System Management Services (SMS) 1.3 Reference Manual
Contents

Intro 1
addboard 5
addcodlicense 13
addtag 15
cancelcmdsync 19
codd 25
console 27
dca 31
deleteboard 33
deletecodlicense 39
deletetag 41
disablecomponent 43
dsmd 49
dxs 51
enablecomponent 53
esmd 59
flashupdate 63
fomd 69
frad 71
help 73
hpost 75
kmd 77
hwad 81
initcmdsync 83
mand 89
mld 91
moveboard 93
osd 103
pcd 105
poweroff 107
poweron 111
rcfgadm 115
reset 133
resetsc 135
runcmdsync 137
savecmdsync 139
setbus 145
setdatasync 149
setdate 153
setdefaults 155
setfailover 159
setkeyswitch 161
setobpparams 165
setupplatform 169
showboards 175
showbus 183
showcmdsync 187
showcodlicense 189
showcodusage 191
showcomponent 197
showdatasync 203
Preface

Both novice users and those familiar with the SunOS operating system can use online man pages to obtain information about the system and its features. A man page is intended to answer concisely the question “What does it do?” In general, man pages comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of the SMS man pages and the information a man page references:

- Section 1M describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.

Below is a generic format for man pages. The man pages of each manual section generally follow this order but include only necessary headings. For example, if there are no notes to report, there is no NOTES section. See the intro pages for more information and detail about each section, and man(1) for more information about man pages in general.

NAME

This section gives the names of the commands or functions documented, followed by a brief description of what they do.

SYNOPSIS

This section shows the syntax of commands or functions. When a command or file does not exist in the standard path, its full path name is shown. Options and arguments are alphabetized, with single-letter arguments first, and options with arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in these brackets is optional. If the brackets are omitted, the argument must be specified.

... Ellipses. Several values may be provided for the previous argument, or the previous argument can be specified multiple times, for example “filename...”.

| Separator. Only one of the arguments separated by this character can be specified at one time.
Braces. The options and/or arguments enclosed within braces are interdependent, such that everything enclosed must be treated as a unit.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it describes concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES. Interactive commands, subcommands, requests, macros, functions and such, are described under USAGE.

OPTIONS
This lists the command options with a concise summary of what each option does. The options are listed literally and in the order in which they appear in the SYNOPSIS section. Possible arguments to options are discussed under the option, and where appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the actions of the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these values and describes the conditions under which they are returned. If a function can return only constant values, such as 0 or -1, these values are listed in tagged paragraphs. Otherwise, a single paragraph describes the return values of each function. Functions declared void do not return values, so they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno, indicating why they failed. This section lists alphabetically all error codes, a function can generate and describes the conditions that cause each error. When more than one condition can cause the same error, each condition is described in a separate paragraph under the error code.
This section lists special rules, features and commands that require in-depth explanations. The subsections listed below are used to explain built-in functionality:

- Commands
- Modifiers
- Variables
- Expressions
- Input Grammar

This section provides examples of usage, including how to use a command or function. Wherever possible, a complete example, including command line entry and machine response, is shown. Examples are followed by explanations, variable substitution rules, or returned values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that the command or function affects, followed by a brief description of the effect.

This section lists the values the command returns to the calling program or shell and the conditions that cause these values to be returned. Usually, zero is returned for successful completion and values other than zero for various error conditions.

This section lists all filenames referred to by the man page, files of interest, and files created or required by commands. Each filename is followed by a descriptive summary or explanation.

This section lists characteristics of commands, utilities, and device drivers by defining the attribute type and its corresponding value. See attributes(5) for more information.

This section lists references to other man pages, in-house documentation, and outside publications.
NOTES

This section lists additional information that does not belong anywhere else on the page. It takes the form of an aside to the user, covering points of special interest. Critical information is never covered here.
User Commands

NAME
Intro - SMS Administration

DESCRIPTION
This section describes the commands executed in the system management software environment.

LIST OF COMMANDS
The following commands are supported:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>addboard</td>
<td>Assign, connect, and configure a board to a domain.</td>
</tr>
<tr>
<td>addcodlicense</td>
<td>Install a Capacity on Demand (COD) license key on the system controller (SC)</td>
</tr>
<tr>
<td>addtag</td>
<td>Assign a domain name (tag) to a domain</td>
</tr>
<tr>
<td>cancelcmdsync</td>
<td>Command synchronization command</td>
</tr>
<tr>
<td>codd</td>
<td>Capacity on Demand daemon</td>
</tr>
<tr>
<td>console</td>
<td>Access the domain console</td>
</tr>
<tr>
<td>dca</td>
<td>Domain configuration agent</td>
</tr>
<tr>
<td>deleteboard</td>
<td>Unconfigure, disconnect, and unassign a system board from a domain.</td>
</tr>
<tr>
<td>deletecodlicense</td>
<td>Remove a Capacity on Demand (COD) license key on the system controller (SC).</td>
</tr>
<tr>
<td>deletetag</td>
<td>Remove the domain tag name associated with the domain</td>
</tr>
<tr>
<td>disablecomponent</td>
<td>Add the specified component to the specified blacklist file.</td>
</tr>
<tr>
<td>dsmd</td>
<td>Domain status monitoring daemon</td>
</tr>
<tr>
<td>dxs</td>
<td>Domain X server</td>
</tr>
<tr>
<td>enablecomponent</td>
<td>Remove the specified component from the specified blacklist</td>
</tr>
<tr>
<td>esmd</td>
<td>Environmental status monitoring daemon</td>
</tr>
<tr>
<td>flashupdate</td>
<td>Update the Flash PROMs located on the CPU boards, MaxCPU boards and system controllers (SC).</td>
</tr>
<tr>
<td>fomd</td>
<td>Failover management daemon</td>
</tr>
<tr>
<td>frad</td>
<td>FRU access daemon</td>
</tr>
<tr>
<td>help</td>
<td>Display help information for SMS commands.</td>
</tr>
<tr>
<td>hpost</td>
<td>Sun Fire 15K/12K power-on self-test (POST) control application</td>
</tr>
<tr>
<td>hwad</td>
<td>Hardware access daemon</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>initcmsgsync</td>
<td>Command synchronization command</td>
</tr>
<tr>
<td>kmd</td>
<td>SMS key management daemon</td>
</tr>
<tr>
<td>mand</td>
<td>Management network daemon</td>
</tr>
<tr>
<td>mld</td>
<td>Message-logging daemon</td>
</tr>
<tr>
<td>moveboard</td>
<td>Move a board from one domain to another.</td>
</tr>
<tr>
<td>osd</td>
<td>OpenBoot PROM server daemon</td>
</tr>
<tr>
<td>pcd</td>
<td>Platform configuration database daemon</td>
</tr>
<tr>
<td>poweroff</td>
<td>Control power off</td>
</tr>
<tr>
<td>poweron</td>
<td>Control power on</td>
</tr>
<tr>
<td>rcfgadm</td>
<td>Remote configuration administration</td>
</tr>
<tr>
<td>reset</td>
<td>Send reset to all CPU ports of a specified domain.</td>
</tr>
<tr>
<td>resetsc</td>
<td>Reset the other system controller (SC).</td>
</tr>
<tr>
<td>runcmmdsync</td>
<td>Prepare a specified script for recovery after a failover.</td>
</tr>
<tr>
<td>savecmsgsync</td>
<td>Command synchronization command</td>
</tr>
<tr>
<td>setbus</td>
<td>Perform dynamic bus reconfiguration on active expanders in a domain.</td>
</tr>
<tr>
<td>setdatasync</td>
<td>Modify the data propagation list used in data synchronization.</td>
</tr>
<tr>
<td>setdate</td>
<td>Set the date and time for the system controller (SC) or a domain.</td>
</tr>
<tr>
<td>setdefaults</td>
<td>Remove all instances of a previously active domain.</td>
</tr>
<tr>
<td>setfailover</td>
<td>Modify the state of the system controller (SC) failover mechanism.</td>
</tr>
<tr>
<td>setkeyswitch</td>
<td>Change the position of the virtual keyswitch.</td>
</tr>
<tr>
<td>setobpparams</td>
<td>Set up OpenBoot PROM variables for a domain.</td>
</tr>
<tr>
<td>setupplatform</td>
<td>Set up the available component list for domains.</td>
</tr>
<tr>
<td>showboards</td>
<td>Show the assignment information and status of the boards.</td>
</tr>
<tr>
<td>showbus</td>
<td>Display the bus configuration of expanders in active domains.</td>
</tr>
<tr>
<td>showcmsgsync</td>
<td>Display the current command synchronization list.</td>
</tr>
<tr>
<td>showcodlicense</td>
<td>Display the current Capacity on Demand (COD) right-to-use (RTU) licenses stored in the COD license database.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>showcodusage</td>
<td>Display the current usage statistics for Capacity on Demand (COD) resources.</td>
</tr>
<tr>
<td>showcomponent</td>
<td>Display the blacklist status for a component.</td>
</tr>
<tr>
<td>showdatasync</td>
<td>Display the status of system controller (SC) data synchronization for failover.</td>
</tr>
<tr>
<td>showdate</td>
<td>Display the date and time for the system controller (SC) or a domain.</td>
</tr>
<tr>
<td>showdevices</td>
<td>Display system board devices and resource usage information.</td>
</tr>
<tr>
<td>showenvironment</td>
<td>Display the environmental data.</td>
</tr>
<tr>
<td>showfailover</td>
<td>Display system controller (SC) failover status or role</td>
</tr>
<tr>
<td>showkeyswitch</td>
<td>Display the position of the virtual keyswitch.</td>
</tr>
<tr>
<td>showlogs</td>
<td>Display message log files.</td>
</tr>
<tr>
<td>showobpparams</td>
<td>Display OpenBoot PROM bring up parameters for a domain.</td>
</tr>
<tr>
<td>showplatform</td>
<td>Display the board available component list and domain state for each domain.</td>
</tr>
<tr>
<td>showxirstate</td>
<td>Display CPU dump information after sending a reset pulse to the processors.</td>
</tr>
<tr>
<td>smsbackup</td>
<td>Back up the SMS environment.</td>
</tr>
<tr>
<td>smsconfig</td>
<td>Configure the SMS environment.</td>
</tr>
<tr>
<td>smsconnectsc</td>
<td>Access a remote SC console.</td>
</tr>
<tr>
<td>smsinstall</td>
<td>Install the SMS environment</td>
</tr>
<tr>
<td>smsrestore</td>
<td>Restore the SMS environment</td>
</tr>
<tr>
<td>smsupgrade</td>
<td>Upgrade the SMS environment</td>
</tr>
<tr>
<td>smsversion</td>
<td>Change the active version of SMS to another co-resident version of the SMS software.</td>
</tr>
<tr>
<td>ssd</td>
<td>SMS startup daemon.</td>
</tr>
<tr>
<td>tmd</td>
<td>Task management daemon.</td>
</tr>
<tr>
<td>wcapp</td>
<td>wPCI application daemon.</td>
</tr>
</tbody>
</table>
NAME addboard - assign, connect and configure a board to a domain

SYNOPSIS addboard -d domain_indicator [-c function] [-r retry_count] [-t timeout] [-f] [-y] [-n] location ...

DESCRIPTION addboard(1M) assigns, connects, and configures a location to the domain domain_id or domain_tag.

The board must be either available or assigned to the domain to which it is being added. The -c option is used to specify the transition of the board from the current configuration state to a new configuration state. Configuration states are assign, connect, and configure. If the -c option is not specified, the default expected configuration state is configure.

Note – addboard performs tasks synchronously and does not return control to the user until the command is complete. If the board is not powered on or tested and a -c connect|configure option is specified, then the command powers on the board and tests it.

Note – If only one board is specified and it is in the automatic system recovery (ASR) blacklist file, addboard displays an error message and exits. If more than one board is specified, addboard displays a message that the board is being skipped, and then goes on to the next board or, after the last board, exits.

Note – If the addboard command fails, a board does not return to its original state. A dxs or dca error message is logged to the domain. If the error is recoverable, you can retry the command. If it is unrecoverable, you need to reboot the domain in order to use that board.
OPTIONS

The following options are supported:

\[-c\ function\]

Valid function values are assign, connect, and configure. This option is used to control the configuration state transition. Each successive function builds upon the last. For example, configure first assigns and then connects the board before configuring it.

The possible transition states and their meanings are as follows:

assign
Assigns the board to the logical domain. This is a board state in which the domain has sole access to the board; however, the board is not active. Once assigned, the board can be connected or configured into the domain with the use of either setkeys on or the connect or configure options.

connect
Assigns the board to the logical domain (if it is not already assigned). Transitions the board into the connected|unconfigured state. In this state the system board is assigned to the logical domain and connected (becomes active). This state allows normal system access to hardware resources on the board, but the hardware resources of the board are not represented by the normal Solaris software data structures and thus are not available for use by the Solaris operating environment. Operations allowed on the board are limited to configuration administration operations. This is an intermediate state and does not have any standalone implementation at this time.

configure
Assigns the board to the logical domain (if it is not already assigned). Transitions the board into the connected|configured state. In this state the board is not only assigned, active, and connected to a domain, but also configured into the Solaris operating environment. The hardware resources on the board can be used by Solaris software.
-a domain_indicator Specifies the domain using one of the following:

 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

-f Forces the specified action to occur. Typically, this is a hardware-dependent override of a safety feature. Forcing a state change operation can allow use of the hardware resources of an occupant that is not in the ok or unknown conditions, at the discretion of any hardware-dependent safety checks.

-h Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q Quiet. Suppresses all messages to stdout including prompts.

 When used alone -q defaults to the -n option for all prompts.

 When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.

-x retry_count These command arguments enable the user to specify retries in case of failures encountered during state transitions. The -x retry_count option can be used alone and indicates the number of times the configuration state change request should be retried by the domain. The -t timeout option cannot be used without the -x retry_count option and specifies the number of seconds that the domain should wait before the next retry is made. If the -t timeout is not specified, the default timeout is zero, meaning that the request is retried immediately.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.
The following operands are supported:

location List of board locations separated by a space. Multiple location arguments are permitted.

The following location forms are accepted:

- Sun Fire 15K, Sun Fire 12K
- SB(0...17), SB(0...8)
- IO(0...17), IO(0...8)

Note – Use showboards(1M) to display board type.

Group Privileges Required

If you have platform administrator privileges, you can perform only the -c assign option.

If you have domain administrator or configurator privileges, you can execute this command, but only on your respective domains. If the board(s) are not already assigned to the domain, the board(s) must be in the available component list of the domain.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLE 1 Assigning Boards to Domain C

To assign four boards to domain C you must have platform privileges or domain privileges and the boards must be in the domain available component list.

```
sc0:sms-user:> addboard -d C -c assign SB0 IO1 SB1 SB2
SB0 assigned to domain: C
IO1 assigned to domain: C
SB1 assigned to domain: C
SB2 assigned to domain: C
sc0:sms-user:>
```

EXAMPLE 2 Assigning a Blacklisted Board to Domain C
To assign four boards to domain C you must have platform privileges or domain privileges and the boards must be in the domain available component list.

```
sc0:sms-user:> addboard -d C -c assign SB0 IO2 SB1 SB2
SB0 assigned to domain: C
IO2 assigned to domain: C
Warning: IO2 is blacklisted.
You will not be able to connect or configure it.
SB1 assigned to domain: C
SB2 assigned to domain: C
```

EXAMPLE 3 Connecting Boards to Domain A

This example connects three boards to domain A, setting retries to five and timeout to five seconds. You must have domain privileges for domain A.

```
sc0:sms-user:> addboard -d A -c connect -r 5 -t 5 IO3 IO4 IO5
```

EXAMPLE 4 Connecting Boards Containing an ASR Blacklisted Board to Domain C

You must have domain privileges for domain C. Blacklisted boards are skipped.

```
sc0:sms-user:> addboard -d C -c connect SB0
SB0 is blacklisted. Exiting.
```

EXAMPLE 5 Configuring Boards to Domain A

You must have domain privileges for domain A.

```
sc0:sms-user:> addboard -d A -c configure IO3 IO4 IO5
```

EXAMPLE 6 Configuring Boards Containing an ASR Blacklisted Board to Domain A

You must have domain privileges for domain A. Blacklisted boards are skipped.

```
sc0:sms-user:> addboard -d A -c configure IO7 IO8 IO9
Skipping IO8. It is blacklisted.
```

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>No acknowledge.</td>
</tr>
<tr>
<td>2</td>
<td>Not supported.</td>
</tr>
</tbody>
</table>

Last Modified 07 December 2002 SMS 1.3
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Operation not supported.</td>
</tr>
<tr>
<td>4</td>
<td>Invalid privileges.</td>
</tr>
<tr>
<td>5</td>
<td>Busy.</td>
</tr>
<tr>
<td>6</td>
<td>System busy.</td>
</tr>
<tr>
<td>7</td>
<td>Data error.</td>
</tr>
<tr>
<td>8</td>
<td>Library error.</td>
</tr>
<tr>
<td>9</td>
<td>No library.</td>
</tr>
<tr>
<td>10</td>
<td>Insufficient condition.</td>
</tr>
<tr>
<td>11</td>
<td>Invalid.</td>
</tr>
<tr>
<td>12</td>
<td>Error.</td>
</tr>
<tr>
<td>13</td>
<td>A PID does not exist.</td>
</tr>
<tr>
<td>14</td>
<td>Invalid attribute.</td>
</tr>
<tr>
<td>30</td>
<td>Invalid board ID type.</td>
</tr>
<tr>
<td>31</td>
<td>Invalid permissions.</td>
</tr>
<tr>
<td>32</td>
<td>Assigned to another domain.</td>
</tr>
<tr>
<td>33</td>
<td>Unable to get permissions.</td>
</tr>
<tr>
<td>34</td>
<td>Unable to get domain board info.</td>
</tr>
<tr>
<td>35</td>
<td>Unable to get active board list.</td>
</tr>
<tr>
<td>36</td>
<td>Unable to get assigned board list.</td>
</tr>
<tr>
<td>38</td>
<td>Solaris not running.</td>
</tr>
<tr>
<td>39</td>
<td>Unable to assign/unassign.</td>
</tr>
<tr>
<td>40</td>
<td>Unable to get domain permissions.</td>
</tr>
<tr>
<td>41</td>
<td>Unable to get platform permissions.</td>
</tr>
<tr>
<td>51</td>
<td>Invalid domain.</td>
</tr>
<tr>
<td>52</td>
<td>Invalid privileges.</td>
</tr>
<tr>
<td>53</td>
<td>Internal error.</td>
</tr>
<tr>
<td>54</td>
<td>Library error.</td>
</tr>
<tr>
<td>56</td>
<td>DR command syntax error.</td>
</tr>
<tr>
<td>57</td>
<td>Location already assigned.</td>
</tr>
<tr>
<td>58</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>
 FILES
The following files are used by this command.

/etc/opt/SUNWSMS/config/asr/blacklist List of components excluded by esmd.
/etc/opt/SUNWSMS/config/platform/blacklist List of platform components excluded.
/etc/opt/SUNWSMS/config/domain_id/blacklist List of domain components excluded.

 Note – This file is created and used internally and should not be edited manually. To remove a component from the ASR blacklist file, use enablecomponent(1M).

 ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

 SEE ALSO addtag(1M), enablecomponent(1M), esmd(1M), showcomponent(1M)
NAME

`addcodlicense` - add a Capacity on Demand (COD) right-to-use (RTU) license key to the COD license database

SYNOPSIS

```
addcodlicense license-signature
addcodlicense -h
```

DESCRIPTION

`addcodlicense(1M)` adds the COD RTU specified license key to the COD license database on the system controller (SC).

Note – Before you run this command, you must obtain a COD license key from the Sun License Center. For details on COD RTU license keys, refer to the *System Management Services (SMS) 1.3 Administrator Guide*.

OPTIONS

The following option is supported:

- `-h`
 Help. Displays usage descriptions.
 Note – Use alone. Any option specified in addition to `-h` is ignored.

OPERANDS

The following operand is supported:

- `license-signature`
 Specifies the COD RTU license key to be added to the COD license database.

EXTENDED DESCRIPTION

Group Privileges Required
You must have platform administrator group privileges to run this command.
Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

EXAMPLE 1
Adding a COD RTU License Key

```
sc0:sms-user:> addcodlicense \
01:5014936C37048:01001:0201010302:4:20020430:jWGJdg/ 
kx78b0wyK2xrgIg
```

EXIT STATUS

The following exit values are returned:

- **0**
 Successful completion.
- **1**
 Invalid usage.
- **2**
 Invalid group privileges.
- **3**
 Duplicate license exists in the COD license database.
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Invalid license key.</td>
</tr>
<tr>
<td>>3</td>
<td>An internal error occurred. For further information, see /var/opt/SUNWSMS/adm/platform/messages.</td>
</tr>
</tbody>
</table>

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
codd(1M), deletecodlicense(1M), showcodlicense(1M), showcodusage(1M)
NAME
addtag - assign a domain name (tag) to a domain

SYNOPSIS
```
addtag -d domain_indicator [-q] [-y] [-n] new_tag
addtag -h
```

DESCRIPTION
addtag(1M) adds the specified domain tag name (*new_tag*) to a domain (*domain_id* | *domain_tag*). Only one name tag can be assigned to a domain, and it must be unique across all domains. addtag can also be used to change the *domain_tag*.

OPTIONS
The following options are supported:

- `-d domain_indicator`
 Specifies the domain using one of the following:

 - `domain_id` – ID for a domain. Valid `domain_ids` are A–R and are not case sensitive.
 - `domain_tag` – Name assigned to a domain.

- `-h`
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- `-n`
 Automatically answers no to all prompts. Prompts are displayed unless used with the `-q` option.

- `-q`
 Quiet. Suppresses all messages to stdout including prompts.

 When used alone `-q` defaults to the `-n` option for all prompts.

 When used with either the `-y` or the `-n` option, `-q` suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.

- `-y`
 Automatically answers yes to all prompts. Prompts are displayed unless used with the `-q` option.

OPERANDS
The following operands are supported:

- `new_tag`
 New tag name assigned to a domain. See Extended Description for a description of invalid domain names.
EXTENDED DESCRIPTION

Domain Name Tag Restrictions

The following restrictions are required on a domain name tag:

- No single character names are permitted.
- All domain name tags must be unique across all domains within a single chassis.
- Tags must adhere to the same restrictions as defined for Solaris software node names. Currently, the size restriction is set to 2 to 64 characters.

Group Privileges Required

You must have platform administrator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Assigning the Tag eng2 to Domain A With Prompts

```
sc0:sms-user:> addtag -d A eng2
```

If a tag for this domain exists you are prompted.

EXAMPLE 2 Assigning the Tag eng2 to Domain A Using the -y Option

```
sc0:sms-user:> addtag -d A -y eng2
```

Prompts are displayed and are automatically answered yes. This forces the domain tag to be set even if a tag already exists for this domain.

EXAMPLE 3 Assigning the Tag eng2 to Domain A Using the -n Option

```
sc0:sms-user:> addtag -d A -n eng2
```

Prompts are displayed and are automatically answered no. This sets the tag for this domain unless it has already been set.

EXAMPLE 4 Assigning the Tag eng2 to Domain A Using the -qy Options

```
sc0:sms-user:> addtag -d A -qy eng2
```

You are not prompted.
EXAMPLE 5 Assigning the Tag eng2 to Domain A Using the -qn Options

```
sc0:~user> addtag -d A -qn eng2
```

The example assigns the tag eng2 to Domain A only if it has not already been set. You are not prompted.

EXAMPLE 6 Assigning the Tag eng2 to Domain A Using the -q Option

```
sc0:~user> addtag -d A -q eng2
```

The example assigns the tag eng2 to Domain A if it is not already set. If it is set, the command does not change it. You are not prompted.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO deletetag(1M)
cancelcmdsync(1M)

NAME

cancelcmdsync - command synchronization command

SYNOPSIS

cancelcmdsync
cmdsync_descriptor

initcmdsync
script_name [parameters]

savecmdsync -M identifier cmdsync_descriptor

[cancel | init | save] cmdsync -h

DESCRIPTION

The command synchronization commands work together to control the recovery of user-defined scripts interrupted by a system controller (SC) failover. Insert the following commands in user-defined scripts to enable command synchronization:

initcmdsync Creates a command synchronization descriptor that identifies the script to be recovered.

This descriptor is placed on a command synchronization list that identifies the scripts and commands to be restarted on the new main SC after a failover.

savecmdsync Adds a marker that identifies a location in the script from which processing can be resumed after a failover.

cancelcmdsync Removes a command synchronization descriptor from the command synchronization list. This ensures that the script is run only once and not after subsequent failovers.

Be sure that all exit paths of a script have a cancelcmdsync sequence to remove the descriptor from the command synchronization list. If you do not remove the descriptor and a failover occurs, the script is rerun on the new main SC.

Note – Both an initcmdsync and a cancelcmdsync sequence must be contained within a script to enable command synchronization. The use of the savecmdsync command is optional and marks only specific points in a script from which processing can be resumed. If specific restart points are not necessary, consider using runcmdsync(1M) instead.

OPTIONS

The following options are supported:

cmdsync_descriptor Specifies the command synchronization descriptor that identifies the user-defined script. This descriptor is the standard output value returned by the initcmdsync command.
EXTENDED DESCRIPTION

The command synchronization commands are inserted at certain logical points within a user-defined script.

-h

Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-M identifier

Marks a location in the script from which the script can be resumed after a failover. The identifier must be a positive integer.

parameters

Specifies the options or parameters associated with the user-defined script. These parameters are stored on the spare SC and are used to restart the specified script after a failover.

script_name

Identifies the name of the user-defined script to be synchronized. script_name must be the absolute path name of an executable command. The command must exist in the same location on both SCs.
For instance, a Korn shell script might be structured as follows:

```bash
# MAIN CODE STARTS HERE
# Be sure to use a cleanup procedure to handle any
# interrupts.
# Use the cancelcmdsync to remove the script from the
# command synchronization list. Otherwise, the command
# will get restarted on the new main SC.
#
clean_up () {
    cancelcmdsync $desc
    exit
}

# Declare the clean_up function to capture system signals
# and cleanup.
trap "clean_up" INT HUP TERM QUIT PWR URG
goto_label=1

# Process the arguments, capturing the -M marker point
# if provided
# for arg in $*; do
#    case $arg in
#        -M )
#           goto_label=$arg;
#            .
#            .
#            esac
# done

# Place this script and all its parameters in the command
# synchronization list, which indicates the commands to
# be restarted after an SC failover.
#
# NOTE: The script must be executable by the user defined
# in fomd.cf and reside in the same directory on both the
# main and the spare SC.
```
If the command is not part of the defined PATH for the user, the absolute filename must be passed with the initcmdsync command

initcmdsync script_name parameters

The marker point is stored in the goto_label variable. Keep executing this script until all cases have been processed or an error is detected.

while ((${goto_label} != 0)) ; do
 if each case should represent a synchronization point in the script.
 case $goto_label in
 Step 1: Do something
 1)
 do_something
 ...
 esac
 # Execute the savecmdsync command with the script's descriptor and a unique marker to save the position. If a failover occurs here, the commands represented in the next goto_label (2) will be resumed.
 savecmdsync -M $(($(goto_label + 1))) $desc
goto_label=$(($(goto_label + 1)))
;
 esac
 # Step 2: Do more things
 2)
 do_more_things
 ...
 savecmdsync -M $(($(goto_label + 1))) $desc
goto_label=$(($(goto_label + 1)))
;
 esac
 # Step 3: Finish the last step and set the goto_label to 0 so that the script ends.
 3)
 finish_last_step
 ...
goto_label=0
;
 esac
done

END OF MAIN CODE

Remember to execute cancelcmdsync to remove the script from the command synchronization list. Otherwise, the command will be restarted after the failover.

cancelcmdsync $desc
Group Privileges

You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXIT STATUS

The following exit values are returned:

0 Successful completion.
>0 An error occurred.

Note – The standard output for initcmdsync contains the command synchronization descriptor. Also, when failover is disabled (after a failover or in a single SC environment), scripts that contain synchronization commands generate error messages to the platform log file and return nonzero exit codes. These messages can be ignored.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

runcmdsync (1M), showcmdsync (1M)
NAME codd - Capacity on Demand (COD) daemon

SYNOPSIS codd

DESCRIPTION codd(1M) is a process that runs on the main system controller (SC). This process does the following:

- Monitors the COD resources being used and verifies that the resources used are in agreement with the COD right-to-use (RTU) licenses in the COD license database file. Also logs any warning messages.
- Provides information on installed licenses, resource use, and board status.
- Handles the requests to add or delete COD RTU license keys.
- Configures headroom and COD RTU licenses reserved for domains.

This daemon is started automatically by the ssd(1M) daemon. If the codd daemon terminates, it is restarted automatically. Do not manually start this daemon from the command line.

EXTENDED DESCRIPTION The codd daemon releases COD RTU licenses when the following events occur:

- A COD CPU board is powered off or disconnected from a running domain.
- A domain virtual keyswitch state changes from on/secure to standby/off

Clients of the codd daemon include:

- `addcodlicense(1M)` Adds a COD RTU license key to the COD license database on the system controller (SC)
- `dxs(1M)` Domain X server daemon
- `deletecodlicense(1M)` Removes a COD RTU license from the SC.
- `hpost(1M)` Sun Fire 15K/12K power-on self-test (POST) control application
- `setdefaults(1M)` Remove all instances and reset reserved COD RTUs for a previously active domain.
- `setupplatform(1M)` Sets up the available component list and reserved COD RTUs for domains and configures platform COD headroom.
- `showcodlicense(1M)` Shows installed COD RTU licenses.
- `showcodusage(1M)` Shows current usage statistics for COD resources.
- `showplatform(1M)` Displays the board available component list, domain state, and reserved COD RTUs for each domain, and platform COD headroom.
The `codd` daemon is a client of:

- `dsmd(1M)` Domain status monitoring daemon
- `frad(1M)` FRU access daemon
- `pcd(1M)` Platform configuration database daemon
- `setkeyswich(1M)` Virtual keyswitch control command

FILES
The following file is supported:

```
/var/opt/SUNWSMS/adm/platform/messages
```
Stores message files.

ATTRIBUTES
See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
`addcodlicense(1M)`, `deletecodlicense(1M)`, `dsmd(1M)`, `dxs(1M)`, `frad(1M)`, `hpost(1M)`, `pcd(1M)`, `setdefaults(1M)`, `setkeyswich(1M)`, `setupplatform(1M)`, `showcodlicense(1M)`, `showcodusage(1M)`, `showplatform(1M)`, `ssd(1M)`
NAME
console - access the domain console

SYNOPSIS
console -d domain_indicator [[-f] | [-l] | [-g] | [-r] | -e escapeChar]
console -h

DESCRIPTION
console(1M) creates a remote connection to the domain virtual console driver, making the window in which the command is executed a console window for the specified domain (domain_id or domain_tag). Many console commands can be attached simultaneously to a domain, but only one console has write permissions; all others have read-only permissions. Write permissions are in either locked or unlocked mode.

If console is invoked without any options it comes up in exclusive locked write mode (option \(-f\)). An exclusive session forcibly detaches all other sessions from the domain virtual console.

Locked write mode is more secure. It can be taken away only if another console is opened using console \(-f\) or \(\sim\) is entered from another running console window. In both cases the new console session is an exclusive session.

Unlocked write permission is not as secure. It can be taken away if another console command is started using console \(-g\), console \(-l\), or console \(-f\), or if \(\sim\), \(\sim\), or \(\sim\) is entered from another console window.

console can utilize either IOSRAM or the network path for domain console communication. You can manually toggle the communication path by using the \(\sim\) (tilde-equal sign) command. Doing so is useful if the network becomes inoperable, in which case the console sessions appears to be hung.

Tilde commands are described in EXTENDED DESCRIPTION.

OPTIONS
The following options are supported:

\(-d\) domain_indicator
Specify the domain using one of the following:

\domain_id\ – ID for a domain. Valid \domain_ids\ are A–R and are not case sensitive.

\domain_tag\ – Name assigned to a domain using addtag(1M).

\(-e\) escapeChar
Set default escape character. Changes the escape character to be escapeChar. The default is \(\sim\) (tilde).

Valid escape characters are any except the following:

\# @ ^ & ? * = . |

See the note on rlogin in the Usage section that follows.
Usage

In a domain console window, a tilde (~) that appears as the first character of a line is interpreted as an escape signal that directs `console` to perform some special action, as follows:

- **~f** Force option (the default). Opens a domain console window with locked write permission, terminates all other open sessions, and prevents new ones from being opened. This constitutes an exclusive session. Use it only when you need exclusive use of the console (e.g. for private debugging).

 Note – To restore multiple-session mode, either release the lock (~^) or terminate the console session (~.).

- **~g** Grab option. Opens a console window with unlocked write permission. If another session has unlocked write permission, that session becomes read-only. If another session has locked permission, this request is denied and the console window opens in read-only mode instead.

- **~h** Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to ~h is ignored.

- **~l** Lock option. Opens a console window with locked write permission. If another session has unlocked write permission, that session becomes read-only. If another session has locked permission, the request is denied and the console window opens in read-only mode instead.

- **~r** Opens a console window in read-only mode.

- **~?** Status message.

- **~.** Disconnect console session.

- **~#** Break to OpenBoot PROM or `kadb`.

- **~@** Acquire unlocked write permission; see ~g.

- **~^** Release write permission.

- **~=` Toggle the communication path between the network and `IOSRAM` interfaces. You can use `~=` only in Private mode (see ~*).

- **~&** Acquire locked write permission; see ~l. You can issue this signal during a read-only or unlocked write session.
~*
Acquire locked write permission, terminate all other open
sessions, and prevent new sessions from being opened; see \texttt{-f}. To
restore multiple-session mode, either release the lock or terminate
this session.

\textbf{Note} – \texttt{rlogin} also processes \texttt{tilde-escape} sequences whenever a \texttt{tilde} is
entered at the beginning of a new line. If you need to send a \texttt{tilde} sequence at the
beginning of a line and you are using \texttt{rlogin}, use two \texttt{tilde}s (the first escapes the
second for \texttt{rlogin}). Alternatively, do not enter a \texttt{tilde} at the beginning of a line
when running inside of \texttt{rlogin}.

\textbf{Note} – If you use a \texttt{kill \texttt{-9}} command to terminate a console session, the window
or terminal in which the console command was executed goes into raw mode and
appears hung. To escape this condition, type \texttt{CTRL-j}, then \texttt{stty sane}, and then
\texttt{CTRL-j}.

\textbf{Group Privileges}
\textbf{Required}
You must have domain administrator privileges on the domain specified. Users
with only platform group privileges are not allowed access to a domain console.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the
System Management Services (SMS) 1.3 Administrator Guide for more information.

\textbf{EXAMPLES}
\textbf{EXAMPLE 1}
Opening a Console Window in Locked Mode in Domain a

\texttt{sc0: sms-user:} > \texttt{console -d a -l}

\textbf{Note} – In the domain console window, \texttt{vi(1)} runs properly and the escape
sequences (\texttt{tilde commands}) work as intended only if the environment variable
\texttt{TERM} has the same setting as that of the console window. For example:

\texttt{sc0: sms-user:} > \texttt{setenv TERM xterm}

\textbf{EXIT STATUS}
The following exit values are returned:

\begin{itemize}
\item 0 \hspace{1cm} Successful completion.
\item >0 \hspace{1cm} An error occurred.
\end{itemize}

\textbf{ATTRIBUTES}
See \texttt{attributes(5)} for descriptions of the following attributes:

\begin{table}[h]
\begin{tabular}{|c|c|}
\hline
\textbf{Attribute Types} & \textbf{Attribute Values} \\
\hline
Availability & SUNWSMSOp \\
\hline
\end{tabular}
\end{table}

\textbf{SEE ALSO} \texttt{addtag(1M)}, \texttt{dxs(1M)}, \texttt{kill(1)}, \texttt{rlogin(1)}, \texttt{set(1)}, \texttt{stty(1)}, \texttt{vi(1)}, \texttt{xterm(1M)}
NAME
dca - domain configuration agent

SYNOPSIS
dca -d domain_indicator [-H hostname]
dca -h

DESCRIPTION
dca(1M) provides a communication mechanism between the dca on the system controller and the domain configuration server (dcs) on the specified domain. The dca provides communication services for remote dynamic reconfiguration commands.

This agent is automatically started by ssd(1M). Do not start it manually from the command line.

OPTIONS
The following options are supported:

- -d domain_indicator
 Specifies the domain using one of the following:

domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

domain_tag – Name assigned to a domain using addtag(1M).

- -h
 Help. Displays usage descriptions for the specified hostname.

 Note – Use alone. Any option specified in addition to -h is ignored.

- -H hostname
 The Solaris software host name of the domain associated with the dca.

FILES
The following files are used by this command:

/var/opt/SUNWSMS/doors/<domain_id>/dca
/var/opt/SUNWSMS/pipes/<domain_id>/scdr0
/var/opt/SUNWSMS/pipes/<domain_id>/scdr1
/var/opt/SUNWSMS/pipes/<domain_id>/scdr2
/var/opt/SUNWSMS/pipes/<domain_id>/scdr3
/var/opt/SUNWSMS/pipes/<domain_id>/scdr4
/var/opt/SUNWSMS/pipes/<domain_id>/scdr5
/var/opt/SUNWSMS/pipes/<domain_id>/scdr6
/var/opt/SUNWSMS/pipes/<domain_id>/scdr7
ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addboard(1M), deleteboard(1M), moveboard(1M), rcfadm(1M)
deleteboard - unconfigure, disconnect, and unassign a system board from a domain

```
deleteboard [\[-c\] \[function\]] \[-r\] \[retry_count\] \[-t\] \[timeout\]] \[-q\] \[-f\] \[-y\] \[-n\] \[location\]...
```

DESCRIPTION
deleteboard(1M) removes a location from the domain it is currently assigned to and possibly active in. The board at that location must be in either the assigned or connected\|configured states. The -c option is used to specify the transition of the board from the current configuration state to the new configuration state.

Configuration states are unconfigure, disconnect, and unassign. If the -c option is not specified, the default expected configuration state is unassign.

A domain administrator can unconfigure and disconnect a board but cannot unassign a board from a domain unless the board is in the domain available component list. See setupplatform(1M). This means the deleteboard location field must appear in the domain available component list list.

OPTIONS
The following options are supported.

Note – If the deleteboard command fails, a board does not return to its original state. A dxs or dca error message is logged to the domain. If the error is recoverable, you can retry the command. If it is unrecoverable, you need to reboot the domain in order to use that board.

```
-c \[function\] Valid function values are unconfigure, disconnect, or unassign. The -c option is used to control the configuration state transition. Each successive function builds upon the last. For example, unassign first unconfigures and then disconnects the board before unassigning it.
```

Last Modified 07 December 002
SMS 1.3 33
The possible transition states and their meanings are as follows:

unconfigure Unconfigures the board from the Solaris operating environment running on the domain. Solaris software stops using any of the hardware resources on the board.

