
Send comments about this
Solaris on Sun Hardware Reference
Manual Supplement
Part No. 817-3060-10
July 2003, Revision A
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
 document to: docfeedback@sun.com

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
(c) Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun StorEdge, Enterprise Network Array, and Solaris are trademarks,
registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR
52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à
Netscape Communicator™: (c) Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Sun StorEdge, Enterprise Network Array, et Solaris sont des marques de
fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques
SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.
Please
Recycle

Preface

The Solaris on Sun Hardware Reference Manual Supplement contains reference manual
pages (man pages) for software provided to Sun hardware customers with the
Solaris 8 product. These supplement the man pages provided in the general Solaris 8
Reference Manual. This edition has bee updated to include man pages found in the
Solaris 8 HW 7/03 release.

Before you can access some of the information published in this book through the
man command, you may need to install software from the Solaris Software
Supplement CD for your Solaris release. In most cases, when you install a software
product from the Solaris Software Supplement CD, a package containing man pages
about the software will be automatically installed. For information about installing
the man page software, refer to the Solaris 8 Sun Hardware Platform Guide.

How This Book Is Organized
This manual contains man pages in alphabetical order within each category:

■ User Commands (1)
■ System Administration Commands (1M)
■ Smartcard commands (3smartcard)
■ File Formats (4)
■ Device and Network Interfaces (7)

The man pages apply to the following products:

■ CD Read/Write drives: cdrw

■ SunFDDI™ network adapter software: nf, nf_fddidaemon,
nf_install_agents, nf_macid, nf_smtmon, nf_snmd, nf_snmd_kill,
nf_stat, nf_sync, pf, pf_fddidaemon, pf_install_agents, pf_macid,
pf_smtmon, pf_snmd, pf_snmd_kill, pf_stat, smt
Preface v

■ SunHSI/P™ (PCI bus) network adapter software: hsip, hsip_init, hsip_loop,
hsip_stat

■ SunHSI/S™ (Sbus) network adapter software: hsi, hsi_init, hsi_loop,
hsi_stat, hsi_trace

■ Gigabit Ethernet driver: bge

■ Sun Remote System Control (RSC): rscadm

■ Administration functions for Sun Fire™ V210 systems: scadm

■ SunVTS™ diagnostic software: sunvts, vts_cmd, vtsk, vtsprobe, vtstty,
vtsui

■ Netra™ t server environmental monitoring software: envmond, envmond.conf

■ Dynamic Reconfiguration for certain platforms: cfgadm_sbd

Accessing Sun Documentation Online
The docs.sun.comSM web site enables you to access Sun technical documentation
on the Web. You can browse the archive or search for a specific book title or subject
at: http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at: docfeedback@sun.com

Please include the part number (817-3060-10) of your document in the subject line of
your email.
vi Solaris on Sun Hardware Reference Manual Supplement • July 2003

User Commands cdrw (1)

NAME cdrw – CD read and write

SYNOPSIS cd r w -i [-vSC O] [-d dev ice] [-p speed] [im a ge-fi le]

cd r w -a [-vSC O] [-d dev ice] [-p speed] [-T a udio-ty pe] a udio-fi le1 [a udio-fi le2...]

cd r w -x [-v] [-d dev ice] [-T a udio-ty pe] tr a ck -num ber out-fi le

cd r w -c [-vSC] [-d dev ice] [-p speed] [-m tm p-dir] [-s sr c-dev ice]

cd r w -b [-v] [-d dev ice] all session fast

cd r w -L [-v] [-d dev ice]

cd r w -M [-v] [-d dev ice]

cd r w -l [-v]

cd r w -h

The cd r w command provides the ability to create data and audio CDs. It also provides the abil-
ity to extract audio tracks from an audio CD.cd r w also has the ability to create data DVDs.
cd r w requires that the device be MMC-compliant in order to create a CD/DVD.

cd r w will search for a CD/DVD writer device connected to the system, unless the user specifies
a device with the -d option. If it finds a single such writer device, it will use that as the default
CD/DVD writer device for the command.

When more than one CD/DVD writer is connected to the system, use the -d option to
indicate which device is desired. The device name can be specified in one of the following
ways: /dev/rdsk/cNtNdNsN, cNtNdNsN, cNtNdN, or a symbolic name used by volume
manager, such ascd r om or cd r om 1. The -l option will provide a list of CD/DVD writers.

For instructions on adding a USB-mass-storage-class-compliant CD/DVD-RW to your
system, see scsa 2u sb7D.

Creating Data CD When creating data CDs, cd r w uses the Track-At-Once mode of writing. With the -i option,
the user will specify a file that contains the data to write on CD media. In the absence of such a
file, cd r w will read data from standard input.

In either case, the data will typically first have been prepared by using the
m k isofs(1M)terefentry> command to convert the file and file information into the High Sierra
format used on CDs. See the examples that include use of this command.

Creating Data DVDs cd r w can create single-session data DVDs on DVD+RW/DVD-RW drives using images gen-
erated fromm k isofs(1M)terefentry>. These disks can be mounted on Solaris as hsfs filesystems.
When making data DVDs,cd r wuses Disk-At-Once mode of writing which will close the media
when writing is completed and prevent any further sessions from being added. The -doption
must be used when writing the image to the DVD media since DAO mode requires that the size
of the image to be known in advance.

In either case, the data will typically first have been prepared by using the
m k isofsle>(1M) command to convert the file and file information into the High Sierra format
used on CD s. See the examples that include use of this command.

modified 21 Aug 2001 Solaris 8 1-1

cdrw (1) User Commands

Creating Audio CDs For creating an audio CD, using the -a option, single or multiple audio files can be
specified. All of the audio files should be in the supported audio formats. Currently approved
formats are:

sun Sun .au files with data in Red Book CDDA form

wav RIFF (.wav) files with data in Red Book CDDA form

cda .cda files having raw CD audio data (that is, 16 bit PCM stereo at 44.1
KHz sample rate in little-endian byteorder)

aur .aur files having raw CD data in big-endian byteorder

If no audio format is specified, cd r w tries to understand the audio file format based on the
file extension. The case of the characters in the extension is ignored. If a format is specified
using the -T option, it will be assumed as the audio file type for all the files specified. Also, -c
will close the session after writing the audio tracks. Therefore, the tracks to be written should
be specified in a single command line.

Extracting Audio cd r w can also be used for extracting audio data from an audio CD with the -x option. The CD
should have tracks in Red Book CDDA form. By default, the output format is based on the file
extension. A user can specify asu n, wa v, cd a, or a u r output format using the -T option.

Copying CDs cd r w can be used to copy single session data CD-ROMs and Red Book audio CDs. For copying
a CD,cd r w looks for a specified source device. If no source device is specified when using the
-c option, the current CD writing device is assumed to be the source.cd r w will extract the track
or tracks into a temporary file and will look for a blank writable CD-R/RW media in the
current CD writing device. If no such media is found, the user will be asked to insert a blank
writable CD media in the current CD writing device. If enough space is not available in the
default temporary directory, an alternative directory can be specified using the -m option.

Erasing CD-
RW/DVD-

RW/DVD+RW
Media

Users have to erase the CD-RW media before it can be re-written. With the -b option,
the following flavors of erasing are currently supported:

session
Erase the last session.

fa st Minimally erase the media.

a ll Erase the entire media.

If the session erasing type is used,cd r w will erase the last session. If there is only one session
recorded on the CD-RW (for example, a data/audio CD-RW created by this tool), then session
erasing is useful as it will only erase the portion that is recorded, leaving behind a blank disk.
This is faster than erasing the entire media. For DVD media, session erase will erase the whole
media.

Fast erase will minimally erase the entire media by removing the PMA and TOC of the
first session. It will not erase the user data and subsequent tracks on the media, but the
media will be treated it was a blank disc.
If a complete erase is necessary, the media will have to be erased using the all option.

1-2 Solaris 8 modified 21 Aug 2001

User Commands cdrw (1)

The a ll erasing type should be used if it is a multisession disk, or the last session is not closed,
or disk status is unknown, and the user wishes to erase the disk. With this type of erase,cd r w
will erase the entire disk.

Checking device-list
or media-status

The user can get a list of CD/DVD writing devices currently present in the system
with the -l option. Also, for a particular media, the user can get the blanking status and table
of contents through the -M option. The -M option also prints information about the last session
start address and the next writable address. This information, along with the -O option, can be
used to create multisession CDs. Please refer tom k isofs(1M)terefentry> for more information.

The following options are supported:

-a Creates an audio disk. At least one a udio-fi le name must be specified. A CD can not
have more than 99 audio tracks, so no more than 99 audio files can be specified. Also,
the maximum audio data that can be written to the media by default is 74 minutes,
unless -C is specified.

-b Blanks a CD-RW media. The type of erasing must be specified by the a ll, fa st or
session argument.

-c Copies a CD. If no other argument is specified, the default CD writing device is
assumed to be the source device as well. In this case, the copying operation will
read the source media into a temporary directory and will prompt the user to
place a blank media into the drive for copying to proceed.

-C Uses media stated capacity. Without this option, cd r w will use a default value for
writable CD media, which is 74 minutes for an audio CD or 681984000 bytes for a data
CD and 4.7 GB for DVD.

-d Specifies CD/DVD writing device.

-h Help. Prints usage message.

-i Specifies image file for creating data CD/DVDs. The file size should be less than
what can be written on the media.

-l Lists all the CD/DVD writers found in the system.

-L Close the disk. If the media was left in an open state after the last write opera-
tion, it will be closed to prevent any further writing.

-m Uses an alternate temporary directory instead of system default temporary
directory for storing track data while copying a CD/DVD. An alternate tem-
porary directory might be required because the amount of data on a CD can be
huge (as much as 800 Mbytes for an 80 minute audio CD and 4.7 GB for a DVD)
and the system default temporary directory might not have that much space.

-M Reports media status. cd r w will report if the media is blank or not, its table of con-
tents, the last session’s start address, and the next writable address if the disk is open.

-O Keeps the disk open. cd r w will close the session, but it will keep the disk open so that
another session can be added later on to create a multisession disk.

-p Sets the writing speed. For example, -p 4 will set the speed to 4X. If this option is
not specified,cd r w will use the default speed of the CD writer. If this option is

modified 21 Aug 2001 Solaris 8 1-3

cdrw (1) User Commands

specified,cd r w will try to set the drive write speed to this value, but there is no guaran-
tee of the speed actually used by the drive.

-s Specifies source device for copying CD/DVD.

-S Simulation mode. In this mode, cd r w will do everything with the drive laser turned
off, so nothing will be written to the media. This can be used to verify if the system can
provide data at a rate good enough for CD writing.

-T Audio format to use extracting audio files or reading audio files for audio CD
creation. The a udio-ty pe can besu n, wa v, cd a, or a u r.

-v Verbose mode.

-x Extracts audio data from an audio track.

E xa m p le 1: C r ea t in g a d a t a C D or DVD

example% cd r w -i /loca l/iso_im a ge

E xa m p le 2: C r ea t in g a C D/DVD fr om a d ir ect or y

This example creates a CD/DVD from the directory tree /h om e/foo:

example% mkisofs -r /home/foo >/image ; cdrw -i
-p 1 /image

E xa m p le 3: E xt r a ct in g a n a u d io t r a ck n u m b er

This example extracts audio track number 1 to /h om e/foo/son g1.wa v:

example% cdrw -x -T wav 1
/home/foo/song1.wav

E xa m p le 4: Usin g wa v files

This example creates an audio CD from wa v files on disk:

example% cdrw -a song1.wav song2.wav song3.wav
song4.wav

E xa m p le 5: E r a sin g a C D-R W /DVD-R W /DVD+R W m ed ia

This example erases a rewritable media in a drive:

example% cd r w -b a ll

E xa m p le 6: C r ea t in g a d a t a C D/DVD wit h m u lt ip le d r ives

This example creates a data CD/DVD on a system with multiple CD/DVD-R/RW
drives:

example% cdrw -d c1t6d0s2 -i
/home/foo/iso-image

E xa m p le 7: C h eck in g d a t a d eliver y r a t e

This example checks if the system can provide data to a CD-RW or DVD drive at a
rate sufficient for the write operation:

1-4 Solaris 8 modified 21 Aug 2001

User Commands cdrw (1)

example% cdrw -S -i
/home/foo/iso-image

E xa m p le 8: R u n n in g a t a h igh er p r ior it y

This example runs cd r w at a higher priority (for root user only):

example# priocntl -e -p 60 cdrw -i
/home/foo/iso-image

E xa m p le 9: C r ea t in g a m u lt i-session d isk

Create the first session image using m k isofs(1M)terefentry> and record it onto the disk
without closing the disk:

example% cd r w -O -i /h om e/foo/iso-im a ge

Additional sessions can be added to an open disk by creating an image with
m k isofs(1M)terefentry> using the session start and next writable address reported bycd r w.

example% cd r w -M

Track No. |Type |Start address
----------+--------+-------------
1 |Data | 0
Leadout |Data | 166564

Last session start address: 162140
Next writable address: 173464

example% mkisofs -o /tmp/image2 -r -C 0,173464 -M \
/dev/rdsk/c0t2d0s2 /home/foo

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Availability SUNWcdrw_ __ 











a u d iocon ver t>(1), m k isofs(1M)terefentry>,p r iocn t l(1), a t t r ib u t es(5), r b a c(5), scsa 2u sb7D,
sd(7D)

The CD/DVD writing process requires data to be supplied at a constant rate to the
drive. It is advised to keep I/O activity to a minimum and shut down the related
applications while writing CDs.

When making copies or extracting audio tracks, it is better to use an MMC compliant
source CD-ROM drive. The CD writing device can be used for this purpose.

Before writing a CD, ensure that the media is blank by using the -M option and use the
-S simulation mode to test the system to make sure it can provide data at the required rate. In
case the system is not able to provide data at the required rate, try simulation with a slower

modified 21 Aug 2001 Solaris 8 1-5

cdrw (1) User Commands

write speed set through the -p option. Users can also try to runcd r w at a higher priority using
the p r iocn t l1 command.

The -p option is provided for users who are aware of the CD-R/RW drive and its capabilities to
operate at different write speeds. Some commercially available drives handle the drive speed
setting command differently, so use this option judiciously.

Most commercially available drives allow writing beyond 74 minutes as long as the
media has the capacity (such as 80-minute media). However, such capability of writing
beyond 74 minutes might not be supported by the drive in use. If the drive being used
supports such capability, then use the -C option to indicate that the tool should rely on the
capacity indicated by the media.

The cd r w command usesr b a c(5) to control user access to the devices. By default,cd r w is
accessible to all users but can be restricted to individual users. Please refer to "Administering
CD-R/CD-RW devices" in the for more information.

1-6 Solaris 8 modified 21 Aug 2001

User Commands rmformat (1)

NAME rmformat – removable rewritable media format utility

SYNOPSIS r m for m a t [-DeH p Uv] [-b la bel] [-c block no] [-Fquick  long  force] [-R enable disable] [-s
fi lena m e] [-w enable disable] [-W enable disable] [dev na m e]

r m for m a t -V read write dev na m e

The r m for m a t utility is used to format, label, partition, and perform other miscellaneous func-
tions on removable, rewritable media that include floppy drives, IOMEGA Zip/Jaz products, and
the P C M C I A memory and ata cards. In addition, ther m for m a t utility should also be used with
all USB mass storage devices, includingUSB hard drives. This utility can also be used for the
verification and surface analysis and for repair of the bad sectors found during verification if the
drive or the driver supports bad block management.

r m for m a t provides functionality to read/write protect the media with or without a password. The
password protection enabling or disabling is possible only with selective rewritable media such
as the IOMEGA Zip/Jaz products.

After formatting, r m for m a t writes the label, which covers the full capacity of the media as
one slice on floppy andP C M C I A memory cards to maintain compatibility with the behavior of
fd for m a t. On Zip/Jaz devices, the driver exports one slice covering the full capacity of the disk
as default.r m for m a t does not write the label on Zip/Jaz media, unless explicitly requested. The
partition information can be changed with the help of other options provided byr m for m a t.

The following options are supported:

-b la bel
Labels the media with a SUNOS label. A SUNOS volume label name is res-
tricted to 8 characters. For writing a DO S Volume label, the user should use
m k fs_p cfs(1M).

-c block no
Corrects and repairs the given block. This correct and repair option may not be
applicable to all devices supported by r m for m a t, as some devices may have a drive
with bad block management capability and others may have this option implemented in
the driver. If the drive or driver supports bad block management, a best effort is made to
rectify the bad block. If the bad block still cannot be rectified, a message is displayed to
indicate the failure to repair. The block number can be provided in decimal, octal, or
hexadecimal format.

The normal floppy and P C M C I A memory and ata cards do not support bad block
management.

-D Formats a 720KB (3.5 inch) double density diskette. This is the default for dou-
ble density type drives. This option is needed if the drive is a high or extended-
density type.

-e Ejects the media upon completion. This feature may not be available if the drive
does not support motorized eject.

modified 13 Nov 2002 Solaris 8 1-7

rmformat (1) User Commands

-F quick  long  force
Formats the media.

The q u ick option starts a format without certification or format with limited certification
of certain tracks on the media.

The lon g option starts a complete format. For some devices this might include the
certification of the whole media by the drive itself.

The for ce option to format is provided to start a long format without user confirmation
before the format is started. For drives which have a password protection mechanism, it
clears the password while formatting. This feature is useful when a password is no
longer available. On those media which do not have such password protection,for ce
starts a long format.

In legacy media such as floppy drives, all options start a long format depending
on the mode (Extended Density mode, High Density mode, or Double Density
mode) with which the floppy drive operates by default. On P C M C I A memory
cards, all options start a long format.

-H Formats a 1.44 MB (3.5 inch) high density diskette. This is the default for high
density type drives. It is needed if the drive is the Extended Density type.

-p Prints the protection status of the media. This option prints information whether
the media is write, read, or password protected.

-R enable disable
Enables read/write protection with a password or disables the password
read/write protection. This always works in interactive mode, as the password
is requested from the user in an interactive manner to maintain security.

A password length of 32 bytes (maximum) is allowed for the IOMEGA products
that support this feature. This option is applicable only for IOMEGA products.
IOMEGA products do not allow read/write protection without a password. On
the devices which do not have such software read/write protect facility, warn-
ings indicating the non-availability of this feature are provided.

-s fi lena m e
Enables the user to lay out the partition information in the SUNOS label.

The user should provide a file as input with information about each slice in a
format providing byte offset, size required, tags, and flags, as follows:

slices: n = of f set, siz e [, fl a gs, ta gs]

wheren is the slice number,of f set is the byte offset at which the slicen starts, andsiz e
is the required size for slicen. Both of f set andsiz e must be a multiple of 512 bytes.

1-8 Solaris 8 modified 13 Nov 2002

User Commands rmformat (1)

These numbers can be represented as decimal, hexadecimal, or octal numbers. No float-
ing point numbers are accepted. Details about maximum number of slices can be
obtained from theS y stem A dm inistr a tion Guide: B a sic A dm inistr a tion.

To specify thesiz e or of f set in kilobytes, megabytes, or gigabytes, addK B, M B, G B,
respectively. A number without a suffix is assumed to be a byte offset. The flags are
represented as follows:

wm = read-write, mountable
wu = read-write, unmountable
r u = read-only, unmountable

The tags are represented as follows:u n a ssign ed, b oot, r oot, swa p, u sr, b a ck u p, st a n d,
va r, h om e, a lt er n a t es.

The tags and flags can be omitted from the four tuple when finer control on those values
is not required. It is required to omit both or include both. If the tags and flags are omit-
ted from the four tuple for a particular slice, a default value for each is assumed. The
default value for flags iswm and for tags isu n a ssign ed.

Either full tag names can be provided or an abbreviation for the tags can be used. The
abbreviations can be the first two or more letters from the standard tag names.r m for m a t
is case insensitive in handling the defined tags & flags.

Slice specifications are separated by :

For example:

slices: 0 = 0, 30MB, "wm", "home" :
1 = 30MB, 51MB :
2 = 0, 100MB, "wm", "backup" :
6 = 81MB, 19MB

r m for m a t does the necessary checking to detect any overlapping partitions or illegal
requests to addresses beyond the capacity of the media under consideration. There can
be only one slice information entry for each slicen. If multiple slice information entries
for the same slicen are provided, an appropriate error message is displayed. The slice2
is the backup slice covering the whole disk capacity. The pound sign character, #, can
be used to describe a line of comments in the input file. If the line starts with #, then
r m for m a t ignores all the characters following # until the end of the line.

Partitioning some of the media with very small capacity is permitted, but be
cautious in using this option on such devices.

modified 13 Nov 2002 Solaris 8 1-9

rmformat (1) User Commands

-U Performs u m ou n t on any file systems and then formats. Seem ou n t(1M). This option
unmounts all the mounted slices and issues a long format on the device requested.

-V read write
Verifies each block of media after format. The write verification is a destructive
mechanism. The user is queried for confirmation before the verification is
started. The output of this option is a list of block numbers, which are identified
as bad.

The read verification only verifies the blocks and report the blocks which are
prone to errors.

The list of block numbers displayed can be used with the -c option for repairing.

-w enable disable
Enables or disables the write protection on media. On devices that do not have a
software write protect facility, a message indicating non-availability of this
feature is displayed.

-W enable disable
Enables or disables write protection with password. This option always works in
interactive mode, as a password is requested from the user to maintain security.

A maximum password length of 32 bytes is allowed for IOMEGA products that
support this feature. On devices that do not have the write protection with pass-
word, the software displays appropriate messages indicating the non-availability
of such features.

The following operand is supported:

dev na m e
dev na m e can be provided as absolute device pathname or relative pathname for the dev-
ice from the current working directory or the nickname as exported by the System
Volume manager. Seevold(1M).

For floppy devices, to access the first drive use/d ev/r d isk et t e0 (for systems without
volume management) orflop p y0 (for systems with volume management). Specify
/d ev/r d isk et t e1 (for systems without volume management) orflop p y1 (for systems with
volume management) to use the second drive.

For systems without volume management running, the user can also provide the
absolute device pathname as /d ev/r d sk /c?t?d?s? or the appropriate relative device
pathname from the current working directory.

E xa m p le 1: F or m a t t in g a d isk et t e

example$ r m for m a t -F q u ick /d ev/r d isk et t e
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y

1-10 Solaris 8 modified 13 Nov 2002

User Commands rmformat (1)

E xa m p le 2: F or m a t t in g a Z ip d r ive

example$ r m for m a t -F q u ick /vol/d ev/a lia ses/zip 0
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y

E xa m p le 3: F or m a t t in g a d isk et t e for a UF S file syst em

The following example formats a diskette and creates a UFS file system:

example$ r m for m a t -F q u ick /vol/d ev/a lia ses/flop p y0
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$su
/u sr /sb in /n ewfs /vol/d ev/a lia ses/flop p y0
n e w f s :c o n s t r u c ta n e w f i l e s y s t e m / d e v / r d i s k e t t e :(y / n) ? y
/dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors

1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 640, 1184, 1792, 2336,

#

E xa m p le 4: F or m a t t in g r em ova b le m ed ia for a P C F S file syst em

The following example shows how to create an alternate fd isk partition:

example$ r m for m a t -F q u ick /d ev/r d sk /c0t 4d 0s2: c
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$su
fd isk /d ev/r d sk /c0t 4d 0s2: c
m k fs -F p cfs /d ev/r d sk /c0t 4d 0s2: c
C o n s t r u c ta n e w F A T f i l e s y s t e m o n / d e v / r d s k / c 0 t 4 d 0 s 2 : c :(y / n) ? y
#

The following example describes how to create a P C F S file systemw ithout an fd isk parti-
tion:

example$ r m for m a t -F q u ick /d ev/r d isk et t e
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$su
m k fs -F p cfs -o n ofd isk ,size=2 /d ev/r d isk et t e
C o n s t r u c ta n e w F A T f i l e s y s t e m o n / d e v / r d i s k e t t e :(y / n) ? y
#

E xa m p le 5: E n a b lin g or d isa b lin g r ea d or wr it e p r ot ect ion

The following example shows how to enable write protection and set a password on a
Zip drive:

example$ r m for m a t -W en a b le /vol/d ev/a lia ses/zip 0
P l e a s e e n t e r p a s s w o r d (3 2 c h a r s m a x i m u m) :x x x
P l e a s e r e e n t e r p a s s w o r d :x x x

modified 13 Nov 2002 Solaris 8 1-11

rmformat (1) User Commands

The following example shows how to disable write protection and remove the pass-
word on a Zip drive:

example$ r m for m a t -W d isa b le /vol/d ev/a lia ses/zip 0
P l e a s e e n t e r p a s s w o r d (3 2 c h a r s m a x i m u m) :x x x

The following example shows how to enable read protection and set a password on a
Zip drive:

example$ r m for m a t -R en a b le /vol/d ev/a lia ses/zip 0
P l e a s e e n t e r p a s s w o r d (3 2 c h a r s m a x i m u m): x x x
P l e a s e r e e n t e r p a s s w o r d :x x x

The following example shows how to disable read protection and remove the pass-
word on a Zip drive:

example$ r m for m a t -R d isa b le /vol/d ev/a lia ses/zip 0
P l e a s e e n t e r p a s s w o r d (3 2 c h a r s m a x i m u m) :x x x

/vol/d ev/d isk et t e0
Directory providing block device access for the media in floppy drive 0.

/vol/d ev/r d isk et t e0
Directory providing character device access for the media in floppy drive 0.

/vol/d ev/a lia ses
Directory providing symbolic links to the character devices for the different
media under the control of volume management using appropriate alias.

/vol/d ev/a lia ses/flop p y0
Symbolic link to the character device for the media in floppy drive 0.

/vol/d ev/a lia ses/zip 0
Symbolic link to the character device for the media in Zip drive 0.

/vol/d ev/a lia ses/j a z0
Symbolic link to the character device for the media in Jaz drive 0.

/d ev/r d isk et t e
Symbolic link providing character device access for the media in the primary
floppy drive, usually drive 0.

/vol/d ev/d sk
Directory providing block device access for the P C M C I A memory and ata cards and
removable media devices.

/vol/d ev/r d sk
Directory providing character device access for the P C M C I A memory and ata cards
and removable media devices.

/vol/d ev/a lia ses/p cm em S
Symbolic link to the character device for the P C M C I A memory card in socket S,
where S represents aP C M C I A socket number.

/vol/d ev/a lia ses/r m d isk 0
Symbolic link to the generic removable media device that is not a Zip, Jaz, C D-

1-12 Solaris 8 modified 13 Nov 2002

User Commands rmformat (1)

ROM, floppy,DVD-R O M, P C M C I A memory card, and so forth.

/d ev/r d sk
Directory providing character device access for the P C M C I A memory and ata cards
and other removable devices.

/d ev/d sk
Directory providing block device access for the P C M C I A memory and ata cards and
other removable media devices.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __
Availability SUNWcsu_ __ 












cp io(1), ej ect(1), fd for m a t(1), t a r(1), volca n cel(1), volch eck(1), volm issin g(1), volr m m ou n t(1),
for m a t(1M), m k fs_p cfs(1M), m ou n t(1M), n ewfs(1M), p r t vt oc(1M), r m m ou n t(1M),
r p c.sm ser ved(1M), vold(1M), r m m ou n t .con f(4), vold .con f(4), a t t r ib u t es(5), scsa 2u sb(7D),
sd(7D), p cfs(7FS),u d fs(7FS)

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

A rewritable media or P C M C I A memory card orP C M C I A ata card containing au fs file sys-
tem created on a SPARC-based system (usingn ewfs(1M)) is not identical to a rewritable media
or P C M C I A memory card containing au fs file system created on an based system. Do not
interchange any removable media containingu fs between these platforms; usecp io(1) or t a r(1)
to transfer files on diskettes or memory cards between them. For interchangeable filesystems
refer top cfs(7FS) andu d fs(7FS).

Currently, bad sector mapping is not supported on floppy diskettes or P C M C I A
memory cards. Therefore, a diskette or memory card is unusable ifr m for m a t finds an error (b a d
sect or).

modified 13 Nov 2002 Solaris 8 1-13

cfgadm_sbd (1M) Maintenance Commands

NAME cfgadm_sbd – cfga d m commands for system board administration

SYNOPSIS cfga d m -l -a -o parsable a p_id

cfga d m -c f unction -f -y  -n -o unassign  nopoweroff a p_id

cfga d m -t -f a p_id

cfga d m -x f unction a p_id

DESCRIPTION The sb d .so.1 plugin provides dynamic reconfiguration functionality for connecting, configuring,
unconfiguring, and disconnecting classsb d system boards. It also enables you to connect or
disconnect a system board from a running system without having to reboot the system.

The cfga d m command resides in/u sr /sb in. Seecfga d m(1M).

Each board slot appears as a single attachment point in the device tree. Each com-
ponent appears as a dynamic attachment point. You can view the type, state, and con-
dition of each component, and the states and condition of each board slot by using the
-a option.

Component Types The following are the names and descriptions of the component types:

cp u C P U

p ci I /O device

m em or y Memory

N ote: An operation on a memory component affects all of the memory components on the
board.

Component
Conditions

The following are the names and descriptions of the component conditions:

fa iled The component failed testing.

ok The component is operational.

u n k n own The component has not been tested.

Component States The following is the name and description of the receptacle state for components:

con n ect ed The component is connected to the board slot.

The following are the names and descriptions of the occupant states for components:

con figu r ed The component is available for use by the Solaris operating environment.

u n con figu r ed
The component is not available for use by the Solaris operating environ-
ment.

Board Conditions The following are the names and descriptions of the board conditions.

fa iled The board failed testing.

ok The board is operational.

1M-14 Solaris 8 modified 11 Dec 2000

Maintenance Commands cfgadm_sbd (1M)

u n k n own The board has not been tested.

u n u sa b le The board slot is unusable.

Board States Inserting a board changes the receptacle state from empty to disconnected. Removing a
board changes the receptacle state from disconnected to empty.

Ca ution: Removing a board that is in the connected state or that is powered on and in the
disconnected state crashes the operating system and can result in permanent damage to the sys-
tem.

The following are the names and descriptions of the receptacle states for boards:

con n ect ed The board is powered on and connected to the system bus. You can view
the components on a board only after it is in the connected state.

d iscon n ect ed
The board is disconnected from the system bus. A board can be in the
disconnected state without being powered off. However, a board must be
powered off and in the disconnected state before you remove it from the
slot.

em p t y A board is not present.

The occupant state of a disconnected board is always unconfigured. The following
table contains the names and descriptions of the occupant states for boards:

con figu r ed At least one component on the board is configured.

u n con figu r ed
All of the components on the board are unconfigured.

Dynamic System
Domains

Platforms based on dynamic system domains (DSDs, referred to as domains in this
document) divide the slots in the chassis into electrically isolated hardware partitions
(that is, DSDs). Platforms that are not based on DSDs assign all slots to the system per-
manently.

A slot can be empty or populated, and it can be assigned or available to any number
of domains. The number of slots available to a given domain is controlled by an avail-
able component list (AC L) that is maintained on the system controller. TheAC L is not the
access control list provided by the Solaris operating environment.

A slot is visible to a domain only if the slot is in the domain’s AC L and if it is not
assigned to another domain. An unassigned slot is visible to all domains that have the slot in
their AC L. After a slot has been assigned to a domain, the slot is no longer visible to any
other domain.

A slot that is visible to a domain, but not assigned, must first be assigned to the
domain before any other state changing commands are applied. The assign can be
done explicitly using -x assign or implicitly as part of a connect. A slot must be unassigned
from a domain before it can be used by another domain. The unassign is always explicit, either
directly using-x unassign or as an option to disconnect using-o unassign.

modified 11 Dec 2000 Solaris 8 1M-15

cfgadm_sbd (1M) Maintenance Commands

State Change
Functions

Functions that change the state of a board slot or a component on the board can be
issued concurrently against any attachment point. Only one state changing operation is
permitted at a given time. A Y in the Busy field in the state changing information indicates
an operation is in progress.

The following list contains the functions that change the state:

• con figu r e

• u n con figu r e

• con n ect

• d iscon n ect

Availability Change
Functions

Commands that change the availability of a board can be issued concurrently against
any attachment point. Only one availability change operation is permitted at a given
time. These functions also change the information string in the cfga d m -l output. AY in
the Busy field indicates that an operation is in progress.

The following list contains the functions that change the availability:

• a ssign

• u n a ssign

Condition Change
Functions

Functions that change the condition of a board slot or a component on the board can
be issued concurrently against any attachment point. Only one condition change opera-
tion is permitted at a given time. These functions also change the information string in
the cfga d m -l output. AY in the Busy field indicates an operation is in progress.

The following list contains the functions that change the condition:

• p ower on

• p ower off

• t est

Unconfigure Process This section contains a description of the unconfigure process, specifically illustrating
the copy-rename source and target board states at different stages of the process.

In the following code examples, the permanant memory on board 0 must be moved to
another board in the domain. Thus, board 0 is the source, and board 1 is the target.

A status change operation cannot be initiated on a board while it is marked as busy.
For brevity, the C P U information has been removed from the code examples.

The process is started with the following command:

cfga d m -c u n con figu r e -y sb d /slot 0: : m em or y

First, the memory on board 1 in the same address range as the permanant memory on
board 0 must be deleted. During this phase, the source board, the target board, and the
memory attachment points are marked as busy. You can display the status with the
following command:

1M-16 Solaris 8 modified 11 Dec 2000

Maintenance Commands cfgadm_sbd (1M)

cfga d m -a -s cols=a p_id : t yp e: r_st a t e: o_st a t e: b u sy sb d /slot 0 sb d /slot 1
Ap_Id Type Receptacle Occupant Busy
sbd/slot0 cpu/mem connected configured y
sbd/slot0::memory memory connected configured y
sbd/slot1 cpu/mem connected configured y
sbd/slot1::memory memory connected configured y

After the memory has been deleted on board 1, it is marked as unconfigured. The
memory on board 0 remains configured, but it is still marked as busy, as in the follow-
ing example.

Ap_Id Type Receptacle Occupant Busy
sbd/slot0 cpu/mem connected configured y
sbd/slot0::memory memory connected configured y
sbd/slot1 cpu/mem connected configured y
sbd/slot1::memory memory connected unconfigured n

The memory from board 0 is then copied to board 1. After it has been copied, the
occupant state for the memory is switched. The memory on board 0 becomes
unconfigured, and the memory on board 1 becomes configured. At this point in the
process, only board 0 remains busy, as in the following example.

