BASE-TX standard. When an external transceiver is connected to the MII, the driver selects the external transceiver and disables the
internal transceiver. The external transceiver may also support the 100BASE-T4 standard, which allows the link to operate in 100 Mbps speed using four pairs of category 3 or better cable.

Operating Speeds and Modes

You can operate the link in any of the following speeds and modes with the SUNW, hme device:

- 100 Mbps, full-duplex
- 100 BASE-T4 (with external transceiver only)
- 100 Mbps, half-duplex
- 10 Mbps, full-duplex
- 10 Mbps, half-duplex

The **100BASE-T IEEE 802.3u Ethernet Standard** describes these speeds and modes.

Auto-Negotiation

The auto-negotiation protocol, as specified by the **100BASE-T IEEE 802.3u Ethernet Standard**, selects the operation mode (half-duplex or full-duplex) at boot time or when the link state changes (the link fails or tries to connect). The auto-negotiation protocol also selects the speed and the full-duplex or half-duplex mode.

The auto-negotiation protocol does the following:

- Identifies all link partner-supported modes of operation
- Advertises its capabilities to the link partner
- Selects the highest common denominator mode of operation based on the following priorities (in decreasing order):
 - 100 BASE-T4
 - 100 Mbps, full-duplex
 - 100 Mbps, half-duplex
 - 10 Mbps, full-duplex
 - 10 Mbps, half-duplex

The link partner is the networking device (system, Ethernet hub, or Ethernet switch) at the other end of the link or cable.
If the SUNW, hme device is connected to a remote system or interface that is not capable of auto-negotiation, the system automatically selects the correct speed and half-duplex mode.

If adapters or systems are connected to a link partner and the auto-negotiation protocol fails to operate successfully, you can configure the device so it does not use this protocol. This forces the driver to set up the link in the mode and speed of your choice.

Internal Transceiver

The internal transceiver is a feature supported by the driver and is capable of all the operating speeds and modes (except the 100BASE-T4 mode) listed in the section “Operating Speeds and Modes,” earlier in this chapter. When the internal transceiver is used, the default is auto-negotiation by the hme driver, which automatically selects the speed and mode of the link. The internal transceiver performs auto-negotiation with the remote end of the link (link partner) to select a common mode of operation.

The internal transceiver also supports a forced mode of operation. This is where the user selects the speed and mode using the ndd utility, the /etc/system file, or the hme.conf file. The ndd utility makes calls to the hme driver to choose the speed and mode.

External Transceiver

When an external transceiver (not present on the SunSwift SBus Adapter) is connected to the MII interface, the driver selects the external transceiver for networking operations.

- If the external transceiver supports auto-negotiation, the driver uses the auto-negotiation feature to select the link speed and mode.
- If the external transceiver does not support auto-negotiation, the driver selects the highest priority mode supported by the transceiver.

You can also manually select the speed and mode of the link. For example, two transceivers might not support the same mode and speed. Therefore, you must select the highest mode and speed that both transceivers support using the ndd utility. See the list of operating speeds and modes in the section “Operating Speeds and Modes” in this chapter.
Configuring the Driver Software for Sun hme FastEthernet Device Drivers

This chapter includes information and instructions for configuring the driver software used by the Sun hme FastEthernet adapter. Unless otherwise noted, all instructions apply to both the Sun hme FastEthernet PCI adapter and the Sun hme FastEthernet SBus adapter.

This chapter includes the following sections:

- “Installing the Driver Software” on page 15
- “Configuring the Host File” on page 16
- “Booting From the Network” on page 17
- “Optional Post-Installation Procedures” on page 18

Installing the Driver Software

The Solaris CD-ROM contains the software that must be installed in order to use the Sun hme FastEthernet adapter.

Note – Do not use the installation CD-ROM that shipped with your Sun hme FastEthernet adapter. The software on the Solaris CD-ROM is more current and replaces previous versions of the driver.