Transitions the board into the **connected|unconfigured** state. In this state the system board is assigned to the logical domain and connected (remains in the **active** state). This state allows normal system access to hardware resources on the board, but the hardware resources of the board are not represented by the normal Solaris software data structures and thus are not available to the Solaris operating environment. Operations allowed on the board are limited to configuration administration operations.

disconnect Unconfigures the board from the Solaris operating environment running on the domain. See **unconfigure**. Transitions the board into the **disconnected|unconfigured** state.

Removes the board from the physical domain. An UNCLAIM request is sent by the domain to the SC during this step. In this state the system board is assigned to the logical domain and disconnected.

unassign Unconfigures the board from the Solaris operating environment running on the domain. See **unconfigure**. Disconnects the board. See **disconnect**. Moves the board out of the logical domain by changing its state to available.

-f Forcibly the specified action to occur. Typically, this is a hardware-dependent override of a safety feature. Forcing a state change operation can allow use of the hardware resources of an occupant that is not in the **ok** or **unknown** conditions, at the discretion of any hardware-dependent safety checks.

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to **-h** is ignored.
OPERANDS

The following operands are supported:

- `location` List of board locations separated by a space. Multiple location arguments are permitted.

The following location forms are accepted:

- Sun Fire 15K, Sun Fire 12K
- SB(0...17), SB(0...8)
- IO(0...17), IO(0...8)

Note – Use showboards(1M) to display board type.

EXTENDED DESCRIPTION

Group Privileges Required

Users with platform administrator privileges can perform only the `-c unassign` option if the board(s) are in the assigned state (that is, not active in a running domain).

Users with domain administrator or configurator privileges can execute this command but only on their respective domains. To unassign a board, the board must be in the domain available component list.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the `-q` option.

-q Quiet. Suppresses all messages to stdout including prompts.

-`rety_count`
-`timeout`

These command arguments enable the user to specify retries in case of failures encountered during state transitions. The `-r retry_count` option can be used alone and indicates the number of times the configuration state change request should be retried by the domain. The `-t timeout` option cannot be used without the `-r retry_count` option and specifies the number of seconds that the domain should wait before the next retry is made. If the `-t timeout` is not specified, the default `timeout` is zero, meaning that the request is retried immediately.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the `-q` option.
Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Unconfiguring Boards From a Domain

To unconfigure four boards from their domain, you must have domain administrator/configurator privileges and the boards must be in the domain available component list.

All boards are in the configured state in the example domain.

```
sc0:~> deleteboard -c unconfigure SB0 IO1 SB1 SB2
```

EXAMPLE 2 Unassigning Boards From a Running Domain

To unassign three active boards from their domain, set retries to five seconds and timeout to three seconds. The boards are unconfigured and disconnected before being unassigned. You must have domain administrator/configurator privileges, and the boards must be in the domain available component list.

```
sc0:~> deleteboard -r5 -t3 IO3 IO4 IO5
```

EXIT STATUS

The following exit values are returned:

```
0  Successful completion.
1  No acknowledge.
2  Not supported.
3  Operation not supported.
4  Invalid privileges.
5  Busy.
6  System busy.
7  Data error.
8  Library error.
9  No library.
10 Insufficient condition.
11 Invalid.
12 Error.
13 A PID does not exist.
```
System Administration

deleteboard(1M)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addboard(1M), moveboard(1M)
deletecodlicense(1M)

NAME
deletecodlicense - remove a Capacity on Demand (COD) right-to-use (RTU) license key from the COD license database

SYNOPSIS
deletecodlicense [-f] license-signature
deletecodlicense -h

DESCRIPTION
The deletecodlicense(1M) command removes the specified COD RTU license key from the COD license database on the SC. For further information about COD RTU license keys, refer to the SMS 1.3 Administrator Guide.

The system checks the number of COD RTU licenses against the number of COD CPUs in use. If the license removal will result in an insufficient number of COD RTU licenses with respect to the CPU in use, the system does not delete the license key from the COD RTU license database. If you still want to delete the COD RTU license key, you must reduce the number of COD CPUs in use. You can either power off the appropriate number of domains or use dynamic reconfiguration (DR) to disconnect the appropriate number of boards.

However, you can force the deletion of a COD RTU license by specifying the -f option, even if the license removal will result in a license violation.

OPTIONS
The following options are supported:

- f Forc e s e s p e c i fi ed COD RTU license key to be deleted from the COD license database.

- h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

license-signature Specifies the COD RTU license key to be deleted from the COD license database.

Group Privileges Required
You must have platform administrator group privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES
EXAMPLE 1 Deleting a COD RTU license key

```
sc0:sms-user:/>deletecodlicense
deletecodlicense
01:5014936C37048:01001:0201010302:4:20020430:jWGJdg/
kx78b0wyK2xrq1g
```
EXIT STATUS The following exit values are returned:

0 Successful completion.
1 Invalid usage
2 Invalid group privileges.
>2 An internal error occurred. For further information, see
 /var/opt/SUNWSMS/adm/platform/messages.

ATTRIBUTES See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addcodlicense(1M), codd(1M), showcodlicense(1M), showcodusage(1M)
NAME deletetag - remove the domain tag name associated with the domain
SYNOPSIS deletetag -d domain_indicator [-q] [-y | -n]
deletetag -h
DESCRIPTION deletetag(1M) removes the domain tag associated with the domain.
OPTIONS The following options are supported:

-d domain_indicator Specifies the domain using one of the following:

domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.
domain_tag – Name assigned to a domain using addtag(1M).

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q Quiet. Suppresses all messages to stdout including prompts.

When used alone, -q defaults to the -n option for all prompts.

When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either ‘y’ or ‘n’ based on the option chosen.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.

EXTENDED DESCRIPTION

Group Privileges Required You must have platform administrator privileges to run this command.

Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES EXAMPLE 1 Deleting Tag eng2 From the Domain to Which It Was Assigned

sc0:sms-user:~> deletetag -d eng2 -qy
You are not prompted.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

If the *domain_id* does not have a tag, no error is returned. *deletetag*(1M) is treated as successful.

ATTRIBUTES
See *attributes* (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
addtag (1M)
NAME
disablecomponent - add the specified component to the specified blacklist file

SYNOPSIS
disablecomponent [-d domain_indicator] [-i "reason"] location...
disablecomponent -h

DESCRIPTION
disablecomponent(1M) adds a component to the domain or platform blacklist, making it ineligible for booting.

The blacklist is an internal file that lists components that POST cannot use at boot time. POST reads the blacklist file(s) before preparing the system for booting, and passes along to OpenBoot PROM a list of only those components that have been successfully tested; those on the blacklist are excluded. SMS supports three blacklists: one for domain boards, one for platform boards, and the internal automatic system recovery (ASR) blacklist.

disablecomponent, when used without any option, edits the platform blacklist file.

disablecomponent cannot be used on the ASR blacklist file; only enablecomponent(1M) can be used to write to the ASR blacklist file.

For more information on the use and editing of platform and domain blacklists refer to Chapter 6, “Domain Control,” in the System Management Services (SMS) 1.3 Administrator Guide.

OPTIONS
The following options are supported:

- `domain_indicator` Specifies the domain using one of the following:

 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

- `-h` Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- `-i "reason"` Short, descriptive explanation for adding a component to the domain blacklist. Must be enclosed in either single or double quotation marks, or be a single word.
The following operands are supported:

- **location**: List of component locations, separated by forward slashes and comprised of the following:
 - `board_loc/proc/bank/logical_bank`
 - `board_loc/proc/bank/all_dimms_on_that_bank`
 - `board_loc/proc/all_banks_on_that_proc`
 - `board_loc/all_banks_on_that_board`
 - `board_loc/proc`
 - `board_loc/procs`
 - `board_loc/cassette`
 - `board_loc/bus`
 - `board_loc/paroli_link`

Multiple location arguments are permitted, separated by a space.

The location forms are optional and are used to specify particular components on boards in specific locations.

For example, the location SB5/P0/B1/L1 indicates Logical Bank 1 of Bank 1 on Processor 0 at SB5.

The SB0/PP1 location indicates Processor Pair 1 at SB0.

The CS0/ABUS location indicates address bus 0 on the centerplane.

The EX11/DBUS1 location indicates data bus 1 at expander 11.

The following board_loc forms are accepted:

- **Sun Fire 15K, Sun Fire 12K**
 - `SB(0...17), SB(0...8)`
 - `IO(0...17), IO(0...8)`
 - `CS(0|1), CS(0|1)`
 - `EX(0...17), EX(0...8)`
Processor locations indicate single processors or processor pairs.

There are four possible processors on a CPU/memory board. Processor pairs on that board are procs 0 and 1, and procs 2 and 3.

Note – If you blacklist a single CPU/mem processor in a processor pair, neither processor is used.

The MaxCPU has two processors, procs 0 and 1, and only one proc pair (PP0). Using PP1 for this board causes `disablecomponent` to exit and display an error message.

The following `proc` forms are accepted:

\[P(0...3) \quad PP(0|1) \]

The following `bank` forms are accepted:

\[B(0|1) \]

The following `logical_bank` forms are accepted:

\[L(0|1) \]

The following `all_dimms_on_that_bank` forms are accepted:

\[D \]

The following `all_banks_on_that_proc` forms are accepted:

\[B \]

The following `all_banks_on_that_board` forms are accepted:

\[B \]

The following `paroli_link` forms are accepted:

\[PAR(0|1) \]

The hsPCI assemblies contain hot-swappable cassettes.

The following `hsPCI` forms are accepted:

\[C(3|5) V(0|1) \]

The hsPCI+ assemblies contain hot-swappable cassettes.

The following `hsPCI+` forms are accepted:

\[C3V(0|1|2) \quad \text{and} \quad C5V0 \]
EXTENDED DESCRIPTION

Group Privileges Required

You must have platform administrator, domain administrator, or domain configurator privileges to run this command. If you have platform privileges, you can run this command for the platform components only. If you have domain privileges you can run this command only on the domain for which you have privileges.

Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

EXAMPLE 1 Adding CSB 0 and Processor 2 on System Board 1 to the Domain A Blacklist

```bash
sc0:sms-user:> disablecomponent -dA CS0 SB1/P2
```

EXAMPLE 2 Adding the Logical Bank 0 of Bank 0 on Processor 0 on System Board 0 to the Domain A Blacklist

```bash
sc0:sms-user:> disablecomponent -dA SB0/P0/B0/L0
```

EXAMPLE 3 Adding All DIMMs on Bank 0 of Processor 1 on System Board 3 to the Domain A Blacklist

```bash
sc0:sms-user:> disablecomponent -dA SB3/P1/B0/D
```

EXAMPLE 4 Adding All Banks on Processor 0 on System Board 1 to the Domain B Blacklist

```bash
sc0:sms-user:> disablecomponent -dB SB1/P0/B
```

EXAMPLE 5 Adding All Banks on System Board 0 to the Domain D Blacklist

```bash
sc0:sms-user:> disablecomponent -dD SB0/B
```

EXAMPLE 6 Adding Processor Pair 1 on System Board 3 to the Platform Blacklist

```bash
sc0:sms-user:> disablecomponent SB3/PP1
```

EXAMPLE 7 Adding the hsPCI Cassette in the 5V slot 0 of IO Board 6 to the Domain A Blacklist

```bash
sc0:sms-user:> disablecomponent SB6/IO5V/0
```
Blacklist

```bash
sc0:~> disablecomponent -dA IO6/C5V0
```

EXAMPLE 8 Adding Paroli Link 0 on wPCI Board 7 to the Platform Blacklist

```bash
sc0:~> disablecomponent IO7/PAR0
```

EXAMPLE 9 Adding the Data Bus CS0 on EX9 to the Domain A Blacklist

```bash
sc0:~> disablecomponent -dA EX9/DBUS0
```

EXAMPLE 10 Adding CSB 0 and Processor 2 on System Board 1 to the Domain A Blacklist Because It Is Scheduled to Be Upgraded

```bash
sc0:~> disablecomponent -dA -i upgrade CS0 SB1/P2
```

EXAMPLE 11 Adding Processor Pair 1 on System Board 3 to the Platform Blacklist Because It Needs Service

```bash
sc0:~> disablecomponent -i "Needs service" SB3/PP1
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command.

- `/etc/opt/SUNWSMS/config/platform/blacklist` List of platform components excluded.
- `/etc/opt/SUNWSMS/config/domain_id/blacklist` List of domain components to be excluded.

ATTRIBUTES

See [attributes](5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
`addboard(1M), enablecomponent(1M), esmd(1M), showcomponent(1M)`
NAME
dsmd - domain status monitoring daemon

SYNOPSIS
dsmd

DESCRIPTION
dsmd(1M) monitors domain status and operating system (OS) heartbeat for up to 18 domains.

dsmd automatically recovers the domain and handles domain-related hardware errors. In the event of a domain hang, dsmd resets the domain, collects CPU registers and hardware configuration dumps, and saves them to two files.

All domain state changes are monitored and logged in domain-specific log files if the message level is INFO; otherwise there is no log for a state change.

This daemon is started automatically by the ssd(1M) daemon. Do not start it manually from the command line.

EXTENDED DESCRIPTION
dsmd logs the following events and attempts to recover from them:
- Domain boot failure
- Error reset
- Solaris OS hang
- Domain panic
- Domain reset/reboot
- DStop
- Boot/panic/error_reset_sync timeout

dsmd clients include:

dxs(1M) Domain X server daemon
efe Sun Management Center daemon
osd(1M) OpenBoot PROM daemon
pcd(1M) Platform configuration database daemon
esmd(1M) Environment status monitoring daemon

dsmd is a client of:

hwad(1M) Hardware access daemon
setkeyswitch(1M) Virtual keyswitch control command

For more information refer to the System Management Services (SMS) 1.3 Administrator Guide.
FILES
The following files are supported:

/etc/opt/SUNWSMS/startup/ssd_start
 Default startup file for ssd.
/var/opt/SUNWSMS/adm/domain_id/
 Stores message files and hpost dump files.
/var/opt/SUNWSMS/SMS/adm/domain_id/post/
 Stores the dstop and hardware configuration dump files.
/export/home/sms-user/xir_dump/
 Stores xir dump files for all domains.

ATTRIBUTES
See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
dxs (1M), esmd (1M), hwad (1M), osd (1M), pcd (1M), reset (1M),
setkeysoc (1M), ssd (1M)
NAME

dxs - domain X server

SYNOPSIS

dxs [-S] [-d domain_indicator]
dxs -h

DESCRIPTION

dxs(1M) provides software support for a domain. This support includes virtual console functionality, dynamic reconfiguration mailbox support, and PCI mailbox support. The mailbox support handles domain driver requests and events. The virtual console functionality enables one or more users running the console program to access the domain's virtual console.

When the domain is running Solaris software, dxs acts as a relay between the domain's console driver (cvcd) and the running console windows. When the domain is not running Solaris software, dxs acts as a relay between OpenBoot PROM and the running console windows.

A domain X server is automatically started for each active domain by the ssd(1M) daemon. Do not start it manually from the command line. dxs for the domain is terminated when the domain is shut down.

OPTIONS

The following options are supported:

- `-d domain_indicator`
 Specifies the domain using one of the following:

 - `domain_id` – ID for a domain. Valid `domain_ids` are A–R and are not case sensitive.

 - `domain_tag` – Name assigned to a domain using `addtag(1M)`.

- `-h`
 Help. Displays usage descriptions for the specified `hostname`.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

 `-S`
 Disables console output logging. By default, logging is enabled and is written to the `/var/opt/SUNWMS/adm/domain_id/console` file.

EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

adtag (1M), console (1M), ssd (1M)
enablecomponent - remove the specified component from the specified blacklist

enablecomponent [-a | -d domain_indicator] location...

enablecomponent -h

enablecomponent(1M) removes a component from the platform, domain, or ASR blacklist, making it eligible for booting.

The blacklist is an internal file that lists components that POST cannot use at boot time. POST reads the blacklist file(s) before preparing the system for booting, and passes along to OpenBoot PROM a list of only those components that have been successfully tested; those on the blacklist are excluded. SMS supports three blacklists: one for domain boards, one for platform boards, and the internal ASR blacklist.

The ASR blacklist is an internal file created by esmd when it powers off components due to environmental conditions. The ASR blacklist is also used by the power libraries and SMS commands to prevent turning on a bad component.

enablecomponent, when used without any option, edits the platform blacklist.

Use showcomponent(1M) to display whether a particular component is currently blacklisted.

For more information on the use and editing of platform and domain blacklists refer to Chapter 6, “Domain Control,” in the System Management Services (SMS) 1.3 Administrator Guide.

The following options are supported:

- **-a** Specifies the component to remove from the ASR blacklist.
- **-d domain_indicator** Specifies the domain using one of the following:
 - *domain_id* – ID for a domain. Valid *domain_ids* are A–R and are not case insensitive.
 - *domain_tag* – Name assigned to a domain using addtag(1M).
- **-h** Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.
OPERANDS The following operands are supported:

location List of component locations, separated by forward slashes and comprised of:

board_loc/proc/bank/logical_bank

board_loc/proc/bank/all_dimms_on_that_bank

board_loc/proc/all_banks_on_that_proc

board_loc/all_banks_on_that_board

board_loc/proc

board_loc/procs

board_loc/cassette

board_loc/bus

board_loc/paroli_link

Multiple location arguments are permitted, separated by a space.

The location forms are optional and are used to specify particular components on boards in specific locations.

For example, the location SB5/P0/B1/L1 indicates Logical Bank 1 of Bank 1 on Processor 0 at SB5.

The SB0/PP1 location indicates Processor Pair 1 at SB0.

The CS0/ABUS location indicates address bus 0 on the centerplane.

The EX11/DBUS1 location indicates data bus 1 at expander 11.

The following board_loc forms are accepted:

Sun Fire 15K, Sun Fire 12K

SB(0...17), SB(0...8)

IO(0...17), IO(0...8)

CS(0|1), CS(0|1)

EX(0...17), EX(0...8)
Processor locations indicate single processors or processor pairs.

There are four possible processors on a CPU/memory board. Processor pairs on that board are: procs 0 and 1, and procs 2 and 3.

The MaxCPU has two processors, procs 0 and 1, and only one proc pair (PP0). Using PP1 for this board causes enablecomponent to exit and display an error message.

The following proc forms are accepted:

P(0...3) PP(0|1)

The following bank forms are accepted:

B(0|1)

The following logical_bank forms are accepted:

L(0|1)

The following all_dimms_on_that_bank forms are accepted:

D

The following all_banks_on_that_proc forms are accepted:

B

The following all_banks_on_that_board forms are accepted:

B

The following paroli_link forms are accepted:

PAR(0|1)

The hsPCI assemblies contain hot-swappable cassettes.

The following hsPCI forms are accepted:

C(3|5)V(0|1)

The hsPCI+ assemblies contain hot-swappable cassettes.

The following hsPCI+ forms are accepted:

C3V(0|1|2) and C5V0
Group Privileges Required
You must have platform administrator, domain administrator, or domain configurator privileges to run this command. If you have platform privileges, you can run this command for the platform components only. If you have domain privileges, you can run this command only on the domain for which you have privileges.

Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Removing CSB0 From the ASR Blacklist

```
sc0:sms-user:> enablecomponent -a CS0
```

EXAMPLE 2 Removing the Logical Bank 0 of Bank 0 on Processor 0 on System Board 0 from the Domain A Blacklist

```
sc0:sms-user:> enablecomponent -dA SB0/P0/B0/L0
```

EXAMPLE 3 Removing All DIMMs on Bank 0 of Processor 1 on System Board 3 From the Domain A Blacklist

```
sc0:sms-user:> enablecomponent -dA SB3/P1/B0/D
```

EXAMPLE 4 Removing All Banks on Processor 0 on System Board 1 From the Domain B Blacklist

```
sc0:sms-user:> enablecomponent -dB SB1/P0/B
```

EXAMPLE 5 Removing All Banks on System Board 0 From the Domain D Blacklist

```
sc0:sms-user:> enablecomponent -dD SB0/B
```

EXAMPLE 6 Removing Processor Pair 0 on I/O Board 7 From the Platform Blacklist

```
sc0:sms-user:> enablecomponent IO7/PP0
```
EXAMPLE 7 Removing Processor 1 on System Board 3 From the Domain A Blacklist

```
sc0:sms-user:> enablecomponent -dA SB3/P1
```

EXAMPLE 8 Removing the hsPCI Cassette in the 3V slot 0 of IO Board 6 From the Domain A Blacklist

```
sc0:sms-user:> enablecomponent -dA IO6/C3V0
```

EXAMPLE 9 Removing the Paroli Link 0 on wPCi Board 5 From the Platform Blacklist

```
sc0:sms-user:> enablecomponent IO5/PAR0
```

EXAMPLE 10 Removing the Address Bus CS0 on EX7 From the Domain A Blacklist
```
sc0:sms-user:> enablecomponent -dA EX7/ABUS0
```

EXIT STATUS The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

FILES The following files are used by this command.

- `/etc/opt/SUNWSMS/config/asr/blacklist` List of components excluded by `esmd`.
- `/etc/opt/SUNWSMS/config/platform/blacklist` List of platform components excluded.
- `/etc/opt/SUNWSMS/config/domain_id/blacklist` List of domain components excluded.

ATTRIBUTES See `attributes` (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO `addboard` (1M), `disablecomponent` (1M), `esmd` (1M), `showcomponent` (1M)
NAME
esmd - environmental status monitoring daemon

SYNOPSIS
esmd

DESCRIPTION
esmd(1M) monitors system cabinet environmental conditions—for example, voltage, temperature, fan tray, and power supply. esmd logs abnormal conditions and takes action, if necessary, to protect the hardware.

This daemon is started automatically by the ssd(1M) daemon. Do not start it manually from the command line.

EXTENDED DESCRIPTION
esmd monitors the following boards for out-of-range conditions:

- CPU board
- MaxCPU board
- HPCI board
- HPCI+ board
- Expander board
- Centerplane support board
- SC control board
- SC I/O
- Fan control board
- Power supplies (bulk)

esmd recognizes the following events and alerts the appropriate clients/demons:

Component insertion
Notices component presence from one polling cycle to the next. esmd sends notification only if that client (hwad(1M), pcd(1M), dsmd(1M), and so on) has requested it for that particular component type.

Component removal
Notices component absence from one polling cycle to the next. esmd sends notification only if that client (hwad, pcd, and so on) has requested it for that particular component type.

PCI card insertion
Notices whenever a PCI card has been inserted into a PCI board.

PCI card removal
Notices whenever a PCI card has been removed from a PCI board.

Board power off
Notices whenever a board is powered off or when board power, previously on, is off.

Board power on
Notices when a board is powered on or when board power, previously off, is on.
Board temperature change Notices when temperature sensors on a board register a two-degree difference or when a temperature crosses a temperature threshold.

Board voltage change Notices if a voltage sensor value has changed so that it is close to being out of range and again if the new value is out of range. In this case esmd removes the board from the domain and powers it off.

Board current change Notices whenever any of the monitored board current values change.

CSB state change Notices when any of the monitored CSB board properties change.

EXB state change Notices when any of the monitored EXB board properties change.

CPU state change Notices when any of the monitored CPU board properties change.

Bulk power state change Notices when any of the bulk power supply properties change.

Fan tray state change Notices when any of the monitored fan tray properties change.

PCI card state change Notices when any of the monitored PCI card properties change.

esmd clients include:

hwad Hardware access daemon

pcd Platform configuration database daemon

dsmd Domain status monitoring daemon

For more information refer to the System Management Services (SMS) 1.3 Administrator Guide.

EXIT STATUS

The following exit values are returned:

 0 Successful completion.

 >0 An error occurred.

FILES

The following file is supported.

/var/opt/SUNWSMS/adm/platform/messages Stores message files.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

dsmd(1M), hwad(1M), pcd(1M), ssd(1M)
NAME
flashupdate - update the flash PROMs located on the CPU boards, MaxCPU boards, and system controllers (SC)

SYNOPSIS
flashupdate
 -d domain_indicator -f path [-q] [-v] [-y] [-n]
flashupdate
 -f path [-q] [-v] [-y] [-n] location...
flashupdate
 -h

DESCRIPTION
flashupdate(1M) updates the flash PROMs (FPROMs) in the system controllers (SC), and the FPROMs in a domain's CPU and MaxCPU boards, given the board location.

To update the FPROMs in the system controller, you must log in to the SC you want to update, and specify the FPROM to be updated. (You cannot update one SC from the other SC.) Each FPROM has a specific image file associated with it. Once you have finished updating the SC FPROMs, you must shut down and reset the SC. See Example 6 in the EXAMPLES section. You do not need to reset the SC after updating CPU FPROMs.

Before you can update the CPU FPROMs, SMS must be running and the specified board must be powered on. This is not required for updating the SC FPROMs. If any of the domain's CPU or MaxCPU boards have the virtual keyswitch set to the secure position, the FPROM(s) are not updated.

flashupdate displays both the current FPROM and the flash image file information prior to any updates. You are prompted to update the FPROMs.

Note – No CLIs should be executed on a system board while flashupdate is running on that board. Wait until flashupdate completes before running any SMS commands involving that system board.

OPTIONS
The following options are supported:

-\(d\) domain_indicator
 Specifies the domain using one of the following:

 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

-\(f\) path
 Name of the flash image file.

 The path argument specifies the name of the image file that is used to update the FPROM given in the location argument.
The following operands are supported:

- **location**

 FPROM location.

 The FPROM location consists of `board_loc/FPROM_id`, separated by a forward slash.

 The `FPROM_id` is specified only when you want to update a particular FPROM (FP0 or FP1) on a CPU board and the system controller (SC).

 For example, the location, SB4/FP0, indicates the FPROM 0 on the CPU board in slot 4.

 Sun Fire 15K, Sun Fire 12K

 `SB(0...17), SB(0...8)`

 `IO(0...17), IO(0...8)`

 `SC(0|1), SC(0|1)`

 The following `FPROM_id` forms are accepted:

 `FP(0|1), FP(0|1)`
EXTENDED DESCRIPTION

Group Privileges Required
You must have platform administrator or domain administrator privileges to run this command. If you have platform administrator privileges, all boards can be updated. For domain administrators, only boards that are active in the administrator’s domain or available to the administrator’s domain can be updated.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

EXAMPLE 1 Updating FPROM 0 in the System Controller 0

You must reset the SC after running this command.

```
sc0:sms-user:~> flashupdate -f /opt/SUNWSMS/firmware/SCOBPimg.di SC0/FP0
```

EXAMPLE 2 Updating FPROM 1 in the System Controller 0

You must reset the SC after running this command.

```
sc0:sms-user:~> flashupdate -f /opt/SUNWSMS/firmware/SSCPOST.di SC0/FP1
```

EXAMPLE 3 Updating FPROM 0 in the System Controller 1

You must reset the SC after running this command.

```
sc1:sms-user:~> flashupdate -f /opt/SUNWSMS/firmware/SCOBPimg.di SC1/FP0
```

EXAMPLE 4 Updating Both FPROMs on CPU Board 0

SMS must be running, and the SB0 board must be powered on.

```
sc0:sms-user:~> flashupdate -f /opt/SUNWSMS/hostobjs/sgcpu.flash SB0
Do you wish to update the FPROM (yes/no)? y
sc0:sms-user:~>
```

EXAMPLE 5 Updating FPROMs in Domain A

SMS must be running, and the CPU boards in domain A must be powered on.

```
sc0:sms-user:~> flashupdate -d A -f /opt/SUNWSMS/hostobjs/sgcpu.flash
```
EXAMPLE 6 Resetting the SC After Updating the SC FPROMs

Switch to superuser and shut down the SC.

```bash
sc0:sms-user:> su -
```

```bash
sc0:~> shutdown -y -g0 -i0
```

```
...[system messages]
ok
```

In order for the new firmware to be enabled on your SC, you must now perform a reset of the SC. Type:

```bash
ok reset-all
```

If this does not reset the SC, then you must perform a hard reset.

Physically locate your system controller within your Sun Fire 15K/12K cabinet, and depress the Abort button and then the Reset button on the SC board. Once the SC has been reset you should see OpenBoot PROM messages indicating that the new version of the firmware is loading. After the system successfully returns to the `ok` prompt, verify that the flash update worked by typing:

```bash
ok show-dropins
```

```
Dropins for Flash device: /pci0:1f,0/pci0:1,1/ebus0:1/flashprom@10,400000
------------------------------------------------------------------------
Dropin name  Size  Checksum   Date       Date      Version  Vendor
created     flashed
------------------------------------------------------------------------
SSCOBP-dropins  90     c84e  11/13/2001  11/13/2001   1.2  SUNW,sscobp
....
....
```

Note the version number of the Dropins (1.2).

You can now boot your new installation of the Solaris software. Type:

```bash
ok boot new disk
```
Log in as a platform administrate and type:

```
sc0:sms-user:> flashupdate -f /opt/SUNWSMS/firmware/SCOBPimg.di SC0/FP0
```

Current SC FPROM Information
--
SC at SC0, FPROM 0:
Name: SSCOBP-dropins,
Version: 1.2
Size: 144,
Check Sum: 51278
Date Flashed: 11/13/01
Date Created: 11/13/01

Do you wish to update the SC User FPROM (yes/no)? n

```
sc0:sms-user:>
```

Compare version numbers. If they are the same, flashupdate was successful.

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following files are used by this command:

- `/opt/SUNWSMS/firmware/SCOBPimg.di` Used to update the FPROM 0 on the SC.
- `/opt/SUNWSMS/firmware/SSCPOST.di` Used to update the FPROM 1 on the SC.
- `/opt/SUNWSMS/hostobjs/sgcpu.flash` Used to update the FPROMs on the CPU and MaxCPU boards.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO setkeyswitch(1M)
NAME fomd - failover management daemon

SYNOPSIS fomd

DESCRIPTION

The fomd daemon detects faults on the local and remote SCs and takes the appropriate action (directing a failover/takeover).

The fomd daemon ensures that the necessary synchronization data between the two SCs is current. fomd runs on both the main and the spare SCs.

This daemon is automatically started by ssd(1M). Do not start it manually from the command line.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
The following configuration file is required:

/etc/opt/SUNWSMS/config/fomd.cf Failover daemon configuration file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
setfailover(1M), showfailover(1M)
NAME
frad - FRU access daemon

SYNOPSIS
frad

DESCRIPTION
frad(1M) runs on the system controller (SC) and provides the exclusive mechanism by which SMS processes, including daemons, access any FRU SEEPROM within a given Sun Fire 15K/12K system. frad also provides the platform-dependent interface to the Sun Fire 15K/12K SEEPROMs required by the FRU ID software tools.

This daemon is started automatically by the ssd(1M) daemon. Do not start it manually from the command line.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
ssd(1M)
NAME help - display help information for SMS commands

SYNOPSIS help [command_name]

 help -h

DESCRIPTION If no argument is included, help(1M) displays a list of valid SMS commands along with their correct syntax. Otherwise, the command_name operand displays that command's man page.

OPTIONS The following option is supported:

-h Help. Displays usage descriptions.

OPERANDS The following operand is supported:

command_name Specific command for which help displays the man page.

EXTENDED DESCRIPTION Group Privileges

You must have platform administrator, platform operator, platform service, domain administrator, domain configurator, or superuser privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES EXAMPLE 1 Using Help

Displays all commands.

 sc0:sms-user:~> help
 usage:
 addboard -d domain_indicator [-c function] [-r retry_count [-t timeout]]
 [-q] [-y | -n] location...
 addboard -h

 smsversion -h

EXAMPLE 2 Using Help for a Command
Displays `man(1M)` page.

```bash
sc0:sms-user:> help addtag
```

Maintenance Commands addtag(1M)

NAME
addtag – assign a domain name (tag) to a domain

SYNOPSIS
addtag -d domain_identifier -a new_tag [-q | [-y | -n]

EXIT STATUS
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>>0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
`man(1M)`
NAME

hpost - Sun Fire 15K/12K power-on self-test (POST) control application

SYNOPSIS

hpost

DESCRIPTION

hpost(1M) is responsible for probing, testing, and configuring the hardware of a Sun Fire 15K/12K domain, preparing it for use by the OpenBoot PROM and the Solaris operating environment. Alternate modes prepare a single board for attach to a running domain using dynamic reconfiguration (DR), create hardware state dump files on the system controller (SC), clear certain nonfatal hardware error states, and perform related Sun Fire 15K/12K hardware operations.

Note – This application is intended to be run only by other SMS applications or daemons. Invoking it directly from the command line can cause failures of running domains and is not a supported mode of use.

hpost's clients include:

- dsmd(1M)
- dxs(1M)
- setkeyswitch(1M)

hpost is a client of:

- hwad(1M)
- pcd(1M)

hpost requires and uses flash PROM images and downloadable local POST executables delivered in the SUNWSMS1p package.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMS1p</td>
</tr>
</tbody>
</table>

SEE ALSO

dmd (1m), hwad (1m), pcd (1m), setkeyswitch (1m), dxs (1m)
NAME

kmd - SMS key management daemon

SYNOPSIS

kmd

DESCRIPTION

kmd(1M) manages the IPSec security associations (SAs) necessary for securing the
communication between the system controller (SC) and servers running on a
domain. kmd manages per-socket policies for connections initiated by clients on the
SC to servers on a domain. kmd manages shared policies for connections initiated
by clients on the domain to servers on the SC.

The current default configuration includes authentication policies for the dca(1M)
and dxs(1M) clients on the SC, which connect to the dcs (1M) and cvcd(1M)
servers on a domain.

This daemon is started automatically by the ssd(1M) daemon. Do not start it
manually from the command line.

Note – kmd must be run as a root process to be permitted to use the pf_key
interface to IPSec.

EXIT STATUS

The following exit values are returned:

0 Successful completion.
>0 An error occurred.

FILES

The following file is used to configure kmd:

/etc/opt/SUNWSMS/config/kmd_policy.cf

kmd_policy.cf

configures the shared
and per-socket policies
managed by kmd.

Changes to the policies are made by editing the kmd_policy.cf file on the SC.
Corresponding changes must be made on the affected domain(s).

The format of kmd_policy.cf is a table of eight fields separated by the pipe (|)
character:

dir | d_port | protocol | sa_type | auth_alg | encr_alg | domain | login

The fields are defined as follows:

dir Direction to connect from.
Values: sctodom, domtosc

d_port Destination port.
The default policies in the kmd_policy.cf file are as follows:

```
sctodom|665|tcp|ah|md5|none| |sms-dca|
sctodom|442|tcp|ah|md5|none| |sms-dxs|
```

The configuration of policies on a domain is the standard IPSec configuration file (/etc/inet/ipsecconf.init).

The default policies are shown below.

```
{ dport  sun-dr } permit { auth_alg md5 }
{ sport sun-dr } apply { auth_alg md5 sa unique }
{ dport cvc_hostd } permit { auth_alg md5 }
{ sport cvc_hostd } apply { auth_alg md5 sa unique }
```

- **protocol**: Protocol for the socket.
 - Values: tcp, udp

- **sa_type**: Security association type.
 - Values: ah, esp

- **auth_alg**: Authentication algorithm.
 - Values: none, md5, sha1

- **encr_alg**: Encryption algorithm.
 - Values: none, des, 3des

- **domain**: Domain ID.
 - Values: integers 0–17 or a [space].
 - A space for the domain ID defines a policy that applies to all domains. A policy for a specific domain overrides a policy that applied to all domains.

- **login**: Login name.
 - Values: Any valid login name.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSr</td>
</tr>
<tr>
<td></td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

ssd(1M), sckmd(1M), ipsecconf(1M), pf_key(1M), ipsec(1M), dca(1M), dxs(1M), dcs(1M), cvcd(1M)
NAME

hwad - hardware access daemon

SYNOPSIS

hwad

DESCRIPTION

hwad(1M) provides the exclusive mechanism by which SMS processes, including daemons, access, control, monitor, and configure the hardware.

hwad runs in either main or spare mode and asks the failover daemon (fomd(1M)) for the role that the system controller (SC) should play when it comes up.

At start-up, hwad opens all the drivers (sbbc, echip, gchip, and console bus) and uses the ioctl calls to interface with them. It reads the contents of the device presence register to identify the boards present in the system, and makes them accessible to the clients.

IOSRAM and Mbox interfaces are also provided by hwad. This helps communication between the SC and the domain. For dynamic reconfiguration (DR), hwad directs communication to the new IOSRAM (tunnel switch). For darb interrupts, hwad notifies the dsmd(1M) if there is a dstop or rstop. It also notifies related SMS daemon(s), depending on the type of Mbox interrupt that occurs.

hwad detects and recovers console bus and jtag errors.

This daemon is started automatically by the ssd(1M) daemon. Do not start it manually from the command line.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSOp</td>
</tr>
</tbody>
</table>

SEE ALSO

dsmd (1M), ssd (1M)
 initcmdsync - command synchronization command

NAME

SYNOPSIS

```
cancelcmdsync  cmdsync_descriptor

initcmdsync  script_name  [parameters]

savecmdsync  -M  identifier  cmdsync_descriptor

[cancel|init|save]cmdsync  -h
```

DESCRIPTION

The command synchronization commands work together to control the recovery of user-defined scripts interrupted by a system controller (SC) failover. Insert the following commands in user-defined scripts to enable command synchronization:

- **initcmdsync**
 Creates a command synchronization descriptor that identifies the script to be recovered.

 This descriptor is placed on a command synchronization list that identifies the scripts and commands to be restarted on the new main SC after a failover.

- **savecmdsync**
 Adds a marker that identifies a location in the script from which processing can be resumed after a failover.

- **cancelcmdsync**
 Removes a command synchronization descriptor from the command synchronization list. This ensures that the script is run only once and not after subsequent failovers.

 Be sure that all exit paths of a script have a cancelcmdsync sequence to remove the descriptor from the command synchronization list. If you do not remove the descriptor and a failover occurs, the script is rerun on the new main SC.

Note – Both an **initcmdsync** and a **cancelcmdsync** sequence must be contained within a script to enable command synchronization. The use of the **savecmdsync** command is optional and marks only specific points in a script from which processing can be resumed. If specific restart points are not necessary, consider using **runcmdsync(1M)** instead.

OPTIONS

The following options are supported:

- **cmdsync_descriptor**
 Specifies the command synchronization descriptor that identifies the user-defined script. This descriptor is the standard output value returned by the **initcmdsync** command.
EXTENDED
DESCRIPTION

The command synchronization commands are inserted at certain logical points within a user-defined script.
For instance, a Korn shell script might be structured as follows:

```bash
# MAIN CODE STARTS HERE
# Be sure to use a cleanup procedure to handle any
# interrupts.
# Use the cancelcmdsync to remove the script from the
# command synchronization list. Otherwise, the command
# will get restarted on the new main SC.

clean_up () {
    cancelcmdsync $desc
    exit
}

# Declare the clean_up function to capture system signals
# and cleanup.
trap "clean_up" INT HUP TERM QUIT PWR URG
goto_label=1

# Process the arguments, capturing the -M marker point
# if provided
for arg in $*; do
    case $arg in
        -M )
            goto_label=$arg;
            .
            .
            esac
    esac
done

# Place this script and all its parameters in the command
# synchronization list, which indicates the commands to
# be restarted after an SC failover.