Ap_Id Type Receptacle Occupant Busy
sbd/slot0 cpu/mem connected configured y
sbd/slot0::memory memory connected unconfigured n
sbd/slot1 cpu/mem connected configured n
sbd/slot1::memory memory connected configured n

After the entire process has been completed, the memory on board 0 remains
unconfigured, and the attachment points are not busy, as in the following example.

Ap_Id Type Receptacle Occupant Busy
sbd/slot0 cpu/mem connected configured n
sbd/slot0::memory memory connected unconfigured n
sbd/slot1 cpu/mem connected configured n
sbd/slot1::memory memory connected configured n

The nonpageable memory has been moved, and the memory on board 0 has been
unconfigured. At this point, you can initiate a new state changing operation on either
board.

Platform-Specific
Options

You can specify platform-specific options that follow the options interpreted by the
system board plugin. All platform-specific options must be preceded by the p la t for m
keyword. The following example contains the general format of a command with platform-
specific options:

modified 11 Dec 2000 Solaris 8 1M-17

cfgadm_sbd (1M) Maintenance Commands

com m a nd -o sbd_options,platform=pla tf or m_options

OPTIONS This man page does not include the -v, -s, or -h options for thecfga d m command. See
cfga d m(1M) for descriptions of those options. The following options are supported by the
cfga d m_sb d plugin:

-c f unction Performs a state change function. You can use the following functions:

u n con figu r e
Changes the occupant state to unconfigured. This function
applies to system board slots and to all of the components on the
system board.

The u n con figu r e function removes theC P Us from theC P U list and
deletes the physical memory from the system memory pool. If any dev-
ice is still in use, thecfga d m command fails and reports the failure to
the user. You can retry the command as soon as the device is no longer
busy. If aC P U is in use, you must ensure that it is off line before you
proceed. Seep b in d(1M), p sr a d m(1M) andp sr in fo(1M).

The u n con figu r e function moves the physical memory to another sys-
tem board before it deletes the memory from the board you want to
unconfigure. Depending of the type of memory being moved, the com-
mand fails if it cannot find enough memory on another board or if it
cannot find an appropriate physical memory range.

For permanant memory, the operating system must be
suspended (that is, quiesced) while the memory is moved and
the memory controllers are reprogrammed. If the operating sys-
tem must be suspended, you will be prompted to proceed with
the operation. You can use the -y or -n options to to always answer
yes or no respectively.

Moving memory can take several minutes to complete, depend-
ing on the amount of memory and the system load. You can
monitor the progress of the operation by issuing a status com-
mand against the memory attachment point. You can also inter-
rupt the memory operation by stopping the cfga d m command.
The deleted memory is returned to the system memory pool.

d iscon n ect Changes the receptacle state to disconnected. This function
applies only to system board slots.

If the occupant state is configured, the d iscon n ect function attempts
to unconfigure the occupant. It then powers off the system board. At
this point, the board can be removed from the slot.

This function leaves the board in the assigned state on platforms
that support dynamic system domains.

If you specify -o n op ower off, thed iscon n ect function leaves the board
powered on. If you specify -o u n a ssign, thed iscon n ect function

1M-18 Solaris 8 modified 11 Dec 2000

Maintenance Commands cfgadm_sbd (1M)

unassigns the board from the domain.

If a board is unassigned from a domain, it is available to be
assigned to another domain. If it is, it will not be available to the
domain from which is was unassigned.

con figu r e Changes the occupant state to configured. This function applies
to system board slots and to any components on the system
board.

If the receptacle state is disconnected, the con figu r e function
attempts to connect the receptacle. It then walks the tree of devices that
is created by thecon n ect function, and attaches the devices if neces-
sary. Running this function configures all of the components on the
board, except those that have already been configured.

For C P Us, thecon figu r e function adds theC P Us to theC P U list. For
memory, thecon figu r e function ensures that the memory is initialized
then adds the memory to the system memory pool. TheC P Us and the
memory are ready for use after thecon figu r e function has been com-
pleted successfully.

For I/O devices, you must use the m ou n t and theifcon fig com-
mands before the devices can be used. Seeifcon fig(1M) and
m ou n t(1M).

con n ect Changes the receptacle state to connected. This function applies
only to system board slots.

If the board slot is not assigned to the domain, the con n ect func-
tion attempts to assign the slot to the domain. Next, it powers on and
tests the board, then it connects the board electronically to the system
bus and probes the components.

After the con n ect function is completed successfully, you can use the
-a option to view the status of the components on the board. Thecon -
n ect function leaves all of the components in the unconfigured state.

The assignment step applies only to platforms that support
dynamic system domains.

-f Overrides software state changing constraints. With the -t option, the -f option
forces the board to be tested, even if the system board has already been tested.

The -f option never overrides fundamental safety and availability constraints of the
hardware and operating system.

-l Lists the general and platform-specific information for each attachment
point type. Platform-specific information is appended to the in fo field.

The parsable in fo field is composed of the following:

cp u The cp u type displays the following information:

cp u id =# Where # is a number, representing theI D of the C P U.

modified 11 Dec 2000 Solaris 8 1M-19

cfgadm_sbd (1M) Maintenance Commands

sp eed =# Where # is a number, representing the speed of theC P U
in M H z.

eca ch e=# Where # is a number, representing the size of the ecache
in M Byt es.

m em or y The m em or y type displays the following information, as appropriate:

a d d r ess=# Where # is a number, representing the base physical
address.

size=# Where # is a number, representing the size of the memory
in K Byt es.

p er m a n en t =#
Where # is a number, representing the size of nonpageable
memory inK Byt es.

u n con figu r a b le
An operating system setting that prevents the
memory from being unconfigured.

in t er -b oa r d -in t er lea ve
The board is participating in interleaving with other
boards.

sou r ce=a p_id
Represents the source attachment point.

t a r get =a p_id
Represents the target attachment point.

d elet ed =# Where # is a number, representing the amount of memory
that has already been deleted inK Byt es.

r em a in in g=#
Where # is a number, representing the amount of memory
to be deleted inK Byt es.

io The io type displays the following information:

d evice=pa th
Represents the physical path to the I/O component.

r efer en ced The I/O component is referenced.

b oa r d The b oa r d type displays the following information:

a ssign ed The board is assigned to the domain.

p ower ed -on
The board is powered on.

The same items appear in the in fo field in a more readable format if
the -o p a r sa b le option is not specified.

-o p a r sa b le Returns the information in the in fo field as a booleanna m e or a set of
n a m e=va lu e pairs, separated by a space character and enclosed in double quote
marks. Escapes double quotes and backslash (\fR) characters with a backslash

1M-20 Solaris 8 modified 11 Dec 2000

Maintenance Commands cfgadm_sbd (1M)

(\fR). The absence of a boolean indicates that the opposite applies.

The -o parsable option can be used in conjunction with the -s option. See the
cfga d m(1M) man page for more information about the -s option.

-t Tests the board.

Before a board can be connected, it must pass the appropriate level of test-
ing. By default, if the board has already passed the appropriate level of test-
ing, it is not tested again; however, you can use the -f option to force another
test.

-x f unction Performs an sbd-class function. You can use the following functions:

a ssign Assigns a board to a domain.

The receptacle state must be disconnected or empty. The board
must also be listed in the domain available component list. See
Dynamic System Domains.

u n a ssign Unassigns a board from a domain.

The receptacle state must be disconnected or empty. The board
must also be listed in the domain available component list. See
Dynamic System Domains.

p ower on Powers the system board on.

The receptacle state must be disconnected.

p ower off Powers the system board off.

The receptacle state must be disconnected.

OPERANDS The following operands are supported:

Receptacle a p_id
The receptacle attachment point I D takes the formsb d /slot_na m eX , whereX
equals the slot number.

Componenta p_id
The component attachment point I D takes the formcom ponent_ty peX , where
com ponent_ty pe equals one of the component types described in Component Types
andX equals the component number.

The component number is a board-relative unit number.

EXAMPLES E xa m p le 1: L ist in g All of t h e Syst em Boa r d At t a ch m en t s P oin t s

cfga d m -a -s select =cla ss(sb d)
Ap_Id Type Receptacle Occupant Condition
sbd/slot0 cpu/mem connected configured ok
sbd/slot0::cpu0 cpu connected configured ok
sbd/slot0::memory memory connected configured ok
sbd/slot1 pci connected configured ok
sbd/slot1::pci0 pci connected configured ok
sbd/slot1::pci1 pci connected configured failed

modified 11 Dec 2000 Solaris 8 1M-21

cfgadm_sbd (1M) Maintenance Commands

sbd/slot2 cpu/mem disconnected unconfigured failed
sbd/slot3 cpu/mem disconnected unconfigured unknown
sbd/slot4 unknown empty unconfigured unusable

This example demonstrates the mapping of the following conditions:

• The second PCI node in Slot 1 failed testing.

• The board in Slot 2 failed testing.

• Slot 4 is unusable; thus, you cannot hot plug a board into that slot.

E xa m p le 2: L ist in g All of t h e C P Us on the System Board Attachments Points

cfga d m -a -s select =cla ss(sb d): t yp e(cp u)
Ap_Id Type Receptacle Occupant Condition
sbd/slot0::cpu0 cpu connected configured ok
sbd/slot0::cpu1 cpu connected configured ok
sbd/slot0::cpu2 cpu connected configured ok
sbd/slot0::cpu3 cpu connected configured ok

E xa m p le 3: Disp la yin g t h e C P U Information Field

cfga d m -l -s n oh ea d in gs,cols=in fo sb d /slot 0: : cp u 0
cpuid 16 speed 400 Mhz ecache 8 Mbytes

E xa m p le 4: Disp la yin g t h e C P U Information Field in parsable Format

cfga d m -l -s n oh ea d in gs,cols=in fo -o p a r sa b le sb d /slot 0: : cp u 0
"cpuid=16", "speed=400", "ecache=8"

E xa m p le 5: Disp la yin g t h e Devices on a n I /O Boa r d

cfga d m -a -s n oh ea d in gs,cols=a p_id : in fo -o p a r sa b le sb d /slot 1
sbd/slot1::pci0 "device=/devices/saf@0/pci@0,2000" referenced
sbd/slot1::pci1 "device=/devices/saf@0/pci@1,2000" referenced

E xa m p le 6: M on it or in g a n Un con figu r e O p er a t ion

In the following example, the memory sizes are displayed in Mbytes.

cfgadm -c unconfigure -y sbd/slot0::memory # cfgadm -l -s noheadings,cols=info -o parsable
sbd/slot0::memory sbd/slot1::memory
"address=0x0", "size=16384", "target=sbd/slot1::memory", "deleted=1240", "remaining=6144",
"address=0x1000000", "size=16384", "source=sbd/slot0::memory"

E xa m p le 7: Assign in g a Slot t o a Dom a in

cfga d m -x a ssign sb d /slot 2

E xa m p le 8: Un a ssign in g a Slot fr om a Dom a in

cfga d m -x u n a ssign sb d /slot 3

FILES The following files are supported:

/u sr /p la t for m /su n 4u /cfga d m /sb d .so.1
plugin library module

/d ev/cfg/sb d /slot∗

1M-22 Solaris 8 modified 11 Dec 2000

Maintenance Commands cfgadm_sbd (1M)

symbolic names

/u sr /sb in /cfga d m
cfga d m command

AVAILABILITY SUNWkvm.u

SEE ALSO cfga d m(1M), d evfsa d m(1M), ifcon fig(1M), m ou n t(1M), p b in d(1M), p sr a d m(1M), p sr in fo(1M),
con fig_a d m in(3CFGADM), a t t r ib u t es(5)

NOTES This section contains information about how to monitor the progress of a memory
delete operation and on platform-specific behaviors of the cfga d m command.

Memory Delete
Monitoring

The following shell script can be used to monitor the progress of a memory delete
operation.

cfga d m -c u n con figu r e -y sb d /slot 0: : m em or y
#!/bin/sh

while true
do

eval ‘cfgadm -l -s noheadings,cols=info -o parsable sbd/slot15.0::memory‘
if [-n "$remaining"]
then

echo $remaining mbytes
else

echo memory delete is done
exit 0

fi
sleep 1

done

Sun Fire 15000
Platform Notes

The -t and -x options behave differently on the Sun Fire 15000 platform. The following list
describes their behavior:

-t The system controller uses a CPU to test system boards by running L P O ST,
sequenced by theh p ost command. To test I/O boards, the driver starts the testing
in response to the -t option, and the test runs automatically without user interven-
tion. The driver unconfigures a CPU and a stretch of contiguous physical memory.
Then, it sends a command to the system controller to test the board. The system
controller uses the CPU and memory to test the I/O board from inside of a
transaction/error cage.

-x a ssign  u n a ssign
In the Sun Fire 15000 system administration model, the platform adminis-
trator controls the platform hardware from the system controller. Only the
platform administrator can assign or unassign free boards to or from a
domain by adding the board to the available component list for that
domain. The domain administrator is not allowed to assign or unassign

modified 11 Dec 2000 Solaris 8 1M-23

cfgadm_sbd (1M) Maintenance Commands

boards to or from a domain, unless the board is already in the available
component list for that domain.

For the Sun Fire 15000 platform, a logical system slot is represented as slot_na m eX .Y .
WhereX represents the expander position (0 to 17) andY represents the slot number (0 or 1).

In the following example, the domain contains three CPU/memory boards and two
I/O boards.

cfga d m -l -s "select =cla ss(sb d)"
Ap_Id Type Receptacle Occupant Condition
sbd/slot3.0 CPU connected configured ok
sbd/slot11.0 CPU connected configured ok
sbd/slot11.1 CPU connected configured ok
sbd/slot15.0 CPU connected configured ok
sbd/slot15.1 hpci connected configured ok

1M-24 SunOS 5.8 modified 11 Dec 2000

File Formats clbconfig (1m)

NAME clbconfig – Content Load Balancer Configuration Script

SYNOPSIS /op t /SUNW clb /b in /clb con fig [a d d <in t er fa ce>  r em ove <in t er fa ce>  list]

DESCRIPTION This script is used to add or remove interfaces for content load balancing. It is also
used to list the interfaces participating in content load balancing.

EXAMPLES The following examples show how to add, remove and list interfaces.

E xa m p le 1: Ad d in t er fa ce

example% clbconfig add ce0

This adds the interface for content load balancing.

E xa m p le 2: R em ove in t er fa ce

example% clbconfig remove ce0

This removes the interface from content load balancing list.

E xa m p le 3: L ist in t er fa ces p a r t icip a t in g in loa d b a la n cin g.

example% clbconfig list

This lists the interfaces participating in content load balancing.

SEE ALSO clb .con f(4)

modified 13 March 2003 SunOS 5.8 1M-25

envmond (1M) Maintenance Commands

NAME envmond - environmental monitor daemon

SYNOPSIS /usr/platform/SUNW,UltraSPARC–IIi–Netract/lib/envmond/sparcv9/envmond [–d]
[–f file] [–g granularity]

AVAILABILITY SUNWcteux

DESCRIPTION The envmond daemon polls system environment monitoring devices to check for con-
ditions that may require corrective action. In order to do this, the daemon reads a
configuration file on startup, during the initial Solaris boot process, to find out which
environmental devices will be monitored. Each configuration file entry describing an
environmental device is referred to as a policy, and the supported policy entries are
described in envmond.conf(4).

The envmond daemon logs appropriate messages to a system log file via syslogd(1M).

The envmond daemon will reread its configuration information file whenever it
receives a hang-up signal, SIGHUP.

OPTIONS –d Sets Debug mode option. The envmond will not run as a daemon, and will
instead run in the foreground, inheriting standard input and output. Error and
warning messages will be written to the standard output instead of being
logged via syslogd(1M).

–f file Provides an alternate file path for the configuration file.

–g granularity
Defines the finest granularity for the poll interval. The default value is 10
seconds.

FILES /usr/platform/SUNW,UltraSPARC–IIi–Netract/lib/envmond/sparcv9/envmond
The executable daemon

/usr/platform/SUNW,UltraSPARC–IIi–Netract/lib/envmond/sparcv9/∗ .so
The envmond policies

/platform/SUNW,UltraSPARC–IIi–Netract/lib/envmond.conf
The envmond configuration file

SEE ALSO syslogd(1M), envmond.conf(4)

NOTES The envmond policies retrieve their environmental information via I2C devices in the
system.

This daemon is in the PROTOTYPE stage, and is therefore subject to CHANGE
WITHOUT NOTICE.

1M-26 SunOS 5.8 modified 19 JUL 2000

Maintenance Commands hsi_init (1M)

NAME hsi_init – set high speed serial line interface operating parameters.

SYNOPSIS /opt/SUNWconn/bin/hsi_init device [[baud_rate]  [keyword=value, ...]  [single-word
option]]

DESCRIPTION The hsi_init utility allows the user to modify some of the hardware operating modes
common to high speed synchronous serial lines. This may be useful in troubleshooting
a link, or necessary to the operation of a communications package.

If run without options, hsi_init reports the options as presently set on the port. If
options are specified, the new settings are reported after they have been made.

OPTIONS Options to hsi_init normally take the form of a keyword, followed by an equal sign
and a value. The exception is that a baud rate may be specified as a decimal integer
by itself. Keywords must begin with the value shown in the options table, but may
contain additional letters up to the equal sign. For example, "loop=" and "loopback="
are equivalent.

Recognized options are listed in the table below.

Keyword Value Effect
loopback no Disable internal loopback mode. If no other clocking

options have been specified, perform the equivalent of
txc=txc and rxc=rxc.

yes Set the port to operate in internal loopback mode. The
receiver is electrically disconnected from the DCE receive
data input and tied to the outgoing transmit data line.
Transmit data is available to the DCE. If no other clocking
options have been specified, perform the equivalent of
txc=baud and rxc=baud.

nrzi no Set the port to operate with NRZ data encoding. NRZ
encoding maintains a constant voltage level when data is
present (1) and does not return to a zero voltage (0) until
data is absent. The data is decoded as an absolute value
based on the voltage level (0 or 1).

yes Set the port to operate with NRZI data encoding. NRZI
encoding does a voltage transition when data is absent (0)
and no voltage transition (no return to zero) when data is
present (1). Hence, the name non-return to zero inverted.
The data is decoded using relational decoding.

txc txc Transmit clock source will be the TxCI signal.
-txc Transmit clock source will be the inverted TxCI signal.
rxc Transmit clock source will be the RxC signal.
baud Transmit clock source will be the internal baud rate gen-

erator.

modified 14 April 1993 SunOS 5.8 1M-27

hsi_init (1M) Maintenance Commands

rxc rxc Receive clock source will be the RxC signal.
-rxc Receive clock source will be the inverted RxC signal.
baud Receive clock source will be the internal baud rate genera-

tor.

mode fdx HDLC Full Duplex mode (Default mode).
ibm-fdx IBM Full Duplex mode (SDLC).
ibm-hdx IBM Half Duplex mode (SDLC).
ibm-mpt IBM Multipoint mode (SDLC).

signal yes Notify application of modem signal (RTS and CTS)
changes.

no Don’t notify application of modem signal (RTS and CTS)
changes.

speed integer Set the baud rate to integer bits per second. The speed can
be set from 300 bps to 2048000 bps.

mtu Set the Maximum Transmission Unit. This is the packet
size that is transmitted. The maximum mtu is 1600 bytes.

mru Set the Maximum Receive Unit. This is the packet size that
is received. The maximum mru is 1600 bytes.

txd This flags is used for inverting transmit data on serial lines.
You can switch the polarity of a link by setting this flag to
be negative, i.e. -txd.

rxd This flags is used for inverting receive data on serial lines.
You can switch the polarity of a link by setting this flag to
be negative, i.e. -rxd.

reset Resets the board. Terminates all incoming and outgoing
traffic.

There are also several single-word options that set one or more paramaters at a time:

Keyword Equivalent to Options:

external txc=txc rxc=rxc loop=no
sender txc=baud rxc=rxc loop=no
stop speed=0

EXAMPLES The following command sets the first CPU port to loop internally, use internal clocking
and operate at 38400 bps:

example# hsi_init hih0 38400 loop=yes
port=hih0 speed=38309, mode=fdx, loopback=yes, nrzi=no, mtu=1600,
mru=1600, txc=baud, rxc=baud, txd=txd, rxd=rxd, signal=no.

The following command sets the same port’s clocking, local loopback and bit rate set-
tings to their default values:

1M-28 SunOS 5.8 modified 14 April 1993

Maintenance Commands hsi_init (1M)

example# hsi_init hih0 1536000 loop=no
port=hih0 speed=1536000, mode=fdx, loopback=no, nrzi=no, mtu=1600,
mru=1600, txc=txc, rxc=rxc, txd=txd, rxd=rxd, signal=no.

SEE ALSO hsi_loop(1M), hsi_stat(1M), hsi_trace(1M), Intro(2), hsi(7D)

DIAGNOSTICS device missing minor device number
The name device does not end in a decimal number that can be used as a minor
device number.

bad speed: arg
The string arg that accompanied the "speed=" option could not be interpreted
as a decimal integer.

Bad arg: arg
The string arg did not make sense as an option.

ioctl failure code = errno
An ioctl(2) system called failed. The meaning of the value of errno may be
found in the Intro(2) manual page.

WARNINGS hsi_init should not be used on an active serial link, unless needed to resolve an error
condition. It should not be run casually, or if the user is unsure of the consequences of
its use.

modified 14 April 1993 SunOS 5.8 1M-29

hsi_loop (1M) Maintenance Commands

NAME hsi_loop – high speed synchronous serial loopback test program for high speed serial
interface.

SYNOPSIS /opt/SUNWconn/bin/hsi_loop [–cdlsvt] device

DESCRIPTION The hsi_loop command performs several loopback tests that are useful in exercising
the various components of a serial communications link.

Before running a test, hsi_loop opens the designated port and configures it according
to command line options and the specified test type. It announces the names of the
devices being used to control the hardware channel, the channel number (ppa)
corresponding to the device argument, and the parameters it has set for that channel. It
then runs the loopback test in three phases.

The first phase is to listen on the port for any activity. If no activity is seen for at least
four seconds, hsi_loop proceeds to the next phase. Otherwise, the user is informed
that the line is active and that the test cannot proceed, and the program exits.

In the second phase, called the "first-packet" phase, hsi_loop attempts to send and
receive one packet. The program will wait for up to four seconds for the returned
packet. If no packets are seen after five attempts, the test fails with an error message.
If a packet is returned, the result is compared with the original. If the length and con-
tent do not match exactly, the test fails.

The final phase, known as the "multiple-packet" phase, attempts to send many packets
through the loop. Because the program has verified the integrity of the link in the
first-packet phase, the test will not fail after a particular number of timeouts. If a
packet is not seen after four seconds, a message is displayed. Otherwise, a count of
the number of packets received is updated on the display once per second. If it
becomes obvious that the test is not receiving packets during this phase, the user may
wish to stop the program manually. The number and size of the packets sent during
this phase is determined by default values, or by command line options. Each
returned packet is compared with its original for length and content. If a mismatch is
detected, the test fails. The test completes when the required number of packets have
been sent, regardless of errors.

After the multiple-packet phase has completed, the program displays a summary of
the hardware event statistics for the channel that was tested. The display takes the fol-
lowing form:
Port CRC errors Aborts Overruns Underruns In <-Drops-> Out
hih0 0 0 0 0 0 0

This is followed by an estimated line speed, which is an approximation of the bit rate
of the line, based on the number of bytes sent and the actual time that it took to send
them. This is a very rough approximation and should not be used in bechmarking,
because elapsed time includes time to print to the display.

1M-30 SunOS 5.8 modified 14 April 1992

Maintenance Commands hsi_loop (1M)

OPTIONS The options for hsi_loop are described in the following table:
Option Parameter Default Description
–c pa ck et_count 100 Specifies the number of packets to be sent in the

multiple-packet phase.

–d hex_da ta_by te random Specifies that each packet will be filled with bytes
with the value ofhex_data_byte.

–l pa ck et_length 100 Specifies the length of each packet in bytes.

–s line_speed 9600 Bit rate in bits per second.

–v Sets verbose mode. If data errors occur, the
expected and received data is displayed.

–t test_ty pe none A number, from 1 to 4, that specifies which test to
perform. The values fortest_type are as follows:

1 Internal loopback test. Port loopback is on.
Transmit and receive clock sources are inter-
nal (baud rate generator).

2 External loopback test. Port loopback is off.
Transmit and receive clock sources are inter-
nal. Requires a loopback plug suitable to the
port under test.

3 External loopback test. Port loopback is off.
Transmit and receive clock sources are exter-
nal (modem). Requires that one of the local
modem, the remote modem, or the remote
system (not a Sun) be set in a loopback
configuration.

4 Test using predefined parameters. User
defines hardware configuration and may
select port parameters using the hsi_init(1M)
command.

All numeric options except –d are entered as decimal numbers (for example, –s 19200
). If you do not provide the –t test_type option, hsi_loop prompts for it.

EXAMPLES The following command causes hsi_loop to use a packet length of 512 bytes over the
first CPU port:

example# hsi_loop –l 512 hih0

In response to the above command, hsi_loop prompts you for the test option you
want.

The following command performs an internal loopback test on the first CPU port,
using 5000 packets and a bit rate of 56Kbps :

modified 14 April 1992 SunOS 5.8 1M-31

hsi_loop (1M) Maintenance Commands

example# hsi_loop –t 1 –s 56000 –c 5000 hih0

SEE ALSO hsi_init(1M), hsi_stat(1M), hsi_trace(1M), hsi(7d)

DIAGNOSTICS device missing minor device number
The name device does not end in a decimal number that can be used as a minor
device number.

invalid packet length: nnn
The packet length was specified to be less than zero or greater than 1600.

poll: nothing to read
poll: nothing to read or write.

The poll(2) system call indicates that there is no input pending and/or that
output would be blocked if attempted.

len xxx should be yyy
The packet that was sent had a length of yyy, but was received with a length of
xxx.

nnn packets lost in outbound queueing
nnn packets lost in inbound queueing

A discrepancy has been found between the number of packets sent by hsi_loop
and the number of packets the driver counted as transmitted, or between the
number counted as received and the number read by the program.

WARNINGS To allow its tests to run properly, as well as prevent disturbance of normal operations,
hsi_loop should only be run on a port that is not being used for any other purpose at
that time.

1M-32 SunOS 5.8 modified 14 April 1992

Maintenance Commands hsi_stat (1M)

NAME hsi_stat – report driver statistics from a high speed synchronous serial link port.

SYNOPSIS /opt/SUNWconn/bin/hsi_stat [-f] -a num_of_ports
/opt/SUNWconn/bin/hsi_stat -c [-f] -a num_of_ports
/opt/SUNWconn/bin/hsi_stat [-f] device [period]
/opt/SUNWconn/bin/hsi_stat -c [-f] device

DESCRIPTION The hsi_stat command reports the event statistics maintained by a high speed synchro-
nous serial device driver. The report may be a single snapshot of the accumulated
totals, or a series of samples showing incremental changes.

Event statistics are maintained by a driver for each physical channel that it supports.
They are initialized to zero at the time the driver module is loaded into the system
when one of the driver’s entry points is first called.

The device argument is the name of the high speed serial device as it appears in the
/dev directory. For example, hih0 specifies the first on-board high speed serial device.

As an alternative, you can display or clear the statistics for multiple physical channels
using num_of_ports argument. The hsi_stat program will then display statistics accu-
mulated from device hih0 to hih(num_of_ports - 1). Additionally, statistics for all
ports can be displayed or cleared by the use of the -a option. In this case, the com-
mand will be issued for all the ports on the system. This option is not available for
sampling purposes.

The following is a breakdown of hsi_stat output:

speed The line speed the device has been set to operate at. It is the
user’s responsibility to make this value correspond to the modem
clocking speed when clocking is provided by the modem.

ipkts The total number of input packets.

opkts The total number of output packets.

undrun The number of transmitter underrun errors.

ovrrun The number of receiver overrun errors.

abort The number of aborted received frames.

crc The number of received frames withCRC errors.

isize The average size (in bytes) of input packets.

osize The average size (in bytes) of output packets.

iutil Reports the input line utilization expressed as a percentage.

outil Reports the output line utilization expressed as a percentage.

Additional fields for the ’f’ flag are listed below.

ierror Reports the input error count. Errors can be incomplete frames,
empty frames, or receive clock (RxC) problems.

modified 14 April 1993 SunOS 5.8 1M-33

hsi_stat (1M) Maintenance Commands

inactiv Reports the number of input packets received when receive is
inactive.

ishort Reports the number of short input packets. This is the number of
input packets with lengths less than the number of CRC bytes.

ilong Reports the number of long input packets. This is the number of
input packets with lengths larger than the MRU.

oerror Reports the output error count. Errors that can be lost are clear to
send (CTS) signals or transmit clock (TxC) problems.

olong Reports the number of long output packets. This is the number of
output packets with lengths with lengths larger than the MTU.

ohung Reports the number of times the transmitter hangs, which is usu-
ally due to a missing clock.

OPTIONS –f Select full set of accumulated statistics for the device specified. This is use-
ful while debugging the hsi driver.

–c Clear the accumulated statistics for the device specified. This may be useful
when it is not desirable to unload a particular driver, or when the driver is
not capable of being unloaded.

num_of_ports
Specify the number of devices that you want to dump the statistics.

–a Specify all of the ports in the system, regardless of the number of HSI
boards.

interval Cause hsi_stat to sample the statistics every interval seconds and report
incremental changes. The output reports line utilization for input and out-
put in place of average packet sizes. These are the relationships between
bytes transferred and the baud rate, expressed as percentages. The loop
repeats indefinitely, with a column heading printed every twenty lines for
convenience.

EXAMPLES example# hsi_stat hih0
speed ipkts opkts undrun ovrrun abort crc isize
9600 15716 17121 0 0 1 3 98

example# hsi_stat 5
speed ipkts opkts undrun ovrrun abort crc isize
hih0 9600 15716 10100 0 0 1 3
hih1 9600 15234 20100 0 0 1 3
hih2 9600 15123 18254 0 0 1 3
hih3 9600 15378 18234 0 0 1 3

example# hsi_stat -a
speed ipkts opkts undrun ovrrun abort crc isize osize

1M-34 SunOS 5.8 modified 14 April 1993

Maintenance Commands hsi_stat (1M)

hih0 9600 15716 10100 0 0 1 3 98
hih1 9600 15234 20100 0 0 1 3 98
hih2 9600 15123 18254 0 0 1 3 98
hih3 9600 15378 18234 0 0 1 3 98
hih4 9600 13900 13000 0 0 1 3 98
hih5 9600 15218 13100 0 0 1 3 98
hih6 9600 15737 22100 0 0 1 3 98
hih7 9600 15143 11254 0 0 1 3 98

example# hsi_stat -c hih0
speed ipkts opkts undrun ovrrun abort crc isize osize
9600 0 0 0 0 0 0 0 0

example# hsi_stat hih0 5
ipkts opkts undrun ovrrun abort crc iutil outil

12 10 0 0 0 0 5% 4%
22 60 0 0 0 0 3% 90%
36 14 0 0 0 1 51% 2%

(In this final example a new line of output is generated every five seconds.)

SEE ALSO hsi_init(1M), hsi_loop(1M), hsi_trace(1M), hsi(7D)

DIAGNOSTICS device missing minor device number
The name device does not end in a decimal number that can be used as a minor
device number.

hsi_stat: Can’t sample multiple ports simultaneously.
Sampling is only available with one specified port, i.e. hsi_stat hih0 10.

WARNINGS Underrun, overrun, frame-abort and CRC errors have a variety of causes. Communi-
cation protocols are typically able to handle such errors and initiate recovery of the
transmission in which the error occurred. Small numbers of such errors are not a
significant problem for most protocols. However, because the overhead involved in
recovering from a link error can be much greater than that of normal operation, high
error rates can greatly degrade overall link throughput. High error rates are often
caused by problems in the link hardware, such as cables, connectors, interface electron-
ics or telephone lines. They may also be related to excessive load on the link or the
supporting system.

The percentages for input and output line utilization reported when using the interval
option may occasionally be reported as slightly greater than 100% because of inexact
sampling times and differences in the accuracy between the system clock and the
modem clock. If the percentage of use greatly exceeds 100%, or never exceeds 50%,
then the baud rate set for the device probably does not reflect the speed of the modem.

modified 14 April 1993 SunOS 5.8 1M-35

hsi_trace (1M) Maintenance Commands

NAME hsi_trace – Dump and Parse the HSI/S driver trace buffer. This is a development/field
support only diagnostic utility.

SYNOPSIS /opt/SUNWconn/bin/hsi_trace

DESCRIPTION hsi_trace utility id for support and field personnel only. This utility prints out the
trace of the incoming and outgoing packets at the hsi driver level.

There are two levels of traces that can be captured. This is controlled by setting a vari-
able in the driver in the /etc/system file.

set HSI:hsi_trace=1

The driver maintains an internal circular buffer to store 24K frames (both in and out).

Then run hsi_trace on the driver to collect the trace data.

hsi_trace > hsi_trace.log

This trace is useful when the problem occurs rarely (typically a week or so) and we do
not have enough file system space.

This trace collects the last 24K of frame data.

Then there is another trace ‘strace‘ which can be used to collect all the data from the
driver. This can be enabled by setting ‘hsi_trace‘ as

set HSI:hsi_trace=2

Then run

#strace 18515 all all > hsi_trace.log

This collects all the data from the driver. This trace is useful when we know that the
problem occurs within a short time.

The trace output is as follows

In the first case (‘hsi_trace‘ utility)

13:26:38 0000004f hih9 len=0100 R: 31323334 35363738 fm: I-FR P/F=1 Nr=1 Ns=1

The fields are as follows

1 st field: Time stamp

2 nd field: time difference in microsecs between the last frame and current frame.

3 rd field: port

4 th field: length of the frame.

5 th field: R: received data T: transmitted data

6 th and 7 th field: First 8 bytes of the data transmitted or received.

7 th field: The frame type (SABM, TEST, XID, RR, RNR....)

1M-36 SunOS 5.8 modified 02 September 1998

Maintenance Commands hsi_trace (1M)

Some of the frame types are described below.

Keyword Value Effect
RR Receive Ready This frame is used as a polling command

by the primary station to solicit informa-
tion frames from the secondary station.

RNR Receive Not Ready This frame is used as a flow control com-
mand or response to indicate that the sta-
tion transmitting the Receive Not Ready
frame is not able to accept any information
frames at this time.