Before using hme as your network interface, you will need to create and edit system host files, as described in the next section.
Configuring the Host File

▼ To Configure the Host File

1. **At the command line, use the `grep` command to search the `/etc/path_to_inst` file for `hme` devices.**

 For a Sun hme FastEthernet PCI adapter:

   ```
   # grep hme /etc/path_to_inst
   "/pci@1f,4000/network@1,1" 0 "hme"
   "/pci@1f,4000/pci@4/SUNW,hme@0,1" 1 "hme"
   ```

 For a Sun hme FastEthernet SBus adapter:

   ```
   # grep hme /etc/path_to_inst
   "/sbus@1f,4000/network@1,1" 0 "hme"
   "/sbus@1f,4000/pci@4/SUNW,hme@0,1" 1 "hme"
   ```

2. **Create an `/etc/hostname.hmenum` file, where `num` is the instance number of each interface you plan to use.**

 If you want to use the network interface from the example in Step 1, you will need to create a file:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Instance Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/hostname.hme0</code></td>
<td>0</td>
</tr>
</tbody>
</table>

 - Do not create `/etc/hostname.hmenum` files for Sun hme FastEthernet network interfaces you plan to leave unused.
 - The `/etc/hostname.hmenum` file must contain the host name for the appropriate network interface.
 - The host name should have an IP address that will need to be entered in the `/etc/hosts` file.
The host name should be different from any other host name of any other interface, for example: /etc/hostname.hme0 and /etc/hostname.eri0 cannot share the same host name.

Using the instance examples in Step 1, the following example shows the two /etc/hostname.hmenum files required for a system called zardoz that has a Sun hme FastEthernet (zardoz, zardoz-11).

```
# cat /etc/hostname.hme0
zardoz
# cat /etc/hostname.eri0
zardoz-11
```

3. Create an appropriate entry in the /etc/hosts file for each active hme network interface.

Using the previous example, you will have:

```
# cat /etc/hosts
#
# Internet host table
#
127.0.0.1 localhost
129.144.10.57 zardoz loghost
129.144.11.83 zardoz-11
```

Note – The Internet Protocol, version 6 (IPv6), expands the capabilities of IPv4, which is the current version and the default. The Sun hme FastEthernet device driver included in this release of the Solaris operating environment supports both IPv4 and IPv6. IPv4 uses the /etc/hosts configuration file, but IPv6 uses a different configuration file. To transition to, manage, and implement IPv6, refer to the Solaris 8 System Administration Guide, Volume 3.

4. Reboot your system.

Booting From the Network

To use a Sun hme Ethernet interface as the boot device, perform the following tasks:
To Boot From the Network

1. At the `ok` prompt type:

```
ok show-devs
```

The `show-devs` command lists the system devices. You should see the full path name of the `hme` devices, similar to the following examples:

For Sun hme FastEthernet PCI adapter:

```
/pci@1f,2000/pci@2/SUNW,hme@0,1
```

For Sun hme FastEthernet SBus adapter:

```
/sbus@1f,0/SUNW,hme@1,8c3000
```

Note – You need to select only one of these `hme` devices for booting.

2. At the `ok` prompt type:

```
ok boot full_path_name_of_the_hme_device
```

Optional Post-Installation Procedures

To customize the performance of the Sun hme FastEthernet, perform the tasks in the following sections.

Setting Driver Parameters

The hme device driver, which is loaded from the Solaris CD-ROM, controls the `SUNW,hme` Ethernet devices. The device driver selects the link speed using the auto-negotiation protocol with the link partner. (See “Auto-Negotiation” on page 12.)

You can manually set the hme device driver parameters to customize each `SUNW,hme` device in your system in one of three ways:
- Set a parameter on a per-device basis by creating the `hme.conf` file in the `/kernel/drv` directory.
- Use the `ndd` utility to temporarily change a parameter. This change is lost when you reboot the system.
- Set the `hme` driver parameters generally for all SUNW, hme devices in the system by entering the parameter variables in the `/etc/system` file.

See Chapter 4 “Setting Parameters” for more information.

Note – In the future, the `/etc/system` file will not be available. It is not compatible with dynamic reconfiguration.

▼ **To Force Network Speed Between 10 Mbps and 100 Mbps**

1. **At the** `ok` **prompt, use the** `show-devs` **command to list the system devices.**
 You should see the full path names of the `hme` devices, similar to the following examples:

 For Sun hme FastEthernet PCI adapter:

   ```
   /pci@1f,2000/pci@0/SUNW,hme@0,1
   /pci@1f,2000/pci@0/SUNW,hme@1,1
   /pci@1f,2000/pci@0/SUNW,hme@2,1
   /pci@1f,2000/pci@0/SUNW,hme@3,1
   ```

 For Sun hme FastEthernet SBus adapter:

   ```
   /sbus@1f,0/SUNW,hme@1,8c30000
   /sbus@1f,0/SUNW,hme@1,8c20000
   /sbus@1f,0/SUNW,hme@1,8c10000
   /sbus@1f,0/SUNW,hme@1,8c00000
   ```

2. **Type:**

   ```
   ok nedit
   ```

3. **Type the following, pressing the Return key at the end of line 0:**

   ```
   0: probe-all install-console banner
   1: apply transfer-speed=10 full_path_name_of_a_hme_device
   ```
Note – If you already have commands in NVRAM, append these lines to the end of the file.