# NOTE: The script must be executable by the user defined
# in fomd.cf and reside in the same directory on both the
# main and the spare SC.
```
If the command is not part of the defined PATH for
the user, the absolute filename must be passed with the
initcmdsync command

initcmdsync script_name parameters
The marker point is stored in the goto_label variable.
Keep executing this script until all cases have been
processed or an error is detected.
#
while {{ $goto_label != 0 }} ; do
 # Each case should represent a synchronization point
 # in the script.
 case $goto_label in
 # Step 1: Do something
 1) do_something
 .
 .
 # Execute the savecmdsync command with the script's
 # descriptor and a unique marker to save the position.
 # If a failover occurs here, the commands represented in
 # the next goto_label (2) will be resumed.
 savecmdsync -M $(($goto_label + 1)) $desc
 goto_label=$(($goto_label + 1))
 ;;
 # Step 2: Do more things
 2) do_more_things
 .
 .
 savecmdsync -M $(($goto_label + 1)) $desc
 goto_label=$(($goto_label + 1))
 ;;
 # Step 3: Finish the last step and set the goto_label to 0
 # so that the script ends.
 3) finish_last_step
 .
 .
 goto_label=0
 ;;
 esac
done
END OF MAIN CODE
Remember to execute cancelcmdsync to remove the script from the
command synchronization list. Otherwise, the command will be restarted
after the failover.

cancelcmdsync $desc
Group Privileges Required

You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

Note – The standard output for initcmdsync contains the command synchronization descriptor. Also, when failover is disabled (after a failover or in a single SC environment), scripts that contain synchronization commands generate error messages to the platform log file and return nonzero exit codes. These messages can be ignored.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

runcmdsinc(1M), showcmdsync(1M)
NAME
mand - management network daemon

SYNOPSIS
mand

DESCRIPTION
mand(1M) supports the management network (MAN) drivers and the failover management daemon (fomd(1M)) by providing the required network configuration. This configuration information includes host names, IP addresses, and netmasks. mand is also responsible for initializing and updating these respective fields in the platform configuration database (pcd(1M)) daemon as well as the in MAN driver on the system controller (SC).

mand is an SMS daemon running on both the main and spare SCs. Its role is set up by fomd.

This daemon is started automatically by the ssd(1M) daemon. Do not start it manually from the command line.

EXTENDED DESCRIPTION
SC-to-Domain and Domain-to-SC Internal Network (I1) data includes:
- Network mask
- SC host name
- SC IP address
- Domain[A–R] host name
- Domain[A–R] IP address

SC-to-SC Internal Network (I2) data includes:
- Network mask
- SC 0 host name
- SC 0 IP address
- SC 1 host name
- SC 1 IP address

SC External Community (C) data includes:
- Community Failover IP address
- Community physical interface name

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.
FILES
The following configuration file is required:

/etc/opt/SUNWSMS/config/MAN.cf This file includes the domain-to-SC, the SC-to-domain, and the SC-to-SC management network data as well as the community data for external access to the SC.

Do not manually modify the MAN.cf file.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO fomd(1M), pcd(1M), smsconfig(1M), ssd(1M)
NAME
mld - message-logging daemon

SYNOPSIS
mld [-f config_file] [-t]

DESCRIPTION
mld(1M) provides logging services to all SMS daemons and processes. mld is the first SMS daemon started by ssd(1M) in order to capture the output of all other SMS daemons and processes during their startup phases.

Platform log messages are stored in:
/var/opt/SUNWSMS/adm/platform/messages
in the following format:

time host program [pid]:[msg_id hrtime_t level file_line] message

file_line is optional and appears only in verbose mode.
For example:

Feb 2 09:16:10 2002 sun15 mld[904]:[209 2345678901 INFO MLDLOGGER.cc 141] Platform messages file created.

Domain log messages are stored in
/var/opt/SUNWSMS/adm/domain_id/messages
in the same format as platform messages, with additional domain_id|domain_tag information following the pid:

time host program [pid]domain_id|domain_tag:[msg_id hrtime_t level file_line] message

For example:

Feb 2 09:18:55 2002 sun15 mld[904]:B(engB):
[314 2345678902 ERR LogManager.cc 424] message queue limit exceeded, messages will be dropped.

Domain syslog messages are stored in
/var/opt/SUNWSMS/adm/domain_id/syslog
in the same format in which they are received.

OPTIONS
The following options are supported:

- f config_file Provides an absolute path to an alternative remote-message-reception configuration file.
- t Disables remote message reception (for example, domain syslog messages).
EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

FILES

The following file is used by this command:

/var/opt/SUNWSMS/adm/.logger Message logging daemon configuration file.

This file supports three configuration directives:

FILE Specifies where to send messages. The default is msgdaemon and should not be changed.

LEVEL Specifies the minimum level necessary for mld to log a message. The supported levels are: debug, info, notice, warning, err, crit, alert, and emerg. The default is notice.

MODE Specifies the verbosity of the messages. Two modes are available: verbose and terse. The default is verbose.

Note – All directive arguments are not case sensitive.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

ssd(1M)
NAME moveboard - move a board from one domain to another

SYNOPSIS moveboard [-d domain_indicator [-c function] [-r retry_count [-t timeout]] [-q] [-f] [-y] [-n] location

moveboard -h

DESCRIPTION moveboard(1M) first attempts to unconfigure, disconnect, and unassign location from the domain it is currently assigned to and possibly active in, and then proceeds to assign, connect, and configure location to the domain domain_id or domain_tag.

The -c function command option is used to specify the transition of the board from the current configuration state to a new configuration state. Configuration states are assign, connect, and configure. If the -c option is not specified, the default expected configuration state is configure.

Note – moveboard performs tasks synchronously and does not return control to the user until the command is complete. If the board is not powered on or tested and a -c connect|configure option is specified, then the command powers on the board and tests it.

Note – If the specified board is in the automatic system recovery (ASR) blacklist file, moveboard displays an error message when assigning a board and then continues. When using the connect or configure functions, moveboard displays an error message and then exits.

Note – If the moveboard command fails, a board does not return to its original state. A dxs or dca error message is logged to the domain. If the error is recoverable, you can retry the command. If it is unrecoverable, you need to reboot the domain in order to use that board.

OPTIONS The following options are supported.

-c function Valid function values are assign, connect, and configure. One of these values is used to control the configuration state transition.
The possible transition states and their meanings are as follows:

assign
Unconfigures the board from the Solaris operating environment running on the domain. Solaris software stops using any of the hardware resources on the board. (See `deleteboard -c unconfigure`.) Disconnects the board. Transitions the board into the `disconnected|unconfigured` state. (See `deleteboard -c disconnect`.) Unassigns the board from the current domain. (See `deleteboard -c unassign`.) Moves the board out of the logical domain by changing its state to `available`. Assigns the board to the new logical domain. This is a board state in which the domain has sole access to the board; however, the board is not active. Once assigned, the board can be connected or configured into the domain with the use of either `setkeyswhit on` or the `connect` or `configure` options.
connect

Unconfigures the board from the Solaris operating environment running on the domain. Solaris software stops using any of the hardware resources on the board. (See deleteboard -c unconfigure.)

Disconnects the board. Transitions the board into the disconnected|unconfigured state. (See deleteboard -c disconnect.)

Unassigns the board from the current domain. (See deleteboard -c unassign.)

Moves the board out of the logical domain by changing its state to available. Assigns the board to the new logical domain. (See assign earlier in this section; see also addboard(1M) -c assign.)

Transitions the board into the connected|unconfigured state. In this state the board is assigned to the logical domain and connected (active). This state allows the normal system access to hardware resources on the board. The hardware resources of the board are not represented by the normal Solaris software data structures, however, and cannot be used by the Solaris operating environment. Allowed operations on the board are limited to configuration administration operations. (See also addboard -c connect.) This is an intermediate state and does not have any standalone implementation at this time.
configure

Unconfigures the board from the Solaris operating environment running on the domain. Solaris software stops using any of the hardware resources on the board. (See deleteboard -c unconfigure.) Disconnects the board. Transitions the board into the disconnected|unconfigured state. (See deleteboard -c disconnect.) Unassigns the board from the current domain. (See deleteboard -c unassign.) Moves the board out of the logical domain by changing its state to available. Assigns the board to the new logical domain. (See assign earlier in this section; see also addboard -c assign.) Transitions the board into the connected|unconfigured state. In this state, the board is assigned to the logical domain and connected (active). This state allows the normal system access to hardware resources on the board. The hardware resources of the board are not represented by the normal Solaris software data structures, however, and cannot be used by the Solaris operating environment. Allowed operations on the board are limited to configuration administration operations. (See connect earlier in this section; see also addboard -c connect.) Transitions the board into the connected|configured state. In this state, the board is not only assigned and connected to a domain, but also configured into the Solaris operating environment. The hardware resources on the board can be used by Solaris software. (See also addboard -c configure.)

-d domain_indicator

Specifies the domain using one of the following:

domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

domain_tag – Name assigned to a domain using addtag(1M).

This is the domain to which the board is being moved.
OPERANDS

The following operands are supported:

- **location**
 Board location separated by a space. Multiple location arguments are not permitted.

 The following location forms are accepted:

 Sun Fire 15K, Sun Fire 12K

 SB(0...17), SB(0...8)

 IO(0...17), IO(0...8)

- **-f**
 Forces the specified action to occur. Typically, this is a hardware-dependent override of a safety feature. Forcing a state change operation can allow use of the hardware resources of an occupant that is not in the ok or unknown conditions, at the discretion of any hardware-dependent safety checks.

- **-h**
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

- **-n**
 Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

- **-q**
 Quiet. Suppresses all messages to stdout including prompts.

 When used alone -q defaults to the -n option for all prompts.

 When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.

- **-r retry_count**
 These command arguments enable the user to specify retries in case of failures encountered during state transitions. The -r retry_count option can be used alone and indicates the number of times the configuration state change request should be retried by the domain. The -t timeout option cannot be used without the -r retry_count option and specifies the number of seconds that the domain should wait before the next retry is made. If the -t timeout is not specified, the default timeout is zero, meaning that the request is retried immediately.

- **-t timeout**

- **-y**
 Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.
EXTENDED DESCRIPTION

Group Privileges Required

Users with platform administrator privileges can perform the `-c assign` option if the board is in the assigned state (not active in a running domain) of the domain from which the board is being removed.

Users with domain administrator or configurator privileges can execute this command, but only on their respective domains. You must belong to both domain groups affected, and the board must be in the available component list of both domains.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

For all examples, if the board is currently active in another domain, you must have domain administrator privileges for that domain. In addition, you must have platform administrator privileges or the board must be in the domain available component list in order for it to be unassigned from its current domain.

You must have platform privileges or the board must be in the domain's available component list for you to assign the system board to a new domain. In addition, the user must have domain privileges in the new domain in order to connect or configure the board into the domain.

EXAMPLE 1 Assigning a CPU Board at SB4 to Domain A

```
sc0:~> moveboard -d A -c assign SB4
SB4 assigned to domain: A
```

EXAMPLE 2 Assigning a Blacklisted CPU Board at SB4 to Domain A

```
sc0:~> moveboard -d A -c assign SB4
SB4 assigned to domain: A
Warning: SB4 is blacklisted.
You will not be able to connect or configure it.
```

EXAMPLE 3 Configuring an IO Board Into Domain A
Note: The default function is set to configure.

```bash
sc0:sms-user:~> moveboard -d A IO2
IO2 unassigned from domain: B
IO2 assigned to domain: A
assign IO2
assign IO2 done
poweron IO2
poweron IO2 done
test IO2
test IO2 done
connect IO2
connect IO2 done
configure IO2
configure IO2 done
notify online /devices/pci@5d,700000
notify online /devices/pci@5d,600000
notify online /devices/pci@5c,700000
notify online /devices/pci@5c,600000
notify add capacity IO2 done
```

EXAMPLE 4 Connecting an IO Board at IO7 to Domain R

You must have platform privileges, or the board must be in the domain available component list.

```bash
sc0:sms-user:~> moveboard -d R -c connect IO7
```

EXAMPLE 5 Connecting a Blacklisted Board to Domain C

```bash
sc0:sms-user:~> moveboard -d C -c connect SB0
SB0 is blacklisted. Exiting.
```

EXIT STATUS

The following exit values are returned:

- **0**: Successful completion.
- **1**: No acknowledge.
- **2**: Not supported.
- **3**: Operation not supported.
- **4**: Invalid privileges.
- **5**: Busy.
- **6**: System busy.
- **7**: Data error.
- **8**: Library error.
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>No library.</td>
</tr>
<tr>
<td>10</td>
<td>Insufficient condition.</td>
</tr>
<tr>
<td>11</td>
<td>Invalid.</td>
</tr>
<tr>
<td>12</td>
<td>Error.</td>
</tr>
<tr>
<td>13</td>
<td>A PID does not exist.</td>
</tr>
<tr>
<td>14</td>
<td>Invalid attribute.</td>
</tr>
<tr>
<td>30</td>
<td>Invalid board ID type.</td>
</tr>
<tr>
<td>31</td>
<td>Invalid permissions.</td>
</tr>
<tr>
<td>32</td>
<td>Assigned to another domain.</td>
</tr>
<tr>
<td>33</td>
<td>Unable to get permissions.</td>
</tr>
<tr>
<td>34</td>
<td>Unable to get domain board info.</td>
</tr>
<tr>
<td>35</td>
<td>Unable to get active board list.</td>
</tr>
<tr>
<td>36</td>
<td>Unable to get assigned board list.</td>
</tr>
<tr>
<td>38</td>
<td>Solaris not running.</td>
</tr>
<tr>
<td>39</td>
<td>Unable to assign/unassign domain state.</td>
</tr>
<tr>
<td>40</td>
<td>Unable to get domain permissions.</td>
</tr>
<tr>
<td>41</td>
<td>Unable to get platform permissions.</td>
</tr>
<tr>
<td>51</td>
<td>Invalid domain.</td>
</tr>
<tr>
<td>52</td>
<td>Invalid privileges.</td>
</tr>
<tr>
<td>55</td>
<td>Library error.</td>
</tr>
<tr>
<td>56</td>
<td>DR command syntax error.</td>
</tr>
<tr>
<td>58</td>
<td>Internal error.</td>
</tr>
<tr>
<td>59</td>
<td>Component blacklisted.</td>
</tr>
<tr>
<td>60</td>
<td>Unable to get ASR blacklist.</td>
</tr>
<tr>
<td>61</td>
<td>Unable to get domain blacklist.</td>
</tr>
<tr>
<td>62</td>
<td>Unable to get platform blacklist.</td>
</tr>
<tr>
<td>64</td>
<td>Activity check error.</td>
</tr>
<tr>
<td>65</td>
<td>Unassign check error.</td>
</tr>
<tr>
<td>66</td>
<td>Unassign, unrestricted check error.</td>
</tr>
<tr>
<td>67</td>
<td>Domain permissions check error.</td>
</tr>
</tbody>
</table>
DR operation failed.

FILES

The following files are used by this command:

<table>
<thead>
<tr>
<th>Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/opt/SUNWSMS/config/asr/blacklist</td>
<td>List of components excluded by esmd.</td>
</tr>
<tr>
<td>/etc/opt/SUNWSMS/config/platform/blacklist</td>
<td>List of platform components excluded.</td>
</tr>
<tr>
<td>/etc/opt/SUNWSMS/config/domain_id/blacklist</td>
<td>List of domain components excluded.</td>
</tr>
</tbody>
</table>

Note – This file is created and used internally and should not be edited manually.

To remove a component from the ASR blacklist file, use `enablecomponent(1M)`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

`addtag(1M), addboard(1M), deleteboard(1M), enablecomponent(1M), esmd(1M), showcomponent(1M)`
NAME
 osd - OpenBoot PROM server daemon

SYNOPSIS
 osd

DESCRIPTION
 osd(1M) provides software support for OpenBoot PROM. It provides an SMS event-based interface to setkeyswitch(1M) for laying out IDPROM and REBOOTARGS information prior to domain bring up.

 osd also receives mailbox commands from OpenBoot PROM. These mailbox commands are acted upon, and a result is returned to OpenBoot PROM. Commands include get-time-of-day, set-time-of-day, get-idprom, get-nvram-data, set-nvram-data, get-reboot-args, set-reboot-args, and do-tunnel-switch. One instance of osd on the system controller (SC) is shared between all domains.

 This daemon is automatically started by ssd(1M). Do not start it manually from the command line.

EXTENDED
DESCRIPTION

Group Privileges
 Required

osd is run as the sms-osd user.

EXIT STATUS
 The following exit values are returned:

 0 Successful completion.
 >0 An error occurred.

ATTRIBUTES
 See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
 setkeyswitch(1M)
NAME
pcd - platform configuration database daemon

SYNOPSIS
pcd

DESCRIPTION
pcd(1M) provides and manages controlled access to platform, domain, and system board configuration data. It is an SMS daemon running on the system controller (SC) and a key component of SMS configuration. All system management applications access the database information through the pcd daemon.

In addition to managing platform configuration data, the pcd notifies registered system management applications when pertinent database changes have occurred. These notifications are registered as events and are transparent to the user.

This daemon is started automatically by the ssd(1M) daemon. Do not start it manually from the command line.

EXTENDED DESCRIPTION

Platform data includes:

- Platform type
- Platform name
- Rack ID
- Cacheable Memory
- Address Slice
- Map System clock frequency
- System clock type
- SC IP address SC0 to SC1 IP address
- SC1 to SC0 IP address
- SC to SC IP netmask

Domain data includes:

- Domain ID/Tag
- OS version (not used)
- OS type (not used)
- Available component list
- Assigned board list
- Active board list
- Golden IOSRAM I/O board
- Virtual keyswitch setting
- Active Ethernet I/O board
- Domain creation time
- Domain dump state
- Domain bring up priority
- IP host address Host name
- Host netmask
- Host broadcast address
System board data includes:

- Expander Position
- Slot position
- Board type
- Board state
- Domain assignment of the board
- Available component list state
- Board test status
- Board test level
- Memory cleared state

SIGNS

SIGHUP

Rereads the database files and recaches information.

FILES

Note – Never modify these files by hand.

The following files are supported:

- `/var/opt/SUNWSMS/.pcd/platform_info`
 - Contains platform database information.

- `/var/opt/SUNWSMS/.pcd/domain_info`
 - Contains domain database information.

- `/var/opt/SUNWSMS/.pcd/sysboard_info`
 - Contains system board database information

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

`ssd(1M)`
NAME poweroff - control power off

SYNOPSIS poweroff [-q] [-y] [-n] [location]

poweroff -h

DESCRIPTION poweroff(1M) powers off the specified dual 48V power supply, fan tray, or board. If no arguments are specified and you have platform administrator privileges, the entire system, with the exception of the bulk power supplies, the fan trays, and the spare system controller (SC), powers off. If active domains are utilizing the component that is going to be powered off, a listing of those domains and an "Are you sure?" prompt is given by default.

Note – When you power off a bulk power supply poweroff trips the circuit breaker. In that case the poweron command alone can not restore power. You must manually flip the breaker back on and then run poweron.

If you do not have platform administrator privileges, the [location] command operand must be specified and the board must be assigned to a domain for which you have domain administrator or configurator privileges.

Note – This command has no effect on the position of the virtual keyswitch.

OPTIONS The following options are supported:

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q Quiet. Suppresses all messages to stdout including prompts.

When used alone -q defaults to the -n option for all prompts.

When used with either the -y or the -n option, -q suppresses all user prompts, and automatically answers with either 'y' or 'n' based on the option chosen.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.
The following operands are supported:

<table>
<thead>
<tr>
<th>OPERANDS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Component location separated by a space. Multiple location forms are not permitted.</td>
</tr>
</tbody>
</table>

The following location forms are accepted:

- Sun Fire 15K, Sun Fire 12K
- SB(0...17), SB(0...8)
- IO(0...17), IO(0...8)
- CS(0|1), CS(0|1)
- FT(0...7), FT(0...7)
- PS(0...5), PS(0...5)
- EX(0...17), EX (0...8)
- SC(0|1), SC(0|1) [Only the spare SC can be powered off.]

You must have either platform administrator or domain administrator/configurator privileges to run this command.

If you have domain privileges, you also specify the [location] operand, and the [location] must be a domain configuration unit (DCU) that is assigned to a domain for which you have domain privileges.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLE 1 Powering Off a Power Supply

In this example poweroff prompts you for a reply.

```
sc0:sms-user:~> poweroff ps5
This will trip the breakers on PS at PS5, which must be turned on manually!
Are you sure you want to continue to power off this component? (yes/no)? y
```

EXAMPLE 2 Powering Off a CPU Board at Expander Position 0
In this example `poweroff` forces the board off by suppressing any `stdout` messages and answering yes to all prompts.

```
sc0:sm-user:~:> poweroff -qy SB0
```

EXIT STATUS
The following exit values are returned:

- 0: Successful completion.
- >0: An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
`poweron`(1M)
NAME
poweron - control power on

SYNOPSIS
poweron [-q] [-y] [-n] [location]

poweron -h

DESCRIPTION
poweron(1M) powers on the specified dual 48V power supply, fan tray, or board. If no arguments are specified and you have platform administrator privileges, the entire system is powered on (provided that no additional 48V power supply modules need to be powered on to support the new power requirements).

Note – When you power off a bulk power supply poweroff trips the circuit breaker. In that case the poweron command alone cannot restore power. You must manually flip the breaker back on, and then run poweron.

If you do not have platform administrator privileges, the location command operand must be specified and the board must be assigned to a domain for which you have domain administrator or configurator privileges. If sufficient power and cooling is not available for the requested board, the poweron operation fails. A minimum of five 48V power supply modules (4 KW modules) are required to power a fully configured system. Thus, with N+1 redundancy, six power supply modules are used. If powering on a component requires another component to be powered on, such as a board requiring a 48V power supply module, the poweron request fails.

If a specified component is in the automatic system recovery (ASR) blacklist file, an error message is displayed. If you have platform administrator privileges you are prompted to continue. If you do not, the operation is terminated and an error message is displayed.

OPTIONS
The following options are supported.

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q Quiet. Suppresses all messages to stdout including prompts.

When used alone -q defaults to the -n option for all prompts.

When used with either the -y or the -n option, -q suppresses all user prompts, and automatically answers with either 'y' or 'n' based on the option chosen.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.
The following operands are supported:

- **location**: Component location separated by a space. Multiple location forms are not permitted.

The following location forms are accepted:

- Sun Fire 15K, Sun Fire 12K
- SB(0...17), SB(0...8)
- IO(0...17), IO(0...8)
- CS(0|1), CS(0|1)
- FT(0...7), FT(0...7)
- PS(0...5), PS(0...5)
- EX(0...17), EX (0...8)

Group Privileges Required

You must have either platform administrator or domain administrator/configurator privileges to run this command.

If you have domain privileges, you must also specify the location operand and the location must be a domain configuration unit (DCU) that is assigned to a domain for which you have domain privileges.

You must have platform administrator privileges in order to power on a board listed in the ASR blacklist file.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1
Powering On the Dual 48V Power Supply

The power supply is located on the front side in the 0 bank position.

```
sc0:sms-user:~$ poweron PS0
```

EXAMPLE 2
Powering On the Dual 48V Power Supply When Both AC Inputs are Bad

When the AC inputs are bad you will receive a warning.

```
sc0:sms-user:~$ poweron PS0
```

Both AC inputs to PS0 are bad, did you remember to turn on the breakers?
EXAMPLE 3 Powering On a CPU in the ASR Blacklist File

You must have platform administrator privileges. Otherwise, `poweron` terminates and displays an error message.

```
sc0:sms-user:> poweron SB0
Component SB0 is in the ASR blacklist.
Are you sure you want to continue the power ON (yes/no)? Y
```

EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

FILES

The following file is used by this command:

```
/etc/opt/SUNWSMS/config/asr/blacklist
```

List of components excluded by esmd.

Note – This file is created and used internally and should *not* be edited manually.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

`esmd(1M), poweroff(1M)`
NAME
rcfgadm - remote configuration administration

SYNOPSIS
[-r retry_count] [-T timeout] ap_id...
rcfgadm -d domain_indicator [-f] [-y] [-n] [-v] [-o hardware_options] -x hardware_function ap_id...
rcfgadm -d domain_indicator [-v] [-a] [-s listing_options] [-o hardware_options]
[-l [ap_id | ap_type]...]
rcfgadm -d domain_indicator [-v] [-o hardware_options] -t ap_id...
rcfgadm -d domain_indicator [-v] [-o hardware_options] -h [ap_id | ap_type]

DESCRIPTION
rcfgadm(1M) provides remote configuration administration operations on dynamically reconfigurable hardware resources. The rcfgadm command allows configuration administration operations on the specified domain from the system controller. These operations include displaying status (-l), initiating testing (-t), invoking configuration state changes (-c), invoking hardware specific functions (-x), and obtaining configuration administration help messages (-h).

rcfgadm performs configuration administration at attachment points, which are places where system software supports dynamic reconfiguration of hardware resources during continued operation of Solaris software.

Configuration administration distinguishes between hardware resources that are physically present in the machine and hardware resources that are configured and visible to the Solaris environment. The nature of configuration administration functions are hardware-specific and rcfgadm performs configuration by calling hardware-specific libraries.

Configuration administration operates on an attachment point. Hardware resources located at attachment points might or might not be physically replaceable during system operation but are dynamically reconfigurable by way of the configuration administration interfaces.

An attachment point defines two unique elements, which are distinct from the hardware resources that exist beyond the attachment point. The two elements of an attachment point are a receptacle and an occupant. Physical insertion or removal of hardware resources occurs at an attachment point and results in a receptacle gaining or losing an occupant. Configuration administration supports the physical insertion and removal operations, as well as other configuration administration functions at an attachment point.

Attachment points have associated state and condition information. The configuration administration interfaces provide control for transitioning attachment point states. A receptacle can exist in one of three states: empty, disconnected, or
connected. An occupant can exist in one of two states: configured or unconfigured.

A receptacle can provide the empty state, which is the normal state of a receptacle when the attachment point has no occupants. A receptacle can also provide the disconnected state if it has the capability of isolating its occupants from normal system access. Typically this state is used for various hardware-specific testing prior to bringing the occupant's resources into full use by the system, or as a step in preparing an occupant for physical removal or reconfiguration. A receptacle in the disconnected state isolates its occupant from the system as much as its hardware allows, but can provide access for testing and setup. A receptacle must provide the connected state, which allows normal access to hardware resources contained on any occupants. The connected state is the normal state of a receptacle that contains an occupant and that is not currently undergoing configuration administration operations.

The hardware resources contained on an occupant in the unconfigured state are not represented by normal Solaris software data structures and are thus not available for use by the Solaris operating environment. Operations allowed on an unconfigured occupant are limited to configuration administration operations. The hardware resources of an occupant in the configured state are represented by normal Solaris software data structures, and thus some or all of those hardware resources can be in use by the Solaris operating environment. All occupants provide both the configured and unconfigured states.

An attachment point can be in one of five conditions: unknown, ok, failing, failed, or unusable. An attachment point can enter the system in any condition, depending upon results of power-on tests and nonvolatile record keeping.

An attachment point with an occupant in the configured state is in one of four conditions: unknown, ok, failing, or failed. If the condition is not failing or failed, an attachment point can change to failing during the course of operation if a hardware-dependent recoverable error threshold is exceeded. If the condition is not failed, an attachment point can change to failed during operation as a result of an unrecoverable error.

An attachment point with an occupant in the unconfigured state can be in any of the defined conditions. The condition of an attachment point with an unconfigured occupant can decay from ok to unknown after a system-dependent time threshold. Initiating a test function changes the attachment point condition to ok, failing, or failed, depending on the outcome of the test. An attachment point that does not provide a test function can leave the attachment point in the unknown condition. If a test is interrupted, the attachment point condition can be set to the previous condition, to unknown, or to failed. An attachment point in the unknown, ok, failing, or failed conditions can be retested.

An attachment point can exist in the unusable condition for a variety of reasons, such as inadequate power or cooling for the receptacle, an occupant that is
unidentifiable, unsupported, incorrectly configured, and so on. An attachment point in the unusable condition can never be used by the system. It typically remains in this condition until the physical cause is remedied.

An attachment point also maintains busy information that indicates when a state change is in progress or the condition is being reevaluated.

Designate attachment points using hardware-specific identifiers (ap_ids) that are related to the type and location of the attachment points in the system device hierarchy. An ap_id cannot be ambiguous; it must identify a single attachment point. Two types of ap_id specifications are supported: physical and logical.

A physical ap_id contains a fully specified path name, while a logical ap_id contains a shorthand notation that identifies an attachment point in a more user-friendly way.

For example, an attachment point representing system board 6 would have a physical ap_id of /devices/pseudo/dr@0:SB6, while the logical ap_id would be SB6.

Attachment points can also be created dynamically. A dynamic attachment point is named relative to a base attachment point that is present in the system. ap_ids for dynamic attachment points consist of a base component followed by two colons (::) and a dynamic component. The base component is the base attachment point ap_id. The dynamic component is hardware-specific and is generated by the corresponding hardware-specific library.

For example, consider a base attachment point, which represents a system board, with the physical ap_id /devices/pseudo/dr@0:SB16 and logical ap_id SB16.

A CPU attached to this system board could be represented by a dynamic attachment point with logical ap_id SB16::cpu2, where SB16 is the base component and cpu2 is the hardware-specific dynamic component. Similarly, the physical ap_id for this dynamic attachment point would be:

/devices/pseudo/dr@0:SB16::cpu2.

An ap_type is a partial form of a logical ap_id that can be ambiguous and not specify a particular attachment point. An ap_type is a substring of the portion of the logical ap_id, up to but not including, the colon (:) separator. For example, an ap_type of pci would show all attachment points whose logical ap_ids begin with pci.

The use of ap_types is discouraged. The new select suboption to the -s option provides a more general and flexible mechanism for selecting attachment points. See OPTIONS.

rcfgadm interacts primarily with hardware-dependent functions contained in hardware-specific libraries, and thus its behavior is hardware-dependent.
For each configuration administration operation, a service interruption can be required. If the requested operation requires a noticeable service interruption to interactive users, confirmation is requested before the operation is started.

A prompt is displayed on the standard error output for confirmation on the standard input. Confirmation can be overridden with the \(-y\) or \(-n\) option to always answer \texttt{yes} or \texttt{no}, respectively. Hardware-specific options, such as \texttt{test level}, are supplied as suboptions using the \(-o\) option.

Operations that change the state of the system configuration are audited by the system log daemon \texttt{syslogd(1M)}.

The arguments for this command conform to the \texttt{getopt(3C)} and \texttt{getsubopt(3C)} syntax conventions.

Refer to the \textit{Sun Fire 15K/12K Dynamic Reconfiguration User Guide} for more information.

OPTIONS

The following options are supported.

\textbf{Note} – If the \texttt{rcfgadm} command fails, a board does not return to its original state. A \texttt{dxs} or \texttt{dca} error message is logged to the domain. If the error is recoverable, you can retry the command. If it is unrecoverable, you need to reboot the domain in order to use that board.

- \texttt{-a} \hspace{1cm} Specifies that the \texttt{-l} option must also list dynamic attachment points.

- \texttt{-c function} \hspace{1cm} Performs the state change function on the attachment point specified by \texttt{ap_id}.

 Specify function as \texttt{disconnect}, \texttt{connect}, \texttt{configure}, or \texttt{unconfigure}. These functions cause state transitions at the attachment point by calling hardware-specific library routines.
The possible transition states and their meanings are as follows:

- **disconnect**
 Change the receptacle state to disconnected.

 If the occupant state is configured, the disconnect function first attempts to unconfigure the occupant. The disconnect function powers the board off by default. The board is ready to be removed from the slot at that point. The `-nopoweroff` option specifies skipping the power off step, leaving the board powered on. The board is left assigned to the domain by default. The `-u unassign` option instructs the domain to give up the ownership of the board once the board is disconnected. Once the board has been unassigned, it may no longer be accessible to `cfgadm` because another domain might have assigned the board to itself.

- **connect**
 Performs hardware-specific operations to put the receptacle into the connected state, which allows an occupant to operate normally through the receptacle.

- **configure**
 Performs hardware-specific operations that allow an occupant's hardware resources to be used by Solaris software. Occupants that are configured are part of the system configuration and are available for manipulation by Solaris software device manipulation maintenance commands (for example, `psradm(1M)`, `mount(1M)`, and `ifconfig(1M)`).

- **unconfigure**
 Performs hardware-specific operations that logically remove an occupant's hardware resources from the system. The occupant must currently be configured, and its hardware resources must not be in use by the Solaris operating environment.
State transition functions can fail due to the condition of the attachment point or other hardware-dependent considerations. All state change functions in the direction of adding resources (connect and configure) are passed on to the hardware-specific library when the attachment point is in the ok or unknown condition. All other conditions require the use of the force (-f) option to allow these functions to be passed on to the hardware-specific library. Attachment point condition does not prevent a hardware-specific library being called for the removal (disconnect and unconfigure) of hardware resources from the system. Hardware-specific libraries can reject state change functions if the attachment point is in the unknown condition.

The condition of an attachment point is not necessarily changed by the state change functions; however, errors during state change operations can change the attachment point condition. Specify the force option (-f) to override a condition and force a state change that would otherwise fail. Hardware-specific safety and integrity checks can prevent the force option from having any effect.

- **d domain_indicator** Specifies the domain using one of the following:

 - *domain_id* – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 - *domain_tag* – Name assigned to a domain using addtag(1M).

- **f** Forces the specified action to occur. Typically, this is a hardware-dependent override of a safety feature. Forcing a state change operation can allow use of the hardware resources of an occupant that is not in the ok or unknown condition, at the discretion of any hardware-dependent safety checks.

- **h [ap_id | ap_type]** Prints the help message text. If *ap_id* or *ap_type* is specified, the help routine of the hardware-specific library for the attachment point indicated by the argument is called.
-l [ap_id | ap_type] Lists the state and condition of attachment points specified. Filter attachment points with the -s option and select suboption. Invoking `rcfgadm` without one of the action options is equivalent to -l without an argument. The format of the list display is controlled by the -v and -s options. When the -a option is specified, attachment points are dynamically expanded.

-n Automatically answers no to all prompts.

-o hardware_options Supplies hardware-specific options to the main command option.

The following are valid hardware_options:

- parsable
 Applies only when the -s option is used. The parsable suboption specifies that info is returned for system board and IO assembly only.

- unassign
 Applies only when the -c disconnect option is used. The unassign suboption specifies that the domain is to give up ownership of the board.

- nopoweroff
 Applies only when the -c disconnect option is used. The nopoweroff suboption specifies that the board is not to be powered off after it is disconnected.

-r retry_count Specifies the number of times the dynamic reconfiguration (DR) request is retried on the domain. The default is zero.

-s listing_options Supplies listing options to the list (-l) command.
`listing_options` conforms to the `getsubopt(3C)` syntax convention. The suboptions are used to specify the attachment point selection criteria (select=select_string), the type of matching desired (match=match_type), the order of listing (sort=field_spec), the data that is displayed (cols=field_spec and cols2=field_spec), the column delimiter (delim=string), and whether to suppress column headings (noheadings).
When the `select` suboption is specified, only attachment points that match the specified criteria are listed. The `select` suboption has the following syntax:

```
rcfgadm -s
select=attr1(value1):attr2(value2)...
```

where an `attr` is one of `ap_id`, `class`, or `type`. `ap_id` refers to the logical `ap_id` field, `class` refers to attachment point class, and `type` refers to the type field. `value1`, `value2`, and so on are the corresponding values to be matched. The type of match can be specified by the `match` suboption as follows:

```
rcfgadm -s
match=match_type,select=attr1(value1)...
```

where `match_type` can be either `exact` or `partial`. The default value is `exact`.

Suboptions can contain special characters that can be interpreted in ways other than as part of `rcfgadm` suboptions. For example, a command might contain parentheses, which are acceptable for suboptions but are interpreted as special characters when entered on the command line. Arguments to the `select` suboption can be quoted to protect them from the UNIX C shell interpretation.

A `field_spec` is one or more data-fields concatenated with the use of a colon (:), as in `data-field:data-field:data-field`. A data-field is comprised of `ap_id`, `physid`, `r_state`, `o_state`, `condition`, `type`, `busy`, `status_time`, `status_time_p` and `info`. The `ap_id` field output is the logical name for the attachment point, while the `physid` field contains the physical name. The `r_state` field can be empty, disconnected, or connected. The `o_state` field can be configured or unconfigured. The `busy` field can be either `y` if the attachment point is busy, or `n` if it is not. The `type` and `info` fields are hardware-specific. The `status_time_p` field is a parsable version of the `status_time` field. If an attachment point has an associated class, the `class` field lists the class name.
The order of the fields in `field_spec` is significant. For the sort suboption, the first field given is the primary sort key. For the `cols` and `cols2` suboptions, the fields are printed in the order requested. Reverse the order of sorting on a data-field by placing a minus (-) before the data-field name within the `field_spec` for the sort suboption. The default value for sort is `ap_id`. The default values for `cols` and `cols2` depend on whether the `-v` option is given. Without it, `cols` is `ap_id:r_state:o_state:condition` and `cols2` is not set; with `-v`, `cols` is `ap_id:r_state:o_state:condition:info` and `cols2` is `status_time:type:busy:physid`.

The default value for `delim` is a single space. The value of `delim` can be a string of arbitrary length. The delimiter cannot include a comma (,) character; see `getsubopt(3C)`. These listing options can be used to create parsable output.

`-T timeout` Specifies the time interval, in seconds, between retries. This option cannot be used alone and must be specified with the `-r retry_count` option. The default value is zero, meaning the that DR request is retried immediately.

`-t` Performs a test of one or more attachment points. The test function is used to reevaluate the condition of the attachment point.

The results of the test are used to update the condition of the specified occupant to `ok` if no faults are found, `failing` if recoverable faults are found, or `failed` if any unrecoverable faults are found.

If a test is interrupted, the attachment point condition can be restored to its previous value, set to `unknown` if no errors were found, set to `failing` if only recoverable errors were found, or set to `failed` if any unrecoverable errors were found. The attachment point should be set to `ok` only upon normal completion of testing with no errors.

`-v` Executes in verbose mode. For the `-c`, `-t`, and `-x` options, displays a message giving the results of each attempted operation. Displays detailed help information for the `-h` option. Displays verbose information for each attachment point for the `-l` option.
-x hardware_function Performs hardware-specific functions.

Lists hardware-specific private functions using \texttt{rcfgadm -h ap_id}.

The following are valid for \texttt{hardware_function}:

- \textbf{assign} \textit{ap_id}
 - Assign a board to a domain.
- \textbf{unassign} \textit{ap_id}
 - Unassign a board from a domain.
- \textbf{poweron} \textit{ap_id}
 - Power on a board.
- \textbf{poweroff} \textit{ap_id}
 - Power off a board.

-\textbf{y} Automatically answers yes to all prompts. Prompts are displayed.
OPERANDS

The following operands are supported:

\texttt{ap_id}\hspace{1em} Refer to attachment points by hardware-specific identifiers (\texttt{ap_ids}) that are related to the type and location of the attachment points in the system device hierarchy. An \texttt{ap_id} cannot be ambiguous; it must identify a single attachment point. Two types of \texttt{ap_id} specifications are supported: physical and logical. A physical \texttt{ap_id} contains a fully specified path name, while a logical \texttt{ap_id} contains a shorthand notation that identifies an attachment point in a more user-friendly way.

Physical \texttt{ap_ids}:

\begin{itemize}
 \item /devices/pseudo/dr@0:IO4
 \item /devices/pseudo/dr@0:IO6
 \item /devices/pseudo/dr@0:IO14
 \item /devices/pseudo/dr@0:SB4
 \item /devices/pseudo/dr@0:SB6
\end{itemize}

Logical \texttt{ap_ids}:

\begin{itemize}
 \item IO4
 \item IO6
 \item IO14
 \item SB4
 \item SB6
\end{itemize}
ap_type

An *ap_type* is a partial form of a logical *ap_id* that can be ambiguous and not specify a particular attachment point. An *ap_type* is a substring of the portion of the logical *ap_id* up to, but not including, the colon (:) separator. For example, an *ap_type* of **pci** would show all attachment points whose logical *ap_ids* begin with **pci**. The two *ap_types* shown here are static and dynamic.

Static *ap_types*:

- HPCI
- CPU
- MCPU
- pci-pci/hp

Dynamic *ap_types*:

- cpu
- mem
- io

EXTENDED DESCRIPTION

Group Privileges Required

The privileges required for using this command depend on the desired operation. `rcfgadm` can assign or unassign boards that are not connected to a domain. To assign or unassign a board, you must have either platform administrator privileges or domain administrator/configurator privileges for the specified domain and the board must be in the domain’s available component list. For more information see `setupplatform(1M)` and `showplatform(1M)`.

The assign and unassign operations are private, hardware-specific operations. Assign a board using `rcfgadm -x assign ap_id`. Unassign a board using `rcfgadm -x unassign ap_id`. The *ap_ids* for assign and unassign must be logical *ap_ids* specifying a board, such as SB0 or IO2.

Domain administrator or domain configurator privileges are required for test, state change, list or hardware-specific operations.

Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.
EXAMPLES

EXAMPLE 1 Listing Attachment Points in the Device Tree for Domain A

The following example lists all attachment points except dynamic attachment points.