REJ Reject This frame is sent by a station to indicate
that it has received a frame out of the nor-
mal sequence. This may indicate the loss of
an information frame containing user data.

SABM Set Async Balanced Mode An LLC non-data frame requesting the
establishment of a connection over which
numbered information frames may be sent.

SNRM Set Normal Response Mode This command is sent from the primary
station to a secondary station to place the
secondary in the initialized normal SDLC
operating mode.

SNRME SNRM Extended SNRM with two more bytes in the control
field. Used in SDLC.

DISC Disconnect This command is sent from the primary
station to the secondary station to place the
secondary station in the off-line discon-
nected mode.

SIM Set Initialization Mode This command is sent from the primary
station to the secondary station to being
the initialization process.

UA Unnumbered Ack This response is sent from the secondary
station to the primary station in response
to an SNRM, DISC, or SIM command.

DM Disconnect Mode This response is sent from the secondary
station to the primary station in response
to any command other than SNRM or
DISC.

RD Request Disconnect This response is sent from the secondary to
the primary station to request that the
secondary station be placed in the off-line
or disconnect mode.

RIM Req Init Mode This response is sent from the secondary to
the primary station to request initialization.

modified 02 September 1998 SunOS 5.8 1M-37

hsi_trace (1M) Maintenance Commands

FRMR Frame Reject This response is sent from the secondary
station to the primary station to indicate
that an abnormal condition has been
detected or that an invalid frame has been
received. It contains bits which indicate the
reason for the rejection of the frame.

XID Exchange Identification This frame may be either a command sent
by the primary station or a response sent
by the secondary station. It contains infor-
mation that is used to identify the secon-
dary station.

TEST TEST This command is sent from the primary
station to the secondary station and may
contain some form of a message that may
be used to test the seconary’s ability to
receive data and transmit the data back to
the primary station.

UI Unnumbered Inforation This command allows the primary station
to send data to the secondary station and
the unnumbered information response
allows the secondary station to send data
to the primary station.

INFO Information This frame contains the information and
data relevant to the higher SNA architec-
ture layers. INFO frames consist of several
variable-length or optional fields, depend-
ing upon the implementation.

UP unnumbered Poll frame Used by a primary to poll a secondary.
BCN Beacon This is a beacon frame which is usually an

indication of a problem.
CFGR Configure This is a configuration frame.

‘strace‘ is the normal unix strace output.

020809 13:34:31 001c1330 0 ... 18515 0 hih8 len=0100 T: 31323334 35363738 fm: I-FR
P/F=1 Nr=1 Ns=1

SEE ALSO hsi_init(1M), hsi_stat(1M), hsi_loop(1M), hsi(7d)

DIAGNOSTICS

1M-38 SunOS 5.8 modified 02 September 1998

Maintenance Commands hsip_init (1M)

NAME hsip_init – set high speed serial line interface operating parameters.

SYNOPSIS /opt/SUNWconn/bin/hsip_init device [[baud_rate]  [keyword=value, ...]  [single-word
option]]

DESCRIPTION The hsip_init utility allows the user to modify some of the hardware operating modes
common to high speed synchronous serial lines. This may be useful in troubleshooting
a link, or necessary to the operation of a communications package.

If run without options, hsip_init reports the options as presently set on the port. If
options are specified, the new settings are reported after they have been made.

OPTIONS Options to hsip_init normally take the form of a keyword, followed by an equal sign
and a value. The exception is that a baud rate may be specified as a decimal integer
by itself. Keywords must begin with the value shown in the options table, but may
contain additional letters up to the equal sign. For example, "loop=" and "loopback="
are equivalent.

Recognized options are listed in the table below.

Keyword Value Effect
loopback yes Set the port to operate in internal loopback mode. The

receiver is electrically disconnected from the DCE receive
data input and tied to the outgoing transmit data line.
Transmit data is available to the DCE. If no other clocking
options have been specified, perform the equivalent of
txc=baud and rxc=baud.

no Disable internal loopback mode. If no other clocking
options have been specified, perform the equivalent of
txc=txc and rxc=rxc.

echo Set the port to operate in auto-echo mode. The port will
echo incoming receive data on the transmit data pin. When
the loopback is set for echo and no clocking option is given
the clocking is set txc=txc and rxc=rxc. Other clocking
options can be used but line errors may occur due to the
loopback=echo implementation.

nrzi no Set the port to operate with NRZ data encoding. NRZ
encoding maintains a constant voltage level when data is
present (1) and does not not return to a zero voltage (0)
until data is absent. The data is decoded as an absolute
value based on the voltage level (0 or 1).

modified 14 April 1993 SunOS 5.8 1M-39

hsip_init (1M) Maintenance Commands

yes Set the port to operate with NRZI data encoding. NRZI
encoding does a voltage transition when data is absent (0)
and no voltage transition (no return to zero) when data is
present (1). Hence, the name non-return to zero inverted.
The data is decoded using relational decoding.

txc txc Transmit clock source will be the TxCI signal.
rxc Transmit clock source will be the RxC signal.
baud Transmit clock source will be the internal baud rate gen-

erator.
pll Transmit clock source will be the output of the DPLL cir-

cuit. This can only be set with NRZI data encoding.
-txc Transmit clock source will be the inverted TxCI signal.

rxc rxc Receive clock source will be the RxC signal.
txc Receive clock source will be the TxCI signal. This can only

be used with transmit clock option txc=txc.
baud Receive clock source will be the internal baud rate genera-

tor.
pll Receive clock source will be the output of the DPLL circuit.

This can only be set with NRZI data encoding.
-rxc Receive clock source will be the inverted RxC signal.

txd txd Transmit data is not inverted.
-txd Transmit data is inverted.

rxd rxd Receive data is not inverted.
-rxd Receive data is inverted.

mode fdx HDLC Full Duplex mode (Default mode).
ibm-fdx IBM Full Duplex mode (SDLC).
ibm-hdx IBM Half Duplex mode (SDLC).
ibm-mpt IBM Multipoint mode (SDLC).

signal yes Notify application of modem signal (RTS and CTS)
changes.

no Do not notify application of modem signal (RTS and CTS)
changes.

mtu integer Set the maximum transmit unit to integer bytes with 2064
bytes maximum.

mru integer Set the maximum receive unit to integer bytes with 2064
bytes maximum.

speed integer Set the baud rate to integer bits per second with a
minimum rate of 9600 bps and a maximum of 2048000 bps.
Zero is also valid when txc is set to txc or -txc.

1M-40 SunOS 5.8 modified 14 April 1993

Maintenance Commands hsip_init (1M)

There are also several single-word options that set one or more paramaters at a time:

Keyword Equivalent to Options:

external txc=txc rxc=rxc loop=no
sender txc=baud rxc=rxc loop=no
internal txc=pll rxc=pll loop=no
stop speed=0

EXAMPLES The following command sets the first port to loop internally, use internal clocking and
operate at 38400 baud:

example# hsip_init hihp0 38400 loop=yes
port=hihp0
speed=38400,
mode=fdx, signal=no, loopback=yes, nrzi=no, mtu=2064, mru=2064,
txc=baud, rxc=baud, txd=txd, rxd=rxd

The following command sets the same port’s clocking, local loopback and baud rate
settings to their default values:

example# hsip_init hihp0 speed=1536000 loopback=no txc=txc rxc=rxc
port=hihp0
speed=1536000,
mode=fdx, signal=no, loopback=no, nrzi=no, mtu=2064, mru=2064,
txc=txc, rxc=rxc, txd=txd, rxd=rxd

SEE ALSO hsip_loop(1M), hsip_stat(1M), Intro(2), hsip(7D)

DIAGNOSTICS device missing minor device number
The name device does not end in a decimal number that can be used as a minor
device number.

bad speed: arg
The string arg that accompanied the "speed=" option could not be interpreted
as a decimal integer.

Bad arg: arg
The string arg did not make sense as an option.

ioctl failure code = errno
An ioctl(2) system called failed. The meaning of the value of errno may be
found in the Intro(2) manual page.

WARNINGS hsip_init should not be used on an active serial link, unless needed to resolve an error
condition. It should not be run casually, or if the user is unsure of the consequences of
its use.

modified 14 April 1993 SunOS 5.8 1M-41

hsip_loop (1M) Maintenance Commands

NAME hsip_loop – high speed synchronous serial loopback test program for high speed serial
interface.

SYNOPSIS /opt/SUNWconn/bin/hsip_loop [–cdlsvt] device

DESCRIPTION The hsip_loop command performs several loopback tests that are useful in exercising
the various components of a serial communications link.

Before running a test, hsip_loop opens the designated port and configures it according
to command line options and the specified test type. It announces the names of the
devices being used to control the hardware channel, the channel number (ppa)
corresponding to the device argument, and the parameters it has set for that channel. It
then runs the loopback test in three phases.

The first phase is to listen on the port for any activity. If no activity is seen for at least
four seconds, hsip_loop proceeds to the next phase. Otherwise, the user is informed
that the line is active and that the test cannot proceed, and the program exits.

In the second phase, called the "first-packet" phase, hsip_loop attempts to send and
receive one packet. The program will wait for up to four seconds for the returned
packet. If no packets are seen after five attempts, the test fails with an error message.
If a packet is returned, the result is compared with the original. If the length and con-
tent do not match exactly, the test fails.

The final phase, known as the "multiple-packet" phase, attempts to send many packets
through the loop. Because the program has verified the integrity of the link in the
first-packet phase, the test will not fail after a particular number of timeouts. If a
packet is not seen after four seconds, a message is displayed. Otherwise, a count of
the number of packets received is updated on the display once per second. If it
becomes obvious that the test is not receiving packets during this phase, the user may
wish to stop the program manually. The number and size of the packets sent during
this phase is determined by default values, or by command line options. Each
returned packet is compared with its original for length and content. If a mismatch is
detected, the test fails. The test completes when the required number of packets have
been sent, regardless of errors.

After the multiple-packet phase has completed, the program displays a summary of
the hardware event statistics for the channel that was tested. The display takes the fol-
lowing form:
Port CRC errors Aborts Overruns Underruns In <-Drops-> Out
hihp0 0 0 0 0 0 0

This is followed by an estimated line speed, which is an approximation of the bit rate
of the line, based on the number of bytes sent and the actual time that it took to send
them. This is a very rough approximation and should not be used in bechmarking,
because elapsed time includes time to print to the display.

1M-42 SunOS 5.8 modified 14 April 1992

Maintenance Commands hsip_loop (1M)

OPTIONS The options for hsip_loop are described in the following table:
Option Parameter Default Description
–c pa ck et_count 100 Specifies the number of packets to be sent in the

multiple-packet phase.

–d hex_da ta_by te random Specifies that each packet will be filled with bytes
with the value ofhex_data_byte.

–l pa ck et_length 100 Specifies the length of each packet in bytes with a
maximum of 2064 bytes.

–s line_speed 9600 Bit rate in bits per second, minimum of 9600 bps
and a maximum of 2048000 bps.

–v Sets verbose mode. If data errors occur, the
expected and received data is displayed.

–t test_ty pe none A number, from 1 to 4, that specifies which test to
perform. The values fortest_type are as follows:

1 Internal loopback test. Port loopback is on.
Transmit and receive clock sources are inter-
nal (baud rate generator).

2 External loopback test. Port loopback is off.
Transmit and receive clock sources are inter-
nal. Requires a loopback plug suitable to the
port under test.

3 External loopback test. Port loopback is off.
Transmit and receive clock sources are exter-
nal (modem). Requires that one of the local
modem or the remote modem be set in a
loopback configuration.

4 Test using predefined parameters. User
defines hardware configuration and may
select port parameters using the
hsip_init(1M) command.

All numeric options except –d are entered as decimal numbers (for example, –s 19200
). If you do not provide the –t test_type option, hsip_loop prompts for it.

EXAMPLES The following command causes hsip_loop to use a packet length of 512 bytes over the
first CPU port:

example# hsip_loop –l 512 hihp0

In response to the above command, hsip_loop prompts you for the test option you
want.

modified 14 April 1992 SunOS 5.8 1M-43

hsip_loop (1M) Maintenance Commands

The following command performs an internal loopback test on the first CPU port,
using 5000 packets and a bit rate of 56000 bps :

example# hsip_loop –t 1 –s 56000 –c 5000 hihp0

SEE ALSO hsip_init(1M), hsip_stat(1M), hsip(7D)

DIAGNOSTICS device missing minor device number
The name device does not end in a decimal number that can be used as a minor
device number.

invalid packet length: nnn
The packet length was specified to be less than zero or greater than 2064.

poll: nothing to read
poll: nothing to read or write.

The poll(2) system call indicates that there is no input pending and/or that
output would be blocked if attempted.

len xxx should be yyy
The packet that was sent had a length of yyy, but was received with a length of
xxx.

nnn packets lost in outbound queueing
nnn packets lost in inbound queueing

A discrepancy has been found between the number of packets sent by
hsip_loop and the number of packets the driver counted as transmitted, or
between the number counted as received and the number read by the pro-
gram.

WARNINGS To allow its tests to run properly, as well as prevent disturbance of normal operations,
hsip_loop should only be run on a port that is not being used for any other purpose at
that time.

1M-44 SunOS 5.8 modified 14 April 1992

Maintenance Commands hsip_stat (1M)

NAME hsip_stat – report driver statistics from a high speed synchronous serial link port.

SYNOPSIS /opt/SUNWconn/bin/hsip_stat [-f] -a num_of_ports
/opt/SUNWconn/bin/hsip_stat [-f] device [period]
/opt/SUNWconn/bin/hsip_stat -c [-f] -a num_of_ports
/opt/SUNWconn/bin/hsip_stat -c [-f] device

DESCRIPTION The hsip_stat command reports the event statistics maintained by a high speed syn-
chronous serial device driver. The report may be a single snapshot of the accumulated
totals, or a series of samples showing incremental changes.

Event statistics are maintained by a driver for each physical channel that it supports.
They are initialized to zero at the time the driver module is loaded into the system
when one of the driver’s entry points is first called.

The device argument is the name of the high speed serial device as it appears in the
/dev directory. For example, hihp0 specifies the first on-board high speed serial dev-
ice.

As an alternative, you can display or clear the statistics for multiple physical channels
using num_of_ports argument. The hsip_stat program will then display statistics accu-
mulated for the first n number of ports, where n is num_of_ports.

The following is a breakdown of hsip_stat output:

speed The line speed the device has been set to operate at. It is the
user’s responsibility to make this value correspond to the modem
clocking speed when clocking is provided by the modem.

ipkts The total number of input packets.

opkts The total number of output packets.

undrun The number of transmitter underrun errors.

ovrrun The number of receiver overrun errors.

abort The number of aborted received frames.

crc The number of received frames withCRC errors.

isize The average size (in bytes) of input packets.

osize The average size (in bytes) of output packets.

ierror Input error count (errors: Incomplete Frame, Empty frame, Glitch
on RxC).

oerror Output error count (errors: CTS lost, Glitch on TxC).

iutil Input line utilization expressed as a percentage.

outil Output line utilization expressed as a percentage.

modified 14 April 1993 SunOS 5.8 1M-45

hsip_stat (1M) Maintenance Commands

OPTIONS –f Select a complete set of accumulated statistics for the device specified. This
is useful while debugging the hsip driver.

–a Select all devices.

–c Clear the accumulated statistics for the device specified. This may be useful
when it is not desirable to unload a particular driver, or when the driver is
not capable of being unloaded.

num_of_ports
Specify the number of devices that you want to dump the statistics.

period Cause hsip_stat to sample the statistics every period seconds and report
incremental changes. The output reports line utilization for input and out-
put in place of average packet sizes. These are the relationships between
bytes transferred and the speed, expressed as percentages. The loop repeats
indefinitely, with a column heading printed every twenty lines for conveni-
ence.

EXAMPLES example# hsip_stat hihp0
speed ipkts opkts undrun ovrrun abort crc isize osize
9600 15716 17121 0 0 1 3 98 89

example# hsip_stat 5
speed ipkts opkts undrun ovrrun abort crc isize osize

hihp0 9600 15716 10100 0 0 1 3 98 89
hihp1 9600 15234 20100 0 0 1 3 98 89
hihp2 9600 15123 18254 0 0 1 3 98 89
hihp3 9600 15378 18234 0 0 1 3 98 89
hihp4 9600 13900 13000 0 0 1 3 98 89

example# hsip_stat -c hihp0
speed ipkts opkts undrun ovrrun abort crc isize osize
9600 0 0 0 0 0 0 0 0

example# hsip_stat hihp0 5
ipkts opkts undrun ovrrun abort crc iutil outil

12 10 0 0 0 0 5% 4%
22 60 0 0 0 0 3% 90%
36 14 0 0 0 1 51% 2%

(In this final example a new line of output is generated every five seconds.)

SEE ALSO hsip_init(1M), hsip_loop(1M), hsip(7D)

DIAGNOSTICS bad interval: arg
The argument arg is expected to be an interval and could not be understood.

device missing minor device number

1M-46 SunOS 5.8 modified 14 April 1993

Maintenance Commands hsip_stat (1M)

The name device does not end in a decimal number that can be used as a minor
device number.

WARNINGS Underrun, overrun, frame-abort and CRC errors have a variety of causes. Communi-
cation protocols are typically able to handle such errors and initiate recovery of the
transmission in which the error occurred. Small numbers of such errors are not a
significant problem for most protocols. However, because the overhead involved in
recovering from a link error can be much greater than that of normal operation, high
error rates can greatly degrade overall link throughput. High error rates are often
caused by problems in the link hardware, such as cables, connectors, interface electron-
ics or telephone lines. They may also be related to excessive load on the link or the
supporting system.

The percentages for input and output line utilization reported when using the interval
option may occasionally be reported as slightly greater than 100% because of inexact
sampling times and differences in the accuracy between the system clock and the
modem clock. If the percentage of use greatly exceeds 100%, or never exceeds 50%,
then the baud rate set for the device probably does not reflect the speed of the modem.

modified 14 April 1993 SunOS 5.8 1M-47

NF_FDDIDAEMON (1M) Maintenance Commands

NAME nf_fddidaemon – start/stop the NF FDDI SMT/SNM daemon and its associated
processes.

SYNOPSIS nf_fddidaemon start  stop

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The nf_fddidaemon script starts/stops the SNM daemon and its associated processes.

OPTIONS start Starts the SNM daemon

stop Stops the SNM daemon

You must be root to run this command.

SEE ALSO nf_snmd (1M)

1M-48 Solaris 8 modified 13 August 1998

Maintenance Commands NF_INSTALL_AGENTS (1M)

NAME nf_install_agents – install SunNet Manager agents for SunFDDI

SYNOPSIS nf_install_agents

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The nf_install_agents script copies the FDDI schema files to the directory in which the
standard agents are installed and updates the configuration files for SunNet Manager

The nf_install_agents command takes no arguments.

You must be root to run this command.

SEE ALSO nf_snmd (1M)

modified 13 August 1998 Solaris 8 1M-49

NF_MACID (1M) Maintenance Commands

NAME nf_macid – obtain MAC address from specified nf (SunFDDI) interface.

SYNOPSIS nf_macid interface

AVAILABILITY This command is available only with the SunFDDI product.

DESCRIPTION This command queries the IDPROM on the SunFDDI SBus card associated with a nf
interface to obtain the MAC address resident there. This address is a globally unique,
48-bit address that is drawn from the same pool from which Ethernet addresses are
taken.

The nf_macid command does not allow you to set a MAC address, either on the SBus
card or for an interface. Use ifconfig with the ether argument to assign the MAC
address you obtain with nf_macid to an SunFDDI interface.

Normally, you use the host-resident MAC address for all network interfaces on a
machine. You would only use the MAC address obtained with nf_macid under
unusual circumstances.

You can be normal user (not root) to run this command.

OPTIONS interface Specifies the FDDI interface (nf<num>). The default (which you can
omit) is nf0.

EXAMPLE Obtain the MAC address for nf0:

% nf_macid
8:0:20:3e:da:5

Set the nf0 interface to have the MAC address in the SBus card IDPROM:

ifconfig nf0 ether ‘nf_macid‘

You would follow the preceding command with an ifconfig command to assign an IP
address to nf0 and bring up that interface. Normally, such ifconfig commands would
be run from a startup file.

SEE ALSO ifconfig (1M)

1M-50 Solaris 8 modified 23 February 1996

Maintenance Commands NF_SMTMON (1M)

NAME nf_smtmon – the SMT monitor.

SYNOPSIS nf_smtmon [– i interface] [-x] [-h] [frametype]

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION nf_smtmon is used to display received SMT frames. You should run this command on
the FDDI proxy system if the Console does not receive a response from a request for
SMT MIB information.

You must be root to run this command.

OPTIONS – i interface Specifies the FDDI interface (nfnum for SunFDDI). If this option is not
specified, frames for all FDDI interfaces are displayed.

-x Displays the received frames in hex.

-h Displays the usage of this command.

frametype Specifies one or more types of SMT frames to be displayed. If this
option is not specified, all types of frames are displayed. You can
specify the following types of frames to be displayed:

ecf Echo Frame. Request and response frames are used
for SMT-to-SMT loopback testing on an FDDI ring.

esf Extended Service Frame. Request, response, and
announcement frames are used to extend new SMT
services.

nif Neighborhood Information Frame. Request, response,
and announcement frames are used to communicate
station addresses and descriptions.

pmf_get Parameter Management Frame (PMF) Get Request.
Request and response frames are used to retrieve
SMT Management Information Base (MIB) attribute
values.

rdf Request Denied Frame (response only). Sent in
response to an unsupported or unknown request.

sifconfig Status Information Frame (SIF) Configuration.
Request and response frames are used to retrieve
configuration parameters for one or more stations on
the ring.

sifoperation Status Information Frame (SIF) Operation. Request
and response frames are used to retrieve operation
information for one or more stations on the ring.

srf Status Report Frame. Announcement frame used to
report Station Status. The current version of the SMT

modified 23 February 1996 Solaris 8 1M-51

NF_SMTMON (1M) Maintenance Commands

daemon does not send out SRFs; however, any
received SRFs are passed on to SNM as traps.

EXAMPLES nf_smtmon -i nf0 nif sifconfig
displays the NIF and SIF configuration frames received in non-hex format on
the nf0 (SunFDDI) interface.

nf_smtmon -i nf1 -x ecf
displays, in hex, ECF frames received on the nf1 (SunFDDI) interface.

SEE ALSO smtd (1M)

1M-52 Solaris 8 modified 23 February 1996

Maintenance Commands NF_SNMD (1M)

NAME nf_snmd – start the station management (SMT) to SunNet Manager daemon.

SYNOPSIS nf_snmd [– d] [-v5]

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION Upon invocation, the SNM daemon starts up station management processes that allow
the station to communicate with other stations using the SMT protocol, and collect and
return FDDI statistics to a SunNet Manager (SNM) Console. The daemon also receives
SMT requests and SMT responses. The daemon also sends out SMT requests to other
stations on the ring on behalf of SNM. The SMT daemon also forwards received
Status Report Frames (SRFs) to the SNM management station in the form of traps.

The processes started by the SNM daemon include two SNM agents: a local agent
(fddi) and a proxy agent (fddismt). Like other SNM agents, the local agent and proxy
agent communicate with the SNM management station using RPC. The local agent
responds to SNM requests with FDDI statistics gathered on the local machine. These
statistics are equivalent to those displayed with the nf_stat and nf_stat -m commands.

The proxy agent can return two types of SMT information to the SNM Console: actual
SMT frames (ECF, ESF, NIF, SIF Configuration, or SIF Operation), and attribute values
for selected SMT MIB groups. The proxy agent gathers information from target sta-
tions by issuing SMT request frames and receiving SMT response frames. The proxy
uses PMF Get request and response frames to retrieve MIB attribute values from the
target station.

If the target station does not support PMF Get frames, it returns an RDF response to
the proxy system. If a Console request for MIB attributes values is not successful, run
the SMT monitor on the proxy system to see if an RDF frame has been received from
the target station. If PMF Get frames are not supported by the target station, you may
be able to use NIF, SIF Configuration or SIF Operation frames to return the desired
attribute values.

The SMT MIB attributes groups MAC, PATH, and PORT contain index parameters. If
you send a Quick Dump request from the Console for attribute values from one of
these groups, only the values associated with the first index are returned (from the
Console’s point of view, the key value associated with the request is 1). If you want to
see attribute values associated with other indexes, you must send a Data Report
request with the Key field in the request set to the desired index.

If you make any changes to the /etc/opt/snm/snm.conf file on the station (for example,
you add an additional hostname to the na.fddi.trap-rendez entry), you must kill the
SNM daemon with nf_snmd_kill and then restart it in order for the change(s) to take
effect.

You must be root to run this command.

modified 23 February 1996 Solaris 8 1M-53

NF_SNMD (1M) Maintenance Commands

OPTIONS -d (debug mode) Displays a one-line entry in the window where nf_snmd
is started for each frame that the station sends or receives. If this
option is not specified, you are returned to the system prompt and
there is no display. Use of this option is not recommended if the
nf_snmd command is included in /etc/rc2.d/S98nf_fddidaemon .

SEE ALSO nf_snmd_kill (1M), nf_stat (1M)

1M-54 Solaris 8 modified 23 February 1996

Maintenance Commands NF_SNMD_KILL (1M)

NAME nf_snmd_kill – kill the station management (SMT) to SunNet Manager daemon and its
associated processes.

SYNOPSIS nf_snmd_kill

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The nf_snmd_kill script kills the SNM daemon and its associated processes. This com-
mand also kills the two SNM agents which are started by the SNM daemon: the local
agent (fddi) and the proxy agent (fddismt). This command should not be used if the
SNM daemon is not already running.

The nf_snmd_kill command takes no arguments.

You must be root to run this command.

SEE ALSO nf_snmd (1M)

modified 14 January 1997 Solaris 8 1M-55

NF_STAT (1M) Maintenance Commands

NAME nf_stat – display SunFDDI interface statistics.

SYNOPSIS nf_stat [– m][interface][interval][count]

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The nf_stat utility displays statistics for the SunFDDI interface. Some statistics relate
to the SunFDDI implementation of the ANSI FDDI Connection Management standard
(CMT), while others contain packet throughput, or station neighbor information.

This utility can report, on a periodic basis, packet throughput statistics, reconfiguration
events, and interface exceptions. It also reports the identity of neighboring stations,
information on its PHYs, and some FORMAC error counters. Several of the counters
and status variables are periodically passed to the host from the hardware during the
heartbeat signal. These statistics are available when invoking the command without
the -m option. Issuing the command without an interval value displays the accumu-
lated statistics; issuing the command with an interval value displays any differences
between values since the previous display.

OPTIONS – m Dumps the current nearest neighbor information and FDDI/S timer
settings (described below). The interval and count arguments have no
effect when used with this option. Note that you must be root to
invoke nf_stat with the -m option.

interface Specifies which SunFDDI interface, nfnum.

interval Specifies the interval in seconds at which to display the statistics.

count Specifies the number of times to display the statistics. If no count is
provided, the utility runs forever. It can be terminated by typing ˆC
(Control-C).

USAGE You invoke nf_stat with the -m option to display information about neighboring sta-
tions. It generates a columnar display containing the following categories of data:

PhyA On a machine running SunFDDI Dual, shows the PHY type of the neighbor-
ing station that is connected to PHYA. Values are A, B, S, M, and None (if
no connection). This column does not appear on a machine running
SunFDDI SAS - Single Attached Station. (See Chapter 9 of the document
ANSI/FDDI Station Management (SMT) Rev7.2 (25 June 1992)).

PhyB On a machine running SunFDDI Dual, shows the PHY type of the neighbor-
ing station that is connected to PHYB. Values are A, B, S, M, and None (if
no connection). This column does not appear on a machine running
SunFDDI SAS. (See Chapter 7 of the document ANSI/FDDI Station Manage-
ment (SMT) Rev7.2 (25 June 1992)).

PhyS On a machine running SunFDDI SAS, shows the PHY type of the neighbor-
ing station that is connected to PHYS. Values are A, B, S, M, and None (if
no connection). If connected to a concentrator, this will be M. This column

1M-56 Solaris 8 modified 23 February 1996

Maintenance Commands NF_STAT (1M)

does not appear on a machine running SunFDDI Dual.

Frame FDDI MAC standard counter, frames received.

Error FDDI MAC standard counter, frame with the E bit first detected at this sta-
tion.

Lost Frames whose reception is aborted.

SA MAC address; the unique 48-bit address of the SunFDDI interface. Where an
IP hostname exists, it is displayed; otherwise, the 48-bit MAC address is
used.

UNA The address of this station’s upstream neighbor, using the SMT NIF protocol.

DNA The address of this station’s downstream neighbor, using the SMT NIF pro-
tocol.

Display status information : You invoke nf_stat without the -m option, or with values for
interface or interval, to display status information. Issuing the command without an
interval value displays the accumulated statistics; issuing the command with an interval
value displays any differences between values since the previous display.

One use of nf_stat without the -m option is to monitor the Ring_OP (Ring Operational)
column; if it indicates more than one ring_op per second, there are media problems
that must be fixed.

When invoked without the -m option, nf_stat generates a columnar display containing
the following categories of data:

Ring Indicates whether the ring is up or down (that is, the Claim has succeeded).

Note: The following five fields use terms described in the SMT document,
Chapter 9.

ECM (ec_state). Shows the current state of the ECM state machine. Valid values
are: Out, In, Trace, Leave, Path_Test, Insert, Check, and Deinsert.

RMT (rmt_state). Shows the current state of the RMT state machine. Valid values
are: Isolated, Non_Op, Ring_Op, Detect, Non_Op_Dup, Ring_Op_Dup,
Directed, and Rm_Trace.

PCMA/PCMB (for SunFDDI Dual) PCMS (for SunFDDI SAS)
(pc_state). Is a variable from PCM to other management entities containing
the current state of the PCM state machine. Current valid values are: Off
(O), Break (B), Reject (R), Connect (C), Next (N), Signal (S), Join (J), Verify
(V), Active (A), and Maint (M).

Ring_OP (Ring Operational). Indicates the number of times the ring has come up
(and therefore implies the number of times the ring has gone down).

XmitP The number of packets transmitted.

RecvP The number of packets received.

modified 23 February 1996 Solaris 8 1M-57

NF_STAT (1M) Maintenance Commands

SEE ALSO netstat (1M)

1M-58 Solaris 8 modified 23 February 1996

Maintenance Commands NF_SYNC (1M)

NAME nf_sync – configure SunFDDI interface to operate in synchronous mode.

SYNOPSIS nf_sync nf<inst> [tsync sap]

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The nf_sync utility is used to configure SunFDDI interfaces to operate in synchronous
mode. By default, the SunFDDI interface configure to carry asynchronous traffic only.

OPTIONS nf<inst> Specifies the FDDI interface,

tsync Specifies synchronous timer in nanoseconds, 400000 nanoseconds
minimum,

sap Specifies the service access point (SAP) for synchronous operation.

USAGE Running nf_sync without specifying values for tsync and sap returns current
configuration of the interface.

To reconfigure SAP for asynchronous operations, specify tsync=0

EXAMPLES nf_sync nf0
displays current configuration on the nf0 (SunFDDI) interface.

nf_sync nf0 1000000 800
configures SAP 800 for synchronous operation with a clock rate 1000000
nanoseconds (1ms)

modified 19 September 1998 Solaris 8 1M-59

PF_FDDIDAEMON (1M) Maintenance Commands

NAME pf_fddidaemon – start/stop the PF FDDI SMT/SNM daemon and its associated
processes.

SYNOPSIS pf_fddidaemon start  stop

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The pf_fddidaemon script starts/stops the SNM daemon and its associated processes.

OPTIONS start Starts the SNM daemon

stop Stops the SNM daemon

You must be root to run this command.

SEE ALSO pf_snmd (1M)

1M-60 Solaris 8 modified 13 August 1998

Maintenance Commands PF_INSTALL_AGENTS (1M)

NAME pf_install_agents – install SunNet Manager agents for SunFDDI

SYNOPSIS pf_install_agents

AVAILABILITY This command is available with the SunFDDI product.

DESCRIPTION The pf_install_agents script copies the FDDI schema files to the directory in which the
standard agents are installed and updates the configuration files for SunNet Manager

The pf_install_agents command takes no arguments.

You must be root to run this command.

SEE ALSO pf_snmd (1M)

modified 13 August 1998 Solaris 8 1M-61

PF_MACID (1M) Maintenance Commands

NAME pf_macid – obtain MAC address from specified pf (SunFDDI/P) interface.

SYNOPSIS pf_macid interface

AVAILABILITY This command is available only with the SunFDDI product.

DESCRIPTION This command queries the IDPROM on the SunFDDI card associated with a pf inter-
face to obtain the MAC address resident there. This address is a globally unique, 48-
bit address that is drawn from the same pool from which Ethernet addresses are taken.

The pf_macid command does not allow you to set a MAC address, either on the PCI
card or for an interface. Use ifconfig with the ether argument to assign the MAC
address you obtain with pf_macid to an SunFDDI interface.

Normally, you use the host-resident MAC address for all network interfaces on a
machine. You would only use the MAC address obtained with pf_macid under
unusual circumstances.

You can be normal user (not root) to run this command.

OPTIONS interface Specifies the FDDI interface (pf<num>). The default (which you can
omit) is pf0.

EXAMPLE Obtain the MAC address for pf0:

% pf_macid
8:0:20:3e:da:5

Set the pf0 interface to have the MAC address in the PCI card IDPROM:

ifconfig pf0 ether ‘pf_macid‘

You would follow the preceding command with an ifconfig command to assign an IP
address to pf0 and bring up that interface. Normally, such ifconfig commands would
be run from a startup file.

SEE ALSO ifconfig (1M)

1M-62 Solaris 8 modified 14 January 1997

Maintenance Commands PF_SMTMON (1M)

NAME pf_smtmon – the SMT monitor.

SYNOPSIS pf_smtmon [– i interface] [-x] [-h] [frametype]

AVAILABILITY This command is available with the SunFDDI/P product.

DESCRIPTION pf_smtmon is used to display received SMT frames. You should run this command on
the FDDI proxy system if the Console does not receive a response from a request for
SMT MIB information.

You must be root to run this command.

OPTIONS – i interface Specifies the FDDI interface (pfnum for SunFDDI/P). If this option is
not specified, frames for all FDDI interfaces are displayed.

-x Displays the received frames in hex.

