Contents

Preface xiii
How This Book Is Organized xiii
Before You Read This Book xiv
Using UNIX Commands xiv
Typographic Conventions xv
Shell Prompts xv
Related Documentation xvi
Accessing Sun Documentation Online xvii
Ordering Sun Documentation xvii
Sun Welcomes Your Comments xvii

1. SSP 3.5 Release Notes 1
General Issues 1
 Alternate Pathing Functionality 1
 Sun Netra T1 Server 2
 SSP Installation Supplement 2
 Viewing man Pages With AnswerBook2 Server 3
Changes to the SSP Software 3
 Changes to DR and SSP Commands and Behavior 4
2. Preparing for SSP 3.5 Installation or Upgrade 13
 Getting Started
 ▼ To Determine Your Current SSP Version 15
 ▼ To Obtain SSP Software From the Web 16
 ▼ To Obtain SSP Software From the CD-ROM 17
 ▼ To Create an SSP Backup File 17
 ▼ To Verify the Control Board Network Connection Between the Main and Spare SSP 19
 ▼ To Verify that the rsh(1) Command is Enabled 20
 ▼ To Establish a Floating IP Address 20
 ▼ To Prepare for SSP 3.5 Upgrade or SSP Patch Installation 21

3. Installing SSP 3.5 on a New Disk 29
SSP 3.5 Installation Process 29
Using Solaris Web Start 30
▼ To Create a New SSP 3.5 Disk Using Solaris Web Start 30
Using the ssp_install Command 35
▼ To Create a New SSP 3.5 Disk Using the ssp_install Command 36

4. Upgrading to SSP 3.5 41
SSP Upgrade Process 41
▼ To Upgrade from SSP 3.4 to SSP 3.5 42
▼ To Upgrade from SSP 3.2 or SSP 3.3 to SSP 3.5 43

5. After SSP Installation or Upgrade 47
Editing Initialization Files 47
Configuring the Network Time Protocol Daemon 48
▼ To Create the ntp.conf File 49

6. Installing the SSP 3.5 AnswerBook2 Collection 51
SSP 3.5 AnswerBook2 Collection 51
▼ To Install the SSP 3.5 AnswerBook2 Collection 51

7. Falling Back to a Previous SSP Release 53
SSP Fall Back 53
▼ To Fall Back to a Previous SSP Release 53

8. Running an OpenSSP 57
Impact of Third-Party Applications on the SSP 57
Required Resources for an OpenSSP 58
Keeping Current with Recommended Patches 59
Using the Solaris 8 Operating Environment 59
Estimating SSP and Third-Party Software Memory Usage 60
Calculating Memory Usage by Third-Party Applications 60
▼ To Obtain the Virtual Memory Amount Used by an Application 61
▼ To Calculate the Memory Requirements For an SSP Using the OpenSSP Memory Worksheet 62

Verifying That You Have Sufficient Real Memory 65
▼ To Determine Whether a System is Thrashing 66

CPU Utilization 67
SSP CPU Requirements 70

SSP Hardware 70
 Using a Faster Processor 71
 Adding More Memory 71
 Adding More Swap Space 71
 Adding More Disk Space 72

9. Installing the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains 73

Overview of Domain Installation Tasks 74
What You Need to Start the Domain Install 76
Domain Pre-Installation Tasks 77
▼ To Create the eeprom.image File 77
▼ To Create a New Domain on the SSP 78
▼ To Configure Domain Network Information 79
▼ To Set up the SSP as an Install Server 81
▼ To Bring Up the Domain to the OpenBoot PROM Level 82
▼ To Set Up the OpenBoot PROM Environment 83

Domain Installation Tasks 86
▼ boot net the Operating Environment to the Domain 87
▼ To Finish the suninstall Process 89

Domain Post-Installation Tasks 90
To Configure the Default Boot Disk 90
To Install Additional Software Packages 92
To Configure the NTP Packages 93
To Verify the Installation 94
Licensing Your Software 95
 FLEXlm-Based Licensing 95
 ▼ To Obtain the Sun Enterprise 10000 System Domain Host ID 95
Other Software Licensing 96

10. Upgrading to the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains 97
 Overview of Domain Upgrade Tasks 98
 What You Need to Start the Domain Upgrade 100
 Domain Pre-Upgrade Tasks 101
 ▼ To Prepare the Domain for the Upgrade 101
 ▼ To Verify the Domain Network Information 103
 ▼ To Set Up the SSP as an Install Server 104
 ▼ To Bring Up the Domain to the OpenBoot PROM Level 105
 ▼ To Set Up the OpenBoot PROM Environment 106
 Domain Upgrade Tasks 110
 ▼ To boot net the Operating Environment to the Domain 110
 ▼ To Finish the Upgrade Process 111
 Post-Upgrade Tasks 112
 ▼ To Configure the Default Boot Disk 113
 ▼ To Install Additional Software Packages 114
 ▼ To Configure the NTP Packages 116
 ▼ To Verify the Upgrade 116
 Licensing Your Software 117
FLEXlm-Based Licensing 117

▼ To Obtain the Sun Enterprise 10000 System Domain Host ID 118
Other Software Licensing 118

A. Configuring the SSP Network 119

▼ To Configure Your SSP Network 123

B. OpenSSP Memory Worksheet 129

Blank OpenSSP Memory Worksheet 129
How Memory Sizing Values are Derived 131

Process Private Resident Memory 131
Process Private Virtual Memory 131
System Memory (Line 1) 132
Base SSP Memory (Line 2) 133
Each Domain SSP Memory (Line 3) 133
Hostview Memory (Line 4) 133
Sun Management Center Memory (Line 5) 134
Kernel Buffer Memory (Line 8) 134
swapfs (Line 12) 135
Figures

FIGURE 2-1 SSP and Control Board Failover Configuration 25
FIGURE 2-2 SSP-Only Failover Configuration 26
FIGURE 2-3 Control Board-Only Failover Configuration 26
FIGURE 8-2 Utilization and Customers Expected 69
FIGURE 9-1 Overview of Domain Installation Tasks 75
FIGURE 10-1 Overview of Domain Upgrade Tasks 99
FIGURE A-1 Two-Subnet Network Configuration 120
FIGURE A-2 Three-Subnet Network Configuration 121
FIGURE A-3 Spare SSP Network Configuration 122
FIGURE A-4 /etc/hosts File for a Main SSP 125
FIGURE A-5 /etc/hosts File for a Spare SSP 126
Tables

TABLE P-1 Typographic Conventions xv
TABLE P-2 Shell Prompts xv
TABLE P-3 Related Documentation xvi
TABLE 1-1 DR Command and Behavioral Changes 5
TABLE 1-2 SSP Command and Behavior Changes 6
TABLE 1-3 Where to Find DR Information 7
TABLE 1-4 Required Patches for SSP 3.5 12
TABLE 2-1 Command Line Prompt Conventions 13
TABLE 2-2 SSP 3.5 Requirements 23
TABLE 2-3 SSP and Sun Enterprise 10000 Domain Installation and Upgrade Options 27
TABLE 8-1 CPU Utilization for SSP Software 70
TABLE 8-2 Additional CPU Utilization for Sun Management Software 70
TABLE 8-3 Additional CPU Utilization for SunScreen 70
TABLE 9-1 Required Items for Domain Installation 76
TABLE 9-2 SBus Numbers in the devalias File 85
TABLE 9-3 Installation Prompts Specific to the Sun Enterprise 10000 Server 87
TABLE 9-4 Minimum Disk Partition Sizes 88
TABLE 10-1 SBus Numbers in the devalias File 109
TABLE 10-2 Upgrade Prompts Specific to the Sun Enterprise 10000 Server 111
TABLE A-1 Two-Subnet Network Configuration 119
TABLE A-2 Three-Subnet Network Configuration 120
TABLE A-3 Spare SSP Network Configuration 122
TABLE B-1 System Memory Values 132
TABLE B-2 Base SSP Memory Values 133
TABLE B-3 Sun Management Center Memory Values 134
Preface

The Sun Enterprise 10000 SSP 3.5 Installation Guide and Release Notes contains the Release Notes for SSP 3.5 and describes how to install SSP 3.5 on the System Service Processor (SSP), which enables you to monitor and control the Sun Enterprise™ 10000 system.

How This Book Is Organized

This document contains the following chapters and appendixes:

Chapter 1 contains Release Notes.

Chapter 2 explains the requirements for installing or upgrading to SSP 3.5.

Chapter 3 describes how to install SSP 3.5 on a new disk.

Chapter 4 explains the procedure for upgrading to SSP 3.5.

Chapter 5 provides information on restoring initialization files and configuring the Network Time Protocol daemon.

Chapter 6 explains how to install the SSP 3.5 AnswerBook2 collection.

Chapter 7 explains the procedure for falling back to a previous release of SSP.

Chapter 8 describes how to estimate the resources required to run third-party applications on the SSP (referred to as an OpenSSP).

Chapter 9 explains how to install the Solaris operating environment on Sun Enterprise 10000 domains.

Chapter 10 describes how to upgrade the Solaris operating environment on Sun Enterprise 10000 domains.
Appendix A describes how to configure the SSP network files.

Appendix B provides a blank OpenSSP memory worksheet for determining OpenSSP memory requirements and a detailed explanation of how the memory values contained in the worksheet are derived.

Before You Read This Book

This manual is intended for the Sun Enterprise 10000 system administrator, with a working knowledge of UNIX® systems, particularly those based on the Solaris™ operating environment. If you do not have such knowledge, you must first read the Solaris User and System Administrator AnswerBook2™ collections provided with this system, and consider UNIX system administration training.

Using UNIX Commands

This document does not contain information on basic UNIX commands and procedures such as shutting down the system, booting the system, and configuring devices.

See one or more of the following for this information:

- AnswerBook online documentation for the Solaris software environment, particularly those dealing with Solaris system administration
- Other software documentation that you received with your system
Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output.</td>
<td>Edit your .login file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use ls -a to list all files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, when contrasted with on-screen computer output.</td>
<td>% su</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, words to be emphasized. Command-line variable; replace with a real name or value.</td>
<td>Read Chapter 6 in the User Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These are called class options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You must be root to do this.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To delete a file, type rm filename.</td>
</tr>
</tbody>
</table>

Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell superuser</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser</td>
<td>#</td>
</tr>
</tbody>
</table>
Related Documentation

<table>
<thead>
<tr>
<th>Application</th>
<th>Title</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Guide</td>
<td>Sun Enterprise 10000 SSP 3.5 User Guide</td>
<td>806-7613</td>
</tr>
<tr>
<td>Reference (man pages)</td>
<td>Sun Enterprise 10000 SSP 3.5 Reference Manual</td>
<td>806-7614</td>
</tr>
<tr>
<td>Other</td>
<td>Sun Enterprise 10000 Capacity on Demand 1.0 Administrator Guide</td>
<td>806-2190</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 Capacity on Demand 1.0 Reference Manual</td>
<td>806-2191</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 Dynamic Reconfiguration User Guide</td>
<td>806-7616</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 Dynamic Reconfiguration Reference Manual</td>
<td>806-7617</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 InterDomain Networks User Guide</td>
<td>806-5222</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 DR Configuration Guide</td>
<td>816-2095</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 IDN Configuration Guide</td>
<td>806-5230</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise 10000 IDN Error Messages</td>
<td>806-5231</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise Server Alternate Pathing 2.3.1 User Guide</td>
<td>806-4150</td>
</tr>
<tr>
<td></td>
<td>Sun Enterprise Server Alternate Pathing 2.3.1 Reference Manual</td>
<td>806-4151</td>
</tr>
<tr>
<td></td>
<td>Solaris 8 Advanced Installation Guide</td>
<td>806-7932</td>
</tr>
<tr>
<td></td>
<td>IP Network Multipathing Administration Guide</td>
<td>806-0850</td>
</tr>
<tr>
<td></td>
<td>MPxIO User and Installation Guide</td>
<td>Sun Network Storage Solutions website (http://www.sun.com/storage/san)</td>
</tr>
</tbody>
</table>
Accessing Sun Documentation Online

A broad selection of Sun system documentation is located at:
http://www.sun.com/products-n-solutions/hardware/docs
A complete set of Solaris documentation and many other titles are located at:
http://docs.sun.com

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.
For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at:
http://www.fatbrain.com/documentation/sun

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:
docfeedback@sun.com
Please include the part number (806-7615-10) of your document in the subject line of
your email.
SSP 3.5 Release Notes

This chapter covers the following topics:

- “General Issues” on page 1
- “Changes to the SSP Software” on page 3
- “Known SSP Bugs” on page 8
- “Bugs Fixed Since SSP 3.4” on page 9
- “Requests for Enhancement Completed in SSP 3.5” on page 11
- “Patches” on page 12

General Issues

Alternate Pathing Functionality

If you are currently using or are planning to use alternate pathing (AP) software on your Sun Enterprise 10000 domains with dynamic reconfiguration (DR), note that you must use multipathing software compatible with the type of DR model (either 2.0 or 3.0) running on those domains. DR models are new for SSP 3.5 and DR. For further information on DR models, see “Changes to the SSP Software” on page 3.

- For multipathing on DR model 2.0 domains, run the Sun Enterprise Server Alternate Pathing software. If your domain is running the Solaris 8 operating environment, you must use Alternate Pathing software version 2.3.1.

For further AP information, refer to the Sun Enterprise Server Alternate Pathing User Guide.
For multipathing on DR model 3.0 domains, run IPMP (the IP multipathing software provided with the Solaris 8 operating environment) and the Sun StorEdge™ Traffic Manager software (also known as MPxIO), included in Solaris Kernel Update Patches 111412-03, 111413-03, 111095-03, 111096-03, and 111097-03.

For details on IPMP, refer to the IP Network Multipathing Administration Guide in the Solaris 10/01 Update collection.

For the latest revision of the KU patches for MPxIO, check the SunSolve™ website (http://sunsolve.Sun.com). For information on installing and configuring MPxIO, refer to the MPxIO User and Installation Guide available through the Sun Network Storage Solutions website (http://www.sun.com/storage/san).

To access the MPxIO documentation:
- Using your web browser, go to http://www.sun.com/storage/san and click the link Downloads: Software/Firmware Upgrades and Documentation.
- Log in or register.
- Click the link Download SUNWsan documentation (.14 mb).

Note – MPxIO may not support automatic path switching for all devices. Refer to the MPxIO User and Installation Guide for details. If you require automatic path switching for devices that are not supported, use Alternate Pathing software with DR model 2.0.

Sun Netra T1 Server

The Sun Netra T1, a rackmounted thin server, can now be used as an SSP. For further information on the Netra T1, refer to the Netra T1 User and Administration Guide (part number 806-4707-10).

SSP Installation Supplement

The Sun Enterprise 10000 SSP 3.4 Installation Supplement (provided with the Solaris 8 4/01 and 7/01 releases) contained instructions on installing and upgrading the Solaris operating environment on Sun Enterprise 10000 domains. This information is now included in this document, the Sun Enterprise 10000 SSP 3.5 Installation Guide and Release Notes.
Viewing man Pages With AnswerBook2 Server

When you view the SSP man page collection with the AnswerBook2 server, clicking on the letters of the alphabet shown at the top of the page does not always display the section in which you are interested. Click on a man page from the list shown below the alphabet.

Changes to the SSP Software

SSP 3.5 offers

- Support for 466 MHz processors.
- Performance improvements that enable the SSP to function continuously under adverse conditions, when CPU and memory utilization is high.

These improvements use real-time processes and enable the SSP to retry operations without creating further excessive load on the SSP workstation or server.

- The capability to run lightweight, third-party applications (other than the SSP software and the Solaris operating environment) on an SSP workstation or server, referred to as an OpenSSP.

However, be sure that your SSP meets the resource requirements for running third-party applications along with the SSP software, as explained in Chapter 8.

- Two different models for dynamic reconfiguration. The DR model number indicates the type of DR functionality running on a Sun Enterprise 10000 domain:
 - DR model 2.0 — Uses the `dr_daemon` to control DR operations on the domain. You can use Hostview, `dz(1M)` shell, or automated dynamic reconfiguration (ADR) commands on the SSP to perform DR operations.

 DR model 2.0 is the default for domains running the Solaris 8 10/01 (Update 6) operating environment. If you want to run DR model 3.0 (explained below) on a domain, refer to the instructions for switching DR models in the *Sun Enterprise Dynamic Reconfiguration User Guide* (part number 806-7617-10).

 - DR model 3.0 — Uses the domain configuration server, `dcs(1M)` to control DR operations on the domain. You use the ADR commands on the SSP to perform DR operations. DR model 3.0 is consistent with DR functionality provided on other new Sun server lines.

 DR model 3.0 also interfaces with the Reconfiguration Coordination Manager (RCM) feature, which enables you to coordinate DR operations with other applications running on the domain, such as database, clustering, and volume management software. Such applications can register to receive notification of...
DR operations and coordinate their software activities with DR. For details on RCM, refer to the Solaris 8 System Administration Supplement in the Solaris 8 10/01 Update Collection.

Note – DR model 3.0 is available only in the Solaris 8 10/01 operating environment. DR model 3.0 also requires that SSP 3.5 software be running on the SSP. For instructions on installing or upgrading to the Solaris 8 10/01 operating environment, see Chapter 9 and Chapter 10.

For details on DR and how the DR models work, refer to the Sun Enterprise 10000 Dynamic Reconfiguration User Guide (part number 806-7616-10) and the Sun Enterprise 10000 Dynamic Reconfiguration Reference Manual (part number 806-7617-10).

Changes to DR and SSP Commands and Behavior

This section summarizes the changes to commands and behavior for DR and SSP 3.5:

- TABLE 1-1 explains the command changes related to DR.
- TABLE 1-2 describes the changes in SSP commands.
TABLE 1-1 DR Command and Behavioral Changes

<table>
<thead>
<tr>
<th>Command Name or Behavior</th>
<th>Applicable to DR Model</th>
<th>Description of Change</th>
</tr>
</thead>
</table>
| addboard(1M), deleteboard(1M), and moveboard(1M) | 2.0 and 3.0 | These automated dynamic reconfiguration (ADR) commands can be used to perform DR operations on domains running either DR model 2.0 or 3.0. Note the following changes in command behavior:
• addboard(1M) - If an error occurs in an addboard operation, an error message is written to standard error and the board is left in its failed state. You can either continue the operation by rerunning the addboard command or undo the operation by running the deleteboard(1M) command.
• deleteboard(1M) - If an error occurs in a deleteboard operation, an error message is written to standard error and the board is left in its failed state. You can either continue the operation by rerunning the deleteboard command or undo the operation by running the addboard(1M) command.
• moveboard(1M) - If an error occurs in a moveboard operation, an error message is written to standard error. If the specified board is detached and powered on, moveboard tries to attach the board to the specified domain. If the specified board is already in the specified domain, moveboard returns an exit status 0 (zero), indicating the operation was successfully completed. Each of these commands also offers the -f option, which attempts to force an operation by overriding certain software constraints. Note that these commands have additional exit status codes related to DR model 3.0.
| domain_status(1M) | 2.0 and 3.0 | The domain_status command now offers the -m option, which lists the DR model, either 2.0 or 3.0, used for each domain. For details, see the domain_status(1M) man page.
| rcfadm(1M) | 3.0 | rcfadm(1M) is a new DR command that enables you to remotely check DR model 3.0 board states from the SSP. For details, refer to the rcfadm(1M) man page, the Sun Enterprise 10000 Dynamic Reconfiguration Reference Manual and the Sun Enterprise 10000 Dynamic Reconfiguration User Guide. |
showdevices(1M) is a new SSP command that lists system board devices and resource usage information. This command, while it can be used to obtain general device and resource information, is used primarily to obtain information on DR operations performed on DR model 3.0 domains. For details, refer to the showdevices(1M) man page and the Sun Enterprise 10000 SSP 3.5 Reference Manual.

The showusage(1M) command now has an additional exit status code that indicates the board belongs to a DR model 3.0 domain (the showusage command is not supported on DR model 3.0 domains). For details, see the showusage(1M) man page or the Sun Enterprise 10000 SSP 3.5 Reference Manual.

<table>
<thead>
<tr>
<th>Command Name or Behavior</th>
<th>Applicable to DR Model</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>showdevices(1M)</td>
<td>3.0</td>
<td>showdevices(1M) is a new SSP command that lists system board devices and resource usage information. This command, while it can be used to obtain general device and resource information, is used primarily to obtain information on DR operations performed on DR model 3.0 domains. For details, refer to the showdevices(1M) man page and the Sun Enterprise 10000 SSP 3.5 Reference Manual.</td>
</tr>
<tr>
<td>showusage(1M)</td>
<td>2.0</td>
<td>The showusage (1M) command now has an additional exit status code that indicates the board belongs to a DR model 3.0 domain (the showusage command is not supported on DR model 3.0 domains). For details, see the showusage (1M) man page or the Sun Enterprise 10000 SSP 3.5 Reference Manual.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>bringup(1M)</td>
<td>Any arguments specified with the boot_args option of the bringup(1M) command, must be enclosed by quotation marks. For details, see the bringup(1M) man page.</td>
</tr>
<tr>
<td>setdatasync(1M)</td>
<td>The file propagation status includes another category, Active Archive, which indicates that a data synchronization backup is in progress.</td>
</tr>
<tr>
<td>setfailover(1M)</td>
<td>The setfailover(1M) command checks the data synchronization state before forcing a failover and will not force the failover if: • A data synchronization backup (active archive) is being performed • A file is being propagated • One or more files exist in the data synchronization queue</td>
</tr>
<tr>
<td>ssp_downgrade(1M)</td>
<td>Use the ssp_downgrade(1M) command to downgrade from SSP 3.5 to SSP 3.2. It is not necessary to run this command if you are downgrading from SSP 3.5 to SSP 3.4 or SSP 3.3.</td>
</tr>
<tr>
<td>sys_id(1M)</td>
<td>The ranges for the -k key, -s serial no, and -h host options of the sys_id(1M) command have been expanded.</td>
</tr>
</tbody>
</table>
Where to Find DR Information

The following table describes where you can find additional DR information.