```
sc0:~ user> rcfgadm -d a
Ap_Id    Type   Receptacle   Occupant   Condition
IO4      PCI    connected   configured ok
IO6      MCPU   disconnected unconfigured unknown
IO14     PCI    connected   configured ok
SB4      CPU    disconnected unconfigured unknown
SB6      CPU    connected   configured ok
```

EXAMPLE 2 Listing All Configurable Hardware Information for Domain A

The following example lists all current configurable hardware information, including those represented by dynamic attachment points:

```
sc0:~ user> rcfgadm -d a -al
Ap_Id    Type       Receptacle    Occupant   Condition
IO4      PCI        connected     configured ok
IO4::pci0 io         connected     configured ok
IO4::pci1 io         connected     configured ok
IO4::pci2 io         connected     configured ok
IO4::pci3 io         connected     configured ok
IO6      MCPU       disconnected  unconfigured unknown
IO14     PCI        connected     configured ok
IO14::pci0 io         connected     configured ok
IO14::pci1 io         connected     configured ok
IO14::pci2 io         connected     configured ok
IO14::pci3 io         connected     configured ok
SB4      CPU        disconnected  unconfigured unknown
SB6      CPU        connected     configured ok
SB6::cpu0 cpu        connected     configured ok
SB6::cpu1 cpu        connected     configured ok
SB6::cpu2 cpu        connected     configured ok
SB6::cpu3 cpu        connected     configured ok
SB6::memory memory   connected     configured ok
SB16     CPU        connected     configured ok
SB16::cpu0 cpu        connected     configured ok
SB16::cpu1 cpu        connected     configured ok
SB16::cpu2 cpu        connected     configured ok
SB16::cpu3 cpu        connected     configured ok
SB16::memory memory   connected     configured ok
```

EXAMPLE 3 Creating a Selective List Based on Attachment Point Attributes for Domain A
The following example lists all attachment points at location SB6 and of type cpu. The argument to the -s option is quoted to protect it from the shell.

```
sc0:sm5-user> rcfgadm -d a -s match=partial,select="type(cpu)" -l SB6
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB6::cpu0</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB6::cpu1</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB6::cpu2</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB6::cpu3</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

EXAMPLE 4 Listing Current Configurable Hardware Information in Verbose Mode for Domain A

The following example lists current configurable hardware information in verbose mode:

```
sc0:sm5-user> rcfgadm -d a -v -l SB16
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB16</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
<td>powered-on, assigned</td>
</tr>
<tr>
<td>When</td>
<td>Type</td>
<td>Busy</td>
<td>Phys_Id</td>
<td>Mar 6 13:30</td>
</tr>
</tbody>
</table>

EXAMPLE 5 Using the Force Option on Domain A

The following example configures an occupant in the failing state to the system using the force option:

```
sc0:sm5-user> rcfgadm -d a -f -c configure SB6
```

EXAMPLE 6 Unconfiguring an Occupant From the System on Domain A

The following example unconfigures an occupant from the system:

```
sc0:sm5-user> rcfgadm -d a -c unconfigure IO14
```

EXAMPLE 7 Configuring an Occupant at an Attachment Point

The following example configures an occupant:

```
sc0:sm5-user> rcfgadm -d a -c configure SB6
```

EXAMPLE 8 Using the -o parsable option:
The following example displays system board and IO assembly information as a set of "name=value" pairs:

```
sc0:sms-user:~> rcfadm -d G -s cols=ap_id:type -o parsable
Ap_Id                          Type
IO0                            unknown
IO5                            HPCI
IO11                           HPCI
SB0                            CPU
SB11                           CPU
```

EXAMPLE 9 Disconnecting But Not Powering Off SB0:

```
sc0:sms-user:~> rcfadm -d G -c disconnect -o unassign,nopoweroff SB0
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `rcfadm`: `LC_TIME`, `LC-MESSAGES`, `TZ`.

- `LC_MESSAGES` Determines how `rcfadm` displays column headings and error messages. Listing output data is not affected by the setting of this variable.
- `LC_TIME` Determines how `rcfadm` displays human-readable status changed time (`status_time`).
- `TZ` Specifies the time zone used when converting the status changed time. This applies to both the human-readable (`status_time`) and parsable (`status_time_p`) formats.

EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- 1 No acknowledge.
- 2 Not supported.
- 3 Operation not supported.
- 4 Invalid privileges.
- 5 Busy.
- 6 System busy.
- 7 Data error.
- 8 Library error.
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

addtag (1M), cfgadm_sbd (1M), setupplatform (1M), showplatform (1M)

DIAGNOSTICS

Diagnostic messages appear on the standard error output. Other than options and usage errors, the following are diagnostic messages produced by this utility:

- No library.
- Insufficient condition.
- Invalid.
- Error.
- A PID does not exist.
- Invalid attribute.
- Invalid board ID type.
- Invalid permissions.
- Assigned to another domain.
- Unable to get permissions.
- Unable to get domain board info.
- Unable to get active board list.
- Unable to get assigned board list.
- Get blacklist failed.
- Solaris not running.
- Invalid privileges.
- Unable to get domain permissions.
- Unable to get platform permissions.
- Failed to get domain blacklist.
- Failed to get platform blacklist.
- DR command syntax error.
- DR operation failed.
rcfgadm: Configuration administration not supported on ap_id
rcfgadm: No library found for ap_id
rcfgadm: ap_id is ambiguous
rcfgadm: Operation: Insufficient privileges
rcfgadm: Attachment point is busy, try again
rcfgadm: No attachment points with specified attributes found
rcfgadm: System is busy, try again
rcfgadm: Operation: Operation requires a service interruption
rcfgadm: Operation: Data error: error_text
rcfgadm: Operation: Hardware specific failure: error_text
rcfgadm: Attachment point not found
rcfgadm: Configuration operation succeeded
rcfgadm: Configuration operation canceled
rcfgadm: Configuration operation invalid
rcfgadm: Configuration operation not supported
rcfgadm: Library error
rcfgadm: Insufficient condition
rcfgadm: SCDR/DCA door failure
rcfgadm: DCA/DCS communication error
rcfgadm: DCA internal failure
rcfgadm: PCD event failure
rcfgadm: Callback function failure
rcfgadm: SCDR library internal error
rcfgadm: Board is already assigned to another domain
rcfgadm: Unable to get active or assigned domain info
rcfgadm: Unable to get privileges
rcfgadm: DRCMD library invalid parameter

See config_admin(3CFGADM) for additional details regarding error messages.
NAME
reset - send reset to all CPU ports of a specified domain

SYNOPSIS
reset -d domain_indicator [, domain_indicator]...
[-d domain_indicator [, domain_indicator]...] [-q] [-y] [-n] [-x]
reset -h

DESCRIPTION
reset(1M) enables you to reset one or more domains in one of two ways: reset the hardware to a clean state or send an externally initiated reset (XIR) signal. The default is to reset the hardware to a clean state. You receive an error if the virtual keyswitch is in the secure position. By default, reset gives an optional confirmation prompt. Refer to Chapter 6, “Domain Control,” in the System Management Services (SMS) 1.3 Administrator Guide for more information.

OPTIONS
The following options are supported:

-\(\text{-d\ domain_indicator}\)
Specifies the domain using one of the following:

 domain_id –ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

 Note – Multiple domain_indicators must be separated by a comma.

-\(\text{-h}\)
Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

-\(\text{-n}\)
Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-\(\text{-q}\)
Quiet. Suppresses all messages to stdout including prompts.

 When used alone -q defaults to the -n option for all prompts.

 When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.

-\(\text{-x}\)
Send an XIR signal to the processors in the specified domain.

-\(\text{-y}\)
Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.
EXTENDED DESCRIPTION

Group Privileges Required

You must have domain administrator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Resetting Domain C

```
sc0:sms-user:> reset -d C Do you want to send RESET to domain C? [y|n]: y
RESET to port SB4/P0 initiated. RESET to port SB4/P1 initiated.
RESET initiated to all ports for domain: C
```

EXAMPLE 2 XIR Reset of Domain C

```
sc0:sms-user:> reset -d C -x
Do you want to send XIR to domain C? [y|n]: y
XIR to processor SB3/P0 initiated
XIR to processor SB3/P1 initiated
XIR to processor SB3/P2 initiated
XIR to processor SB3/P3 initiated
XIR initiated to all processors for domain: C
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

addtag(1M)
NAME resetsc - reset the other system controller (SC)

SYNOPSIS resetsc [-q] [-y] [-n]

resetsc -h

DESCRIPTION resetsc(1M) resets the other SC. This might typically be done after failover. This command either runs from the main SC and resets the spare or runs from the spare and resets the main. An SC cannot reset itself. If the SC chosen is not powered on, resetsc prompts the user to power it on. If the chosen SC does not power on, resetsc terminates and returns an error.

OPTIONS The following options are supported:

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q Quiet. Suppresses all messages to stdout including prompts.

When used alone -q defaults to the -n option for all prompts.

When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.

EXTENDED DESCRIPTION You must have platform administrator privileges to run this command.

Group Privileges Required

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES EXAMPLE 1 Resetting the Other SC Using Prompts

sc0:sms-user:~ resetsc
About to reset other SC.
Are you sure you want to continue? (y or [n])
EXAMPLE 2 Resetting the Other SC When the Other SC Is Powered Off

 sc0:sms-user:> resetsc
 The other SC is not powered on.
 Do you want to try to power it on? (y or [n])

EXAMPLE 3 Resetting the Other SC Answering Yes to All Prompts

 sc0:sms-user:> resetsc -y
 About to reset other SC.
 Are you sure you want to continue? [y]

EXAMPLE 4 Resetting the Other SC Suppressing All Prompts

 sc0:sms-user:> resetsc -q

EXIT STATUS The following exit values are returned:

0 Successful completion.
1 The user has invalid permission.
2 Memory allocation failed.
3 Cannot determine other SC's presence.
4 Other SC is not present.
5 Cannot determine power state of other SC.
6 Unable to power on other SC.
7 Unable to reset other SC.
8 Flag registration failed.
9 Invalid command-line argument.

ATTRIBUTES See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>
NAME
runcmdsync - prepare a specified script for recovery after a failover

SYNOPSIS
runcmdsync script_name [parameters]
runcmdsync -h

DESCRIPTION
The runcmdsync(1M) command prepares the specified script for automatic synchronization (recovery) after a failover. runcmdsync creates a command synchronization descriptor that identifies the script to be recovered. This descriptor is added to the command synchronization list that determines the scripts to be restarted after a failover. The runcmdsync command also removes this descriptor from the command synchronization list when the script terminates.

To specify restart points in a script, see initcmds(1M) and the family of synchronization commands.

OPTIONS
The following options are supported:

- h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

script_name Identifies the script to be prepared for command synchronization. script_name must be the absolute path name of an executable command. The command must exist in the same location on both SCs.

parameters Specifies the options or parameters associated with the specified script. These parameters are stored on the spare system controller (SC) and are used to restart the specified command or script after an automatic failover.

EXTENDED DESCRIPTION

Group Privileges
Required
You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO cancelcmdsync(1M), initcmdsync(1M), savecmdsync(1M), showcmdsync(1M)
NAME
savecmdsync - command synchronization command

SYNOPSIS
cancelcmdsync cmdsync_descriptor

initcmdsync script_name [parameters]

savecmdsync -M identifier cmdsync_descriptor

[cancel | init | save]cmdsync -h

DESCRIPTION
The command synchronization commands work together to control the recovery of user-defined scripts interrupted by a system controller (SC) failover. Insert the following commands in user-defined scripts to enable command synchronization:

initcmdsync
Creates a command synchronization descriptor that identifies the script to be recovered.

This descriptor is placed on a command synchronization list that identifies the scripts and commands to be restarted on the new main SC after a failover.

savecmdsync
Adds a marker that identifies a location in the script from which processing can be resumed after a failover.

cancelcmdsync
Removes a command synchronization descriptor from the command synchronization list. This ensures that the script is run only once and not after subsequent failovers.

Be sure that all exit paths of a script have a cancelcmdsync sequence to remove the descriptor from the command synchronization list. If you do not remove the descriptor and a failover occurs, the script is rerun on the new main SC.

Note – Both an initcmdsync and a cancelcmdsync sequence must be contained within a script to enable command synchronization. The use of the savecmdsync command is optional, and marks only specific points in a script from which processing can be resumed. If specific restart points are not necessary, consider using runcmdsync(1M) instead.

OPTIONS
The following options are supported:

cmdsync_descriptor
Specifies the command synchronization descriptor that identifies the user-defined script. This descriptor is the standard output value returned by the initcmdsync command.
DESCRIPTION

The command synchronization commands are inserted at certain logical points within a user-defined script.

EXTENDED DESCRIPTION

- **h**
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- **-M identifier**
 Marks a location in the script from which the script can be resumed after a failover. The identifier must be a positive integer.

- **parameters**
 Specifies the options or parameters associated with the user-defined script. These parameters are stored on the spare SC and are used to restart the specified script after a failover.

- **script_name**
 Identifies the name of the user-defined script to be synchronized. `script_name` must be the absolute path name of an executable command. The command must exist in the same location on both SCs.
For instance, a Korn shell script might be structured as follows:

```
# MAIN CODE STARTS HERE
# Be sure to use a cleanup procedure to handle any
# interrupts.
# Use the cancelcmdsync to remove the script from the
# command synchronization list. Otherwise, the command
# will get restarted on the new main SC.
#
clean_up () {
    cancelcmdsync $desc
    exit
}

# Declare the clean_up function to capture system signals
# and cleanup.
trap "clean_up" INT HUP TERM QUIT PWR URG
goto_label=1
# Process the arguments, capturing the -M marker point
# if provided
#
for arg in $*; do
    case $arg in
        -M )
            goto_label=$arg;
        .
        .
        esac
    done
# Place this script and all its parameters in the command
# synchronization list, which indicates the commands to
# be restarted after an SC failover.
#
# NOTE: The script must be executable by the user defined
# in fomd.cf and reside in the same directory on both the
# main and the spare SC.
```
If the command is not part of the defined PATH for the user, the absolute filename must be passed with the initcmds-msg command.

```bash
initcmds-msg script_name parameters
```

The marker point is stored in the goto_label variable. Keep executing this script until all cases have been processed or an error is detected.

```bash
while (( $goto_label != 0 )); do
    # Each case should represent a synchronization point in the script.
    case $goto_label in
        # Step 1: Do something
        1 ) do_something
            ;

    # Execute the savecmds-msg command with the script's descriptor and a unique marker to save the position. If a failover occurs here, the commands represented in the next goto_label (2) will be resumed.

    savecmds-msg -M ${(( $goto_label + 1 ))} $desc
    goto_label=${(( $goto_label + 1 ))};
    ;;

        # Step 2: Do more things
        2 ) do_more_things
            ;

    # savecmds-msg -M ${(( $goto_label + 1 ))} $desc
    # goto_label=${(( $goto_label + 1 ))};
    ;;

        # Step 3: Finish the last step and set the goto_label to 0 so that the script ends.
        3 ) finish_last_step
            ;

    esac
    done
# END OF MAIN CODE
```

Remember to execute cancelcmds-msg to remove the script from the command synchronization list. Otherwise, the command will be restarted after the failover.

```bash
cancelcmds-msg $desc
```
Group Privileges Required
You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

Note – The standard output for initcmdsync contains the command synchronization descriptor. Also, when failover is disabled (after a failover or in a single SC environment), scripts that contain synchronization commands generate error messages to the platform log file and return nonzero exit codes. These messages can be ignored.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
runcmdsync(1M), showcmdsync(1M)
NAME setbus - perform dynamic bus reconfiguration on active expanders in a domain

SYNOPSIS setbus [-q] [-y | -n] -c csb [-b buses] [location]...

DESCRIPTION setbus(1M) dynamically reconfigures bus traffic on active expanders in a domain to use either one centerplane support board (CSB) or both. Using both CSBs is considered normal mode. Using one CSB is considered degraded mode.

This feature enables you to swap out a CSB without having to power off the system.

OPTIONS The -y and -n are optional arguments to the setbus(1M) command. If one of these optional arguments is not provided, setbus prompts the user with a confirmation message.

If changing the configuration on the chosen expander requires changing the configuration on additional expanders, setbus displays the following message:

```
The expander board in position location communicates with expanders not already listed, and will be added to the list of boards to reconfigure.
```

Additionally, setbus resets any boards that are powered on but not active. Any attach-ready state is lost. To bring the boards back to an attach-ready state refer to the System Management Services (SMS) 1.3 Dynamic Reconfiguration User Guide.

Note – If you have degraded all expanders to one CSB you cannot un-degrade a single expander; you must set them all at the same time, otherwise setbus fails.

The following options are supported

-b buses Specifies which buses to configure. There are three buses to configure. Valid buses are:

a Configures the address bus.

d Configures the data bus.

r Configures the response bus.

The default is to configure all three buses.
OPERANDS

The following operands are supported:

Specifies which CSB(s) to use.

-c csb
CS0 Configures the hardware to use CS0 (degraded mode).
CS1 Configures the hardware to use CS1 (degraded mode).
CS0,CS1 Configures the hardware to use both CSBs (normal mode).

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-n Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q Quiet. Suppresses all messages to stdout including prompts.

When used alone -q defaults to the -n option for all prompts.

When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.

-y Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.

location Specifies which expander slots to configure. The default is to configure all. Multiple locations are separated by spaces.

Valid locations are:
Sun Fire 15K, Sun Fire 12K
EX(0...17), EX(0...8)

EXTENDED

DESCRIPTION

Group Privileges Required

You must have platform administrator privileges to reconfigure any set of communicating expanders (SOCX) in the system.

Domain administrators or configurators can reconfigure only the SOCX assigned to the domain(s) in which they have privileges.
Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Setting All Buses on All Active Domains to Use CS0

The following example displays setbus output when there are inactive boards powered on in one or more of the domains.

```
sc0:~user:> setbus -c CS0
The following boards are powered on but are not active in a domain:
SB13
IO9 assigned to domain J
IO16 assigned to domain Q
SB17
These boards will be reset, and any attach-ready state will be lost.
Are you sure you want to continue the reconfiguration? [y|n]: y
```

EXAMPLE 2 Setting All Buses on All Active Domains to Use Both CSBs

```
sc0:~user:> setbus -c CS0,CS1
```

EXAMPLE 3 Setting Address Bus on All Domains to Use CS0

```
sc0:~user:> setbus -c CS0 -b a
```

EXAMPLE 4 Setting Address and Data Buses on Active EX1 to Use CS1

```
sc0:~user:> setbus -c CS1 -b ad EX1
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

ATTRIBUTES

See `attributes` (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSOp</td>
</tr>
</tbody>
</table>

SEE ALSO `showbus` (1M)
NAME
setdatasync - modify the data propagation list used in data synchronization

SYNOPSIS
setdatasync [-i interval] schedule filename
setdatasync cancel filename
setdatasync push filename
setdatasync backup
setdatasync -h

DESCRIPTION
setdatasync enables you to specify a user-created file to be added to or removed from the data propagation list. This list identifies the files to be copied from the main to the spare system controller (SC) as part of data synchronization for automatic failover. The specified user file and the directory in which it resides must have read and write permissions for the user on both SCs.

The data synchronization process checks the user-created files on the main SC for any changes. If the user-created files on the main SC have changed since the last propagation, they are repropagated to the spare SC. By default, the data synchronization process checks a specified file every 60 minutes; however, you can use setdatasync to indicate how often a user file should be checked for modifications.

Note – After a file is propagated from the main SC to the spare, the file is repropagated to the spare only when the file on the main SC is updated. If you remove a propagated file from the spare SC, that file is not automatically repropagated until the corresponding file on the main SC has been changed.

You can also use setdatasync to do the following:

- Propagate a specified file to the spare SC without adding the file to the data propagation list.
- Resynchronize the SC configuration files on the main and spare SCs.
OPTIONS

The following options are supported:

- **backup**

 Forces re-synchronization after something other than SMS creates undesired changes to SMS files on the spare SC.

 The time required to execute `setdatasync backup` is approximately proportional to the number of files being transferred. Other factors that can affect the speed of file transfer include: the average size of files being transferred, the amount of memory available on the SCs, the load (CPU cycles and disk traffic) on the SCs, and whether the I2 network is functioning. For more information refer to Chapter 9, “SC Failover,” of the *System Management Services (SMS) 1.3 Administrator Guide*.

 Use `setdatasync backup` only in the following situations.

 - SMS was re-installed on the spare SC while SMS was running on the main SC.

 Note – SMS users groups must be setup correctly on the spare before running `setdatasync backup`

 - SMS files were deleted from the spare SC while SMS was running on the main SC.

 - SMS files were overwritten or corrupted on the spare SC (regardless of whether SMS was running or not).

- **cancel filename**

 Removes (cancels) the specified file from the data propagation list, which means the specified file will no longer be propagated to the spare SC. This option does not actually remove the specified file from the spare SC. The file name must contain the absolute path and cannot be a symbolic link to another file.

- **-h**

 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- **-i interval**

 Indicates how often the specified file should be checked for modifications. The default interval is 60 minutes. The interval can range from 1 to 1440 minutes (24 hours).
push filename Propagates (pushes) the specified file to the spare SC without adding it to the data propagation list. The file name must contain the absolute path and cannot be a symbolic link to another file.

schedule filename Adds the specified file to the data propagation list. The file name must contain the absolute path and cannot be a symbolic link to another file. During data synchronization, the file is propagated to the same absolute path on the spare SC.

EXTENDED DESCRIPTION

Group Privileges Required

You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Propagating a User File From Main to Spare Every 30 Minutes

The path to the user-specified file must be an absolute path and cannot contain a symbolic link.

```bash
sc0:sms-user:> setdatasync -i 30 schedule /path/filename
```

EXAMPLE 2 Removing File Name From Data Propagation List

The path to the user-specified file must be an absolute path and cannot contain a symbolic link.

```bash
sc0:sms-user:> setdatasync cancel /path/filename
```

EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSOp</td>
</tr>
</tbody>
</table>
SEE ALSO

`showdatasync (1M)`, `smsbackup (1M)`
NAME
setdate - set the date and time for the system controller (SC) or a domain

SYNOPSIS
setdate [-d domain_indicator] [-u] [-q] [mmdd]HHMM|mmddHHMM[ccyy][.SS]

setdate -h

DESCRIPTION
setdate(1M) enables the SC platform administrator to set the SC or optionally set a domain date and time values. Enables domain administrators to set the date and time values for their domains. After the date and time are set setdate(1M) displays the current date and time.

OPTIONS
The following options are supported:

- -d domain_indicator Specifies the domain using one of the following:
 domain_id – ID for a domain. Valid domain_id values are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

 Sets the domain time of day (TOD) when the domain keyswitch is in the OFF or STANDBY position. This option is not the primary use of setdate. Normally, setdate is used without this option to set the SC TOD.

- -h Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

- -q Does not display current date and time after you set the new value.

- -u Interprets and displays the time using Greenwich Mean Time (GMT). The default is the local time zone.

OPERANDS
The following operands are supported:

[mmdd]HHMM[.SS]
 Date and time format. mm is the month (1–12), dd is the day of the month (1–31), HH is the hour (0–23), MM is the minute (0–59), and SS is the second (0–59).

mmddHHMM[ccyy][.SS]
 Date and time format. mm is the month (1–12), dd is the day of the month (1–31), HH is the hour (0–23), MM is the minute (0–59), cc is century minus one, yy is the two-digit year, and SS is the second (0–59).
EXTENDED
DESCRIPTION

Group Privileges

Required

You must have platform or domain administrator privileges to run this command. If you have domain administrator privileges you can run this command only for your domain.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Setting the Local Date in Pacific Standard Time

```bash
sc0:sms-user:> setdate 020210302002.00
System Controller: Sat Feb 2 10:30:00 PST 2002
```

EXAMPLE 2 Setting the Date Using GMT

```bash
sc0:sms-user:> setdate -u 020218302002.00
System Controller: Sat Feb 2 18:30:00 GMT 2002
```

EXAMPLE 3 Setting the Local Time in Pacific Standard Time for Domain A

```bash
sc0:sms-user:> setdate -d a 020210302002.00
Domain a: Sat Feb 2 10:30:00 PST 2002
```

EXAMPLE 4 Setting the Date for Domain A Using GMT

```bash
sc0:sms-user:> setdate -d a -u 020218302002.00
Domain a: Sat Feb 2 18:30:00 GMT 2002
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

addtag (1M), setkeys (1M), showdate (1M)
NAME

setdefaults - remove all instances of a previously active domain and reset Capacity on Demand (COD) information

SYNOPSIS

setdefaults [-d domain_indicator] [-p] [-y] [-n]

setdefaults -h

DESCRIPTION

setdefaults(1M) removes all SMS instances of a previously active domain and Capacity on Demand (COD) information. A domain instance includes all pcd entries except network information; all message, console, and syslog log files; and, optionally, all NVRAM and boot parameters. pcd entries and NVRAM and boot parameters are returned to system default settings. IDPROM data is not affected.

The COD information that is removed includes instant access CPUs (headroom) and reserved domain COD right-to-use (RTU) licenses. Only the platform administrator can reset the headroom value. The platform or domain administrator can reset reserved domain COD RTU licenses.

OPTIONS

The following options are supported:

-d domain_indicator

Specifies the domain using one of the following:

domain_id — ID for a domain. Valid domain_ids are A–R and are not case sensitive.

domain_tag — Name assigned to a domain using addtag(1M).

-h

Help. Displays usage descriptions.

Note — Use alone. Any option specified in addition to -h is ignored.

-n

Automatically answers no to all prompts.

-p

Preserves NVRAM and boot parameter data. By default, you are asked whether or not you want to remove the NVRAM and boot parameter data. If the -p option is used, you are not prompted and the data is preserved.

-y

Automatically answers yes to all prompts.

EXTENDED DESCRIPTION

If the -d domain_indicator is specified, the setdefaults command resets domain information. The domain cannot be active, and the virtual keyswitch must be set to off. Otherwise, the setdefaults command exits with an error. Platform administrators can reset the access control list (ACL) and the domain COD RTU licenses, but the domain administrator cannot.
If you have platform administrator privileges and you do not specify the `-d domain_indicator`, the `setdefaults` command resets the COD headroom, provided that the reset does not cause any COD RTU license violations.

Group Privileges Required

You must have platform administrator or domain administrator privileges for the specified domain to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

EXAMPLE 1 Setting Defaults on Domain A With Domain, NVRAM, and Boot Parameter Prompts

```
sc0:~ > setdefaults -d a
Are you sure you want to remove domain info? y
Do you want to remove NVRAM and boot parameter data? y
```

EXAMPLE 2 Setting Defaults on Domain A Without Prompts, Saving NVRAM and Boot Parameter Data

```
sc0:~ > setdefaults -d a -p -y
```

EXAMPLE 3 Setting Defaults on Domain A Without Prompts and Without Saving NVRAM and Boot Parameter Data

```
sc0:~ > setdefaults -d a -y
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **1** An invalid domain was specified.
- **2** An invalid option was entered.
- **3** No domain, or more than one domain, was specified.
- **4** The user has invalid permission.
- **5** The keyswitch is in an invalid position.
- **6** The domain is currently active.
- **7** An error occurred talking to the `pcd`.
- **8** An error occurred talking to the `mld`.
- **9** An error occurred talking to the `osd`.
- **10** An internal error occurred.
- **11** The user canceled the operation.
An error occurred talking to the codd.

FILES
The following files are affected by this command:

- `/var/opt/SUNWSMS/.pcd/domain_info`
 Domain pcd information file.

- `/var/opt/SUNWSMS/.pcd/sysboard_info`
 Platform pcd information file.

- `/var/opt/SUNWSMS/adm/domain_id/console`
 Domain console log file. Up to ten message files are stored on the system at any one time—console.0 through console.9.

- `/var/opt/SUNWSMS/adm/domain_id/messages`
 Domain log file. Up to ten message files are stored on the system at any one time—message.0 through message.9.

- `/var/opt/SUNWSMS/adm/domain_id/syslog`
 Domain syslog file. Up to ten message files are stored on the system at any one time—syslog.0 through syslog.9.

- `/var/opt/SUNWSMS/data/domain_id/bootparamdata`
 Domain boot parameter information file.

- `/var/opt/SUNWSMS/data/domain_id/nvramdata`
 Domain nvram information file.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
addtag(1M), mld(1M), osd(1M), pcd(1M), setobpparams(1M), showobpparams(1M)
NAME setfailover - modify the state of the system controller (SC) failover mechanism

SYNOPSIS setfailover action

setfailover -h

DESCRIPTION setfailover(1M) provides the ability to modify the state of failover for the SC failover mechanisms.

OPTIONS The following options are supported:

 -h Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

OPERANDS The following operands are supported:

 action The following are valid actions:

 force Forces a failover to the spare SC. The spare SC must be available.

 off Disables the failover mechanism. This prevents a failover until the mechanism is reenabled.

 on Enables failover for systems that previously had failover disabled due to a failover or an operator request. on instructs the command to attempt to reenable failover only. If failover cannot be reenabled, subsequent use of the showfailover command indicates the current failure that prevented the enable.

EXTENDED DESCRIPTION Group Privileges Required

You must have platform administrator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES These commands produce no output when successful. An error message appears if the action can not be performed.

EXAMPLE 1 Turning Failover On

sc0:sm-user> setfailover on
EXAMPLE 2 Turning Failover Off

sc0:sms-user:> setfailover off

EXAMPLE 3 Forcing a Failover

sc0:sms-user:> setfailover force

EXIT STATUS The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO showfailover(1M)
NAME
setkeyswitch - change the position of the virtual keyswitch

SYNOPSIS
setkeyswitch -d domain_indicator [-q] [-y | -n] position

DESCRIPTION
setkeyswitch (1M) changes the position of the virtual keyswitch to the specified value. setkeyswitch is responsible for powering on or powering off boards and bringing up a domain. See the OPERANDS section for more information.

If the domain specified contains a board in the automatic system recovery (ASR) blacklist file, an error message is displayed, setkeyswitch skips power on of that board and setkeyswitch continues.

The state of each virtual keyswitch is maintained between power cycles of the system controller (SC) or physical power cycling of the power supplies by the pcd(1M). Use showkeyswitch to display the current position of a virtual keyswitch.

OPTIONS
The following options are supported.

Note – The -y and -n are optional arguments to the setkeyswitch (1M) command. If one of these optional arguments is not provided, setkeyswitch prompts you for confirmation when changing from the on, diag, or secure position to the off or standby position.

-d domain_indicator
 Specifies the domain using one of the following:

 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

-h
 Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-n
 Automatically answers no to all prompts. Prompts are displayed unless used with the -q option.

-q
 Quiet. Suppresses all messages to stdout including prompts.

 When used alone -q defaults to the -n option for all prompts.

 When used with either the -y or the -n option, -q suppresses all user prompts and automatically answers with either 'y' or 'n' based on the option chosen.
-y

Automatically answers yes to all prompts. Prompts are displayed unless used with the -q option.

OPERANDS

The following operands are supported:

<table>
<thead>
<tr>
<th>position</th>
<th>Valid position operands are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>From the off or standby position, on powers on all boards assigned to the domain (if not already powered on). Then the domain is brought up. From the diag position, on is nothing more than a position change and does not affect a running domain. From the secure position, on restores write permission to the domain.</td>
</tr>
<tr>
<td>standby</td>
<td>From the on, diag, or secure position, standby optionally displays a confirmation prompt. If you answer ‘yes’ then it determines if the domain is in a suitable state to be reset and deconfigured (for example, the OS is not running). If the domain is in a suitable state to be reset and deconfigured, then setkeyswitch resets and deconfigures all boards assigned to the domain. If not, then prior to the reset and deconfiguration, setkeyswitch gracefully shuts down the domain. From the off position, standby powers on all boards assigned to the domain (if not already powered on).</td>
</tr>
<tr>
<td>off</td>
<td>From the on, diag, or secure position, off optionally displays a confirmation prompt. If you answer ‘yes’ then it determines if the domain is in a suitable state to be powered off (for example, the OS is not running). If the domain is in a suitable state to be powered off, then setkeyswitch powers off all boards assigned to the domain. If not, then setkeyswitch aborts and logs a message to the domain log. From the standby position, off powers off all the boards in the domain.</td>
</tr>
</tbody>
</table>
EXTENDED DESCRIPTION

Group Privileges Required

You must have domain administrator privileges for the specified domain to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Setting Keyswitch on Domain A On

`sc0:sms-user:~$ setkeys -d A on`
EXAMPLE 2 Using Keyswitch on a Domain Containing a Board in the ASR Blacklist File

```bash
sc0:sms-user:~$ setkeyswitch -d A on
SB0 is in the ASR Blacklist.
```

EXIT STATUS The following exit values are returned:

- **0**: Successful completion.
- **>0**: An error occurred.

FILES The following file is used by this command:

```
/etc/opt/SUNWSMS/config/asr/blacklist
```

List of components excluded by esmd.

Note – This file is created and used internally and should *not* be edited manually.

ATTRIBUTES See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO `addtag (1M)`, `esmd (1M)`, `flashupdate (1M)`, `pcd (1M)`, `reset (1M)`, `showkeyswitch (1M)`
NAME setobpparams - set up OpenBoot PROM variables for a domain

SYNOPSIS setobpparams -d domain_indicator param=value...

DESCRIPTION setobpparams(1M) enables a domain administrator to set the virtual NVRAM and
REBOOT variables passed to OpenBoot PROM by setkeyswitch(1M). The -d
option with domain_id or a domain_tag is required. You must reboot the domain in
order for any changes to take effect.

This command is intended for error recovery and not for routine system
administration. For more information refer to Chapter 4, “SMS Configuration,” in
the System Management Services (SMS) 1.3 Administrator Guide.

OPTIONS

The following options are supported:

- d domain_indicator Specifies the domain using one of the following:
 domain_id – ID for a domain. Valid domain_ids are A–R
 and are not case sensitive.
 domain_tag – Name assigned to a domain using
 addtag(1M).

- h Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h
 is ignored.
The following operands are supported:

```
  param=value  NVRAM and REBOOT variable values for OpenBoot PROM. Valid
               variables are:

  ■ diag-switch?
    Default value= false
    When set to false, the default boot device is specified by
    boot-device and the default boot file by boot-file.
    When set to true, OpenBoot PROM runs in diagnostic mode
    and you need to set either diag-device or diag-file to
    specify the correct default boot device or file. These default
    boot device and file settings cannot be set using
    setobpparams. Use setenv(1) in OpenBoot PROM.

  ■ auto-boot?
    Default value= false
    When set to true, the domain boots automatically after power-
    on or reset-all. The boot device and boot file used are based
    on the settings for diag-switch (see above). Neither boot-
    device nor boot file can be set using setobpparams. In
    the event the OK prompt is unavailable, such as a repeated
    panic, use setobpparams to set auto-boot? to false.
    When the auto-boot? variable is set to false using
    setobpparams, the reboot variables are invalidated, the
    system will not boot automatically and will stop in OpenBoot
    PROM where new NVRAM variables can be set.

  ■ fcode-debug?
    Default value= false
    When set to true, this variable includes name fields for plug-
    in device FCodes.

  ■ use-nvramrc?
    Default value= false
    When set to true, this variable executes commands in
    NVRAMRC during system start-up.
    When set to true, this variable executes commands in
    NVRAMRC during system start-up.

  ■ security-mode
    Default value= none
    Firmware security level.
```
Valid variable values for all but security mode are:
- true
- false

Valid variable values for security mode are:
- none
- command
- full

where:
none - Means that no password is required (default)
command - Means that all commands except `boot(1M)` and `go` require the password.
full - Means that all commands except for `go` require the password.

Note – It is important to remember your security password and to set the security password before setting the security mode. If you forget this password, you cannot use your system; you must call your vendor’s customer support service to make your system bootable again. For more information on `security-mode` and other OpenBoot PROM variables, see the OpenBoot 4.x Command Reference Manual.

Note – Most, but not all, shells require single quotes around the variable values to prevent the question mark from being treated as a special character. See Example 1.
EXIT STATUS The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addtag (1M), setkeys (1M), showobpparams (1M)
NAME setupplatform - set up the available component list and Capacity on Demand (COD) resources used for domains

SYNOPSIS setupplatform -p available [-d domain_indicator [-a|-r] location...]
setupplatform -p cod [headroom |-d domain_indicator domainRTU]
setupplatform [-d domain_indicator -]

DESCRIPTION setupplatform(1M) sets up the available component list and COD resources to be used for domains. If a domain_id or domain_tag is specified, a list of boards must be specified. An empty board list can be specified as a dash (-). When no domain_id or domain_tag is specified, current values are displayed in the square brackets ([]) at the command prompt. If no value is specified for a parameter, it retains its current value.

OPTIONS The following options are supported:

-a Adds the slot(s) to the available component list for the domain.
-d domain_indicator Specifies the domain using one of the following:
 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.
 domain_tag – Name assigned to a domain using addtag(1M).
-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-p available Modifies the domain available component list.
-p cod Assigns COD resources.
-r Removes the slots from the available component list for the domain.
- Clears the entire available component list.