4. Press Control-C after typing `full_path_name_of_a_hme_device`.
 Perform Steps 2 to 4 to set the network speed for each hme network interface.

 Note – In the preceding example, the speed is forced to 10 Mbps. To force the speed to 100 Mbps, replace 10 with 100.

5. At the `ok` prompt type:

   ```
   ok nvstore
   ok setenv use-nvramrc? true
   ```

6. Reboot your system.
 See “Setting Forced Mode” on page 32 for more information on forcing network speed.

local-mac-address Property

Each of the network interfaces of the Sun hme FastEthernet has been assigned a unique Media Access Control (MAC) address, which represents the 48-bit Ethernet address for that network interface. The OpenBoot™ firmware reports this MAC address via the `local-mac-address` property in the device nodes corresponding to the network interfaces.

A system is not obligated to use this assigned MAC address if it has a systemwide MAC address. In such cases, the systemwide MAC address applies to all network interfaces on the system.

The device driver, or any other adapter utility, can use the network device’s MAC address (`local-mac-address`) while configuring it. A network interface’s MAC address can be used when booting over the network.

The `mac-address` property of the network device specifies the network address (systemwide or `local-mac-address`) used for booting the system. To start using the MAC addresses assigned to the network interfaces of the Sun hme FastEthernet, set the NVRAM configuration variable `local-mac-address?` to `true`.

```
ok setenv local-mac-address? true
```
Parameter Definitions

This chapter describes the parameters and settings for the `hme` device driver.

Driver Parameter Values and Definitions

The following sections describe the `hme` driver parameters, which are listed in TABLE 3-1.

<table>
<thead>
<tr>
<th>TABLE 3-1</th>
<th><code>hme</code> Driver Parameter, Status, and Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Status</td>
</tr>
<tr>
<td>transceiver_inuse</td>
<td>Read only</td>
</tr>
<tr>
<td>link_status</td>
<td>Read only</td>
</tr>
<tr>
<td>link_speed</td>
<td>Read only</td>
</tr>
<tr>
<td>link_mode</td>
<td>Read only</td>
</tr>
<tr>
<td>ipg1</td>
<td>Read and write</td>
</tr>
<tr>
<td>ipg2</td>
<td>Read and write</td>
</tr>
<tr>
<td>use_int_xcvr</td>
<td>Read and write</td>
</tr>
<tr>
<td>pace_size</td>
<td>Read and write</td>
</tr>
<tr>
<td>adv_autoneg_cap</td>
<td>Read and write</td>
</tr>
<tr>
<td>adv_100T4_cap</td>
<td>Read and write</td>
</tr>
<tr>
<td>adv_100fdx_cap</td>
<td>Read and write</td>
</tr>
<tr>
<td>adv_100hdx_cap</td>
<td>Read and write</td>
</tr>
<tr>
<td>adv_10fdx_cap</td>
<td>Read and write</td>
</tr>
<tr>
<td>Parameter</td>
<td>Status</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>adv_10hdx_cap</td>
<td>Read and write</td>
</tr>
<tr>
<td>autoneg_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>100T4_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>100fdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>100hdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>10fdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>10hdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>lp_autoneg_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>lp_100T4_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>lp_100fdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>lp_100hdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>lp_10fdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>lp_10hdx_cap</td>
<td>Read only</td>
</tr>
<tr>
<td>instance</td>
<td>Read and write</td>
</tr>
<tr>
<td>lance_mode</td>
<td>Read and write</td>
</tr>
<tr>
<td>ipg0</td>
<td>Read and write</td>
</tr>
</tbody>
</table>
Defining the Current Status

The read-only parameters described in TABLE 3-2 explain the operational mode of the interface. These parameters define the current status.

TABLE 3-2 Read-Only Parameters Defining the Current Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>link_status</td>
<td>Current link status</td>
<td>0 = Link down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Link up</td>
</tr>
<tr>
<td>transceiver_inuse</td>
<td>Current transceiver status</td>
<td>0= Internal transceiver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1= External transceiver</td>
</tr>
<tr>
<td>link_speed</td>
<td>Valid only if the link is up</td>
<td>0 = 10 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 100 Mbps</td>
</tr>
<tr>
<td>link_mode</td>
<td>Valid only if the link is up</td>
<td>0 = Half duplex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Full duplex</td>
</tr>
</tbody>
</table>

Inter-Packet Gap Parameters

The Fast Ethernet Parallel Port SCSI (FEPS) ASIC supports programmable Inter-Packet Gap (IPG) parameters \(\text{ipg1}\) and \(\text{ipg2}\). The total IPG is the sum of \(\text{ipg1}\) and \(\text{ipg2}\). The total IPG is 9.6 microseconds when the link speed set by the autonegotiation protocol is 10 Mbps. When the link speed is 100 Mbps, the total IPG is 0.96 microseconds.