<table>
<thead>
<tr>
<th>TABLE 1-3</th>
<th>Where to Find DR Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on</td>
<td>Refer to the</td>
</tr>
<tr>
<td>How DR models 2.0 and 3.0 work</td>
<td>Sun Enterprise 10000 Dynamic Reconfiguration User Guide</td>
</tr>
<tr>
<td>Switching the DR model for a domain</td>
<td>Sun Enterprise 10000 Dynamic Reconfiguration User Guide</td>
</tr>
<tr>
<td>Configuring DR</td>
<td>Sun Enterprise 10000 DR Configuration Guide</td>
</tr>
<tr>
<td>• Device prerequisites</td>
<td></td>
</tr>
<tr>
<td>• Overview of DR configuration tasks</td>
<td></td>
</tr>
<tr>
<td>• Prerequisites for DR detach operations</td>
<td></td>
</tr>
<tr>
<td>• Information on configuration changes during DR operations and how to control them</td>
<td></td>
</tr>
<tr>
<td>• How DR model 2.0 and Alternate Pathing software interact</td>
<td></td>
</tr>
<tr>
<td>Automated dynamic reconfiguration (ADR) commands:</td>
<td></td>
</tr>
<tr>
<td>• addboard(1M)</td>
<td></td>
</tr>
<tr>
<td>• deleteboard(1M)</td>
<td></td>
</tr>
<tr>
<td>• moveboard(1M)</td>
<td></td>
</tr>
<tr>
<td>• showusage(1M)</td>
<td></td>
</tr>
<tr>
<td>• showdevices(1M)</td>
<td></td>
</tr>
<tr>
<td>Obtaining board state information on the SSP for DR model 3.0 domains</td>
<td>rcfadm(1M) man page, command description in the Sun Enterprise 10000 Dynamic Reconfiguration Reference Manual, or the corresponding man pages</td>
</tr>
<tr>
<td>Obtaining board state information on the domain (for DR model 3.0 domains)</td>
<td>ccfadm(1M) man page or the command description in the Solaris 8 Reference Manual</td>
</tr>
<tr>
<td>DR commands in the Solaris operating environment:</td>
<td>The corresponding man pages or command descriptions in the Solaris 8 Reference Manual</td>
</tr>
<tr>
<td>• dcs (1M) - DR model 3.0 daemon</td>
<td></td>
</tr>
<tr>
<td>• dr_daemon (1M) - DR model 2.0 daemon</td>
<td></td>
</tr>
<tr>
<td>• dr(7D) - DR model 2.0 driver</td>
<td></td>
</tr>
<tr>
<td>• ngdr(7D) - DR model 3.0 driver</td>
<td></td>
</tr>
<tr>
<td>• ngdrmach(7D) - DR model 3.0 driver</td>
<td></td>
</tr>
<tr>
<td>DR error messages</td>
<td>Sun Enterprise 10000 Dynamic Reconfiguration User Guide, Appendix A. Also contains error messages formerly contained in the Sun Enterprise 10000 DR Error Messages document (part number 806-5229-10), which has been deleted from the Sun Hardware AnswerBook Collection.</td>
</tr>
</tbody>
</table>
Known SSP Bugs

It is suggested that you also check the Solaris 8 10/01 Release Notes Supplement for Sun Hardware for additional release notes pertaining to the Sun Enterprise 10000 system.

snmpd memory leaks during ADR operations (4486454)

Memory leaks related to the snmpd daemon can occur after multiple addboard(1M), deleteboard(1M), or moveboard(1M) operations.

Workaround: If SSP performance is affected by this memory leak, stop and start SSP daemons by doing the following:

As user ssp on the main SSP, type

```bash
ssp# /etc/init.d/ssp stop
ssp# /etc/init.d/ssp start
```

Known DR Bugs

DDI_RESUME Failure Results in Failure of Subsequent DR Operations (4353719)

If a device fails to resume after a DR detach operation, the resume failure can prevent subsequent DR operations.

Workaround: None.
deleteboard(1M) Operation on a Board with no Memory Causes a Domain Running the Solaris 7 or Solaris 8 Operating Environment to Crash (4468171)

If you perform a
- deleteboard(1M) operation
- moveboard(1M) operation
- Detach operation using dr shell

on a board that contains no memory, and the domains involved are running the Solaris 7 or Solaris 8 operating environment, the affected domains may crash or hang.

Workaround: Perform DR operations only on boards with memory.

Problem with oprom_checknodeid() during DR (4474330)

A panic can occur under certain circumstances when the /dev/openprom interface accesses the PROM device tree after a DR disconnect. The openprom driver caches node information that can become invalid after a DR disconnect. As a result, OBP can be passed a bad node address.

Workaround: To minimize the possibility of encountering this situation, discontinue using applications, such as prtconf, that use the /dev/openprom interface during or immediately before or after a DR disconnect operation. Note that picld(1M) uses the /dev/openprom driver.

Bugs Fixed Since SSP 3.4

The following bugs have been fixed in SSP 3.5:

4365206 - Solaris 8 6/00, SSP 3.3 fails to install Ultra-Enterprise-10000.snmpd.cnf file

4365471 - ssp_restore overwrites newer files with older ones.

4365492 - Stopping the SSP during a cb_reset caused all domains to reset
4377087 - SSP failover in SSP 3.4 does not work correctly under certain circumstances

4378472 - SSP reports power supply 5 is missing even through having 4 power supplies is a legal configuration

4379020 - Domain reboot hangs if a new entry has been made in the blacklist file to exclude a component

4379395 - Unable to bring up a crashed domain after a control board failover in SSP 3.4

4380350 - Hostview does not display the correct processor temperature for the appropriate system board

4383758 - config_float_ip ups the floating IP for the main SSP incorrectly

4402889 - Domain bringup does not verify that the boot processor returned from HPOST is in the domain

4405737 - Mechanical trouble with a fan tray can cause fan trays to power off

4411156 - “cpu tick sync failed in 256 attempt!” displayed during domain bringup on SSP 3.1.1

4415072 - “Bogus clk_mode” errors occur during phase procl for arbstop/recordstop/timeout

4416597 - Change SENSORMIN for system board temperature monitoring to reflect the onboard power supply redundancy

4417275 - procestemp reports “-0.00” temperature values

4423777 - Forced failover by “init 0” will often cause unexpected CB failover

4425460 - Exploitable static data buffer overflow with SSP snmpd

4428946 - Hostview force button is not enabled when xntpd is running

4451899 - All domains arbstopped after magic_cookie and libscan error reported to messages

4463339 - Failover does not reactivate a previously disabled spare properly

4469366 - Buffer overflow vulnerability in cb_reset
Requests for Enhancement Completed in SSP 3.5

The following Requests for Enhancement (RFE) have been implemented in SSP 3.5:

- 4268088 - Modify POST/SSP to reflect processor speed of 466 MHz
- 4351410 - Run SSP daemons as RT (real-time) process class
- 4360376 - autoconfig changes required to support new ecache SRAMs
- 4362960 - POST changes required to support new ecache SRAM
- 4366498 - Create new hpost ecache tests for new ecache SRAM
- 4368475 - Change check_host to log signatures when unexpected signatures are encountered
- 4376375 - Change libsysid to support new hostid ranges
- 4390086 - Need new client interfaces for Sun Enterprise 10000 DR model 3.0 support and other cleanups
- 4394348 - Disable setting of unused system reset bit in the control board (for reliability)
- 4396975 - Change SSP configuration scripts to automatically upgrade to PROM version 3.47
- 4402880 - ADR sample script should use showdevices(1M) command instead of showusage(1M) command to check result
- 4418571 - SSP needs to further check DR model 3.0/model 2.0 driver upon determining domain DR models
- 4419070 - Send a BBSRAM close net command upon netcon_server initialization
- 4419614 - Change default OS version to 5.8 in Hostview Create Domain window
- 4419788 - MSRAM processor property for Sun Enterprise 10000 system
- 4422147 - POST logs, POST dumps, arbstop and recordstop file names need a year component
- 4425374 - Enhance “unexpected foreign PIO” and “MC Timeout” messaging
- 4425380 - Remove dependency of ssp_startup on the presence of libnvpair
- 4458358 - POST ecache TAG test enhancement needed
4458552 - *ssp_config*(1M) should inform users to use lowest processor speed when processors are mixed

4470431 - *sys_clock* man page not clear for `-s` option

Patches

It is suggested that you check the SunSolve website

http://sunsolve.sun.com

on a regular basis for any SSP patches that may be available for SSP 3.5 and also any recommended patch clusters for the version of the Solaris operating environment that you are running.

If you need to install SSP software patches, be sure to install the patches on both the main and spare SSP and review “To Prepare for SSP 3.5 Upgrade or SSP Patch Installation” on page 21.

The following table lists the patches currently applicable to SSP 3.5:

<table>
<thead>
<tr>
<th>Patch Number</th>
<th>Install on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris KU patches 106541-17 and 111422-01</td>
<td>SSPs running the Solaris 7 operating environment.</td>
</tr>
<tr>
<td>Solaris KU patch 110945-02</td>
<td>SSPs running the Solaris 8 6/00, 10/00, 1/01, or 4/01 operating environment (Solaris updates 1, 2, 3, and 4)</td>
</tr>
</tbody>
</table>
Preparing for SSP 3.5 Installation or Upgrade

SSP installation refers to the installation of SSP 3.5 on a new disk. An upgrade refers to the update of SSP software to version 3.5.

This chapter describes the information you need to know before installing or upgrading to SSP 3.5:

- “Getting Started”
- “SSP 3.5 Hardware and Software Requirements”
- “Failover Configurations”
- “Installation and Upgrade Options”

The procedures in this guide use the conventions shown in TABLE 2-1 for command line prompts.

TABLE 2-1 Command Line Prompt Conventions

<table>
<thead>
<tr>
<th>Prompt</th>
<th>User Indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssp#</td>
<td>superuser on the SSP</td>
</tr>
<tr>
<td>ssp%</td>
<td>ssp user on the SSP</td>
</tr>
<tr>
<td>#</td>
<td>superuser on a system other than the SSP</td>
</tr>
</tbody>
</table>
Getting Started

This section describes how to begin the SSP installation or upgrade process:

- If you intend to use the SSP automatic failover capability, review “Failover Configurations” on page 25, which explains the physical architecture and components required for failover.
- If you want to run third-party applications on the SSP (referred to as an OpenSSP), review “SSP 3.5 Hardware and Software Requirements” on page 23 and Chapter 8 “Running an OpenSSP”.
- It is suggested that you first install or upgrade the SSP 3.5 software on the main SSP, then install or upgrade the SSP 3.5 software on the spare SSP.
 - You must run the same version of the SSP software (SSP 3.5) on both the main and spare SSP. It is also suggested that you run the same version of the Solaris operating environment on both the main and spare SSP.
 - If you are upgrading from SSP 3.4 to SSP 3.5 or are installing SSP patches, synchronize your main and spare SSP and disable failover before starting the SSP upgrade or patch installation. For further information, see “To Prepare for SSP 3.5 Upgrade or SSP Patch Installation” on page 21.
- If you are currently running SSP software, determine which version of the SSP software you are using.

 For details, see “To Determine Your Current SSP Version” on page 15. You can also use this procedure after installation or upgrade to verify that SSP 3.5 is running.

- Obtain the SSP software from one of the following sources:

 - The Web
 - The Solaris™ 8 Sun Computer Systems Supplement CD-ROM

 For details, see “To Obtain SSP Software From the Web” and “To Obtain SSP Software From the CD-ROM”.

- Create a backup file of your SSP environment.

 If you are currently running SSP software, create a backup file of the SSP environment by using the ssp_backup command. This command creates a backup file named ssp_backup.cpio in a directory that you specify. This backup file can be used to restore the SSP environment. For details, see “To Create an SSP Backup File” on page 17.
Note – You must run `ssp_backup` whenever the configuration on the SSP changes, so that the backup file reflects the most current SSP configuration. If you restore an SSP backup file that is not current, you will overwrite any configuration changes that occurred after the backup file was made.

- If you have a dual SSP configuration, verify that the main and the spare SSP can talk to each other through the control board network.

 For more information, see “To Verify the Control Board Network Connection Between the Main and Spare SSP” on page 19.

- Verify that the `rsh(1M)` command is enabled.

 For details, see “To Verify that the rsh(1) Command is Enabled” on page 20.

- Remove any `stty` commands from the `.cshrc` file for user `ssp` on the main and spare SSP.

- For failover purposes, establish the floating IP address of the working main SSP and place the address in the `/etc/hosts` file (see “To Establish a Floating IP Address” on page 20).

 This floating IP address must be different from the IP addresses used for your main and spare SSP. The floating IP address is a logical interface that eliminates the need for a specific SSP host name to communicate between the Sun Enterprise 10000 system and the main SSP.

 Upon an SSP failover, the floating IP address is registered on the new main SSP. The floating IP address enables communication between external monitoring software and the working main SSP.

 If you have a single SSP configuration, you must still assign a floating IP address to your SSP.

Note – If you need to revert to a previous release of SSP after installing or upgrading to SSP 3.5, see Chapter 7 “Falling Back to a Previous SSP Release”.

▼ To Determine Your Current SSP Version

1. On the SSP, type:

```bash
pkginfo -l SUNWsspr
```
2. Look for the VERSION line, for example:

```
VERSION: 3.5.0,REV=2000.nn.nn.nn.nn
```

where \(nn \) represents the date (month and day) and time (hours and minutes). The version number for SSP 3.5 is shown as 3.5.0.

▼ To Obtain SSP Software From the Web

This procedure does not apply to the beta release of SSP 3.5.

2. Click the link Enterprise 10000 System Service Processor (SSP) Software.
3. In the SSP 3.5 section, click the link [Click here to download](http://www.sun.com/servers/sw/). The file that will be downloaded is named `ssp_3_5_sparc.zip`.
4. On the SSP, log in as superuser.
5. Change directory to the location where you downloaded the SSP software.

```
ssp# cd download_directory
```

6. Unzip the downloaded file.

```
ssp# unzip ssp_3_5_sparc.zip
```

- The SSP 3.5 packages are located in the directory
 `/download_directory/ssp_3_5_sparc/System_ServiceProcessor_3.5/Product`
- The install and upgrade scripts are located in the directory
 `/download_directory/ssp_3_5_sparc/System_ServiceProcessor_3.5/Tools`

7. Check the SunSolve website (http://sunsolve.Sun.COM) for any SSP patches that might be available for SSP 3.5 and apply them to the main and spare SSP.

Be sure to review “To Prepare for SSP 3.5 Upgrade or SSP Patch Installation” on page 21 before installing SSP patches.
To Obtain SSP Software From the CD-ROM

1. Insert the “Solaris™ Sun Computer Systems Supplement” CD-ROM into the CD-ROM drive.
 Allow time for the volume manager to mount the CD-ROM.
 - The SSP 3.5 packages are located in the directory
 `/cdrom/cdrom0/System_Service_Processor_3.5/Product`
 - The install and upgrade scripts are located in the directory
 `/cdrom/cdrom0/System_Service_Processor_3.5/Tools`

2. Check the SunSolve website (http://sunsolve.Sun.COM) for any SSP patches that might be available for SSP 3.5 and apply them.
 Be sure to review “To Prepare for SSP 3.5 Upgrade or SSP Patch Installation” on page 21 before installing SSP patches.

To Create an SSP Backup File

You must create an SSP backup file whenever the SSP configuration changes, which can occur when
- Domains are created, removed, or modified (this includes changes due to dynamic reconfiguration operations)
- Board locations are changed
- New hardware is installed or existing hardware is upgraded or replaced
- The `autoconfig(1M)` command is run
- A control board failover occurs
- An SSP patch is installed

If you do not maintain a current SSP backup file and you restore an out-of-date SSP backup file, be aware that you can overwrite any SSP configuration changes that occurred after the backup file was created. For instance, if you install an SSP patch that updates the scantool database or the `ssp_resource` file, but you restore an old SSP backup file after installing the patch, the scantool database or the `ssp_resource` file will be overwritten by the SSP backup file. The out-of-date scantool database or `ssp_resource` file can cause unpredictable system behavior.

The size of the SSP backup file can vary depending upon the contents of the subdirectories in the `/var/opt/SUNWssp` directory. You can use the `du(1M)` command to determine the approximate amount of disk space required for the backup file.
1. As superuser on the main SSP, change directory to the following:

```
ssp# cd /opt/SUNWssp/bin
```

2. Back up the SSP environment on the SSP.

```
ssp# ./ssp_backup target_directory
```

A backup file named `ssp_backup.cpio` is created in `target_directory`. You may want to rename this file so that you can identify the SSP release associated with this backup file.

Do not make any changes to the Sun Enterprise 10000 environment, such as domain state or power status of boards, until you have completed the SSP installation or upgrade procedure and restored the SSP environment.

3. If you want to view a list of the SSP files that were backed up, type the following:

```
ssp% cpio -it -I ssp_backup.cpio
```
To Verify the Control Board Network Connection Between the Main and Spare SSP

- As superuser on the main SSP, type the following:

```
ssp# ping -sRv host
```

where `host` represents the control board network interfaces of the spare SSP. This command prints the route that packets take to the specified host. The following example shows the information displayed.

```
ssp# ping -sRv xf12-ssp-qfe1
PING xf12-ssp-qfe1: 56 data bytes
64 bytes from xf12-ssp-qfe1 (192.168.2.1): icmp_seq=0. time=1. ms
  IP options: <record route> xf12-ssp-qfe1 (192.168.2.1), xf12-ssp2-qfe1 (192.168.2.2), (End of record)
64 bytes from xf12-ssp-qfe1 (192.168.2.1): icmp_seq=1. time=1. ms
  IP options: <record route> xf12-ssp-qfe1 (192.168.2.1), xf12-ssp2-qfe1 (192.168.2.2), (End of record)
```

In the previous example, the main SSP (xf12-ssp) and spare (xf12-ssp2) are communicating through xf12-ssp-qfe1 to xf12-ssp2-qfe1.

Note – The first three numbers in the IP record route option for the main SSP host interface (192.168.2 in the example) must match the first three numbers in the IP record route option for the spare SSP host interface (192.168.2 in the example). The matching numbers indicate that communication between both control board network interfaces is enabled.

Be sure to check all the control board network interfaces, which are described in Appendix A “Configuring the SSP Network”.
To Verify that the `rsh(1)` Command is Enabled

1. As superuser on the main SSP, type the following:

```
ssp# rsh hostname
```

where `hostname` is the name of the spare SSP. If a shell window opens, it indicates that `rsh(1M)` and related commands, such as `rcp(1M)`, are enabled. Both of these commands are used by automatic failover.

If a shell window does not open, check the `/etc/inetd.conf` file. Be sure the following line, which enables `rsh`, is contained in the file:

```
shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
```

2. Repeat Step 1 on the spare SSP and specify the main SSP as the `hostname`.

To Establish a Floating IP Address

Note – The floating IP address is associated with the floating SSP host name. The default value for the floating SSP host name is determined by appending `-ssp-main` to the platform name. For example, if the platform name is allxf5, the default SSP host name is `allxf5-ssp-main`.

1. If you use NIS, update the NIS map with the IP address to be used as the floating IP.

2. If you have private domains that do not use NIS, enter the floating IP address in the `/etc/hosts` file on the main and spare SSP.

 For an example `/etc/hosts` file, see Appendix A “To Configure Your SSP Network”.

3. If you have private domains that do not use NIS, enter the floating IP address and host name of the floating SSP in the `/etc/hosts` file for each domain.

Note – You do not need to specify this floating IP address in the `/etc/hostname.interface` files. The SSP software automatically enables the main SSP to use the floating IP address.
To Prepare for SSP 3.5 Upgrade or SSP Patch Installation

If you have a dual SSP configuration and you are upgrading from SSP 3.4 to SSP 3.5 or are installing SSP patches on SSPs running SSP 3.4 or 3.5 software, you must synchronize data between the main and spare SSP and then disable failover, as explained in the following steps. For further information on data synchronization and SSP failover, refer to the Sun Enterprise 10000 SSP 3.5 User Guide.

1. Determine if you have sufficient disk space in the /tmp directory on the main SSP for the data synchronization process to copy files from the main SSP to the spare.

 Review the size of the /tmp directory and remove any unnecessary files from the following directories on the main SSP to reduce the size of the data synchronization backup file:
 - $SSPLOGGER/messages.x
 - $SSPLOGGER/domain/Edd-recovery_files
 - $SSPLOGGER/domain/messages.x
 - $SSPLOGGER/domain/netcon.x
 - $SSPLOGGER/domain/post/files
 where x is the archive number of the file.

2. As user ssp on the main SSP, run the showdatasync(1M) command to verify that the data synchronization queue is empty and that all data file propagations have completed before you perform data synchronization.

   ```
   ssp% showdatasync
   ```

 If the data synchronization queue is not empty or file propagations are in progress, wait for the file propagations to complete before performing the next step.

3. Synchronize the data between the main and spare SSP by using the setdatasync(1M) command:

   ```
   ssp% setdatasync backup
   ```

 This data synchronization process backs up the main SSP and restores the backup on the spare SSP. You can run the showdatasync(1M) command on the main SSP to review the data synchronization queue on the main SSP. An empty queue indicates that the synchronization backup and restore operations have been completed.
4. Disable SSP failover by using the `setfailover(1M)` command:

```
ssp% setfailover off
```

SSP failover remains off until both SSPs are rebooted or you re-enable SSP failover using the command `setfailover on`.

5. If you installed an SSP patch, run `ssp_backup(1M)` to back up the SSP configuration.
SSP 3.5 Hardware and Software Requirements

SSP 3.5 now supports an OpenSSP environment, in which an SSP workstation or server can run third-party software, provided that the SSP meets the OpenSSP resource requirements (for details, see Chapter 8 “Running an OpenSSP”). TABLE 2-2 describes the minimum SSP 3.5 resources required if you are running an SSP-only or OpenSSP environment.

TABLE 2-2 SSP 3.5 Requirements

<table>
<thead>
<tr>
<th>Resource</th>
<th>SSP Minimum Requirement</th>
<th>OpenSSP Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris operating environment on the SSP</td>
<td>• Solaris 7 with KU patches 106541-17 and 111422-01 or • Solaris 8 6/00, 10/00, 1/01, or 4/01 with KU patch 110945-02. If the SSP is running the Solaris 8 7/01 or 10/01 operating environment, patch 110945-02 is not required.</td>
<td>Same as SSP minimum requirement.</td>
</tr>
<tr>
<td></td>
<td>Note: Check the SunSolve website for the current KU patches available (http://sunsolve.Sun.com). For details on required patches, see TABLE 1-4 on page 12.</td>
<td></td>
</tr>
<tr>
<td>Solaris operating environment on Sun Enterprise 10000 domains</td>
<td>DR model 3.0 domains must run Solaris operating environment 8 10/01.</td>
<td>Same as SSP minimum requirement.</td>
</tr>
<tr>
<td>System Service Processor (SSP) upgrade</td>
<td>Version 3.2, 3.3, or 3.4 Before SSP upgrade, review “Getting Started” on page 14.</td>
<td>Same as SSP minimum requirement. Before installation, review Chapter 8 “Running an OpenSSP”.</td>
</tr>
<tr>
<td>System Service Processor (SSP) new installation</td>
<td>Before SSP installation: • Review “Getting Started” on page 14. • Review “Failover Configurations” on page 25. • Configure SSP network files, as described in Appendix A “Configuring the SSP Network”.</td>
<td>Same as SSP minimum requirement. Before installation, review Chapter 8 “Running an OpenSSP”.</td>
</tr>
</tbody>
</table>
TABLE 2-2 SSP 3.5 Requirements

<table>
<thead>
<tr>
<th>Resource</th>
<th>SSP Minimum Requirement</th>
<th>OpenSSP Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>SPARCstation™ 5 (supports 1 to 8 domains), Sun Ultra 5, or Sun Enterprise™ 250 workstation (supports 1 to 16 domains); or a Netra™ T1 server (which runs the Solaris 8 operating environment)</td>
<td>Sun Ultra 5 or Sun Enterprise 250 workstation; or a Netra T1 server (which runs the Solaris 8 operating environment)</td>
</tr>
<tr>
<td>Control board flash</td>
<td>Version 3.47 (included with SSP 3.5 in the SUNWsspf package)</td>
<td>Same as SSP minimum requirement</td>
</tr>
<tr>
<td>PROM boot firmware</td>
<td></td>
<td>Same as SSP minimum requirement</td>
</tr>
<tr>
<td>Ethernet connections</td>
<td>Minimum three connections for failover purposes</td>
<td>Same as SSP minimum requirement</td>
</tr>
<tr>
<td>Ethernet hubs</td>
<td>Minimum two hubs for failover purposes. For details, see “Failover Configurations” on page 25.</td>
<td>Same as SSP minimum requirement</td>
</tr>
<tr>
<td>Floating IP address</td>
<td>Identifies the working main SSP, as explained in “Getting Started” on page 14</td>
<td>Same as SSP minimum requirement</td>
</tr>
<tr>
<td>Disk space</td>
<td>2.1 Gbytes for the Solaris operating environment and SSP software</td>
<td>3.2 Gbytes for the Solaris operating environment, SSP software, and third-party software</td>
</tr>
<tr>
<td></td>
<td>This includes 1.1 Gbytes for the Solaris operating environment, 1 Gbyte for SSP software and log files (in /var/opt/SUNWssp/ and /var/adm/), 512 Mbytes swap space, and 512 Mbytes or more for third-party applications</td>
<td></td>
</tr>
<tr>
<td>Processor speed</td>
<td>170 MHz</td>
<td>270 MHz</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>None</td>
<td>35% idle</td>
</tr>
<tr>
<td>Real memory</td>
<td>64 Mbytes</td>
<td>128 Mbytes</td>
</tr>
<tr>
<td>Swap space</td>
<td>512 Mbytes</td>
<td>512 Mbytes</td>
</tr>
</tbody>
</table>

Note that automatic failover uses the /tmp directory for data propagation purposes. Any user or SSP files that are larger than the /tmp directory cannot be propagated.