OPERANDS The following operands are supported:

domainRTU Number of COD right-to-use (RTU) licenses to be reserved for a domain.
headroom Amount of headroom (processors) to be enabled.
setupplatform(1M)

DESCRIPTION

If you run the `setupplatform` command without specifying any options, the command prompts you for platform and COD information. You are asked to specify the available component list for all 18 domains, the amount of COD headroom to be used, and the number of COD RTU licenses to be reserved for your domains. When you are prompted for COD information, the maximum values allowed are displayed within parentheses () and default values are displayed within brackets [].

Use the `-p cod` option with the `setupplatform` command to enable COD headroom (processors to be used on demand). Use the `-d domain_indicator` with the `-p cod` option to specify the number of domain COD RTU licenses to be reserved.

You can reset the domain available component list and COD RTU reservation values by running the `setupplatform` command with a domain indicator and the `-` option.

GROUP PRIVILEGES

You must have platform administrator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

Use `showplatform(1M)` to display the available component list once you have run `setupplatform`.

location

Board location separated by a space.

The following location forms are accepted:

- Sun Fire 15K, Sun Fire 12K
- SB(0...17), SB(0...8)
- IO(0...17), IO(0...8)
EXAMPLE 1 Setting Up Available Component List for All Domains

sco:sms-user:~> setupplatform
Available component list for domain domainA [SB3 SB2 SB1 IO5 IO4 IO3]? -r SB1
Are you sure[no]? y
Available for domain DomainB [SB6 SB4 SB1 IO3 IO2]? -
Are you sure[no]? (yes/no)? y
Available for domain C [SB7 SB5 IO8 IO7]? -a SB17 SB16
Available for domain D [SB9 SB8 SB2 IO6 IO5 IO1]
Available for domain E [SB0 IO0]
Available for domain F []?
Available for domain G []?
Available for domain H []?
Available for domain I []?
Available for domain J []?
Available for domain K []?
Available for domain L []?
Available for domain M []?
Available for domain N []?
Available for domain O []?
Available for domain P []?
Available for domain Q []?
Available for domain R []?
PROC Headroom Quantity (0 to disable, 8 MAX) [0]? 4
PROC RTUs reserved for domain A (10 MAX) [0]? 3
PROC RTUs reserved for domain B (7 MAX) [0]? 0
PROC RTUs reserved for domain C (7 MAX) [0]? 0
PROC RTUs reserved for domain D (7 MAX) [0]? 0
PROC RTUs reserved for domain E (7 MAX) [0]? 0
PROC RTUs reserved for domain F (7 MAX) [0]? 0
PROC RTUs reserved for domain G (7 MAX) [0]? 0
PROC RTUs reserved for domain H (7 MAX) [0]? 0
PROC RTUs reserved for domain I (7 MAX) [0]? 0
PROC RTUs reserved for domain J (7 MAX) [0]? 0
PROC RTUs reserved for domain K (7 MAX) [0]? 0
PROC RTUs reserved for domain L (7 MAX) [0]? 0
PROC RTUs reserved for domain M (7 MAX) [0]? 0
PROC RTUs reserved for domain N (7 MAX) [0]? 0
PROC RTUs reserved for domain O (7 MAX) [0]? 0
PROC RTUs reserved for domain P (7 MAX) [0]? 0
PROC RTUs reserved for domain Q (7 MAX) [0]? 0
PROC RTUs reserved for domain R (10 MAX) [3]? 3
EXAMPLE 2 Setting Up Available Component List for Domain engB to Boards at SB0,
IO1, and IO2

```bash
sc0:sms-user:> setupplatform -p available -d engB SB0 IO1 IO2
```

EXAMPLE 3 Clearing All Boards in engB Available Component List and Reserved COD
RTUs

```bash
sc0:sms-user:> setupplatform -d engB -
```

EXAMPLE 4 Adding Boards at SB0 and IO2 to engB Available Component List

```bash
sc0:sms-user:> setupplatform -p available engB -a SB0 IO2
```

EXAMPLE 5 Removing Boards at SB3 and IO3 From engB Available Component List

```bash
sc0:sms-user:> setupplatform -p available -d engB -r SB3 IO3
```

EXAMPLE 6 Setting COD CPU Headroom Quantity and Reserve Domain COD RTU Licenses

```bash
sc0:sms-user:> setupplatform -p cod
PROC Headroom Quantity (0 to disable, 8 MAX) [0]? 4
PROC RTUs reserved for domain A (10 MAX) [0]? 3
PROC RTUs reserved for domain B (7 MAX) [0]? 0
PROC RTUs reserved for domain C (9 MAX) [2]? 0
.
.
PROC RTUs reserved for domain R (7 MAX) [0]? 0
```

EXAMPLE 7 Set the COD Headroom CPUs to 8

```bash
sc0:sms-user:> setupplatform -p cod 8
```

EXAMPLE 8 Set the number of COD RTUs for Domain engB to 6

```bash
sc0:sms-user:> setupplatform -p cod -d engB 6
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An internal error occurred. For further information, see /var/opt/SUNWSMS/adm/platform/messages.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addtag(1M), showplatform(1M)
NAME
showboards - show the assignment information and status of the boards

SYNOPSIS
showboards [-d domain_indicator] [-v]

showboards -h

DESCRIPTION
showboards(1M) displays board assignments and board status. If domain_id or
domain_tag is specified, this command displays which boards are assigned or
available to the given domain. The information displayed also indicates whether a
board is a Capacity on Demand (COD) board.

If the -v option is used, showboards displays all components, including domain
configuration units (DCUs) such as CPUs, MCPUs, HPCI, HPCI+s, and WPCI; as well
as the system controller (SC), that are not DCUs.

OPTIONS
The following options are supported:

- -d domain_indicator
 Specifies the domain using one of the following:

domain_id – ID for a domain. Valid domain_ids are A–R
 and are not case sensitive.

 domain_tag – Name assigned to a domain using
 addtag(1M).

- -h
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h
 is ignored.

- -v
 Verbose. Displays all components including DCUs.

EXTENDED
DESCRIPTION

Group Privileges
Required

You must have platform administrator, platform operator, platform service
privileges or domain administrator, or domain configurator privileges for the
specified domain to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the
System Management Services (SMS) 1.3 Administrator Guide for more information.

Platform administrator privileges:

- If no options are specified, showboards displays all components including those
 DCUs that are assigned or available.

- If domain_id or domain_tag is specified, showboards displays information on
 DCUs that are assigned and available to that domain. DCUs assigned to other
domains are not displayed.
If the `-v` option is provided, `showboards` displays information on all assigned or available DCUs. In addition, `showboards` displays information on all other components.

If `domain_id` or `domain_tag` and the `-v` option are specified, `showboards` displays information on DCUs that are assigned or available to that domain. In addition, `showboards` displays information on all other components. DCUs assigned to other domains are not displayed.

Domain administrator/configurator privileges:

If no options are specified, `showboards` displays all boards for all domains for which you have privileges, including those DCUs that are assigned or available.

If `domain_id` or `domain_tag` is specified, `showboards` displays information on DCUs that are assigned or available to that domain. DCUs assigned to other domains are not displayed. Available DCUs are those boards that are in the domain’s available component list. See `setupplatform(1M)` and `showplatform(1M)`. You must have domain administrator or configurator privileges for the specified domain.

The `-v` option is not available to this user.

Status Fields Displayed

This section describes status information displayed in the `showboards` command output.

The Pwr field contains one of five measurements:

- **On**: Full voltage detected.
- **Off**: No voltage detected.
- **Min**: Some voltage detected.
- **Unk**: Unknown. Unable to determine board power on state.
- **-**: The slot is empty so power state is not applicable.

Min does not imply that the board can be used at this point but only that some power was detected on the board. It should not be used until it has been powered on. Conversely, it should not be removed from the system before being powered off.

The Board Status field contains one of four values:

- **Active**: The board is assigned to a domain and has passed POST.
- **Assigned**: The board is assigned to a domain.
- **Available**: The board is available to be assigned to a domain.
- **-**: Domain assignment or activity is not applicable for this board.
The Test status field reflects the recorded entry in the PCD database from the last POST run. The Test Status field contains one of six values:

- **Passed**: The board passed POST.
- **Degraded**: The board is in a degraded mode.
- **Failed**: The board failed POST.

 Contact your Sun Service representative, who can determine whether or not the board needs to be replaced.
- **iPOST**: The board is in POST.
- **Unknown**: The board has not been tested.
- —: The test status for this board is unavailable.

The Domain field contains one of four values:

- **domain_id**: ID for a domain.
- **domain_tag**: Name assigned to a domain using `addtag(1M)`.
- **Isolated**: The board is not assigned to any domain.
- —: Domain assignment is not applicable for this board.
EXAMPLES

EXAMPLE 1 Listing boards for Platform Administrators on a Sun Fire 15K System

```
   sc0:sms-user:> showboards

<table>
<thead>
<tr>
<th>Location</th>
<th>Pwr</th>
<th>Type</th>
<th>Board Status</th>
<th>Test Status</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>domainC</td>
</tr>
<tr>
<td>SB1</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>SB2</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>SB3</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB4</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB5</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB6</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>SB7</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>domainC</td>
</tr>
<tr>
<td>SB8</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB9</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>dmnJ</td>
</tr>
<tr>
<td>SB10</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB11</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB12</td>
<td>Off</td>
<td>CPU</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>SB13</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB14</td>
<td>Off</td>
<td>CPU</td>
<td>Assigned</td>
<td>Failed</td>
<td>domainC</td>
</tr>
<tr>
<td>SB15</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>P</td>
</tr>
<tr>
<td>SB16</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>domainC</td>
</tr>
<tr>
<td>SB17</td>
<td>-</td>
<td>Empty Slot</td>
<td>Assigned</td>
<td>-</td>
<td>dmnR</td>
</tr>
<tr>
<td>IO0</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>IO1</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>IO2</td>
<td>On</td>
<td>MCPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>IO3</td>
<td>On</td>
<td>MCPU</td>
<td>Active</td>
<td>Passed</td>
<td>domainC</td>
</tr>
<tr>
<td>IO4</td>
<td>On</td>
<td>HPCI+</td>
<td>Available</td>
<td>Degraded</td>
<td>domainC</td>
</tr>
<tr>
<td>IO5</td>
<td>Off</td>
<td>HPCI+</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO6</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>IO7</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>dmnJ</td>
</tr>
<tr>
<td>IO8</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>Q</td>
</tr>
<tr>
<td>IO9</td>
<td>On</td>
<td>HPCI+</td>
<td>Assigned</td>
<td>iPOST</td>
<td>dmnJ</td>
</tr>
<tr>
<td>IO10</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO11</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Failed</td>
<td>engB</td>
</tr>
<tr>
<td>IO12</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO13</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>IO14</td>
<td>Off</td>
<td>HPCI+</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>IO15</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>P</td>
</tr>
<tr>
<td>IO16</td>
<td>On</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Q</td>
</tr>
<tr>
<td>IO17</td>
<td>-</td>
<td>Empty Slot</td>
<td>Assigned</td>
<td>-</td>
<td>dmnR</td>
</tr>
</tbody>
</table>
```

The following example illustrates showboards output if you have platform administrator privileges and specify a domain on a Sun Fire 15K system. The output does not include boards that are assigned to other domains.
EXAMPLE 2
Listing boards for Platform Administrators for Domain B

```bash
sc0:sms-user:~ > showboards -d b
```

<table>
<thead>
<tr>
<th>Location</th>
<th>Pwr</th>
<th>Type</th>
<th>Board Status</th>
<th>Test Status</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB3</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB4</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB5</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB8</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB10</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB11</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB12</td>
<td>Off</td>
<td>CPU</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>SB13</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>IO0</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>IO2</td>
<td>On</td>
<td>MCFU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>IO5</td>
<td>Off</td>
<td>HPCI+</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO10</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO11</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Failed</td>
<td>engB</td>
</tr>
<tr>
<td>IO12</td>
<td>On</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO13</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>IO14</td>
<td>Off</td>
<td>HPCI+</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
</tbody>
</table>

The following example illustrates `showboards` output if you have platform administrator privileges and use the `-v` option on a Sun Fire 15K system. The command shows all components. If a board is a COD board, it is specified in the Type of Board field.

EXAMPLE 3
Listing boards for Platform Administrators Using the `-v` Option

```bash
sc0:sms-user:~ > showboards -v
```

<table>
<thead>
<tr>
<th>Location</th>
<th>Pwr</th>
<th>Type of Board</th>
<th>Board Status</th>
<th>Test Status</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC0</td>
<td>On</td>
<td>SC</td>
<td>Main</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SC1</td>
<td>On</td>
<td>SC</td>
<td>Spare</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS0</td>
<td>On</td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS1</td>
<td>On</td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS2</td>
<td>On</td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS3</td>
<td>On</td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS4</td>
<td>Off</td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS5</td>
<td>On</td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT0</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT1</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT2</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT3</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT4</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT5</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT6</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FT7</td>
<td>On</td>
<td>FANTRAY</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CS0</td>
<td>On</td>
<td>CSB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CS1</td>
<td>On</td>
<td>CSB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EX0</td>
<td>-</td>
<td>EXB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EX1</td>
<td>-</td>
<td>EXB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EX2</td>
<td>-</td>
<td>EXB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I/O</td>
<td>State</td>
<td>Type</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Domain</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>IO4/C3V0</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>domainC</td>
</tr>
<tr>
<td>IO4/C5V0</td>
<td>On</td>
<td>C5V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>domainC</td>
</tr>
<tr>
<td>IO4/C3V1</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>domainC</td>
</tr>
<tr>
<td>IO4/C5V1</td>
<td>On</td>
<td>C5V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>domainC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO9/C3V0</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>dmnj</td>
</tr>
<tr>
<td>IO9/C5V0</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>dmnj</td>
</tr>
<tr>
<td>IO9/C3V1</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>dmnj</td>
</tr>
<tr>
<td>IO9/C3V2</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>dmnj</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO12/C3V0</td>
<td>Off</td>
<td>Unknown</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO12/C5V0</td>
<td>Off</td>
<td>Unknown</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO12/C3V1</td>
<td>Off</td>
<td>Unknown</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO12/C5V1</td>
<td>Off</td>
<td>Unknown</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>IO16/C3V0</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Q</td>
</tr>
<tr>
<td>IO16/C5V0</td>
<td>On</td>
<td>C5V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Q</td>
</tr>
<tr>
<td>IO16/C3V1</td>
<td>On</td>
<td>C3V</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>domainC</td>
</tr>
<tr>
<td>SB1</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>SB2</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>SB3</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB4</td>
<td>On</td>
<td>CPU (COD)</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPCI</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB17</td>
<td>Empty Slot</td>
<td>Available</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPCI+</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>I00</td>
<td>Empty Slot</td>
<td>Available</td>
<td>Assigned</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPCI+</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>I01</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
<tr>
<td>I02</td>
<td>On</td>
<td>MCPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>I03</td>
<td>On</td>
<td>MCPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPCI+</th>
<th>State</th>
<th>Type</th>
<th>Assigned</th>
<th>Unknown</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>I04</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>domainC</td>
</tr>
<tr>
<td>I05</td>
<td>Off</td>
<td>HPCI+</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>I06</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>A</td>
</tr>
</tbody>
</table>
The following example illustrates `showboards` output if you have domain privileges for domains B, J, and R on a Sun Fire 15K system. `showboards` displays information for those boards that are assigned or available to domains B, J, and R. Boards that are assigned to other domains or that do not appear in the available component list for domains B, J, or R are not displayed.

EXAMPLE 4 Listing boards for Domain Admin With Privileges on Domains B, J, and R

```
sc0:sms-user:> showboards
```

<table>
<thead>
<tr>
<th>Location</th>
<th>Pwr</th>
<th>Type</th>
<th>Board Status</th>
<th>Test Status</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB3</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB4</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>SB5</td>
<td>On</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>dmnJ</td>
</tr>
<tr>
<td>SB8</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB9</td>
<td>Off</td>
<td>CPU</td>
<td>Active</td>
<td>Passed</td>
<td>dmnJ</td>
</tr>
<tr>
<td>SB10</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB11</td>
<td>Off</td>
<td>CPU</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB12</td>
<td>Off</td>
<td>CPU</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>SB13</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>SB17</td>
<td>-</td>
<td>Empty Slot</td>
<td>Assigned</td>
<td>-</td>
<td>dmnR</td>
</tr>
<tr>
<td>I00</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>I02</td>
<td>On</td>
<td>MCPU</td>
<td>Active</td>
<td>Passed</td>
<td>engB</td>
</tr>
<tr>
<td>I05</td>
<td>Off</td>
<td>HPCI+</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>I07</td>
<td>On</td>
<td>HPCI</td>
<td>Active</td>
<td>Passed</td>
<td>dmnJ</td>
</tr>
<tr>
<td>I09</td>
<td>Off</td>
<td>HPCI+</td>
<td>Assigned</td>
<td>iPOST</td>
<td>dmnJ</td>
</tr>
<tr>
<td>I10</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>I11</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Failed</td>
<td>engB</td>
</tr>
<tr>
<td>I12</td>
<td>Off</td>
<td>HPCI</td>
<td>Assigned</td>
<td>Unknown</td>
<td>engB</td>
</tr>
<tr>
<td>I13</td>
<td>-</td>
<td>Empty Slot</td>
<td>Available</td>
<td>-</td>
<td>Isolated</td>
</tr>
<tr>
<td>I14</td>
<td>Off</td>
<td>HPCI+</td>
<td>Available</td>
<td>Unknown</td>
<td>Isolated</td>
</tr>
<tr>
<td>I17</td>
<td>-</td>
<td>Empty Slot</td>
<td>Assigned</td>
<td>-</td>
<td>dmnR</td>
</tr>
</tbody>
</table>

In the following example, `showboards` displays output if you have domain privileges on domains B, J, and R on a Sun Fire 15K system. The command shows board information for those DCUs that are assigned or available to the specified domain. DCUs that are assigned to other domains or that do not appear in the specified domain’s available component list are not displayed.
EXAMPLE 5
Listing boards for Domain Administrators for Domain B

```
sc0:sms-user:~$ showboards -d b
Location  Pwr   Type        Board Status  Test Status   Domain
----      ---   ----        ------------  -----------   ------
SB3       On    CPU         Active        Passed        engB
SB4       On    CPU         Active        Passed        engB
SB5       On    CPU         Active        Passed        engB
SB6       -     Empty Slot  Available     -            Isolated
SB8       Off   CPU         Available     Unknown       Isolated
SB8       Off   CPU         Available     Unknown       Isolated
SB10      Off   CPU         Available     Unknown       Isolated
SB11      Off   CPU         Available     Unknown       Isolated
SB12      Off   CPU         Assigned      Unknown       engB
SB13      -     Empty Slot  Available     -            Isolated
IO0       -     Empty Slot  Available     -            Isolated
IO2       On    MCPU        Active        Passed        engB
IO5       Off   HPCI+       Assigned      Unknown       engB
IO6       -     Empty Slot  Available     -            Isolated
IO10      Off   HPCI         Assigned      Unknown       engB
IO11      Off   HPCI         Assigned      Failed        engB
IO12      Off   HPCI         Assigned      Unknown       engB
IO13      -     Empty Slot  Available     -            Isolated
IO14      Off   HPCI+       Available     Unknown       Isolated
```

EXIT STATUS
The following exit values are returned:

0 Successful completion.
1 An invalid domain was specified.
2 An invalid command-line option was specified.
3 An incorrect number of domains was specified.
4 The user does not have valid privileges.
5 An internal error occurred.
6 An error occurred getting board information.

ATTRIBUTES
See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
addtag (1M), setupplatform (1M), showcodusage (1M), showplatform (1M)
NAME
showbus - display the bus configuration of expanders in active domains

SYNOPSIS
showbus

DESCRIPTION
showbus(1M) displays the bus configuration of expanders in active domains. This information defaults to displaying configuration by slot order EX0–EX17.

OPTIONS
The following options are supported:

- \(-h \) Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to \(-h\) is ignored.

- \(-v \) Verbose. Displays all available command information. In addition to expander configuration, the domain, domain keyswitch position, and slot 0 and slot 1 board assignments are displayed.

EXTENDED DESCRIPTION

Group Privileges

Required

You must have platform administrator, operator, or service privileges to display all sets of communicating expanders (SOCX) in the system.

Domain administrators or configurators can display only the SOCX assigned to the domain(s) in which they have privileges.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.
EXAMPLES

EXAMPLE 1 Display Bus Configuration for All Domains

This display is the default for platform administrators. A domain administrator/configurator must have privileges on all domains in order to obtain this display. Otherwise only those domains for which the user has privileges are displayed.

```
sc0:~user:~> showbus
Location     Data  Address  Response  SOCX
----------------------------------------
EX0           CS0   CS1   CS0       0x0001
EX1            UNCONF  UNCONF  UNCONF  UNCONF
EX2            UNCONF  UNCONF  UNCONF  UNCONF
EX3            UNCONF  UNCONF  UNCONF  UNCONF
EX4            BOTH   BOTH   BOTH   0x14010
EX5            UNCONF  UNCONF  UNCONF  UNCONF
EX6            UNCONF  UNCONF  UNCONF  UNCONF
EX7            UNCONF  UNCONF  UNCONF  UNCONF
EX8            UNCONF  UNCONF  UNCONF  UNCONF
EX9            UNCONF  UNCONF  UNCONF  UNCONF
EX10           UNCONF  UNCONF  UNCONF  UNCONF
EX11           UNCONF  UNCONF  UNCONF  UNCONF
EX12           UNCONF  UNCONF  UNCONF  UNCONF
EX13           UNCONF  UNCONF  UNCONF  UNCONF
EX14           BOTH   BOTH   BOTH   0x14010
EX15           UNCONF  UNCONF  UNCONF  UNCONF
EX16           BOTH   BOTH   BOTH   0x14010
EX17           UNCONF  UNCONF  UNCONF  UNCONF
```
EXAMPLE 2 Display Showbus Information for All Domains Using -v

 sc0:~user:~> showbus -v

 SOCX: 0x14010

 Data: BOTH
 Address: BOTH
 Response: BOTH

 Domain:A keyswitch: ON
 Location:EX4 SB4:active IO4 :active
 Location:EX14 IO14:active
 Location:EX16 IO16:active

 SOCX: 0x00001

 Data: CS0
 Address: CSL
 Response: CS0

 Domain:B keyswitch: ON
 Location:EX0 SB0:active IO0:active

 UNCONFIGURED

 Domain: A keyswitch: ON
 Location:EX6 SB6:unknown

EXIT STATUS The following exit values are returned:

 0 Successful completion.
 >0 An error occurred.

ATTRIBUTES See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO setbus (1M)
NAME

showcmdsync - display the current command synchronization list

SYNOPSIS

showcmdsync [-v]

showcmdsync -h

DESCRIPTION

showcmdsync displays the command synchronization list to be used by the spare system controller (SC) to determine which commands or scripts need to be restarted after an SC failover.

The command synchronization list is displayed in the format Descriptor, Identifier, Cmd, where:

Descriptor Specifies the command synchronization descriptor that represents a particular script.

Identifier Identifies a marker point in the script from which the script can be resumed on the new main SC after an automatic failover occurs. The identifier -1 indicates that the script does not have any marker points.

Cmd Indicates the name of the script to be restarted.

OPTIONS

The following options are supported:

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-v Verbose. Displays all available command information.

EXTENDED DESCRIPTION

Group Privileges Required

You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Displaying a Command Synchronization List

```bash
sc0:~:> showcmdsync
DESCRIPTOR IDENTIFIER CMD
0 -1 c1 a1 a2
```
EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

ATTRIBUTES

See `attributes (5)` for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO `cancelcmdsync (1M)`, `initcmdsync (1M)`, `runcmdsync (1M)`, `savecmdsync (1M)`
NAME
showcodlicense - display the current Capacity on Demand (COD) right-to-use (RTU) licenses stored in the COD license database

SYNOPSIS
showcodlicense
[-r] [-v]
showcodlicense -h

DESCRIPTION
showcodlicense(1M) displays COD license information stored in the COD license database.

OPTIONS
The following options are supported:

- h Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

- r Displays the license information in the raw license-signature format, as stored in the COD license database.

- v Verbose. Displays both the formatted license information and raw license-signature data.

EXTENDED DESCRIPTION
The showcodlicense command displays the following COD information:

<table>
<thead>
<tr>
<th>Description</th>
<th>Type of resource (processor).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lic Ver</td>
<td>Version number of the license, which is always set to 01.</td>
</tr>
<tr>
<td>Expiration</td>
<td>None.</td>
</tr>
<tr>
<td>Count</td>
<td>Number of right-to-use licenses granted for the given resource.</td>
</tr>
<tr>
<td>Status</td>
<td>GOOD, which indicates that the given resource is valid, or EXPIRED, which indicates that the resource license is no longer valid.</td>
</tr>
<tr>
<td>Cls</td>
<td>Not supported. Tier class value is always set to 1.</td>
</tr>
<tr>
<td>Tier Num</td>
<td>Not supported. Tier number value is always set to 1.</td>
</tr>
<tr>
<td>Req</td>
<td>Not supported. Required number of lower-tier licenses is always set to 0.</td>
</tr>
</tbody>
</table>

Group Privileges Required
You must have platform administrator or platform operator group privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.
The following examples show the COD license information displayed:

EXAMPLE 1 Displaying Formatted License Data

```bash
sc0:sms-user:~> showcodlicense

<table>
<thead>
<tr>
<th>Description</th>
<th>Ver</th>
<th>Expiration</th>
<th>Count</th>
<th>Status</th>
<th>Cls</th>
<th>Num</th>
<th>Req</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC</td>
<td>01</td>
<td>NONE</td>
<td>16</td>
<td>GOOD</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

EXAMPLE 2 Displaying Raw License Data

```bash
sc0:sms-user:~> showcodlicense -r

01:5014936C37048:03001:0201010100:16:00000000:RKQhd8zKKnTtwvX5JDJ1ZNQ
```

EXAMPLE 3 Displaying Formatted and Raw License Data

```bash
sc0:sms-user:~> showcodlicense -v

<table>
<thead>
<tr>
<th>Description</th>
<th>Ver</th>
<th>Expiration</th>
<th>Count</th>
<th>Status</th>
<th>Cls</th>
<th>Num</th>
<th>Req</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC</td>
<td>01</td>
<td>NONE</td>
<td>16</td>
<td>GOOD</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

01:5014936C37048:03001:0201010100:16:00000000:RKQhd8zKKnTtwvX5JDJ1ZNQ
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 Invalid usage.
2 The user does not have valid privileges.
>2 An internal error occurred. For further information see /var/opt/SUNWSMS/adm/platform/messages.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

addcodlicense(1M), codd(1M), deletecodlicense(1M), showcodusage(1M)
NAME
showcodusage - display the current usage statistics for Capacity on Demand (COD) resources

SYNOPSIS
showcodusage [-v] [-p resource|domains]
showcodusage -h

DESCRIPTION
showcodusage(1M) shows current information about COD right-to-use (RTU) licenses in use. By default, this command displays a summary of COD RTU licenses used and installed, along with the current state of each resource.

OPTIONS
The following options are supported:

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-p domains Displays the license usage for each domain. The statistics reported include the number of COD RTU licenses used by the domain, resources assigned to the domain, and COD RTU licenses reserved for the domain.

-p resource Displays license usage by resource type.

-v Verbose. Displays all available COD usage information, including COD RTU license use for both the system and its domains.

EXTENDED
DESCRIPTION
The showcodusage -p resource command displays the following COD usage information for the system:

<table>
<thead>
<tr>
<th>Resource</th>
<th>In Use</th>
<th>Installed</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifies the type of COD resources available (processors).</td>
<td>Specifies the number of COD CPUs currently used in the system.</td>
<td>Specifies the number of COD CPUs installed in the system.</td>
<td>Specifies the number of COD RTU licenses installed.</td>
</tr>
</tbody>
</table>
The `showcodusage -p domain` command displays the following COD usage information for each domain:

<table>
<thead>
<tr>
<th>Status</th>
<th>Specifies one of the following COD attributes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Indicates that there are sufficient licenses for the COD CPUs in use. Also specifies the number of remaining COD resources available and the number of any instant access CPUs (headroom) available.</td>
</tr>
<tr>
<td>HEADROOM</td>
<td>The number of instant access COD CPUs in use.</td>
</tr>
<tr>
<td>Violation</td>
<td>Indicates a COD RTU license violation exists. Specifies the number of COD CPUs in use that exceeds the number of COD RTU licenses available. This situation can occur when you force the deletion of a COD RTU license key from the COD RTU license database, but the COD CPU associated with the license key is still in use.</td>
</tr>
</tbody>
</table>

The `showcodusage -p domain` command displays the following COD usage information for each domain:

<table>
<thead>
<tr>
<th>Domain/Resource</th>
<th>Identifies COD RTU resource (processor) for each domain. An Unused processor is a COD CPU that has not yet been assigned to a domain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Use</td>
<td>Specifies the number of COD CPUs currently used in the domain.</td>
</tr>
<tr>
<td>Installed</td>
<td>Specifies the number of COD CPU resources installed in the domain.</td>
</tr>
<tr>
<td>Reserved</td>
<td>Specifies the number of COD RTU licenses allocated to the domain.</td>
</tr>
<tr>
<td>Status</td>
<td>Contains one of the following when the <code>-v</code> option is specified:</td>
</tr>
<tr>
<td>Licensed</td>
<td>The domain COD CPU has a COD RTU license and is in use.</td>
</tr>
<tr>
<td>Unlicensed</td>
<td>A COD RTU license for the domain COD CPU could not be obtained and it is not in use.</td>
</tr>
<tr>
<td>Unused</td>
<td>The COD CPU is not in use.</td>
</tr>
</tbody>
</table>
Group Privileges Required

You must have platform administrator, platform operator, or domain administrator group privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

Users with platform administrator privileges can view both resource and domain usage summaries. Users with domain administrator privileges can view only the domain usage summaries for which they have privileges, and a report of unused licenses.

EXAMPLE 1 Displaying COD Usage by Resource

```
sco:sms-user:~> showcodusage -p resource
```

<table>
<thead>
<tr>
<th>Resource</th>
<th>In Use</th>
<th>Installed</th>
<th>Licensed</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>OK: 12 available</td>
</tr>
</tbody>
</table>

EXAMPLE 2 Displaying COD Usage by Domain

```
sco:sms-user:~> showcodusage -p domains
```

<table>
<thead>
<tr>
<th>Domain/Resource</th>
<th>In Use</th>
<th>Installed</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D - PROC</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>E - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unused - PROC</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>
EXAMPLE 3 Displaying COD Usage by Resource and Domain

```
sc0:~$ showcodusage -v
```

<table>
<thead>
<tr>
<th>Resource</th>
<th>In Use</th>
<th>Installed</th>
<th>Licensed</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>OK: 12 available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain/Resource</th>
<th>In Use</th>
<th>Installed</th>
<th>Reserved</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>B - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB6 - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB6/P0</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB6/P1</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB6/P2</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB6/P3</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>C - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB12 - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB12/P0</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB12/P1</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB12/P2</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB12/P3</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>D - PROC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB4 - PROC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB4/P0</td>
<td></td>
<td></td>
<td></td>
<td>Licensed</td>
</tr>
<tr>
<td>SB4/P1</td>
<td></td>
<td></td>
<td></td>
<td>Licensed</td>
</tr>
<tr>
<td>SB4/P2</td>
<td></td>
<td></td>
<td></td>
<td>Licensed</td>
</tr>
<tr>
<td>SB4/P3</td>
<td></td>
<td></td>
<td></td>
<td>Licensed</td>
</tr>
<tr>
<td>SB16 - PROC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>SB16/P0</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB16/P1</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB16/P2</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>SB16/P3</td>
<td></td>
<td></td>
<td></td>
<td>Unused</td>
</tr>
<tr>
<td>E - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>F - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>G - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>H - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>I - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>J - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>K - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>L - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>M - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>N - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>O - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>P - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>Q - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>R - PROC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unused</td>
</tr>
<tr>
<td>Unused - PROC</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>Unused</td>
</tr>
</tbody>
</table>

EXIT STATUS

The following exit values are returned:

- **0**: Successful completion.
- **1**: User cancel.
- **2**: Invalid usage.
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

showcodlicense (1M), codd (1M)
NAME
showcomponent - display the blacklist status for a component

SYNOPSIS
showcomponent [-a | -d domain_indicator | -v] [location] ...
showcomponent -h

DESCRIPTION
showcomponent(1M) indicates whether the specified component is listed in the platform, domain, or ASR blacklist file.

If neither the -a nor the -d option is specified, showcomponent displays the platform blacklist. If no location is specified, showcomponent displays all components in the specified blacklist.

The blacklist is an internal file that lists components that POST cannot use at boot time. POST reads the blacklist file(s) before preparing the system for booting, and passes along to OpenBoot PROM a list of only those components that have been successfully tested; those on the blacklist are excluded.

SMS supports three blacklists: one for domain boards, one for platform boards, and the internal automatic system recovery (ASR) blacklist.

For more information on the use and editing of platform and domain blacklists refer to Chapter 6, “Domain Control,” in the System Management Services (SMS) 1.3 Administrator Guide.

OPTIONS
The following options are supported:

- a
 Specifies the ASR blacklist.

- d domain_indicator
 Specifies the domain using one of the following:

 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

 domain_tag – Name assigned to a domain using addtag(1M).

- h
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

- v
 Verbose. Displays all available command information.
OPERANDS

The following operands are supported:

`location` List of component locations, separated by forward slashes and comprised of:

- `board_loc/proc/bank/logical_bank`
- `board_loc/proc/bank/all_dimms_on_that_bank`
- `board_loc/proc/all_banks_on_that_proc`
- `board_loc/all_banks_on_that_board`
- `board_loc/proc`
- `board_loc/procs`
- `board_loc/cassette`
- `board_loc/bus`
- `board_loc/paroli_link`

Multiple `location` arguments are permitted, separated by a space.

The `location` forms are optional and are used to specify particular components on boards in specific locations.

For example, the `location` SB5/P0/B1/L1 indicates Logical Bank 1 of Bank 1 on Processor 0 at SB5.

The SB0/PP1 `location` indicates Processor Pair 1 at SB0.

The CS0/ABUS1 `location` indicates address bus 1 at CS0.

The following `board_loc` forms are accepted:

Sun Fire 15K, Sun Fire 12K

- `SB(0...17), SB(0...8)`
- `IO(0...17), IO(0...8)`
- `CS(0|1), CS(0|1)`
- `EX(0...17), EX(0...8)`
Processor locations indicate single processors or processor pairs.

There are four possible processors on a CPU/memory board. Processor pairs on that board are procs 0 and 1, and procs 2 and 3.

The MaxCPU has two processors: procs 0 and 1, and only one proc pair (PP0). Using PP1 for this board causes disablecomponent to exit and display an error message.

The following proc forms are accepted:

P(0...3) PP(0|1)

The following bank forms are accepted:

B(0|1)

The following logical_bank forms are accepted:

L(0|1)

The following all_dimms_on_that_bank forms are accepted:

D

The following all_banks_on_that_proc forms are accepted:

B

The following all_banks_on_that_board forms are accepted:

B

The following paroli_link forms are accepted:

PAR(0|1)

The hsPCI assemblies contain hot-swappable cassettes.

The following hsPCI forms are accepted:

C(3|5)V(0|1)

The hsPCI+ assemblies contain hot-swappable cassettes.

The following hsPCI+ forms are accepted:

C3V(0|1|2) and C5V0
EXTENDED DESCRIPTION

Group Privileges Required

You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command. If you have domain privileges you can run this command only on the domain for which you have privileges.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Displaying Whether SB0 is ASR Blacklisted

```bash
sc0:sms-user:~> showcomponent -a SB0
Component SB0 is disabled: #High Voltage
```

EXAMPLE 2 Displaying Whether Four Boards/Components in Domain B Are Blacklisted

```bash
sc0:sms-user:~> showcomponent -dB IO4/PP0 SB5 IO6/C5V0 EX7/ABUS0
Component IO4/PP0 is disabled: #High temp
Component SB5 is disabled: <no reason given>
Component IO6/C5V0 is NOT disabled.
Component EX7/ABUS0 is NOT disabled.
```

EXAMPLE 3 Displaying Whether the Logical Bank on IO7 in Domain B Is Blacklisted

```bash
sc0:sms-user:~> showcomponent -dB IO7/P0/B1/L0
Component IO7/P0/B1/L0 is disabled: <no reason given>
```

EXAMPLE 4 Displaying All Platform-Blacklisted Components

```bash
sc0:sms-user:~> showcomponent
Component SB0 is disabled: #High temp
Component SB3 is disabled:
Component IO2 is disabled. <no reason given>
```

EXAMPLE 5 Displaying All Domain B Blacklisted Components

```bash
sc0:sms-user:~> showcomponent -dB
Component IO4/PP0 is disabled: #High temp
Component SB5 is disabled: <no reason given>
```
EXAMPLE 6 Displaying All ASR-Blacklisted Components

 sc0:sms-user:~> showcomponent -a
 Component SB0 is disabled: #High temp

EXIT STATUS
The following exit values are returned:

 0 Successful completion.
 >0 An error occurred.

FILES
The following files are used by this command.

/etc/opt/SUNWSMS/config/asr/blacklist List of components excluded by esmd.
/etc/opt/SUNWSMS/config/platform/blacklist List of platform components excluded.
/etc/opt/SUNWSMS/config/domain_id/blacklist List of domain components excluded.

Note — The ASR blacklist file is created and used internally and should not be edited manually.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO enablecomponent(1M), disablecomponent(1M), esmd(1M)
NAME

showdatasync - display the status of system controller (SC) data synchronization for failover

SYNOPSIS

showdatasync [-l|\-Q] [-v]
showdatasync \-h

DESCRIPTION

showdatasync provides the current status of files propagated (copied) from the main SC to its spare. Data propagation synchronizes data on the spare SC with data on the main SC, so that the spare SC is current with the main SC if an SC failover occurs.

OPTIONS

The following options are supported:

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

-l Lists the files in the current data propagation list. For details on the information displayed see the EXTENDED DESCRIPTION section.

-Q Lists the files queued for propagation. Each file name includes the absolute path to the file.

-v Verbose. Displays all available command information.

EXTENDED DESCRIPTION

This section describes the information displayed by the showdatasync command.

If you do not specify an option with the showdatasync command, the following information is displayed:

File Propagation Status:
Active File:
Queued files:
where:

File Propagation Status

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Indicates that the data synchronization process is enabled and functioning normally.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Indicates that the data synchronization process has been disabled because SC failover was disabled.</td>
</tr>
<tr>
<td>Failed</td>
<td>Indicates that the data synchronization process cannot currently propagate files to the spare SC.</td>
</tr>
</tbody>
</table>

Active File Displays either the absolute path of the file currently being propagated or a dash (-) indicating that the link is idle.

Queued files Specifies the number of files to be propagated but not yet processed.

If you specify the -l option with the showdatasync command, each entry in the data propagation list is displayed in the format:

```
time propagated interval file
```

where:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Indicates the last time that the file was propagated from the main SC to the spare.</td>
</tr>
<tr>
<td>interval</td>
<td>Specifies the interval, in minutes, between checks for file modification. The default interval is 60 minutes.</td>
</tr>
<tr>
<td>filename</td>
<td>Provides the absolute path and name of the propagated file.</td>
</tr>
</tbody>
</table>

Group Privileges Required

You must have platform administrator, platform operator, platform service, domain administrator, or domain configurator privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Displaying Data Synchronization Status

```
sc0:sms-user:$ showdatasync
File Propagation State: ACTIVE
Active File: -
Queued files: 0
```
EXAMPLE 2 Displaying Data Synchronization List

```
sc0:sm-user> showdatasync -l
TIME PROPAGATED INTERVAL FILE
Mar 23 16:00:00 60 /tmp/t1
```

EXAMPLE 3 Displaying Data Synchronization Queue

```
sc0:sm-user> showdatasync -Q
FILE
/tmp/t1
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

setdatasync(1M)
showdate

NAME
showdate - display the date and time for the system controller (SC) or a domain

SYNOPSIS
```
showdate [-d domain_indicator] [-u] [-v ]
```

DESCRIPTION
showdate (1M) displays the SC’s current date and time. Optionally, showdate displays domain time of day.