TABLE 3-3 lists the default values and allowable values for the IPG parameters, \(\text{ipg1}\) and \(\text{ipg2}\).

TABLE 3-3 Read-Write Inter-Packet Gap Parameter Values and Descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values (Byte-time)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ipg1})</td>
<td>0, 255</td>
<td>(\text{ipg1} = 8) (default at initialization)</td>
</tr>
<tr>
<td>(\text{ipg2})</td>
<td>0, 255</td>
<td>(\text{ipg2} = 4) (default at initialization)</td>
</tr>
</tbody>
</table>

By default, the driver sets \(\text{ipg1}\) to 8-byte time and \(\text{ipg2}\) to 4-byte time, which are the standard values. (Byte time is the time it takes to transmit one byte on the link, with a link speed of either 100 Mbps or 10 Mbps.)
If your network has systems that use longer IPG (the sum of \texttt{ipg1} and \texttt{ipg2}) and if those machines seem to be slow in accessing the network, increase the values of \texttt{ipg1} and \texttt{ipg2} to match the longer IPGs of other machines.

\section*{Defining an Additional Delay Before Transmitting a Packet Using \texttt{lance_mode} and \texttt{ipg0}}

The following two ASICs support a programmable mode called \texttt{lance_mode}. The \texttt{ipg0} parameter is associated with \texttt{lance_mode}:

- Fast Ethernet Parallel Port SCSI (FEPS) for SBus
- PCI Fast Ethernet and Expansion (PFEX for PCI)

After a packet is received with \texttt{lance_mode} enabled (default) an additional delay is added by setting the \texttt{ipg0} parameter before transmitting the packet. This delay, set by the \texttt{ipg0} parameter, is in addition to the delay set by the \texttt{ipg1} and \texttt{ipg2} parameters. The additional delay set by \texttt{ipg0} helps to reduce collisions. Systems that have \texttt{lance_mode} enabled might not have enough time on the network.

If \texttt{lance_mode} is disabled, the value of \texttt{ipg0} is ignored and no additional delay is set. Only the delays set by \texttt{ipg1} and \texttt{ipg2} are used. Disable \texttt{lance_mode} if other systems keep sending a large number of back-to-back packets.

You can set the additional delay with the \texttt{ipg0} parameter from 0 to 31, which is the nibble time delay. Nibble time is the time it takes to transfer four bits on the link. If the link speed is 10 Mbps, nibble time is equal to 400 ns. If the link speed is 100 Mbps, nibble time is equal to 40 ns.

For example, if the link speed is 10 Mbps, and you set \texttt{ipg0} to 20 nibble times, multiply 20 by 400 ns to get 8000 ns. If the link speed is 100 Mbps, and you set \texttt{ipg0} to 30 nibble-times, multiply 30 by 40 ns to get 1200 ns.

\begin{table}[h]
\centering
\caption{Parameters Defining \texttt{lance_mode} and \texttt{ipg0}}
\begin{tabular}{|l|l|l|}
\hline
Parameter & Values & Description \\
\hline
\texttt{lance_mode} & 0 & \texttt{lance_mode} disabled \\
 & 1 & \texttt{lance_mode} enabled (default) \\
\texttt{ipg0} & 0-31 1 & Additional IPG before transmitting a packet (after receiving a packet) \\
\hline
\end{tabular}
\end{table}

1 The default value is 16 nibble-times, which is 6.4 microseconds for 10 Mbps and 0.64 microseconds for 100 Mbps.
Operational Mode Parameters

Table 3.5 describes the operational mode parameters and their default values.