Memory requirements will vary depending on the software used on the SSP. The amount of real memory required usually ranges from 128 Mbytes to 256 Mbytes. The swap space amount usually ranges from 512 Mbytes to 1042 Mbytes. For details, see “Calculating Memory Usage by Third-Party Applications” on page 60.
Failover Configurations

The SSP software provides a failover capability that automatically switches the main SSP or the primary control board to its spare counterpart if a failover condition is detected. The spare counterparts serve as a backup if the main SSP or primary control board fails.

There are three failover scenarios, and each scenario requires a specific physical configuration:

- **SSP and control board failover**

The configuration for dual SSP and control board failover requires two SSPs, two hubs, and two control boards, as shown in FIGURE 2-1. Both the main and spare SSP must be running the same version of the SSP software.

![FIGURE 2-1](image)

- **SSP-only failover**

The configuration for SSP-only failover requires two SSPs, two hubs, and one control board, as illustrated in FIGURE 2-2. Both the main and spare SSP must be running the same version of the SSP software.
Control-board only failover configuration

The configuration required for control board-only failover consists of one SSP, two hubs, and two control boards, as shown in FIGURE 2-2.

FIGURE 2-2 SSP-Only Failover Configuration

FIGURE 2-3 Control Board-Only Failover Configuration
Note – Failover also requires that the SSP network files be configured as described in Appendix A “Configuring the SSP Network”. Otherwise, failover will not work.

For details on how automatic failover works, see the Sun Enterprise 10000 SSP 3.5 User Guide.

Installation and Upgrade Options

TABLE 2-3 describes the basic SSP and domain installation and upgrade options and where to find detailed instructions on each option:

<table>
<thead>
<tr>
<th>To</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a new SSP 3.5 disk</td>
<td>Chapter 3 “Installing SSP 3.5 on a New Disk”</td>
</tr>
<tr>
<td>Upgrade to SSP 3.5</td>
<td>Chapter 4 “Upgrading to SSP 3.5”</td>
</tr>
<tr>
<td>Install the SSP 3.5 AnswerBook2 documentation</td>
<td>Chapter 6 “Installing the SSP 3.5 AnswerBook2 Collection”</td>
</tr>
<tr>
<td>Fall back to a previous SSP release</td>
<td>Chapter 7 “Falling Back to a Previous SSP Release”</td>
</tr>
<tr>
<td>Install the Solaris operating environment on Sun Enterprise 10000 domains</td>
<td>Chapter 9 “Installing the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains”</td>
</tr>
<tr>
<td>Upgrade the Solaris operating environment on Sun Enterprise 10000 domains</td>
<td>Chapter 10 “Upgrading to the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains”</td>
</tr>
</tbody>
</table>
Installing SSP 3.5 on a New Disk

Before installation, review the SSP 3.5 requirements explained in Chapter 2 “Preparing for SSP 3.5 Installation or Upgrade”.

Note – If you are currently running SSP version 3.2, 3.3, or 3.4, it is suggested that you use ssp_upgrade(1M) to upgrade to SSP 3.5. For details, see Chapter 4 “Upgrading to SSP 3.5”.

SSP 3.5 Installation Process

The creation of a new SSP 3.5 disk involves the following tasks:

- Installing the Solaris operating environment
 Review Chapter 2 “Preparing for SSP 3.5 Installation or Upgrade” to determine if you need to upgrade the Solaris operating environment for SSP 3.5.
 For details on installing the Solaris operating environment, refer to the Solaris Advanced Installation Guide appropriate to the release of the Solaris operating environment being installed.

- Configuring the SSP network files as explained in Appendix A “Configuring the SSP Network”

- Installing the SSP software using Solaris™ Web Start (the GUI installer) or the ssp_install(1M) command

- Configuring the SSP using the ssp_config(1M) command

- Restoring the SSP environment if you have an SSP 3.5 backup file, or providing system information, such as the name of the platform and control board

- Optionally installing the SSP 3.5 AnswerBook2 collection, described in Chapter 6 “Installing the SSP 3.5 AnswerBook2 Collection”
Note – If you use Solaris Web Start, the SSP 3.5 AnswerBook2 package is installed automatically with the SSP software.

The following sections provide detailed descriptions of the SSP 3.5 installation steps using Solaris Web Start or the ssp_install command.

Using Solaris Web Start

You can use Solaris Web Start to install the SSP 3.5 software and the SSP 3.5 AnswerBook2 collection. You can use Solaris Web Start to perform a fresh install from CD-ROM or from files you have downloaded from the Web.

The following procedure describes the steps involved when you use Solaris Web Start to install SSP software on either the main or spare SSP.

▼ To Create a New SSP 3.5 Disk Using Solaris Web Start

1. Log in as superuser on the machine that will be the main SSP.
2. Set the DISPLAY environment variable.
 For sh(1) or ksh(1), type:

   ```
   ssp# DISPLAY=hostname:0
   ssp# export DISPLAY
   ```

 where hostname is the host name of the machine used to graphically display Solaris Web Start.

 Note – If an error occurs during installation, manually remove all the SSP 3.5 software packages that were installed by using the pkg rm(1M) command and return to the beginning of this installation procedure. For details on removing packages, see Chapter 7 “Falling Back to a Previous SSP Release”.

Note – If you use Solaris Web Start, the SSP 3.5 AnswerBook2 package is installed automatically with the SSP software.
3. Begin Solaris Web Start by typing:

```
ssp# cd base_directory
ssp# ./installer
```

where `base_directory` specifies one of the following:
- The directory where you downloaded the SSP software if you obtained the SSP software from the Web.
- The directory `/cdrom/cdrom0` if you obtained the SSP software from the CD-ROM.

4. Select Custom Install, then select the System Service Processor 3.5 software.
 With custom installation, only the products that you select are installed.

5. Verify that you have sufficient disk space to cover the requirements displayed on the Ready to Install dialog.

```
ssp# df -k
```

6. Click the Install Now button.
 Wait until the installation is complete and the Installation Summary dialog is displayed.

 Note – The `/var/sadm/install/logs` directory contains all the Solaris Web Start log files.

7. Configure the SSP using the `ssp_config(1M)` command.

```
ssp# /opt/SUNWssp/bin/ssp_config
```

During the configuration process, the floating IP address for the host name of the main SSP is verified. If this floating IP address is not valid, you will be prompted for the IP address. You will also be prompted for the following system information:
- Processor speed
 - If you have a mixture of processors, select the option corresponding to the *lowest* processor speed in your configuration. You are prompted to confirm your selection.
- The name of the platform this SSP will service
The platform name is simply a name by which the SSP software refers to the entire Sun Enterprise 10000 host. The platform name is not the host name of a domain or the SSP workstation. A domain name can be the same as the platform name, but it is not suggested. The platform name must be 14 characters or less.

Note – The term *starfire* is reserved and cannot be used as the platform name.

- **Host control boards**

 For each control board slot, indicate whether there is a control board present and the host name for the respective control board (host names are in the `/etc/hosts` file). If the IP address for a control board is not found in the existing configuration files, you will be prompted for this information. If two control boards are present, you will be asked which control board is the primary (main) control board.

 The following is an example session that shows the prompts and responses displayed for processor, platform, host name of the floating SSP, and control board information.
You must specify what type of processor modules you have installed in your Enterprise-
10000 platform. If you have a mixture of processors, select the option corresponding to
the lowest processor speed in your configuration. Please select one of the options below.

1) 250 MHz processors
2) 336 MHz processors
3) 400 MHz processors
4) 466 MHz processors
5) Unlisted (manually enter clock values)

What speed of processors do you have installed? 2

Your selections are apparently for a 336 MHz processor.

Is this correct? (y/n) y

The platform name identifies the entire host machine to the SSP
software. The platform name occupies a different name space than
domain names (hostnames of bootable systems).

What is the name of the platform this SSP will service? allxf4

Please enter the floating host name of the main SSP [allxf4-ssp-main]:

allxf4-ssp-main

main SSP name = allxf4-ssp-main
main SSP address = 192.168.95.109

Is this correct? (y/n) y

Do you have a control board 0? (y/n) y

Please enter the host name of the control board 0 [allxf4cb0]: xf4-cb0

Do you have a control board 1? (y/n) y

Please enter the host name of the control board 1 [allxf4cb1]: xf4-cb1

Please identify the primary control board.

Is Control Board 0 [xf4-cb0] the primary? (y/n) y

Platform name = allxf4
Control board 0 = xf4-cb0 -> 192.168.151.123
Control board 1 = xf4-cb1 -> 192.168.152.123
Primary Control Board = 0

Is this correct? (y/n) y

SSP configuration completed.
8. If you have an SSP backup file (ssp_backup.cpio), restore the backup file using the ssp_restore(1M) command.

```
ssp# /opt/SUNWssp/bin/ssp_restore backup_directory/ssp_backup.cpio
```

where the backup directory is the directory in which the backup file resides.

Caution – If you specify a non-SSP 3.5 backup file, the $SSPVAR/data and $SSPVAR/ict directories are not restored, which prevents corruption of the hardware database. If a warning message tells you to run the autoconfig(1M) command, be sure to shut down your domains before running the autoconfig command. Otherwise, your running domains will arbstop.

If you do not have a backup file, but you have a main SSP running version SSP 3.5 software, you can create an SSP 3.5 backup file using the ssp_backup(1M) command on the main SSP. For details, see “To Create an SSP Backup File” on page 17.

9. Reboot the SSP.

10. Log in to the SSP as user ssp and specify a new password when you are prompted to do so.

11. Enter the SUNW_HOSTNAME (the platform name you specified when configuring the SSP) when you are prompted to do so.

12. If you have just configured the main SSP, do the following:
 a. Monitor the platform message file by typing:

   ```
   ssp% tail -f $SSPLOGGER/messages
   ```

 b. Before proceeding, wait for the Startup of SSP as MAIN complete message to display.

 It can take several minutes for this message to be displayed while the failover daemon determines the role of the SSP as either the main or spare. The platform message file displays information about various SSP processes that are started.

 If you did not restore an SSP backup file, the thermcaldata.tcl database is generated during SSP startup, which might take some time to complete, depending on your configuration.
c. Check the platform message file and verify that the correct flash PROM version (3.47) is installed.

For information on updating the control board PROM, see the man page for the `cb_prom(1M)` command.

13. Be sure that the floating host name is specified in the `/etc/ssphostname` file for each domain.

 a. From the main SSP, or from another workstation on the network, `rlogin` to the domain as superuser.

 b. Edit the `/etc/ssphostname` file to replace the host name of the main SSP with the host name of the floating IP address.

 c. Verify that the floating IP address and the floating host name are in the `/etc/hosts` file.

 d. Redirect console communication to the new floating IP address.

```
  # ps -ef | grep cvcd
  # kill -9 cvcd_pid
  # cvcd_path/cvcd
```

where `cvcd_path` is `/sbin` under the Solaris 2.6 operating environment, and `cvcd_path` is `/platform/SUNW,Ultra-Enterprise-10000/lib/` under the Solaris 7 and Solaris 8 operating environments.

e. For each domain, update the `/etc/syslog.conf` file to replace the host name of the former main SSP with the floating host name.

14. If you have other software that communicates with the main SSP, such as Sun™ Management Center, be sure to change the communication path (for that software) to the floating IP address.

15. If you need to install the SSP software on the spare SSP, do the following:

 - Review “Getting Started” on page 14.
 - Repeat Steps 1 through 12 on the spare.

Using the `ssp_install` Command

The `ssp_install` command is a utility that enables you to install the SSP software from the command line. The following procedure describes the steps involved when you use `ssp_install` on either the main or spare SSP.
To Create a New SSP 3.5 Disk Using the `ssp_install` Command

Note – If an error occurs during installation, manually remove all the SSP 3.5 software packages that were installed by using the `pkgrm(1M)` command, and then return to the beginning of this installation procedure. For details on removing packages, see Chapter 7 “Falling Back to a Previous SSP Release”.

1. On the SSP, log in as superuser and change to the `Tools` directory.

   ```
   ssp# cd base_directory/System_Service_Processor_3.5/Tools
   ```

 where `base_directory` specifies one of the following:
 - The directory where you downloaded the SSP software if you obtained the SSP software from the Web.
 - The directory `/cdrom/cdrom0` if you obtained the SSP software from the CD-ROM.

2. Install the SSP software by typing:

   ```
   ssp# ./ssp_install ../Product
   ```

3. When you are asked to install the `SUNWsspfp` (the SSP flash PROM image) package, type `y`.

 The installation process verifies the disk space available and checks for any conflicts with packages already installed.

4. If conflicting files exist, type `y` when you are asked if you want to install these conflicting files.

5. Configure the SSP using the `ssp_config` command.

   ```
   ssp# /opt/SUNWssp/bin/ssp_config
   ```

 During the configuration process, the floating IP address for the host name of the main SSP is verified. If this floating IP address is not valid, you will be prompted for the IP address. You will also be prompted for the following system information:
 - Processor speed
If you have a mixture of processors, select the option corresponding to the lowest processor speed in your configuration. You are prompted to confirm your selection.

- The name of the platform this SSP will service

 The platform name is simply a name by which the SSP software refers to the entire Sun Enterprise 10000 host. The platform name is not the host name of a domain or the SSP workstation. A domain name can be the same as the platform name, but it is not suggested. The platform name must be 14 characters or less.

 Note – The term *starfire* is reserved and cannot be used as the platform name.

- Host control boards

 For each control board slot, indicate whether there is a control board present and the host name for the respective control board (host names are in the `/etc/hosts` file). If the IP address for a control board is not found in the existing configuration files, you will be prompted for this information. If two control boards are present, you will be asked which control board is the primary (active) control board.

 The following is an example session that shows the prompts and responses displayed for the processor, platform, host name of the floating SSP, and control board information.
You must specify what type of processor modules you have installed in your Enterprise-10000 platform. If you have a mixture of processors, select the option corresponding to the lowest processor speed in your configuration. Please select one of the options below.

1) 250 MHz processors
2) 336 MHz processors
3) 400 MHz processors
4) 466 MHz processors
5) Unlisted (manually enter clock values)

What speed of processors do you have installed? 2

Your selections are apparently for a 336 MHz processor.

Is this correct? (y/n) y

The platform name identifies the entire host machine to the SSP software. The platform name occupies a different name space than domain names (hostnames of bootable systems).

What is the name of the platform this SSP will service? allxf4

Please enter the floating host name of the main SSP [allxf4-ssp-main]: allxf4-ssp-main

main SSP name = allxf4-ssp-main
main SSP address = 192.168.95.109

Is this correct? (y/n) y

Do you have a control board 0? (y/n) y

Please enter the host name of the control board 0 [allxf4cb0]: xf4-cb0

Do you have a control board 1? (y/n) y

Please enter the host name of the control board 1 [allxf4cb1]: xf4-cb1

Please identify the primary control board.

Is Control Board 0 [xf4-cb0] the primary? (y/n) y

Platform name = allxf4
Control board 0 = xf4-cb0 => 192.168.151.123
Control board 1 = xf4-cb1 => 192.168.152.123
Primary Control Board = 0

Is this correct? (y/n) y

SSP configuration completed.
6. If you have an SSP backup file (ssp_backup.cpio), restore the backup file using the ssp_restore(1M) command.

 ssp# /opt/SUNWssp/bin/ssp_restore backup_directory/ssp_backup.cpio

 where the backup directory is the directory in which the backup file resides.

 Caution – If you specify a non-SSP 3.5 backup file, the $SSPVAR/data and $SSPVAR/ict directories are not restored, which prevents corruption of the hardware database. If a warning message tells you to run the autoconfig(1M) command, be sure to shut down your domains before executing the autoconfig command. Otherwise, your running domains will arbstop.

 If you do not have a backup file, but you have a main SSP running version SSP 3.5 software, you can create an SSP 3.5 backup file using the ssp_backup(1M) command on the main SSP. For details, see “To Create an SSP Backup File” on page 17.

7. Reboot the SSP.

8. Log in to the SSP as user ssp and specify a new password when you are prompted to do so.

9. Enter the SUNW_HOSTNAME (the platform name you specified when configuring the SSP) when you are prompted to do so.

10. If you have just configured the main SSP, do the following:

 a. Monitor the platform message file by typing:

 ssp% tail -f $SSPLOGGER/messages

 b. Before proceeding, wait for the **Startup of SSP as MAIN complete message to display.**

 It can take several minutes for this message to be displayed while the failover daemon determines the role of the SSP as either the main or spare. The platform message file displays information about various SSP processes that are started.

 If you did not restore an SSP backup file, the thermcaldata.tcl database is generated during SSP startup, which may take some time to complete, depending on your configuration.
c. Check the platform message file and verify that the correct flash PROM version (3.47) is installed.
 For information on updating the control board PROM, see the man page for the
cb_prom(1M) command.

11. Be sure that the floating host name is specified in the /etc/ssphostname file for each domain.
 a. From the main SSP or from another workstation on the network, rlogin to the domain as superuser.
 b. Edit the /etc/ssphostname file to replace the host name of the main SSP with the host name of the floating IP address.
 c. Verify that the floating IP address and the floating host name are in the /etc/hosts file.
 d. Redirect console communication to the new floating IP address.

```
# ps -ef | grep cvcd
# kill -9 cvcd_pid
# cvcd_path/cvcd
```

where cvcd_path is /sbin under the Solaris 2.6 operating environment, and
cvcd_path is /platform/SUNW,Ultra-Enterprise-10000/lib/cvcd under the Solaris 7 and Solaris 8 operating environments.

 e. For each domain, update the /etc/syslog.conf file to replace the host name of the former main SSP with the floating host name.

12. If you have other software that communicates with the main SSP, such as Sun Management Center, be sure to change the communication path (for that software) to the floating IP address.

13. If you need to install the SSP software on the spare SSP, do the following:
 ■ Review “Getting Started” on page 14.
 ■ Repeat Steps 1 through 9 on the spare.
Upgrading to SSP 3.5

Before upgrading, review the SSP 3.5 requirements explained in Chapter 2 “Preparing for SSP 3.5 Installation or Upgrade”.

SSP Upgrade Process

The SSP upgrade process automatically updates SSP version 3.2, 3.3, or 3.4 to SSP 3.5. During the upgrade, SSP daemons are stopped if appropriate, existing SSP packages are removed, certain SSP files are archived, and the SSP 3.5 packages are added.

If you encounter problems with the upgrade to SSP 3.5, you can revert to a previous release of SSP. For instructions on switching back to a previous SSP release, see Chapter 7 “Falling Back to a Previous SSP Release”.

Upgrading from SSP 3.2, 3.3, or 3.4 involves the following main tasks:

- Backing up the SSP environment using the `ssp_backup` command
- Running the `ssp_upgrade` command
- Optionally installing the SSP AnswerBook2 Collection as explained in Chapter 6 “Installing the SSP 3.5 AnswerBook2 Collection”

The following procedures describe the detailed steps for upgrading either a main or spare SSP from SSP 3.4 or from SSP 3.2 or SSP 3.3.
To Upgrade from SSP 3.4 to SSP 3.5

Note – If an error occurs during upgrade, use the `pkgrm(1M)` command to manually remove all the SSP 3.5 software packages that were installed and return to the beginning of this upgrade procedure. For details on removing packages, see Chapter 7 “Falling Back to a Previous SSP Release”.

1. If you have a dual SSP configuration, perform data synchronization and disable SSP failover as described in “To Prepare for SSP 3.5 Upgrade or SSP Patch Installation” on page 21.

Note – The data synchronization process backs up the main SSP configuration and restores it on the spare SSP.

2. On the main SSP, log in as superuser and change to the Tools directory:

```
ssp# cd base_directory/System_Service_Processor_3.5/Tools
```

where `base_directory` specifies one of the following:

- The directory where you downloaded the SSP software if you obtained the SSP software from the Web.
- The directory `/cdrom/cdrom0` if you obtained the SSP software from the CD-ROM.

3. If you have a spare SSP running SSP 3.4, stop the SSP daemons on the spare.

```
ssp# /etc/init.d/ssp stop
```

4. Back up the environment on the main SSP.

```
ssp# ./ssp_backup target_directory
```

A backup file named `ssp_backup.cpio` is created in `target_directory`. It is suggested that you rename this backup file so that you can identify the SSP release associated with this backup file.
5. Upgrade the SSP.

```
./ssp_upgrade ../Product
```

During the upgrade, note the following:

- A message explains that the floating host name or IP address cannot be found, even if you established the floating host name in the NIS map and the `etc/hosts` file on the main and spare SSP.

 This information is required for SSP configuration. Type y to continue the upgrade process, and when you are prompted, type the name of the floating main SSP. The IP address associated with this host name will be displayed and verified.

- When the upgrade is complete, the upgrade log file (`/var/sadm/system/logs/ssp_upgrade_log`) is written. This log file provides information on upgrade processing.

6. Reboot the main SSP.

7. Upgrade the SSP software on the spare SSP by repeating Steps 2, 5, and 6 on the spare.

 For Step 6, be sure to reboot the spare SSP.

▼ To Upgrade from SSP 3.2 or SSP 3.3 to SSP 3.5

Note – If an error occurs during upgrade, use the `pkg rm(1M)` command to manually remove all the SSP 3.5 software packages that were installed and return to the beginning of this upgrade procedure. For details on removing packages, see Chapter 7 “Falling Back to a Previous SSP Release”.

1. On the main SSP, log in as superuser and change to the Tools directory:

```
ssp# cd base_directory/System_Service_Processor_3.5/Tools
```

where `base_directory` specifies one of the following:

- The directory where you downloaded the SSP software if you obtained the SSP software from the Web.
- The directory `/cdrom/cdrom0` if you obtained the SSP software from the CD-ROM.
2. Back up the environment on the main SSP.

```bash
ssp# ./ssp_backup target_directory
```

A backup file named `ssp_backup.cpio` is created in `target_directory`. It is suggested that you rename this backup file so that you can identify the SSP release associated with this backup file.

3. Upgrade the SSP.

```bash
ssp# ./ssp_upgrade ../Product
```

During the upgrade, note the following:

- A message explains that the floating host name or IP address cannot be found, even if you established the floating host name in the NIS map and the `/etc/hosts` file on the main and spare SSP.

 This information is required for SSP configuration. Type `y` to continue the upgrade process, and when you are prompted, type the name of the floating main SSP. The IP address associated with this host name will be displayed and verified.