-h Displays the usage of this command.

frametype Specifies one or more types of SMT frames to be displayed. If this
option is not specified, all types of frames are displayed. You can
specify the following types of frames to be displayed:

ecf Echo Frame. Request and response frames are used
for SMT-to-SMT loopback testing on an FDDI ring.

esf Extended Service Frame. Request, response, and
announcement frames are used to extend new SMT
services.

nif Neighborhood Information Frame. Request, response,
and announcement frames are used to communicate
station addresses and descriptions.

pmf_get Parameter Management Frame (PMF) Get Request.
Request and response frames are used to retrieve
SMT Management Information Base (MIB) attribute
values.

rdf Request Denied Frame (response only). Sent in
response to an unsupported or unknown request.

sifconfig Status Information Frame (SIF) Configuration.
Request and response frames are used to retrieve
configuration parameters for one or more stations on
the ring.

sifoperation Status Information Frame (SIF) Operation. Request
and response frames are used to retrieve operation
information for one or more stations on the ring.

srf Status Report Frame. Announcement frame used to
report Station Status. The current version of the SMT

modified 14 January 1997 Solaris 8 1M-63

PF_SMTMON (1M) Maintenance Commands

daemon does not send out SRFs; however, any
received SRFs are passed on to SNM as traps.

EXAMPLES pf_smtmon -i pf0 nif sifconfig
displays the NIF and SIF configuration frames received in non-hex format on
the pf0 (SunFDDI/P) interface.

pf_smtmon -i pf1 -x ecf
displays, in hex, ECF frames received on the pf1 (SunFDDI/P) interface.

SEE ALSO smtd (1M)

1M-64 Solaris 8 modified 14 January 1997

Maintenance Commands PF_SNMD (1M)

NAME pf_snmd – start the station management (SMT) to SunNet Manager daemon.

SYNOPSIS pf_snmd [– d] [-v5]

AVAILABILITY This command is available with the SunFDDI/P product.

DESCRIPTION Upon invocation, the SNM daemon starts up station management processes that allow
the station to communicate with other stations using the SMT protocol, and collect and
return FDDI statistics to a SunNet Manager (SNM) Console. The daemon also receives
SMT requests and SMT responses. The daemon also sends out SMT requests to other
stations on the ring on behalf of SNM. The SMT daemon also forwards received
Status Report Frames (SRFs) to the SNM management station in the form of traps.

The processes started by the SNM daemon include two SNM agents: a local agent
(fddi) and a proxy agent (fddismt). Like other SNM agents, the local agent and proxy
agent communicate with the SNM management station using RPC. The local agent
responds to SNM requests with FDDI statistics gathered on the local machine. These
statistics are equivalent to those displayed with the pf_stat and pf_stat -m commands.

The proxy agent can return two types of SMT information to the SNM Console: actual
SMT frames (ECF, ESF, NIF, SIF Configuration, or SIF Operation), and attribute values
for selected SMT MIB groups. The proxy agent gathers information from target sta-
tions by issuing SMT request frames and receiving SMT response frames. The proxy
uses PMF Get request and response frames to retrieve MIB attribute values from the
target station.

If the target station does not support PMF Get frames, it returns an RDF response to
the proxy system. If a Console request for MIB attributes values is not successful, run
the SMT monitor on the proxy system to see if an RDF frame has been received from
the target station. If PMF Get frames are not supported by the target station, you may
be able to use NIF, SIF Configuration or SIF Operation frames to return the desired
attribute values.

The SMT MIB attributes groups MAC, PATH, and PORT contain index parameters. If
you send a Quick Dump request from the Console for attribute values from one of
these groups, only the values associated with the first index are returned (from the
Console’s point of view, the key value associated with the request is 1). If you want to
see attribute values associated with other indexes, you must send a Data Report
request with the Key field in the request set to the desired index.

If you make any changes to the /etc/opt/snm/snm.conf file on the station (for example,
you add an additional hostname to the na.fddi.trap-rendez entry), you must kill the
SNM daemon with pf_snmd_kill and then restart it in order for the change(s) to take
effect.

You must be root to run this command.

modified 14 January 1997 Solaris 8 1M-65

PF_SNMD (1M) Maintenance Commands

OPTIONS -d (debug mode) Displays a one-line entry in the window where pf_snmd
is started for each frame that the station sends or receives. If this
option is not specified, you are returned to the system prompt and
there is no display. Use of this option is not recommended if the
pf_snmd command is included in /etc/rc2.d/S98pf_fddidaemon .

SEE ALSO pf_snmd_kill (1M), pf_stat (1M)

1M-66 Solaris 8 modified 14 January 1997

Maintenance Commands PF_SNMD_KILL (1M)

NAME pf_snmd_kill – kill the station management (SMT) to SunNet Manager daemon and its
associated processes.

SYNOPSIS pf_snmd_kill

AVAILABILITY This command is available with the SunFDDI/P product.

DESCRIPTION The pf_snmd_kill script kills the SNM daemon and its associated processes. This com-
mand also kills the two SNM agents which are started by the SNM daemon: the local
agent (fddi) and the proxy agent (fddismt). This command should not be used if the
SNM daemon is not already running.

The pf_snmd_kill command takes no arguments.

You must be root to run this command.

SEE ALSO pf_snmd (1M)

modified 14 January 1997 Solaris 8 1M-67

PF_STAT (1M) Maintenance Commands

NAME pf_stat – display SunFDDI/P interface statistics.

SYNOPSIS pf_stat [– m][interface][interval][count]

AVAILABILITY This command is available with the SunFDDI/P product.

DESCRIPTION The pf_stat utility displays statistics for the SunFDDI/P interface. Some statistics
relate to the SunFDDI/P implementation of the ANSI FDDI Connection Management
standard (CMT), while others contain packet throughput, or station neighbor informa-
tion.

This utility can report, on a periodic basis, packet throughput statistics, reconfiguration
events, and interface exceptions. It also reports the identity of neighboring stations,
information on its PHYs, and some FORMAC error counters. Several of the counters
and status variables are periodically passed to the host from the hardware during the
heartbeat signal. These statistics are available when invoking the command without
the -m option. Issuing the command without an interval value displays the accumu-
lated statistics; issuing the command with an interval value displays any differences
between values since the previous display.

OPTIONS – m Dumps the current nearest neighbor information and FDDI/S timer
settings (described below). The interval and count arguments have no
effect when used with this option. Note that you must be root to
invoke pf_stat with the -m option.

interface Specifies which SunFDDI/P interface, pfnum.

interval Specifies the interval in seconds at which to display the statistics.

count Specifies the number of times to display the statistics. If no count is
provided, the utility runs forever. It can be terminated by typing ˆC
(Control-C).

USAGE You invoke pf_stat with the -m option to display information about neighboring sta-
tions. It generates a columnar display containing the following categories of data:

PhyA On a machine running SunFDDI/P Dual, shows the PHY type of the neigh-
boring station that is connected to PHYA. Values are A, B, S, M, and None
(if no connection). This column does not appear on a machine running
SunFDDI/P SAS - Single Attached Station. (See Chapter 9 of the document
ANSI/FDDI Station Management (SMT) Rev7.2 (25 June 1992)).

PhyB On a machine running SunFDDI/P Dual, shows the PHY type of the neigh-
boring station that is connected to PHYB. Values are A, B, S, M, and None
(if no connection). This column does not appear on a machine running
SunFDDI/P SAS. (See Chapter 7 of the document ANSI/FDDI Station
Management (SMT) Rev7.2 (25 June 1992)).

PhyS On a machine running SunFDDI/P SAS, shows the PHY type of the neigh-
boring station that is connected to PHYS. Values are A, B, S, M, and None

1M-68 Solaris 8 modified 14 January 1997

Maintenance Commands PF_STAT (1M)

(if no connection). If connected to a concentrator, this will be M. This
column does not appear on a machine running SunFDDI/P Dual.

Frame FDDI MAC standard counter, frames received.

Error FDDI MAC standard counter, frame with the E bit first detected at this sta-
tion.

Lost Frames whose reception is aborted.

SA MAC address; the unique 48-bit address of the SunFDDI/P interface. Where
an IP hostname exists, it is displayed; otherwise, the 48-bit MAC address is
used.

UNA The address of this station’s upstream neighbor, using the SMT NIF protocol.

DNA The address of this station’s downstream neighbor, using the SMT NIF pro-
tocol.

Display status information : You invoke pf_stat without the -m option, or with values for
interface or interval, to display status information. Issuing the command without an
interval value displays the accumulated statistics; issuing the command with an interval
value displays any differences between values since the previous display.

One use of pf_stat without the -m option is to monitor the Ring_OP (Ring Operational)
column; if it indicates more than one ring_op per second, there are media problems
that must be fixed.

When invoked without the -m option, pf_stat generates a columnar display containing
the following categories of data:

Ring Indicates whether the ring is up or down (that is, the Claim has succeeded).

Note: The following five fields use terms described in the SMT document,
Chapter 9.

ECM (ec_state). Shows the current state of the ECM state machine. Valid values
are: Out, In, Trace, Leave, Path_Test, Insert, Check, and Deinsert.

RMT (rmt_state). Shows the current state of the RMT state machine. Valid values
are: Isolated, Non_Op, Ring_Op, Detect, Non_Op_Dup, Ring_Op_Dup,
Directed, and Rm_Trace.

PCMA/PCMB (for SunFDDI/P Dual) PCMS (for SunFDDI/P SAS)
(pc_state). Is a variable from PCM to other management entities containing
the current state of the PCM state machine. Current valid values are: Off
(O), Break (B), Reject (R), Connect (C), Next (N), Signal (S), Join (J), Verify
(V), Active (A), and Maint (M).

Ring_OP (Ring Operational). Indicates the number of times the ring has come up
(and therefore implies the number of times the ring has gone down).

XmitP The number of packets transmitted.

RecvP The number of packets received.

modified 14 January 1997 Solaris 8 1M-69

PF_STAT (1M) Maintenance Commands

SEE ALSO netstat (1M)

1M-70 Solaris 8 modified 14 January 1997

Maintenance Commands rscadm (1M)

NAME rscadm – administer SUN(tm) Remote System Control (RSC)

SYNOPSIS rscadm help
rscadm resetrsc [-s]
rscadm set v a r ia ble v a lue
rscadm download [boot]fi le
rscadm show [variable]
rscadm date [-s] [[mmdd]HHMM  mmddHHMM[cc]yy][.SS]
rscadm send_event [-c]m essa ge
rscadm modem_setup
rscadm useradduser na m e
rscadm userdeluser na m e
rscadm usershow [username]
rscadm userpassworduser na m e
rscadm userpermuser na m e [cuar]

DESCRIPTION rscadm administers the SUN(tm) Remote System Console (RSC). It allows the host
server to interact with the RSC. The following operations are supported:

rscadm help
Displays a usage screen.

rscadm resetrsc
Reset the RSC. There are two types of reset allowed, a "hard" reset and a
"soft" reset. The hard reset is done by default. The soft reset can be selected
by using the -s option.

rscadm set
Set RSC configuration variables. Examples of RSC configuration variables
include RSC IP address and RSC hostname. See the RSC documentation for
a complete list of RSC configuration variables.

rscadm download
Program the RSC’s firmware. There are two parts to the firmware, the boot
monitor and the main image. By default, rscadm download programs the
main firmware image. The boot option selects programming of the boot
monitor.

rscadm show
View the current RSC configuration variable settings. If no variable is
specified, rscadm shows all variable settings.

rscadm date
Show or set RSC’s time and date. The -s options can be used to set RSC’s
time and date to the hosts time and date.

rscadm send_event
Send a text based event to RSC. RSC may forward the event based on its
event configuration.

modified 1 May 1998 Solaris 8 1M-71

rscadm (1M) Maintenance Commands

rscadm modem_setup
Direct connection to the RSC modem. This allows the user to enter AT
commands to configure the modem. "˜." returns to prompt.

rscadm useradd
Add user account to RSC. RSC can support up to four separate users.

rscadm userdel
Delete a user account from RSC.

rscadm usershow
Show details on the specified user account. If a username is not specified,
all user accounts will be shown.

rscadm userpassword
Set a password for the user account specified. This password overrides any
existing password currently set. There is no verification of the old pass-
word before setting the new password. See the RSC documentation on
valid password formats.

rscadm userperm
Set the authorization profile for the user. See the userperm options section
in this man page for more detail.

OPTIONS The following options are supported for rscadm:

rscadm resetrsc

[-s] Perform a "soft" reset instead of a "hard" reset. A hard reset physically
resets the RSC hardware. The RSC software jumps to the boot firmware,
simulating a reset, for a soft reset.

rscadm download

[boot] Program the boot monitor portion of the flash. The main portion of the
flash is usually programmed.

rscadm show

[variable] Show the value of that particular variable.

rscadm date

[-s] Set the date to the hosts time and date.

[[mmdd]HHMM  mmddHHMM[cc]yy][.SS]
the date.

mm - month
dd - day
HH - hour
MM - minute
cc - the first two digits of the four digit year
yy - last 2 digits of the year number
SS - seconds

1M-72 Solaris 8 modified 1 May 1998

Maintenance Commands rscadm (1M)

rscadm send_event

[-c] Send a critical event. Without the -c, send_event sends a warning. Warn-
ings are only logged in the RSC event log and not forwarded further.

rscadm usershow

[username]
RSC account name to display info on. If no username is given, all accounts
will be displayed.

rscadm userperm

[cuar] Set permissions for RSC account. If no permissions are specified, all four
permissions will be disabled. The options are to; allow user to connect to
(c)onsole, allow user to use the (u)ser commands to modify RSC accounts,
allow user to (a)dminister/change the RSC configuration variables, allow
the user to (r)eset RSC and to power on/off the host.

OPERANDS The following operands are supported for rscadm:

rscadm set

v a r ia ble RSC configuration variable to set. See the RSC documentation for a list of
configuration variables.

v a lue Value to set RSC configuration variable to. See the RSC documentation for
a list of valid values.

rscadm download

fi le Firmware file to download. The file should contain the RSC boot monitor
image or RSC main image.

rscadm send_event

m essa ge Text message to describe event. Should be enclosed in quotes.

rscadm useradd

user na m e Username for new RSC account.

rscadm userdel

user na m e RSC account to be removed.

rscadm userpassword

user na m e RSC account to have password set.

rscadm userperm

user na m e RSC account to have permissions changed.

EXIT STATUS = 0 on success
!= 0 on failure (with status message)

EXAMPLES # rscadm date
rscadm date -s
rscadm date 050113101998

modified 1 May 1998 Solaris 8 1M-73

rscadm (1M) Maintenance Commands

rscadm set hostname rsc15
rscadm show
rscadm show hostname
rscadm send_event -c "The UPS signaled a loss in power!"
rscadm send_event "The disk is close to full capacity"
rscadm useradd rscroot
rscadm userdel olduser
rscadm usershow
rscadm usershow rscroot
rscadm userperm rscroot cuar
rscadm userperm newuser c
rscadm userperm newuser

NOTES rscadm modem_setup - "˜." will only work after a new line.

rscadm MUST be run as root.

BUGS None known.

1M-74 Solaris 8 modified 1 May 1998

Maintenance Commands scadm (1M)

NAME scadm – administer System Controller (SC)

SYNOPSIS sca d m subcom m a nd [option] [a r gum ent...]

DESCRIPTION The sca d m utility administers the System Controller (SC). This utility allows the host server to
interact with theSC.

The sca d m utility m ust be run as root.

The sca d m utility has fifteen subcommands. Some subcommands have specific options and
arguments associated with them. SeeSUBC O M M ANDS, O P T I O NS, O P E R ANDS, and
USAG E.

SUBCOMMANDS Subcommands immediately follow the sca d m command on the command line, and are
separated from the command by a <SP AC E>.

The following subcommands are supported

date Display the SC’s time and date

The format for the d a t e subcommand is:

scadm date

download
Program the SC’s firmware.

There are two parts to the firmware, the boot monitor and the main image.

By default, Thesca d m command’s download programs the main firmware image. The
b oot argument selects programming of the boot monitor.

The format for the d own loa d subcommand is:

scadm download [boot] fi le

help Display a list of commands.

The format for the h elp subcommand is:

scadm help

loghistory
Display the most recent entries in the SC event log.

The format for the logh ist or y subcommand is:

modified 16 Sep 2002 Solaris 8 1M-75

scadm (1M) Maintenance Commands

scadm loghistory

resetrsc
Reset the SC. There are two types of resets allowed, ah a r d reset and asoft reset.The
h a r d reset is done by default. Thesoft reset can be selected by using the -s option.

The format for the r eset r sc subcommand is:

scadm resetrsc [-s]

send_event
Manually send a text based event. The SC can forward the event to theSC event
log. You can configure the -c option to send a critical warning to email, alert to logged
in SC users, andsyslog. Critical events are logged tosyslog(3C). There is an80 charac-
ter limit to the length of the associated text message.

The format for the sen d_even t subcommand is:

scadm send_event [-c] "m essa ge"

set Set SC configuration variables to a value.

Examples of SC configuration variables include: SC IP address n et sc_ip a d d r and
SC Customer Informationsc_cu st om er in fo. See the output from thesca d m h elp com-
mand for a complete list of SC configuration variables.

The format for the set subcommand is:

scadm set v a r ia ble v a lue

show Display the current SC configuration variable settings. If no variable is specified,
sca d m shows all variable settings.

The format for the sh ow subcommand is:

scadm show [v a r ia ble]

shownetwork
Display the current network configuration parameters for SC.

The format for the sh own et wor k subcommand is:

scadm shownetwork

1M-76 Solaris 8 modified 16 Sep 2002

Maintenance Commands scadm (1M)

useradd
Add user accounts to the SC. TheSC supports up to sixteen separate users.

The format for the u ser a d d subcommand is:

scadm useradd user na m e

userdel
Delete a user account from SC.

The format for the u ser d el subcommand is:

scadm userdel user na m e

userpassword
Set a password for the user account specified. This password overrides any
existing password currently set. There is no verification of the old password
before setting the new password.

The format for the u ser p a sswor d subcommand is:

scadm userpassword user na m e

userperm
Set the permission level for the user.

The format for the u ser p er m subcommand is:

scadm userperm user na m e [aucr]

usershow
Display details on the specified user account. If a username is not specified, all
user accounts are displayed.

The format for the u ser sh ow subcommand is:

scadm usershow user na m e

version
Display the version numbers of the SC and its components.

The format for the ver sion subcommand is:

scadm version [-v]

modified 16 Sep 2002 Solaris 8 1M-77

scadm (1M) Maintenance Commands

OPTIONS The r eset r sc, sen d_even t, andver sion subcommands have associated options. Options follow
subcommands on the command line and are separated from the subcommand by a <SP AC E>.

The r eset r sc subcommand supports the following options:

-s Perform a soft reset instead of a hard reset. A hard reset physically resets the SC
hardware. The SC software jumps to the boot firmware, simulating a reset, for a
soft reset.

The sen d_even t subcommand supports the following options:

-c Send a critical event. Without the -c, -sen d_even t sends a warning.

The ver sion subcommand supports the following options:

-v Display a verbose output of version numbers and associated information.

OPERANDS The d own loa d, sen d_even t, set, sh ow, u ser a d d, u ser d el, u ser p er m, u ser sh ow, u ser p a sswor d, and
u ser p er m subcommands have associated arguments (operands).

If the subcommand has an option, the arguments follow the option on the command
line and is separated from the option by a <SP AC E>. If the subcommand does not have an
option, the arguments follow the subcommand on the command line and are separated from the
subcommand by a <SP AC E>. If there are more than one arguments, they are separated from
each other by a <SP AC E>.

The d own loa d subcommand supports the following arguments:

boot Program the boot monitor portion of the flash. The main portion of the flash is
programmed without any arguments

fi le Specify fi le as the path to where the boot or main firmware image resides for download.

Examples offi le are:

/u sr /p la t for m /pla tf or m_ty pe/lib/image/alommainfw

or

/usr/platform/pla tf or m_ty pe/lib/image/alombootfw

The sen d_even t subcommand supports the following arguments: "" .nr)Im essa ge""n

Describe event using the test contained in m essa ge. Enclosem essa ge in quotation
marks.

The set subcommand supports the following arguments:

v a r ia ble
Set SC configuration v a r ia ble.

v a lue Set SC configuration variable to v a lue.

1M-78 Solaris 8 modified 16 Sep 2002

Maintenance Commands scadm (1M)

The sh ow subcommand supports the following arguments:

v a r ia ble
Display the value of that particular variable.

The u ser a d d subcommand supports the following arguments:

user na m e
Add new SC account user na m e.

The u ser d el subcommand supports the following arguments:

user na m e
Remove SC account user na m e.

The u ser p er m subcommand supports the following arguments:

-a u cr Set permissions for SC user accounts. If no permissions are specified, all four
permissions are disabled and read only access is assigned.

The following are the definitions for permissions:

a Allow user to administer or change the SC configuration variables

u Allow user to use the user commands to modify SC accounts

c Allow user to connect to console.

r Allow user to reset SC and to power on and off the host.

user na m e
Change permissions on SC account user na m e.

The -u ser sh ow subcommand supports the following arguments:

user na m e
Display information on SC account user na m e . If user na m e is not specified, all
accounts are displayed.

The u ser p a sswor d subcommand supports the following arguments:

user na m e
Set SC password for user na m e.

The u ser p er m subcommand supports the following arguments:

user na m e
Change SC permissions for user na m e.

EXAMPLES E xa m p le 1: Disp la yin g t h e SC ’s Da t e a n d T im e

The following command displays the SC’s date and time.

scadm date

modified 16 Sep 2002 Solaris 8 1M-79

scadm (1M) Maintenance Commands

E xa m p le 2: Set t in g t h e SC ’s C on figu r a t ion Va r ia b les

The following command sets the SC’s configuration variable n et sc_ip a d d r to 192.168.1.2:

scadm set netsc_ipaddr 192.168.1.2

E xa m p le 3: Disp la yin g t h e C u r r en t SC ’s C on figu r a t ion Set t in gs:

The following command displays the current SC configuration settings:

scadm show

E xa m p le 4: Disp la yin g t h e C u r r en t Set t in gs for a Va r ia b le

The following command displays the current settings for the sys_h ost n a m e variable:

scadm show sys_hostname

E xa m p le 5: Sen d in g a T ext -Ba sed C r it ica l E ven t

The following command sends a critical event to the SC logs, alerts the current SC
users, and sends an event to syslog(3C):

scadm send_event -c "The UPS signaled a loss in power"

E xa m p le 6: Sen d in g a n I n for m a t ion a l T ext -Ba sed E ven t

The following command sends an non-critical informational text based event to the SC
event log:

scadm send_event "The disk is close to full capacity"

E xa m p le 7: Ad d in g a User T o t h e SC

The following command adds user r scr oot to the SC:

scadm useradd rscroot

E xa m p le 8: Delet in g a User F r om t h e SC

The following command deletes user old u ser from the SC:

scadm userdel olduser

E xa m p le 9: Disp la yin g User Det a ils

The following command displays details of all user accounts:

scadm usershow

E xa m p le 10: Disp la yin g Det a ils for a Sp ecific User

The following command displays details of user account r scr oot:

scadm usershow rscroot

E xa m p le 11: Set t in g t h e User P er m ission L evel

The following command sets the full permission level for user r scr oot to a u cr:

scadm userperm rscroot aucr

E xa m p le 12: Set t in g t h e User P er m ission L evel

The following command sets only console access for user n ewu ser to c

1M-80 Solaris 8 modified 16 Sep 2002

Maintenance Commands scadm (1M)

scadm userperm newuser c

E xa m p le 13: Set t in g t h e User P er m ission L evel

The following command sets the permission level for user n ewu ser to read only access:

scadm userperm newuser

E xa m p le 14: Disp la yin g t h e C u r r en t Net wor k P a r a m et er s

The following command displays the current network configuation parameters for the
SC:

scadm shownetwork

E xa m p le 15: Viewin g t h e L ogh ist or y

The following command displays the most recent entries in the SC event log:

scadm loghistory

E xa m p le 16: Disp la yin g Ver b ose I n for m a t ion

The following command displays verbose version information on the SC and its com-
ponents:

scadm version -v

EXIT STATUS The following exit values are returned:

0 Successful completion.

n on -zer o
An error occurred.

ATTRIBUTES See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Availability SUNWkvm_ __ 











SEE ALSO syslog(3C), a t t r ib u t es(5)

modified 16 Sep 2002 Solaris 8 1M-81

sunvts (1M) Maintenance Commands

NAME sunvts – Invokes the SunVTS kernel and its user interface

SYNOPSIS sunvts [–lepqstv] [–o option_file] [–f log_dir] [–h hostname]

AVAILABILITY SUNWvts

DESCRIPTION The sunvts command is used to invoke the SunVTS user interface and kernel on the
same system. It could be used to start the user interface on the local system and con-
nect to the SunVTS kernel on the remote system. By default, it displays CDE Motif
graphic interface for CDE environment, OpenLook graphic interface for OpenWindows
environment, or TTY interface for non-windowing system.

OPTIONS –l Displays SunVTS OpenLook graphic interface.

–e Disables the security checking feature.

–f log_dir
Specifies an alternative log_file directory. The default log_file directory is
/var/opt/SUNWvts/logs.

–h hostname
Starts the SunVTS user interface on the local system, which connects to or
invokes the SunVTS kernel on the specified host after security checking
succeeds.

–o option_file
Starts the SunVTS kernel with the test options loaded from the specified
option_file, which by default is located in /var/opt/SUNWvts/options.

–p Starts the SunVTS kernel vtsk (1M) such that it does not probe the test
system’s devices.

–q Automatically quits both the SunVTS kernel and the user interface when test-
ing stops.

–s Automatically starts testing from a selected group of tests. The flag must be
used with the –o option_file flag.

–t Starts vtstty (1M), a TTY based interface, instead of CDE or OpenLook inter-
face.

–v Displays version information from vtsui(1M) and vtsk(1M).

NOTES If vtsk (1M) is already running on the test system, the sunvts command ignores the
–e, –o, –f, –q, –p, and –s options.

SEE ALSO vtsk(1M), vtstty(1M), vtsui(1M), vtsprobe(1M)

1M-82 Solaris 8 modified 15 Mar 1996

Maintenance Commands update_drv (1M)

NAME update_drv – modify device driver attributes

SYNOPSIS u p d a t e_d r v [-v] dev ice_dr iv er

u p d a t e_d r v [-b ba sedir] [-v] -a -i ’ identif y -na m e’ dev ice_dr iv er

u p d a t e_d r v [-b ba sedir] [-v] -a -m ’per m ission’ dev ice_dr iv er

u p d a t e_d r v [-b ba sedir] [-v] -a -i ’ identif y -na m e’ -m ’per m ission’ dev ice_dr iv er

u p d a t e_d r v [-b ba sedir] [-v] -d -i ’ identif y -na m e’ dev ice_dr iv er

u p d a t e_d r v [-b ba sedir] [-v] -d -m ’per m ission’ dev ice_dr iv er

u p d a t e_d r v [-b ba sedir] [-v] -d -i ’ identif y -na m e’ -m ’per m ission’ dev ice_dr iv er

The u p d a t e_d r v command informs the system about attribute changes to an installed device
driver. It can be used to re-read thed r iver .con f(4) file, or to add, modify, or delete a driver’s
minor node permissions or aliases.

Without options, u p d a t e_d r v reloads thed r iver .con f file.

Upon successfully updating the aliases, the driver binding takes effect upon reconfig
boot or hotplug of the device.

Upon successfully updating the permissions, only the new driver minor nodes get
created with the modified set of file permissions. Existing driver minor nodes do not
get modified.

The following options are supported:

-a Add a per m ission or ana lia ses entry.

With the -a option specified, a permission entry (using the -m option), or a driver’s
aliases entry (using the -i option) can be added or updated. If a matching minor node
permissions entry is encountered (having the same driver name and the minor node), it
is replaced. If a matching aliases entry is encountered (having a different driver name
and the same alias), an error is reported.

The -a and -d options are mutually exclusive.

-b ba sedir
Installs or modifies the driver on the system with a root directory of basedir
rather than installing on the system executing u p d a t e_d r v.

-d Deletes a permission or an aliases entry.

Either the -m per m ission or -i identif y -na m e option needs to be specified with the -d
option.The -d and -a options are mutually exclusive.

If the entry doesn’t exist u p d a t e_d r v returns an error.

-i ’ identif y -na m e’
A white-space separated list of aliases for the driver. If -a or -d option is not

modified 04 Feb 2003 Solaris 8 1M-83

update_drv (1M) Maintenance Commands

specified then this option is ignored. Theidentif y -na m e string is mandatory. If all aliases
need to be removed,r em_d r v(1M) is recommended.

-m ’per m ission’
Specify a white-space separated list of file system permissions for the device
node of the device driver. If -a or -d option is not specified then, this option is
ignored. The permission string is mandatory.

E xa m p le 1: Ad d in g or M od ifyin g a n E xist in g M in or P er m ission s E n t r y

The following command adds or modifies the exisitng minor permissions entry of the
clon e driver:

e x a m p l e # update_drv -a -m ’llc1 777 joe staff’ clone

E xa m p le 2: R em ovin g All M in or P er m ission s E n t r ies

The following command removes all minor permission entries of the u sb p r n driver, the
USB printer driver:

e x a m p l e # update_drv -d -m ’∗ 0666 root sys’ usbprn

E xa m p le 3: Ad d in g a Dr iver Alia ses E n t r y

The following command adds a driver aliases entry of the u gen driver with the identity
string of u sb 459,20:

e x a m p l e # update_drv -a -i ’"usb459,20"’ ugen

E xa m p le 4: R e-r ea d in g t h e d r iver .con f File For theoh ci Driver

The following command re-reads the d r iver .con f(4) file.

e x a m p l e # update_drv ohci

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Availability SUNWcsu_ __ 











a d d_d r v(1M), m od u n loa d(1M), r em_d r v(1M), d r iver .con f(4), a t t r ib u t es(5)

If -b option is specified,u p d a t e_d r v does not re-read thed r iver .con f file.

It is possible to add an alias , which changes the driver binding of a device already
being managed by a different driver.

1M-84 Solaris 8 modified 04 Feb 2003

Maintenance Commands vts_cmd (1M)

NAME vts_cmd – Send a command to the SunVTS kernel (vtsk)

SYNOPSIS vts_cmd [command] [argument]

AVAILABILITY SUNWvts

DESCRIPTION vts_cmd is a UNIX shell application that allows you to send a single command to the
SunVTS kernel (vtsk). The test machine’s SunVTS kernel will send the response to the
standard output.

The SunVTS application programming interface (API) is character based, which means
that a string of characters (in the form of a command) can be sent to the SunVTS ker-
nel, which then returns a reply back in the form of a string of characters.

vts_cmd(1M) allows the user to send commands and receive replies from a UNIX
command line.

OPTIONS vts_cmd uses the commands listed below. In all cases, the commands (and any of the
command’s arguments) must follow vts_cmd. See the EXAMPLES section for refer-
ence.

Some of the command descriptions listed below refer to a testnode. In the SunVTS
API, there is a hierarchy of testnodes, with the system being on the top, the test groups
below the system, and the tests themselves at the bottom. In the commands below,
use a slash "/" to refer to the system. A test group can be one of the following:
Processor(s), Memory, Network, SCSI-Devices(esp0), Comm.Ports, Graphics, OtherDev-
ices, or any user specified group. When referring to a test, you must mention the dev-
ice name and the test name [for example, sound0(audio)].

list testnode
Displays all the testnodes under the specified testnode.

config testnode
Displays the configuration information of the testnode.

status [testnode] [-r]
Displays the testing status information of the system. If a testnode is specified,
status will display the status information of that testnode. If you use the -r
argument, the status information of all of testnodes recursive to the testnode
will be displayed.

option [testnode] [-l] [-h n s t a]
Either displays all the options associated with the specified testnode, or sets a
specific option in a testnode.

To display a testnode’s options, type option followed by the testnode and one
of the categories:
-h Threshold
-n Notify category
-s Scheduling category

modified 11 May 2000 Solaris 8 1M-85

vts_cmd (1M) Maintenance Commands

-t Test execution category
-a Advanced category

vts_cmd will print all options, as well as the setting of each option. Use the -l
option to display the options in long form. In long form, the options will be
displayed with all their settings.

option [testnode] [test_option] [-g s x y z]

-g is used to pass all of the current option settings,
for a given instance of a given test, to all of the
same instances and tests that are in the same group
(will not affect the same tests that are in different groups).

-s is used to pass all of the current option settings for
a given instance of a given test, to all of the same
instances for all of the same tests on the system (rather
than for a group, as with -g).

-x is used to pass all of the current option settings for
a given instance of a given test, to all the instances
of that test.

-y is used to pass all of the current option settings for
a given instance of a given test, to all the instances
of all the same tests in a particular group.

-z is used to pass all of the current option settings for
a given instance of a given test, to all the instances
of all the same tests in the whole system.

To set an option, you must state the testnode immediately
followed by the option and the new setting. You must use
this format when setting an option:

vts_cmd option testnode[option:setting]

Once the option has been successfully changed, vts_cmd
will display the word "DONE".

select testnode
Selects a testnode. If a testnode is selected, all the
tests associated with the testnode will be enabled and
run when testing begins.

1M-86 Solaris 8 modified 11 May 2000

Maintenance Commands vts_cmd (1M)

For example, if you select the Graphics testnode, all the
tests in Graphics will be enabled for testing. If
you select just the "fpu(fputest)" test, then you will
only enable this test.

deselect testnode
Deselects a testnode. If a testnode is deselected, all
the tests associated with the testnode will be disabled
and will not be run when testing begins.

For example, if you deselect the OtherDevices testnode, all
the tests in the OtherDevices will be disabled. If you
select just the "cgsix0(cg6)" test, then you will only
enable this test.

start
Starts all enabled (selected) SunVTS tests.

stop
Stops all running SunVTS tests.

suspend
Suspends (or pauses) all running SunVTS tests.
When you are ready to resume testing, type "resume".

resume
Resumes any suspended tests.

reset
Resets all the SunVTS pass and error counts to zero.

probe
Probes all the devices on the test machine and updates the
SunVTS kernel’s device list.

If a device is listed in the device list, but it is
not found during the probe, it will be removed from
the list. Conversely, if a device does not exist
in a previous device list and is found during the probe,
it will be added to the list.

load option_file
Loads an option file. Once loaded, the system and test
options will be changed to reflect the settings listed in
the option file.