Table 3.5 Operational Mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>adv_autoneg_cap</td>
<td>Local transceiver capability advertised by the hardware</td>
<td>0 = Forced mode, 1 = Auto-negotiation (default)</td>
</tr>
<tr>
<td>adv_100T4_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 100BASE-T4 capable (default), 1 = 100BASE-T4 capable</td>
</tr>
<tr>
<td>adv_100fdx_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 100 Mbit/sec full-duplex capable, 1 = 100 Mbit/sec full-duplex capable (default)</td>
</tr>
<tr>
<td>adv_100hdx_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 100 Mbit/sec half-duplex capable, 1 = 100 Mbit/sec half-duplex capable (default)</td>
</tr>
<tr>
<td>adv_10fdx_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 10 Mbit/sec full-duplex capable, 1 = 10 Mbit/sec full-duplex capable (default)</td>
</tr>
<tr>
<td>adv_10hdx_cap<sup>1</sup></td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 10 Mbit/sec half-duplex capable, 1 = 10 Mbit/sec half-duplex capable (default)</td>
</tr>
<tr>
<td>use_int_xcvr</td>
<td>Local transceiver capability selected for networking by the user</td>
<td>0 = External transceiver is used if connected, 1 = Internal transceiver is used, even if the external transceiver is connected (default)</td>
</tr>
</tbody>
</table>

1. The priority (in descending order) for these parameters is: adv_100fdx_cap, adv_100hdx_cap, adv_10fdx_cap, adv_10hdx_cap.
Selecting the Internal or External Transceiver

Use the `use_int_xcvr` parameter to change the default. For example, you can select the internal transceiver, even though the driver is capable of selecting the external transceiver. The driver, not the hardware, determines the internal and external transceiver.

If the external transceiver, which is connected to the MII interface, is present, the driver selects the external transceiver using the default `use_int_xcvr = 0`. If the external transceiver is not present, the driver selects the internal transceiver. When this parameter is set to `use_int_xcvr = 1`, the driver selects the internal transceiver, even if the external transceiver is connected.

Defining the Number of Back-to-Back Packets to Transmit

The `pace_size` parameter (see TABLE 3-6) defines the maximum number of back-to-back packets you can transmit at one time. If the value is zero, there is no limit to the number of back-to-back packets that can be transmitted.

<table>
<thead>
<tr>
<th>TABLE 3-6</th>
<th>Back-to-Back Packet Transmission Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Values</td>
</tr>
<tr>
<td><code>pace_size</code></td>
<td>1 to 255</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Reporting Transceiver Capabilities

TABLE 3-7 describes the read-only transceiver capabilities (either the internal transceiver or the external transceiver), whichever is selected.

TABLE 3-7 Read-Only Transceiver Capabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoneg_cap</td>
<td>Local transceiver capability of the hardware</td>
<td>0 = Not capable of auto-negotiation, 1 = Auto negotiation capable</td>
</tr>
<tr>
<td>100T-4_cap</td>
<td>Local external transceiver capability of the hardware</td>
<td>0 = Not 100BASE-T4 capable, 1 = 100BASE-T4 capable</td>
</tr>
<tr>
<td>100fdx_cap</td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 10 Mbit/sec full-duplex capable, 1 = 10 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td>100hdx_cap</td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 10 Mbit/sec half-duplex capable, 1 = 10 Mbit/sec half-duplex capable</td>
</tr>
<tr>
<td>10fdx_cap</td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 10 Mbit/sec full-duplex capable, 1 = 10 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td>10hdx_cap</td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 10 Mbit/sec half-duplex capable, 1 = 10 Mbit/sec half-duplex capable</td>
</tr>
</tbody>
</table>

The parameters in TABLE 3-7 define the capabilities of the hardware. The internal transceiver can support all of these capabilities. The capabilities of the external transceiver are dependent on the device. If the external transceiver is not capable of auto-negotiation but has the capability of all speeds and modes (100 Mbps, 10 Mbps, half-duplex, and full-duplex), you must force the operational speed and mode of the external transceiver.
Reporting the Link Partner Capabilities

TABLE 3-8 describes the read-only link partner capabilities.

TABLE 3-8 Read-Only Link Partner Capabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>lp_autoneg_cap</td>
<td>0 = No auto-negotiation</td>
</tr>
<tr>
<td></td>
<td>1 = Auto-negotiation</td>
</tr>
<tr>
<td>lp_100T4_cap</td>
<td>0 = No 100BASE-T4</td>
</tr>
<tr>
<td></td>
<td>1 = 100BASE-T4</td>
</tr>
<tr>
<td>lp_100fdx_cap</td>
<td>0 = No 100 Mbit/sec full-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1 = 100 Mbit/sec full-duplex</td>
</tr>
<tr>
<td>lp_100hdx_cap</td>
<td>0 = No 100 Mbit/sec half-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1 = 100 Mbit/sec half-duplex</td>
</tr>
<tr>
<td>lp_10fdx_cap</td>
<td>0 = No 10 Mbit/sec full-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1 = 10 Mbit/sec full-duplex</td>
</tr>
<tr>
<td>lp_10hdx_cap</td>
<td>0 = No 10 Mbit/sec half-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1 = 10 Mbit/sec half-duplex</td>
</tr>
</tbody>
</table>

If the link partner is not capable of auto-negotiation (when \(lp_autoneg_cap \) is 0) the information described in TABLE 3-8 is not relevant and the parameter value = 0.