OPTIONS
The following options are supported:

- `-d domain_indicator`
 Specifies the domain using one of the following:

 `domain_id` – ID for a domain. Valid `domain_ids` are A–R and are not case sensitive.

 `domain_tag` – Name assigned to a domain using `addtag`(1M).

- `-h`
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- `-u`
 Interprets and displays the time using Greenwich Mean Time (GMT). The default is the local time zone.

- `-v`
 Verbose. Displays all available command information.

EXTENDED DESCRIPTION

Group Privileges Required
You must have platform administrator, platform operator, or platform service privileges to display the date on the SC. You must have domain administrator or domain configurator privileges for the specified domain to display the domain date.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

EXAMPLE 1 Showing the Current Local Date in Pacific Standard Time

```
sc0:smtp-user:~> showdate
```

EXAMPLE 2 Showing the Current Date Using GMT

```
sc0:smtp-user:~> showdate -u
```
EXAMPLE 3 Showing the Current Local Date on Domain A in Pacific Standard Time

 sc0:sms-user:> showdate -d a
 Domain a: Sat Feb 2 15:33:20 PST 2002

EXAMPLE 4 Showing the Current Date on Domain A Using GMT

 sc0:sms-user:> showdate -d a -u
 Domain a: Sat Feb 2 23:33:20 GMT 2002

EXIT STATUS The following exit values are returned:

 0 Successful completion.
 >0 An error occurred.

ATTRIBUTES See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addtag (1M), setdate (1M)
NAME

showdevices - display system board devices and resource usage information

SYNOPSIS

- For basic usage:
  ```
  showdevices [-v] [-p bydevice|byboard|query|force] location...
  ```

- To gather device information from specific domains:
  ```
  showdevices [-v] [-p bydevice|byboard] -d domain_indicator
  ```

- For help:
  ```
  showdevices -h
  ```

DESCRIPTION

showdevices(1M) displays the configured physical devices on system boards and the resources made available by these devices. Usage information is provided by applications and subsystems that are actively managing system resources. You can perform offline queries of managed resources to display the predicted impact of a system board DR operation. Unmanaged devices are not displayed by default; you must use the `-v` option.

showdevices gathers device information from one or more Sun Fire 15K/12K domains. The command uses `dca(1M)` as a proxy to gather the information from the domains.

OPTIONS

The following options are supported.

- `-d domain_indicator`
 - Specifies the domain using one of the following:
 - `domain_id` - ID for a domain. Valid `domain_ids` are A–R and are not case sensitive.
 - `domain_tag` - Name assigned to a domain using `addtag(1M)`.

- `-h`
 - Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to `-h` is ignored.
showdevices(1M) System Administration

-p Displays specific reports.

Valid arguments for -p are:

bydevice List output is grouped by device type (CPU, memory, IO). This is the default.

byboard List output is grouped by system board. Default output is in tabular format grouped by device type (CPU, memory, IO).

query List output is the result of a query to predict the effect of removing a system board

force Forced offline query. Resource consumers are requested to apply force semantics in predicting whether they are able to relinquish usage of the system resources. (see cfgadm(1M)).

Note – The query and force arguments are not valid with the -d option.

-v Displays all I/O devices. Includes both managed and unmanaged I/O devices. Managed devices export actively managed resources. Unmanaged devices are physically configured but do not export actively managed resources. No usage information is available for unmanaged devices.

OPERANDS The following operands are supported:

location List of board locations, separated by a space. Multiple location arguments are permitted.

The following location forms are accepted:

Sun Fire 15K, Sun Fire 12K
SB(0...17), SB(0...8)
IO(0...17), IO(0...8)
Showdevices fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>Tag or identifier</td>
</tr>
<tr>
<td>board</td>
<td>Board identifier</td>
</tr>
<tr>
<td>CPU:</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>Processor Id</td>
</tr>
<tr>
<td>state</td>
<td>Processor state</td>
</tr>
<tr>
<td>speed</td>
<td>CPU frequency in MHz</td>
</tr>
<tr>
<td>ecache</td>
<td>CPU ecache size in MB</td>
</tr>
<tr>
<td>Memory:</td>
<td></td>
</tr>
<tr>
<td>board mem</td>
<td>Board memory size in MB</td>
</tr>
<tr>
<td>perm mem</td>
<td>Amount of nonrelocatable memory on board in MB</td>
</tr>
<tr>
<td>base address</td>
<td>Base physical address of memory on board</td>
</tr>
<tr>
<td>domain mem</td>
<td>System memory size in MB</td>
</tr>
<tr>
<td>board</td>
<td>Board identifier</td>
</tr>
</tbody>
</table>

If a memory drain is in progress, the following is available:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>target board</td>
<td>Target board identifier</td>
</tr>
<tr>
<td>deleted</td>
<td>Amount of memory already deleted in MB</td>
</tr>
<tr>
<td>remaining</td>
<td>Amount of memory remaining to be deleted in MB</td>
</tr>
</tbody>
</table>

I/O devices:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>I/O device instance name</td>
</tr>
<tr>
<td>resource</td>
<td>Managed resource name</td>
</tr>
<tr>
<td>usage</td>
<td>Description of resource usage instance</td>
</tr>
<tr>
<td>query</td>
<td>Result of offline query of resources</td>
</tr>
</tbody>
</table>

Group Privileges Required

You must have domain administrator/configurator privileges on all boards specified to run this command.
Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLE 1 Displaying devices for System Board IO1

```
sc0:sms-user:> showdevices IO1
IO Devices
--------
domain  location device  resource           usage
A       IO1      sd3     /dev/dsk/c0t3d0s0  mounted filesystem "/"
A       IO1      sd3     /dev/dsk/c0t3s0s1  dump device (swap)
A       IO1      sd3     /dev/dsk/c0t3s0s1  swap area
A       IO1      sd3     /dev/dsk/c0t3d0s3  mounted filesystem "/var"
A       IO1      sd3     /var/run           mounted filesystem "/var/run"
```

EXAMPLE 2 Displaying devices for Domain A

```
sc0:sms-user:> showdevices -v -d A
CPU
----
domain  location  id     state    speed  ecache
A       C1        40     online   400    4
A       C1        41     online   400    4
A       C1        42     online   400    4
A       C1        43     online   400    4
A       C2        55     online   400    4
A       C2        56     online   400    4
A       C2        57     online   400    4
A       C2        58     online   400    4

Memory
drain in progress:
--------
board  perm   base      domain target  deleted  remaining
----------
domain location mem MB mem MB address mem MB board mem MB mem MB
A       C1    2048  723   0x600000   4096    C2      250       1500
A       C2    2048  0   0x200000   4096

IO Devices
--------
domain location device resource           usage
A       IO1      sd0
A       IO1      sd1
A       IO1      sd2
A       IO1      sd3     /dev/dsk/c0t3d0s0  mounted filesystem "/
A       IO1      sd3     /dev/dsk/c0t3s0s1  dump device (swap)
A       IO1      sd3     /dev/dsk/c0t3s0s1  swap area
A       IO1      sd3     /dev/dsk/c0t3d0s3  mounted filesystem "/var"
A       IO1      sd3     /var/run           mounted filesystem "/var/run"
A       IO1      sd4
A       IO1      sd5
A       IO1      sd6
```
EXAMPLE 3 Displaying Offline Query Result for System Board IO1

```
sc0:sms-user:> showdevices -p query IO1
```

Location IO1 - Domain A

```
-------------------------------
device  resource               query  usage/reason
sd3    /dev/dsk/c0t3d0s0      fail   mounted filesystem "/"
sd3    /dev/dsk/c0t3s0s1      fail   dump device (swap)
sd3    /dev/dsk/c0t3s0s1      fail   swap area
sd3    /dev/dsk/c0t3d0s3      fail   mounted filesystem "/var"
sd3    /var/run                -     mounted filesystem "/var/run"
```

The query field shows the predicted result of removing the resource. The failure of the mounted file system "/var" to offline prevents the query from reaching the layered mount point "/var/run".

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 An invalid domain was specified.
2 A command line error such as an invalid option was detected.
3 More than one domain was specified.
4 An error occurred communicating with pcd.
5 An error occurred communicating with a domain.
6 An error occurred handling device information.
7 An internal error such as failed memory allocation occurred.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSOp</td>
</tr>
</tbody>
</table>

SEE ALSO

addtag (1M), dca (1M), pcd (1M)
showenvironment(1M) displays the environmental data (temperatures, voltages, and so on). If a domain domain_id or domain_tag is specified, environmental data relating to the domain is displayed, providing that the user has domain privileges for that domain. If a domain is not specified, all domain data permissible to the user is displayed.

Note – Only domain configuration units (DCUs) (for example, CPU or I/O) belong to a domain. Displaying environmental data relating to such things as fan trays, bulk power, or other boards (exb, csb) requires platform privileges. You can also specify individual reports for temperatures, voltages, currents, bulk power status, and fan tray status; or faults with the -p option. If the -p option is not present, all reports are shown.

The following options are supported:

- `domain_indicator` Specifies the domain using one of the following:
 - `domain_id` – ID for a domain. Valid domain_ids are A–R and are not case sensitive.
 - `domain_tag` – Name assigned to a domain using addtag(1M).

- `h` Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.
EXTENDED DESCRIPTION

The Unit field contains one of three measurements:

C Degrees Celsius
V Volts
A Amperes

The Status field can contain one of 16 states.

Temperature readings:

OVERLIMIT Over limit.
HIGH_CRIT High critical.
HIGH_WARN High warning.
LOW_CRIT Low critical.
LOW_WARN Low warning.
OK Optimum.
INVALID Reading failure.

Display specific reports. Multiple report arguments are separated by commas.

Valid reports are:

temps List output is grouped by temperature.
volts List output is grouped by voltage.
currents List output is grouped by current
fans List output is grouped by fans.
powers List output is grouped by bulk power supplies.

List output is of all component readings not within the optimum thresholds.

Note – The faults argument cannot be used in conjunction with any other report argument.

Verbose. Displays all available command information.
Voltage readings:

HIGH_MAX High maximum.
LOW_MIN Low minimum.
OK Acceptable.
INVALID Reading failure.

Current readings:

OK The difference between both companion component readings are within tolerance.
BAD The difference between both companion component readings are out of tolerance.
INVALID Reading failure.

Miscellaneous:

ON Power on.
OFF Power off.
PRESENCE A HotPlug card is present in slot 1.
FAIL Failure state.
HIGH Set to high speed.
NORMAL Set to normal speed.
INVALID Reading failure.
AGE Age of the reading.
UNKNOWN Unknown power/board type.

Group Privileges Required

Only domain information for which you have domain administrator or configurator privileges for is displayed. Otherwise, you must have platform administrator, operator or service privileges.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Displaying Environmental Data for All Domains on a Sun Fire 15K System.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DEVICE</th>
<th>SENSOR</th>
<th>VALUE</th>
<th>UNIT</th>
<th>AGE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC at SC0</td>
<td>max1617a</td>
<td>RIO Temp</td>
<td>38.00</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>max1617a</td>
<td>IOA Temp</td>
<td>32.00</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>PS0 Temp</td>
<td>46.49</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Component</td>
<td>Measurement Type</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Result 1</td>
<td>Result 2</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>PS1 Temp</td>
<td>43.26</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>sbbc</td>
<td>SBBC Temp</td>
<td>45.83</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>cih</td>
<td>CBH Temp</td>
<td>50.49</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SCPER at SCPER0</td>
<td>max1617a</td>
<td>AMB 0 Temp</td>
<td>26.00</td>
<td>C</td>
<td>35.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SCPER at SCPER0</td>
<td>max1617a</td>
<td>AMB 1 Temp</td>
<td>25.00</td>
<td>C</td>
<td>35.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.48</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.28</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>3.28</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>4.99</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>+12.0 VDC</td>
<td>11.95</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>-12.0 VDC</td>
<td>-12.01</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>1.5 CVT0 VDC</td>
<td>1.48</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>1.5 CVT1 VDC</td>
<td>1.48</td>
<td>V</td>
<td>37.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>3.28</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>5.02</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>5.02</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>5.02</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>5.0 V_PS0 VDC</td>
<td>6.44</td>
<td>A</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC0</td>
<td>pcf8591</td>
<td>5.0 V_PS1 VDC</td>
<td>5.71</td>
<td>A</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>max1617a</td>
<td>AMB Top Temp</td>
<td>30.00</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>max1617a</td>
<td>AMB Bot Temp</td>
<td>25.00</td>
<td>C</td>
<td>35.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.48</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.28</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>3.28</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>4.99</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>+12.0 VDC</td>
<td>11.95</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>-12.0 VDC</td>
<td>-12.01</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>1.5 CVT0 VDC</td>
<td>1.88</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>1.5 CVT1 VDC</td>
<td>1.87</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SCPER at SCPER1</td>
<td>max1617a</td>
<td>AMB 0 Temp</td>
<td>18.00</td>
<td>C</td>
<td>35.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SCPER at SCPER1</td>
<td>max1617a</td>
<td>AMB 1 Temp</td>
<td>18.00</td>
<td>C</td>
<td>35.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.48</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>3.28</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>4.99</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>+12.0 VDC</td>
<td>11.95</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>SC at SC1</td>
<td>pcf8591</td>
<td>-12.0 VDC</td>
<td>-12.01</td>
<td>V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CSB at CS0</td>
<td>max1617a</td>
<td>AMB Top Temp</td>
<td>30.00</td>
<td>C</td>
<td>29.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CSB at CS0</td>
<td>max1617a</td>
<td>AMB Bot Temp</td>
<td>31.16</td>
<td>C</td>
<td>29.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CSB at CS0</td>
<td>sbbc</td>
<td>SBBC Temp</td>
<td>39.16</td>
<td>C</td>
<td>29.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CSB at CS1</td>
<td>max1617a</td>
<td>AMB Top Temp</td>
<td>24.00</td>
<td>C</td>
<td>29.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CSB at CS1</td>
<td>max1617a</td>
<td>AMB Bot Temp</td>
<td>26.00</td>
<td>C</td>
<td>29.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>dmx0</td>
<td>DMX0 Temp</td>
<td>33.91</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>dmx1</td>
<td>DMX1 Temp</td>
<td>33.95</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>dmx3</td>
<td>DMX3 Temp</td>
<td>29.92</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>dmx5</td>
<td>DMX5 Temp</td>
<td>23.98</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>amx0</td>
<td>AMX0 Temp</td>
<td>37.32</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>amx1</td>
<td>AMX1 Temp</td>
<td>35.43</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>rmx</td>
<td>RMX Temp</td>
<td>37.47</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP0</td>
<td>darb</td>
<td>DARB Temp</td>
<td>31.85</td>
<td>C</td>
<td>32.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP1</td>
<td>dmx0</td>
<td>DMX0 Temp</td>
<td>37.26</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP1</td>
<td>dmx1</td>
<td>DMX1 Temp</td>
<td>37.26</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>Location</td>
<td>Description</td>
<td>Value</td>
<td>Unit</td>
<td>Time</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>CP at CP1</td>
<td>dmx3</td>
<td>DMX3 Temp</td>
<td>31.14</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP1</td>
<td>dmx5</td>
<td>DMX5 Temp</td>
<td>29.12</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP1</td>
<td>amx0</td>
<td>AMX0 Temp</td>
<td>36.60</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP1</td>
<td>amx1</td>
<td>AMX1 Temp</td>
<td>38.77</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CP at CP1</td>
<td>rmx</td>
<td>RMX Temp</td>
<td>37.16</td>
<td>C</td>
<td>30.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>max1617a</td>
<td>AMB Top Temp</td>
<td>38.00</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>max1617</td>
<td>AMB Bot Temp</td>
<td>35.00</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>sbbc</td>
<td>SBBC Temp</td>
<td>50.49</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>sbbc</td>
<td>SDIM Temp</td>
<td>42.91</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>sbbc</td>
<td>SDISC Temp</td>
<td>48.83</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>sdise</td>
<td>SDISE Temp</td>
<td>38.67</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.51</td>
<td>V</td>
<td>36.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX1</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.30</td>
<td>V</td>
<td>36.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>max1617a</td>
<td>PROC 0 Temp</td>
<td>64.00</td>
<td>C</td>
<td>0.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>max1617a</td>
<td>PROC 1 Temp</td>
<td>69.00</td>
<td>C</td>
<td>0.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>max1617a</td>
<td>PROC 2 Temp</td>
<td>69.00</td>
<td>C</td>
<td>0.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>max1617a</td>
<td>PROC 3 Temp</td>
<td>67.00</td>
<td>C</td>
<td>0.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>sbbc0</td>
<td>SBBCC0 Temp</td>
<td>60.49</td>
<td>C</td>
<td>0.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>sbbc1</td>
<td>SBBCC1 Temp</td>
<td>69.82</td>
<td>C</td>
<td>0.7 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.51</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.30</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>pcf8591</td>
<td>Core 0 Volt</td>
<td>1.64</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>pcf8591</td>
<td>Core 1 Volt</td>
<td>1.65</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>pcf8591</td>
<td>Core 2 Volt</td>
<td>1.64</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB1</td>
<td>pcf8591</td>
<td>Core 3 Volt</td>
<td>1.64</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>pcf8591</td>
<td>P50 Temp</td>
<td>48.10</td>
<td>C</td>
<td>43.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>sdc</td>
<td>SDC0 Temp</td>
<td>69.16</td>
<td>C</td>
<td>43.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>ar</td>
<td>AR0 Temp</td>
<td>63.16</td>
<td>C</td>
<td>43.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>dx0</td>
<td>DX0 Temp</td>
<td>62.49</td>
<td>C</td>
<td>43.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>dx1</td>
<td>DX1 Temp</td>
<td>62.49</td>
<td>C</td>
<td>43.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>sdise</td>
<td>SDISE Temp</td>
<td>38.67</td>
<td>C</td>
<td>43.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.49</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.30</td>
<td>V</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>pcf8591</td>
<td>3.3 V_PS0</td>
<td>10.25</td>
<td>A</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO1</td>
<td>pcf8591</td>
<td>3.3 V_PS1</td>
<td>10.25</td>
<td>A</td>
<td>37.3 sec</td>
<td>OK</td>
</tr>
</tbody>
</table>

Schizo0.0
- max1617a Schizo 0 Slot 0 N/A N/A N/A PRESENCE
- max1617a Schizo 1 Slot 0 N/A N/A N/A PRESENCE
- max1617a Schizo 0 Slot 1 N/A N/A N/A PRESENCE

Schizo1.0
- max1617a Schizo 1 Slot 0 N/A N/A N/A PRESENCE

Schizo0.1
- max1617a Schizo 0 Slot 1 N/A N/A N/A PRESENCE

Schizo1.1
- max1617a Schizo 1 Slot 1 N/A N/A N/A PRESENCE

Last Modified 07 December 2002

SMS 1.3

219
<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Description</th>
<th>Value</th>
<th>Temperature</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXB at EX3</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.51 V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX3</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.30 V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX3</td>
<td>pcf8591</td>
<td>2.5 VDC</td>
<td>2.51 V</td>
<td>37.0 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>max1617a</td>
<td>PROC 0 Temp</td>
<td>62.00 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>max1617a</td>
<td>PROC 1 Temp</td>
<td>67.00 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>max1617a</td>
<td>PROC 2 Temp</td>
<td>66.00 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>max1617a</td>
<td>PROC 3 Temp</td>
<td>65.00 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>sdc0</td>
<td>SDC0 Temp</td>
<td>74.49 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>dx0</td>
<td>DX0 Temp</td>
<td>65.16 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>dx1</td>
<td>DX1 Temp</td>
<td>55.83 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>dx2</td>
<td>DX2 Temp</td>
<td>61.82 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>dx3</td>
<td>DX3 Temp</td>
<td>55.83 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>sbbc0</td>
<td>SBBCC0 Temp</td>
<td>59.83 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>sbbc1</td>
<td>SBBCL Temp</td>
<td>56.49 C</td>
<td>3.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.51 V</td>
<td>37.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.32 V</td>
<td>37.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>pcf8591</td>
<td>Core 0 Volt</td>
<td>1.64 V</td>
<td>37.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>pcf8591</td>
<td>Core 1 Volt</td>
<td>1.64 V</td>
<td>37.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>pcf8591</td>
<td>Core 2 Volt</td>
<td>1.65 V</td>
<td>37.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB3</td>
<td>pcf8591</td>
<td>Core 3 Volt</td>
<td>1.63 V</td>
<td>37.6 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO3</td>
<td>pcf8591</td>
<td>PS0 Temp</td>
<td>43.26 C</td>
<td>56.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO3</td>
<td>pcf8591</td>
<td>PS1 Temp</td>
<td>38.42 C</td>
<td>56.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO3</td>
<td>sdc</td>
<td>SDC0 Temp</td>
<td>72.49 C</td>
<td>56.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO3</td>
<td>dx0</td>
<td>DX0 Temp</td>
<td>63.16 C</td>
<td>56.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO3</td>
<td>dx1</td>
<td>DX1 Temp</td>
<td>61.16 C</td>
<td>56.5 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>max1617a</td>
<td>PROC 0 Temp</td>
<td>69.00 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>max1617a</td>
<td>PROC 1 Temp</td>
<td>73.00 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>max1617a</td>
<td>PROC 2 Temp</td>
<td>75.00 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>max1617a</td>
<td>PROC 3 Temp</td>
<td>72.00 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>sdc0</td>
<td>SDC0 Temp</td>
<td>63.16 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>ar0</td>
<td>AR0 Temp</td>
<td>60.49 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>dx0</td>
<td>DX0 Temp</td>
<td>59.16 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>dx1</td>
<td>DX1 Temp</td>
<td>58.49 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>dx2</td>
<td>DX2 Temp</td>
<td>60.49 C</td>
<td>7.9 sec</td>
<td>OK</td>
</tr>
</tbody>
</table>
System Administration

<table>
<thead>
<tr>
<th>Component</th>
<th>Measurement</th>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU at SB5</td>
<td>DC3 Temp</td>
<td>53.16C</td>
<td>7.9 sec OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>SBBC0 Temp</td>
<td>57.16C</td>
<td>7.9 sec OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>SBBC1 Temp</td>
<td>59.16C</td>
<td>7.9 sec OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>Core 0 Volt</td>
<td>1.64 V</td>
<td>34.8 sec OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>Core 1 Volt</td>
<td>1.66 V</td>
<td>34.8 sec OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>Core 2 Volt</td>
<td>1.63 V</td>
<td>34.8 sec OK</td>
</tr>
<tr>
<td>CPU at SB5</td>
<td>Core 3 Volt</td>
<td>1.64 V</td>
<td>34.8 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>D147#0_0</td>
<td>24.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>D147#0_1</td>
<td>25.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>D147#0_2</td>
<td>24.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>D147#1_0</td>
<td>22.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>D147#1_1</td>
<td>23.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>D147#1_2</td>
<td>25.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>XMITS0 Temp</td>
<td>34.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>XMITS1 Temp</td>
<td>27.00C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>SBBC Temp</td>
<td>32.50C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>SDC0 Temp</td>
<td>48.49C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>AR0 Temp</td>
<td>47.16C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DX0 Temp</td>
<td>44.50C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DX1 Temp</td>
<td>39.83C</td>
<td>46.2 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>1.54 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>2.53 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>3.21 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>5.02 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>12.36 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>-12.41V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>3.33 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>2.53 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>3.35 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>5.02 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>12.36 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>-12.41V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>HPCI+ at IO5</td>
<td>DC1 Temp</td>
<td>3.61 V</td>
<td>13.0 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>PROC 0 Temp</td>
<td>41.00C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>PROC 1 Temp</td>
<td>40.00C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>PROC 2 Temp</td>
<td>52.00C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>PROC 3 Temp</td>
<td>50.00C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>SDC0 Temp</td>
<td>61.82C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>AR0 Temp</td>
<td>55.16C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DX0 Temp</td>
<td>58.49C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DX1 Temp</td>
<td>59.83C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DX2 Temp</td>
<td>59.83C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DX3 Temp</td>
<td>59.83C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>SBBC0 Temp</td>
<td>61.82C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>SBBC1 Temp</td>
<td>54.49C</td>
<td>8.1 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DC1 Temp</td>
<td>1.51 V</td>
<td>37.2 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DC1 Temp</td>
<td>3.32 V</td>
<td>37.2 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DC1 Temp</td>
<td>3.32 V</td>
<td>37.2 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DC1 Temp</td>
<td>1.63 V</td>
<td>37.2 sec OK</td>
</tr>
<tr>
<td>CPU at SB7</td>
<td>DC1 Temp</td>
<td>1.62 V</td>
<td>37.2 sec OK</td>
</tr>
</tbody>
</table>

Last Modified 07 December 2002

221
showenvironment(1M) System Administration

CPU at SB7	pcf8591	Core 2 Volt	1.62 V	37.2 sec	OK
CPU at SB7	pcf8591	Core 3 Volt	1.62 V	37.2 sec	OK
MCPU at IO7	max1617a	PROC 0 Temp	67.00 C	8.3 sec	OK
MCPU at IO7	max1617a	PROC 1 Temp	71.00 C	8.3 sec	OK
MCPU at IO7	sbbc0	SBBC0 Temp	41.83 C	8.3 sec	OK
MCPU at IO7	sdc0	SDC0 Temp	70.49 C	8.3 sec	OK
MCPU at IO7	ar0	AR0 Temp	63.82 C	8.3 sec	OK
MCPU at IO7	dx0	DX0 Temp	61.82 C	8.3 sec	OK
MCPU at IO7	dx1	DX1 Temp	59.83 C	8.3 sec	OK
MCPU at IO7	dx2	DX2 Temp	53.83 C	8.3 sec	OK
MCPU at IO7	dx3	DX3 Temp	49.83 C	8.3 sec	OK
MCPU at IO7	pcf8591	1.5 VDC	1.48 V	36.7 sec	OK
MCPU at IO7	pcf8591	3.3 VDC	3.28 V	36.7 sec	OK
MCPU at IO7	pcf8591	3.3 VDC HK	3.28 V	36.7 sec	OK
MCPU at IO7	pcf8591	Core 0 Volt	1.63 V	36.7 sec	OK
MCPU at IO7	pcf8591	Core 1 Volt	1.63 V	36.7 sec	OK
WPCI at IO8	max1617a	IGA0 Temp	42.00 C	51.8 sec	OK
WPCI at IO8	dx0	DXU Temp	61.62 C	51.8 sec	OK
WPCI at IO8	dx1	DX1 Temp	55.83 C	51.8 sec	OK
WPCI at IO8	sdc	SDC Temp	62.49 C	51.8 sec	OK
WPCI at IO8	sbbc	SBBC Temp	38.50 C	51.8 sec	OK
WPCI at IO8	ar	AR Temp	65.16 C	51.8 sec	OK
WPCI at IO8	wci	WC10 Temp	21.11 C	51.8 sec	OK
WPCI at IO8	wci	WC11 Temp	21.11 C	51.8 sec	OK
WPCI at IO8	pcf8591	+12 VDC	12.03 V	12.6 sec	OK
WPCI at IO8	pcf8591	-12 VDC	-11.92 V	12.6 sec	OK
WPCI at IO8	pcf8591	3.3 HK	3.26 V	12.6 sec	OK
WPCI at IO8	pcf8591	3.3 VDC	3.30 V	12.6 sec	OK
WPCI at IO8	pcf8591	2.5 VDC	2.51 V	12.6 sec	OK
WPCI at IO8	pcf8591	3.3 VDC HK	3.30 V	12.6 sec	OK
WPCI at IO8	pcf8591	1.5 VDC PAR0	1.51 V	12.6 sec	OK
WPCI at IO8	pcf8591	3.3 VDC PAR0	3.28 V	12.6 sec	OK
WPCI at IO8	pcf8591	3.3 VDC PAR1	3.28 V	12.6 sec	OK
WPCI at IO8	pcf8591	3.3 VDC PAR1	3.28 V	12.6 sec	OK
Schizo0.0	max1617a	Schizo 0 Slot 0	N/A	N/A	PRESENCE
Schizo0.1	max1617a	Schizo 0 Slot 1	N/A	N/A	PRESENCE
HPCI at IO10	pcf8591	PS0 Temp	41.65 C	49.4 sec	OK

222 SMS 1.3 Last Modified 07 December 2002
<table>
<thead>
<tr>
<th>Device</th>
<th>Component</th>
<th>Measurement</th>
<th>Value</th>
<th>Unit</th>
<th>Duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>PS1 Temp</td>
<td>28.74</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>sdc</td>
<td>SDC0 Temp</td>
<td>69.16</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>ar</td>
<td>AR0 Temp</td>
<td>61.82</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>dx0</td>
<td>DX0 Temp</td>
<td>58.49</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>dx1</td>
<td>DX1 Temp</td>
<td>47.16</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>sbbc</td>
<td>SBBC Temp</td>
<td>35.16</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>max1617a</td>
<td>I0A0 Temp</td>
<td>51.00</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>max1617a</td>
<td>I0A1 Temp</td>
<td>47.00</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.49</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.28</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>5.02</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>+12.0 VDC</td>
<td>12.03</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>-12.0 VDC</td>
<td>12.03</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>3.28</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>1.5 CVT0 VDC</td>
<td>3.28</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>1.5 CVT1 VDC</td>
<td>12.03</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>sbbc</td>
<td>SBBC Temp</td>
<td>35.16</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>max1617a</td>
<td>I0A0 Temp</td>
<td>51.00</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>max1617a</td>
<td>I0A1 Temp</td>
<td>47.00</td>
<td>C</td>
<td>49.4 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.49</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.28</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>5.0 VDC</td>
<td>5.02</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO10</td>
<td>pcf8591</td>
<td>+12.0 VDC</td>
<td>12.03</td>
<td>V</td>
<td>36.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>max1617a</td>
<td>PROC 0 Temp</td>
<td>60.00</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>max1617a</td>
<td>PROC 1 Temp</td>
<td>62.00</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>max1617a</td>
<td>PROC 2 Temp</td>
<td>62.00</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>max1617a</td>
<td>PROC 3 Temp</td>
<td>62.00</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>sdc0</td>
<td>SDC0 Temp</td>
<td>59.83</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>ar0</td>
<td>AR0 Temp</td>
<td>53.83</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>dx0</td>
<td>DX0 Temp</td>
<td>52.49</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>dx1</td>
<td>DX1 Temp</td>
<td>49.83</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>dx2</td>
<td>DX2 Temp</td>
<td>51.16</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>dx3</td>
<td>DX3 Temp</td>
<td>42.50</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>sbc0</td>
<td>SBBC0 Temp</td>
<td>44.50</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>sbcc1</td>
<td>SBBC1 Temp</td>
<td>61.82</td>
<td>C</td>
<td>6.8 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.51</td>
<td>V</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.30</td>
<td>V</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>pcf8591</td>
<td>Core 0 Volt</td>
<td>1.65</td>
<td>V</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>pcf8591</td>
<td>Core 1 Volt</td>
<td>1.65</td>
<td>V</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>pcf8591</td>
<td>Core 2 Volt</td>
<td>1.65</td>
<td>V</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>pcf8591</td>
<td>Core 3 Volt</td>
<td>1.65</td>
<td>V</td>
<td>37.2 sec</td>
<td>OK</td>
</tr>
<tr>
<td>HPCI at IO12</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>OFF</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>max1617a</td>
<td>AMB Top Temp</td>
<td>28.00</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>max1617a</td>
<td>AMB Bot Temp</td>
<td>26.00</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>sbbc</td>
<td>SBBC Temp</td>
<td>55.16</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>axq</td>
<td>AXQ Temp</td>
<td>-4.33</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>sdim</td>
<td>SDIM Temp</td>
<td>21.09</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>sdisc</td>
<td>SDISC Temp</td>
<td>50.86</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>sdise</td>
<td>SDISE Temp</td>
<td>40.83</td>
<td>C</td>
<td>61.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>pcf8591</td>
<td>1.5 VDC</td>
<td>1.51</td>
<td>V</td>
<td>36.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>pcf8591</td>
<td>3.3 VDC</td>
<td>3.28</td>
<td>V</td>
<td>36.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>pcf8591</td>
<td>2.5 VDC</td>
<td>2.51</td>
<td>V</td>
<td>36.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>EXB at EX12</td>
<td>pcf8591</td>
<td>3.3 VDC HK</td>
<td>3.28</td>
<td>V</td>
<td>36.9 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>max1617a</td>
<td>PROC 0 Temp</td>
<td>39.00</td>
<td>C</td>
<td>7.1 sec</td>
<td>OK</td>
</tr>
<tr>
<td>CPU at SB12</td>
<td>max1617a</td>
<td>PROC 1 Temp</td>
<td>38.00</td>
<td>C</td>
<td>7.1 sec</td>
<td>OK</td>
</tr>
</tbody>
</table>

Last Modified 07 December 2002

SMS 1.3

223
<table>
<thead>
<tr>
<th>System Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>max1617a</td>
</tr>
<tr>
<td>PROC 2 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>max1617a</td>
</tr>
<tr>
<td>PROC 3 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>sdc0</td>
</tr>
<tr>
<td>SDC0 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>ar0</td>
</tr>
<tr>
<td>AR0 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>dx0</td>
</tr>
<tr>
<td>DX0 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>dx1</td>
</tr>
<tr>
<td>DX1 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>dx2</td>
</tr>
<tr>
<td>DX2 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>dx3</td>
</tr>
<tr>
<td>DX3 Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>sbbc0</td>
</tr>
<tr>
<td>SBBCO Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>sbbc1</td>
</tr>
<tr>
<td>SBBCl Temp</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>1.5 VDC</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>3.3 VDC</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>Core 0 Volt</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>Core 1 Volt</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>Core 2 Volt</td>
</tr>
<tr>
<td>CPU at SB16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>Core 3 Volt</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>max1617a</td>
</tr>
<tr>
<td>PROC 0 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>max1617a</td>
</tr>
<tr>
<td>PROC 1 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>sbbc0</td>
</tr>
<tr>
<td>SBBCO Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>sdc0</td>
</tr>
<tr>
<td>SDC0 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>ar0</td>
</tr>
<tr>
<td>AR0 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>dx0</td>
</tr>
<tr>
<td>DX0 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>dx1</td>
</tr>
<tr>
<td>DX1 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>dx2</td>
</tr>
<tr>
<td>DX2 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>dx3</td>
</tr>
<tr>
<td>DX3 Temp</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>1.5 VDC</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>3.3 VDC</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>3.3 VDC HK</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>Core 0 Volt</td>
</tr>
<tr>
<td>CPU at IO16</td>
</tr>
<tr>
<td>pcf8591</td>
</tr>
<tr>
<td>Core 1 Volt</td>
</tr>
<tr>
<td>FANTRAY POINT POWER SPEED FAN0 FAN1 FAN2 FAN3 FAN4 FAN5 FAN6</td>
</tr>
<tr>
<td>----------------- ------ ----- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>FT0 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>FT1 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>FT2 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>FT3 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>FT4 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>FT6 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>FT7 ON HIGH OK OK OK OK OK OK OK OK</td>
</tr>
<tr>
<td>POWER UNIT AC0 AC1 DC0 DC1 FAN0 FAN1</td>
</tr>
<tr>
<td>-------- ------ ----- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>PS0 FAIL FAIL FAIL ON ON OK OK OK</td>
</tr>
<tr>
<td>PS1 FAIL OK OK ON ON OK OK OK</td>
</tr>
<tr>
<td>PS2 OK OK OK ON ON OK OK OK</td>
</tr>
<tr>
<td>PS3 OK OK OK ON ON OK OK OK</td>
</tr>
<tr>
<td>PS4 OK OK OK ON ON OK OK OK</td>
</tr>
<tr>
<td>PS5 OK OK OK ON ON OK OK OK</td>
</tr>
<tr>
<td>POWER VALUE UNIT STATUS</td>
</tr>
<tr>
<td>-------- ------- ------ ----</td>
</tr>
<tr>
<td>PS0 Current0 0.39 A N/A</td>
</tr>
<tr>
<td>Current1 0.39 A N/A</td>
</tr>
<tr>
<td>48VDC 0.39 V N/A</td>
</tr>
<tr>
<td>PS1 Current0 8.36 A N/A</td>
</tr>
<tr>
<td>Current1 5.97 A N/A</td>
</tr>
<tr>
<td>48VDC 48.60 V N/A</td>
</tr>
<tr>
<td>PS2 Current0 8.36 A N/A</td>
</tr>
<tr>
<td>Current1 6.77 A N/A</td>
</tr>
<tr>
<td>48VDC 48.80 V N/A</td>
</tr>
<tr>
<td>PS3 Current0 7.57 A N/A</td>
</tr>
<tr>
<td>Current1 7.17 A N/A</td>
</tr>
<tr>
<td>48VDC 50.00 V N/A</td>
</tr>
</tbody>
</table>

showenvironment(1M) System Administration

SMS 1.3 Last Modified 07 December 2002
EXAMPLE 2 Reporting Temperature on Domain A

This example assumes that Domain A contains MCPUs at IO7 and IO16.

```
sc0:sms-user:~ > showenvironment -p temps -d a

LOCATION     DEVICE   SENSOR  VALUE   UNIT   AGE    STATUS
-------------  --------  -------  -------  ------  ------  -------
MCPU at IO7    max1617a PROC 1 Temp   71.00   C     8.0    sec  OK
...             ...          ...    ...    ...    ...    ...
MCPU at IO16   max1617a DX0 Temp     50.49   C     8.0    sec  OK
...             ...          ...    ...    ...    ...    ...
```

EXIT STATUS
The following exit values are returned:

0 Successful completion.
1 An invalid domain used.
2 An invalid command-line option used.
3 Invalid permission.
4 An internal error occurred.