- Ignore the following message:

  ```bash
  cp:cannot access /var/opt/SUNWssp/.ssp_private/user_file_list
  ```

 The `user_file_list` file was a new file introduced in SSP 3.4 to synchronize data files, and did not exist in SSP releases before SSP 3.4. Therefore, this error can be ignored.

- When the upgrade is complete, the upgrade log file

  ```bash
  (/var/sadm/system/logs/ssp_upgrade_log)
  ```

 is written. This log file provides information on upgrade processing.

4. Restore the SSP backup file on the spare SSP.

```bash
ssp# /opt/SUNWssp/bin/ssp_restore backup_directory/ssp_backup.cpio
```

where the `backup_directory` is the directory in which the backup file resides. The SSP backup file is `ssp_backup.cpio`, unless you renamed the file as suggested in Step 4.
Caution – If you restore a backup file from SSP 3.2 or SSP 3.3, note that the
$SSPVAR/data and $SSPVAR/ict directories are not restored, which prevents
corruption of the hardware database. If a warning message tells you to run the
autoconfig(1M) command, be sure to shut down your domains before running the
autoconfig command. Otherwise, your running domains will arbstop.

5. Reboot the main SSP.

6. Be sure that the floating host name is specified in the /etc/ssphostname file for
each domain.
 a. From the main SSP, or from another workstation on the network, rlogin to the
domain as superuser.
 b. Edit the /etc/ssphostname file to replace the host name of the main SSP with
the host name of the floating IP address.
 c. Verify that the floating IP address and the floating host name are in the
/etc/hosts file.
 d. Redirect console communication to the new floating IP address:

```
# ps -ef | grep cvcd
# kill -9 cvcd_pid
# cvcd_path/cvcd
```

 where cvcd_path is /sbin under the Solaris 2.6 operating environment, and
cvcd_path is /platform/SUNW,Ultra-Enterprise-10000/lib/ under the
Solaris 7 and Solaris 8 operating environments.
 e. For each domain, update the /etc/syslog.conf file to replace the host name
of the former main SSP with the floating host name.

7. If you have other software that communicates with the main SSP, such as Sun
Management Center, be sure to change the communication path (for that software)
to the floating IP address.

8. Upgrade the SSP software on the spare SSP by repeating Steps 1, 3, and 5 on the
spare.
 For Step 5, be sure to reboot the spare SSP.
CHAPTER 5

After SSP Installation or Upgrade

After you have completed an SSP installation or upgrade, you may need to do the following:

- Edit some of the initialization files in the /export/home/ssp directory.

 If you made changes to the files, you did not restore the environment during the fresh install or upgrade, and you want to retain your changes, see the next section, “Editing Initialization Files”.

- Configure the Network Time Protocol (NTP) daemon (see “Configuring the Network Time Protocol Daemon” on page 48).

Editing Initialization Files

When you run ssp_upgrade or ssp_restore, the following files are copied and saved with a .__upgrade suffix. If you have made changes to these files, you can incorporate these changes into the new versions of the files when you have completed the upgrade or install procedure.

The default blacklist(4) file found in /var/opt/SUNWssp/etc is backed up by ssp_backup and restored by ssp_restore. However, if you have created a .postrc file that changes the location of the blacklist file, the relocated blacklist file is not backed up by ssp_backup.

The following files are copied and saved when you run ssp_upgrade or ssp_restore.

- /export/home/ssp/.Xdefaults
- /export/home/ssp/.xinitrc
- /export/home/ssp/.drtclrc
- /export/home/ssp/.redxrc
- /export/home/ssp/.cshrc
Note – Be sure that the .cshrc and .login files for user ssp do not contain stty(1M) commands to ensure that the SSP data synchronization feature functions correctly.

The following additional files are copied and saved only when ssp_restore is run:

- /export/home/ssp/.ssp_env
- /export/home/ssp/.dtprofile
- /export/home/ssp/.dt/dtwmrc
- /export/home/ssp/.dt/user.dtwmrc

If you made changes to the Ultra-Enterprise-10000.snmpd.cnf file that is in the /etc/opt/SUNWssp/snmp/agt directory, you will have to incorporate your changes into the file installed on the restored system.

Configuring the Network Time Protocol Daemon

If the SSP is to function as a time server, configure the Network Time Protocol (NTP) daemon.

The NTP daemon, xntpd(1M) for the Solaris 2.6, Solaris 7, or Solaris 8 operating environments, provides a mechanism for keeping the time settings synchronized between the SSP and the domains. OpenBoot™ PROM obtains the time from the SSP when the domain is booted, and NTP keeps the time synchronized from that point on.

The configuration is based on information provided by the system administrator. If the Sun Enterprise 10000 system is not currently running in an NTP subnet, does not have access to the Internet, and is not going to use a radio clock, you can set up the Sun Enterprise 10000 system to use its own internal time-of-day clock as the reference clock. Usually, however, the SSP uses its internal time-of-day clock for the Sun Enterprise 10000 system.
The NTP packages are compiled with support for a local reference clock. This means that your system can poll itself for the time instead of polling another system or network clock. The poll is done through the network loopback interface. The numbers in the IP address are 127.127.1.0.

Note that NTP can also keep track of the drift (difference) between the external clock and the internal clock. NTP corrects the local clock if it loses contact with the external clock, provided that you have a driftfile declaration in the ntp.conf file. The driftfile declaration specifies to the NTP daemon the name of the file that stores the error in the clock frequency computed by the daemon. See the following procedure for an example of the driftfile declaration in an ntp.conf file.

When setting the SSP and the domains, set the SSP to stratum 8. Set up the domains as peers to the SSP and set the local clock two stratums higher.

If the ntp.conf file does not exist, create it as described below.

▼ To Create the ntp.conf File

1. Log in as superuser.
2. Copy the /etc/inet/ntp.server file to the /etc/inet/ntp.conf file.

```
# cp /etc/inet/ntp.server /etc/inet/ntp.conf
```

3. Using a text editor, edit the /etc/inet/ntp.conf file created in the previous step, as explained in the following paragraphs.

The ntp.conf file for the Solaris 2.6, Solaris 7, or Solaris 8 operating environments is located in /etc/inet. If you are running the Solaris 2.5.1 operating environment, the ntp.conf file is located in the /etc/opt/SUNWxntp directory. You must have an ntp.conf file on the SSP and on each domain.
a. On the SSP, edit the server lines in the ntp.conf file to synchronize clocks.

The following example shows how server lines in an ntp.conf file on the SSP can be set. Also note the driftfile declaration, which identifies the file that contains the amount of clock error computed by the NTP daemon.

```
# /etc/inet/ntp.conf for the SSP
server 127.127.1.0
fudge 127.127.1.0 stratum 8
driftfile /var/ntp/ntp.drift
peer machine1
peer machine2
peer spare-ssp2
```

b. On domains running the Solaris 2.6, 7, or 8 operating environment, edit the /etc/inet/ntp.conf file (or on domains running the Solaris 2.5.1 operating environment, edit the /etc/opt/SUNWxntp/ntp.conf file), and add lines similar to the following example:

```
# /etc/inet/ntp.conf for the Sun Enterprise 10000 domain
peer ssp_name
server 127.127.1.0
fudge 127.127.1.0 stratum 10
driftfile /var/ntp/ntp.drift
peer main-ssp
peer spare-ssp2
```

Note – If you do not have any server lines in the ntp.conf file other than the local clock, it might take up to 25 minutes for NTP to synchronize at boot time. For a workaround, refer to Bug 4325813.

For more information on the NTP daemon, refer to the xntpd(1M) man page in the man Pages(1M): System Administration Commands section of the Solaris Administration AnswerBook2 Collection.

Start the xntpd(1M) daemon by typing:

```
# /etc/init.d/xntpd start
```
Installing the SSP 3.5 AnswerBook2 Collection

This section explains how to manually install the SSP 3.5 AnswerBook2 document collection using the standard installation utility, pkgadd.

SSP 3.5 AnswerBook2 Collection

Before you can install the SSP 3.5 AnswerBook2 document collection, you must have the AnswerBook2 server software installed. For instructions on installing the AnswerBook2 server software, see “Installing and Administering an AnswerBook2 Server” in the AnswerBook2 Help collection on docs.sun.com. The server software can be obtained from the following sources:

- Documentation CD for Solaris 7 and Solaris 8 operating environments
- Web (http://www.sun.com/software/ab2/index.html)

▼ To Install the SSP 3.5 AnswerBook2 Collection

1. Log in as superuser on the machine where the SSP 3.5 AnswerBook2 collection is to be installed.

2. If you have a previous version of the SUNWuessp package installed, remove it by using the pkgrm command.

```bash
ssp# pkgrm SUNWuessp
```
3. Change directory to the location of the SSP 3.5 AnswerBook package.

   ```
   ssp# cd base_directory/System_Service_Processor_3.5/Product
   ```

 where `base_directory` specifies one of the following:
 - The directory where you downloaded the SSP software if you obtained the SSP software from the Web.
 - The directory `/cdrom/cdrom0` if you obtained the SSP software from the CD-ROM.

4. Add the SUNWuessp package.

   ```
   ssp# pkgadd -d . SUNWuessp
   ```

5. When you are requested to select an installation option, type 2 (heavy installation).

   ```
   Select an installation option: 2
   ```

6. When you are asked to specify the parent path for the AnswerBook2 Collection, type the path to the directory in which you want to put the SSP 3.5 AnswerBook2. It is suggested that you install the SSP AnswerBook2 Collection in `/opt`.

   ```
   Specify the parent path of this AnswerBook2 Collection directory: /opt
   ```

7. Type `y` at the following prompt:

   ```
   This package contains scripts which will be executed with super-user permission during the process of installing this package.
   Do you want to continue with the installation of <SUNWuessp> [y,n,?] y
   ```

 A message indicates that the SUNWuessp package was successfully installed.

 For instructions on launching the AnswerBook2 viewer and viewing document collections, see “Viewing Online Documentation Using the AnswerBook2 System” in the AnswerBook2 Help collection on docs.sun.com.
Falling Back to a Previous SSP Release

This chapter describes the procedures for reverting from SSP 3.5 to a previous version of SSP.

SSP Fall Back

If you have installed SSP 3.5 or have upgraded to SSP 3.5, you can fall back to a previous SSP version (SSP 3.2, 3.3, or 3.4) using the following procedure.

Note – Before you begin the fall back process, be sure that you have an SSP backup file from a previous SSP release.

▼ To Fall Back to a Previous SSP Release

1. If you have a spare SSP, log in to the spare SSP as superuser and stop the SSP daemons on the spare SSP.

   ```
   ssp# /etc/init.d/ssp stop
   ```

2. Perform the following steps on the main SSP to prevent possible arbstops on your domains after you fall back to a previous SSP version:
Caution — If you are absolutely sure that your hardware state and domain configuration have not changed since SSP installation or upgrade, you can skip Steps a, b, and c. However, if the hardware state and domain configuration have changed, and you skip these steps, your domains can arbstop.

a. Schedule downtime for your domains and shut down the domains on the main SSP by using the standard **shutdown(1M)** command.

b. Log in as user **ssp** and remove all domains on the main SSP by using the **domain_remove(1M)** command.

```
ssp% domain_remove -d domain_name
```

c. Power off all system boards.

```
ssp% power -off -all
```

3. Log in to the main SSP as superuser and back up the SSP.

```
ssp# /opt/SUNWssp/bin/ssp_backup backup_directory
```

This creates a backup file of the SSP 3.5 environment, **ssp_backup.cpio**, in the specified backup directory. Do **not** use this file to restore a previous SSP environment.

4. Uninstall the SSP 3.5 software.

a. Log in to the main SSP as user **ssp** and switch to the platform name.

```
ssp% domain_switch platform_name
```

b. If you are falling back to SSP 3.2, prepare the SSP for downgrading. Otherwise, proceed to Step c.

```
ssp% ssp_downgrade
```

c. Log in to the main SSP as superuser and stop the SSP daemons:

```
ssp# /etc/init.d/ssp stop
```
d. Remove the SSP packages.

```bash
ssp# pkgrm SUNWsspid SUNWsspdo SUNWsspdr SUNWssppo SUNWsspob \
    SUNWsspr SUNWsspst SUNWsspdf SUNWsspmn SUNWsspop SUNWsspue \
    SUNWsspfp
```

For the SUNWsspr, SUNWsspdf, SUNWsspop, and SUNWsspue packages, a message indicates that the package contains scripts that will be executed with superuser permission during package removal.

e. For the SUNWsspr, SUNWsspdf, SUNWsspop, and SUNWsspue packages, type `y` when you are asked if you want to continue with the removal of the package.

f. If the SSP AnswerBook package is installed, remove it by typing:

```bash
ssp# pkgrm SUNWuessp
```

g. Remove the following directories:
 - `/var/opt/SUNWssp`
 - `/opt/SUNWssp`
 - `/etc/opt/SUNWssp`

h. Reboot the SSP.

5. Reinstall a previous SSP release.
 Refer to the appropriate version of the Sun Enterprise 10000 SSP Installation Guide and Release Notes for details on installing the previous version of the SSP software.

6. Restore the backup file of a previous SSP release.

```bash
ssp# /opt/SUNWssp/bin/ssp_restore backup_file
```
7. Run `ssp_config(1M)` to make the SSP as the main or spare:

```bash
ssp# /opt/SUNWssp/bin/ssp_config
```

The following is an example configuration session that shows the prompts and responses displayed:

```bash
ssp# /opt/SUNWssp/bin/ssp_config
Beginning setup of this workstation to act as a MAIN or SPARE SSP.
Are you currently configuring the MAIN SSP? (y/n) y
MAIN SSP configuration completed.
```

8. Reboot the SSP.

9. If you performed Step 2, do the following after the main SSP comes up:

 a. Verify that there are no configured domains by using the `domain_status(1M)` command.

   ```bash
   ssp% domain_status
   No domains configured
   ```

 b. If there are domains, remove those domains using the `domain_remove(1M)` command.

 c. Run the `ssp_backup(1M)` command on the main SSP to save the SSP configuration.

 Use this backup file to restore the environment on the spare SSP when you fall back on the spare.

10. If you need to revert to a previous SSP release on the spare SSP, repeat Steps 4 through 8 on the spare SSP.

 When you perform Step 6, be sure to use the SSP backup file created in Step 9c to restore the SSP environment on the spare.
Running an OpenSSP

OpenSSP refers to the ability to run third-party software on an SSP workstation or server. Third-party software consists of applications other than the SSP software and Solaris operating environment. Traditionally, SSP software has been the only application allowed to run on SSP workstations or servers. However, in an OpenSSP environment, lightweight software applications, such as boot disk management utilities and monitoring and backup agents, can be run on the SSP.

This chapter explains how to determine whether you have sufficient software and hardware resources for running third-party software on SSP workstations or servers used to host SSP software.

This chapter describes

- The impact of third-party applications on the SSP
- Required resources for an OpenSSP
- How to estimate the memory (real memory and swap space) requirements for third-party applications used on the SSP
- How to calculate SSP CPU utilization
- How to determine the appropriate hardware for an OpenSSP

Impact of Third-Party Applications on the SSP

SSP software runs on a workstation or server that runs the Solaris operating environment. This workstation or server is dedicated to controlling and monitoring a Sun Enterprise 10000 system and must respond in a timely manner to incoming events from the control board for the system. This includes responding to environmental conditions, such as over-temperature boards, software problems (panics), and hardware problems (arbstops). If the SSP is delayed in responding,
these events can be dropped or handled too late. Information about failures can be lost with no alerts or log trail. In a worst-case scenario, hardware can also be damaged due to lack of timely action by the SSP.

In previous releases, SSP software was the only application permitted to run on an SSP workstation or server. This limitation was required to prevent non-SSP software from interfering with the SSP critical mission of monitoring and controlling a Sun Enterprise 10000 system. This limitation is an important consideration for running SSP software on SPARCstation 5 workstations, which are slower and have less memory than the Sun Netra T1 server, or Sun Ultra 5 or Sun Enterprise 250 workstations. The only non-SSP processes previously allowed on an SSP have been system background programs that run the Solaris operating environment and Common Desktop Environment (CDE).

However, due to increasing demand for third-party software agents that enable centralized control of multiple systems on the network, you can now run third-party applications on the SSP. These agents gather information about the Sun Enterprise 10000 system and the SSP and report back to a central server. Backup servers are similarly structured, allowing centralized backup of multiple networked systems.

When you run third-party software on an SSP system, the primary goal must be non-interference with the SSP software and its ability to monitor and control the Sun Enterprise 10000 system. SSP software normally requires few hardware resources, but when it needs those resources, they must be immediately available.

You must perform the following tasks to determine whether you can run third-party software on the SSP:

- Verify that your SSP workstation or server meets the minimum software and hardware requirements for OpenSSP (see “Required Resources for an OpenSSP” on page 58).
- Estimate the amount of real memory and swap space required by both SSP and third-party software (see “Estimating SSP and Third-Party Software Memory Usage” on page 60).
- Check that your CPU utilization is not too high (see “CPU Utilization” on page 67), and if it is, reduce the utilization rate by using faster hardware (see “SSP Hardware” on page 70).

Required Resources for an OpenSSP

For a list of the minimum OpenSSP software and hardware resource requirements, see table 2-2. Note that the OpenSSP requirements for disk space, processor speed, and CPU utilization are higher than the SSP minimum requirements because of the extra load expected on the SSP.
You must also keep current with the latest recommended patches for the Solaris operating environment and the SSP software, especially for performance improvements. In addition, consider using the Solaris 8 operating environment to fully benefit from SSP performance features. See the following sections for details.

Keeping Current with Recommended Patches

Sun produces a set of patches, Recommended and Security Solaris Patch Clusters, which contain Solaris software updates of universal interest for each version of the Solaris operating environment. These selected patches are important and highly recommended because they provide fixes for critical system, user, or security-related bugs. Some of these patches also fix performance problems. They are generally safe to apply, as opposed to higher-risk patches, or patches with new features, new drivers, or low-priority fixes that are not included in these patch clusters. A prudent system administrator keeps systems current with the latest recommended patch level to protect against system problems. Solaris Recommended Patch Clusters are available at the SunSolve website, http://sunsolve.Sun.COM/.

Update your SSP workstation on a regular basis with all the SSP patches available for the particular release of SSP software used, except for special-case patches noted in the patch README file. Apply these patches on a case-by-case basis. SSP patches are also available from the SunSolve website, http://sunsolve.Sun.COM/.

Using the Solaris 8 Operating Environment

To fully benefit from the SSP performance improvements in SSP 3.5, use the Solaris 8 operating environment (with the appropriate patches, as explained in “SSP 3.5 Hardware and Software Requirements” on page 23) on the SSP workstation or server, if possible. The Solaris 8 software improvement most relevant to the SSP involves better thread handling. When a real-time SSP thread is blocked by a low-priority thread, the kernel temporarily assigns a higher priority to the blocking thread to quickly complete and release the blocked resource, which results in faster SSP response time to Sun Enterprise 10000 events.

Other performance improvements in the Solaris 8 operating environment can affect third-party applications running on the SSP, especially if those applications communicate over a WAN or use a large number of open files or sockets. For details, see What’s New in the Solaris 8 Operating Environment at http://www.sun.com/software/solaris/whatsnew.html.
Estimating SSP and Third-Party Software Memory Usage

When you measure the memory requirements of the SSP workstation, you must consider the cumulative requirements of all the applications running on the workstation as a whole, not just the impact of an individual application.

You must first determine the type of run-time environment involved by answering the following questions:

- What is the maximum number of domains running on the Sun Enterprise 10000 system?
- How many Hostview applications could be running at the same time?
- Is Sun™ Management Center installed on the SSP?
- Are third-party applications running on the SSP?
 - If so, what are their virtual and real memory requirements?
 - What is the CPU overhead?

Your responses to these questions are used to determine SSP and third-party memory usage, as explained in the following sections.

Calculating Memory Usage by Third-Party Applications

If an SSP is running third-party applications, you must determine how much virtual and real memory is used by those applications. This memory amount usually is found in the installation or administrator guide for the application.

If this memory information is not available, it can be easily calculated using the memory usage output from the pmap command. This command, which must be used when the system is not thrashing (paging at a high rate) and the application is in an active running state, displays output that shows how much resident memory the application requires when it is active, but not thrashing. For details on using the pmap command, see the following procedure, “To Obtain the Virtual Memory Amount Used by an Application” on page 61.

For information on determining whether a system is thrashing, see “Verifying That You Have Sufficient Real Memory” on page 65.
To Obtain the Virtual Memory Amount Used by an Application

1. **Type the `pmap -x` command, followed by the process ID of the application.**

 The following example shows how to size an application called CST (Configuration and Service Tracker), which has one process, `cstd`. What this application does is not relevant here, as it is used only as an example of measuring memory usage.

   ```
   # pcrep cstd
   406
   # /usr/proc/bin/pmap -x 406
   Address Kbytes Resident Shared Private Permissions Mapped File
   . . .
   total Kb 2848 2496 1400 1096
   ```

 The last line in this example shows that 1096 Kbytes of resident private memory is being used.

2. **Calculate the virtual memory amount by subtracting the shared memory from the total memory, then round up the existing value.**

 In the example above, the virtual memory is 1448 Kbytes, which is derived by subtracting the shared memory (1400 Kbytes) from the total memory (2848 Kbytes). This value is then rounded up to 2 Mbytes. CST requires 1 Mbyte of resident memory and 2 Mbytes of virtual memory.

3. **If the third-party application has its own application-specific share libraries, add the real and virtual memory sizes of these libraries.**

 The virtual memory used for these shared libraries is approximately the same as the shared library (*.so) file size. The resident memory used by shared libraries is also shown in the `pmap -x` command output.
To Calculate the Memory Requirements For an SSP Using the OpenSSP Memory Worksheet

Use the OpenSSP memory worksheet to determine the virtual and real memory requirements for an SSP workstation or server. FIGURE 8-1 is an example of a completed SSP memory worksheet, which contains sample entries in bold font. The following steps also explain how the sample entries were calculated. For details on how the predetermined values in the worksheet were derived, see Appendix B.

<table>
<thead>
<tr>
<th>Line</th>
<th>Item</th>
<th>Number</th>
<th>Real Memory (MB)</th>
<th>Virtual Memory (MB)</th>
<th>Real Memory Subtotal (MB)</th>
<th>Virtual Memory Subtotal (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System</td>
<td>1</td>
<td>60</td>
<td>236</td>
<td>60</td>
<td>236</td>
</tr>
<tr>
<td>2</td>
<td>Base SSP</td>
<td>1</td>
<td>22</td>
<td>35</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Domains (1-16)</td>
<td>4</td>
<td>3 * no. of domains</td>
<td>4 * no. of domains</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Hostviews (0 or more)</td>
<td>1</td>
<td>12 * no. of Hostviews</td>
<td>17 * no. of Hostviews</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Sun Management Center (0 or 1)</td>
<td>0</td>
<td>0 or 26</td>
<td>0 or 31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Third-party applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Subtotal (lines 1 to 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>8</td>
<td>Kernel buffer memory (Mbytes)</td>
<td>128</td>
<td>15% of RAM</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Recommended real memory (lines 7 and 8)</td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reserved for /tmp/ in swapfs</td>
<td></td>
<td></td>
<td></td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>Subtract amount of real memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−128</td>
</tr>
<tr>
<td>12</td>
<td>Recommended swap space size</td>
<td></td>
<td></td>
<td></td>
<td>(Virtual memory subtotal − real memory total) + /tmp/ reserved</td>
<td>688</td>
</tr>
</tbody>
</table>

FIGURE 8-1 OpenSSP Memory Worksheet Example
1. In line 3:
 a. In the Number column, enter the highest number of domains (1 to 16) that you expect to have for your Sun Enterprise 10000 system.
 b. Multiply the number of domains by 3 Mbytes and enter the result in the Real Memory Subtotal column.
 c. Multiply the number of domains by 4 Mbytes and enter the result in the Virtual Memory Subtotal column.