If the link partner is capable of auto-negotiation (when \(lp_autoneg_cap \) is 1) then the speed and mode information is displayed when you use auto-negotiation and get the link partner capabilities.
Setting Parameters

This chapter describes how to configure the hme driver parameters using the ndd utility in the /etc/system file, or in the hme.conf file. Use the ndd utility to configure parameters that are valid until you reboot the system.

To configure the hme driver parameters for all devices in the system so that the parameter values are always in effect (even after rebooting the system), enter the parameter values in the /etc/system file. When the system is rebooted, it reads the /etc/system file and sets the parameter values in that file.

To set the parameters for a particular device in the system, set the parameters in the hme.conf file in the /kernel/drv directory. The parameters set in the hme.conf file have precedence over the parameters set in the /etc/system file and override the parameters set in the /etc/system file. The parameters values set in hme.conf are always in effect (even after rebooting the system).

Parameter Options

You can set the hme device driver parameters in three ways (ndd, /etc/system, and hme.conf), depending on your needs. To set parameters that are valid until you reboot the system, use the ndd utility. Using ndd is a good way to test parameter settings.

To set parameters so they remain in effect after you reboot the system:

- Add the parameter values to /etc/system when you want to configure parameters for all devices in the system.
- Create the hme.conf file and add parameter values to hme.conf when you need to set a particular parameter for a device in the system.
If you want to test parameter settings, use the ndd utility described in “Setting Parameters Using ndd”. With ndd, the parameters are effective until you reboot the system. To make the parameter settings permanent, enter the values in `/etc/system` or `hme.conf` as described in this chapter.

Setting Parameters Using ndd

Use the ndd utility to configure parameters that are valid until you reboot the system. The ndd utility supports any networking driver, which implements the Data Link Provider Interface (DLPI).

The following sections describe how you can use the hme driver and the ndd utility to modify (with the `-set` option) or display (without the `-set` option) the parameters for each SUNW, hme device.

Identifying Device Instances

Before you use the ndd utility to get or set a parameter for the hme device, you must specify the device instance for the utility if there is more than one SUNW, hme device.

Note – If there is only one SUNW, hme device, the device is automatically chosen by the ndd utility.

▼ To Specify the Device Instance for the ndd Utility

1. Check the `/etc/path_to_inst` file to identify the instance associated with a particular device.
2. Use that instance number to select the device as follows:

```plaintext
% ndd -set /dev/hme instance instance#
```

The device remains selected until you change the selection.

Non-Interactive and Interactive Modes

You can use the ndd utility in two modes:
Non-interactive
Interactive

In non-interactive mode, you invoke the utility to execute a specific command. Once the command is executed, you exit the utility. In interactive mode, you can use the utility to get or set more than one parameter value. (Refer to the ndd (1M) man page for more information.)

Using the ndd Utility in Non-Interactive Mode

This section describes how to modify a parameter value and how to display a parameter value.

1. **To modify a parameter value, use the -set option.**
 If you invoke the ndd utility with the -set option, the utility passes value, which must be specified down to the named /dev/hme driver instance, and assigns it to the parameter:

   ```
   % ndd -set /dev/hme parameter value
   ```

1. **To display the value of a parameter, specify the parameter name (and omit the value).**
 When you omit the -set option, a query operation is assumed and the utility queries the named driver instance, retrieves the value associated with the specified parameter, and prints it:

   ```
   % ndd /dev/hme parameter
   ```

Using the ndd Utility in Interactive Mode

1. **To modify a parameter value in interactive mode, specify ndd hme, as shown below.**
 The ndd utility then prompts you for the name of the parameter:

   ```
   % ndd /dev/hme
   name to get/set? (Enter the parameter name or ? to view all parameters)
   ```

 After you enter the parameter name, the ndd utility prompts you for the parameter value (see TABLE 3-1 through TABLE 3-8).
1. To list all the parameters supported by the hme driver, type `ndd /dev/hme \?`. (See TABLE 3-1 through TABLE 3-8 for parameter descriptions.)