ATTRIBUTES
See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
addtag (1M)
NAME
showfailover - display system controller (SC) failover status or role

SYNOPSIS
showfailover [-r] [-v]

showfailover -h

DESCRIPTION
showfailover(1M) enables you to monitor the state of the SC failover mechanism. This command displays the current status of the failover mechanisms. If you do not specify a -r option, then the following information is displayed:

SC Failover Status: state

The failover mechanism can be in one of four states: ACTIVATING, ACTIVE, DISABLED, or FAILED. See the EXTENDED DESCRIPTION section.

OPTIONS
The following options are supported:

- **-h**
Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

- **-r**
Displays the SC's role as either MAIN, SPARE, or UNKNOWN.

- **-v**
Verbose. Displays all available command information.

EXTENDED DESCRIPTION
The failover mechanism states are as follows:

ACTIVATING
Indicates that the failover mechanism is preparing to transition to the ACTIVE state. Failover becomes active when all tests have passed and files have been synchronized.

ACTIVE
Indicates that the failover mechanism is enabled and is functioning normally.

DISABLED
Indicates that the failover mechanism has been disabled due to a failover or an operator request (for example, setfailover off).
FAIled Indicates that the failover mechanism has detected a failure that prevents a failover.

In addition, if the external network has been configured, showfailover displays the state of each of the external network interface links monitored by the failover processes. The display format is as follows:

external community name: [UP | DOWN]

A failure string is returned, describing the failure condition. Each failure string has a code associated with it. The codes and associated failure strings are defined in the following table.

<table>
<thead>
<tr>
<th>String</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No failure.</td>
</tr>
<tr>
<td>S-SC EXT NET</td>
<td>The spare SC external network interface has failed.</td>
</tr>
<tr>
<td>S-SC CONSOLE BUS</td>
<td>A fault has been detected on the spare SC’s console bus path.</td>
</tr>
<tr>
<td>S-SC LOC CLK</td>
<td>The spare SC’s local clock has failed.</td>
</tr>
<tr>
<td>S-SC DISK FULL</td>
<td>The spare SC’s system is full.</td>
</tr>
<tr>
<td>S-SC IS DOWN</td>
<td>The spare SC is down and/or unresponsive. If this message results from the 12 network/HASRAMs being down then the spare SC could still be running. Login to the spare SC to verify.</td>
</tr>
<tr>
<td>S-SC MEM EXHAUSTED</td>
<td>The spare SC’s memory/swap space has been exhausted.</td>
</tr>
<tr>
<td>S-SC SMS DAEMON</td>
<td>At least one SMS daemon could not be started/restarted on the spare SC.</td>
</tr>
<tr>
<td>S-SC INCOMPATIBLE SMS VERSION</td>
<td>The spare SC is running a different version of SMS software. Both SCs must be running the same version.</td>
</tr>
<tr>
<td>I2 NETWORK/HASRAMS DOWN</td>
<td>Both interfaces for communication between the SCs are down. The main cannot tell what version of SMS is running on the spare nor what its state is. It declares the spare SC down and logs a message to that effect. Dependent services, including file propagation, are unavailable.</td>
</tr>
</tbody>
</table>

Group Privileges Required

You must have platform administrator, platform operator, or platform service privileges to run this command.
Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Displaying a Failover Status That Indicates That Everything is OK

```
sc0:sys-user:~> showfailover
SC Failover Status: ACTIVE
C1: UP
```

EXAMPLE 2 Displaying a Failover Status That Indicates That the Spare SC System is Full

```
sc0:sys-user:~> showfailover
SC Failover Status: FAILED
S-SC DISK FULL
C1: UP
```

EXAMPLE 3 Displaying the SC Role

```
sc0:sys-user:~> showfailover -r
SPARE
```

EXIT STATUS

The following exit values are returned:

- 0: Successful completion.
- >0: An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>Command Output</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO

setfailover(1M)
showkeyswitch(1M)

<table>
<thead>
<tr>
<th>NAME</th>
<th>showkeyswitch - display the position of the virtual keyswitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td><code>showkeyswitch -d domain_indicator [-v]</code></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td><code>showkeyswitch -h</code> showkeyswitch(1M) displays the position of the virtual keyswitch of the specified domain. The state of each virtual keyswitch is maintained between power cycles of the system controller (SC) or physical power cycling of the power supplies by the pcd(1M).</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>The following options are supported:</td>
</tr>
<tr>
<td></td>
<td><code>-d domain_indicator</code> Specifies the domain using one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>domain_id</code> – ID for a domain. Valid <code>domain_ids</code> are A–R and are not case sensitive.</td>
</tr>
<tr>
<td></td>
<td><code>domain_tag</code> – Name assigned to a domain using addtag(1M).</td>
</tr>
<tr>
<td></td>
<td><code>-h</code> Help. Displays usage descriptions.</td>
</tr>
<tr>
<td></td>
<td><code>-v</code> Verbose. Displays all available command information.</td>
</tr>
<tr>
<td></td>
<td><code>Note</code> – Use alone. Any option specified in addition to <code>-h</code> is ignored.</td>
</tr>
<tr>
<td>EXTENDED DESCRIPTION</td>
<td>You must have platform administrator, platform operator, platform service, domain administrator, or configurator privileges for the specified domain to run this command.</td>
</tr>
<tr>
<td>Group Privileges Required</td>
<td>Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>EXAMPLE 1 Displaying the Keyswitch Status for Domain A</td>
</tr>
<tr>
<td></td>
<td><code>sc0:sms-user:> showkeyswitch -d A</code></td>
</tr>
<tr>
<td></td>
<td>Virtual keyswitch position: ON</td>
</tr>
<tr>
<td>EXIT STATUS</td>
<td>The following exit values are returned:</td>
</tr>
<tr>
<td></td>
<td>0 Successful completion.</td>
</tr>
<tr>
<td></td>
<td>>0 An error occurred.</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addtag (1M), setkeys (1M), pcd (1M)
NAME
showlogs - display message log files

SYNOPSIS
showlogs -h

DESCRIPTION
showlogs(1M) displays platform or domain log files. The default is the platform message log. You must have platform group privileges to run the default; otherwise you receive an error message. Depending on your privileges, you can display the message logs, console logs, or syslog for the platform or a specified domain.

OPTIONS
The following options are supported:

-F
Displays only lines that have been appended to the log file since the showlogs command was executed. Similar to the 'tail -f' command. Output continues until interrupted by CTRL-c.

-d domain_indicator
Specifies the domain using one of the following:

domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

domain_tag – Name assigned to a domain using addtag(1M).

-f filename
Places the output of the showlogs command into a specified file.

-h
Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.
EXTENDED
DESCRIPTION

Group Privileges
Required

If you have platform administrator, operator, or service privileges, you can display the platform messages log file.

If you have domain administrator/configurator privileges, you can display only those log files for domains for which you have privileges.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Displaying Platform Message Log to Standard Out

```
sc0:sms-user:> showlogs
Aug 24 14:30:53 2000 xc8-sc0 hwad[104609]: [0 5751139758216 ERR SCCSR.cc 1347] getCrt - Client: 104621.14 has locked - 167
Aug 24 14:30:53 2000 xc8-sc0 hwad[104609]: [0 5751170721148 ERR SCCSR.cc 1362] getCrt - Client: 104621.14 about to unlock - 167....
```

EXAMPLE 2 Displaying Domain A Message Log to Standard Out

```
sc0:sms-user:> showlogs -d A
Aug 15 14:28:05 2000 xc8-sc0 dsmd[106850]-A(): [0 8500962546702 INFO Observers.cc 125] DOMAIN_UP A event has been sent to SYMON, rc = 0.
Aug 15 14:28:05 2000 xc8-sc0 dsmd[106850]-A(): [0 8500963756755 INFO DomainMon.cc 183] Start monitoring domain A every 5 second....
```
EXAMPLE 3 Displaying Newly Appended Lines to Domain A Message Log to Standard Out

```bash
sc0:~> showlogs -d A -F
Aug 25 14:28:05 2000 xc8-sc0 dsmd[106850]-A(): [0 8500960648900 INFO Observers.c c 193] DOMAIN_UP A event has been sent to DXS, rc = 0....
```

EXAMPLE 4 Displaying Domain A Console Log to Standard Out

```bash
sc0:~> showlogs -d A -p c
** Domain Server Shutting Down - disconnecting
** Domain Server Shutting Down - disconnecting
Sun Fire 15K system, using IOSRAM based Console OpenBoot 4.0, 2048 MB memory installed, Serial #10000000. Ethernet address 8:0:20:b8:2d:b1, Host ID: 80a3e446.
```

EXAMPLE 5 Display Domain sms2 Syslog to Standard Out

```bash
sc0:~> showlogs -d sms2 -p s
Sep  7 13:51:49 sms2 agent[6629]: [ID 240586 daemon.alert] syslog
Sep  7 13:51:49 sms2 agent[6629]: [ID 985882 daemon.alert] syslog
Sep  7 13:51:50 sms2 platform[22481]: [ID 345917 daemon.alert] syslog
Sep  7 13:51:50 platform *** terminating execution ***
Sep  7 14:49:07 sms2 platform[4309]: [ID 334248 daemon.alert] syslog
Sep  7 14:49:07 platform *** terminating execution ***
Sep  7 14:49:07 sms2 platform[4309]: [ID 449452 daemon.alert] syslog
Sep  7 14:49:07 platform couldn't load file ...
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

The following files are used:

- `/var/opt/SUNWSMS/adm/platform/messages` Platform message file
- `/var/opt/SUNWSMS/adm/domain_id/messages` Domain message file
- `/var/opt/SUNWSMS/adm/domain_id/console` Domain console file
- `/var/opt/SUNWSMS/adm/domain_id/syslog` Domain syslog file
Attributes

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

See Also

tail(1)
NAME
showobpparams - display OpenBoot PROM bring up parameters for a domain

SYNOPSIS
showobpparams -d domain_indicator [-v]
showobpparams -h

DESCRIPTION
showobpparams(1M) enables a domain administrator to display the virtual NVRAM and REBOOT parameters passed to OpenBoot PROM by setkeyswitch(1M). The -d option with domain_id or domain_tag is required.

OPTIONS
The following options are supported:

- d domain_indicator Specifies the domain using one of the following:
 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.
 domain_tag – Name assigned to a domain using addtag(1M).

- h Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to -h is ignored.

- v Verbose. Displays all available command information.

EXTENDED DESCRIPTION

Group Privileges Required
You must have domain administrator or domain configurator privileges for the specified domain to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES
EXAMPLE 1 Displaying OpenBoot PROM Parameters for Domain A

 sc0:smus-user:~> showobpparams -d a
 auto-boot?=false
 diag-switch?=true
 fcode-debug?=false
 use-nvramrc?=false
 security-mode=none

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO addtag (1M), setkeysswitch (1M), setobpparams (1M)
NAME showplatform - display the board available component list, the domain state for each domain, and Capacity on Demand (COD) information.

SYNOPSIS

showplatform [-d domain_indicator] [-p report] [-v]
showplatform -h

DESCRIPTION showplatform(1M) displays the available component list, domain state, and Ethernet address for domains. COD information includes the headroom amount, number of installed COD right-to-use (RTU) licenses, and the number of COD RTU licenses reserved for domains. If a domain_id or domain_tag is specified, only the information for that domain is displayed. If domain_indicator and -p option are not specified, the available component list, domain states, Ethernet addresses, and COD information for all domains for which you have privileges are displayed.

OPTIONS The following options are supported:

- d domain_indicator Specifies the domain using one of the following:
 domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.
 domain_tag – Name assigned to a domain using addtag(1M).

- h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

- p report Display specific reports.

Valid reports are:

domains List output is grouped by domain state.
available List output is grouped by domain available component list.
ethernet List output is grouped by domain Ethernet addresses.
cod Capacity on Demand information is displayed.

- v Verbose. Displays all available command information.
Extended Description

The domain status is one of the following:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>The domain state could not be determined, or for Ethernet addresses, it indicates that the domain idprom image file does not exist. You need to contact your Sun service representative.</td>
</tr>
<tr>
<td>Powered Off</td>
<td>The domain is powered off.</td>
</tr>
<tr>
<td>Keyswitch Standby</td>
<td>The keyswitch for the domain is in STANDBY position.</td>
</tr>
<tr>
<td>Running Domain POST</td>
<td>The domain power-on self-test is running.</td>
</tr>
<tr>
<td>Loading OBP</td>
<td>The OpenBoot PROM for the domain is being loaded.</td>
</tr>
<tr>
<td>Booting OBP</td>
<td>The OpenBoot PROM for the domain is booting.</td>
</tr>
<tr>
<td>Running OBP</td>
<td>The OpenBoot PROM for the domain is running.</td>
</tr>
<tr>
<td>In OBP Callback</td>
<td>The domain has been halted and has returned to the OpenBoot PROM.</td>
</tr>
<tr>
<td>Loading Solaris</td>
<td>The OpenBoot PROM is loading the Solaris software.</td>
</tr>
<tr>
<td>Booting Solaris</td>
<td>The domain is booting the Solaris software.</td>
</tr>
<tr>
<td>Domain Exited OBP</td>
<td>The domain OpenBoot PROM has exited.</td>
</tr>
<tr>
<td>OBP Failed</td>
<td>The domain OpenBoot PROM has failed.</td>
</tr>
<tr>
<td>OBP in sync Callback to OS</td>
<td>The OpenBoot PROM is in sync callback to the Solaris software.</td>
</tr>
<tr>
<td>Exited OBP</td>
<td>The OpenBoot PROM has exited.</td>
</tr>
<tr>
<td>In OBP Error Reset</td>
<td>The domain is in OpenBoot PROM due to an error reset condition.</td>
</tr>
<tr>
<td>Solaris Halted, in OBP</td>
<td>Solaris software is halted and the domain is in OpenBoot PROM.</td>
</tr>
<tr>
<td>OBP Debugging</td>
<td>The OpenBoot PROM is being used as a debugger.</td>
</tr>
<tr>
<td>Environmental Domain Halt</td>
<td>The domain was shut down due to an environmental emergency.</td>
</tr>
<tr>
<td>Booting Solaris Failed</td>
<td>OpenBoot PROM is running, but boot attempt has failed.</td>
</tr>
<tr>
<td>Loading Solaris Failed</td>
<td>OpenBoot PROM is running, but loading attempt has failed.</td>
</tr>
<tr>
<td>Event Description</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Running Solaris</td>
<td>Solaris software is running on the domain.</td>
</tr>
<tr>
<td>Solaris Quiesce In-progress</td>
<td>A Solaris software quiesce is in progress.</td>
</tr>
<tr>
<td>Solaris Quiesced</td>
<td>Solaris software has quiesced.</td>
</tr>
<tr>
<td>Solaris Resume In-progress</td>
<td>A Solaris software resume is in progress.</td>
</tr>
<tr>
<td>Solaris Panic</td>
<td>Solaris software has panicked, and panic flow has started.</td>
</tr>
<tr>
<td>Solaris Panic Debug</td>
<td>Solaris software has panicked and is entering debugger mode.</td>
</tr>
<tr>
<td>Solaris Panic Continue</td>
<td>Solaris software has exited debugger mode, and panic flow continues.</td>
</tr>
<tr>
<td>Solaris Panic Dump</td>
<td>Panic dump has started.</td>
</tr>
<tr>
<td>Solaris Halt</td>
<td>Solaris software is halted.</td>
</tr>
<tr>
<td>Solaris Panic Exit</td>
<td>Solaris software has exited as a result of a panic.</td>
</tr>
<tr>
<td>Environmental Emergency</td>
<td>An environmental emergency has been detected.</td>
</tr>
<tr>
<td>Debugging Solaris</td>
<td>Debugging Solaris software; this is not a hung condition.</td>
</tr>
<tr>
<td>Solaris Exited</td>
<td>Solaris software has exited.</td>
</tr>
<tr>
<td>Domain Down</td>
<td>The domain is down and setkeysing is in the ON, DIAG, or SECURE position.</td>
</tr>
<tr>
<td>In Recovery</td>
<td>The domain is in the midst of an automatic system recovery.</td>
</tr>
</tbody>
</table>

Group Privileges Required

If you have platform administrator, operator, or service privileges, `showplatform` displays the available component list and board state information on all domains. Otherwise, only information for domains, for which you have domain administrator or configurator privileges, is displayed.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.
EXAMPLES

Note – An UNKNOWN state for an Ethernet address as shown in the following example indicates a missing idprom image file for the domain. Contact your Sun service representative.

EXAMPLE 1 Displaying the Available Component List, Domain State, and COD Information for All Domains on a Sun Fire 15K System

The output shown is what you would see if you had platform privileges.

```
sc0:smu-user:~$ showplatform

COD:
-----
Chassis HostID : 5014936C37048
PROC RTUs installed : 8
PROC Headroom Quantity : 0
PROC RTUs reserved for domain A : 4
PROC RTUs reserved for domain B : 0
PROC RTUs reserved for domain C : 0
PROC RTUs reserved for domain D : 0
PROC RTUs reserved for domain E : 0
PROC RTUs reserved for domain F : 0
PROC RTUs reserved for domain G : 0
PROC RTUs reserved for domain H : 0
PROC RTUs reserved for domain I : 0
PROC RTUs reserved for domain J : 0
PROC RTUs reserved for domain K : 0
PROC RTUs reserved for domain L : 0
PROC RTUs reserved for domain M : 0
PROC RTUs reserved for domain N : 0
PROC RTUs reserved for domain O : 0
PROC RTUs reserved for domain P : 0
PROC RTUs reserved for domain Q : 0
PROC RTUs reserved for domain R : 0

Available Component List for Domains:
-------------------------------------
Available for domain newA:
SB0 SB1 SB2 SB7
IO1 IO3 IO6
Available for domain engB:
No System boards
No IO boards
Available for domain domainC:
No System boards
I00 I01 I02 I03 I04
Available for domain eng1:
No System boards
No IO boards
Available for domain E:
No System boards
No IO boards
Available for domain domainF:
No System boards
No IO boards
Available for domain dmnG:
No System boards
No IO boards
Available for domain domain H:
No System boards
No IO boards
```
Available for domain I:
No System boards
No IO boards
Available for domain dmnJ:
No System boards
No IO boards
Available for domain K:
No System boards
No IO boards
Available for domain L:
No System boards
No IO boards
Available for domain M:
No System boards
No IO boards
Available for domain N:
No System boards
No IO boards
Available for domain O:
No System boards
No IO boards
Available for domain P:
No System boards
No IO boards
Available for domain Q:
No System boards
No IO boards
Available for domain dmnR:
No System boards
No IO boards

Domain Ethernet Addresses:
--
Domain ID Domain Tag Ethernet Address
A newA 8:0:20:b8:79:e4
B engB 8:0:20:b4:30:8c
C domainC 8:0:20:b7:30:b0
D - 8:0:20:b8:2d:b0
E eng1 8:0:20:f1:b7:0
F domainF 8:0:20:be:f8:a4
G dmnG 8:0:20:b8:29:c8
H - 8:0:20:f3:5f:14
I - 8:0:20:be:f5:d0
J dmnJ UNKNOWN
K - 8:0:20:f1:ae:88
L - 8:0:20:b7:5d:30
M - 8:0:20:f1:b8:8
N - 8:0:20:f3:5f:74
O - 8:0:20:f1:b8:8
P - 8:0:20:b8:58:64
Q - 8:0:20:f1:b7:ec
R dmnR 8:0:20:f1:b7:10

Domain Configurations:

DomainID Domain Tag Solaris Nodename Domain Status
A newA - Powered Off
B engB sun15-b Keyswitch Standby
C domainC sun15-c Running OBP
D - sun15-d Running Solaris
E eng1 sun15-e Running Solaris
F domainF sun15-f Running Solaris
G dmnG sun15-g Running Solaris
H - sun15-g Solaris Quiesced
I - - Powered Off
EXAMPLE 2 Showing the Available Component List and Domain State for Domain engB

sc0:sms-user:> showplatform -d engB

COD:

PROC RTUs reserved for domain B : 0

Available Component List for Domains:

Available for domain engB:
SB4 SB5 SB6
IO4 IO5

Domain Ethernet Addresses:

Domain ID Domain Tag Ethernet Address
B engB 8:0:20:b4:30:8c

Domain Configurations:

DomainID Domain Tag Solaris Nodename Domain Status
B engB sun15-b Keyswitch Standby
EXAMPLE 3 Displaying the Platform for Domain Administrators

The following example shows the domain available component list and state information for all domains for which you have domain administrator or configurator privileges; in this case, domains engB, C, and E.

```
sm0:smu-user> showplatform
COD:

PROC RTUs reserved for domain B : 0
PROC RTUs reserved for domain C : 0
PROC RTUs reserved for domain E : 0

Available Component List for Domains:
--------------------------------------
Available for domain engB:
SB1 SB2 SB3 SB4 SB5 SB6
IO1 IO2 IO3 IO4 IO5 IO6 IO7
Available for domain C:
SB1 SB2 SB3 SB4 SB5 SB6
IO1 IO2 IO3 IO4 IO5 IO6 IO7
Available for domain E:
SB1 SB2 SB3 SB4 SB5 SB6
IO1 IO2 IO3 IO4 IO5 IO6 IO7

Domain Ethernet Addresses:
---------------------------
Domain ID   Domain Tag        Ethernet Address
B           engB              8:0:20:b4:30:8c
C           domainC           8:0:20:b7:30:b0
E           eng1              8:0:20:f1:b7:0

Domain Configurations:
-----------------------
DomainID   Domain Tag    Solaris Nodename     Domain Status
B          engB           sun15-b             Keyswitch Standby
C          domainC        sun15-c             Running OBP
E          eng1           sun15-e             Running Solaris
```

EXAMPLE 4 Showing the Available Component List for Domain engB

```
sm0:smu-user> showplatform -d engB -p available
Available Component List for Domains:
--------------------------------------
Available for domain engB:
SB4 SB5 SB6
IO4 IO5
```
EXAMPLE 5 Displaying Domain Status for Domain engB

 sc0:sms-user:> showplatform -d engB -p domains

Domain Configurations:

<table>
<thead>
<tr>
<th>DomainID</th>
<th>Domain Tag</th>
<th>Solaris Nodename</th>
<th>Domain Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>engB</td>
<td>sun15-b</td>
<td>Keyswitch Standby</td>
</tr>
</tbody>
</table>

EXAMPLE 6 Show COD Right-to-Use (RTU) License Reservation for Domain engB

 sc0:sms-user:> showplatform -d engB -p cod

COD:

PROC RTUs reserved for domain B : 0

EXAMPLE 7 Displaying All COD Information

The output shown is what you would see if you had platform privileges. If the Chassis HostID value is UNKNOWN, power on the centerplane support boards and then run the command showplatform -p cod again to display the Chassis HostID. After you power on the centerplane support boards, allow up to one minute for the Chassis HostID information to display in the showplatform output.

 sc0:sms-user:> showplatform -p cod

COD:

Chassis HostID : 5014936C37048
PROC RTUs installed : 8
PROC Headroom Quantity : 0
PROC RTUs reserved for domain A : 4
PROC RTUs reserved for domain B : 0
PROC RTUs reserved for domain C : 0
PROC RTUs reserved for domain D : 0
PROC RTUs reserved for domain E : 0
PROC RTUs reserved for domain F : 0
PROC RTUs reserved for domain G : 0
PROC RTUs reserved for domain H : 0
PROC RTUs reserved for domain I : 0
PROC RTUs reserved for domain J : 0
PROC RTUs reserved for domain K : 0
PROC RTUs reserved for domain L : 0
PROC RTUs reserved for domain M : 0
PROC RTUs reserved for domain N : 0
PROC RTUs reserved for domain O : 0
PROC RTUs reserved for domain P : 0
PROC RTUs reserved for domain Q : 0
PROC RTUs reserved for domain R : 0

EXIT STATUS The following exit values are returned:

0 Successful completion.
1 An invalid domain was specified.
2 An invalid command-line option was specified.
3 An incorrect number of domains was specified.
4 The user does not have valid privileges.
5 An error occurred communicating with the platform configuration daemon (pcd(1M)).
6 An error occurred communicating with the hardware access daemon (hwad(1M)).
7 An error occurred communicating with the task management daemon (tmd(1M)).
8 An internal error occurred.
9 An error occurred communicating with the Capacity on Demand daemon (coda(1M)).

ATTRIBUTES

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

addcodlicense (1M), addtag (1M), hwad (1M), pcd (1M), setupplatform (1M), tmd (1M)
NAME showxirstate - display CPU dump information after sending a reset pulse to the processors

SYNOPSIS showxirstate -d domain_indicator [-v]

showxirstate -f filename [-v]

showxirstate -h

DESCRIPTION showxirstate(1M) displays CPU dump information after sending a reset pulse to the processors. This save-state dump can be used to analyze the cause of abnormal domain behavior. showxirstate creates a list of all active processors in that domain and retrieves the save-state information for each processor.

If a domain_indicator or filename is not specified, showxirstate returns an error.

OPTIONS The following options are supported:

- d domain_indicator Specifies the domain using one of the following:

domain_id – ID for a domain. Valid domain_ids are A–R and are not case sensitive.

domain_tag – Name assigned to a domain using addtag(1M).

- f filename Name of the file containing a previously generated xir_dump. The default is /var/opt/SUNWSMS/adm/domain_id/dump and cannot be changed.

- h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

- v Verbose. Displays all available command information.

EXTENDED DESCRIPTION

Group Privileges Required You must have domain administrator privileges on the specified domain to run this command. No special privileges are required to read the xir_dump files.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.
EXAMPLE 1 Displaying Dump Information for Domain A With 1 CPU

 sc0:sms-user:/> showxirstate -dA

Location: SB4/P0
XIR Magic XIR Version 00415645 Buglevel 00000000
XIR Save Total Size 0x58495253 bytes

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tba</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pil</td>
<td>0x00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afsr</td>
<td>00000000.00000000</td>
<td>afar : 00000000.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pcontext</td>
<td>00000000.00000000</td>
<td>scontext: 00000000.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dcu</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dcr</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pcr</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gsr</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>softint</td>
<td>0x0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pa_watch</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>va_watch</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instbp</td>
<td>00000000.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tick</td>
<td>00000000.00000000</td>
<td>tick_cmpr: 00000000.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stick</td>
<td>00000000.00000000</td>
<td>stick_cmpr: 00000000.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tl: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>0x00</td>
<td>ttstate</td>
<td>tpc</td>
<td>tnpc</td>
</tr>
<tr>
<td></td>
<td>0x00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
</tbody>
</table>

Globals:
<table>
<thead>
<tr>
<th>R Normal</th>
<th>Alternate</th>
<th>Interrupt</th>
<th>MMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>1 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>2 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>3 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>4 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>5 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>6 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>7 00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
</tbody>
</table>

wstate: 0x00
 cansave: 0 cleanwin: 0
 canrestore: 0 otherwin: 0

Register Windows:
<table>
<thead>
<tr>
<th>Window</th>
<th>R Locals</th>
<th>Ins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>1</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>2</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>3</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>4</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>5</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td></td>
<td>Window 1</td>
<td>Window 2</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>R Locals</td>
<td>Ins</td>
</tr>
<tr>
<td>0</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>1</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>2</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>3</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>4</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>5</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>6</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
<tr>
<td>7</td>
<td>00000000.00000000</td>
<td>00000000.00000000</td>
</tr>
</tbody>
</table>
showxirstate(1M)

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
reset(1M)

252
SMS 1.3
Last Modified 07 December 2002
NAME smsbackup - back up the SMS environment

SYNOPSIS smsbackup directory_name

smsbackup -h

DESCRIPTION smsbackup(1M) creates a cpio(1) archive of files that maintain the operational environment of SMS. To create a complete and accurate backup, turn off SMS before running smsbackup. For information about manually starting and stopping SMS refer to the System Management Services (SMS) 1.3 Installation Guide.

Whenever changes are made to the SMS environment—for example, by shutting down a domain—you must run smsbackup again to maintain a current backup file for the system controller.

The name of the backup file is sms_backup.X.X.cpio, where X.X represents the active version from which the backup was taken.

Restore SMS backup files using the smsrestore(1M) command.

If any errors occur, smsbackup writes error messages to /var/sadm/system/logs/smsbackup if /var/sadm/system/logs exists and /var/tmp if it does not exist.

OPTIONS The following option is supported

-h Help. Displays usage descriptions.

Note – Use alone. Any option specified in addition to -h is ignored.

OPERANDS The following operands are supported:

directory_name Name of the directory in which the backup file is created. This file can reside in any directory on the system, connected network or tape device to which you have read/write privileges. If no directory_name is specified, a backup file is created in /var/tmp.

The directory_name does not require the absolute path name for the file.

The directory_name specified must be mounted as a UFS file system. Specifying a TMPFS file system, such as /tmp, causes smsbackup to fail. If you are not certain that your directory_name is mounted as a UFS file system, type:

/usr/bin/df -F ufs directory_name

A UFS file system returns directory information. Any other type of file system returns a warning.
EXTENDED DESCRIPTION

Group Privileges Required

You must have superuser privileges to run this command.

Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Backing Up SMS to /var/opt/SUNWSMS/bkup

 sc0:sms-user:~> smsbackup /var/opt/SUNWSMS/bkup

EXAMPLE 2 Backing Up SMS to Tape Device 0

 sc0:sms-user:~> smsbackup /dev/rmt/0

EXAMPLE 3 Backing Up SMS to TMPFS System

 sc0:sms-user:~> smsbackup /tmp

ERROR: smsbackup fails to backup to /tmp, a TMPFS file system. Please specify a directory that is mounted on a UFS file system.

ABORT:

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

The following file is used by this command:

/var/sadm/system/logs/smsbackup smsbackup log file

ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

smsrestore (1M)
NAME
smsconfig - configures the SMS environment

SYNOPSIS
smsconfig -m
smsconfig -m I1 [domain_id | sc | netmask]
smsconfig -m I2 [sc0 | sc1 | netmask]
smsconfig -m L
smsconfig -g
smsconfig -a -u username -G platform_role platform
smsconfig -r -u username -G platform_role platform
smsconfig -a -u username -G domain_role domain_id
smsconfig -r -u username -G domain_role domain_id
smsconfig -l domain_id
smsconfig -l platform
smsconfig -s security_option
smsconfig -v
smsconfig -h

DESCRIPTION
smsconfig(1M) configures the SMS environment in a three areas: network management, security, and user group privileges.

smsconfig configures and modifies host name and IP address settings used by the MAN daemon, mand(1M). For each network, smsconfig can singularly set one or more interface designations within that network. By default, smsconfig steps through the configuration of both internal networks and the external community network.

Note – Once you have configured or changed the configuration of the MAN network you must reboot the system controller (SC) in order for the changes to take effect.

To configure an individual network, append the net_id to the command line. Management network net_ids are designated I1, I2, and L. Configure a single interface within an enterprise network by specifying both the desired interface and its net_id. Any changes made to the network configuration on one SC using smsconfig -m must be run on the other SC. Network configurations files are not automatically propagated.

For security purposes, SMS disables forwarding, broadcast, and multicast by setting the appropriate ndd utility variables upon startup.
The Sunfire 15K/12K system also enables you to further secure the SC allowing you to use `smsconfig -s ssh` as part of the Security Toolkit SC hardening process. To harden the SC, follow the procedures found in the following Sun BluePrints Online articles available at:

http://www.sun.com/security/blueprints

- Securing Sun Fire 12K and 15K System Controller: Updated for SMS 1.3
- Securing Sun Fire 12K and 15K Domains: Updated for SMS 1.3

`smsconfig` configures the UNIX groups used by SMS to describe user privileges. SMS uses a default set of UNIX groups installed locally on each SC. `smsconfig` enables you to customize those groups using the `-g` option. For more information refer to the `System Management Services (SMS) 1.3 Installation Guide`.

`smsconfig` also adds users to SMS groups and configures domain and platform administrative privileges. `smsconfig` sets access control list (ACL) attributes on SMS directories.

Note – Do not manually edit the `/etc/group` SMS file entries to add or remove users. Otherwise user access will be compromised.

OPTIONS

The following options are supported:

- `-a`
 Adds a user to an SMS group and provides read, write, and execute access for a domain or for the platform directories. You must specify a valid `username`, SMS group, and if applicable, a `domain_id`

- `-G`
 Indicates an SMS group. No group name is case sensitive.

- `-g`
 Configures the UNIX groups used by SMS to describe user privileges.

- `-h`
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- `-l`
 Lists all users with access to the specified SMS domain or platform.

- `-m`
 Configures all interfaces for all enterprise networks and the external community.

- `-m I1`
 Configures all interfaces for enterprise network I1. Network designation is not case sensitive. You can exclude a domain from the I1 network configuration by using the word `NONE` as the MAN `hostname`. This applies to the I1 network only.

- `-m I2`
 Configures all interfaces for enterprise network I2. Network designation is not case sensitive.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m L</td>
<td>Configures all interfaces for the external community network. Network designation is not case sensitive.</td>
</tr>
<tr>
<td>-r</td>
<td>Removes a user from an SMS group and denies read, write, and execute access for a domain or for the platform directories. You must specify a valid username, SMS group and if applicable, a domain_id.</td>
</tr>
<tr>
<td>-s security_option</td>
<td>This option is used to configure the SMS software to use the security feature. The feature to configure is specified by security_option. The following are valid values for security_option:</td>
</tr>
<tr>
<td>ssh</td>
<td>Instructs SMS to use ssh-based commands in place of the default rsh-based commands for communicating with the remote SC. All of the ssh-based commands must reside in <code>/usr/bin</code>. If they are not found in <code>/usr/bin</code>, <code>smsconfig</code> exits and logs an error. NOTE: Ensure the Secure Shell is configured properly on both SCs before enabling the SMS software to use it. If ssh is not configured, <code>smsconfig</code> displays and logs an error then exits. Refer to the ssh and scp man pages for more information.</td>
</tr>
<tr>
<td>rsh</td>
<td>Reconfigures SMS to use rsh-based commands.</td>
</tr>
<tr>
<td>-u username</td>
<td>Indicates user login name.</td>
</tr>
<tr>
<td>-v</td>
<td>Displays remote shell configuration.</td>
</tr>
</tbody>
</table>

rsh(1) is the default remote shell in SMS software. When Secure Shell has not been configured properly, SMS attempts to use the default remote shell. Therefore we strongly recommended that you keep *rsh* enabled until `smsconfig -s ssh` successfully configures the SMS software. Once Secure Shell is configured you can disable *rsh* by hardening the SC. Refer to the Online Blueprints documentation and the security section of the *System Management Services (SMS) 1.3 Installation Guide* for more information.
The following operands are supported:

- **domain_id**: ID for a domain. Valid domain_ids are A–R and are not case sensitive.
- **domain_role**: Valid domain_roles are:
 - admn
 - rcfg
- **platform**: Specifies the Sun Fire 15K/12K platform and platform-specific directories.
- **platform_role**: Valid platform_roles are:
 - admn
 - oper
 - svc
- **SC0, SC1**: Interface designation for the Sun Fire 15K/12K SC. Interface designations are not case sensitive.
- **netmask**: A 32-bit number that masks or screens out the network part of an IP address in a subnet so that only the host computer part of the address remains visible. Commonly displayed in decimal numbers, for example, 255.255.255.0 is a common netmask in a Class C subnet. netmask is not case sensitive.

You must have superuser privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLE 1 Setting Up the MAN Network

You must configure all interfaces in the MAN network. This example steps through all the prompts needed to completely set up all three enterprise networks using IPv4. An IPv6 network example differs slightly.

Caution—The IP addresses shown in the following examples are examples only. Refer to your Sun Fire 15K/12K System Site Planning Guide for valid IP addresses for your network. Using invalid network IP addresses could, under certain circumstances, make your system unbootable!
There are no prompts for netmasks, and /etc/ipnodes are modified in addition to /etc/hosts.

IP addresses on the external network for failover, hme0, and eri1, on each SC must be unique. The floating IP address is the same on both SCs.

By default, the I1 network settings are derived from the base network address entered for that network. You can exclude a domain from the I1 network configuration by using the word NONE as the MAN hostname. See EXAMPLE 4. For more information refer to the System Management Services (SMS) 1.3 Installation Guide.

Once you have configured the MAN network, you must reboot the SC.