 In line 3 of the example worksheet, 4 domains are specified, which results in 12 Mbytes for the Real Memory Subtotal and 16 Mbytes for the Virtual Memory Subtotal.

2. In line 4:
 a. In the Number column, enter the number of Hostview applications (the SSP GUI) that you expect to run at the same time. (This entry is usually 1).
 b. Multiply the number of Hostview applications by 12 Mbytes and enter the result in the Real Memory Subtotal column.
 c. Multiply the number of Hostview applications by 17 Mbytes and enter the result in the Virtual Memory Subtotal column.

 In line 4 of the example worksheet, 1 Hostview application is specified. The Real Memory Subtotal value is 12 Mbytes, and the Virtual Memory Subtotal value is 17 Mbytes (see the last two columns).

3. If Sun Management Center is installed and running, enter the following in line 5:
 a. In the Number column, enter 1.
 b. In the Real Memory Subtotal column, enter 26 Mbytes.
 c. In the Virtual Memory Subtotal column, enter 31 Mbytes.

 In line 5 of the example worksheet, Sun Management Center is not used, so 0 is entered in the Number, Real Memory Subtotal, and Virtual Memory Subtotal columns.

4. In line 6, enter the real and virtual memory amounts required for any third-party applications that will be running on the SSP workstation.
 For details on estimating these memory requirements, see “Calculating Memory Usage by Third-Party Applications.”

 In line 6 of the example worksheet, 0 is entered in the Real Memory Subtotal, and Virtual Memory Subtotal columns because no third-party applications are being used.

5. In line 7, subtotal the values in the Real Memory Subtotal column and the Virtual Memory Subtotal column.
In line 7 of the example worksheet, the subtotal for the Real Memory Subtotal values is 106, and the subtotal for the Virtual Memory Subtotal values is 304.

6. In line 8:

a. In the Number column, enter the RAM that you will need. This number must be greater than 115% of the subtotal for the Real Memory entered in line 7. You must round this value up to the next 32 Mbyte increment. The Solaris operating environment uses 15% of the RAM for kernel buffer memory.

b. In the Real Memory Subtotal column, enter 15% of the RAM specified in the Real Memory Subtotal column. This is the amount of buffer memory used by the kernel.

In line 8 of the example worksheet, 128 Mbytes of RAM is specified in the Number column, which is greater than the 106 Mbytes of Real Memory Subtotal entered in line 7. Also, 15% of 128 Mbytes of RAM yields 19 Mbytes of kernel buffer memory.

7. In line 9, add the values from lines 7 and 8 and enter the resulting value in the Real Memory Subtotal column. This number typically ranges from 128 Mbytes to 256 Mbytes.

In line 9 of the example worksheet, adding 106 Mbytes and 19 Mbytes results in the minimum memory requirement of 125 Mbytes.

8. In line 11, the Virtual Memory Subtotal column, enter the negative value of the RAM supplied in line 8.

In line 8 of the example worksheet, the RAM value is 128 Mbytes, so −128 is specified in the Virtual Memory Subtotal column in line 11.

9. In line 12:

a. Add the subtotals from lines 7 and 10, then subtract the virtual memory total (negative RAM) in line 11 from that amount.

b. Enter the resulting value in the Virtual Memory Subtotal column. This number is the minimum swap space size needed by the SSP workstation and typically ranges from 512 Mbytes to 1 Gbyte.

In line 12 of the example worksheet, 304 Mbytes of virtual memory is added to 512 Mbytes (for /tmp), which results in 816 Mbytes. The real memory value, 128 Mbytes, is subtracted from 816 Mbytes, which yields a minimum swapfile size of 688 Mbytes.

Note – The size limit for a swap partition is 2 Gbytes. However, you can add multiple swap partitions if needed.
Bottom line: The minimum amount of memory needed for an SSP workstation is 128 Mbytes. If you do not want to calculate the exact amount required, 256 Mbytes of memory is more than sufficient if you are using other monitoring software. One Gbyte of swap space is more than sufficient for virtual memory and swapfs (/tmp/) space.

Verifying That You Have Sufficient Real Memory

Virtual memory consists of real memory (RAM) and page file (swap) space on disk. Unlike some other systems, real memory for the Solaris operating environment is not mirrored in a swapfile. It is no longer necessary to duplicate a page of swap for each page of real memory, so the old rule that “swap space size should be twice real memory size” no longer applies. The only swap space required is the amount of virtual memory that exceeds the real memory for your system.

The amount of virtual memory required depends on the working set model for a process. The working set is the set of pages a process needs to work effectively. A working set needs to be in real memory or the program may thrash. Thrashing occurs when there is insufficient real memory for all the working sets of a process. As a result, the system spends an excessive amount of time paging the process working sets in and out of swap space.

The working set for a program is defined as $\mathcal{W}(t, \omega)$, which is the set of pages referenced from time $(t - \omega)$ to time t. Typically, a working set for a program does not change much over time, although it can change drastically on occasion. Increasing the time period, ω, does not have much effect on the working set. Pages currently in use are likely to be used in the near future. Memory outside the working set is rarely, if ever, used. Therefore, a program that uses only its working set in real memory and the remainder in swap space will perform almost as effectively as if all of its pages were in memory. This is true even though disk access time is about 100,000 times slower than RAM access time (about 10,000,000 nanoseconds versus 100 nanoseconds).

However, if there is insufficient real memory to keep the working set for a process in memory, the process can easily thrash and run more slowly. Running fewer processes or adding more real memory keeps the process working set in memory and stops the process from thrashing. Thrashing can affect the SSP ability to handle events in a timely manner, due to timeouts and lost SNMP traps. Thrashing can be prevented by properly sizing the SSP system for all applications that it runs.

The easiest way to determine whether a system is thrashing is to check the paging scan rate (sr). The kernel for the Solaris operating environment uses a page scanner, which scans a circular list of pages in memory in order to reclaim memory and swap it out to disk. Pages not referenced since the last cycle are paged out of memory. The
scanner runs faster when demand for memory increases. If the demand is too high, memory in a working set for a process can be removed from real memory, which slows those processes. This can prevent SSP processes from reacting quickly to real-time events. Also, as its scan rate increases, the page scanner uses more CPU time.

If you suspect the system is thrashing, use the `vmstat` command to sample and display virtual memory statistics, as explained in the following procedure. This command adds little overhead and can run safely for long periods of time, if required.

▼ To Determine Whether a System is Thrashing

1. Type `vmstat` followed by the number of times you want the command to sample, optionally followed by the frequency to sample, in seconds.

 For example,

   ```
   % vmstat 5 4
   ```

 prints results every five seconds for four times, while

   ```
   % vmstat 3 100
   ```

 prints results every three seconds for 100 times.

2. **Review the sr column in the output displayed by the `vmstat` command.**

 Ignore the entries in the first row, as the values are cumulative based on when the system was booted. If subsequent values in the sr column are non-zero, the system is thrashing. Ignore the po (page-out) column, as those values includes swapfs (swap file system or /tmp/) activity.

 The following example shows the `vmstat` output for a system that is thrashing:

   ```
   % vmstat 3 4
   ```

 In the output above, note the sr column but ignore the first entry. The sr values are 302, 137, 272, and 121, which indicate the system is thrashing heavily.
The next example shows a system that is not thrashing. The values in the \textit{sr} column are zero, indicating that the Solaris kernel is not performing excessive page scanning to free pages:

\begin{verbatim}
% vmstat 3 7
procs memory page disk faults cpu
r b w swap free re mf pi po fr de sr dd f0 s0 -- in sy cs us sy id
0 0 0 672728 8376 41 236 4 5 5 0 0 4 0 0 0 243 3358 1585 6 9 85
0 0 0 672472 6960 29 46 0 0 0 0 0 0 0 0 0 0 239 3858 1924 8 4 88
0 0 0 672488 6992 59 374 0 0 0 0 0 0 0 0 0 237 4215 1933 5 11 83
0 0 0 666968 7248 87 811 2 0 0 0 0 13 0 0 0 266 4971 1938 24 29 47
0 0 0 672520 7200 47 176 0 0 0 0 0 0 0 0 0 292 4043 2043 8 6 86
0 0 0 672520 7200 0 0 0 0 0 0 0 0 0 0 0 0 240 3516 1861 4 0 96
0 0 0 672520 7200 31 74 0 0 0 0 0 0 0 0 0 235 3726 1876 14 4 82
\end{verbatim}

\section*{CPU Utilization}

Average CPU utilization should be under 65%. This amount allows sufficient CPU resources for SSP software to immediately handle error conditions on a Sun Enterprise 10000 system.

A system with low CPU utilization, for example 25%, does not necessarily indicate that the system is performing poorly, nor should you consider replacing it with a lower-end system or finding more work for the system to handle.

For a batch-processing system, where response times are not as critical, high CPU utilization is usually preferred. However, for an interactive or a real-time controlling system such as SSP, response time is more critical than high CPU utilization. High utilization leads to slower response time, as noted in queuing theory. As utilization approaches 100%, the wait time increases exponentially.

Queuing theory uses models to predict utilization and wait time for a client/server system. The operations in a retail bank, hospital emergency room, or computer server are examples of a client/server system. One of the basic assumptions in queuing theory is that the arrival time between two customers is an exponential distribution. In other words, long periods between customer arrivals are more unlikely than short periods.

Queuing theory is best illustrated by an example. Assume there is a small town bank, the Bank of Ethel, which has one teller (Ethel), and several customers.
Ethel’s utilization (how busy she is) can be determined using the following formula for a single-server model (one teller):

\[\rho = \frac{\lambda}{\mu} < 1 \]

where \(\rho \) (rho) is the proportion of time the servers (tellers) are busy (on a scale of 0 to 1.0, where 0 is no customers at all and 1 indicates the server is completely busy), \(\lambda \) (lambda) is the mean arrival rate, and \(\mu \) (mu) is the mean service rate per server.

In this example, if two customers come to the Bank of Ethel every hour and Ethel serves an average of six customers an hour, \(\lambda = 2 \), \(\mu = 6 \), and Ethel’s utilization is: \(\rho = \frac{2}{6} = \frac{1}{3} \), or about 0.33. Multiply \(\rho \) by 100 to convert \(\rho \) to percent, for example, 33%.

The number of customers expected in the bank at any one time is:

\[L = \frac{\lambda^2}{\mu(\mu - \lambda)} \]

In the above example, the expected number of customers is \(L = \frac{2^2}{6(6 - 2)} = \frac{1}{6} \) or about 0.17. That is, on average there will be about 0.17 customers at the Bank of Ethel, which is not very busy.

What if the number of customer arrivals increases from two to five per hour? Then \(\lambda = 5 \), and the utilization will be \(\rho = \frac{5}{6} \) or about 0.83. This means that Ethel will be serving a customer 83% of the time. However, this has a drastic effect on \(L \), the expected number of customers in the bank. In this example, \(L = \frac{5^2}{6(6 - 5)} = \frac{25}{6} \) or about 4.17 customers in the bank, on the average. The number of customers waiting for service is \((L - 1) \), so in this example, there are about 3.17 customers waiting for service. This example shows why high utilization and immediate service are not possible at the same time.

For an SSP workstation, assume the CPU of the SSP workstation is the server. Utilization, \(\rho \), is the percentage that the CPU is in use. The CPU “customers” are processes that are either being serviced by the CPU or waiting in the queue. The load average shown by various commands in the Solaris operating environment is \((L - 1) \), which represents the number of waiting customers.

FIGURE 8-2 illustrates how increased utilization drastically increases customer wait time.
FIGURE 8-2 Utilization and Customers Expected

The X-axis is the utilization of a single server, ranging from 50% to 90%. The Y-axis shows L, the expected number of customers at any one time for a given level of utilization, p. If L is greater than or equal to 2, at least one customer is always waiting. At 60% utilization or less, almost no one is waiting for service. When utilization exceeds 72% or so, a customer is almost always waiting. When utilization exceeds 80%, multiple customers are usually waiting.

To summarize, for quicker service, you must sacrifice high utilization. The highest utilization you can have without having customers wait for service is usually about 65%.
SSP CPU Requirements

The following table shows the approximate CPU utilization by the SSP software at its busiest state (bringup of domains):

TABLE 8-1 CPU Utilization for SSP Software

<table>
<thead>
<tr>
<th>Domains</th>
<th>Netra T1 Server or Sun Ultra 5 Workstation Average CPU Usage</th>
<th>Sun Enterprise 250 Workstation Average CPU Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 4</td>
<td>24%</td>
<td>17%</td>
</tr>
<tr>
<td>5 to 8</td>
<td>29%</td>
<td>18%</td>
</tr>
<tr>
<td>9 to 16</td>
<td>31%</td>
<td>20%</td>
</tr>
</tbody>
</table>

If you are using the Sun Management Center, add the CPU overhead values in **TABLE 8-2**:

TABLE 8-2 Additional CPU Utilization for Sun Management Software

<table>
<thead>
<tr>
<th>Domains</th>
<th>Netra T1 Server or Sun Ultra 5 Workstation Average CPU Usage</th>
<th>Sun Enterprise 250 Workstation Average CPU Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 8</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>9 to 16</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>

If you are using SunScreen™, add the following CPU overhead to the values in **TABLE 8-1**:

TABLE 8-3 Additional CPU Utilization for SunScreen

<table>
<thead>
<tr>
<th>Netra T1 Server or Sun Ultra 5 Workstation Average CPU Usage</th>
<th>Sun Enterprise 250 Workstation Average CPU Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>4%</td>
</tr>
</tbody>
</table>

SSP Hardware

Your SSP workstation or server must have enough hardware resources to operate the maximum number of domains planned on the Sun Enterprise 10000 system it controls, as well as what is required to run third-party applications.
The proper hardware technology depends on the usage profile of the third-party software. Less intensive software requires less CPU and memory than resource-hungry applications. You must determine the CPU and real memory resources needed for these applications before determining the appropriate workstation hardware to use.

Using a Faster Processor

If CPU utilization is too high for your SSP configuration (over 65%), using a faster processor will reduce CPU utilization dramatically. For example, when bringing up 16 domains on a Sun Ultra 5 workstation, an UltraSPARC™ II processor running at 360 MHz has about one-half the CPU utilization as a slower CPU running at 270 MHz. A faster processor is also appropriate if you add monitoring or third-party software, such as Sun Management Center, which uses a lot of CPU.

When comparing CPUs, remember to consider the CPU family and L2 cache size, in addition to CPU speed. The UltraSPARC II processor on the Sun Enterprise 250 workstation is faster than the UltraSPARC IIi processor on the Sun Ultra 5 workstation. The UltraSPARC II processor comes with more L2 cache (1 to 4 Mbytes) than the UltraSPARC IIi processor (256 Kbytes to 2 Mbytes).

Adding More Memory

If a system does not have sufficient memory, it will thrash—that is, swap pages excessively in and out of real memory. Be sure that you have sufficient memory modules to prevent thrashing and enable your software to run with fewer interruptions on the SSP workstation.

Adding More Swap Space

You can add more swap space if needed to improve system reliability, even though it will not improve system performance. If a system runs out of memory, processes cannot allocate more memory and will begin to fail. Swap space is required to save inactive processes and memory regions, and to handle overflow in **swapfs (/tmp/)**. Additionally, automatic SSP failover may need to occasionally propagate large files, such as SSP log files and possibly user-specified files (listed in `$SSPVAR/.ssp_private/user_file_list`, which identifies various data files, including those used by third-party applications, to be synchronized for failover purposes). Therefore, it is important to have an adequately-sized swap file to hold these files.
Adding More Disk Space

The SSP requires 1 Gbyte of unused disk space for the file system containing
/var/, which is used to store SSP log files (under /var/opt/SUNWssp/ and
/var/adm/) and SSP backup files (usually under /var/tmp/). If the file system fills
up, the SSP can exhibit strange behavior, such as freezing, respawning processes, or
login failures, and event information might not be saved in logs.
Installing the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains

These instructions explain how to use a remote CD-ROM on the System Service Processor (SSP) to install the Solaris operating environment on Sun Enterprise 10000 domains. Basic instructions for installing the Solaris operating environment on multidomain servers are provided in the Solaris 8 Advanced Installation Guide in the Solaris 8 10/01 Update Collection.

The installation of the Solaris operating environment on Sun Enterprise 10000 domains involves various tasks that you must perform before and after the actual installation. This chapter provides an overview of the domain installation process and detailed information on the following:

- What you need to start the installation process
- Domain pre-installation tasks
- Domain installation tasks specific to the Sun Enterprise 10000 server
- Domain post-installation tasks

Caution – If you are installing the Solaris 8 10/01 operating environment on a Sun Enterprise 10000 domain and you want to run DR model 3.0 on that domain, you must run SSP 3.5 software on the System Service Processor (SSP). If you run DR model 2.0 on your domain, your SSP can run SSP 3.2, 3.3, 3.4, or 3.5 software. Note that SSP software versions 3.0, 3.1, and 3.1.1 do not support domains running the Solaris 8 10/01 operating environment. For SSP 3.5 software installation instructions, see Chapter 3. For details on installing SSP 3.2, 3.3, or 3.4, refer to the SSP Installation Guide and Release Notes for the SSP version to be installed.
Overview of Domain Installation Tasks

The basic installation scenarios for the Sun Enterprise 10000 server consist of the following:

- Creating a new domain running the Solaris 8 10/01 operating environment and establishing the SSP as an install server

 or

- Installing a fresh copy of the Solaris 8 10/01 operating environment on an existing domain using the SSP as an install server

FIGURE 9-1 illustrates the tasks involved in installing the Solaris operating environment on a Sun Enterprise 10000 server. Your installation scenario determines where you start the installation process. For example, if you are performing a fresh install of the Solaris operating environment on an existing domain, you do not need to create a new domain.

You must complete the appropriate tasks in the order shown in FIGURE 9-1. The following sections in this chapter provide further information about each task. These tasks can take a considerable amount of time to complete, depending on the configuration of the server and the site in which it resides.

Note – The pre-installation procedures in this chapter represent only one strategy for the installation. Depending on the level of your expertise, you can use a different strategy (for example, you can set up an install server from which to install a single image of the Solaris operating environment). Advanced strategies are out of the scope of this document. In addition, this chapter does not describe recovery from crashed disks or installations over the network from a machine other than the SSP.
FIGURE 9-1 Overview of Domain Installation Tasks

Pre-Installation Tasks

1. Create a domain
2. Configure domain network information
3. Set up the SSP as an install server
4. Bring up the domain to OBP
5. Set up the OBP environment

Installation Tasks

1. Run boot net from the domain's OBP
2. Complete the suninstall process

Post-installation Tasks

1. Configure the default boot disk
2. Install additional software packages
3. Configure the domain ntp.conf file
4. Verify the installation
5. License the software

See “To Create the eeprom.image File” on page 77 and “To Create a New Domain on the SSP” on page 78.

See “To Configure Domain Network Information” on page 79.

See “To Set up the SSP as an Install Server” on page 81.

See “To Bring Up the Domain to the OpenBoot PROM Level” on page 82.

See “To Set Up the OpenBoot PROM Environment” on page 83.

See “To boot net the Operating Environment to the Domain” on page 87.

See “To Finish the suninstall Process” on page 89 and the Solaris 8 Installation Supplement.

See “To Configure the Default Boot Disk” on page 90.

See “To Install Additional Software Packages” on page 92.

See “To Configure the NTP Packages” on page 93.

See “To Verify the Installation” on page 94.

See “Licensing Your Software” on page 95.
What You Need to Start the Domain Install

You must be very familiar with your site configuration and the configuration of the server before you start a fresh install. Some of the information can be obtained from the server configuration files.

The following list identifies the information that you must obtain before starting the installation process:

TABLE 9-1 Required Items for Domain Installation

<table>
<thead>
<tr>
<th>Required Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of the new domain</td>
<td>If you are creating a new domain, obtain this information from your Sun service provider. The system identification key is used to generate an <code>eeprom.image</code> file.</td>
</tr>
<tr>
<td>System identification key and Host ID</td>
<td>The floating host name is the name of the SSP that functions as the main SSP.</td>
</tr>
<tr>
<td>Floating host name of your SSP</td>
<td>Needed only if you want to customize the root disk of your domain.</td>
</tr>
<tr>
<td>Disk partition sizes</td>
<td>Specify the logical name in the form <code>ctxdxssx</code></td>
</tr>
<tr>
<td>Logical name of the target domain’s disk</td>
<td>The following is a list of the minimum set of CDs used during an installation. Depending on the locale and distribution that you select during the installation, the following CDs might be used:</td>
</tr>
<tr>
<td>Solaris CDs for installation</td>
<td>• Solaris 8 Software 1 of 2 - SPARC™ Platform Edition</td>
</tr>
<tr>
<td></td>
<td>• Solaris 8 Software 2 of 2 - SPARC Platform Edition</td>
</tr>
<tr>
<td></td>
<td>• Software Supplements for the Solaris 8 operating environment - SPARC Platform Edition</td>
</tr>
<tr>
<td></td>
<td>• Solaris 8 10/01 Languages</td>
</tr>
</tbody>
</table>

Caution – Do not use the Solaris 8 Installation CD to install the Solaris operating environment on Sun Enterprise 10000 domains. Begin the installation by using the Solaris 8 Software 1 of 2 CD as explained in this chapter.
Domain Pre-Installation Tasks

This section describes the prerequisite tasks and procedures that you must complete before installing the Solaris operating environment on a Sun Enterprise 10000 domain. Depending on your system configuration and your installation scenario, you may not need to complete all the tasks. In this section you will find how to

- Create a domain by
 - Creating the eeprom.image file for the new domain
 - Creating the new domain on the SSP
 - Configure domain network information
 - Set up the SSP as an install server
 - Bring up the domain to the OpenBoot PROM level
 - Set up the OpenBoot PROM environment

▼ To Create the eeprom.image File

1. Obtain the system identification key and the host ID from your Sun service provider.

2. Log in to the SSP as user ssp.

3. When prompted for the SUNW_HOSTNAME variable, use either the platform name or the name of any existing domain.

4. Use the sys_id(1M) command to create the eeprom.image file.

```bash
ssp% sys_id -h hostid -k key \
    -f $SSPVAR/.ssp_private/eeprom_save/eeprom.image.domain_name
```

where:

- `hostid` is the number provided with the key.
- `key` is the EEPROM key number.
- `domain_name` is the hostname of the new domain.

For details on the valid `hostid` and `key` numbers, see the `sys_id(1M)` man page.

Note – All `key` and `hostid` numbers are case-sensitive and must be entered exactly as they are received.
5. Execute the following `sys_id(1M)` command to check the results.

```
ssp% sys_id -d -f $SSPVAR/.ssp_private/eeprom_save/eeprom.image.domain_name
```

In the following example, `49933C54C64C858CD4CF` is the key and `0x80a66e05` is the `hostid`:

```
ssp% sys_id -h 0x80a66e05 -k 49933C54C64C858CD4CF -f $SSPVAR/.ssp_private/eeprom_save/eeprom.image.domain_name
ssp% sys_id -d -f $SSPVAR/.ssp_private/eeprom_save/eeprom.image.domain_name

IDPROM in eeprom.image.domain_name
Format = 0x01
Machine Type = 0x80
Ethernet Address = 0:0:be:a6:6e:5
Manufacturing Date = Wed Dec 31 16:00:00 1997
Serial number (machine ID) = 0xa66e05
Checksum = 0x3f
```

6. Back up the SSP `eeprom.image` files to tape or disk where they can be accessed in case of an SSP boot-disk failure.

You are done creating the `eeprom.image` file for the domain.