Option files are stored in the /var/opt/SUNWvts/options
directory.

store option_file
Creates an option file, listing all the system and test
options, and save it in the /var/opt/SUNWvts/options
directory.

modified 11 May 2000 Solaris 8 1M-87

vts_cmd (1M) Maintenance Commands

quit
Terminates the SunVTS kernel (vtsk).

invokeds
Starts the deterministic scheduler.

quitds
Terminates the deterministic scheduler.

loadseq sequence_file
Loads a sequence file. Once loaded, the deterministic
scheduler UI will reflect the tasks in the loaded sequence
file.

storeseq sequence_file
Creates sequence_file, listing all the tasks in the directory
/var/opt/SUNWvts/sequences.

statusseq
Returns a string containing the status information of
the currently running sequence. The string consists of
four fields separated by commas (","). The fields are:
current status of SunVTS, current loop count of the
sequence, total loop count of the sequence, and currently
running task’s position.

startseq
Starts the execution of the deterministic scheduler.

stopseq
Stops the execution of the currently running task in the
sequence file. Upon starting again, the execution will
start from the tast that was stopped.

resumeseq
Restarts the execution of the sequence file. Execution will
start at the point where the sequence was stopped, unless
the sequence was reset, in which case it would start at the
beginning of the sequence file.

resetseq
Sets the starting point of the execution to the start of the
sequence file. Will also reset the passes and error count.

suspendseq
Suspends the execution of the currently running task in the
sequence file.

removeseq sequence_file
Removes sequence_file from the list of sequence files in the
directory /var/opt/SUNWvts/sequences.

listtask
Lists the tasks that are present in the currently loaded

1M-88 Solaris 8 modified 11 May 2000

Maintenance Commands vts_cmd (1M)

sequence file.

addtask task_name [i]
Adds task_name at the ith position in the sequence file. If
no index is passed then the task would be added to the end
of the list.

deletetask [i]
Removes the task at the specified index from the selected
sequence.

loadtask task_name
Loads a task file. Once loaded, the system and test options
will be changed to reflect the settings listed in the task
file.

setloopcount count
Sets the number of loops to run in the current sequence to
count.

getvtsmode
Gets the current mode of SunVTS kernel.

EXAMPLES To list out the configuration information of the test machine,
you would use the config command:

sample% vts_cmd config /
/[Hostname:sample,Model:SPARCstation-10,SunVTS version:1.0]:idle

To load an option file, you would use the load command:

sample% ls /var/adm/sunvtslog/options
CPU_options sample options
sbus_standard
sample% vts_cmd load sbus_standard
DONE

To print all the system options in the Comm.Ports testnode, you
would use the option command and pipe the output to your local
printer:

sample% vts_cmd option Comm.Ports -l  lp
request id is printer-213 (standard input)

ENVIRONMENT VTS_CMD_HOST=hostname
The hostname of the test machine running the SunVTS kernel (vtsk). If this
environment variable is not set, vts_cmd will attempt to send the commands to

modified 11 May 2000 Solaris 8 1M-89

vts_cmd (1M) Maintenance Commands

the local machine’s SunVTS kernel.

SEE ALSO SunVTS User’s Guide

1M-90 Solaris 8 modified 11 May 2000

Maintenance Commands vtsk (1M)

NAME vtsk – SunVTS diagnostic kernel

SYNOPSIS vtsk [–epqsv] [–o options_file] [–f logfile_directory]

AVAILABILITY SUNWvts

DESCRIPTION The vtsk command starts up the SunVTS diagnostic kernel as a background process.
There can only be one copy of vtsk running at a time. Only the superuser can execute
this command.

Normally, vtsk is automatically started up by the sunvts (1M) command if it is not
already running. vtsk will also be invoked by inetd (1M) when there is a connection
request from vtsui. In that case, the security file, .sunvts_sec, will be checked for the
permission before running vtsk on the target host specified by vtsui(1M).

OPTIONS –e Enables the security checking for all connection requests.

–p Starts SunVTS diagnostic kernel, but does not probe system configuration.

–q Quits both the SunVTS diagnostic kernel and the attached User Interfaces
when the testing is completed.

–s Runs enabled tests immediately after started.

–v Display SunVTS diagnostic kernel’s version information only.

–o options_file
Starts the SunVTS diagnostic kernel and sets the test options according to the
option file named options_file.

–f logfile_directory
Specifies an alternative logfile directory, other than the default.

EXIT STATUS The following exit values are returned:

0 Successful completion.

–1 An error occurred.

FILES /var/opt/SUNWvts/options default option file directory.
/var/opt/SUNWvts/logs default log file directory.

SEE ALSO sunvts(1M), vtsui(1M), vtstty(1M), vtsprobe(1M)

modified 15 Mar 1996 Solaris 8 1M-91

vtsprobe (1M) Maintenance Commands

NAME vtsprobe – prints the device probe information from the SunVTS kernel

SYNOPSIS vtsprobe [–m] [–h hostname]

AVAILABILITY SUNWvts

DESCRIPTION vtsprobe is a utility that displays the device and configuration information contained
in the SunVTS kernel. The output includes the SunVTS assigned group for the device,
the device name, the device instance, the testname attached to this device, and the
configuration information obtained from the device-specific test probe.

OPTIONS –m Specifies manufacturing mode, which displays the probe information in a for-
mat that is easy to read using script files.

–h hostname
Specifies the hostname to connect to and get the device and configuration infor-
mation. If not specified, the current host will be used.

USAGE After the SunVTS kernel is up and running, you may type vtsprobe at the shell
prompt to get the probe output. (See the sunvts (1M) man page for more information
on how to start up SunVTS.

EXAMPLE Running vtsprobe on a sun4m SPARCclassic produces the following output:

% vtsprobe

Processor(s)
system(systest)

System Configuration=sun4m SPARCclassic
System clock frequency=50 MHz
SBUS clock frequency=25 MHz

fpu(fputest)
Architecture=sparc
Type=TI TMS390S10 or TMS390S15 microSPARC chip

Memory
kmem(vmem)

Total: 143120KB
mem(pmem)

Physical Memory size=24 Mb
SCSI-Devices(esp0)

c0t2d0(rawtest)
Capacity: 638.35MB
Controller: esp0
Vendor: MICROP
SUN Id: 1588-15MBSUN0669
Firmware Rev: SN0C

1M-92 Solaris 8 modified 15 Mar 1996

Maintenance Commands vtsprobe (1M)

Serial Number: 1588-15MB103
c0t2d0(fstest)

Controller: esp0
c0t3d0(rawtest)

Capacity: 404.65MB
Controller: esp0
Vendor: SEAGATE
SUN Id: ST1480 SUN0424
Firmware Rev: 8628
Serial Number: 00836508

c0t3d0(fstest)
Capacity: 404.65MB
Controller: esp0
Vendor: SEAGATE
SUN Id: ST1480 SUN0424
Firmware Rev: 8628
Serial Number: 00836508

c0t3d0(fstest)
Controller: esp0

c0t6d0(cdtest)
Controller: esp0

tape1(tapetest)
Drive Type: Exabyte EXB-8500 8mm Helical Scan

Network
isdn0(isdntest)

NT Port TE Port
le0(nettest)

Host_ _Name: ctech84
Host Address: 129.146.210.84
Host ID: 8001784b
Domain Name: scsict.Eng.Sun.COM

Comm.Ports
zs0(sptest)

Port a -- zs0 /dev/term/a : /devices/ ... a
Port b -- zs1 /dev/term/b : /devices/ ... b

Graphics
cgthree0(fbtest)

OtherDevices
bpp0(bpptest)

Logical name: bpp0
sound0(audio)

Audio Device Type: AMD79C30
sound1(audio)

Audio Device Type: DBRI Speakerbox

modified 15 Mar 1996 Solaris 8 1M-93

vtsprobe (1M) Maintenance Commands

spd0(spdtest)
Logical name: spd0

NOTES The output of vtsprobe is highly dependent on the device being correctly configured
into the system (so that a SunVTS probe for the device can be run successfully on it)
and on the availability of a device-specific test probe.

If the device is improperly configured or if there is no probing function associated
with this device, vtsprobe cannot print any information associated with it.

SEE ALSO sunvts(1M), vtsk(1M), vtsui(1M), vtstty(1M)

1M-94 Solaris 8 modified 15 Mar 1996

Maintenance Commands vtstty (1M)

NAME vtstty – TTY interface for SunVTS

SYNOPSIS vtstty [–qv] [–h hostname]

AVAILABILITY SUNWvts

DESCRIPTION vtstty is the default interface for SunVTS in the absence of a windowing environment.
It can be used in a non-windowing environment such as a terminal connected to the
serial port of the system. However, its use is not restricted to this; vtstty can also be
used from shell window.

OPTIONS –q The "auto-quit" option automatically quits when the conditions for SunVTS to
quit are met.

–v Prints the vtstty version. The interface is not started when you include this
option.

–h hostname
Connects to the SunVTS kernel running on the host identified by hostname.

USAGE The vtstty screen consists of four panels: main control, status, test groups, and console.
The panels are used to display choices that the user can select to perform some func-
tion and/or to display information. A panel is said to be "in focus" or in a "selected"
state when it is surrounded by asterisks and the current item is highlighted. In order
to choose from the items in a panel, the focus should be shifted to that panel first.

The following are the different types of selection items that can be present in a panel:

Text string Describes a choice that, when selected, either pops up another
panel or performs a function. For example, "stop" will stop the
SunVTS testing.

Data entry field To enter or edit numeric or textual data.

Checkbox Represented as "[]". Checkboxes are associated with items and
indicate whether the associated item is selected or not. A check-
box can be in one of the following two states: Deselected [] or
Selected [∗].

The key assignments given below describe the keys for shifting focus, making a selec-
tion, and performing other functions:

TAB or <CTRL>W Shift focus to another panel

RETURN Select current item

Spacebar Toggle checkbox

Up arrow or <CTRL>U
Move up one item

Down arrow or <CTRL>N
Move down one item

modified 9 Jun 1997 Solaris 8 1M-95

vtstty (1M) Maintenance Commands

Left arrow or <CTRL>P
Move left one item

Right arrow or <CTRL>R
Move right one item

Backspace Delete text in a data entry field

ESC Dismiss a pop-up

<CTRL>F Scroll forward in a scrollable panel

<CTRL>B Scroll backward in a scrollable panel

<CTRL>X Quit vtstty but leave the SunVTS kernel running

<CTRL>L Refresh the vtstty screen

NOTES 1. To run vtstty from a telnet session, carry out the following steps:

a. Before telnet-ing, determine the values for "rows and "columns". (See stty(1)
).

b. Set term to the appropriate type after telnet-ing(for example, set term=vt100

c. Set the values of columns and rows to the value noted above. (See stty(1)).

2. Before running vtstty ensure that the environment variable describing the terminal
type is set correctly.

SEE ALSO sunvts(1M), vtsk(1M), vtsui(1M), vtsprobe(1M)

1M-96 Solaris 8 modified 9 Jun 1997

Maintenance Commands vtsui (1M)

NAME vtsui – SunVTS Graphic User Interface (CDE)

SYNOPSIS vtsui [–qv] [–h hostname]

AVAILABILITY SUNWvts

DESCRIPTION The vtsui command starts up the CDE Motif version of SunVTS graphic user interface.
There can be multiple instances of vtsui running at the same time, all connected to one
SunVTS diagnostic kernel, vtsk(1M). The name of the host machine running the diag-
nostic kernel, vtsk(1M), will be displayed in the title bar of the graphical user interface
window.

vtsui is automatically started up by the sunvts (1M) command. vtsui can be also used
to start vtsk (1M) if inetd (1M) is in operation. In that case, the security file,
sunvts_sec, will be checked for the permission before running vtsk on the target host.

See the "SunVTS User’s Guide" for a complete description on using the graphical user
interface.

OPTIONS –q Quits the SunVTS graphic user interface when testing has terminated.

–v Displays graphic user interface version information only.

–h hostname
Starts the SunVTS graphic user interface and connects to the SunVTS diagnos-
tic kernel running on hostname, or invokes the kernel if not running, after secu-
rity checking succeeds. If hostname not specified, the local host is assumed.

EXIT STATUS The following exit values are returned:

0 Successful completion.

1 An error occurred.

SEE ALSO sunvts(1M), vtsk(1M), vtstty(1M), vtsprobe(1M)

modified 15 Mar 1996 Solaris 8 1M-97

Misc. Reference Manual Pages SCF_Session_close (3SMARTCARD)

NAME SCF_Session_close, SCF_Terminal_close, SCF_Card_close – close a smartcard session,
terminal, or card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_close(SC F_Session_t session);

SC F_St a t u s_t SC F_T er m in a l_close(SC F_T er m in a l_t ter m ina l);

SC F_St a t u s_t SC F_C a r d_close(SC F_C a r d_t ca r d);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD)

session
An object that was returned from SC F_Session_get Session(3SMARTCARD)

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD)

These functions release the resources (memory, threads, and others) that were allocated
within the library when the session, terminal, or card was opened. Any storage allo-
cated by calls to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD) is deallocated
when the associated object is closed. Attempts to access results from these interfaces after the
object has been closed results in undefined behavior.

If a card that was locked by SC F_C a r d_lock(3SMARTCARD) is closed, the lock is automat-
ically released. When a terminal is closed, any event listeners on that terminal object are
removed and any cards that were obtained with the terminal are closed. Similarly, closing a
session will close any terminals or cards obtained with that session. These are the only cases
where the library will automatically perform a close.

Once closed, a session, terminal, or card object can no longer be used by an SCF func-
tion. Any attempt to do so results in an SC F_ST AT US_BADH ANDL E error. The sole
exception is that closing an object, even if already closed, is always a successful operation.

Closing a handle is always a successful operation that returns SC F_ST AT US_SUC C E SS.
The library can safely detect handles that are invalid or already closed.

E xa m p le 1: C lose ea ch ob j ect exp licit ly.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);

3-98 Solaris 8 modified 14 May 2002

Misc. Reference Manual Pages SCF_Session_close (3SMARTCARD)

if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (Do interesting things with smartcard...) ∗ /

SCF_Card_close(myCard);
SCF_Terminal_close(myTerminal);
SCF_Session_close(mySession);

E xa m p le 2: Allow t h e lib r a r y t o close ob j ect s.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (Do interesting things with smartcard...) ∗ /

SCF_Session_close(mySession);
/∗ myTerminal and myCard have been closed by the library.∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_C a r d_get I n fo(3SMARTCARD), SC F_C a r d_lock(3SMARTCARD),
SC F_Session_get I n fo(3SMARTCARD), SC F_Session_get Session(3SMARTCARD),
SC F_Session_get T er m in a l(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), a t t r ib u t es(5)

modified 14 May 2002 Solaris 8 3-99

SCF_Card_exchangeAPDU (3SMARTCARD) Misc. Reference Manual Pages

NAME SCF_Card_exchangeAPDU – send a command APDU to a card and read the card’s
response

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SCF_Status_t SCF_Card_exchangeAPDU(SCF_Card_t car d, const uint8_t ∗ sen d B u f f er,
size_t sendL ength, u in t 8_t ∗ r ecv B uf f er, size_t ∗ r ecv L ength);

ca r d The card (from SC F_T er m in a l_get C a r d(3SMARTCARD)) to communicate with.

sendB uf f er
A pointer to a buffer containing the command APDU.

sendL ength
The number of bytes in the sendBuffer (that is, the size of the command APDU).

r ecv B uf f er
A pointer to a buffer in which the card’s reply APDU should be stored. This
buffer can be the same as the sendB uf f er to allow the application to conserve memory
usage. The buffer must be large enough to store the expected reply.

r ecv L ength
The caller specifies the maximum size of the recvBuffer in r ecv L ength. The library
uses this value to prevent overflowing the buffer. When the reply is received, the library
setsr ecv L ength to the actual size of the reply APDU that was stored in ther ecv B uf f er.

The SC F_C a r d_exch a n geAP DU() function sends a binary command to the card and reads the
reply. The application is responsible for constructing a valid command and providing a receive
buffer large enough to hold the reply. Generally, the command and reply will be ISO7816-
formatted APDUs (Application Protocol Data Units), but the SCF library does not examine or
verify the contents of the buffers.

If the caller needs to perform a multi-step transaction that must not be interrupted,
SC F_C a r d_lock(3SMARTCARD) should be used to prevent other applications from communi-
cating with the card during the transaction. Similarly, calls toSC F_C a r d_exch a n geAP DU()
must be prepared to retry the call ifSC F_ST AT US_C AR DL O C K E D is returned.

An ISO7816-formatted command APDU always begins with a mandatory 4 byte
header (CLA, INS, P1, and P2), followed by a variable length body (zero or more
bytes). For details on the APDUs supported by a specific card, consult the documenta-
tion provided by the card manufacturer or applet vendor.

An ISO7816-formatted reply APDU consists of zero or more bytes of data, followed by
a manditory 2 byte status trailer (SW1 and SW2).

If the APDU is successfully sent and a reply APDU is successfully read,
SC F_ST AT US_SUC C E SS is returned withr ecv B uf f er andr ecv L ength set appropriately. Other-
wise, an error value is returned and bothr ecv B uf f er andr ecv L ength remain unaltered.

3-100 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Card_exchangeAPDU (3SMARTCARD)

The SC F_C a r d_exch a n geAP DU() function will fail if:

SC F_ST AT US_BADAR G S
Neither sendB uf f er, r ecv B uf f er, nor r ecv L ength can be null pointers. The value of
recvLength must be at least 2.

SC F_ST AT US_BADH ANDL E
The card has been closed or is invalid.

SC F_ST AT US_C AR DL O C K E D
The APDU cannot be sent because the card is locked by another application.

SC F_ST AT US_C AR DR E M O VE D
The card object cannot be used because the card represented by the SC F_C a r d_t
has been removed

SC F_ST AT US_C O M M E R R O R
The connection to the server was closed.

SC F_ST AT US_F AI L E D
An internal error occurred.

SC F_ST AT US_NO SP AC E
The specified size of r ecv B uf f er is too small to hold the complete reply APDU.

E xa m p le 1: Sen d a com m a n d t o t h e ca r d .

SCF_Status_t status;
SCF_Card_t myCard;
uint8_t commandAPDU[] = {0x00, 0xa4, 0x00, 0x00, 0x02, 0x3f, 0x00};
uint8_t replyAPDU[256];
uint32_t commandSize = sizeof(commandAPDU);
uint32_t replySize = sizeof(replyAPDU);
/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

/∗ Send the ISO7816 command to select the card’s MF. ∗ /
status = SCF_Card_exchangeAPDU(myCard, commandAPDU, commandSize,

replyAPDU, &replySize);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("Received a %d byte reply.\n", replySize);
printf("SW1=0x%02.2x SW2=0x%02.2x\n",

replyAPDU[replySize-2], replyAPDU[replySize-1]);

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

modified 15 May 2002 Solaris 8 3-101

SCF_Card_exchangeAPDU (3SMARTCARD) Misc. Reference Manual Pages

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_C a r d_lock(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

3-102 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Session_freeInfo (3SMARTCARD)

NAME SCF_Session_freeInfo, SCF_Terminal_freeInfo, SCF_Card_freeInfo – deallocate informa-
tion storage

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_fr eeI n fo(SC F_Session_t session, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_fr eeI n fo(SC F_T er m in a l_t ter m ina l, void ∗ v a lue);

SC F_St a t u s_t SC F_C a r d_fr eeI n fo(SC F_C a r d_t ca r d, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD). This
object must be associated with the information value being freed.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD). This
object must be associated with the information value being freed.

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD). This
object must be associated with the information value being freed.

v a lue A pointer that was returned from a call to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD).

When information is requested for an object (for example, by using
SC F_Session_get I n fo()), the result is placed in memory allocated for that request. This memory
must eventually be deallocated, or a memory leak will result. The deallocation of memory can
occur in one of two ways.

• The simplest method is to allow the sm a r t ca r d library to automatically deallocate
memory when the object associated with the information is closed. For example, when
SC F_C a r d_close(3SMARTCARD) is called, any information obtained from
SC F_C a r d_get I n fo() for that card object is deallocated. The application is not required
to call SC F_C a r d_fr eeI n fo() at all.

• If the object persists for a long period of time, the application can explicitly
request the information to be deallocated without closing the object, so that
memory is not wasted on unneeded storage. Similarly, if an application repeat-
edly requests information about an object (even the same information), the
application can explicitly request deallocation as needed, so that memory usage
does not continue to increase until the object is closed. In general, requesting
information to be deallocated can be used to reduce runtime memory bloat.

Attempts to access deallocated memory result in undefined behavior.

If the information is successfully deallocated, SC F_ST AT US_SUC C E SS is returned. Other-
wise, an error value is returned.

modified 28 Feb 2001 Solaris 8 3-103

SCF_Session_freeInfo (3SMARTCARD) Misc. Reference Manual Pages

These functions will fail if:

SC F_ST AT US_BADAR G S
The specified value cannot be deallocated, possibly because of an invalid
pointer, a value already deallocated, or because the value is not associated with
the specified session, terminal, or card.

SC F_ST AT US_BADH ANDL E
The specified session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: F r ee in for m a t ion .

char ∗ terminalName;
SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The terminal name is %s\n", terminalName);

status = SCF_Terminal_freeInfo(myTerminal, terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_get I n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

3-104 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_freeInfo (3SMARTCARD)

NAME SCF_Session_freeInfo, SCF_Terminal_freeInfo, SCF_Card_freeInfo – deallocate informa-
tion storage

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_fr eeI n fo(SC F_Session_t session, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_fr eeI n fo(SC F_T er m in a l_t ter m ina l, void ∗ v a lue);

SC F_St a t u s_t SC F_C a r d_fr eeI n fo(SC F_C a r d_t ca r d, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD). This
object must be associated with the information value being freed.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD). This
object must be associated with the information value being freed.

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD). This
object must be associated with the information value being freed.

v a lue A pointer that was returned from a call to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD).

When information is requested for an object (for example, by using
SC F_Session_get I n fo()), the result is placed in memory allocated for that request. This memory
must eventually be deallocated, or a memory leak will result. The deallocation of memory can
occur in one of two ways.

• The simplest method is to allow the sm a r t ca r d library to automatically deallocate
memory when the object associated with the information is closed. For example, when
SC F_C a r d_close(3SMARTCARD) is called, any information obtained from
SC F_C a r d_get I n fo() for that card object is deallocated. The application is not required
to call SC F_C a r d_fr eeI n fo() at all.

• If the object persists for a long period of time, the application can explicitly
request the information to be deallocated without closing the object, so that
memory is not wasted on unneeded storage. Similarly, if an application repeat-
edly requests information about an object (even the same information), the
application can explicitly request deallocation as needed, so that memory usage
does not continue to increase until the object is closed. In general, requesting
information to be deallocated can be used to reduce runtime memory bloat.

Attempts to access deallocated memory result in undefined behavior.

If the information is successfully deallocated, SC F_ST AT US_SUC C E SS is returned. Other-
wise, an error value is returned.

modified 28 Feb 2001 Solaris 8 3-105

SCF_Session_freeInfo (3SMARTCARD) Misc. Reference Manual Pages

These functions will fail if:

SC F_ST AT US_BADAR G S
The specified value cannot be deallocated, possibly because of an invalid
pointer, a value already deallocated, or because the value is not associated with
the specified session, terminal, or card.

SC F_ST AT US_BADH ANDL E
The specified session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: F r ee in for m a t ion .

char ∗ terminalName;
SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The terminal name is %s\n", terminalName);

status = SCF_Terminal_freeInfo(myTerminal, terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_get I n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

3-106 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getInfo (3SMARTCARD)

NAME SCF_Session_getInfo, SCF_Terminal_getInfo, SCF_Card_getInfo – retrieve information
about a session, terminal, or card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_get I n fo(SC F_Session_t session, con st ch a r ∗ na m e, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_get I n fo(SC F_T er m in a l_t ter m ina l, con st ch a r ∗ na m e, void
∗ v a lue);

SC F_St a t u s_t SC F_C a r d_get I n fo(SC F_C a r d_t ca r d, con st ch a r ∗ na m e, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD).

na m e The name of a property for which a value is to be returned. The name is case-
sensitive.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD).

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD).

v a lue The value of the property. The actual type of the value depends on what pro-
perty was being queried.

These functions obtain information about a session, terminal, or card. The information
returned represents the current state of the object and can change between calls.

Each call allocates new storage for the returned result. This storage is tracked inter-
nally and is deallocated when the object is closed. An application repeatedly asking for
information can cause memory bloat until the object is closed. The application can
optionally call SC F_Session_fr eeI n fo(3SMARTCARD),
SC F_T er m in a l_fr eeI n fo(3SMARTCARD), orSC F_C a r d_fr eeI n fo(3SMARTCARD) to cause
immediate deallocation of the value. Applications must not use other means such asfr ee(3C) to
deallocate the memory.

Applications must not access values that have been deallocated. For example, access-
ing a Card’s ATR after the card has been closed results in undefined behavior.

For a session, the valid property names and value types are:

ter m ina lna m es (pointer toch a r ∗∗)
The list of terminal names that can currently be used in this session. The
returned value is an array of ch a r ∗ , each element of the list is a pointer to a termi-
nal name. The end of the array is denoted by a null pointer. The first element of the list
is the default terminal for the session, which will be used when
SC F_Session_get T er m in a l() is called with a null pointer for the terminal name.

For a terminal, the standard property names and value types are as follows. Some ter-
minal drivers can define additional driver-specific properties.

na m e (pointer toch a r ∗)

modified 28 Feb 2001 Solaris 8 3-107

SCF_Session_getInfo (3SMARTCARD) Misc. Reference Manual Pages

The name of the terminal. If the default terminal was used (a null pointer was
passed to SC F_Session_get T er m in a l()), the value will contain the actual name of the
default terminal. For example, "MyInternalCardReader".

ty pe (pointer toch a r ∗)
The type of the terminal. For example, "SunISCRI".

dev na m e (pointer toch a r ∗)
Information about how the device is attached to the system. This can be a
UNIX device name (for example, "/dev/scmi2c0") or some other terminal-
specific string describing its relation to the system.

For a card, the valid property names and value types are:

ty pe (pointer toch a r ∗)
The type of the smartcard, as recognized by the framework (For example,
"Cyberflex"). If the framework does not recognize the card type, "Unknown-
Card" is returned.

a tr (pointer tost r u ct SC F_Bin a r yDa t a_t ∗)
The Answer To Reset (ATR) data returned by the card when it was last inserted
or reset. The structure member len gt h denotes how many bytes are in the ATR. The
structure memberd a t a is a pointer to the actual ATR bytes.

Upon success, SC F_ST AT US_SUC C E SS is returned andv a lue will contain the the requested
information. Otherwise, an error value is returned andv a lue remains unaltered.

These functions will fail if:

SC F_ST AT US_BADAR G S
Either na m e or v a lue is a null pointer.

SC F_ST AT US_BADH ANDL E
The session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occurred.

SC F_ST AT US_UNK NO W NP R O P E R T Y
The property specified by na m e was not found.

E xa m p le 1: Sim p le st r in g in for m a t ion .

SCF_Status_t status;
SCF_Terminal_t myTerminal;
const char ∗ myName, ∗ myType;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &myName);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getInfo(myTerminal, "type", &myType);
if (status != SCF_STATUS_SUCCESS) exit(1);

3-108 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getInfo (3SMARTCARD)

printf("The terminal called %s is a %s\n", myName, myType);

E xa m p le 2: Disp la y t h e n a m es of a ll t er m in a ls a va ila b le in t h e session .

SCF_Status_t status;
SCF_Session_t mySession;
const char ∗∗ myList; /∗ Technically "const char ∗ const ∗ ". ∗ /
int i;

/∗ (...call SCF_Session_getSession to open mySession...) ∗ /

status = SCF_Session_getInfo(mySession, "terminalnames", &myList);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The following terminals are available:\n");
for (i=0; myList[i] != NULL; i++) {

printf("%d: %s\n", i, myList[i]);
}
E xa m p le 3: Disp la y t h e ca r d ’s AT R .

SCF_Status_t status;
SCF_Card_t myCard;
struct SCF_BinaryData_t ∗ myATR;
int i;

/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

status = SCF_Card_getInfo(myCard, "atr", &myATR);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The card’s ATR is: 0x");
for(i=0; i < myATR->length; i++) {

printf("%02.2x", myATR->data[i]);
}
printf("\n");

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_fr eeI n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

modified 28 Feb 2001 Solaris 8 3-109

SCF_Card_lock (3SMARTCARD) Misc. Reference Manual Pages

NAME SCF_Card_lock, SCF_Card_unlock – perform mutex locking on a card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_C a r d_lock(SC F_C a r d_t ca r d, u n sign ed in t tim eout);

SC F_St a t u s_t SC F_C a r d_u n lock(SC F_C a r d_t ca r d);

ca r d The card (from SC F_T er m in a l_get C a r d(3SMARTCARD)) to be locked.

tim eout
The maximum number of seconds SC F_C a r d_lock () should wait for a card locked
by another application to become unlocked. A value of 0 results inSC F_C a r d_lock ()
returning immediately if a lock cannot be immediately obtained. A value of
SC F_T I M E O UT_M AX results inSC F_C a r d_lock () waiting forever to obtain a lock.

Locking a card allows an application to perform a multi-APDU transaction (that is,
multiple calls to SC F_C a r d_exch a n geAP DU(3SMARTCARD)) without interference from
other smartcard applications. The lock is enforced by the server, so that other applications that
attempt to callSC F_C a r d_exch a n geAP DU() or SC F_C a r d_r eset(3SMARTCARD) will be
denied access to the card. Applications should restrict use of locks only to brief critical sec-
tions. Otherwise it becomes difficult for multiple applications to share the same card.

When a lock is granted to a specific SC F_C a r d_t card object, only that object can be used to
access the card and subsquently release the lock. If a misbehaving application holds a lock for
an extended period, the lock can be broken by having the user remove and reinsert the
smartcard.

It is an error to attempt to lock a card when the caller already holds a lock on the card
(that is, calling SC F_C a r d_lock () twice in a succession). Unlocking a card that is not locked
(or was already unlocked) can be performed without causing an error.

An application might find that it is unable to lock the card, or communicate with it
because SC F_C a r d_exch a n geAP DU() keeps returningSC F_ST AT US_C AR DL O C K E D. If this
situation persists, it might indicate that another application has not released its lock on the card.
The user is able to forcably break a lock by removing the card and reinserting it, after which
the application must callSC F_T er m in a l_get C a r d(3SMARTCARD) to access the "new" card. In
this situation an application should retry for a reasonable period of time, and then alert the user
that the operation could not be completed because the card is in use by another application and
that removing or reinserting the card will resolve the problem.

If the card is successfully locked or unlocked, SC F_ST AT US_SUC C E SS is returned. Oth-
erwise, the lock status of the card remains unchanged and an error value is returned.

The SC F_C a r d_lock () andSC F_C a r d_lock () functions will fail if:

SC F_ST AT US_BADH ANDL E
The specified card has been closed or is invalid.

3-110 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Card_lock (3SMARTCARD)

SC F_ST AT US_C AR DL O C K E D
There is a lock present on the card, but it is not held by the specified card
object. For example, the caller is attempting to unlock a card locked by another
application.

SC F_ST AT US_C AR DR E M O VE D
The card object cannot be used because the card represented by the SC F_C a r d_t
has been removed.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_DO UBL E L O C K
The caller has already locked this card and is attempting to lock it again.

SC F_ST AT US_F AI L E D
An internal error occured.

SC F_ST AT US_T I M E O UT
The tim eout expired before the call was able to obtain the lock.

E xa m p le 1: Use a ca r d lock .

SCF_Status_t status;
SCF_Card_t myCard;

/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

status = SCF_Card_lock(myCard, 15);
if (status == SCF_STATUS_TIMEOUT) {

printf("Unable to get a card lock, someone else has a lock.\n");
exit(0);

}
else if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ Send the first APDU ∗ /
SCF_Card_exchangeAPDU(myCard, ...);

/∗ Send the second APDU ∗ /
SCF_Card_exchangeAPDU(myCard, ...);

status = SCF_Card_unlock(myCard);

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

modified 15 May 2002 Solaris 8 3-111

SCF_Card_lock (3SMARTCARD) Misc. Reference Manual Pages

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_C a r d_exch a n geAP DU(3SMARTCARD),
SC F_C a r d_r eset(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

3-112 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Card_reset (3SMARTCARD)

NAME SCF_Card_reset – perform a reset of a smartcard

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_C a r d_r eset(SC F_C a r d_t ca r d);

ca r d The card (from SC F_T er m in a l_get C a r d(3SMARTCARD)) to be reset

The SC F_C a r d_r eset () function causes the specified smartcard to be reset by the terminal.

A card can be reset only if it has not been locked (with SC F_C a r d_lock(3SMARTCARD))
by another client. A client wishing to reset a card should either first callSC F_C a r d_lock () to
obtain the card lock, or be prepared to retry the reset operation if it fails because another client
holds the card lock.

When the card is reset, any SC F_C a r d_t object representing the card will continue to remain
valid after the reset. When the reset occurs, anSC F_E VE NT_C AR DR E SE T event will be sent
to all registered event listeners for the terminal (assuming they registered for this event). This is
the only notification of a reset provided to SCF clients. When a client receives this event, it
should be prepared to reinitialize any state on the card that might have been interrupted by the
reset. New information about the card (for example, ATR, if it changed) can also be available
from SC F_C a r d_get I n fo(3SMARTCARD).

If the card is successfully reset, SC F_ST AT US_SUC C E SS is returned. Otherwise, the status
of the card remains unchanged and an error value is returned.

The SC F_C a r d_r eset () function will fail if:

SC F_ST AT US_BADH ANDL E
The specified card has been closed or is invalid.

SC F_ST AT US_C AR DL O C K E D
The card cannot be reset because another client holds a lock on the card.

SC F_ST AT US_C AR DR E M O VE D
The card cannot be reset because the card represented by the SC F_C a r d_t has
been removed.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: R eset a ca r d .