```
sco:~# smsconfig -m
The platform name identifies the entire host machine to the SMS software. The platform name occupies a different name space than domain names (hostnames of bootable systems).
What is the name of the platform this SMS will service? sun15
Configuring the External Network for Community C1
Do you want to define this Community? [y,n] y
Two network interfaces controllers (NICs) are required for IPMP network failover.
Enter NICs associated with community C1 [hme0 eri1]: [Return]
Enter hostname for hme0 [sun15-sc0-hme0]: [Return]
Enter IP address for sun15-sc0-hme0: 10.1.1.52
Enter hostname for eri1 [sun15-sc0-eri1]: [Return]
Enter IP address for sun15-sc0-eri1: 10.1.1.53
The Logical/Floating IP hostname and address will "float" over to whichever system controller (SC0 or SC1) is acting as the main SC.
Enter Logical/Floating IP hostname for community C1 [sun15-sc-C1]: [Return]
Enter IP address for sun15-sc-C1: 10.1.1.50 Enter Netmask for community C1: 255.255.255.0
Enter hostname for community C1 failover address [sun15-sc0-C1-failover]: [Return]
Enter IP address for sun15-sc0-C1-failover: 10.1.1.51
```

<table>
<thead>
<tr>
<th>Hostname</th>
<th>IP Address (platform=sun15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun15-sc-C1</td>
<td>10.1.1.50</td>
</tr>
<tr>
<td>sun15-sc0-C1-failover</td>
<td>10.1.1.51</td>
</tr>
<tr>
<td>sun15-sc0-hme0</td>
<td>10.1.1.52</td>
</tr>
<tr>
<td>sun15-sc0-eri1</td>
<td>10.1.1.53</td>
</tr>
</tbody>
</table>

Do you want to:
1) Accept these network settings.
2) Edit these network settings.
3) Delete these network settings and go onto the next community? [y,n] y
Configuring the External Network for Community C2

Do you want to define this Community? [y,n] n

Configuring I1 Management Network - 'I1' is the Domain to SC MAN.

MAN I1 Network Identification

Enter the IP network number (base address) for the I1 network: 10.2.1.0
Enter the netmask for the I1 MAN network (255.255.255.224): [Return]

<table>
<thead>
<tr>
<th>Hostname</th>
<th>IP Address</th>
<th>platform=sun15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>netmask-i1</td>
<td>255.255.255.224</td>
<td></td>
</tr>
<tr>
<td>sun15-sc-I1</td>
<td>10.2.1.1</td>
<td></td>
</tr>
<tr>
<td>sun15-a</td>
<td>10.2.1.2</td>
<td></td>
</tr>
<tr>
<td>sun15-b</td>
<td>10.2.1.3</td>
<td></td>
</tr>
<tr>
<td>sun15-c</td>
<td>10.2.1.4</td>
<td></td>
</tr>
<tr>
<td>sun15-d</td>
<td>10.2.1.5</td>
<td></td>
</tr>
<tr>
<td>sun15-e</td>
<td>10.2.1.6</td>
<td></td>
</tr>
<tr>
<td>sun15-f</td>
<td>10.2.1.7</td>
<td></td>
</tr>
<tr>
<td>sun15-g</td>
<td>10.2.1.8</td>
<td></td>
</tr>
<tr>
<td>sun15-h</td>
<td>10.2.1.9</td>
<td></td>
</tr>
<tr>
<td>sun15-i</td>
<td>10.2.1.10</td>
<td></td>
</tr>
<tr>
<td>sun15-j</td>
<td>10.2.1.11</td>
<td></td>
</tr>
<tr>
<td>sun15-k</td>
<td>10.2.1.12</td>
<td></td>
</tr>
<tr>
<td>sun15-l</td>
<td>10.2.1.13</td>
<td></td>
</tr>
<tr>
<td>sun15-m</td>
<td>10.2.1.14</td>
<td></td>
</tr>
<tr>
<td>sun15-n</td>
<td>10.2.1.15</td>
<td></td>
</tr>
<tr>
<td>sun15-o</td>
<td>10.2.1.16</td>
<td></td>
</tr>
<tr>
<td>sun15-p</td>
<td>10.2.1.17</td>
<td></td>
</tr>
<tr>
<td>sun15-q</td>
<td>10.2.1.18</td>
<td></td>
</tr>
<tr>
<td>sun15-r</td>
<td>10.2.1.19</td>
<td></td>
</tr>
</tbody>
</table>

Do you want to accept these network settings? [y,n] y

Configuring I2 Management Network - 'I2' is for SC to SC MAN.

MAN I2 Network Identification

Enter the IP network number (base address) for the I2 network: 10.3.1.0
Enter the netmask for the I2 MAN network (255.255.255.252): [Return]

<table>
<thead>
<tr>
<th>Hostname</th>
<th>IP Address</th>
<th>platform=sun15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>netmask-i2</td>
<td>255.255.255.252</td>
<td></td>
</tr>
<tr>
<td>sun15-sc0-I2</td>
<td>10.3.1.1</td>
<td></td>
</tr>
<tr>
<td>sun15-sc1-I2</td>
<td>10.3.1.2</td>
<td></td>
</tr>
</tbody>
</table>

Do you want to accept these settings? [y,n] y

Creating /.rhosts to facilitate file propagation ... done.

MAN Network configuration modified!

Changes will take effect on next reboot.

The following changes are about to be applied to the "/etc/hosts" hosts file.

ADD: 10.2.1.2 sun15-a #smsconfig-entry#
ADD: 10.2.1.3 sun15-b #smsconfig-entry#
ADD: 10.2.1.4 sun15-c #smsconfig-entry#
ADD: 10.2.1.5 sun15-d #smsconfig-entry#
ADD: 10.2.1.6 sun15-e #smsconfig-entry#
ADD: 10.2.1.7 sun15-f #smsconfig-entry#
ADD: 10.2.1.8 sun15-g #smsconfig-entry#
ADD: 10.2.1.9 sun15-h #smsconfig-entry#
ADD: 10.2.1.10 sun15-i #smsconfig-entry#
ADD: 10.2.1.11 sun15-j #smsconfig-entry#
ADD: 10.2.1.12 sun15-k #smsconfig-entry#
ADD: 10.2.1.13 sun15-l #smsconfig-entry#
EXAMPLE 2 Configuring the I2 Network

ADD: 10.2.1.14 sun15-m #smsconfig-entry#
ADD: 10.2.1.15 sun15-n #smsconfig-entry#
ADD: 10.2.1.16 sun15-o #smsconfig-entry#
ADD: 10.2.1.17 sun15-p #smsconfig-entry#
ADD: 10.2.1.18 sun15-q #smsconfig-entry#
ADD: 10.2.1.19 sun15-r #smsconfig-entry#
ADD: 10.2.1.1 sun15-sc-i1 #smsconfig-entry#
ADD: 10.1.1.50 sun15-sc-C1 #smsconfig-entry#
ADD: 10.1.1.51 sun15-sc0-C1-failover #smsconfig-entry#
ADD: 10.1.1.52 sun15-sc0-hme0 #smsconfig-entry#
ADD: 10.1.1.53 sun15-sc0-eri1 #smsconfig-entry#
ADD: 10.3.1.1 sun15-sc0-i2 #smsconfig-entry#
ADD: 10.3.1.2 sun15-sc1-i2 #smsconfig-entry#

Update the hosts file, "/etc/hosts", with these changes? [y,n] y
Hosts file "/etc/hosts" has been updated.

The following information is about to be applied to the "/etc/netmasks" file.

ADD network: 10.1.1.50, mask: 255.255.255.0
ADD network: 10.2.1.0, mask: 255.255.255.224
ADD network: 10.3.1.0, mask: 255.255.255.252

Update the netmasks file, "/etc/netmasks", with these changes? [y,n] y
Netmasks file "/etc/netmasks" has been updated.
smsconfig complete. Log file is /var/sadm/system/logs/smsconfig

sc#
sc0: # smsconfig -m I2
Configuring I2 Management Network - 'I2' is for SC to SC MAN
Which System Controller are you configuring [choose 0 or 1]: 0.
Hostname IP Address (platform=sun15)
-------- ----------
netmask-i2 255.255.255.252
sun15-sc0-i2 10.3.1.1
sun15-sc1-i2 10.3.1.2
Do you want to accept these network settings? [y,n] n
MAN I2 Network Identification
Enter the IP network number (base address) for the I2 network: 172.16.0.0
Enter the netmask for the I2 MAN network [255.255.255.252]: [Return]
Hostname IP Address(platform=sun15)
-------- ----------
netmask-i2 255.255.255.252
sun15-sc0-i2 172.16.0.1
sun15-sc1-i2 172.16.0.2
Do you want to accept these network settings? [y,n] y
Creating /.rhosts to facilitate file propagation ... done.

MAN Network configuration modified!
Changes will take effect on the next reboot.
The following changes are about to be applied to the "/etc/hosts" hosts file.

ADD: 172.16.0.1 sun15-sc0-i2 #smsconfig-entry#
ADD: 172.16.0.2 sun15-sc1-i2 #smsconfig-entry#

Update the hosts file, "/etc/hosts", with these changes [y,n] y
Hosts file "/etc/hosts" has been updated.

The following information is about to be applied to the "/etc/netmasks" file.

ADD network: 172.16.0.0, mask: 255.255.255.252

Update the netmasks file, "/etc/netmasks", with these changes? [y,n] y
Netmasks file "/etc/netmasks" has been updated.
sc#
EXAMPLE 3 Configuring Internal Host Name and IP Address, SC to Domain B, on the I1 Network

sc0: # smsconfig -m I1 B

Enter the MAN hostname for DB-I1 [sun15-b]: domainB-il
I could not automatically determine the IP address of domainB-il.

Please enter the IP address of domainB-il: 10.2.1.20

You should make sure that this host/IP address is set up properly in the /etc/inet/hosts file or in your local name service system.

Network: I1 (DB-I1) Hostname: domainB-il IP Address: 10.2.1.20

Do you want to accept these settings? [y,n] y

Creating /.rhosts to facilitate file propagation ... done.

MAN Network configuration modified!
Changes will take effect on the next reboot.

The following changes are about to be applied to the "/etc/hosts" hosts file.

ADD: 10.2.1.20 domainB-il #smsconfig-entry#

Update the hosts file, "/etc/hosts", with these changes? [y,n] y

Hosts file "/etc/hosts" has been updated.

sc#

EXAMPLE 4 Excluding Domain D From the I1 Network

By excluding a domain, you will no longer be able to perform DR operations (rcfgadm) from the SC on that domain. You can still perform DR operations (cfgadm) on the domain itself. Refer to the Sun Fire 15K/12K Dynamic Reconfiguration (DR) User Guide for more information.

sc0: # smsconfig -m I1 D

Enter the MAN hostname for DB-I1 [sun15-b]: NONE

Network: I1 (DB-I1)
Hostname: NONE IP Address: None

Do you want to accept these settings? [y,n] y

Creating /.rhosts to facilitate file propagation ... done.

sc#
EXAMPLE 5 Configuring Non-Default Groups

In this example all domain administrator and domain reconfiguration groups are left as the default groups.

 sc0: # smsconfig -g
1) Edit current configuration
2) Restore default groups
3) Quit

Select one of the above options: 1

NOTE: In order to configure a new group the group must already exist.

The Platform Administrator group has configuration control, a means to get environmental status, the ability to assign boards to domains, power control and other generic service processor functions.

Enter the name of the Platform Administrator group [platadm]? zeus

The Platform Operator group has a subset of the platform privileges, limited generally to platform power control and platform status.

Enter the name of the Platform Operator group [platoper]? poseidon

The Platform Service group possesses platform service command privileges in addition to limited platform control and platform configuration status privileges

Enter the name of the Platform Service group [platsvc]? kronos

The Domain Administrator group possesses domain control and status, and console access privileges (for the respective domain), but does not possess platform wide control or platform resource allocation privileges.

Enter the name of the Domain A Administrator group [dmnaadmin]? [Return]

Enter the name of the Domain B Administrator group [dmnbadmin]? [Return]

Enter the name of the Domain C Administrator group [dmncadmin]? [Return]

Enter the name of the Domain D Administrator group [dmdnadmin]? [Return]

Enter the name of the Domain E Administrator group [dmeadmin]? [Return]

Enter the name of the Domain F Administrator group [dmfadmin]? [Return]

Enter the name of the Domain G Administrator group [dmgadmin]? [Return]

Enter the name of the Domain H Administrator group [dmhadmin]? [Return]

Enter the name of the Domain I Administrator group [dmiadmin]? [Return]

Enter the name of the Domain J Administrator group [dmjadmin]? [Return]

Enter the name of the Domain K Administrator group [dmkadmin]? [Return]

Enter the name of the Domain L Administrator group [dmladmin]? [Return]

Enter the name of the Domain M Administrator group [dmnadmin]? [Return]

Enter the name of the Domain N Administrator group [dmnadmin]? [Return]

Enter the name of the Domain O Administrator group [dmnadmin]? [Return]

Enter the name of the Domain P Administrator group [dmpadmin]? [Return]

Enter the name of the Domain Q Administrator group [dmqadmin]? [Return]

Enter the name of the Domain R Administrator group [dmradmin]? [Return]

The Domain Reconfiguration group possesses a subset of the Domain Administration group privileges. This group has no domain control other than board power and reconfiguration (for the respective domain).

Enter the name of the Domain A Reconfiguration group [dmnacfg]? [Return]

Enter the name of the Domain B Reconfiguration group [dmnbcfg]? [Return]

Enter the name of the Domain C Reconfiguration group [dmnccfg]? [Return]

Enter the name of the Domain D Reconfiguration group [dmndcfg]? [Return]

Enter the name of the Domain E Reconfiguration group [dmnercfg]? [Return]
EXAMPLE 6 Configuring SMS to Use Secure Shell

Ensure ssh is enabled, otherwise when running this command you will receive an error message and smsconfig will exit.

sc0: # smsconfig -s ssh
Enabling ssh...
Password/passphrase authentication can be ignored.
System will use ssh
Tue Oct 12 13:21:06 PST 2002
smsconfig complete.

EXAMPLE 7 Configuring SMS to Use rsh

sc0: # smsconfig -s rsh
System will use rsh
Tue Oct 12 13:25:06 PST 2002
smsconfig complete.

EXAMPLE 8 Displaying the Remote Shell

sc0: # smsconfig -v
Remote Shell

Remote Shell /usr/bin/rsh
Tue Oct 12 13:27:10 PST 2002
smsconfig complete.

EXAMPLE 9 Adding a User to the Domain Administrator Group and Configuring Access to the Domain B Directories
You must specify a valid user name and valid SMS group and domain.

```
sc0: # smsconfig -a -u fdjones -G admn B
fdjones has been added to the dmnBadmin group.
All privileges to domain B have been applied.
```

EXAMPLE 10 Adding a User to the Domain Configurator Group and Configuring Access to the Domain C Directories

You must specify a valid user name and valid SMS group and domain.

```
sc0: # smsconfig -a -u fdjones -G rcfg C
fdjones has been added to the dmnCrcfg group.
All privileges to domain C have been applied.
```

EXAMPLE 11 Configuring Access to the Platform Directories

You must specify a valid user name and valid SMS group and the platform.

```
sc0: # smsconfig -a -u jtd -G svc platform
jtd has been added to the platsvc group.
All privileges to the platform have been applied.
```

EXAMPLE 12 Displaying Users With Access to the Domain C Directories

```
sc0: # smsconfig -l C
fdjones
shea
```

EXAMPLE 13 Displaying Users With Access to the Platform Directories

```
sc0: # smsconfig -l platform
fdjones
jtd
```

EXAMPLE 14 Removing User Access to the Domain C Directories

You must specify a valid username and valid SMS group. Any user who belongs to more than one group with access to a domain, must be removed from all groups before directory access is denied.

```
sc0: # smsconfig -r -u fdjones -G rcfg C
fdjones has been removed from the dmnCrcfg group.
fdjones belongs to the dmnCadmn group
Access to domain C remains unchanged.
```
EXAMPLE 15 Configuring Using an Invalid Group name

You must specify a valid SMS group.

```
sc0: # smsconfig -r -u fdjones -G admn C
fdjones has been removed from the dmnCadmnn group.
All access to domain C is now denied.
```

EXAMPLE 16 Mixing Groups and Designations

You must specify group names with the correct area designations. The admn group
works with either designation.

```
sc0: # smsconfig -a -u fdjones -G staff D
ERROR:  group staff does not exist
ABORTING.
```

```
sc0: # smsconfig -a -u fdjones -G rcfg platform
ERROR:  group rcfg cannot access the platform
ABORTING.
```

```
sc0: # smsconfig -a -u fdjones -G oper D
ERROR:  group oper cannot access a domain
ABORTING.
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

The following configuration files are required:

```
/etc/hostname.scman0  MAN Ethernet interface file
/etc/hostname.scman1  MAN Ethernet interface file
/etc/opt/SUNWSMS/config/MAN.cf  MAN daemon configuration file
```

Note – MAN.cf is an internal SMS system file and should not be modified except by
authorized Sun Microsystems personnel.
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO mand (1M), ndd (1M), rsh (1), scp (1), ssh (1)
NAME
smsconnectsc - accesses a remote SC console

SYNOPSIS

```bash
smsconnectsc [-y|n]
smsconnectsc -h
```

DESCRIPTION

tsmsconnectsc creates a remote `tip` console session from a local SC in order to reach a hung remote SC console.

`smsconnectsc` enables the bit that connects the local SC's port B to the remote SC's RS-232 port A when you are logged in to the local SC. The remote SC is the SC that is hanging. Once the `tty` connection is enabled, `smsconnectsc` invokes a `tip` console session to the remote SC. Using the `tip` console session, you can do whatever needs to be done to the remote SC.

`smsconnectsc` works in the absence of an external connection to the remote SC. If the remote SC has an active external connection to port A, then `smsconnectsc` fails and the session usually hangs. To exit, type:

```
~.
```

After you finish, there are several ways to end the session, depending on whether you logged in to the local SC using `telnet` or `rlogin`. See the EXTENDED DESCRIPTION section.

OPTIONS

The following options are supported.

- `-h`
 Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- `-n`
 Automatically answers “no” to all prompts.

- `-y`
 Automatically answers “yes” to all prompts.
In the `tip` console window established by `smsconnectsc`, a tilde (~) that appears as the first character of a line is interpreted as an escape signal that directs the `tip` console to perform the following action:

```
~. Disconnect the `tip` session.

If you have established a `telnet` session to the local SC this disconnects the `tip` session and you remain logged in to the local SC.

If you have established an `rlogin` session in to the local SC, this disconnects the `tip` session and also disconnects your `rlogin` session.

**Note** – The tilde does not appear on the display until after you have pressed the period.

`~.` Disconnect `tip` session.

`~.~` Works only with `rlogin`. If you have established a `telnet` session in to the local SC, you receive the following error message:

```
~.: Command not found
```

If you have established an `rlogin` session in to the local SC, this disconnects the `tip` session and you remain logged in to the local SC.

**Note** – The first tilde does not appear on the display screen. The second tilde does not appear until after you have pressed the period.

`rlogin` also processes tilde-escape sequences whenever a tilde is displayed at the beginning of a new line. If you need to send tilde sequence at the beginning of a line and you are using `rlogin`, use two tildes (the first escapes the second for `rlogin`). Alternatively, do not enter a tilde at the beginning of a line when running inside of `rlogin`. If you use a `kill -9` command to terminate a console session, the window or terminal in which the `smsconnectsc` command was executed goes into raw mode, and appears hung. To escape this condition, type:

```
sc#:sms-user:> CTRL-j
sc#:sms-user:> stty sane
sc#:sms-user:> CTRL-j
```
You must have platform administrator privileges to run this command. Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

**EXAMPLES**

**EXAMPLE 1**  Creating a Remote Connection From the Local SC to the Hung Remote SC

In the following example the local SC is shown as sc1 and the remote SC is shown as sc0. Log in to the local SC as a platform administrator.

```
sc1:sms-user:~> smsconnectsc
TTY connection is OFF. About to connect to other SC.
Do you want to continue (yes/no)? y
connected
sc0:sms-user:~>
```

**EXIT STATUS**

The following exit values are returned:

0  Successful completion.

>0  An error occurred.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

**SEE ALSO**

rlogin(1M), tip(1M)
NAME       smsinstall - install the SMS environment

SYNOPSIS   smsinstall  directory_name

          smsinstall  -p

          smsinstall  -h

DESCRIPTION smsinstall(1M) installs SMS packages on the main or spare SMS system
controllers. Refer to the System Management Services (SMS) 1.3 Installation Guide for
instructions on how to install SMS using this command.

If you are not running smsinstall from the Product directory you must use the
absolute path.

If any errors occur, smsinstall writes error messages to /var/sadm/system/logs/smsinstall.

OPTIONS    The following option is supported

          -h       Help. Displays usage descriptions.

          Note – Use alone. Any option specified in addition to -h is
          ignored.

          -p       Performs post-package add actions only. For use after a Web Start
          installation.

OPERANDS   The following operands are supported:

          directory_name   Name of the directory which contains the SMS packages.

          If you are installing from the Web, the path to the Product
directory, directory_name, is:
          /download_directory/System_Management_Services_1_3/Product
          where download_directory is the location where you
downloaded the files from the Web.

          If you are installing from CD-ROM, the path to the Product
directory, directory_name is /cdrom/cdrom0/
          System_Management_Services_1_3/Product.

EXTENDED   You must have superuser privileges to run this command.

           DESCRIPTION

           Group Privileges
           Required

           Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the
           System Management Services (SMS) 1.3 Administrator Guide for more information.
EXAMPLE 1  Installing SMS From CDROM or Web

```
sc#::sms-user::> smsinstall download_directory

Installing SMS packages. Please wait...
pkgadd -n -d */cdrom/cdrom0/System_Management_Services_1.3/Product -a
/tmp/smsinstall.admin.24501 SUNWSMSr SUNWSMSo SUNWSMSdf SUNWSMSjh
SUNWSMSlp SUNWSMSmn SUNWSMSob SUNWSMSod SUNWSMSpd SUNWSMSpp SUNWSMSsu
SUNWscdvr.u SUNWufrx.u SUNWufu
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
205 blocks
Installation of <SUNWSMSr> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
61279 blocks
Installation of <SUNWSMSo> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
32 blocks
Installation of <SUNWSMSdf> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
2704 blocks
Installation of <SUNWSMSjh> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
5097 blocks
Installation of <SUNWSMSlp> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
1696 blocks
Installation of <SUNWSMSmn> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
576 blocks
Installation of <SUNWSMSo> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
1025 blocks
Installation of <SUNWSMSod> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
1025 blocks
Installation of <SUNWSMSpd> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
14763 blocks
Installation of <SUNWSMSpp> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
```
EXAMPLE 2 Installing SMS After Web Start

```
sc0:sms-user:~ $ smsinstall -p download_directory
Verifying that all SMS packages are installed
..................OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp SUNWSMSmn
SUNWSMSob SUNWSMSmod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu SUNWscdvr SUNWufx
SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Attempting to restart daemon picld
/etc/init.d/picld stop
/etc/init.d/picld start
smsinstall complete. Log file is /var/sadm/system/logs/smsinstall.
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

Use is subject to license terms.

Installation of <SUNWSMSsu> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.

Installation of <SUNWscdvr> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.

Reboot client to install driver.
type=ddi_pseudo;name=flashprom uflash\N0
Installation of <SUNWufx> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.

Installation of <SUNWufu> was successful.

Verifying that all SMS packages are installed
..................OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp SUNWSMSmn
SUNWSMSob SUNWSMSmod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu SUNWscdvr SUNWufx
SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Attempting to restart daemon picld
/etc/init.d/picld stop
/etc/init.d/picld start
smsinstall complete. Log file is /var/sadm/system/logs/smsinstall.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.
The following file is used by this command:

/var/sadm/system/logs/smsinstall  smsinstall log file

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSSop</td>
</tr>
</tbody>
</table>

SEE ALSO smsconfig(1M) smsupgrade(1M)

System Management Services (SMS) 1.3 Installation Guide
**NAME**  
smsrestore - restore the SMS environment

**SYNOPSIS**  
smsrestore  filename

**DESCRIPTION**  
smsrestore(1M) restores the operational environment of the SMS from a backup file created by smsbackup(1M). Use smsrestore to restore the SMS environment after the SMS software has been installed on a new disk.

Turn off failover and stop SMS before running smsrestore; start SMS and turn on failover, if you want, afterward. For information about manually starting and stopping SMS refer to the System Management Services (SMS) 1.3 Installation Guide.

If any errors occur, smsrestore writes error messages to /var/sadm/system/logs/smsrestore.

**Note** – If the main SMS environment has changed since the backup file was created— for example, by shutting down a domain— you must run smsbackup(1M) again in order to maintain a current backup file for the system controller.

**OPTIONS**  
The following option is supported.

- **-h**  
  Help. Displays usage descriptions.

  **Note** – Use alone. Any option specified in addition to -h is ignored.

**OPERANDS**  
The following operands are supported:

- **filename**  
  Name of the backup file that was created by smsbackup(1M). If the specified file is not in the current directory, the filename must contain the full path name for the file. This file can reside anywhere on the system, connected network, or tape device. If no filename is specified, you receive an error message.

**EXTENDED DESCRIPTION**  

**Group Privileges Required**  
You must have superuser privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the System Management Services (SMS) 1.3 Administrator Guide for more information.

**EXAMPLES**  

**EXAMPLE 1**  
Restoring SMS

```bash
sc# smsrestore sms_backup.1.0.cpio
```
EXAMPLE 2  Restoring SMS From Tape Device 0

    sc# smsrestore /dev/rmt/0/sms_backup.1.0.cpio

EXIT STATUS  The following exit values are returned:

    0       Successful completion.
    >0      An error occurred.

FILES  The following file is used by this command:

    /var/sadm/system/logs/smsrestore   smsrestore log file

ATTRIBUTES  See attributes (5) for descriptions of the following attributes.

    | Attribute Types | Attribute Values |
    |-----------------|------------------|
    | Availability    | SUNWSMSop        |

SEE ALSO  smsbackup (1M)
NAME     smsupgrade - upgrades the SMS software to the current version

SYNOPSIS smsupgrade [-b] [-r] directory_name
                smsupgrade -p
                smsupgrade -h

DESCRIPTION smsupgrade(1M) upgrades SMS software on the main or spare SMS system
controllers. Refer to the System Management Services (SMS) 1.3 Installation Guide for
instructions on how to upgrade SMS using this command.

If you are not running smsupgrade from the Product directory you must use the
absolute path.

If any errors occur, smsupgrade writes error messages to /var/sadm/system/logs/smsupgrade.

OPTIONS The following option is supported

- b Neither smsbackup(1M) nor smsrestore(1M) are performed.
              The default is to run smsbackup to directory /var/tmp before
              upgrading SMS.

- h Help. Displays usage descriptions.

  Note – Use alone. Any option specified in addition to -h is
  ignored.

- p Performs post-package add actions only; it does not perform
              smsbackup or smsrestore. For use after a Web Start installation.

- r smsrestore(1M) is not performed after the upgrade

              The default is to run smsrestore from directory /var/tmp after
              upgrading SMS.
OPERANDS

The following operands are supported:

directory_name

Name of the directory which contains the SMS packages.

If you are installing from the Web, the path to the Product
directory, directory_name, is /download_directory/
System_Management_Services_1.3/Product; where
download_directory is the location where you downloaded the
files from the Web.

If you are installing from CD-ROM, the path to the Product
directory, directory_name is /cdrom/cdrom0/
System_Management_Services_1.3/Product.

EXTENDED DESCRIPTION

Group Privileges Required

You must have superuser privileges to run this command.

Refer to Chapter 2, “SMS Security Options and Administrative Privileges” in the
System Management Services (SMS) 1.3 Administrator Guide for more information.

EXAMPLES

EXAMPLE 1 Upgrading SMS From CDROM or Web

    sc0:sm-user:> smsupgrade directory_name

    Attempting to stop daemon picld
    /etc/init.d/picld stop

    Verifying that all SMS packages are installed
    ...............OK

    Backing up SMS to /var/tmp/sms_backup.1.3.cpio before
    upgrade. Please wait . . .
    smsbackup /var/tmp
    smsbackup: Backup configuration file created: /var/tmp/
    sms_backup.1.3.cpio
    SMS backup complete.

    Installing SMS packages. Please wait . . .
    pkgadd -n -d "/cdrom/cdrom0/
    System_Management_Services_1.3/Product" -a
    /tmp/smsinstall.admin.26021 SUNWSMSr SUNWSMSop SUNWSMSdf
    SUNWSMSjh SUNWSMS1p
    SUNWSMSmn SUNWSMSob SUNWSMSod SUNWSMSpd SUNWSMSpo
    SUNWSMSpp SUNWSMSsu
    SUNWscdvr.u SUNWufrx.u SUNWufu

    Copyright 2002 Sun Microsystems, Inc. All rights
    reserved. Use is subject to license terms.
    205 blocks

    Installation of <SUNWSMSr> was successful.
    Copyright 2002 Sun Microsystems, Inc. All rights
    reserved. Use is subject to license terms.
Installation of <SUNWSMSop> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
32 blocks

Installation of <SUNWSMSdf> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
2704 blocks

Installation of <SUNWSMSjh> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
5097 blocks

Installation of <SUNWSMSlp> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
1696 blocks

Installation of <SUNWSMSmn> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
576 blocks

Installation of <SUNWSMSob> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
1025 blocks

Installation of <SUNWSMSod> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
1025 blocks

Installation of <SUNWSMSpd> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
14763 blocks

Installation of <SUNWSMSpo> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

Installation of <SUNWSMSpp> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
5 blocks

Installation of <SUNWSMSsu> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
479 blocks

Installation of <SUNWscdvr> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
33 blocks
EXAMPLE 2 Installing SMS After Web Start

```
sc0:msm-user:~$ smsupgrade -p directory_name
Verifying that all SMS packages are installed
..............OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp
SUNWSMSmn SUNWSMSob
SUNWSMSod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu
SUNWscdvr SUNWufx SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Restoring SMS from /var/tmp/sms_backup.1.3.cpio after
upgrade. Please wait.
dsmsrestore /var/tmp/sms_backup.1.3.cpio
Attempting to start daemon picld
/etc/init.d/picld start
smsupgrade complete. Log file is /var/sadm/system/logs/
smsupgrade.
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command:

```
/var/sadm/system/logs/smsupgrade smsupgrade log file
```

smsupgrade(1M) System Administration

Reboot client to install driver.
type=ddi_pseudo;name=flashprom uflash
Installation of <SUNWufx> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
11 blocks
Installation of <SUNWufu> was successful.
Verifying that all SMS packages are installed
..............OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp
SUNWSMSmn SUNWSMSob
SUNWSMSod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu
SUNWscdvr SUNWufx SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Restoring SMS from /var/tmp/sms_backup.1.3.cpio after
upgrade. Please wait.
dsmsrestore /var/tmp/sms_backup.1.3.cpio
Attempting to start daemon picld
/etc/init.d/picld start
smsupgrade complete. Log file is /var/sadm/system/logs/
smsupgrade.

```
EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command:

```
/var/sadm/system/logs/smsupgrade smsupgrade log file
```

smsupgrade(1M) System Administration

Reboot client to install driver.
type=ddi_pseudo;name=flashprom uflash
Installation of <SUNWufx> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
11 blocks
Installation of <SUNWufu> was successful.
Verifying that all SMS packages are installed
..............OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp
SUNWSMSmn SUNWSMSob
SUNWSMSod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu
SUNWscdvr SUNWufx SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Restoring SMS from /var/tmp/sms_backup.1.3.cpio after
upgrade. Please wait.
dsmsrestore /var/tmp/sms_backup.1.3.cpio
Attempting to start daemon picld
/etc/init.d/picld start
smsupgrade complete. Log file is /var/sadm/system/logs/
smsupgrade.
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command:

```
/var/sadm/system/logs/smsupgrade smsupgrade log file
```

smsupgrade(1M) System Administration

Reboot client to install driver.
type=ddi_pseudo;name=flashprom uflash
Installation of <SUNWufx> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
11 blocks
Installation of <SUNWufu> was successful.
Verifying that all SMS packages are installed
..............OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp
SUNWSMSmn SUNWSMSob
SUNWSMSod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu
SUNWscdvr SUNWufx SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Restoring SMS from /var/tmp/sms_backup.1.3.cpio after
upgrade. Please wait.
dsmsrestore /var/tmp/sms_backup.1.3.cpio
Attempting to start daemon picld
/etc/init.d/picld start
smsupgrade complete. Log file is /var/sadm/system/logs/
smsupgrade.
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command:

```
/var/sadm/system/logs/smsupgrade smsupgrade log file
```

smsupgrade(1M) System Administration

Reboot client to install driver.
type=ddi_pseudo;name=flashprom uflash
Installation of <SUNWufx> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
11 blocks
Installation of <SUNWufu> was successful.
Verifying that all SMS packages are installed
..............OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp
SUNWSMSmn SUNWSMSob
SUNWSMSod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu
SUNWscdvr SUNWufx SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Restoring SMS from /var/tmp/sms_backup.1.3.cpio after
upgrade. Please wait.
dsmsrestore /var/tmp/sms_backup.1.3.cpio
Attempting to start daemon picld
/etc/init.d/picld start
smsupgrade complete. Log file is /var/sadm/system/logs/
smsupgrade.
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command:

```
/var/sadm/system/logs/smsupgrade smsupgrade log file
```

smsupgrade(1M) System Administration

Reboot client to install driver.
type=ddi_pseudo;name=flashprom uflash
Installation of <SUNWufx> was successful.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
11 blocks
Installation of <SUNWufu> was successful.
Verifying that all SMS packages are installed
..............OK
Checking that all installed SMS packages are correct
pkgchk -n SUNWSMSr SUNWSMSop SUNWSMSdf SUNWSMSjh SUNWSMSlp
SUNWSMSmn SUNWSMSob
SUNWSMSod SUNWSMSpd SUNWSMSpo SUNWSMSpp SUNWSMSsu
SUNWscdvr SUNWufx SUNWufu
OK
Setting up /etc/init.d/sms run control script for SMS 1.3
New SMS version 1.3 is active
Restoring SMS from /var/tmp/sms_backup.1.3.cpio after
upgrade. Please wait.
dsmsrestore /var/tmp/sms_backup.1.3.cpio
Attempting to start daemon picld
/etc/init.d/picld start
smsupgrade complete. Log file is /var/sadm/system/logs/
smsupgrade.
```

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

FILES

The following file is used by this command:

```
/var/sadm/system/logs/smsupgrade smsupgrade log file
```
ATTRIBUTES

See attributes (5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO

smsbackup (1M), smsconfig (1M), smsinstall (1M), smsrestore (1M)

System Management Services (SMS) 1.3 Installation Guide
NAME
smsversion - change the active version of SMS to another co-resident version of the SMS software

SYNOPSIS
smsversion new_version
smsversion -t
smsversion -h

DESCRIPTION
smsversion(1M) can be used to switch between two co-installed (and consecutively released) versions of SMS.

Note – SMS 1.1 and SMS 1.3 are not consecutive releases and you cannot switch from one to the other using smsversion. You must do a fresh installation. Refer to the System Management Services (SMS) 1.3 Installation Guide for more information.

smsversion permits two-way SMS version-switching between sequential co-resident installations on the same operating environment but with the following conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>New features</td>
<td>The features supported in the newer version of SMS may not be supported in the older version. Switching to an older version of SMS can result in the loss of those features. Also, the settings for the new features might be erased.</td>
</tr>
<tr>
<td>Flash PROM differences</td>
<td>Switching versions of SMS requires reflashing the CPU flash PROMs with the correct files. These files can be found in the /opt/SUNWSMS/<SMS_version>/firmware directory. Use flashupdate(1M) to reflash the PROMs after you have switched versions. Refer to the flashupdate man page, Chapter 11 of the System Management Services (SMS) 1.3 Administrator Guide and the System Management Services (SMS) 1.3 Installation Guide for more information on updating flash PROMs.</td>
</tr>
</tbody>
</table>

smsversion, when invoked with no command-line argument, displays the list of all properly installed versions of SMS on the current system controller. You can pick from that list, and smsversion stores a copy of the current configuration environment and then switches all necessary software links necessary for activating the new version of the software. smsversion can run with an optional command-line argument specifying the target version for switching.

Once smsversion completes the switch, the target version becomes the active version. To restore the configuration automatically saved by smsversion you must use smsrestore(1M). Your previous configuration is not automatically restored as part of the version switch.

To restore your previous configuration do one of the following:
Turn off failover and stop SMS. Then run `smsrestore`.

Note – If you changed your network configuration using `smsconfig -m` after you created the backup you just restored, you must run `smsconfig -m` and reboot now.

Start SMS and turn on failover. For information about manually starting and stopping SMS refer to the *System Management Services (SMS) 1.3 Installation Guide*.

If any errors occur, `smsversion` writes error messages to `/var/sadm/system/logs/smsversion`.

OPTIONS
The following options are supported:

- `-h` Help. Displays usage descriptions.

 Note – Use alone. Any option specified in addition to `-h` is ignored.

- `-t` Displays the current active version of SMS and exits.

OPERANDS
The following operands are supported:

```
version_number  Release number of the target SMS version
```

EXTENDED DESCRIPTION

You must have superuser privileges to run this command.

Refer to Chapter 2, "SMS Security Options and Administrative Privileges" in the *System Management Services (SMS) 1.3 Administrator Guide* for more information.

EXAMPLES

EXAMPLE 1 Displaying the Version with One Version of SMS Installed

Displays the active version and exits when only one version of SMS is installed.

```
sc# smsversion -t
1.2
```

EXAMPLE 2 Changing the Active Version of SMS

Displays versions of SMS installed on this system controller. Choose the inactive version and perform a version switch.
You must stop SMS prior to switching versions.

```
sc# smsversion
smsversion: Active SMS version  1.2
smsversion: SMS version 1.2 installed
smsversion: SMS version 1.3 installed
Please select from one of the following installed SMS versions.
1) 1.2
2) 1.3
3) Exit
Select version: 2
You have selected SMS Version 1.3
Is this correct? [y,n] y
```

smsversion: Upgrading SMS from 1.2> to 1.3>.
To move to a different version of SMS an archive of critical files will be created. What is the name of the directory or tape device where the archive will be stored? [/var/tmp][return]

```
smsversion: Backup configuration file created: /var/tmp/sms_backup.1.2.cpio
smsversion: Switching to target version 1.3>.
smsversion: New Version 1.3> Active
```

```
smsversion: New Version 1.3> Active
To use the previous SMS configuration settings type:
smsrestore /var/tmp/sms_backup.1.2.cpio
```

NOTE: When switching to another SMS version, the user must choose (via use of smsrestore) to restore the configuration settings from the previously active version.

```
EXAMPLE 3  Downgrading SMS Versions
```

```
sc# smsversion 1.2
smsversion: Active SMS version  1.3 >
You have requested SMS Version 1.2
Is this correct? [y,n] y
```

smsversion: Downgrading SMS from 1.3> to 1.2>.
smsversion: SMS version 1.2 installed
To move to a different version of SMS an archive of critical files will be created. What is the name of the directory or tape device where the archive will be stored? [/var/tmp][return]

```
smsversion: Backup configuration file created: /var/tmp/sms_backup.1.3.cpio
smsversion: Switching to target version 1.2>.
smsversion: New Version 1.2> Active
smsversion: Active SMS version  1.2 >
```

```
To restore previous the SMS configuration setting type:
smsrestore /var/tmp/sms_backup.1.3.cpio
```
The following exit values are returned:

 0 Successful completion.
 >0 An error occurred.

The following file is used by this command:

/var/sadm/system/logs/smsversion smsversion log file

See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

See also smsbackup(1M), smsrestore(1M)
NAME | ssd - SMS startup daemon

SYNOPSIS | ssd [-f startup_file]
 | ssd [-i message]

DESCRIPTION | ssd(1M) starts, stops, and monitors all the key daemons and servers of SMS. When executed with no options ssd reads from the ssd_start file, which lists the daemons and servers that ssd starts and monitors.

Do not execute this program manually. ssd(1M) is automatically invoked by a Solaris software run-control script and is periodically monitored for restart.

OPTIONS | The following options are supported:
- `f startup_file` Uses this file instead of the default ssd_start file.
- `i message` Places a notice message in the platform log file. Specified and used exclusively by the sms startup script.

FILES | The following files are supported:
/etc/opt/SUNWSMS/startup/ssd_start | Default startup file for ssd
/etc/opt/SUNWSMS/startup/sms | Default startup file for SMS

ATTRIBUTES | See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>
NAME
tmd - task management daemon

SYNOPSIS
tmd [-t number]

DESCRIPTION
tmd(1M) provides task management services, such as scheduling for SMS. The purpose of this service is to reduce the number of conflicts that can arise during concurrent invocations of the hardware tests and configuration software.

This daemon is started automatically by ssd(1M). Do not start it manually from the command line.

OPTIONS
The following option is supported:

- t number This option allows the number of concurrent invocations to be throttled. The value must be a positive number, greater than or equal to one.

 Caution– Changing the default value can adversely affect system functionality. Do not adjust this parameter unless instructed by a Sun service representative to do so.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
ssd(1M)
NAME
wcapp - wPCI application daemon

SYNOPSIS
wcapp

DESCRIPTION
wcapp(1M) is responsible for implementing Sun Fire Link clustering functionality—specifically, handling requests from the domain-side drivers and responding to requests for information from the external Sun Fire Link fabric manager server. wcapp runs in a Java Virtual Machine (JVM) included with Solaris 8 02/02 operating environment or later.

wcapp is responsible for managing Sun Fire Link clustering for all the domains in the Sun Fire 15K/12K system. The Java side of wcapp exports a set of Java Remote Method Invocation (RMI) interfaces that can be used by the Sun Fire Link fabric manager to set up and monitor a cluster.

This daemon is automatically started by ssd(1M). Do not start it manually from the command line.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>Attribute Types</th>
<th>Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWSMSop</td>
</tr>
</tbody>
</table>

SEE ALSO
ssd(1M)