7. You can now build the new domain on the SSP, as described in the following section.

▼ To Create a New Domain on the SSP

1. Log in to the SSP as user `ssp`.

2. When prompted for the `SUNW_HOSTNAME` variable, specify the platform name of the domain that you wish to create.

 Ensure that the domain name corresponds with the hostname of the domain in which the operating system is to be installed. Platform names must not be longer than 14 characters.
3. Use the `domain_create(1M)` command to create the domain.

```bash
ssp% domain_create -d domain_name -b board_numbers -o 5.8 -p platform_name
```

where:

- `domain_name` is the name of the domain specified in Step 2.
- `board_numbers` is a list of the system boards, delimited by spaces, to be included in the domain.
- `5.8` is the version of the operating system on the domain.
- `platform_name` is the name of the platform as defined during the SSP package configuration.

For additional information, refer to the *Sun Enterprise 10000 SSP User Guide* appropriate to the SSP release that you are using.

4. Use the `domain_switch(1M)` command to switch to the target domain.

```bash
ssp% domain_switch domain_name
```

5. If you have determined that elements of the domain are powered off, power on those elements.

```bash
ssp:domain_name% power -on
```

You are done creating the domain.

6. You can now configure the domain network information, as described in the next section.

▼ To Configure Domain Network Information

If you just created a new domain, update the following on the SSP:

- The `/etc/hosts` file to include the new domain name and its corresponding IP address
- Optionally, the `/etc/ethers` file, if you have an Ethernet address for the new domain
If you use NIS at your site, check with your network administrator about what configuration issues must be addressed before you continue the pre-installation tasks. NIS issues are out of the scope of this chapter.

1. Log in to the SSP as superuser.

2. Manually edit the `/etc/hosts` file to include the IP address of the new domain.
 You must get the IP address from your network administrator.
 The correct entries would look similar to the following `/etc/hosts` sample. Note that the new entry is tacos:

   ```
   129.153.49.185  tacos  
   127.0.0.1     localhost  
   129.153.49.179  snax-ssp vegetables  localhost  
   129.153.49.181  snax-cb0  
   129.153.49.182  snax-cbl  
   129.153.49.180  pizza  
   129.153.49.183  chips  
   129.153.49.1   marvin-49  
   110.0.0.1    vegetables-priv  
   110.0.0.5    chips-priv  
   
   The /etc/hosts file is actually a link to /etc/inet/hosts.
   ```

 Caution – If the new domain entry follows any other host or SSP entry, the `add_install_client` command may not work in Step 4 of the next procedure.

3. If the domain has an Ethernet address, manually edit the `/etc/ethers` file to include the Ethernet address.
 The correct entries would look similar to the following `/etc/ethers` sample. Note that tacos represents the name of the new domain in this example:

   ```
   8:0:20:87:58:a5     snax-ssp vegetables  
   0:0:be:01:00:1e     snax-cb0  
   0:0:be:01:00:57     snax-cbl  
   0:0:be:a6:50:2f     pizza  
   0:0:be:a6:6f:19     chips-priv  
   0:0:be:a6:6f:23     nachos  
   0:0:be:a6:6f:2a     tacos  
   `` `

   You are done configuring the domain network information.
4. You can now set up the SSP as an install server, as described in the next section.

▼ To Set up the SSP as an Install Server

Use the SSP as an install server, from which you install the Solaris software on a Sun Enterprise 10000 domain. You will need the Solaris 8 SPARC Solaris 1 of 2 CD to perform this procedure.

1. Insert the Solaris 8 SPARC Solaris 1 of 2 CD into the CD-ROM drive on the SSP.
   After inserting the CD, wait for the volume manager to mount the CD-ROM.

2. Log in to the SSP as superuser.

3. Change to the **Tools** directory on the CD.

   ```
 ssp# cd /cdrom/cdrom0/s0/Solaris_8/Tools
   ```

4. Set up the host domain as an install client.

   ```
 ssp# ./add_install_client domain_name sun4u
   ```

   If the `/etc/nsswitch.conf` file contains a DNS entry in its host list, you may receive the following warning:

   ```
 Error: domain_name does not exist in the NIS ethers map.
   ```

   If you receive this message, you need to remove the DNS entry in the `/etc/nsswitch.conf` file, add the `domain_name` to the ethers map if the name is not already in the map, and re-run the `add_install_client(1M)` command.

5. **Verify that nfsd(1M) is running on the server.**

   ```
 ssp# ps -ef | grep nfsd
   ```

   If you see any entry containing `/usr/lib/nfs/nfsd`, then `nfsd` is running on your system.

6. **If nfsd is not running, type:**

   ```
 ssp# /etc/init.d/nfs.server start
   ```
7. Use the following `share(1M)` command to share the CD across the network.

```
ssp# share -F nfs -o ro,anon=0 /cdrom/cdrom0/s0
```

8. Exit the superuser level.
   You are done setting up the SSP as a boot server.

9. You can now bring up the domain, as explained in the next procedure.

▼ To Bring Up the Domain to the OpenBoot PROM Level

1. As user `ssp`, use the `domain_switch(1M)` command to switch to the target domain.

2. Bring up the domain.

```
ssp% bringup -A off
```

If this is the first domain to be brought up, you will be prompted to configure the centerplane. Type `y` to continue if you are sure that no other domains are running. Responding yes resets the entire platform; therefore, you must be sure that no other domains are running.

```
This bringup will configure the Centerplane. Please confirm (y/n)?: y
```

After a few minutes the SSP prompt is displayed. Review the output of the `bringup(1M)` command. If errors occurred, you must correct those errors before you proceed. If no errors occurred, continue to the next step.

3. In the SSP window, open a `netcon(1M)` session.

```
ssp% netcon -g
```

The `ok` prompt is displayed after a few minutes. The duration depends directly on the size of the domain.

You are done bringing up the domain.

4. You can now set up the OpenBoot PROM, as described in the next section.
To Set Up the OpenBoot PROM Environment

1. Drop down to the OpenBoot prompt and use the `devalias` command to check for duplicate `devaliases` entries in the OpenBoot PROM.

The installation utility, `suninstall`, may not work properly if you have defined duplicate `devaliases` in OpenBoot PROM. Use the `devalias` command to check the aliases. The output may resemble the following example:

```
ok devalias
net /sbusr41,0/qecr0,20000/qet1,0
ttya /ssp-serial
ssa_b_example /sbusr40,0/SUNWSoc0,0/SUNW,pln@b0000000,XXXXXX/SUNW,ssdr0,0:a
ssa_a_example /sbusr40,0/SUNWSoc0,0/SUNW,pln@a0000000,XXXXXX/SUNW,ssdr0,0:a
isp_example /sbusr40,0/QLGC,isp0,10000/ssdr0,0
net_example /sbusr40,0/qecr0,20000/qet0,0
net /sbusr41,0/qecr0,20000/qet0,0
ok
```

2. If any duplicate entries exist in the `devalias` list, remove them.

The following example removes the last-created `net` `devalias`. You may have to issue a second `nvunalias` command if the second `net` alias is the incorrect one. Then issue an `nvalias` command to create the correct `net` device alias.

```
ok nvunalias net
```

The following example removes the last-created `net` `devalias`. You may have to issue a second `nvunalias` command if the second `net` alias is the incorrect one. Then issue an `nvalias` command to create the correct `net` device alias.

```
ok nvunalias net
```
3. Run the `watch-net-all` command to display the functioning network interfaces and determine which device passes all the device tests.

In the following example for a Sun Quad FastEthernet™ interface, the last network interface is the connection for which all device tests passed. The display on your network may differ from the example below.

```
ok watch-net-all
/sbus@4c,0/SUNW,qfe@0,8c30000
Internal loopback test -- succeeded.
Transceiver check -- failed

/sbus@4c,0/SUNW,qfe@0,8c20000
Internal loopback test -- succeeded.
Transceiver check -- failed

/sbus@4c,0/SUNW,qfe@0,8c10000
Internal loopback test -- succeeded.
Transceiver check -- failed

/sbus@4c,0/SUNW,qfe@0,8c00000
Internal loopback test -- succeeded.
Transceiver check -- passed
Looking for Ethernet Packets.
’.’ is a Good Packet. ’X’ is a Bad Packet.
Type any key to stop.
```
4. If a net alias does not exist for the network interface that is on the same subnet as the SSP, create one.

```
ok nvalias net /sbus@xx,0/SUNW, network_interface_card
```

where:

xx is a hexadecimal value that represents the system board and system I/O slot.

`network_interface_card` is the device name that defines a network interface installed in the specified slot.

In the following example:

```
ok nvalias net /sbus@4c,0/SUNW,qfe@0,8c00000
```

/sbus@4c,0 refers to system board 3 and SBus 0.

/SUNW,qfe@0 is the portion of the device name that defines a Sun Quad FastEthernet network interface installed in Slot 0. This information is site-specific; thus, your configuration may vary.

The following table contains the SBus numbers used in the devalias file.

<table>
<thead>
<tr>
<th>system board</th>
<th>sysio 0</th>
<th>sysio 1</th>
<th>system board</th>
<th>sysio 0</th>
<th>sysio 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/sbus@40</td>
<td>/sbus@41</td>
<td>8</td>
<td>/sbus@60</td>
<td>/sbus@61</td>
</tr>
<tr>
<td>1</td>
<td>/sbus@44</td>
<td>/sbus@45</td>
<td>9</td>
<td>/sbus@64</td>
<td>/sbus@65</td>
</tr>
<tr>
<td>2</td>
<td>/sbus@48</td>
<td>/sbus@49</td>
<td>10</td>
<td>/sbus@68</td>
<td>/sbus@69</td>
</tr>
<tr>
<td>3</td>
<td>/sbus@4c</td>
<td>/sbus@4d</td>
<td>11</td>
<td>/sbus@6c</td>
<td>/sbus@6d</td>
</tr>
<tr>
<td>4</td>
<td>/sbus@50</td>
<td>/sbus@51</td>
<td>12</td>
<td>/sbus@70</td>
<td>/sbus@71</td>
</tr>
<tr>
<td>5</td>
<td>/sbus@54</td>
<td>/sbus@55</td>
<td>13</td>
<td>/sbus@74</td>
<td>/sbus@75</td>
</tr>
<tr>
<td>6</td>
<td>/sbus@58</td>
<td>/sbus@59</td>
<td>14</td>
<td>/sbus@78</td>
<td>/sbus@79</td>
</tr>
<tr>
<td>7</td>
<td>/sbus@5c</td>
<td>/sbus@5d</td>
<td>15</td>
<td>/sbus@7c</td>
<td>/sbus@7d</td>
</tr>
</tbody>
</table>

5. You can now run `boot net` to start the Solaris operating environment, as described in the following section.
Domain Installation Tasks

This section explains the tasks specific to the installation of the Solaris operating environment on a Sun Enterprise 10000 domain, using the SSP as an install server (explained in “To Set up the SSP as an Install Server” on page 81). For general details on installing the Solaris operating environment from a remote CD-ROM, refer to the Solaris 8 Advanced Installation Guide.

In this section you will find how to

- Run `boot net` to install the Solaris operating environment
- Finish the `suninstall` process
To boot net the Operating Environment to the Domain

- In the netcon(1M) window, boot the system from the network.

```plaintext
ok boot net
```

The `boot net` command starts the `suninstall` utility. This utility prompts you to provide site and platform-specific information. See the following table for details on the information specific to the Sun Enterprise 10000 server that you need to provide during installation.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating hostname of the SSP for domain_name [default_name]</td>
<td>SSP host name. Note that the default value appends <code>-ssp-main</code> to the platform name. For example if the platform name is allxf5, the default value is <code>allxf5-ssp-main</code>.</td>
</tr>
<tr>
<td>Select the Solaris software to install</td>
<td>Software distribution mode. Select Entire Distribution plus OEM Support.</td>
</tr>
<tr>
<td>Automatically Layout File Systems?</td>
<td>File system layout. Select Manual Layout, then Customize. You are prompted to enter the disk partition sizes for your file systems. Do not use disk partitions that are less than the minimum sizes listed in TABLE 9-4. Use the Tab key to move the cursor and type the size for each partition. Press F2 when you are done.</td>
</tr>
</tbody>
</table>

---

Chapter 9 Installing the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains 87
Note – The file systems listed in TABLE 9-4 can be organized as part of your root (/) partition, except for swap (/tmp).

**TABLE 9-4 Minimum Disk Partition Sizes**

<table>
<thead>
<tr>
<th>Partition</th>
<th>Partition Name</th>
<th>Minimum Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/</td>
<td>256 Mbytes</td>
<td>Bare minimum size</td>
</tr>
</tbody>
</table>
| 1         | swap           | See Notes    | The swap space that you allocate depends on the amount of physical memory for your system. The following guidelines are suggested for calculating swap space:  
  - If you have 128 Mbytes or less of physical memory, allocate a swap space size that is 2 times the amount of physical memory. For example, if you have 128 Mbytes of physical memory, the recommended swap space size is 256 Mbytes.  
  - If you have between 128 Mbytes and 256 Mbytes of physical memory, allocate a swap space size that is 1.5 times the amount of physical memory.  
  - If you have between 256 Mbytes and 512 Mbytes of physical memory, allocate a swap space size equivalent to the amount of physical memory.  
  - If you have between 512 Mbytes and 16 Gbytes of physical memory, allocate a swap space size that is .5 times the amount of physical memory.  
  - If you have 16 Gbytes or greater of physical memory, allocate a swap space size that is .35 times the amount of physical memory. |
| 2         | overlap        | Actual total disk size |
| 3         | /var           | 512 Mbytes    |
To Finish the suninstall Process

As you proceed with the installation process, you will have to change CDs. This process requires that you unshare the CD in the CD-ROM drive and share the next CD to be installed.

1. In another window, log into the SSP as superuser.
2. Unshare the CD and eject it from the CD-ROM drive.
3. Insert the next CD into the CD-ROM drive and share it.
4. From the domain installation window, where you are prompted for the installation image, specify the path of the CD image.
5. Unshare the CD, then eject it from the CD-ROM drive.

### TABLE 9-4 Minimum Disk Partition Sizes  (Continued)

<table>
<thead>
<tr>
<th>Partition Name</th>
<th>Minimum Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3 Mbytes</td>
<td>This slice must be reserved for the Alternate Pathing and Solstice DiskSuite products. Otherwise, subsequent Alternate Pathing installations will overwrite the operating system.</td>
</tr>
<tr>
<td>5 /opt</td>
<td>512 Mbytes</td>
<td>This can be larger depending on the remaining space.</td>
</tr>
<tr>
<td>6 /usr</td>
<td>1024 Mbytes</td>
<td>Asian-language users may need more space here.</td>
</tr>
</tbody>
</table>

ssp# unshare /cdrom/cdrom0/s0
ssp# eject cdrom

ssp# share -F nfs -o ro, anon=0 /cdrom/cdrom0

sspname: /cdrom/cdrom0

ssp# unshare /cdrom/cdrom0
ssp# eject cdrom
Note – The path that you specify for unsharing the CD must be identical to the path specified for the sharing the CD. Otherwise, you will encounter an error when you unshare the CD.

6. Repeat Steps 3, 4, and 5 for each CD to be installed.

7. After the last CD is installed, reboot the domain, unless you indicated earlier in the installation process to have the domain automatically rebooted.

8. Continue with the domain post-installation tasks, which are described in the next section.

Domain Post-Installation Tasks

This section describes the tasks you must complete after installing the Solaris operating environment on your Sun Enterprise 10000 domains. In this section you will find how to

- Configure the default boot disk
- Install additional software packages
- Configure the Network Time Protocol (NTP) configuration file
- Verify the domain installation
- License your software

▼ To Configure the Default Boot Disk

1. If you partitioned your disk during installation (see “To boot net the Operating Environment to the Domain” on page 87) verify the partitions and their corresponding devices by typing the following in the root directory:

   ```bash
 domain_name# df -lk
   ```

2. List the devices entry for your boot disk.

   ```bash
 domain_name# ls -l /dev/dsk/root_partition_device
   ```

   where root_partition_device is in the form cxt.xdtxs.
3. Copy the part of the string that begins with either /sbus or /pci.
   Example:
   /sbus@65,0/SUNW,fas@1,8800000/sd@3,0:a.
   Record your device string here:

   /

   Use the device string for the device you want to use as the default boot device. At this point in the installation, you can set it to any valid boot disk in the domain.

4. Drop down to the OpenBoot prompt in the netcon(1M) window.

   domain_name# ~#

5. Assign the device string to an alias (see Step 3 for the device_string).

   ok nvalias bootdisk_alias device_string

   As in this example, the nvalias command should be entered on a single line.

6. Store the cache for the device.

   ok nvstore

7. Use the setenv command to set the default boot-disk alias to the correct device.

   ok setenv boot-device bootdisk_alias

   where bootdisk_alias corresponds to the user-defined alias you established in Step 5. The device should correspond to the device that you want to use as the boot disk, which may be different than the device on which you just installed the Solaris operating environment.

8. At the OpenBoot PROM prompt, type go to exit the OpenBoot PROM and return to the domain prompt.

   ok go

   You are done configuring the default boot device.
9. You can now install additional software packages, as explained in the next section.

\section*{To Install Additional Software Packages}

Additional software packages are in separate media. Install the software packages one at a time, from the appropriate media. For example, you can install packages, such as the AnswerBook2 package from the Sun Computer Systems Supplement CD.

1. In an SSP window, use the \texttt{unshare(1M)} command, then eject the CD in the CDROM drive.

\begin{verbatim}
ssp# unshare /cdrom/cdrom0/s0
ssp# eject cdrom
\end{verbatim}

2. Insert the appropriate installation CD into the CD-ROM drive on the SSP.

3. Log in as superuser on the SSP and share the CD-ROM.

\begin{verbatim}
ssp# share -F nfs -o ro,anon=0 /cdrom/cdrom0
\end{verbatim}

4. Log in to the domain as superuser in the \texttt{netcon(1M)} window.

5. Create and mount the \texttt{/cdrom} directory on the domain.

\begin{verbatim}
domain_name# mkdir /cdrom
domain_name# mount ssp_name:/cdrom/cdrom0 /cdrom
\end{verbatim}

6. Add the software package.

\begin{verbatim}
domain_name# cd /cdrom/install_cd_name
domain_name# pkgadd -d. software_package_name
\end{verbatim}

where:

- \texttt{install_cd_name} is the name of the installation CD from which you are installing
- \texttt{software_package_name} is the name of the software package you are adding.

The \texttt{pkgadd(1M)} command may display several messages and ask several installation questions for each package, some relating to space, others asking whether it is OK to continue. After answering these questions, when asked whether to proceed, answer \texttt{y}.
7. In the `netcon(1M)` window, unmount the CD.

```plaintext
domain_name# cd /
domain_name# umount /cdrom
```

8. Log in to the SSP as superuser and remove the installation CD from the CD-ROM drive.

```plaintext
ssp# cd /
ssp# unshare /cdrom/cdrom0
ssp# eject cdrom
```

9. Install and configure any other purchased software packages.

▼ To Configure the NTP Packages

1. After you install any additional software packages, configure the `ntp.conf` file for each domain, to synchronize clocks between the SSP and its domain.

   For details on configuring the domain `ntp.conf` file, which resides at `/etc/inet/ntp.conf`, see “Configuring the Network Time Protocol Daemon” on page 48.

   For more information about NTP commands, refer to the `xntpd(1M)` man page in the `man Pages(1M): System Administration Commands` section of the Solaris Administration AnswerBook2 Collection.

2. You can now verify the installation, as described in the following section.
To Verify the Installation

1. Check the operating mode.

```
domain_name# isainfo -k
```

If you are running in 64-bit mode, you should get the following output.

```
sparcv9
```

If you are running in 32-bit mode, you should get the following output.

```
sparc
```

2. From the SSP window, use the `ps(1)` command to verify that the Event Detector Daemon (EDD) is running and then use the `edd_cmd(1M)` command to ensure that the EDD is running in the proper mode before you attempt to reboot the domain (see the `edd(1M)` man page).

3. If you intend to run DR model 3.0 on the domain, consider switching DR models (from model 2.0 to 3.0) at this time, and proceed to Step 4.

   If you switch DR models now, you can avoid a reboot of the domain later. For details on how to switch DR models, refer to the Sun Enterprise 10000 Dynamic Reconfiguration User Guide.

4. Reboot the domain with the proper operating mode.

   For the Solaris 8 10/01 operating environment, you can use either the 32-bit mode or the 64-bit mode. The 64-bit mode is the default for all sun4u platforms.

   - For 32-bit mode, type:

   ```
 domain_name# reboot “bootdisk_alias kernel/unix”
   ```

   - For 64-bit mode, type one of the following commands.

     If you are already in 64-bit mode, use the following command.

   ```
 domain_name# reboot bootdisk_alias
   ```

   If the domain is on the default disk, you do not need to specify the `bootdisk_alias`.  

   If you are running in 64-bit mode, you should get the following output.
If you are switching from the 32-bit mode to the 64-bit mode, use the following command.