CODE EXAMPLE 4-1 Example of Listing All Parameters Supported by the hme Driver

```bash
example# ndd /dev/hme \\?
?                  (read only)
transceiver_inuse  (read only)
link_status        (read only)
link_speed         (read only)
link_mode          (read only)
ipg1               (read and write)
ipg2               (read and write)
use_int_xcvr       (read and write)
pace_size          (read and write)
adv_autoneg_cap    (read and write)
adv_100T4_cap      (read and write)
adv_100fdx_cap     (read and write)
adv_100hdx_cap     (read and write)
adv_10fdx_cap      (read and write)
adv_10hdx_cap      (read and write)
autoneg_cap        (read only)
100T4_cap          (read only)
100fdx_cap         (read only)
100hdx_cap         (read only)
10fdx_cap          (read only)
10hdx_cap          (read only)
lp_autoneg_cap     (read only)
lp_100T4_cap       (read only)
lp_100fdx_cap      (read only)
lp_100hdx_cap      (read only)
lp_10fdx_cap       (read only)
lp_10hdx_cap       (read only)
instance           (read and write)
lance_mode         (read and write)
ipg0               (read and write)
example#
```

Setting Forced Mode

The procedure that follows describes how to set forced mode (not capable of auto-negotiation).
To Select One Local Transceiver Capability and Setting Forced Mode

1. Select one of the following capabilities: adv_100T4_cap, adv_100fdx_cap, adv_100hdx_cap, adv_10fdx_cap, or adv_10hdx_cap, and set its value to 1.
 If you select more than one of the local transceiver capabilities, the driver selects the one that is highest in the priority order.

2. Set the local transceiver capabilities advertised by the hardware to forced mode = 0, which is not capable of auto-negotiation: adv_autoneg_cap = 0
 Use the ndd utility as described in “Using the ndd Utility in Interactive Mode” in this chapter.

Auto-Negotiation Mode

To Set the Mode to Auto-Negotiation

1. Select at least one of the five capabilities (adv_100T4_cap, adv_100fdx_cap, adv_100hdx_cap, adv_10fdx_cap, adv_10hdx_cap) that you want to advertise to the remote system, and set its value to 1.

2. Set the local transceiver capabilities advertised by the hardware to 1, the auto-negotiation setting: adv_autoneg_cap = 1
 Use the ndd utility as described in “Using the ndd Utility in Interactive Mode” on page 31 in this chapter.

Setting Parameters in the `/etc/system` File

To configure the hme driver parameters for all SUNW, hme devices in the system so that the parameter variables are always effective (even after rebooting the system), enter the parameter variables in the `/etc/system` file. When you reboot the system, the system reads the `/etc/system` file and sets these parameter variables in the hme module in the operating system kernel.
TABLE 4-1 lists the variables you need to set in the /etc/system file.

TABLE 4-1 Setting Variables in the /etc/system File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipg1</td>
<td>hme_ipg1</td>
</tr>
<tr>
<td>ipg2</td>
<td>hme_ipg2</td>
</tr>
<tr>
<td>use_int_xcvr</td>
<td>hme_use_int_xcvr</td>
</tr>
<tr>
<td>pace_size</td>
<td>hme_pace_size</td>
</tr>
<tr>
<td>adv_autoneg_cap</td>
<td>hme_adv_autoneg_cap</td>
</tr>
<tr>
<td>adv_100T4_cap</td>
<td>hme_adv_100T4_cap</td>
</tr>
<tr>
<td>adv_100fdx_cap</td>
<td>hme_adv_100fdx_cap</td>
</tr>
<tr>
<td>adv_100hdx_cap</td>
<td>hme_adv_100hdx_cap</td>
</tr>
<tr>
<td>adv_10fdx_cap</td>
<td>hme_adv_10fdx_cap</td>
</tr>
<tr>
<td>adv_10hdx_cap</td>
<td>hme_adv_10hdx_cap</td>
</tr>
<tr>
<td>lance_mode</td>
<td>hme_lance_mode</td>
</tr>
<tr>
<td>ipg0</td>
<td>hme_ipg0</td>
</tr>
</tbody>
</table>

These parameter values, described in Chapter 3, are applicable to all SUNW, hme devices on the system. See TABLE 3-2 through TABLE 3-8 for parameter descriptions. An example follows.

▼ To Set the *ipg1* to 10 and *ipg2* to 5 When Rebooting

1. Become superuser.
2. Add the following lines to the /etc/system file:
   ```
   set hme:hme_ipg1 = 10
   set hme:hme_ipg2 = 5
   ```
3. Save the /etc/system file.
4. Save all files and exit all programs. Exit the windowing system.
5. Reboot the system by typing `init 6` at the superuser prompt.
 The system is halted and then rebooted.
Setting Parameters Using the hme.conf File

You can also specify the properties described in the section, “Setting Parameters in the /etc/system File”, in this chapter on a per-device basis by creating the hme.conf file in the /kernel/drv directory. The properties set in the hme.conf file will override the parameters set in the /etc/system file. Use hme.conf when you need to set a particular parameter for a device in the system. The parameters you set are read and write parameters that are listed in Chapter 3.