SCF_Status_t status;
SCF_Card_t myCard;

/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

modified 28 Feb 2001 Solaris 8 3-113

SCF_Card_reset (3SMARTCARD) Misc. Reference Manual Pages

status = SCF_Card_lock(myCard, SCF_TIMEOUT_MAX);
if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Card_reset(myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Card_unlock(myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_C a r d_get I n fo(3SMARTCARD), SC F_C a r d_lock(3SMARTCARD),
SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
a t t r ib u t es(5)

3-114 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Card_lock (3SMARTCARD)

NAME SCF_Card_lock, SCF_Card_unlock – perform mutex locking on a card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_C a r d_lock(SC F_C a r d_t ca r d, u n sign ed in t tim eout);

SC F_St a t u s_t SC F_C a r d_u n lock(SC F_C a r d_t ca r d);

ca r d The card (from SC F_T er m in a l_get C a r d(3SMARTCARD)) to be locked.

tim eout
The maximum number of seconds SC F_C a r d_lock () should wait for a card locked
by another application to become unlocked. A value of 0 results inSC F_C a r d_lock ()
returning immediately if a lock cannot be immediately obtained. A value of
SC F_T I M E O UT_M AX results inSC F_C a r d_lock () waiting forever to obtain a lock.

Locking a card allows an application to perform a multi-APDU transaction (that is,
multiple calls to SC F_C a r d_exch a n geAP DU(3SMARTCARD)) without interference from
other smartcard applications. The lock is enforced by the server, so that other applications that
attempt to callSC F_C a r d_exch a n geAP DU() or SC F_C a r d_r eset(3SMARTCARD) will be
denied access to the card. Applications should restrict use of locks only to brief critical sec-
tions. Otherwise it becomes difficult for multiple applications to share the same card.

When a lock is granted to a specific SC F_C a r d_t card object, only that object can be used to
access the card and subsquently release the lock. If a misbehaving application holds a lock for
an extended period, the lock can be broken by having the user remove and reinsert the
smartcard.

It is an error to attempt to lock a card when the caller already holds a lock on the card
(that is, calling SC F_C a r d_lock () twice in a succession). Unlocking a card that is not locked
(or was already unlocked) can be performed without causing an error.

An application might find that it is unable to lock the card, or communicate with it
because SC F_C a r d_exch a n geAP DU() keeps returningSC F_ST AT US_C AR DL O C K E D. If this
situation persists, it might indicate that another application has not released its lock on the card.
The user is able to forcably break a lock by removing the card and reinserting it, after which
the application must callSC F_T er m in a l_get C a r d(3SMARTCARD) to access the "new" card. In
this situation an application should retry for a reasonable period of time, and then alert the user
that the operation could not be completed because the card is in use by another application and
that removing or reinserting the card will resolve the problem.

If the card is successfully locked or unlocked, SC F_ST AT US_SUC C E SS is returned. Oth-
erwise, the lock status of the card remains unchanged and an error value is returned.

The SC F_C a r d_lock () andSC F_C a r d_lock () functions will fail if:

SC F_ST AT US_BADH ANDL E
The specified card has been closed or is invalid.

modified 15 May 2002 Solaris 8 3-115

SCF_Card_lock (3SMARTCARD) Misc. Reference Manual Pages

SC F_ST AT US_C AR DL O C K E D
There is a lock present on the card, but it is not held by the specified card
object. For example, the caller is attempting to unlock a card locked by another
application.

SC F_ST AT US_C AR DR E M O VE D
The card object cannot be used because the card represented by the SC F_C a r d_t
has been removed.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_DO UBL E L O C K
The caller has already locked this card and is attempting to lock it again.

SC F_ST AT US_F AI L E D
An internal error occured.

SC F_ST AT US_T I M E O UT
The tim eout expired before the call was able to obtain the lock.

E xa m p le 1: Use a ca r d lock .

SCF_Status_t status;
SCF_Card_t myCard;

/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

status = SCF_Card_lock(myCard, 15);
if (status == SCF_STATUS_TIMEOUT) {

printf("Unable to get a card lock, someone else has a lock.\n");
exit(0);

}
else if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ Send the first APDU ∗ /
SCF_Card_exchangeAPDU(myCard, ...);

/∗ Send the second APDU ∗ /
SCF_Card_exchangeAPDU(myCard, ...);

status = SCF_Card_unlock(myCard);

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

3-116 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Card_lock (3SMARTCARD)

lib sm a r t ca r d(3LIB), SC F_C a r d_exch a n geAP DU(3SMARTCARD),
SC F_C a r d_r eset(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

modified 15 May 2002 Solaris 8 3-117

Misc. Reference Manual Pages SCF_Terminal_waitForCardPresent (3SMARTCARD)

NAME SCF_Terminal_waitForCardPresent, SCF_Terminal_waitForCardAbsent,
SCF_Card_waitForCardRemoved – wait for a card to be inserted or removed

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_wa it F or C a r d P r esen t(SC F_T er m in a l_t ter m ina l, u n sign ed in t
tim eout);

SC F_St a t u s_t SC F_T er m in a l_wa it F or C a r d Ab sen t(SC F_T er m in a l_t ter m ina l, u n sign ed in t
tim eout);

SC F_St a t u s_t SC F_C a r d_wa it F or C a r d R em oved(SC F_C a r d_t ca r d, u n sign ed in t tim eout);

ca r d A card that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD).

ter m ina l
A terminal that was returned from SC F_Session_get T er m in a l(3SMARTCARD).

tim eout
The maximum number or seconds to wait for the desired state to be reached. If
the timeout is 0, the function will immediately return SC F_ST AT US_T I M E O UT if
the terminal or card is not in the desired state. A timeout ofSC F_T I M E O UT_M AX can
be specified to indicate that the function should never timeout.

These functions determine if a card is currently available in the specified terminal.

The SC F_C a r d_wa it F or C a r d R em oved () function differs from
SC F_T er m in a l_wa it F or C a r d Ab sen t () in that it checks to see if a specific card has been
removed. If another card (or even the same card) has since been reinserted,
SC F_C a r d_wa it F or C a r d R em oved () will report that the old card was removed, while the
SC F_T er m in a l_wa it F or C a r d Ab sen t () will instead report that there is a card present.

If the desired state is already true, the function will immediately return
SC F_ST AT US_SUC C E SS. Otherwise it will wait for a change to the desired state, or for the
timeout to expire, whichever occurs first.

Unlike an event listener (SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD)), these functions
return the state of the terminal, not just events. To use an electronics analogy, event listeners
are edge-triggered, while these functions are level-triggered.

If the desired state is reached before the timeout expires, SC F_ST AT US_SUC C E SS is
returned. If the timeout expires,SC F_ST AT US_T I M E O UT is returned. Otherwise, an error
value is returned.

These functions will fail if:

SC F_ST AT US_BADH ANDL E
The specified ter m ina l or ca r d has been closed or is invalid.

SC F_ST AT US_C O M M E R R O R
The server closed the connection.

3-118 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Terminal_waitForCardPresent (3SMARTCARD)

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: Det er m in e if a ca r d is cu r r en t ly in ser t ed .

int isCardCurrentlyPresent(SCF_Terminal_t myTerminal) {
SCF_Status_t status;

/∗
∗ The timeout of zero makes sure this call will always
∗ return immediately.
∗ /
status = SCF_Terminal_waitForCardPresent(myTerminal, 0);

if (status == SCF_STATUS_SUCCESS) return (TRUE);
else if (status == SCF_STATUS_TIMEOUT) return (FALSE);

/∗
∗ For other errors, this example just assumes no card
∗ is present. We don’t really know.
∗ /
return (FALSE);

}
E xa m p le 2: R em in d t h e u ser ever y 5 secon d s t o r em ove t h eir ca r d .

SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
while (status == SCF_STATUS_TIMEOUT) {

printf("Please remove the card from the terminal!\n");
status = SCF_Terminal_waitForCardAbsent(myTerminal, 5);

}

if (status == SCF_STATUS_SUCCESS)
printf("Thank you.\n");

else
exit(1);

/∗ ... ∗ /

E xa m p le 3: Dem on st r a t e t h e d iffer en ce b et ween t h e ca r d -sp ecific a n d t er m in a l-sp ecific
ca lls.

modified 15 May 2002 Solaris 8 3-119

SCF_Terminal_waitForCardPresent (3SMARTCARD) Misc. Reference Manual Pages

SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ While we sleep, assume user removes the card
∗ and inserts another card.
∗ /
sleep(10);

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
/∗

∗ In this case, status is expected to be SCF_STATUS_TIMEOUT, as there
∗ is a card present.
∗ /

status = SCF_Card_waitForCardRemoved(myCard, 0);
/∗

∗ In this case, status is expected to be SCF_STATUS_SUCCESS, as the
∗ card returned from SCF_Terminal_getCard was indeed removed (even
∗ though another card is currently in the terminal).
∗ /

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
a t t r ib u t es(5)

3-120 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Session_close (3SMARTCARD)

NAME SCF_Session_close, SCF_Terminal_close, SCF_Card_close – close a smartcard session,
terminal, or card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_close(SC F_Session_t session);

SC F_St a t u s_t SC F_T er m in a l_close(SC F_T er m in a l_t ter m ina l);

SC F_St a t u s_t SC F_C a r d_close(SC F_C a r d_t ca r d);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD)

session
An object that was returned from SC F_Session_get Session(3SMARTCARD)

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD)

These functions release the resources (memory, threads, and others) that were allocated
within the library when the session, terminal, or card was opened. Any storage allo-
cated by calls to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD) is deallocated
when the associated object is closed. Attempts to access results from these interfaces after the
object has been closed results in undefined behavior.

If a card that was locked by SC F_C a r d_lock(3SMARTCARD) is closed, the lock is automat-
ically released. When a terminal is closed, any event listeners on that terminal object are
removed and any cards that were obtained with the terminal are closed. Similarly, closing a
session will close any terminals or cards obtained with that session. These are the only cases
where the library will automatically perform a close.

Once closed, a session, terminal, or card object can no longer be used by an SCF func-
tion. Any attempt to do so results in an SC F_ST AT US_BADH ANDL E error. The sole
exception is that closing an object, even if already closed, is always a successful operation.

Closing a handle is always a successful operation that returns SC F_ST AT US_SUC C E SS.
The library can safely detect handles that are invalid or already closed.

E xa m p le 1: C lose ea ch ob j ect exp licit ly.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);

modified 14 May 2002 Solaris 8 3-121

SCF_Session_close (3SMARTCARD) Misc. Reference Manual Pages

if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (Do interesting things with smartcard...) ∗ /

SCF_Card_close(myCard);
SCF_Terminal_close(myTerminal);
SCF_Session_close(mySession);

E xa m p le 2: Allow t h e lib r a r y t o close ob j ect s.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (Do interesting things with smartcard...) ∗ /

SCF_Session_close(mySession);
/∗ myTerminal and myCard have been closed by the library.∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_C a r d_get I n fo(3SMARTCARD), SC F_C a r d_lock(3SMARTCARD),
SC F_Session_get I n fo(3SMARTCARD), SC F_Session_get Session(3SMARTCARD),
SC F_Session_get T er m in a l(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), a t t r ib u t es(5)

3-122 Solaris 8 modified 14 May 2002

Misc. Reference Manual Pages SCF_Session_freeInfo (3SMARTCARD)

NAME SCF_Session_freeInfo, SCF_Terminal_freeInfo, SCF_Card_freeInfo – deallocate informa-
tion storage

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_fr eeI n fo(SC F_Session_t session, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_fr eeI n fo(SC F_T er m in a l_t ter m ina l, void ∗ v a lue);

SC F_St a t u s_t SC F_C a r d_fr eeI n fo(SC F_C a r d_t ca r d, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD). This
object must be associated with the information value being freed.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD). This
object must be associated with the information value being freed.

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD). This
object must be associated with the information value being freed.

v a lue A pointer that was returned from a call to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD).

When information is requested for an object (for example, by using
SC F_Session_get I n fo()), the result is placed in memory allocated for that request. This memory
must eventually be deallocated, or a memory leak will result. The deallocation of memory can
occur in one of two ways.

• The simplest method is to allow the sm a r t ca r d library to automatically deallocate
memory when the object associated with the information is closed. For example, when
SC F_C a r d_close(3SMARTCARD) is called, any information obtained from
SC F_C a r d_get I n fo() for that card object is deallocated. The application is not required
to call SC F_C a r d_fr eeI n fo() at all.

• If the object persists for a long period of time, the application can explicitly
request the information to be deallocated without closing the object, so that
memory is not wasted on unneeded storage. Similarly, if an application repeat-
edly requests information about an object (even the same information), the
application can explicitly request deallocation as needed, so that memory usage
does not continue to increase until the object is closed. In general, requesting
information to be deallocated can be used to reduce runtime memory bloat.

Attempts to access deallocated memory result in undefined behavior.

If the information is successfully deallocated, SC F_ST AT US_SUC C E SS is returned. Other-
wise, an error value is returned.

modified 28 Feb 2001 Solaris 8 3-123

SCF_Session_freeInfo (3SMARTCARD) Misc. Reference Manual Pages

These functions will fail if:

SC F_ST AT US_BADAR G S
The specified value cannot be deallocated, possibly because of an invalid
pointer, a value already deallocated, or because the value is not associated with
the specified session, terminal, or card.

SC F_ST AT US_BADH ANDL E
The specified session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: F r ee in for m a t ion .

char ∗ terminalName;
SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The terminal name is %s\n", terminalName);

status = SCF_Terminal_freeInfo(myTerminal, terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_Session_get I n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

3-124 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getInfo (3SMARTCARD)

NAME SCF_Session_getInfo, SCF_Terminal_getInfo, SCF_Card_getInfo – retrieve information
about a session, terminal, or card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_get I n fo(SC F_Session_t session, con st ch a r ∗ na m e, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_get I n fo(SC F_T er m in a l_t ter m ina l, con st ch a r ∗ na m e, void
∗ v a lue);

SC F_St a t u s_t SC F_C a r d_get I n fo(SC F_C a r d_t ca r d, con st ch a r ∗ na m e, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD).

na m e The name of a property for which a value is to be returned. The name is case-
sensitive.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD).

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD).

v a lue The value of the property. The actual type of the value depends on what pro-
perty was being queried.

These functions obtain information about a session, terminal, or card. The information
returned represents the current state of the object and can change between calls.

Each call allocates new storage for the returned result. This storage is tracked inter-
nally and is deallocated when the object is closed. An application repeatedly asking for
information can cause memory bloat until the object is closed. The application can
optionally call SC F_Session_fr eeI n fo(3SMARTCARD),
SC F_T er m in a l_fr eeI n fo(3SMARTCARD), orSC F_C a r d_fr eeI n fo(3SMARTCARD) to cause
immediate deallocation of the value. Applications must not use other means such asfr ee(3C) to
deallocate the memory.

Applications must not access values that have been deallocated. For example, access-
ing a Card’s ATR after the card has been closed results in undefined behavior.

For a session, the valid property names and value types are:

ter m ina lna m es (pointer toch a r ∗∗)
The list of terminal names that can currently be used in this session. The
returned value is an array of ch a r ∗ , each element of the list is a pointer to a termi-
nal name. The end of the array is denoted by a null pointer. The first element of the list
is the default terminal for the session, which will be used when
SC F_Session_get T er m in a l() is called with a null pointer for the terminal name.

For a terminal, the standard property names and value types are as follows. Some ter-
minal drivers can define additional driver-specific properties.

na m e (pointer toch a r ∗)

modified 28 Feb 2001 Solaris 8 3-125

SCF_Session_getInfo (3SMARTCARD) Misc. Reference Manual Pages

The name of the terminal. If the default terminal was used (a null pointer was
passed to SC F_Session_get T er m in a l()), the value will contain the actual name of the
default terminal. For example, "MyInternalCardReader".

ty pe (pointer toch a r ∗)
The type of the terminal. For example, "SunISCRI".

dev na m e (pointer toch a r ∗)
Information about how the device is attached to the system. This can be a
UNIX device name (for example, "/dev/scmi2c0") or some other terminal-
specific string describing its relation to the system.

For a card, the valid property names and value types are:

ty pe (pointer toch a r ∗)
The type of the smartcard, as recognized by the framework (For example,
"Cyberflex"). If the framework does not recognize the card type, "Unknown-
Card" is returned.

a tr (pointer tost r u ct SC F_Bin a r yDa t a_t ∗)
The Answer To Reset (ATR) data returned by the card when it was last inserted
or reset. The structure member len gt h denotes how many bytes are in the ATR. The
structure memberd a t a is a pointer to the actual ATR bytes.

Upon success, SC F_ST AT US_SUC C E SS is returned andv a lue will contain the the requested
information. Otherwise, an error value is returned andv a lue remains unaltered.

These functions will fail if:

SC F_ST AT US_BADAR G S
Either na m e or v a lue is a null pointer.

SC F_ST AT US_BADH ANDL E
The session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occurred.

SC F_ST AT US_UNK NO W NP R O P E R T Y
The property specified by na m e was not found.

E xa m p le 1: Sim p le st r in g in for m a t ion .

SCF_Status_t status;
SCF_Terminal_t myTerminal;
const char ∗ myName, ∗ myType;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &myName);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getInfo(myTerminal, "type", &myType);
if (status != SCF_STATUS_SUCCESS) exit(1);

3-126 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getInfo (3SMARTCARD)

printf("The terminal called %s is a %s\n", myName, myType);

E xa m p le 2: Disp la y t h e n a m es of a ll t er m in a ls a va ila b le in t h e session .

SCF_Status_t status;
SCF_Session_t mySession;
const char ∗∗ myList; /∗ Technically "const char ∗ const ∗ ". ∗ /
int i;

/∗ (...call SCF_Session_getSession to open mySession...) ∗ /

status = SCF_Session_getInfo(mySession, "terminalnames", &myList);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The following terminals are available:\n");
for (i=0; myList[i] != NULL; i++) {

printf("%d: %s\n", i, myList[i]);
}
E xa m p le 3: Disp la y t h e ca r d ’s AT R .

SCF_Status_t status;
SCF_Card_t myCard;
struct SCF_BinaryData_t ∗ myATR;
int i;

/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

status = SCF_Card_getInfo(myCard, "atr", &myATR);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The card’s ATR is: 0x");
for(i=0; i < myATR->length; i++) {

printf("%02.2x", myATR->data[i]);
}
printf("\n");

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_Session_fr eeI n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

modified 28 Feb 2001 Solaris 8 3-127

Misc. Reference Manual Pages SCF_Session_getSession (3SMARTCARD)

NAME SCF_Session_getSession – establish a context with a system’s smartcard framework

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_get Session(SC F_Session_t ∗ session);

session
A pointer to an SC F_Session_t. If a session is successfully established, the session will
be returned through this parameter.

The SC F_Session_get Session () function establishes a session with the Solaris Smart Card
Framework (SCF). Once a session has been opened, the session can be used with
SC F_Session_get T er m in a l(3SMARTCARD) to access a smartcard terminal (reader). Informa-
tion about the session can be obtained by callingSC F_Session_get I n fo(3SMARTCARD).

When the session is no longer needed, SC F_Session_close(3SMARTCARD) should be
called to end the session and release session resources. Closing a session will also close any ter-
minals and cards opened within the session.

An application usually needs to open only a single session. For example, multiple ter-
minals can be opened from the same session. If an appication opens additional ses-
sions, each call will return independent (different) sessions.

Upon success, SC F_ST AT US_SUC C E SS is returned andsession contains a valid session. If a
session could not be established, an error value is returned andsession remains unaltered.

The SC F_Session_get Session () function will fail if:

SC F_ST AT US_BADAR G S
The session argument is a null pointer.

SC F_ST AT US_C O M M E R R O R
The library was unable to contact the smartcard server daemon (ocfser v(1M)), or
the library was unable to obtain a session from the server.

SC F_ST AT US_F AI L E D
An internal error occurred.

E xa m p le 1: E st a b lish a session wit h t h e fr a m ewor k .

SCF_Status_t status;
SCF_Session_t mySession;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ Proceed with other smartcard operations.∗ /

3-128 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getSession (3SMARTCARD)

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_Session_close(3SMARTCARD),
SC F_Session_get I n fo(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD), a t t r i-
b u t es(5)

modified 28 Feb 2001 Solaris 8 3-129

SCF_Session_getTerminal (3SMARTCARD) Misc. Reference Manual Pages

NAME SCF_Session_getTerminal – establish a context with a smartcard terminal (reader)

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SCF_Status_t SCF_Session_getTerminal(SCF_Session_t session, const char ∗ t er m in alN am e,
SC F_T er m in a l_t ∗ ter m ina l);

session
The session (from SC F_Session_get Session(3SMARTCARD)) containing a terminal to
be opened.

ter m ina l
A pointer to an SC F_T er m in a l_t. If the terminal is successfully opened, a handle for
the terminal will be returned through this parameter.

ter m ina lN a m e
Specifies the name of the terminal to access. If ter m ina lN a m e is a null pointer, it
indicates that the library should connect with the default terminal for the session.

The SC F_Session_get T er m in a l() function establishes a context with a specific smartcard termi-
nal (also known as a reader) in the session. Terminal objects are used for detecting card move-
ment (insertion or removal) and to create card objects for accessing a specific card.

The list of available terminal names can be retrieved by calling
SC F_Session_get I n fo(3SMARTCARD). Unless the user explicitly requests a specific terminal,
applications should use the session’s default terminal by callingSC F_Session_get T er m in a l()
with a null pointer for the terminal name. This eliminates the need to first process an available-
terminal list with just one element on systems with only a single smartcard terminal. On multi-
terminal systems, the user can preconfigure one of the terminals as the default (or preferred) ter-
minal. See USAGE below.

If SC F_Session_get T er m in a l() is called multiple times in the same session to access the same
physical terminal, the sameSC F_T er m in a l_t will be returned in each call. Multithreaded appli-
cations must take care to avoid having one thread close a terminal that is still needed by
another thread. This can be accomplished by coordination within the application or by having
each thread open a seperate session to avoid interference.

When the terminal is no longer needed, SC F_T er m in a l_close(3SMARTCARD) should be
called to release terminal resources. Closing a terminal will also close any cards opened from
the terminal.

Upon success, SC F_ST AT US_SUC C E SS is returned andter m ina l contains the opened termi-
nal. Otherwise, an error value is returned andter m ina l remains unaltered.

The SC F_Session_get T er m in a l() function will fail if:

SC F_ST AT US_BADAR G S
The ter m ina l argument is a null pointer.

3-130 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Session_getTerminal (3SMARTCARD)

SC F_ST AT US_BADH ANDL E
The session was closed or is invalid.

SC F_ST AT US_BADT E R M I NAL
The specified ter m ina lN a m e is not valid for this session, or the default terminal could
not be opened because there are no terminals available in this session.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_F AI L E D
An internal error occurred.

E xa m p le 1: Use t h e d efa u lt t er m in a l.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
char ∗ myName;

/∗ (...call SCF_Session_getSession to open mySession...) ∗ /

status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_getInfo(myTerminal, "name", &myName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("Please insert a card into the terminal named %s\n", myName);

/∗ ... ∗ /

E xa m p le 2: O p en a t er m in a l b y n a m e.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
char ∗ myName;

/∗ (...call SCF_Session_getSession to open mySession...) ∗ /

/∗
∗ The name should be selected from the list of terminal names
∗ available from SCF_Session_getInfo, but it could also be
∗ read from an appliation’s config file or from user input.
∗ /
myName = "SunInternalReader";

status = SCF_Session_getTerminal(mySession, myName, &myTerminal);
if (status == SCF_STATUS_BADTERMINAL) {

modified 15 May 2002 Solaris 8 3-131

SCF_Session_getTerminal (3SMARTCARD) Misc. Reference Manual Pages

printf("There is no terminal named %s.\n", myName);
exit(1);

} else if (status != SCF_STATUS_SUCCESS) exit(2);

/∗ ... ∗ /

When using the Solaris OCF smartcard framework, the default reader is specified by
the ocf.clien t .d efa u lt .d efa u lt r ea d er property. If this property is not set, the first available reader
is chosen as the default. Users can set theSC F_DE F AUL T_T E R M I NAL environment variable
to the name of a terminal to override the normal default. Thesm a r t ca r d utility can also be used
to add terminals to or remove terminals from the system. Seesm a r t ca r d(1M) for information on
how to add or modify the OCF property.

Terminals can be accessed only by the user who expected to have physical access to
the terminal. By default, this user is assumed to be the owner of /d ev/con sole and the
superuser. Certain terminals such as Sun Ray appliances can use a different method to restrict
access to the terminal.

The framework also uses the DI SP L AY environment variable to further restrict which termi-
nals are listed for a user. By default, terminals are associated with the ":0" display. Sun Ray
terminals are associated with the display for that session, for example ":25". If theDI SP L AY
environment variable is not set or is a display on another host, it is treated as though it were set
to ":0". Terminals not associated with the user’sDI SP L AY are not listed. To override this
behaviour, theSC F_F I L T E R_K E Y environment variable can be set to the desired display, for
example ":0", ":25", and so on. To list all terminals to which a user has access,
SC F_F I L T E R_K E Y can be set to the special value of ":∗ ".

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















sm a r t ca r d(1M), lib sm a r t ca r d(3LIB), SC F_Session_get I n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_T er m in a l_close(3SMARTCARD), a t t r ib u t es(5)

3-132 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

NAME SCF_Terminal_addEventListener, SCF_Terminal_updateEventListener,
SCF_Terminal_removeEventListener – receive asychronous event notification

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_a d d E ven t L ist en er(SC F_T er m in a l_t ter m ina l, SC F_E ven t_t
ev en t s, void(∗ callb ack)(S C F_E v en t_t , S C F_T er m in al_t , v oid ∗), void ∗ u ser Dat a,
SC F_L ist en er H a n d le_t ∗ listener Ha ndle);

SCF_Status_t SCF_Terminal_updateEventListener(SCF_Terminal_t t er m in al,
SC F_L ist en er H a n d le_t listener Ha ndle, SC F_E ven t_t ev ents);

SCF_Status_t SCF_Terminal_removeEventListener(SCF_Terminal_t t er m in al,
SC F_L ist en er H a n d le_t listener Ha ndle);

ter m ina l
A terminal (from SC F_Session_get T er m in a l(3SMARTCARD)) to which the event
listener should be added or removed.

ev ents Events to deliver to the callback. An event will not be delivered if it is not listed.
The caller can register for multiple events by performing a bitwise OR of the
desired events. The valid events are:

SC F_E VE NT_AL L
All of the events listed below will be delivered.

SC F_E VE NT_C AR DI NSE R T E D
A smartcard was inserted into the terminal.

SC F_E VE NT_C AR DR E M O VE D
A smartcard was removed from the terminal.

SC F_E VE NT_C AR DP R E SE NT
Indicates that a card was present in the terminal when the event listener
was first added. This event allows event listeners to determine the initial
state of the terminal before an insert or remove event occurs. Either this
event or the SC F_E VE NT_C AR DABSE NT (see below) event will be delivered
only once upon adding an event listener and immediately before any other events
are delivered. Future card movements will generate
SC F_E VE NT_C AR DI NSE R T E D andSC F_E VE NT_C AR DR E M O VE D events,
but notSC F_E VE NT_C AR DP R E SE NT or SC F_E VE NT_C AR DABSE NT
events. An event listener can assume that if aSC F_E VE NT_C AR DP R E SE NT
event is delivered, the next card movement event will be a
SC F_E VE NT_C AR DR E M O VE D.

SC F_E VE NT_C AR DABSE NT
Indicates that a card was not present in the terminal when the event
listener was first added. This event allows event listeners to determine the
initial state of the terminal before an insert or remove event occurs. Either
this event or the SC F_E VE NT_C AR DP R E SE NT event (see above) will be

modified 28 Feb 2001 Solaris 8 3-133

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

delivered only once upon adding an event listener and immediately before any
other events are delivered. Future card movements will generate
SC F_E VE NT_C AR DI NSE R T E D andSC F_E VE NT_C AR DR E M O VE D events,
but notSC F_E VE NT_C AR DP R E SE NT or SC F_E VE NT_C AR DABSE NT
events. An event listener can assume that if aSC F_E VE NT_C AR DABSE NT
event is delivered, the next card movement event will be a
SC F_E VE NT_C AR DI NSE R T E D.

SC F_E VE NT_C AR DR E SE T
The smartcard currently present has been reset (see
SC F_C a r d_r eset(3SMARTCARD)).

SC F_E VE NT_T E R M I NAL C L O SE D
The terminal is in the process of being closed (due to a call to
SC F_Session_close(3SMARTCARD) orSC F_T er m in a l_close(3SMARTCARD)),
so no further events will be delivered. Theter m ina l argument provided to the
callback will still be valid.

SC F_E VE NT_C O M M E R R O R
The connection to the server has been lost. No further events will be
delivered.

ca llba ck
A function pointer that will be executed when the desired event occurs. The
function must take three arguments. The first is a SC F_E ven t_t containing the
event that occured. The second argument is anSC F_T er m in a l_t containing the terminal
on which the event occured. The third is avoid ∗ that can be used to provide arbitrary
data to theca llba ck when it is executed.

user Da ta
A pointer to arbitrary user data. The data is not accessed by the library. The
pointer is simply provided to the callback when an event is issued. This argu-
ment can safely be set to N UL L if not needed. The callback must be able to handle
this case.

listener Ha ndle
A unique "key" that is provided by SC F_T er m in a l_a d d E ven t L ist en er () to refer to a
specific event listener registration. This allows multiple event listeners to be selectivly
updated or removed.

These functions allow an application to receive notification of events on a terminal as
they occur. The concept is similar to a signal handler. When an event occurs, a thread
in the SCF library will execute the provided ca llba ck function. Once added, the listener will
receive events until it is removed or either the terminal or session is closed.

When the callback function is executed, the callback arguments specify the event that
occured and the terminal on which it occurred. Additionally, each callback will
receive the user Da ta pointer that was provided when the listener was added. The library does
not make a copy of the memory pointed to byuser Da ta, so applications must take care not to

3-134 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

deallocate that memory until it is known that the callback will no longer access it (for example,
by removing the event listener). Each invocation of the callback will be for exactly one event.
If the library needs to deliver multiple events, they will be dispatched one at a time. Because
the callback is executed from a thread, any operations it performs must be thread safe. For each
callback registration, the library creates a new thread to deliver events to that callback. The call-
back is expected to perform minimal work and return quickly.

An application can add multiple callbacks on a terminal. Any event that occurs will be
delivered to all listeners that registered for that event type. The same callback can be
registered multiple times. Each call to SC F_T er m in a l_a d d E ven t L ist en er () will result in a
new SC F_L ist en er H a n d le_t. The events a callback receives can be changed by calling
SC F_Session_u p d a t eE ven t L ist en er () with the handle that was returned when the listener was
initially added. If the listener is set to receive no events (that is, the events parameter has no
bits set), the listener will remain registered but will not receive any events. To remove a listener
and release allocated resources, useSC F_T er m in a l_r em oveE ven t L ist en er () or close the termi-
nal.

If the event listener was successfully added or removed, SC F_ST AT US_SUC C E SS is
returned. Otherwise, an error value is returned and the internal list of registered event listeners
remains unaltered.

These functions will fail if:

SC F_ST AT US_BADAR G S
The callback function pointer and/or listener Ha ndle is null, or an unknown event
was specified.

SC F_ST AT US_BADH ANDL E
The specified terminal has been closed or is invalid, or the event listener handle
could not be found to update or remove.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_F AI L E D
An internal error occurred.

E xa m p le 1: R egist er for ca r d m ovem en t s.

struct myState_t {
int isStateKnown;
int isCardPresent;

};

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {
struct myState_t ∗ state = data;
if (event == SCF_EVENT_CARDINSERTED) {

printf("--- Card inserted ---\n");
state->isCardPresent = 1;

modified 28 Feb 2001 Solaris 8 3-135

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

}
else if (event == SCF_EVENT_CARDREMOVED) {

printf("--- Card removed ---\n");
state->isCardPresent = 0;

}
state->isStateKnown = 1;

}

main() {
SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;
struct myState_t myState;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

myState.isStateKnown = 0;
status = SCF_Terminal_addEventListener(myTerminal,

SCF_EVENT_CARDINSERTED|SCF_EVENT_CARDREMOVED, &myCallback,
&myState, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

while(1) {
if (!myState.isStateKnown)

printf("Waiting for first event...\n");
else {

if (myState.isCardPresent)
printf("Card is present.\n");

else
printf("Card is not present.\n");

}
sleep(1);

}
}
E xa m p le 2: Use d iffer en t ca llb a ck s for ea ch even t .

void myInsertCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {

/∗ ... ∗ /
}

void myRemoveCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {
/∗ ... ∗ /

}

3-136 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

main () {
SCF_Status_t status;
SCF_Terminal_t terminal;
SCF_ListenerHandle_t myListener1, myListener2, myListener3;
int foo, bar;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDINSERTED, &myInsertCallback, &foo,
&myListener1);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &foo,
&myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &bar,
&myListener3);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ At this point, when each insertion occurs, myInsertCallback
∗ will be called once (with a pointer to foo). When each removal
∗ occurs, myRemoveCallback will be called twice. One call will
∗ be given a pointer to foo, and the other will be given a
∗ pointer to bar.
∗ /

status = SCF_Terminal_removeEventListener(myTerminal,
myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ Now, when a removal occurs, myRemoveCallback will only be
∗ called once, with a pointer to bar.
∗ /

/∗ ... ∗ /
}
E xa m p le 3: Use in it ia l st a t e even t s t o sh ow u ser t h e t er m in a l st a t e in a G UI .

modified 28 Feb 2001 Solaris 8 3-137

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ unused) {
if (event == SCF_EVENT_CARDPRESENT) {

/∗ Set initial icon to a terminal with a card present. ∗ /
}
else if (event == SCF_EVENT_CARDABSENT) {

/∗ Set initial icon to a terminal without a card present. ∗ /
}
else if (event == SCF_EVENT_CARDINSERTED) {

/∗ Show animation for card being inserted into a terminal. ∗ /
}
else if (event == SCF_EVENT_CARDREMOVED) {

/∗ Show animation for card being removed from a terminal. ∗ /
}

}

main() {
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_ALL, &myCallback, NULL, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ ... ∗ /
}

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_C a r d_r eset(3SMARTCARD), SC F_Session_close(3SMARTCARD),
SC F_Session_get T er m in a l(3SMARTCARD),
SC F_Session_u p d a t eE ven t L ist en er(3SMARTCARD), SC F_T er m in a l_close(3SMARTCARD),
SC F_T er m in a l_r em oveE ven t L ist en er(3SMARTCARD), a t t r ib u t es(5)

3-138 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_close (3SMARTCARD)

NAME SCF_Session_close, SCF_Terminal_close, SCF_Card_close – close a smartcard session,
terminal, or card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_close(SC F_Session_t session);

SC F_St a t u s_t SC F_T er m in a l_close(SC F_T er m in a l_t ter m ina l);

SC F_St a t u s_t SC F_C a r d_close(SC F_C a r d_t ca r d);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD)

session
An object that was returned from SC F_Session_get Session(3SMARTCARD)

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD)

These functions release the resources (memory, threads, and others) that were allocated
within the library when the session, terminal, or card was opened. Any storage allo-
cated by calls to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD) is deallocated
when the associated object is closed. Attempts to access results from these interfaces after the
object has been closed results in undefined behavior.