```
domain_name# reboot "bootdisk_alias kernel/sparcv9/unix"
```

5. You are done with the fresh install unless you need to license your software, as described in the following section.

## Licensing Your Software

The Sun Enterprise 10000 domain feature requires different approaches to software licensing than systems that cannot be logically partitioned.

### FLEXlm-Based Licensing

License management (the license server) is normally tied to a machine host ID. On a Sun Enterprise 10000 system, the license server is tied to the domain host ID. Each domain receives its own domain host ID.

Therefore, if licensing is installed on a Sun Enterprise 10000 system, it must be installed in a domain that will not be removed. Adding or removing processors from the domain will not affect licensing, as long as the domain always has at least one active processor.

If licensing ever needs to be moved from one domain to another, the licenses will need to be regenerated using the new domain host ID. This is identical to the situation when moving the license server from one machine to another. This process is called a server move; contact the Sun License Center to request a server move.

For more licensing information, use the following Sun License Center URL:

http://www.sun.com/licensing

▼ To Obtain the Sun Enterprise 10000 System Domain Host ID

- Type `hostid` in a shell window.
Other Software Licensing

Other software vendors may have unique software licensing policies for their products running on Sun Enterprise 10000 systems. All major independent service providers have been notified and should have software policies in place. For additional information, contact your Sun service provider.
Upgrading to the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains

These instructions explain how to use the remote CD-ROM on the System Service Processor (SSP) to upgrade the Solaris operating environment on Sun Enterprise 10000 domains. Basic instructions for upgrading the Solaris 10/01 operating environment on multidomain servers are provided in the Solaris 8 Advanced Installation Guide in the Solaris 8 10/01 Update Collection.

The upgrade of the Solaris operating environment on Sun Enterprise 10000 domains involves various tasks that you must perform before and after the actual upgrade. This chapter provides an overview of the domain upgrade process and detailed information on the following:

- What you need to start the upgrade process
- Domain pre-upgrade tasks
- Domain upgrade tasks specific to the Sun Enterprise 10000 server
- Domain post-upgrade tasks

Caution – If you are upgrading to the Solaris 8 10/01 operating environment on a Sun Enterprise 10000 domain and you want to run DR model 3.0 on that domain, you must run SSP 3.5 software on the System Service Processor (SSP). If you run DR model 2.0 on your domain, your SSP can run SSP 3.2, SSP 3.3, SSP 3.4, or SSP 3.5 software. Note that SSP software versions 3.0, 3.1, and 3.1.1 do not support domains running the Solaris 8 10/01 operating environment. For SSP 3.5 software installation instructions, see Chapter 3. For details on installing SSP 3.2, 3.3, or 3.4, refer to the SSP Installation Guide and Release Notes for the SSP version to be installed.
Overview of Domain Upgrade Tasks

This section provides an overview of the tasks required to upgrade from an earlier version of the Solaris operating environment to the 10/01 operating environment. The upgrade involves the suninstall utility, which merges the new version of the Solaris software with the existing files on the domain’s disk, saving as many local modifications as possible.

FIGURE 10-1 illustrates the tasks involved in upgrading the Solaris operating environment on a Sun Enterprise 10000 server. You must complete these tasks in the order shown. The following sections provide further details about each task. These tasks can take a considerable amount of time to complete, depending entirely on the configuration of the server and the site in which it resides.
FIGURE 10-1 Overview of Domain Upgrade Tasks

- **Pre-Upgrade Tasks**
  1. Prepare the domain
  2. Configure domain network information
  3. Set up the SSP as an install server
  4. Bring up the domain to OBP
  5. Set up the OBP environment

- **Upgrade Tasks**
  1. Run `boot net` from the domain's OBP
  2. Complete the upgrade process

- **Post-Upgrade Tasks**
  1. Configure the default boot disk
  2. Install additional software packages
  3. Configure the domain `ntp.conf` file
  4. Verify the upgrade
  5. License the software

See “To Prepare the Domain for the Upgrade” on page 101.

See “To Verify the Domain Network Information” on page 103.

See “To Set Up the SSP as an Install Server” on page 104.

See “To Bring Up the Domain to the OpenBoot PROM Level” on page 105.

See “To Set Up the OpenBoot PROM Environment” on page 106.

See “To boot net the Operating Environment to the Domain” on page 110.

See “To Finish the Upgrade Process” on page 111 and the Solaris 8 Installation Supplement Update 4.

See “To Configure the Default Boot Disk” on page 113.

See “To Install Additional Software Packages” on page 114.

See “To Configure the NTP Packages” on page 116.

See “To Finish the Upgrade Process” on page 111.

See “Licensing Your Software” on page 117.
What You Need to Start the Domain Upgrade

The following list identifies the various items that you must have or information that you must know before starting the upgrade process:

- The floating host name of your SSP
- A /usr partition on your boot disk that is 1024 Mbytes or larger
  
  If the /usr partition is smaller than 1024 Mbytes, you must repartition the drive before you attempt to upgrade the domain. Sun Microsystems suggests that you use the disk-partition sizes listed in TABLE 9-4. With the introduction of the 64-bit kernel into the Solaris operating environment, the environment’s size has grown significantly; thus, if you are still using a single 2.1-Gbyte disk as your boot disk, you should migrate to a 4.2-Gbyte, or larger, disk at some point in the near future.

- The Solaris CDs for

  The following list contains the titles of the minimum set of CDs used during an upgrade. Depending on the locale and distribution that you select during the upgrade, you will have to use two to four CDs to perform the upgrade:

  - Solaris 8 Software 1 of 2 - SPARC Platform Edition
  - Solaris 8 Software 2 of 2 - SPARC Platform Edition
  - Software Supplements for the Solaris 8 operating environment - SPARC Platform Edition
  - Solaris 8 10/01 Languages

Caution – Do not use the Solaris 8 Installation CD to upgrade the Solaris operating environment on Sun Enterprise 10000 domains. Begin the upgrade by using the Solaris 8 Software 1 of 2 CD as explained in this chapter.

- Note the following:
  - Be sure that you have sufficient disk space on the partition to be upgraded.
    
    You may need to remove selected modules from your partition or possibly repartition the disk to allocate sufficient space.
  
  - You do not need to back out installed patches before you perform the upgrade.
  - You must be familiar with the software packages on your disk and their dependencies, in case your disk becomes full and you need to delete those packages.
  - During an upgrade, the suninstall utility attempts to preserve local modifications to the server whenever possible. However, local modifications can cause an upgrade to fail or perform differently than you would expect.
Check the documentation of other software you are running, such as disk volume managers, before you use the upgrade option. There may be additional instructions you need to follow to preserve existing configurations, especially for Alternate Pathing, Solstice DiskSuite, or Veritas Volume Manager.

- In the Solaris 2.5.1 operating environment, the kernel resides in /platform/sun4u1/kernel/unix. If you override the boot file location by explicitly setting it to kernel/unix, you can successfully upgrade the Solaris software, but you will not be able to boot the domain.

---

Domain Pre-Upgrade Tasks

This section describes the prerequisite tasks and procedures that you must complete before upgrading the Solaris operating environment on a Sun Enterprise 10000 domain. In this section you will find how to

- Prepare the domain for upgrade
- Verify the domain network information
- Set up the SSP as an install server
- Bring up the domain to the OpenBoot PROM level

▼ To Prepare the Domain for the Upgrade

1. Log in to the domain as superuser and back up the domain if you have not already done so.
   
   Use the ufsdump(1M) command to back up all operating-system file systems. The safest backup to perform is a level 0 dump of the file systems connected to the domain being upgraded. If you do not have an established backup procedure, refer to the System Administration Guide in the Solaris System Administration Collection.
2. Preserve symbolic links by replacing those that use absolute paths with ones that use relative paths.

For example, if /usr/openwin is a symbolic link to /export/openwin, change the symbolic link to ../export/openwin.

During an upgrade, the suninstall utility cannot reference symbolic links that use absolute paths because the Solaris installation program mounts the root (/) file system at /a. For example, a symbolic link to /export/openwin would fail because during an upgrade, /export/openwin is really /a/export/openwin.

When the suninstall utility cannot reference a symbolic link, it overwrites the symbolic link and installs the software (the installation program does not know that the software exists). As a result, duplicate software is installed, and the upgrade may fail because of insufficient disk space.

3. Preserve symbolic links to automounted file systems.

Use the Software Manager or the pkgrm(1M) command to remove packages that create files or directories currently automounted. If you cannot remove a package, you can replace the symbolic link after the upgrade is completed.

The automounter is not active during an upgrade, so the suninstall utility installs any package's files or directories that are symbolic links to automounted file systems. If a symbolic link is overwritten, the upgrade may fail because of insufficient disk space.

Note: The /var/mail and /var/news directories, which usually reside on an automounted file system, are not affected by an upgrade.

4. Prevent unneeded file systems from being mounted by commenting out all the file systems in the /etc/vfstab file except root (/), /usr, /export, /var, /opt, /proc, /dev/fd, and /tmp(swap), if you have not already done so.

During an upgrade, the suninstall utility attempts to mount all of the file systems listed in the /etc/vfstab file on the root file system being upgraded. If the Solaris installation program cannot mount a file system, it reports the failure and exits.

5. Comment out all swap partitions that are not on the same controller as the root disk.

During an upgrade, the suninstall utility attempts to add all of the swap devices listed in the /etc/vfstab file. If the suninstall utility cannot access a swap device, it reports the failure and exits.

6. If any metadevices exist (for example, disk, network, mirrored, striped, or concatenated) for Alternate Pathing, Solstice DiskSuite, Sun Enterprise Volume Manager™, or Veritas, refer to the installation instructions for those products and perform the appropriate steps to remove the metadevices.

This step is necessary because the suninstall utility cannot handle metadevices. For more information about these products, refer to their respective user guides.
Caution – Be sure that all metadevices are removed. If any are not, the upgrade will fail.

7. If you removed metadevices, reboot the domain to ensure that all of the active metadevices are removed.

```
domain_name# init 6
```

8. If the reboot was successful, log in to the domain as superuser.

9. If you are upgrading from Solaris 2.5.1, remove the SUNWxntp packages by using the `pkgrm(1M)` command.

```
domain_name# pkgrm SUNWxntp
```

10. Shut down the domain.

```
domain_name# shutdown -i0 -g60 -y
```

11. From the SSP, rename the domain.

```
ssp% domain_rename -d domain_name -o 5.8
```

You are done preparing the domain for the upgrade.

12. You can now verify the domain network information, as described in the following section.

To Verify the Domain Network Information

For existing machines, the SSP should already be configured with the domain network information; however, to ensure that the information is correct, perform the following steps.

Note – If you use NIS at your site, check with your network administrator about what configuration issues must be addressed before you continue the pre-upgrade tasks. NIS issues are out of the scope of this chapter.
1. Log in to the SSP as superuser.

2. Verify that the Sun Enterprise 10000 host name and IP address are correct in the /etc/hosts file.
   If the information is not correct, see “To Configure Domain Network Information” on page 79 for details on updating the domain network information.

3. Verify that the Sun Enterprise 10000 host name and Ethernet address are correct in the /etc/ethers file.
   If the information is not correct, see “To Configure Domain Network Information” on page 79 for details on updating the domain network information.

4. You can now set up the SSP as an install server, as described in the following section.

▼ To Set Up the SSP as an Install Server

Use the SSP as an install server, from which you upgrade the Solaris software on Sun Enterprise 10000 domains. You will need the Solaris 8 10/01 Software 1 of 2 CD to perform this procedure.

1. Insert the Solaris 8 SPARC Solaris 1 of 2 CD into the CD-ROM drive on the SSP.
   Wait for the Volume Manager to mount the CD-ROM.

2. In the SSP window, change to the Tools directory.

   ```bash
 ssp# cd /cdrom/cdrom0/s0/Solaris_8/Tools
   ```

3. Set up the host domain as an install client.

   ```bash
 ssp# ./add_install_client domain_name sun4u
   ```

   If the /etc/nsswitch.conf file contains a DNS entry in its host list, you may receive the following warning:

   ```
 Error: domain_name does not exist in the NIS ethers map.
   ```

   If you receive this message, you must remove the DNS entry in the /etc/nsswitch.conf file, add the domain_name to the ethers map if the name is not already in the map, and re-run the add_install_client(1M) command.
4. Verify that `nfsd(1M)` is running on the server.

```
ssp# ps -ef | grep nfsd
```

If you see any entry containing `/usr/lib/nfs/nfsd`, then `nfsd` is running on your system.

5. If `nfsd` is not running, type:

```
ssp# /etc/init.d/nfs.server start
```

6. Use the `share(1M)` command to share the CD across the network.

```
ssp# share -F nfs -o ro,anon=0 /cdrom/cdrom0/s0
```

7. Exit the superuser level.
   You are done setting up the SSP as a boot server.

8. You can now bring up the domain, as described in the next section.

▼ To Bring Up the Domain to the OpenBoot PROM Level

1. In an SSP window, ensure that the `SUNW_HOSTNAME` variable is set to the proper domain name.

```
ssp% domain_switch domain_name
```

**Note** – The `domain_switch(1M)` command must be executed from the C shell. By default, the SSP window is a C shell.

2. Use the `domain_status(1M)` command to verify that the OS version is set to 5.8.

```
ssp% domain_status -d domain_name
```
3. Bring up the domain.

```bash
ssp% bringup -A off
```

If this is the first domain to be brought up, you will be prompted to configure the centerplane. Type `y` to confirm if you are sure that no other domains are running. Responding yes resets the entire platform; therefore, you must be sure that no other domains are running.

This bringup will configure the Centerplane. Please confirm (y/n)? y

After a few minutes the SSP prompt is displayed.

4. At the `ssp` prompt, open a `netcon(IM)` session.

```bash
ssp% netcon -g
```

After a few minutes the `ok` prompt is displayed.
You are done bringing up the domain.

5. You can now set up the OpenBoot PROM, as described in the next section.

▼ To Set Up the OpenBoot PROM Environment

1. Drop down to the OpenBoot prompt in the `netcon(IM)` window:

```
domain_name# ~#
```
2. **Use the **devalias** **command to check for duplicate device aliases in the OpenBoot PROM.**

   The installation and upgrade utility, `suninstall`, may not work properly if you have defined duplicate **devaliases** in the OpenBoot PROM. Use the **devalias** command to check the aliases. The output may resemble the following example:

<table>
<thead>
<tr>
<th>ok</th>
<th><strong>devalias</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>/sbus@41,0/qec@0,20000/qe@1,0</td>
</tr>
<tr>
<td>ttya</td>
<td>/ssp-serial</td>
</tr>
<tr>
<td>ssa_b_example</td>
<td>/sbus@40,0/SUNW,soc@0,0/SUNW,pln@b0000000,XXXXXX/SUNW,ssd@0,0:a</td>
</tr>
<tr>
<td>ssa_a_example</td>
<td>/sbus@40,0/SUNW,soc@0,0/SUNW,pln@a0000000,XXXXXX/SUNW,ssd@0,0:a</td>
</tr>
<tr>
<td>isp_example</td>
<td>/sbus@40,0/QLGC,isp@0,10000/ssd@0,0</td>
</tr>
<tr>
<td>net_example</td>
<td>/sbus@40,0/qec@0,20000/qe@0,0</td>
</tr>
<tr>
<td>net</td>
<td>/sbus@41,0/qec@0,20000/qe@0,0</td>
</tr>
<tr>
<td>ok</td>
<td></td>
</tr>
</tbody>
</table>

3. **If any duplicate entries exist in the **devalias** **list, remove them.**

   The following example removes the last-created `net` device alias. You may have to issue a second `nvunalias` command if the second `net` alias is the incorrect one. Then issue an `nvalias` command to create the correct `net` device alias.

   | ok | **nvunalias** **net** |

---

Chapter 10       Upgrading to the Solaris 8 10/01 Operating Environment on Sun Enterprise 10000 Domains       107
4. Run the `watch-net-all` command to display the functioning network interfaces and determine which device passes all the device tests.

In the following example for a Sun Quad FastEthernet™ interface, the last network interface is the connection for which all device tests passed. The display on your network may differ from the example below.

```
ok watch-net-all
/sbus@4c,0/SUNW,qfe@0,8c30000
Internal loopback test -- succeeded.
Transceiver check -- failed

/sbus@4c,0/SUNW,qfe@0,8c20000
Internal loopback test -- succeeded.
Transceiver check -- failed

/sbus@4c,0/SUNW,qfe@0,8c10000
Internal loopback test -- succeeded.
Transceiver check -- failed

/sbus@4c,0/SUNW,qfe@0,8c00000
Internal loopback test -- succeeded.
Transceiver check -- passed
Looking for Ethernet Packets.
’.’ is a Good Packet. ’X’ is a Bad Packet.
Type any key to stop.
```
5. If a net alias does not exist for the network interface that is on the same subnet as the SSP, create one

\[ \text{ok nvalias net } /\text{sbus@}\text{xx,0}/\text{SUNW,qfe@0,}\text{network_interface_card} \]

where:

\( xx \) is a hexadecimal value that represents the system board and system I/O slot.

\( \text{network_interface_card} \) is the device name that defines a network interface installed in the specified slot.

In the following example,

\[ \text{ok nvalias net } /\text{sbus@4c,0}/\text{SUNW,qfe@0,8c00000} \]

/sbus@4c,0 refers to system board 3 and SBus 0.
The  /SUNW,qfe@0 portion of the device name defines a Sun Quad FastEthernet network interface installed in Slot 0. This information is site-specific; thus, your configuration may vary.

The following table contains the SBus numbers used in the devalias file.

<table>
<thead>
<tr>
<th>system board</th>
<th>sysio 0</th>
<th>sysio 1</th>
<th>system board</th>
<th>sysio 0</th>
<th>sysio 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/sbus@40</td>
<td>/sbus@41</td>
<td>8</td>
<td>/sbus@60</td>
<td>/sbus@61</td>
</tr>
<tr>
<td>1</td>
<td>/sbus@44</td>
<td>/sbus@45</td>
<td>9</td>
<td>/sbus@64</td>
<td>/sbus@65</td>
</tr>
<tr>
<td>2</td>
<td>/sbus@48</td>
<td>/sbus@49</td>
<td>10</td>
<td>/sbus@68</td>
<td>/sbus@69</td>
</tr>
<tr>
<td>3</td>
<td>/sbus@4c</td>
<td>/sbus@4d</td>
<td>11</td>
<td>/sbus@6c</td>
<td>/sbus@6d</td>
</tr>
<tr>
<td>4</td>
<td>/sbus@50</td>
<td>/sbus@51</td>
<td>12</td>
<td>/sbus@70</td>
<td>/sbus@71</td>
</tr>
<tr>
<td>5</td>
<td>/sbus@54</td>
<td>/sbus@55</td>
<td>13</td>
<td>/sbus@74</td>
<td>/sbus@75</td>
</tr>
<tr>
<td>6</td>
<td>/sbus@58</td>
<td>/sbus@59</td>
<td>14</td>
<td>/sbus@78</td>
<td>/sbus@79</td>
</tr>
<tr>
<td>7</td>
<td>/sbus@5c</td>
<td>/sbus@5d</td>
<td>15</td>
<td>/sbus@7c</td>
<td>/sbus@7d</td>
</tr>
</tbody>
</table>

6. You can now upgrade the Solaris operating environment, as described in the following section.
Domain Upgrade Tasks

This section explains the tasks specific to the installation of the Solaris operating environment on a Sun Enterprise 10000 domain, using the SSP as an install server (for details, see “To Set Up the SSP as an Install Server” on page 104). For general instructions on installing the Solaris operating environment from a remote CD-ROM, refer to the *Solaris 8 Advanced Installation Guide*.

In this section you will find how to

- Run `boot net` to install the Solaris operating environment
- Finish the `suninstall` process

The steps that follow modify the `suninstall` procedures. For more details, refer to the Solaris installation instructions in your Solaris Media Kit.

▼ To `boot net` the Operating Environment to the Domain

- In the `netcon(1M)` window, boot the system from the network.

```
ok boot net
```
Note – You should have an alias (usually net) in the OpenBoot PROM for the proper network interface. Use that alias with the boot(1M) command, as shown in the example above. Otherwise, you must type in the complete OpenBoot PROM device path. If you specify an alias (or path) that does not describe the proper network interface, the boot(1M) command will fail.

The boot net command starts the suninstall utility. This utility prompts you to provide site and platform-specific information. The following table describes the Sun Enterprise 10000-specific information that you need to provide during the upgrade.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please enter the hostname of the SSP for domain_name [default_name]</td>
<td>Enter the floating host name for your SSP. Note that the default value appends -ssp-main to the platform name. For example, if the platform name is allxf5, the default value is allxf5-ssp-main.</td>
</tr>
<tr>
<td>Solaris interactive installation</td>
<td>Select Upgrade.</td>
</tr>
<tr>
<td>Select version to upgrade</td>
<td>Select the disk(s) on which the software is to be installed. If you choose a drive other than the one designated as the boot drive, a warning message appears. Be sure that you choose the new drive as the boot drive. You can choose whether to continue, or not.</td>
</tr>
<tr>
<td>Profile</td>
<td>Verify that the information displayed is correct and that Entire Distribution plus OEM Support is selected.</td>
</tr>
</tbody>
</table>

For details on changing the installation CDs during the upgrade, see the following section.

▼ To Finish the Upgrade Process

As you proceed with the installation process, you will have to change CDs. This process requires that you unshare the CD in the CD-ROM drive and share the next CD to be installed.

1. In another window, log into the SSP as superuser.
2. Unshare the CD, then eject it from the CD-ROM drive.

```bash
ssp# unshare /cdrom/cdrom/s0
ssp# eject cdrom
```
3. Insert the next CD in the CD-ROM drive and share it.

```
ssp# share -F nfs -o ro, anon=0 /cdrom/cdrom0
```

4. From the domain installation window, where you are prompted for the installation image, specify the path of the CD image:

```
sspname: /cdrom/cdrom0
```

5. Unshare the CD, then eject it from the CD-ROM drive.

```
ssp# unshare /cdrom/cdrom0
ssp# eject cdrom
```

**Note** – The path that you specify for unsharing the CD must be identical to the path specified for the sharing the CD. Otherwise, you will encounter an error when you unshare the CD.

6. Repeat Steps 3, 4, and 5 for each CD to be installed.

7. After the last CD is installed, reboot the domain, unless you indicated earlier in the upgrade process to have the domain automatically rebooted.

8. Continue with the domain post-installation tasks, which are described in the next section.

### Post-Upgrade Tasks

This section describes the tasks that you must complete after installing the Solaris operating environment on a Sun Enterprise 10000 domain. In this section you will find how to

- Configure the default boot disk
- Install additional software packages
- Configure the Network Time Protocol (NTP) configuration file
- Verify the domain upgrade
To Configure the Default Boot Disk

1. After the operating system is loaded and the superuser prompt is displayed, list the devices entry for your boot disk.

   ```
 domain_name# ls -l /dev/dsk/root_partition_device
   ```

   where `root_partition_device` is in the form `cxtxdxsx`.
   If you need a list of the device types for each partition, type the following in the root directory:

   ```
 domain_name# df -lk
   ```

2. Copy the part of the device string that begins with either `/sbus` or `/pci`.
   Example:
   `/sbus@65,0/SUNW,fas@1,8800000/sd@3,0:a.`
   Record your device string here:

   `/`

   Use the device string for the device to be used as the default boot device. At this point in the installation, you can set it to any valid boot disk in the domain.

3. In the `netcon(1M)` window, drop down to the OpenBoot PROM prompt.

   ```
 domain_name# ~#
   ```

4. Assign the device string to an alias (see Step 2 for the `device_string`).

   ```
 ok nvalias bootdisk_alias device_string
   ```

   As in this example, the `nvalias` command should be entered on a single line.

5. Store the cache for the device.

   ```
 ok nvstore
   ```
6. Use the `setenv` command to set the default boot-disk alias to the correct device.

```
ok setenv boot-device bootdisk_alias
```

where `bootdisk_alias` corresponds to the user-defined alias you established in Step 4. The device should correspond to the device that you want to use as the boot disk, which may be different than the device on which you just installed the Solaris operating environment.

7. At the OpenBoot PROM prompt, type `go` to exit the OpenBoot PROM and return to the domain prompt.

```
ok go
```

You are done configuring the default boot device.

8. You can now install additional software packages, as explained in the next section.

▼ To Install Additional Software Packages

Additional software packages are in separate media. Install the software packages one at a time, from the appropriate media. For example, you can install packages, such as the AnswerBook2 package from the Sun Computer Systems Supplement CD.

1. In an SSP window, use the `unshare(1M)` command and eject the CD in the CDROM drive.

```
ssp# unshare /cdrom/cdrom0
ssp# eject cdrom
```

2. Insert the appropriate installation CD into the CD-ROM drive on the SSP.

3. Log in as superuser on the SSP and share the CD-ROM.

```
ssp# share -F nfs -o ro,anon=0 /cdrom/cdrom0
```

4. Log in to the domain as superuser in the `netcon(1M)` window.
5. Create and mount the `/cdrom` directory on the domain.

```bash
domain_name# mkdir /cdrom
domain_name# mount ssp_name:/cdrom/cdrom0 /cdrom
```

6. Add the software package. For example,

```bash
domain_name# cd /cdrom/install_disk_name
domain_name# pkgadd -d software_package_name
```

where:

install_disk_name is the name of the installation disk from which you are installing
software_package_name is the name of the software package you are adding.

The `pkgadd(1M)` command may display several messages and ask several
installation questions for each package, some relating to space, others asking
whether it is OK to continue. After answering these questions, and when asked
whether to proceed, answer `y` to indicate yes.

7. In the `netcon(1M)` window, unmount the CD.