The man pages for prtconf (1M), system (4) and driver.conf (4) include additional details. An example follows:

▼ To Set ipg1 to 20 and ipg2 in SBus Slot 0xe

1. Invoke the prtconf -v command and pipe the output to the more command (prtconf -v | more) or redirect the output of the command to a file name (prtconf -v > filename) and print the redirected file.

2. Find the section in the prtconf -v output for SUNW,hme,instance #0, or SUNW,hme,instance #1, and so on.

The output for SUNW,hme,instance #0 for a Sun Ultra 1 Creator Series system follows:

```
SUNW,hme, instance #0
  Driver software properties:
    name <pm_norm_pwr> length <4>
      value <0x00000001>.
    name <pm_timestamp> length <4>
      value <0x30743b26>.
  Register Specifications:
    Bus Type=0xe, Address=0x8c00000, Size=108
    Bus Type=0xe, Address=0x8c02000, Size=2000
    Bus Type=0xe, Address=0x8c04000, Size=2000
    Bus Type=0xe, Address=0x8c06000, Size=2000
    Bus Type=0xe, Address=0x8c07000, Size=20
```


4. Create the hme.conf file in the /kernel/drv directory using a text editor and add lines similar to the following to the file:
a. Specify name="hme" and class="sbus."

b. Use the reg property to specify the device, 0xe in this case. Use the value following Bus Type in the prtconf -v output.

c. Type the addresses followed by the specified sizes. Precede each size with 0x and leading zeros, as indicated in the following screen.

d. Set ipg1 and ipg2. Type a semicolon (;) after the last value.

These parameters are set to 20 and 10, respectively, in this example. The ipg parameters are defined in Chapter 3.

```
name="hme" class="sbus"
reg=0xe,0x8c00000,0x00000108,0xe,0x8c02000,0x00002000,0xe,
0x8c04000,0x00002000,0xe,0x8c06000,0x00002000,0xe,0x8c07000,
0x00000020
ipg1=20 ipg2=10;
```

5. Save the hme.conf file.

6. Save and close all files and exit all programs; exit the windowing system.

7. Halt and reboot the system by typing the init 6 command at the superuser prompt.

Setting Driver Parameters for PCI-Bus hme Interfaces Using hme.conf

▼ To Configure Driver Parameters With PCI-bus Based Systems

1. Obtain the hardware path name for the device in the device tree.

 Typically this path name and the associated instance number will be present in the /etc/path_to_inst file. For example, on a Sun Ultra 30 UPA/PCI system in which one SunSwift-PCI card is plugged in, the /etc/path_to_inst file will have the following two entries (in addition to entries for other devices):

   ```
   "/pci@1f,4000/network@1,1" 0 "hme"
   "/pci@1f,4000/pci@4/SUNW,hme@0,1" 1 "hme"
   ```

 - The first entry corresponds to the hme device on the motherboard. The second entry corresponds to the hme device on the SunSwift-PCI card.
 - In the previous lines:
The first part within the double quotes specifies the hardware node name in the device tree.

The second number is the instance number.

The last part in double quotes is the driver name.

In the device path name, the last component after the last / character and before the @ character is the device name.

The path name before the last component is the parent name.

The comma-separated numbers after the @ character at the end represent the device and function numbers, which are together referred to as unit-address.

To identify a PCI device unambiguously in the hme.conf file, use the name, parent name, and the unit-address for the device. Refer to the pci(4) man page for more information about the PCI device specification.

In the first line of the previous example:

- Name = network
- Parent = /pci@1f,4000
- Unit-address = 1,1

In the second line in the previous example:

- Name = SUNW,hme
- Parent = /pci@1f,4000/pci@4
- Unit-address = 0,1

2. Set the ipg1 and ipg2 parameters for the above two devices in the /kernel/drv/hme.conf file:

```plaintext
name = "SUNW,hme" parent = "/pci@1f,4000" unit-address = "1,1" ipg1=10 ipg2=5;
name = "SUNW,hme" parent = "/pci@1f,4000/pci@4" unit-address = "0,1" ipg1=20 ipg2=10;
```

Note that for the motherboard device, the SUNW,hme device is used even though the path name uses the name network. The SUNW,hme device name is the value of the compatible property for this device.