If a card that was locked by SC F_C a r d_lock(3SMARTCARD) is closed, the lock is automat-
ically released. When a terminal is closed, any event listeners on that terminal object are
removed and any cards that were obtained with the terminal are closed. Similarly, closing a
session will close any terminals or cards obtained with that session. These are the only cases
where the library will automatically perform a close.

Once closed, a session, terminal, or card object can no longer be used by an SCF func-
tion. Any attempt to do so results in an SC F_ST AT US_BADH ANDL E error. The sole
exception is that closing an object, even if already closed, is always a successful operation.

Closing a handle is always a successful operation that returns SC F_ST AT US_SUC C E SS.
The library can safely detect handles that are invalid or already closed.

E xa m p le 1: C lose ea ch ob j ect exp licit ly.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);

modified 14 May 2002 Solaris 8 3-139

SCF_Session_close (3SMARTCARD) Misc. Reference Manual Pages

if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (Do interesting things with smartcard...) ∗ /

SCF_Card_close(myCard);
SCF_Terminal_close(myTerminal);
SCF_Session_close(mySession);

E xa m p le 2: Allow t h e lib r a r y t o close ob j ect s.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (Do interesting things with smartcard...) ∗ /

SCF_Session_close(mySession);
/∗ myTerminal and myCard have been closed by the library.∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_C a r d_get I n fo(3SMARTCARD), SC F_C a r d_lock(3SMARTCARD),
SC F_Session_get I n fo(3SMARTCARD), SC F_Session_get Session(3SMARTCARD),
SC F_Session_get T er m in a l(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), a t t r ib u t es(5)

3-140 Solaris 8 modified 14 May 2002

Misc. Reference Manual Pages SCF_Session_freeInfo (3SMARTCARD)

NAME SCF_Session_freeInfo, SCF_Terminal_freeInfo, SCF_Card_freeInfo – deallocate informa-
tion storage

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_fr eeI n fo(SC F_Session_t session, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_fr eeI n fo(SC F_T er m in a l_t ter m ina l, void ∗ v a lue);

SC F_St a t u s_t SC F_C a r d_fr eeI n fo(SC F_C a r d_t ca r d, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD). This
object must be associated with the information value being freed.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD). This
object must be associated with the information value being freed.

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD). This
object must be associated with the information value being freed.

v a lue A pointer that was returned from a call to SC F_Session_get I n fo(3SMARTCARD),
SC F_T er m in a l_get I n fo(3SMARTCARD), orSC F_C a r d_get I n fo(3SMARTCARD).

When information is requested for an object (for example, by using
SC F_Session_get I n fo()), the result is placed in memory allocated for that request. This memory
must eventually be deallocated, or a memory leak will result. The deallocation of memory can
occur in one of two ways.

• The simplest method is to allow the sm a r t ca r d library to automatically deallocate
memory when the object associated with the information is closed. For example, when
SC F_C a r d_close(3SMARTCARD) is called, any information obtained from
SC F_C a r d_get I n fo() for that card object is deallocated. The application is not required
to call SC F_C a r d_fr eeI n fo() at all.

• If the object persists for a long period of time, the application can explicitly
request the information to be deallocated without closing the object, so that
memory is not wasted on unneeded storage. Similarly, if an application repeat-
edly requests information about an object (even the same information), the
application can explicitly request deallocation as needed, so that memory usage
does not continue to increase until the object is closed. In general, requesting
information to be deallocated can be used to reduce runtime memory bloat.

Attempts to access deallocated memory result in undefined behavior.

If the information is successfully deallocated, SC F_ST AT US_SUC C E SS is returned. Other-
wise, an error value is returned.

modified 28 Feb 2001 Solaris 8 3-141

SCF_Session_freeInfo (3SMARTCARD) Misc. Reference Manual Pages

These functions will fail if:

SC F_ST AT US_BADAR G S
The specified value cannot be deallocated, possibly because of an invalid
pointer, a value already deallocated, or because the value is not associated with
the specified session, terminal, or card.

SC F_ST AT US_BADH ANDL E
The specified session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: F r ee in for m a t ion .

char ∗ terminalName;
SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The terminal name is %s\n", terminalName);

status = SCF_Terminal_freeInfo(myTerminal, terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_get I n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

3-142 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_getCard (3SMARTCARD)

NAME SCF_Terminal_getCard – establish a context with a smartcard

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_get C a r d(SC F_T er m in a l_t ter m ina l, SC F_C a r d_t ∗ ca r d);

ca r d A pointer to a SC F_C a r d_t. If the smartcard is successfully opened, a handle for the
card will be returned through this parameter.

ter m ina l
The terminal (from SC F_Session_get T er m in a l(3SMARTCARD)) containing a
smartcard to open.

The SC F_T er m in a l_get C a r d () function establishes a context with a specific smartcard in a ter-
minal. Card objects can be used to send APDUs (Application Protocol Data Units) to the card
with SC F_C a r d_exch a n geAP DU(3SMARTCARD). When the card is no longer needed,
SC F_C a r d_close(3SMARTCARD) should be called to release allocated resources.

If SC F_T er m in a l_get C a r d () is called multiple times in the same session to access the same
physical card (while the card remains inserted), the sameSC F_C a r d_t will be returned in each
call. The library cannot identifty specific cards, so when a card is reinserted it will be
represented by a newSC F_C a r d_t. Multithreaded applications must take care to avoid having
one thread close a card that is still needed by another thread. This can be accomplished by
coordination within the application, or by having each thread open a seperate session to avoid
interference.

If a working card is present in the reader, SC F_ST AT US_SUC C E SS is returned andca r d
is a valid reference to the card. Otherwise, an error value is returned and card remains unal-
tered.

The SC F_T er m in a l_get C a r d () function will fail if:

SC F_ST AT US_BADAR G S
The ca r d argument is a null pointer.

SC F_ST AT US_BADH ANDL E
The specified terminal has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occured.

SC F_ST AT US_NO C AR D
No card is present in the terminal.

E xa m p le 1: Access a sm a r t ca r d .

SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

modified 28 Feb 2001 Solaris 8 3-143

SCF_Terminal_getCard (3SMARTCARD) Misc. Reference Manual Pages

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status == SCF_STATUS_NOCARD) {

printf("Please insert your smartcard and try again.\n");
exit(0);

}
else if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ (...go on to use the card with SCF_Card_exchangeAPDU()...) ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_C a r d_close(3SMARTCARD),
SC F_C a r d_exch a n geAP DU(3SMARTCARD), SC F_C a r d_get I n fo(3SMARTCARD),
SC F_C a r d_lock(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD), a t t r ib u t es(5)

3-144 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getInfo (3SMARTCARD)

NAME SCF_Session_getInfo, SCF_Terminal_getInfo, SCF_Card_getInfo – retrieve information
about a session, terminal, or card

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_Session_get I n fo(SC F_Session_t session, con st ch a r ∗ na m e, void ∗ v a lue);

SC F_St a t u s_t SC F_T er m in a l_get I n fo(SC F_T er m in a l_t ter m ina l, con st ch a r ∗ na m e, void
∗ v a lue);

SC F_St a t u s_t SC F_C a r d_get I n fo(SC F_C a r d_t ca r d, con st ch a r ∗ na m e, void ∗ v a lue);

ca r d An object that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD).

na m e The name of a property for which a value is to be returned. The name is case-
sensitive.

session
An object that was returned from SC F_Session_get Session(3SMARTCARD).

ter m ina l
An object that was returned from SC F_Session_get T er m in a l(3SMARTCARD).

v a lue The value of the property. The actual type of the value depends on what pro-
perty was being queried.

These functions obtain information about a session, terminal, or card. The information
returned represents the current state of the object and can change between calls.

Each call allocates new storage for the returned result. This storage is tracked inter-
nally and is deallocated when the object is closed. An application repeatedly asking for
information can cause memory bloat until the object is closed. The application can
optionally call SC F_Session_fr eeI n fo(3SMARTCARD),
SC F_T er m in a l_fr eeI n fo(3SMARTCARD), orSC F_C a r d_fr eeI n fo(3SMARTCARD) to cause
immediate deallocation of the value. Applications must not use other means such asfr ee(3C) to
deallocate the memory.

Applications must not access values that have been deallocated. For example, access-
ing a Card’s ATR after the card has been closed results in undefined behavior.

For a session, the valid property names and value types are:

ter m ina lna m es (pointer toch a r ∗∗)
The list of terminal names that can currently be used in this session. The
returned value is an array of ch a r ∗ , each element of the list is a pointer to a termi-
nal name. The end of the array is denoted by a null pointer. The first element of the list
is the default terminal for the session, which will be used when
SC F_Session_get T er m in a l() is called with a null pointer for the terminal name.

For a terminal, the standard property names and value types are as follows. Some ter-
minal drivers can define additional driver-specific properties.

na m e (pointer toch a r ∗)

modified 28 Feb 2001 Solaris 8 3-145

SCF_Session_getInfo (3SMARTCARD) Misc. Reference Manual Pages

The name of the terminal. If the default terminal was used (a null pointer was
passed to SC F_Session_get T er m in a l()), the value will contain the actual name of the
default terminal. For example, "MyInternalCardReader".

ty pe (pointer toch a r ∗)
The type of the terminal. For example, "SunISCRI".

dev na m e (pointer toch a r ∗)
Information about how the device is attached to the system. This can be a
UNIX device name (for example, "/dev/scmi2c0") or some other terminal-
specific string describing its relation to the system.

For a card, the valid property names and value types are:

ty pe (pointer toch a r ∗)
The type of the smartcard, as recognized by the framework (For example,
"Cyberflex"). If the framework does not recognize the card type, "Unknown-
Card" is returned.

a tr (pointer tost r u ct SC F_Bin a r yDa t a_t ∗)
The Answer To Reset (ATR) data returned by the card when it was last inserted
or reset. The structure member len gt h denotes how many bytes are in the ATR. The
structure memberd a t a is a pointer to the actual ATR bytes.

Upon success, SC F_ST AT US_SUC C E SS is returned andv a lue will contain the the requested
information. Otherwise, an error value is returned andv a lue remains unaltered.

These functions will fail if:

SC F_ST AT US_BADAR G S
Either na m e or v a lue is a null pointer.

SC F_ST AT US_BADH ANDL E
The session, terminal, or card has been closed or is invalid.

SC F_ST AT US_F AI L E D
An internal error occurred.

SC F_ST AT US_UNK NO W NP R O P E R T Y
The property specified by na m e was not found.

E xa m p le 1: Sim p le st r in g in for m a t ion .

SCF_Status_t status;
SCF_Terminal_t myTerminal;
const char ∗ myName, ∗ myType;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getInfo(myTerminal, "name", &myName);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getInfo(myTerminal, "type", &myType);
if (status != SCF_STATUS_SUCCESS) exit(1);

3-146 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Session_getInfo (3SMARTCARD)

printf("The terminal called %s is a %s\n", myName, myType);

E xa m p le 2: Disp la y t h e n a m es of a ll t er m in a ls a va ila b le in t h e session .

SCF_Status_t status;
SCF_Session_t mySession;
const char ∗∗ myList; /∗ Technically "const char ∗ const ∗ ". ∗ /
int i;

/∗ (...call SCF_Session_getSession to open mySession...) ∗ /

status = SCF_Session_getInfo(mySession, "terminalnames", &myList);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The following terminals are available:\n");
for (i=0; myList[i] != NULL; i++) {

printf("%d: %s\n", i, myList[i]);
}
E xa m p le 3: Disp la y t h e ca r d ’s AT R .

SCF_Status_t status;
SCF_Card_t myCard;
struct SCF_BinaryData_t ∗ myATR;
int i;

/∗ (...call SCF_Terminal_getCard to open myCard...) ∗ /

status = SCF_Card_getInfo(myCard, "atr", &myATR);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The card’s ATR is: 0x");
for(i=0; i < myATR->length; i++) {

printf("%02.2x", myATR->data[i]);
}
printf("\n");

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_fr eeI n fo(3SMARTCARD),
SC F_Session_get Session(3SMARTCARD), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_get C a r d(3SMARTCARD), a t t r ib u t es(5)

modified 28 Feb 2001 Solaris 8 3-147

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

NAME SCF_Terminal_addEventListener, SCF_Terminal_updateEventListener,
SCF_Terminal_removeEventListener – receive asychronous event notification

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_a d d E ven t L ist en er(SC F_T er m in a l_t ter m ina l, SC F_E ven t_t
ev en t s, void(∗ callb ack)(S C F_E v en t_t , S C F_T er m in al_t , v oid ∗), void ∗ u ser Dat a,
SC F_L ist en er H a n d le_t ∗ listener Ha ndle);

SCF_Status_t SCF_Terminal_updateEventListener(SCF_Terminal_t t er m in al,
SC F_L ist en er H a n d le_t listener Ha ndle, SC F_E ven t_t ev ents);

SCF_Status_t SCF_Terminal_removeEventListener(SCF_Terminal_t t er m in al,
SC F_L ist en er H a n d le_t listener Ha ndle);

ter m ina l
A terminal (from SC F_Session_get T er m in a l(3SMARTCARD)) to which the event
listener should be added or removed.

ev ents Events to deliver to the callback. An event will not be delivered if it is not listed.
The caller can register for multiple events by performing a bitwise OR of the
desired events. The valid events are:

SC F_E VE NT_AL L
All of the events listed below will be delivered.

SC F_E VE NT_C AR DI NSE R T E D
A smartcard was inserted into the terminal.

SC F_E VE NT_C AR DR E M O VE D
A smartcard was removed from the terminal.

SC F_E VE NT_C AR DP R E SE NT
Indicates that a card was present in the terminal when the event listener
was first added. This event allows event listeners to determine the initial
state of the terminal before an insert or remove event occurs. Either this
event or the SC F_E VE NT_C AR DABSE NT (see below) event will be delivered
only once upon adding an event listener and immediately before any other events
are delivered. Future card movements will generate
SC F_E VE NT_C AR DI NSE R T E D andSC F_E VE NT_C AR DR E M O VE D events,
but notSC F_E VE NT_C AR DP R E SE NT or SC F_E VE NT_C AR DABSE NT
events. An event listener can assume that if aSC F_E VE NT_C AR DP R E SE NT
event is delivered, the next card movement event will be a
SC F_E VE NT_C AR DR E M O VE D.

SC F_E VE NT_C AR DABSE NT
Indicates that a card was not present in the terminal when the event
listener was first added. This event allows event listeners to determine the
initial state of the terminal before an insert or remove event occurs. Either
this event or the SC F_E VE NT_C AR DP R E SE NT event (see above) will be

3-148 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

delivered only once upon adding an event listener and immediately before any
other events are delivered. Future card movements will generate
SC F_E VE NT_C AR DI NSE R T E D andSC F_E VE NT_C AR DR E M O VE D events,
but notSC F_E VE NT_C AR DP R E SE NT or SC F_E VE NT_C AR DABSE NT
events. An event listener can assume that if aSC F_E VE NT_C AR DABSE NT
event is delivered, the next card movement event will be a
SC F_E VE NT_C AR DI NSE R T E D.

SC F_E VE NT_C AR DR E SE T
The smartcard currently present has been reset (see
SC F_C a r d_r eset(3SMARTCARD)).

SC F_E VE NT_T E R M I NAL C L O SE D
The terminal is in the process of being closed (due to a call to
SC F_Session_close(3SMARTCARD) orSC F_T er m in a l_close(3SMARTCARD)),
so no further events will be delivered. Theter m ina l argument provided to the
callback will still be valid.

SC F_E VE NT_C O M M E R R O R
The connection to the server has been lost. No further events will be
delivered.

ca llba ck
A function pointer that will be executed when the desired event occurs. The
function must take three arguments. The first is a SC F_E ven t_t containing the
event that occured. The second argument is anSC F_T er m in a l_t containing the terminal
on which the event occured. The third is avoid ∗ that can be used to provide arbitrary
data to theca llba ck when it is executed.

user Da ta
A pointer to arbitrary user data. The data is not accessed by the library. The
pointer is simply provided to the callback when an event is issued. This argu-
ment can safely be set to N UL L if not needed. The callback must be able to handle
this case.

listener Ha ndle
A unique "key" that is provided by SC F_T er m in a l_a d d E ven t L ist en er () to refer to a
specific event listener registration. This allows multiple event listeners to be selectivly
updated or removed.

These functions allow an application to receive notification of events on a terminal as
they occur. The concept is similar to a signal handler. When an event occurs, a thread
in the SCF library will execute the provided ca llba ck function. Once added, the listener will
receive events until it is removed or either the terminal or session is closed.

When the callback function is executed, the callback arguments specify the event that
occured and the terminal on which it occurred. Additionally, each callback will
receive the user Da ta pointer that was provided when the listener was added. The library does
not make a copy of the memory pointed to byuser Da ta, so applications must take care not to

modified 28 Feb 2001 Solaris 8 3-149

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

deallocate that memory until it is known that the callback will no longer access it (for example,
by removing the event listener). Each invocation of the callback will be for exactly one event.
If the library needs to deliver multiple events, they will be dispatched one at a time. Because
the callback is executed from a thread, any operations it performs must be thread safe. For each
callback registration, the library creates a new thread to deliver events to that callback. The call-
back is expected to perform minimal work and return quickly.

An application can add multiple callbacks on a terminal. Any event that occurs will be
delivered to all listeners that registered for that event type. The same callback can be
registered multiple times. Each call to SC F_T er m in a l_a d d E ven t L ist en er () will result in a
new SC F_L ist en er H a n d le_t. The events a callback receives can be changed by calling
SC F_Session_u p d a t eE ven t L ist en er () with the handle that was returned when the listener was
initially added. If the listener is set to receive no events (that is, the events parameter has no
bits set), the listener will remain registered but will not receive any events. To remove a listener
and release allocated resources, useSC F_T er m in a l_r em oveE ven t L ist en er () or close the termi-
nal.

If the event listener was successfully added or removed, SC F_ST AT US_SUC C E SS is
returned. Otherwise, an error value is returned and the internal list of registered event listeners
remains unaltered.

These functions will fail if:

SC F_ST AT US_BADAR G S
The callback function pointer and/or listener Ha ndle is null, or an unknown event
was specified.

SC F_ST AT US_BADH ANDL E
The specified terminal has been closed or is invalid, or the event listener handle
could not be found to update or remove.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_F AI L E D
An internal error occurred.

E xa m p le 1: R egist er for ca r d m ovem en t s.

struct myState_t {
int isStateKnown;
int isCardPresent;

};

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {
struct myState_t ∗ state = data;
if (event == SCF_EVENT_CARDINSERTED) {

printf("--- Card inserted ---\n");
state->isCardPresent = 1;

3-150 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

}
else if (event == SCF_EVENT_CARDREMOVED) {

printf("--- Card removed ---\n");
state->isCardPresent = 0;

}
state->isStateKnown = 1;

}

main() {
SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;
struct myState_t myState;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

myState.isStateKnown = 0;
status = SCF_Terminal_addEventListener(myTerminal,

SCF_EVENT_CARDINSERTED|SCF_EVENT_CARDREMOVED, &myCallback,
&myState, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

while(1) {
if (!myState.isStateKnown)

printf("Waiting for first event...\n");
else {

if (myState.isCardPresent)
printf("Card is present.\n");

else
printf("Card is not present.\n");

}
sleep(1);

}
}
E xa m p le 2: Use d iffer en t ca llb a ck s for ea ch even t .

void myInsertCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {

/∗ ... ∗ /
}

void myRemoveCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {
/∗ ... ∗ /

}

modified 28 Feb 2001 Solaris 8 3-151

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

main () {
SCF_Status_t status;
SCF_Terminal_t terminal;
SCF_ListenerHandle_t myListener1, myListener2, myListener3;
int foo, bar;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDINSERTED, &myInsertCallback, &foo,
&myListener1);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &foo,
&myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &bar,
&myListener3);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ At this point, when each insertion occurs, myInsertCallback
∗ will be called once (with a pointer to foo). When each removal
∗ occurs, myRemoveCallback will be called twice. One call will
∗ be given a pointer to foo, and the other will be given a
∗ pointer to bar.
∗ /

status = SCF_Terminal_removeEventListener(myTerminal,
myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ Now, when a removal occurs, myRemoveCallback will only be
∗ called once, with a pointer to bar.
∗ /

/∗ ... ∗ /
}
E xa m p le 3: Use in it ia l st a t e even t s t o sh ow u ser t h e t er m in a l st a t e in a G UI .

3-152 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ unused) {
if (event == SCF_EVENT_CARDPRESENT) {

/∗ Set initial icon to a terminal with a card present. ∗ /
}
else if (event == SCF_EVENT_CARDABSENT) {

/∗ Set initial icon to a terminal without a card present. ∗ /
}
else if (event == SCF_EVENT_CARDINSERTED) {

/∗ Show animation for card being inserted into a terminal. ∗ /
}
else if (event == SCF_EVENT_CARDREMOVED) {

/∗ Show animation for card being removed from a terminal. ∗ /
}

}

main() {
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_ALL, &myCallback, NULL, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ ... ∗ /
}

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_C a r d_r eset(3SMARTCARD), SC F_Session_close(3SMARTCARD),
SC F_Session_get T er m in a l(3SMARTCARD),
SC F_Session_u p d a t eE ven t L ist en er(3SMARTCARD), SC F_T er m in a l_close(3SMARTCARD),
SC F_T er m in a l_r em oveE ven t L ist en er(3SMARTCARD), a t t r ib u t es(5)

modified 28 Feb 2001 Solaris 8 3-153

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

NAME SCF_Terminal_addEventListener, SCF_Terminal_updateEventListener,
SCF_Terminal_removeEventListener – receive asychronous event notification

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_a d d E ven t L ist en er(SC F_T er m in a l_t ter m ina l, SC F_E ven t_t
ev en t s, void(∗ callb ack)(S C F_E v en t_t , S C F_T er m in al_t , v oid ∗), void ∗ u ser Dat a,
SC F_L ist en er H a n d le_t ∗ listener Ha ndle);

SCF_Status_t SCF_Terminal_updateEventListener(SCF_Terminal_t t er m in al,
SC F_L ist en er H a n d le_t listener Ha ndle, SC F_E ven t_t ev ents);

SCF_Status_t SCF_Terminal_removeEventListener(SCF_Terminal_t t er m in al,
SC F_L ist en er H a n d le_t listener Ha ndle);

ter m ina l
A terminal (from SC F_Session_get T er m in a l(3SMARTCARD)) to which the event
listener should be added or removed.

ev ents Events to deliver to the callback. An event will not be delivered if it is not listed.
The caller can register for multiple events by performing a bitwise OR of the
desired events. The valid events are:

SC F_E VE NT_AL L
All of the events listed below will be delivered.

SC F_E VE NT_C AR DI NSE R T E D
A smartcard was inserted into the terminal.

SC F_E VE NT_C AR DR E M O VE D
A smartcard was removed from the terminal.

SC F_E VE NT_C AR DP R E SE NT
Indicates that a card was present in the terminal when the event listener
was first added. This event allows event listeners to determine the initial
state of the terminal before an insert or remove event occurs. Either this
event or the SC F_E VE NT_C AR DABSE NT (see below) event will be delivered
only once upon adding an event listener and immediately before any other events
are delivered. Future card movements will generate
SC F_E VE NT_C AR DI NSE R T E D andSC F_E VE NT_C AR DR E M O VE D events,
but notSC F_E VE NT_C AR DP R E SE NT or SC F_E VE NT_C AR DABSE NT
events. An event listener can assume that if aSC F_E VE NT_C AR DP R E SE NT
event is delivered, the next card movement event will be a
SC F_E VE NT_C AR DR E M O VE D.

SC F_E VE NT_C AR DABSE NT
Indicates that a card was not present in the terminal when the event
listener was first added. This event allows event listeners to determine the
initial state of the terminal before an insert or remove event occurs. Either
this event or the SC F_E VE NT_C AR DP R E SE NT event (see above) will be

3-154 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

delivered only once upon adding an event listener and immediately before any
other events are delivered. Future card movements will generate
SC F_E VE NT_C AR DI NSE R T E D andSC F_E VE NT_C AR DR E M O VE D events,
but notSC F_E VE NT_C AR DP R E SE NT or SC F_E VE NT_C AR DABSE NT
events. An event listener can assume that if aSC F_E VE NT_C AR DABSE NT
event is delivered, the next card movement event will be a
SC F_E VE NT_C AR DI NSE R T E D.

SC F_E VE NT_C AR DR E SE T
The smartcard currently present has been reset (see
SC F_C a r d_r eset(3SMARTCARD)).

SC F_E VE NT_T E R M I NAL C L O SE D
The terminal is in the process of being closed (due to a call to
SC F_Session_close(3SMARTCARD) orSC F_T er m in a l_close(3SMARTCARD)),
so no further events will be delivered. Theter m ina l argument provided to the
callback will still be valid.

SC F_E VE NT_C O M M E R R O R
The connection to the server has been lost. No further events will be
delivered.

ca llba ck
A function pointer that will be executed when the desired event occurs. The
function must take three arguments. The first is a SC F_E ven t_t containing the
event that occured. The second argument is anSC F_T er m in a l_t containing the terminal
on which the event occured. The third is avoid ∗ that can be used to provide arbitrary
data to theca llba ck when it is executed.

user Da ta
A pointer to arbitrary user data. The data is not accessed by the library. The
pointer is simply provided to the callback when an event is issued. This argu-
ment can safely be set to N UL L if not needed. The callback must be able to handle
this case.

listener Ha ndle
A unique "key" that is provided by SC F_T er m in a l_a d d E ven t L ist en er () to refer to a
specific event listener registration. This allows multiple event listeners to be selectivly
updated or removed.

These functions allow an application to receive notification of events on a terminal as
they occur. The concept is similar to a signal handler. When an event occurs, a thread
in the SCF library will execute the provided ca llba ck function. Once added, the listener will
receive events until it is removed or either the terminal or session is closed.

When the callback function is executed, the callback arguments specify the event that
occured and the terminal on which it occurred. Additionally, each callback will
receive the user Da ta pointer that was provided when the listener was added. The library does
not make a copy of the memory pointed to byuser Da ta, so applications must take care not to

modified 28 Feb 2001 Solaris 8 3-155

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

deallocate that memory until it is known that the callback will no longer access it (for example,
by removing the event listener). Each invocation of the callback will be for exactly one event.
If the library needs to deliver multiple events, they will be dispatched one at a time. Because
the callback is executed from a thread, any operations it performs must be thread safe. For each
callback registration, the library creates a new thread to deliver events to that callback. The call-
back is expected to perform minimal work and return quickly.

An application can add multiple callbacks on a terminal. Any event that occurs will be
delivered to all listeners that registered for that event type. The same callback can be
registered multiple times. Each call to SC F_T er m in a l_a d d E ven t L ist en er () will result in a
new SC F_L ist en er H a n d le_t. The events a callback receives can be changed by calling
SC F_Session_u p d a t eE ven t L ist en er () with the handle that was returned when the listener was
initially added. If the listener is set to receive no events (that is, the events parameter has no
bits set), the listener will remain registered but will not receive any events. To remove a listener
and release allocated resources, useSC F_T er m in a l_r em oveE ven t L ist en er () or close the termi-
nal.

If the event listener was successfully added or removed, SC F_ST AT US_SUC C E SS is
returned. Otherwise, an error value is returned and the internal list of registered event listeners
remains unaltered.

These functions will fail if:

SC F_ST AT US_BADAR G S
The callback function pointer and/or listener Ha ndle is null, or an unknown event
was specified.

SC F_ST AT US_BADH ANDL E
The specified terminal has been closed or is invalid, or the event listener handle
could not be found to update or remove.

SC F_ST AT US_C O M M E R R O R
The connection to the server was lost.

SC F_ST AT US_F AI L E D
An internal error occurred.

E xa m p le 1: R egist er for ca r d m ovem en t s.

struct myState_t {
int isStateKnown;
int isCardPresent;

};

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {
struct myState_t ∗ state = data;
if (event == SCF_EVENT_CARDINSERTED) {

printf("--- Card inserted ---\n");
state->isCardPresent = 1;

3-156 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

}
else if (event == SCF_EVENT_CARDREMOVED) {

printf("--- Card removed ---\n");
state->isCardPresent = 0;

}
state->isStateKnown = 1;

}

main() {
SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;
struct myState_t myState;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

myState.isStateKnown = 0;
status = SCF_Terminal_addEventListener(myTerminal,

SCF_EVENT_CARDINSERTED|SCF_EVENT_CARDREMOVED, &myCallback,
&myState, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

while(1) {
if (!myState.isStateKnown)

printf("Waiting for first event...\n");
else {

if (myState.isCardPresent)
printf("Card is present.\n");

else
printf("Card is not present.\n");

}
sleep(1);

}
}
E xa m p le 2: Use d iffer en t ca llb a ck s for ea ch even t .

void myInsertCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {

/∗ ... ∗ /
}

void myRemoveCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ data) {
/∗ ... ∗ /

}

modified 28 Feb 2001 Solaris 8 3-157

SCF_Terminal_addEventListener (3SMARTCARD) Misc. Reference Manual Pages

main () {
SCF_Status_t status;
SCF_Terminal_t terminal;
SCF_ListenerHandle_t myListener1, myListener2, myListener3;
int foo, bar;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDINSERTED, &myInsertCallback, &foo,
&myListener1);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &foo,
&myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &bar,
&myListener3);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ At this point, when each insertion occurs, myInsertCallback
∗ will be called once (with a pointer to foo). When each removal
∗ occurs, myRemoveCallback will be called twice. One call will
∗ be given a pointer to foo, and the other will be given a
∗ pointer to bar.
∗ /

status = SCF_Terminal_removeEventListener(myTerminal,
myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ Now, when a removal occurs, myRemoveCallback will only be
∗ called once, with a pointer to bar.
∗ /

/∗ ... ∗ /
}
E xa m p le 3: Use in it ia l st a t e even t s t o sh ow u ser t h e t er m in a l st a t e in a G UI .

3-158 Solaris 8 modified 28 Feb 2001

Misc. Reference Manual Pages SCF_Terminal_addEventListener (3SMARTCARD)

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void ∗ unused) {
if (event == SCF_EVENT_CARDPRESENT) {

/∗ Set initial icon to a terminal with a card present. ∗ /
}
else if (event == SCF_EVENT_CARDABSENT) {

/∗ Set initial icon to a terminal without a card present. ∗ /
}
else if (event == SCF_EVENT_CARDINSERTED) {

/∗ Show animation for card being inserted into a terminal. ∗ /
}
else if (event == SCF_EVENT_CARDREMOVED) {

/∗ Show animation for card being removed from a terminal. ∗ /
}

}

main() {
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_ALL, &myCallback, NULL, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

/∗ ... ∗ /
}

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_C a r d_r eset(3SMARTCARD), SC F_Session_close(3SMARTCARD),
SC F_Session_get T er m in a l(3SMARTCARD),
SC F_Session_u p d a t eE ven t L ist en er(3SMARTCARD), SC F_T er m in a l_close(3SMARTCARD),
SC F_T er m in a l_r em oveE ven t L ist en er(3SMARTCARD), a t t r ib u t es(5)

modified 28 Feb 2001 Solaris 8 3-159

SCF_Terminal_waitForCardPresent (3SMARTCARD) Misc. Reference Manual Pages

NAME SCF_Terminal_waitForCardPresent, SCF_Terminal_waitForCardAbsent,
SCF_Card_waitForCardRemoved – wait for a card to be inserted or removed

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_wa it F or C a r d P r esen t(SC F_T er m in a l_t ter m ina l, u n sign ed in t
tim eout);

SC F_St a t u s_t SC F_T er m in a l_wa it F or C a r d Ab sen t(SC F_T er m in a l_t ter m ina l, u n sign ed in t
tim eout);

SC F_St a t u s_t SC F_C a r d_wa it F or C a r d R em oved(SC F_C a r d_t ca r d, u n sign ed in t tim eout);

ca r d A card that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD).

ter m ina l
A terminal that was returned from SC F_Session_get T er m in a l(3SMARTCARD).

tim eout
The maximum number or seconds to wait for the desired state to be reached. If
the timeout is 0, the function will immediately return SC F_ST AT US_T I M E O UT if
the terminal or card is not in the desired state. A timeout ofSC F_T I M E O UT_M AX can
be specified to indicate that the function should never timeout.

These functions determine if a card is currently available in the specified terminal.

The SC F_C a r d_wa it F or C a r d R em oved () function differs from
SC F_T er m in a l_wa it F or C a r d Ab sen t () in that it checks to see if a specific card has been
removed. If another card (or even the same card) has since been reinserted,
SC F_C a r d_wa it F or C a r d R em oved () will report that the old card was removed, while the
SC F_T er m in a l_wa it F or C a r d Ab sen t () will instead report that there is a card present.

If the desired state is already true, the function will immediately return
SC F_ST AT US_SUC C E SS. Otherwise it will wait for a change to the desired state, or for the
timeout to expire, whichever occurs first.

Unlike an event listener (SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD)), these functions
return the state of the terminal, not just events. To use an electronics analogy, event listeners
are edge-triggered, while these functions are level-triggered.

If the desired state is reached before the timeout expires, SC F_ST AT US_SUC C E SS is
returned. If the timeout expires,SC F_ST AT US_T I M E O UT is returned. Otherwise, an error
value is returned.

These functions will fail if:

SC F_ST AT US_BADH ANDL E
The specified ter m ina l or ca r d has been closed or is invalid.

SC F_ST AT US_C O M M E R R O R
The server closed the connection.