```bash
domain_name# cd /
domain_name# umount /cdrom
```

8. Log in to the SSP as superuser and remove the installation CD from the CD-ROM drive.

```bash
ssp# cd /
ssp# unshare /cdrom/cdrom0
ssp# eject cdrom
```

9. Install and configure any other purchased software packages.
To Configure the NTP Packages

1. After you install any additional software packages, configure the `ntp.conf` file for each domain, to synchronize clocks between the SSP and its domain.

   For details on configuring the domain `ntp.conf` file, which resides at `/etc/inet/ntp.conf`, refer to “Configuring the Network Time Protocol Daemon” on page 48.

   For more information about NTP commands, refer to the `xntp(1M)` man page in the man Pages(1M): System Administration Commands section of the Solaris Administration AnswerBook2 Collection.

2. You can now verify the upgrade, as described in the following section.

To Verify the Upgrade

---

Note – If you removed any metadevices (disks and networks) as described in “To Prepare the Domain for the Upgrade” on page 101, refer to the installation instructions for each product (for example, Alternate Pathing, Solstice DiskSuite, and Veritas Volume Manager) to recreate the metadevices.

1. Uncomment all swap partitions that are not on the same controller as the root disk.

2. Check the operating mode.

   ```
 domain_name# isainfo -k
   ```

   If you are running in 64-bit mode, you should get the following output:

   ```
 sparcv9
   ```

   If you are running in 32-bit mode, you should get the following output:

   ```
 sparc
   ```

3. From the SSP window, use the `ps(1)` command to ensure that the Event Detector Daemon (EDD) is running and the `edd_cmd(1M)` command to ensure that the EDD is running in the proper mode before you attempt to reboot the domain (refer to the `edd(1M)` man page).
4. If you intend to run DR model 3.0 on the domain, consider switching DR models (from model 2.0 to 3.0) at this time, then proceed to Step 5.

If you switch DR models now, you can avoid a reboot of the domain later. For details on how to switch DR models, refer to the Sun Enterprise 10000 Dynamic Reconfiguration User Guide.

5. Reboot the domain with the proper operating mode.

For the Solaris 8 10/01 operating environment, you can use either the 32-bit mode or the 64-bit mode. The 64-bit mode is the default for all sun4u platforms.

- For 32-bit mode, type:

  ```
 domain_name# reboot "bootdisk_alias kernel/unix"
  ```

- For 64-bit mode, type one of the following commands.

  If you are already in 32-bit mode, use the following command.

  ```
 domain_name# reboot bootdisk_alias
  ```

  If the domain is on the default disk, you do not need to specify the bootdisk_alias.

  If you are switching from the 32-bit mode to the 64-bit mode, use the following command.

  ```
 domain_name# reboot "bootdisk_alias kernel/sparcv9/unix"
  ```

You are done with the upgrade process.

Licensing Your Software

The Sun Enterprise 10000 domain feature requires different approaches to software licensing than systems that cannot be logically partitioned.

FLEXlm-Based Licensing

License management (the license server) is normally tied to a machine host ID. On a Sun Enterprise 10000 system, the license server is tied to the domain host ID. Each domain receives its own domain host ID.
Therefore, if licensing is installed on a Sun Enterprise 10000 system, it must be installed in a domain that will not be removed. Adding or removing processors from the domain will not affect licensing, as long as the domain always has at least one active processor.

If licensing ever needs to be moved from one domain to another, the licenses will need to be regenerated using the new domain host ID. This is identical to the situation when moving the license server from one machine to another. This process is called a server move; contact the Sun License Center to request a server move.

For more licensing information, use the following Sun License Center URL:

http://www.sun.com/licensing

▼ To Obtain the Sun Enterprise 10000 System Domain Host ID

● Type hostid in a shell window.

Other Software Licensing

Other software vendors may have unique software licensing policies for their products running on Sun Enterprise 10000 systems. All major independent service providers have been notified and should have software policies in place. For additional information, contact your Sun service provider.
Configuring the SSP Network

If you are installing the SSP software on a new disk, and have already performed a fresh install of the Solaris operating environment, you need to configure the SSP network files before performing a fresh install of the SSP software.

This appendix describes the following SSP network configurations:

- Two subnets
- Three subnets
- Spare SSP

TABLE A-1 and FIGURE A-1 describe the two-subnet network configuration.

**Note** – In a two-subnet configuration (one SSP, one hub, and one control board), automatic SSP and control board failover are disabled. In a three-subnet configuration (one SSP, two hubs, and two control boards), control board failover is enabled, but SSP failover is disabled. In a spare SSP configuration (two SSPs, two hubs, and two control boards), both SSP and control board failover is enabled. For details on supported failover configurations, see Chapter 2 “Preparing for SSP 3.5 Installation or Upgrade”.

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Domain Subnet or dom_subnet</td>
<td>SSP and the domains</td>
</tr>
<tr>
<td>Second</td>
<td>Control Board Subnet or cb0_subnet</td>
<td>SSP and the control board</td>
</tr>
</tbody>
</table>
In FIGURE A-1, the built-in port is le0 for a SPARCstation 5 and hme0 for a Sun Ultra 5 and a Sun Enterprise 250 system.

TABLE A-2 and FIGURE A-2 describe the three-subnet network configuration.

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Domain Subnet or dom_subnet</td>
<td>SSP and the domains</td>
</tr>
<tr>
<td>Second</td>
<td>Control Board Subnet 0 or cb0_subnet</td>
<td>SSP and the first control board</td>
</tr>
<tr>
<td>Third</td>
<td>Control Board Subnet 1 or cb1_subnet</td>
<td>SSP and the second control board</td>
</tr>
</tbody>
</table>
In FIGURE A-2, the built-in port is le0 for a SPARCstation 5 and hme0 for a Sun Ultra 5 and a Sun Enterprise 250 system.
TABLE A-3 and FIGURE A-3 describe the spare SSP network configuration.

**TABLE A-3  Spare SSP Network Configuration**

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Domain Subnet or dom_subnet</td>
<td>Both SSPs and the domains</td>
</tr>
<tr>
<td>Second</td>
<td>Control Board Subnet 0 or cb0_subnet</td>
<td>Both SSPs and the first control board</td>
</tr>
<tr>
<td>Third</td>
<td>Control Board Subnet 1 or cb1_subnet</td>
<td>Both SSPs and the second control board</td>
</tr>
</tbody>
</table>

**FIGURE A-3  Spare SSP Network Configuration**

In FIGURE A-3, the built-in port on the main SSP and the spare SSP is le0 for a SPARCstation 5 and hme0 for a Sun Ultra 5 and a Sun Enterprise 250 system.
To Configure Your SSP Network

This procedure provides instructions for configuring your SSP network in one of the three configurations discussed earlier in this appendix.

1. Log in to the SSP as superuser.

2. Create the /etc/hostname.* configuration files.
   If you need to view your network controllers, use ifconfig -a.

   For example, if you are using a Sun Quad FastEthernet™ card, model 1049A, in the two-subnet, three-subnet, or spare SSP network configuration on a Sun Ultra 5 system, you need the following files:

   - /etc/hostname.qfe0 — contains the current SSP host name; it configures the primary subnet, dom_subnet.
   - /etc/hostname.hme0 — contains ssp_hostname-hme0; it configures the second subnet, cb0_subnet.

   The following file is also needed if you are using either the three-subnet or spare SSP configuration:

   - /etc/hostname.qfe1 — contains ssp_hostname-qfe1; it configures the third subnet, cb1_subnet.

   **Note** – The two control board subnets must be on two different physical cards. The node name must reference the public interface and not the private interface.

3. Set the contents of the defaultrouter file to the gateway IP address:

   ```
 ssp# echo gateway_IP_address > /etc/defaultrouter
   ```
4. **Manually update your name service** hosts registry to include the host names and IP addresses of your control board(s) and other hosts, such as domains and the SSP.

This can involve updating the Network Information Service (NIS or NIS+), or the /etc/hosts file, or the Domain Name Service (DNS).

The example below shows the typical modifications for an /etc/hosts file on a Sun Ultra 5 system:

```plaintext
Entries for dom_subnet.
www.xxx.yyy.zzz domain1_hostname
www.xxx.yyy.zzz domain2_hostname
...
www.xxx.yyy.zzz domainn_hostname
(n is the number of domains)
#
Entries on both ssp’s.
NOTE: On the spare SSP, make sure "loghost"
belongs to the spare.
#
www.xxx.yyy.zzz main_ssp_hostname loghost
www.xxx.yyy.zzz spare_ssp_hostname
www.xxx.yyy.zzz floating_ssp_hostname
#
The next three entries need to be on cb0_subnet.
#
www.xxx.yyy.zzz main_ssp_hostname-hme0
www.xxx.yyy.zzz spare_ssp_hostname-hme0
www.xxx.yyy.zzz cb0_hostname
#
The next three entries need to be on cb1_subnet.
#
www.xxx.yyy.zzz main_ssp_hostname-qfe1
www.xxx.yyy.zzz spare_ssp_hostname-qfe1
www.xxx.yyy.zzz cb1_hostname
```

The /etc/hosts file is a link to the /etc/inet/hosts file.

The following examples show the /etc/hosts file for a main and spare SSP, respectively.

The main SSP, as shown in the /etc/hosts file in FIGURE A-4 on page 125, is configured as follows:

- xf4 and xf4-b3 are host domains.
- xf4-ssp1 is the main SSP and xf4-ssp2 is the spare SSP.
- xf4-ssp-main is the floating SSP.
- xf4-cb0 and xf4-cb1 are the host names for the two control boards.

```plaintext
#/etc/hosts
#
dom_subnet (www.xxx.49.zzz). The 49 subnet
#
192.168.49.8 xf4
192.168.49.9 xf4-b3
127.0.0.1 localhost
192.168.49.113 xf4-ssp1 loghost
192.168.49.114 xf4-ssp2
192.168.49.115 xf4-ssp-main
#
cb0_subnet (www.xxx.151.zzz). The 151 subnet
#
192.168.151.113 xf4-ssp1-hme0
192.168.151.114 xf4-ssp2-hme0
192.168.151.123 xf4-cb0
#
cb1_subnet (www.xxx.152.zzz). The 152 subnet
#
192.168.152.113 xf4-ssp1-qfe1
192.168.152.114 xf4-ssp2-qfe1
192.168.152.127 xf4-cb1
```

**FIGURE A-4 /etc/hosts File for a Main SSP**

The following /etc/hosts file for the spare SSP is similar to the previous /etc/hosts file for the main SSP, except the spare SSP is the loghost.
FIGURE A-5 /etc/hosts File for a Spare SSP

```
#/etc/hosts
#
#dom_subnet (www.xxx.49.zzz). The 49 subnet
#
192.168.49.8 xf4
192.168.49.9 xf4-b3
127.0.0.1 localhost
192.168.49.113 xf4-ssp1
192.168.49.114 xf4-ssp2 loghost
192.168.49.115 xf4-ssp-main
#
#cb0_subnet (www.xxx.151.zzz). The 151 subnet
#
192.168.151.113 xf4-ssp1-hme0
192.168.151.114 xf4-ssp2-hme0
192.168.151.123 xf4-cb0
#
#cb1_subnet (www.xxx.152.zzz). The 152 subnet
#
192.168.152.113 xf4-ssp1-qfe1
192.168.152.114 xf4-ssp2-qfe1
192.168.152.127 xf4-cb1
```

**Note** – The SSP and the host domains must be on the same subnet so you can boot domains from the network.

5. **Manually update your name service ethers registry to include the Ethernet addresses for the domain(s), SSP(s), and control board(s).**

You need to update NIS or NIS+, or the /etc/ethers file. For example:

```
0:0:be:01:00:1e xf4-cb0
0:0:be:01:00:57 xf4-cbl
```

**Note** – The Ethernet address of the control board(s) is located on the front of each control board.
6. **Edit the /etc/nsswitch.conf file on the main SSP and the spare SSP.**

   If you are using local configuration files, the lines in the /etc/nsswitch.conf files are similar to the following example:

   ```
 passwd: files
 group: files
 hosts: files
 ethers: files
   ```

   **Note** – The name server information (nis) is dependent on your network configuration.

7. **Reboot the SSP.**
OpenSSP Memory Worksheet

This appendix provides a blank SSP memory worksheet and explains how the predetermined memory values in the worksheet are derived.

Blank OpenSSP Memory Worksheet

This section contains a blank SSP memory worksheet (below) that you can use to determine the memory requirements for your SSP configuration.
<table>
<thead>
<tr>
<th>Line</th>
<th>Item</th>
<th>Number</th>
<th>Real Memory (MB)</th>
<th>Virtual Memory (MB)</th>
<th>Real Memory Subtotal (MB)</th>
<th>Virtual Memory Subtotal (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System</td>
<td>1</td>
<td>60</td>
<td>236</td>
<td>60</td>
<td>236</td>
</tr>
<tr>
<td>2</td>
<td>Base SSP</td>
<td>1</td>
<td>22</td>
<td>35</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Domains (1-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hostviews (0 or more)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sun Management Center (0 or 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Third-party applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Subtotal (lines 1 to 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kernel buffer memory (Mbytes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Recommended real memory (lines 7 and 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reserved for /tmp/ in swapfs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Subtract amount of real memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Recommended swap space size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE B-1  Blank OpenSSP Memory Worksheet
How Memory Sizing Values are Derived

The OpenSSP memory worksheet (FIGURE B-1) is used to size virtual and real memory for a SSP workstation or server, based on the number of Sun Enterprise 10000 domains controlled by the SSP and the number of SSP, Sun Management Center, and third-party applications involved.

This section provides details on how the predetermined memory values in the worksheet are derived. The pmap command provides output that is used to calculate the following memory values in the worksheet.

- Process private resident memory
- Process private virtual memory
- System memory (line 1 of the worksheet)
- Base SSP memory (line 2 of the worksheet)
- Each domain SSP memory (line 3 of the worksheet)
- Hostview memory (line 4 of the worksheet)
- Sun Management Center memory (line 5 of the worksheet)
- Kernel buffer memory (line 8 of the worksheet)
- swapfs (line 10 of the worksheet)

The following sections describe how each of these values is calculated.

Process Private Resident Memory

Use the pmap -x processID command to obtain the amount of private resident memory used by a process, where processID is the number of the process ID (for example, 406). In the output displayed, note the Private column in the last line. This value is the total private memory, in kilobytes, for a process that is resident in real memory.

Process Private Virtual Memory

To find the approximate amount of private virtual memory that a process uses, run the pmap -x processID command. In the output displayed, locate the total resident shared memory (shown on the last line under the Shared column) and subtract it from the total process memory (shown on the last line under the Kbytes column). The resulting value is the approximate total private virtual memory for a process. It is slightly higher than the actual amount needed, as it includes nonresident shared...
memory (paged-out memory that is also used by other processes). The resulting value is a reasonable measurement of the private virtual memory required, which does not underestimate the required memory.


System Memory (Line 1)

System memory usage consists of memory used by system processes, system shared libraries, CDE libraries, and CDE processes. TABLE B-1 shows the values for these items and the resulting totals for system memory: 60 Mbytes of real memory and 60 Mbytes of virtual memory. (The kernel buffer memory used is discussed in a subsequent section.)

<table>
<thead>
<tr>
<th>Memory</th>
<th>Resident Memory (Mbytes)</th>
<th>Virtual Memory (Mbytes)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System processes</td>
<td>21</td>
<td>56</td>
<td>Use pmap -x to find the private resident and virtual memory of root processes, that is /usr/lib/<em>, /usr/sbin/</em>, /usr/sadm/<em>, rpc.</em>, and mibiisa.</td>
</tr>
<tr>
<td>CDE libraries</td>
<td>5</td>
<td>10</td>
<td>Use pmap -x to find the highest shared memory among /usr/dt/bin/* and /usr/openwin/bin/* processes.</td>
</tr>
<tr>
<td>CDE processes</td>
<td>19</td>
<td>145</td>
<td>Use pmap-x to find the private resident and virtual memory of Xsun, speckysd, fbconsole,sdt_shell, ttsession, and dt.* processes.</td>
</tr>
<tr>
<td>System subtotal</td>
<td><strong>60</strong></td>
<td><strong>236</strong></td>
<td></td>
</tr>
</tbody>
</table>
Base SSP Memory (Line 2)

Base SSP memory consists of memory used by the SSP shared libraries and SSP platform-wide processes. TABLE B-2 shows the subtotals for base SSP memory: 22 Mbytes of real memory and 35 Mbytes of virtual memory.

<table>
<thead>
<tr>
<th>TABLE B-2</th>
<th>Base SSP Memory Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Resident Memory (Mbytes)</td>
</tr>
<tr>
<td>SSP shared libraries</td>
<td>3</td>
</tr>
<tr>
<td>SSP platform software</td>
<td>19</td>
</tr>
<tr>
<td>SSP platform subtotal</td>
<td><strong>22</strong></td>
</tr>
</tbody>
</table>

Each Domain SSP Memory (Line 3)

Each domain on the Sun Enterprise 10000 system requires three processes on the SSP:
- obp_helper
- netcon_server
- netcon_client

Output from the pmap -x command shows that these three processes take 3 Mbytes of private resident memory and 4 Mbytes of private virtual memory.

Hostview Memory (Line 4)

Each instance of Hostview, with all three status subwindows open, requires four processes. The output from the pmap -x command shows that these four processes use 12 Mbytes of private resident memory and 17 Mbytes of private virtual memory.
Hostview is not required for the SSP to function, but it is useful for monitoring alerts and events if no other monitoring software, such as Sun Management Center, is being used.

Sun Management Center Memory (Line 5)

On the SSP, Sun Management Center requires two agents to send information back to the Sun Management Center server. One agent monitors the SSP workstation itself, while the other agent monitors the Sun Enterprise 10000 platform. Sun Management Center appears in the `ps` command as two processes, both named `esd`. TABLE B-3 presents the output from the `pmap -x` command for the Sun Management Center processes and the resulting subtotals for resident and virtual memory:

<table>
<thead>
<tr>
<th>Memory</th>
<th>Resident Memory (Mbytes)</th>
<th>Virtual Memory (Mbytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Management Center workstation agent</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Sun Management Center platform agent</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Sun Management Center subtotal</td>
<td>26</td>
<td>31</td>
</tr>
</tbody>
</table>

Due to the large footprint of the Sun Management Center server or console, running Sun Management Center on the same system with the SSP is not recommended. Sun Management Center is neither required nor used by SSP software.

Kernel Buffer Memory (Line 8)


> The amount of memory that the kernel uses varies significantly, based on the size of the tunable parameters. A lot of the tunable parameters are set at boot in proportion with the amount of physical RAM in the system. As a general rule of thumb, if all of the parameters are standard, you can allow about 15% of physical RAM for the kernel.
**swapfs (Line 12)**

The *swapfs* file system implements a file system in virtual memory, using both RAM and, if necessary, swap space, to store files. However, because this memory is not preserved across reboots, *swapfs* is used only for temporary files, usually `/tmp/`. SSP automatic failover uses `/tmp/` to propagate modified files to the other SSP in a dual configuration, mainly log files and recently changed configuration files, as part of the process of failing over to the other SSP. Be sure to allocate enough space for *swapfs*, as log files can become quite large. Otherwise, the SSP workstation might behave strangely or even fail. Allocating 512 Mbytes of swap space for `/tmp/` should be sufficient for SSP automatic failover. This amount is in addition to the amount of required virtual memory that exceeds available RAM.

If the system is generating a large number of diagnostic messages to the SSP logs, or the system is generating many log messages due to an error situation, monitor the SSP log file sizes under the `/var/opt/SUNWssp/adm/` directory. If, in rare instances, log files in this directory grow to hundreds of megabytes in size, trim or remove them from the `/var/opt/SUNWssp` directory.
Index

SYMBOLS
/etc/ethers file, 80, 104
/etc/hosts file, 80, 104

A
alternate pathing, 1
AnswerBook2
installing the SSP document collection, 51
server software, 51

B
backing up the domain, 101
backing up the SSP, 14, 17
boot disk, configuring, 90, 113
boot net command, 87, 110

D
disk partition sizes, 87, 100
domain installation
booting the system from the network, 87
bringing up the domain to the OpenBoot Prom level, 82
configuring network information, 79
configuring Network Time Protocol (NTP) packages, 93
configuring the default boot disk, 90
creating domains, 78

Ethernet address, 80
finishing, 89
host ID, 76, 95
installing additional software, 92
IP address, 80
licensing software, 95
prerequisites, 76
prompts, 87
setting up the OpenBoot Prom environment, 83
setting up the SSP as an install server, 81
system identification key, 76
task overview, 74
verifying, 94
domain upgrade
backing up the domain, 101
booting the system from the network, 110
bringing up the domain to the OpenBoot Prom level, 105
configuring Network Time Protocol (NTP) packages, 116
configuring the default boot disk, 113
Ethernet address, 104
finishing, 111
host ID, 118
installing additional software, 114
IP address, 104
licensing software, 117
prerequisites, 100
preserving symbolic links, 102
preventing the mounting of unnecessary file systems, 102
prompts, 111
removing metadevices, 102
setting up the OpenBoot Prom environment, 106
setting up the SSP as an install server, 104
task overview, 98
verifying, 116
verifying domain network information, 103

DR models
2.0 model, 1, 3
3.0 model, 2, 3

E
eprom.image file, creating, 77
Ethernet addresses, 80, 104

F
failover
prerequisites, 25
states, 119
fall back
process, 53
file systems, 102
floating IP address, 15, 31, 36, 43, 44
floating SSP hostname, 87, 100, 111

H
host ID, 76, 95, 118

I
initialization files
editing after upgrade or install, 47
install server, setting up, 81, 104
installation
requirements, 23
ssp_install process, 36
Web Start process, 30
IP addresses, 76, 80, 104
IPMP, 2

K
known problems
SSP, 8

M
metadevices, removing, 102
MPxIO, 2

N
netcon(1M) session
booting from the network, 87, 110
opening, 82
network configuration
procedure, 123
spare SSP, 122
three-subnet, 121
two-subnet, 120
Network Time Protocol (NTP), 93, 116
network time protocol daemon
configuring, 48
ntpd
configuring, 48

O
OpenBoot Prom
bringing up domains, 82, 105
devalias list, 83, 107
setting up the environment, 83, 106
OpenSSP, 3, 57
calculating memory usage, 60
CPU utilization rates, 67
determining virtual memory, 65
hardware resources, 70
memory worksheet, 62
thrashing, 65

P
patches, 59
R
release notes, 1

S
software
  installing other packages, 92, 100, 114
  licensing, 95, 117, 118
spare SSP network configuration, 122
SSP
  backing up, 17
  configuring the SSP network, 119
  creating a new domain, 78
  determining version, 14
  fall back, 53
  floating hostname, 87, 100, 111
  installation, 30, 36
  network configuration procedure, 123
  obtaining software, 16, 17
  opening a netcon(1M) session, 82
  requirements, 23
  setting up as an install server, 81, 104
  software changes in SSP 3.4, 3
  spare SSP network configuration, 122
  three-subnet network configuration, 121
  two-subnet network configuration, 120
  uninstalling, 54
  upgrade, 41
Sun Netra T1 server, 2
Sun StorEdge Traffic Manager, 2
suninstall utility, 83, 98, 100, 102, 107, 111
symbolic links, preserving, 102

T
three-subnet network configuration, 121
two-subnet network configuration, 120

U
uninstalling
  SSP 3.4 software, 54
upgrade
  process, 41
  requirements, 23

W
Web Start, 30

X
xntpd
  configuring, 48