3-160 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Terminal_waitForCardPresent (3SMARTCARD)

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: Det er m in e if a ca r d is cu r r en t ly in ser t ed .

int isCardCurrentlyPresent(SCF_Terminal_t myTerminal) {
SCF_Status_t status;

/∗
∗ The timeout of zero makes sure this call will always
∗ return immediately.
∗ /
status = SCF_Terminal_waitForCardPresent(myTerminal, 0);

if (status == SCF_STATUS_SUCCESS) return (TRUE);
else if (status == SCF_STATUS_TIMEOUT) return (FALSE);

/∗
∗ For other errors, this example just assumes no card
∗ is present. We don’t really know.
∗ /
return (FALSE);

}
E xa m p le 2: R em in d t h e u ser ever y 5 secon d s t o r em ove t h eir ca r d .

SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
while (status == SCF_STATUS_TIMEOUT) {

printf("Please remove the card from the terminal!\n");
status = SCF_Terminal_waitForCardAbsent(myTerminal, 5);

}

if (status == SCF_STATUS_SUCCESS)
printf("Thank you.\n");

else
exit(1);

/∗ ... ∗ /

E xa m p le 3: Dem on st r a t e t h e d iffer en ce b et ween t h e ca r d -sp ecific a n d t er m in a l-sp ecific
ca lls.

modified 15 May 2002 Solaris 8 3-161

SCF_Terminal_waitForCardPresent (3SMARTCARD) Misc. Reference Manual Pages

SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ While we sleep, assume user removes the card
∗ and inserts another card.
∗ /
sleep(10);

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
/∗

∗ In this case, status is expected to be SCF_STATUS_TIMEOUT, as there
∗ is a card present.
∗ /

status = SCF_Card_waitForCardRemoved(myCard, 0);
/∗

∗ In this case, status is expected to be SCF_STATUS_SUCCESS, as the
∗ card returned from SCF_Terminal_getCard was indeed removed (even
∗ though another card is currently in the terminal).
∗ /

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

tab() allbox; cw(2.750000i) cw(2.750000i) lw(2.750000i) lw(2.750000i). ATTRIBUTE
TYPEATTRIBUTE VALUE Interface StabilityEvolving MT-LevelMT-Safe

lib sm a r t ca r d(3LIB), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
a t t r ib u t es(5)

3-162 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Terminal_waitForCardPresent (3SMARTCARD)

NAME SCF_Terminal_waitForCardPresent, SCF_Terminal_waitForCardAbsent,
SCF_Card_waitForCardRemoved – wait for a card to be inserted or removed

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

SC F_St a t u s_t SC F_T er m in a l_wa it F or C a r d P r esen t(SC F_T er m in a l_t ter m ina l, u n sign ed in t
tim eout);

SC F_St a t u s_t SC F_T er m in a l_wa it F or C a r d Ab sen t(SC F_T er m in a l_t ter m ina l, u n sign ed in t
tim eout);

SC F_St a t u s_t SC F_C a r d_wa it F or C a r d R em oved(SC F_C a r d_t ca r d, u n sign ed in t tim eout);

ca r d A card that was returned from SC F_T er m in a l_get C a r d(3SMARTCARD).

ter m ina l
A terminal that was returned from SC F_Session_get T er m in a l(3SMARTCARD).

tim eout
The maximum number or seconds to wait for the desired state to be reached. If
the timeout is 0, the function will immediately return SC F_ST AT US_T I M E O UT if
the terminal or card is not in the desired state. A timeout ofSC F_T I M E O UT_M AX can
be specified to indicate that the function should never timeout.

These functions determine if a card is currently available in the specified terminal.

The SC F_C a r d_wa it F or C a r d R em oved () function differs from
SC F_T er m in a l_wa it F or C a r d Ab sen t () in that it checks to see if a specific card has been
removed. If another card (or even the same card) has since been reinserted,
SC F_C a r d_wa it F or C a r d R em oved () will report that the old card was removed, while the
SC F_T er m in a l_wa it F or C a r d Ab sen t () will instead report that there is a card present.

If the desired state is already true, the function will immediately return
SC F_ST AT US_SUC C E SS. Otherwise it will wait for a change to the desired state, or for the
timeout to expire, whichever occurs first.

Unlike an event listener (SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD)), these functions
return the state of the terminal, not just events. To use an electronics analogy, event listeners
are edge-triggered, while these functions are level-triggered.

If the desired state is reached before the timeout expires, SC F_ST AT US_SUC C E SS is
returned. If the timeout expires,SC F_ST AT US_T I M E O UT is returned. Otherwise, an error
value is returned.

These functions will fail if:

SC F_ST AT US_BADH ANDL E
The specified ter m ina l or ca r d has been closed or is invalid.

SC F_ST AT US_C O M M E R R O R
The server closed the connection.

modified 15 May 2002 Solaris 8 3-163

SCF_Terminal_waitForCardPresent (3SMARTCARD) Misc. Reference Manual Pages

SC F_ST AT US_F AI L E D
An internal error occured.

E xa m p le 1: Det er m in e if a ca r d is cu r r en t ly in ser t ed .

int isCardCurrentlyPresent(SCF_Terminal_t myTerminal) {
SCF_Status_t status;

/∗
∗ The timeout of zero makes sure this call will always
∗ return immediately.
∗ /
status = SCF_Terminal_waitForCardPresent(myTerminal, 0);

if (status == SCF_STATUS_SUCCESS) return (TRUE);
else if (status == SCF_STATUS_TIMEOUT) return (FALSE);

/∗
∗ For other errors, this example just assumes no card
∗ is present. We don’t really know.
∗ /
return (FALSE);

}
E xa m p le 2: R em in d t h e u ser ever y 5 secon d s t o r em ove t h eir ca r d .

SCF_Status_t status;
SCF_Terminal_t myTerminal;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
while (status == SCF_STATUS_TIMEOUT) {

printf("Please remove the card from the terminal!\n");
status = SCF_Terminal_waitForCardAbsent(myTerminal, 5);

}

if (status == SCF_STATUS_SUCCESS)
printf("Thank you.\n");

else
exit(1);

/∗ ... ∗ /

E xa m p le 3: Dem on st r a t e t h e d iffer en ce b et ween t h e ca r d -sp ecific a n d t er m in a l-sp ecific
ca lls.

3-164 Solaris 8 modified 15 May 2002

Misc. Reference Manual Pages SCF_Terminal_waitForCardPresent (3SMARTCARD)

SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

/∗ (...call SCF_Session_getTerminal to open myTerminal...) ∗ /

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/∗
∗ While we sleep, assume user removes the card
∗ and inserts another card.
∗ /
sleep(10);

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
/∗

∗ In this case, status is expected to be SCF_STATUS_TIMEOUT, as there
∗ is a card present.
∗ /

status = SCF_Card_waitForCardRemoved(myCard, 0);
/∗

∗ In this case, status is expected to be SCF_STATUS_SUCCESS, as the
∗ card returned from SCF_Terminal_getCard was indeed removed (even
∗ though another card is currently in the terminal).
∗ /

/∗ ... ∗ /

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















lib sm a r t ca r d(3LIB), SC F_Session_get T er m in a l(3SMARTCARD),
SC F_T er m in a l_a d d E ven t L ist en er(3SMARTCARD), SC F_T er m in a l_get C a r d(3SMARTCARD),
a t t r ib u t es(5)

modified 15 May 2002 Solaris 8 3-165

SCF_strerror (3SMARTCARD) Misc. Reference Manual Pages

NAME SCF_strerror – get a string describing a status code

SYNOPSIS cc [fl a g...] fi le... -lsm a r t ca r d [libr a r y...]
#include <sm a r t ca r d /scf.h>

con st ch a r ∗ SC F_st r er r or(SC F_St a t u s_t er r or);

er r or A value returned from a smartcard SCF function call. A list of all current codes
is contained in <sm a r t ca r d /scf.h>

The SC F_st r er r or () function provides a mechanism for generating a brief message that
describes eachSC F_St a t u s_t error code. An application might use the message when displaying
or logging errors.

The string returned by the function does not contain any newline characters. Returned
strings must not be modified or freed by the caller.

A pointer to a valid string is always returned. If the provided er r or is not a valid SCF
error code, a string is returned stating that the error code is unknown. A null pointer is never
returned.

E xa m p le 1: R ep or t a fa t a l er r or .

SCF_Status_t status;
SCF_Session_t mySession;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) {

printf("Smartcard startup error: %s\n", SCF_strerror(status));
exit(1);

}

/∗ ... ∗ /

Messages returned from SC F_st r er r or () are in the native language specified by the
L C_M E SSAG E S locale category; seeset loca le(3C). The C locale is used if the native strings
could not be loaded.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Interface Stability Evolving_ __
MT-Level MT-Safe_ __ 















3-166 Solaris 8 modified 14 May 2002

Misc. Reference Manual Pages SCF_strerror (3SMARTCARD)

lib sm a r t ca r d(3LIB), SC F_Session_get Session(3SMARTCARD), st r er r or(3C), a t t r ib u t es(5)

modified 14 May 2002 Solaris 8 3-167

File Formats clb.conf (4)

NAME clb.conf – Content Load Balancer Configuration File

SYNOPSIS /et c/op t /SUNW clb /clb .con f

DESCRIPTION The clb.conf file is a local file that identifies the interface set configured for use by the
Content Load Balancer in a system. The file is used by the /etc/rc1.d/K32clbctl script
and the /etc/rc2.d/S93clbctl script, which runs at boot time to configure Content
Load Balanced interfaces. If changes are made to the clb.conf file, the system must be
rebooted for the changes to take effect.

The interfaces that participate in the load balancing are entered one per line. ’#’ is used
for comment lines.

EXAMPLES The following example shows the clb.conf file for a system with two Content Load
Balancer interfaces, <ce0> and the VLAN interface <ce6001>.

#
#
Configure
<ce0>
and
<ce6001>
ce0
ce6001

SEE ALSO clb con fig(1M)

NOTES Each entry should be entered on one line with no breaks or carriage returns.

4-168 SunOS 5.8 modified 15 March 2003

File Formats envmond.conf (4)

NAME envmond.conf - configuration file for environment monitor daemon

SYNOPSIS /usr/platform/SUNW,UltraSPARC-IIi-Netract/envmond.conf

DESCRIPTION The envmond.conf file is the configuration file for envmond(1M), the system environ-
ment monitor daemon. The daemon monitors environmental devices to check for con-
ditions that may require some action. The envmond (1M) daemon logs appropriate
messages to a system log file via syslogd(1M).

Each configuration file entry provides the daemon information about a shared object
library, referred to as a policy, which has the knowledge to monitor a device. Each
policy entry describes an interface between the envmond daemon and the policy. The
policy entry in the envmond.conf file can contain configurable parameters in the
policy-args field.

All policy entries have the same format:

poll-interval policy-name policy-args

The three fields shown above are separated by whitespace. Use the backslash (/) at
the end of a line to continue policy-args to the line following.

The fields in the envmond.conf file are described as follows:

poll-interval
Given in seconds as a decimal number, specifies how often to invoke the policy
check function. If poll-interval is 0, the policy check function will never be
called.

policy-name
The file name, with optional path, of the file implementing the policy. The
default location for the policy files is /usr/platform/SUNW,UltraSPARC-IIi-
Netract/lib/envmond/sparcv9

policy-args
An optional list of whitespace-separated arguments to be passed to the policy
during initialization. The number and format of these arguments is policy-
dependent.

The following sections describe policies shipped with the implementation of
envmond(1M).

fancpu Policy
The fancpu policy polls I2C slave devices every poll-interval seconds to get the
current CPU temperature and the fantray status. If the CPU temperature
reaches a warning temperature threshold, a warning message is printed on the
system console and to the system log file specified in syslog.conf(4). If the
CPU temperature reaches the shutdown temperature, a critical error message is
printed on the system console by syslogd(1M). The system is then halted by
the shutdown(1M) command. The fan status will be reflected by the
corresponding LEDs on the System Status Board, and with log messages sent
to syslogd.

modified 16 JUN 2000 SunOS 5.8 4-169

envmond.conf (4) File Formats

powersupply Policy
The powersupply policy sets and clears the power supply LEDs on the System
Status Board to reflect power supply status. The policy also handles an inter-
rupt event if a power supply fails.

scsb Policy
The System Controller and Status Board Policy is primarily to configure the
scsb driver for cPCI Slot Status LED control. The default scsb_led_ctrl setting
is false, meaning that the scsb driver controls the cPCI slot LEDs. If
scsb_led_ctrl is set to true, then some application is responsible for slot LED
updates.

EXAMPLES Example 1: Sample Entries

The first entry, below, invokes the powersupply shared library every 60 seconds. The
second entry specifies that the scsb policy controls the cPCI Slot Status LED.

60 powersupply.so
scsb.so scsb_led_crtl=false

FILES /usr/platform/SUNW,UltraSPARC-IIi-Netract/
Installation directory.

The following relative pathnames are all beneath the directory named above.
lib/envmond/sparcv9/envmond

Executable for the environmental daemon.
lib/envmond/sparcv9/fancpu.so

Policy for CPU temperature and fan speed control.
lib/envmond/sparcv9/powersupply.so

Policy for power supply monitoring.

SEE ALSO envmond(1M), syslogd(1M), syslogd.conf(4)

4-170 SunOS 5.8 modified 16 JUN 2000

Devices av1394 (7D)

NAME av1394 – 1394 audio/video driver

SYNOPSIS u n it@G UI D

The a v1394 driver is anIEEE 1394 compliant target driver that supports theIEC 61883 Consu-
mer Audio/Video Equipment - Digital Interface standard. The driver is used to receive and
transmit isochronous data streams in the common isochronous packet (CIP) format, as well as
asynchronous function control protocol (FCP) frames. The driver also supports connection
management procedures (CMP).

DEVICE SPECIAL
FILES

/d ev/a v/N/a syn c
Device node for asynchronous data

/d ev/a v/N/isoch
Device node for isochronous data

FILES k er n el/d r v/sp a r cv9/a v1394
64-bit ELF kernel module

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture Limited to PCI-based SPARC systems_ __
Availability SUNWav1394x_ __ 















h ci1394(7D)

IEEE S td 1394-1995 S ta nda r d f or a High P er f or m a nce S er ia l B us

IEC 61883 Consum er A udio/V ideo Equipm ent - Digita l Inter f a ce

modified 6 Nov 2002 Solaris 8 7-171

bge (7D) Devices

NAME bge – SUNW,bge Gigabit Ethernet driver for Broadcom BCM5704

SYNOPSIS /d ev/b ge∗

DESCRIPTION The b ge Gigabit Ethernet driver is a multi-threaded, loadable, clonable, GLD-based STREAMS
driver supporting the Data Link Provider Interface,d lp i(7P), on Broadcom BCM5703C or
BCM5704 Gigabit Ethernet controllers fitted to the system motherboard. These devices incor-
porate both MAC and PHY functions and provide three-speed (copper) Ethernet operation on
the RJ-45 connectors.

The b ge driver functions include controller initialization, frame transmit and receive, promiscu-
ous and multicast support, and error recovery and reporting.

The b ge driver and hardware support ’auto-negotiation,’ a protocol specified by the 1000Base-T
standard. Auto-negotiation allows each device to advertise its capabilities and discover those of
its peer (link partner). The highest common denominator supported by both link partners is
automatically selected, yielding the greatest available throughput, while requiring no manual
configuration. Theb ge driver also allows you to configure the advertised capabilities to less
than the maximum (where the full speed of the interface is not required), or to force a specific
mode of operation, irrespective of the link partner’s advertised capabilities.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device, /d ev/b ge, is used to access all BCM570x devices fitted
to the system motherboard.

The b ge driver is dependent on/k er n el/m isc/gld, a loadable kernel module that provides theb ge
driver with the DLPI and STREAMS functionality required of a LAN driver. Seegld(7D) for
more details on the primitives supported by the driver.

You must send an explicit DL_ATTACH_REQ message to associate the opened stream
with a particular device (PPA). The PPA ID is interpreted as an unsigned integer data
type and indicates the corresponding device instance (unit) number. The driver
returns an error (DL_ERROR_ACK) if the PPA field value does not correspond to a
valid device instance number for the system. The device is initialized on first attach
and de-initialized (stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to a
DL_INFO_REQ are:

• Maximum SDU is 1500 (ETHERMTU - defined in <sys/et h er n et .h>).

• Minimum SDU is 0.

• DLSAP address length is 8.

• MAC type is DL_E T H E R.

• SAP length value is-2, meaning the physical address component is followed immedi-
ately by a 2-byteSAP component within theDL SAP address.

• Broadcast address value is the Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

7-172 Solaris 8 modified 22 Jun 2002

Devices bge (7D)

Once in the DL_ATTACHED state, you must send a DL_BIND_REQ to associate a
particular Service Access Point (SAP) with the stream.

CONFIGURATION By default, the b ge driver performs auto-negotiation to select the link speed and mode. Link
speed and mode can be any one of the following, (as described in theIEEE803.2 standards):

• 1000 Mbps, full-duplex

• 1000 Mbps, half-duplex

• 100 Mbps, full-duplex

• 100 Mbps, half-duplex

• 10 Mbps, full-duplex

• 10 Mbps, half-duplex

The auto-negotiation protocol automatically selects:

• Speed (1000 Mbps, 100 Mbps, or 10 Mbps)

• Operation mode (full-duplex or half-duplex)

as the highest common denominator supported by both link partners. Because the b ge
device supports all modes, the effect is to select the highest throughput mode supported by the
other device.

Alternatively, you can set the capabilities advertised by the b ge device usingn d d(1M).
The driver supports a number of parameters whose names begin witha dv_ (see below). Each of
these parameters contains a boolean value that determines whether the device advertises that
mode of operation. In addition, thea dv_a utoneg_ca p parameter controls whether autonegotiation
is performed. Ifa dv_a utoneg_ca p is set to 0, the driver forces the mode of operation selected by
the first non-zero parameter in priority order as listed below:

(highest priority/greatest throughput)
adv_1000fdx_cap 1000Mbps full duplex
adv_1000hdx_cap 1000Mpbs half duplex
adv_100fdx_cap 100Mpbs full duplex
adv_100hdx_cap 100Mpbs half duplex
adv_10fdx_cap 10Mpbs full duplex
adv_10hdx_cap 10Mpbs half duplex

(lowest priority/least throughput)

For example, to prevent the device ’bge2’ from advertising gigabit capabilities, enter
(as super-user):

ndd -set /dev/bge2 adv_1000hdx_cap 0
ndd -set /dev/bge2 adv_1000fdx_cap 0

All capabilities default to enabled. Note that changing any capability parameter will
cause the link to go down while the link partners renegotiate the link
speed/duplex using the newly changed capabilities.

The current settings of the parameters may be found using n d d -get. In addition, the
driver exports the current state, speed, and duplex setting of the link vian d d parameters (these
are read only and may not be changed). For example, to check link state of deviceb ge0:

modified 22 Jun 2002 Solaris 8 7-173

bge (7D) Devices

ndd -get /dev/bge0 link_status
1
ndd -get /dev/bge0 link_speed
100
ndd -get /dev/bge0 link_duplex
1

The output above indicates that the link is up and running at 100Mbps full-duplex.

FILES /d ev/b ge∗
Character special device

/k er n el/d r v/sp a r cv9/b ge
b ge driver binary

/pla tf or m/pla tf or m -na m e/kernel/drv/bge.conf
b ge configuration file

ATTRIBUTES See a t t r ib u t es(5) for a description of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture SPARC_ __ 











SEE ALSO a t t r ib u t es(5), gld(7D), st r ea m io(7I), d lp i(7P)

W r iting Dev ice Dr iv er s

S T R EA M S P r ogr a m m ing Guide

N etw or k Inter f a ces P r ogr a m m er ’s Guide

7-174 Solaris 8 modified 22 Jun 2002

Devices ehci (7D)

NAME ehci – Enhanced host controller driver

SYNOPSIS u sb@u n it -a d d r ess

The eh ci driver is a USBA (Solaris USB Architecture) compliant nexus driver that supports
the Enhanced Host Controller Interface Specification 1.0, an industry standard developed by
Intel.

The eh ci driver supports control, bulk and interrupt transfers. It enables support for USB 2.0
devices in the USBA 1.0 framework

FILES /k er n el/d r v/u sb a 10_eh ci
32-bit ELF kernel module for the USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_eh ci
64-bit ELF kernel module for the USBA 1.0 framework∗

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture PCI-based SPARC systems_ __
Availability SUNWusb, SUNWusbx_ __ 















a t t r ib u t es(5), h u b d(7D), oh ci(7D), u sb a(7D)

W r iting Dev ice Dr iv er s

Univ er sa l S er ia l B us S pecifi ca tion 2.0

Enha nced Host Contr oller Inter f a ce S pecifi ca tion 1.0

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

All host controller errors are passed to the client drivers. Root errors are docu-
mented in h u b d(7D).

In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

WARNING: <device path> (usba10_ehci><instance number>):
Error message...

Connecting a high speed isochronous device to a high speed
port is not supported." 6 High speed isochronous transfers are not supported.

modified 20 Nov 2002 Solaris 8 7-175

ehci (7D) Devices

Unrecoverable USB hardware error.
There was an unrecoverable USB hardware error reported by the eh ci controller.
Reboot the system. If this problem persists, contact your system vendor.

No SOF interrupts.
The USB hardware is not generating Start Of Frame interrupts. Reboot the sys-
tem. If this problem persists, contact your system vendor.

7-176 Solaris 8 modified 20 Nov 2002

Devices ge (7D)

NAME ge – GEM Gigabit-Ethernet device driver

SYNOPSIS /dev/ge

DESCRIPTION The ge Sun Gigabit-Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface, dlpi(7P),
over GEM SBus and PCI Gigabit-Ethernet add-in Adapters. Multiple GEM based
adapters installed within the system are supported by the driver. The ge driver pro-
vides basic support for the GEM based Ethernet hardware and it is used to handle the
SUNW,sbus-gem (SBus GEM) and pci108e,2bad (PCI GEM) devices. Functions
include chip initialization, frame transmit and receive, multicast and promiscuous sup-
port, and error recovery and reporting. The GEM device provides 1000BASE-SX net-
working interfaces using the GEM ASIC, external SERDES and Fiber optical Tran-
sceiver. The GEM ASIC provides the appropriate bus interface, MAC functions and the
Physical code sub-layer (PCS) functions. The external SERDES connects to a fiber tran-
sceiver and provides the physical connection.

The 1000Base-SX standard specifies an “auto-negotiation” protocol to automatically
select the mode of operation. In addition to to the duplex mode of the operation, the
GEM ASIC can auto-negotiate for IEEE 802.3x Frame Based Flow Control capabilities.
The GEM PCS is capable of doing “auto-negotiation” with the remote-end of the link
(Link Partner) and receives the capabilities of the remote end. It selects the Highest
Common Denominator mode of operation based on the priorities. It also supports
forced-mode of operation where the driver can select the mode of operation.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device /dev/ge is used to access all ge controllers installed
within the system.

ge and DLPI The ge driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. Valid DLPI primitives
are defined in <sys/dlpi.h>. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long data type
and indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond
to a valid device instance number for this system. The device is initialized on first
attach and de-initialized (stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

• The maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).
• The minimum SDU is 0.
• The dlsap address length is 8.
• The MAC type is DL_ETHER.
• The sap length values is –2 meaning the physical address component is fol-

lowed immediately by a 2 byte sap component within the DLSAP address.

modified 01 Sep 1998 Solaris 8 7-177

ge (7D) Devices

• The service mode is DL_CLDLS.
• No optional quality of service (QOS) support is included at present so the

QOS fields are 0.
• The provider style is DL_STYLE2.
• The version is DL_VERSION_2.
• The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The ge driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for the
sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

If the user selects a sap with a value of 0, the receiver will be in “802.3 mode”. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound to
sap value 0. If more than one Stream is in “802.3 mode” then the frame will be dupli-
cated and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value is
0, and if the destination type field is in the range [0-1500]. If either is true, the driver
computes the length of the message, not including initial M_PROTO mblk (message
block), of all subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames that
have this value in the MAC frame header length field.

The ge driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hard code to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by send-
ing DL_UNITDATA_REQ messages to the ge driver. The ge driver will route received
Ethernet frames up all those open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are dupli-
cated and routed up multiple open streams if necessary. The DLSAP address contained
within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the
sap (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

ge Primitives The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These

7-178 Solaris 8 modified 01 Sep 1998

Devices ge (7D)

primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local
host.
When used with the DL_PROMISC_SAP flag set this enables/disables reception of all
sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables/disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primi-
tive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which ori-
ginally opened this stream must be superuser. Otherwise EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive is successful on this stream. Once changed,
all streams subsequently opened and attached to this device will obtain this new physi-
cal address. Once changed, the physical address will remain until this primitive is
used to change the physical address again or the system is rebooted, whichever comes
first.

ge DRIVER By default, the ge driver performs “auto-negotiation” to select the mode and flow con-
trol capabilities of the link.

The link can be in one of the 4 following modes:
• 1000 Mbps, full-duplex
• 1000 Mbps, half-duplex
• Symmetric Pause
• Asymmetric Pause

These speeds and modes are described in the 1000Base-TX standard.

The auto–negotiation protocol automatically selects:
• Operation mode (half-duplex or full-duplex)
• Flow Control Capability (Symmetric and/or Asymmetric)

The auto–negotiation protocol does the following:
• Gets all the modes of operation supported by the Link Partner
• Advertises its capabilities to the Link Partner
• Selects the highest common denominator mode of operation based on the

priorities

The GEM Hardware is capable of all of the operating modes listed above, when by
default , auto-negotiation is used to bring up the link and select the common mode of
operation with the Link Partner. The PCS also supports forced-mode of operation in

modified 01 Sep 1998 Solaris 8 7-179

ge (7D) Devices

which the driver can select the mode of operation and the flow control capabilities,
using the ndd
utility.

The GEM device also supports programmable “IPG” (Inter-Packet Gap) parameters
ipg1 and ipg2. By default, the driver sets ipg1 to 8 byte-times and ipg2 to 4 byte-
times (which are the standard values). Sometimes, the user may want to alter these values
from the standard 1000 Mpbs IPG set to 0.096 microseconds.

ge Parameter List The ge driver provides for setting and getting various parameters for the GEM device.
The parameter list includes current transceiver status, current link status, inter-packet
gap, PCS capabilities and link partner capabilities.

The PCS has two set of capabilities: one set reflects the capabilities of the hardware,
which are read-only (RO) parameters and the second set reflects the values chosen by
the user and is used in speed selection. There are read/write (RW) capabilities. At boot
time, these two sets of capabilities will be the same. The Link Partner capabilities are
also read only parameters because the current default value of these parameters can
only be read and cannot be modified.

FILES /dev/ge ge special character device.
/kernel/drv/ge.conf System wide default device driver properties

SEE ALSO ndd(1M), netstat(1M), driver.conf(4), dlpi(7P), ie(7D), le(7D) hme(7D) qfe(7D)

7-180 Solaris 8 modified 01 Sep 1998

Devices grbeep (7d)

NAME grbeep – Platform-dependent beep driver for SMBus-based hardware

SYNOPSIS beep@unit-address

DESCRIPTION The gr b eep driver generates beeps on platforms (including Sun Blade 100, 150, 1500, 2500)
that use SMBbus-based registers and USB keyboards. When theK I O C C M D ioctl is issued to
the USB keyboard module (seeu sb k b m(7M)) with command
K BD_C M D_BE L L /K BD_C M D_NO BE L L, u sb k b m(7M) passes the request to thegr b eep driver
to turn the beep on and off, respectively.

FILES /p la t for m /su n 4u /k er n el/d r v/sp a r cv9/gr b eep
64-bit ELF kernel driver

ATTRIBUTES See attributes(5) for descriptions of the following attributes:
_ __

ATTRIBUTE TYPE ATTRIBUTE VALUE_ __
Architecture SMBus-based SPARC_ __
Availability SUNWcarx.u_ __ 















SEE ALSO k b d(1), a t t r ib u t es(5), b b c_b eep(7D), k b(7M), u sb k b m(7M)

W r iting Dev ice Dr iv er s

DIAGNOSTICS None

modified 18 Dec 2001 Solaris 8 7-181

hid (7D) Devices

NAME hid – Human interface device (HID) class driver

SYNOPSIS k eyb oa r d@u n it -a d d r ess
m ou se@u n it -a d d r ess
in p u t@u n it -a d d r ess: con su m er_con t r ol

The h id dr iv er is a US B A (S ola r is US B A r chitectur e) com plia nt client dr iv er tha t suppor ts the
Hum a n Inter f a ce Dev ice Cla ss (HID) 1.0 specification. The Human Interface Device (HID)
class encompasses devices controlled by humans to operate computer systems. Typical exam-
ples of HID devices include keyboards, mice, trackballs, and joysticks. HID also covers front-
panel controls such as knobs, switches, and buttons. A USB device with multiple interfaces
may have one interface for audio and a HID interface to define the buttons that control the
audio.

The h id driver is general and primarily handles the USB functionality of the device and gen-
eric HID functionality. For example, HID interfaces are required to have an interrupt pipe for
the device to send data packets, and theh id driver opens the pipe to the interrupt endpoint and
starts polling. Theh id driver is also responsible for managing the device through the default
control pipe. In addition to being a USB client driver, theh id driver is also a STREAMS
driver so that modules may be pushed on top of it.

The HID specification is flexible, and HID devices dynamically describe their packets
and other parameters through a HID report descriptor. The HID parser is a misc
module that parses the HID report descriptor and creates a database of information
about the device. The h id driver queries the HID parser to find out the type and characteris-
tics of the HID device. The HID specification predefines packet formats for the boot protocol
keyboard and mouse.

/k er n el/d r v/h id
32 bit ELF kernel hid module for original USBA framework∗

/k er n el/d r v/sp a r cv9/h id
64 bit ELF kernel hid module for original USBA framework∗

/k er n el/d r v/u sb a 10_h id
32 bit ELF kernel hid module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_h id
64 bit ELF kernel hid module for USBA 1.0 framework∗

/k er n el/d r v/u sb a 10_h id .con f
u sb a 10_h id configuration file

/k er n el/m isc/h id p a r ser
32 bit ELF kernel hidparser module for the original USBA framework∗

/k er n el/m isc/sp a r cv9/h id p a r ser
64 bit ELF kernel hidparser module for the original USBA framework∗

/k er n el/m isc/u sb a 10_h id p a r ser
32 bit ELF kernel hidparser module for the USBA 1.0 framework∗

7-182 Solaris 8 modified 19 Nov 2002

Devices hid (7D)

/k er n el/m isc/sp a r cv9/u sb a 10_h id p a r ser
64 bit ELF kernel hidparser module for the USBA 1.0 framework∗

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, a nd US B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture Original USBA drivers and files: PCI-based sys-
tems USBA 1.0 drivers and files: PCI-based
SPARC systems_ __

Availability SUNWusb_ __
SUNWusbx_ __ 



























cfga d m_u sb(1M), a t t r ib u t es(5), u sb a(7D)

W r iting Dev ice Dr iv er s

S T R EA M S P r ogr a m m ing Guide

Univ er sa l S er ia l B us S pecifi ca tion 2.0

Dev ice Cla ss Defi nition f or Hum a n Inter f a ce Dev ices (HID) 1.1

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

None.

NOTES The hid driver currently supports only keyboard, mouse and audio HID control dev-
ice.

modified 19 Nov 2002 Solaris 8 7-183

hsi (7D) Devices

NAME hsi – S-Bus based high speed serial line interface.

SYNOPSIS #include <fcntl.h>
open(/dev/hihn, mode);
open(/dev/hih, mode);

DESCRIPTION The hsi module is a loadable and unloadable STREAMS driver that implements the
sending and receiving of data packets such as HDLC frames over synchronous serial
lines. The hsi driver is a standalone driver that supports HSI/S S-Bus based serial
interface hardware and provides physical level data transfer services for upper data
link layer protocols (e.g. HDLC or SDLC).

The hihn devices provide what is known as a data path which supports the transfer of
data via read(2) and write(2) system calls, as well as ioctl(2) calls. Data path opens are
exclusive in order to protect against injection or diversion of data by another process.

The hih device provides a separate control path for use by programs that need to
configure or monitor a connection independent of any exclusive access restrictions
imposed by data path opens. Up to three control paths may be active on a particular
serial channel at any one time. Control path accesses are restricted to ioctl(2) calls
only; no data transfer is possible.

When used in synchronous modes, the Z16C35 ISCC supports several options for clock
sourcing and data encoding. Both the transmit and receive clock sources can be set to
be the external receive clock (RTxC) and the internal baud rate generator (BRG). Addi-
tionally, the transmit clock source can be set to the external transmit clock (TRxC).

The baud rate generator is a programmable divisor that derives a clock frequency
from the PCLK input signal to the ISCC. A programmed baud rate is translated into a
16-bit time constant that is stored in the ISCC. When using the BRG as a clock source
the driver may answer a query of its current speed with a value different from the one
specified. This is because baud rates translate into time constants in discrete steps, and
reverse translation shows the change. If an exact baud rate is required that cannot be
obtained with the BRG, an external clock source must be selected.

A local loopback mode is available, primarily for use by the hsi_loop(1M) utility for
testing purposes, and should not be confused with SDLC loop mode, which is not
supported on this interface. This option should be selected casually, or left in use when
not needed.

The hsi driver keeps running totals of various hardware generated events for each
channel. These include numbers of packets and characters sent and received, abort
conditions detected by the receiver, receive CRC errors, transmit underruns, receive
overruns, input errors and output errors, and message block allocation failures. Input
errors are logged whenever an incoming message must be discarded, such as when an
abort or CRC error is detected, a receive overrun occurs, or when no message block is
available to store incoming data. Output errors are logged when the data must be dis-
carded due to underruns, CTS drops during transmission, CTS timeouts, or excessive
watchdog timeouts caused by a cable break.

7-184 Solaris 8 modified 14 April 1993

Devices hsi (7D)

IOCTLS The hsi driver supports several ioctl() commands, including:

S_IOCGETMODE Return a struct scc_mode containing parameters currently in use.
These include the transmit and receive clock sources, boolean loop-
back and NRZI mode flags and the integer baudrate.

S_IOCSETMODE The argument is a struct scc_mode from which the ISCC channel
will be programmed.

S_IOCGETSTATS Return a struct hs_stats containing the current totals of hardware-
generated events. These include numbers of packets and charac-
ters sent and received by the driver, aborts and CRC errors
detected, transmit underruns, and receive overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baudrate as an integer. This may not
reflect the actual data transfer rate if external clocks are used.

S_IOCGETMCTL Returns the current state of the CTS and DCD incoming modem
interface signals as an integer.

The following structures are used with hsi ioctl() commands:

struct scc_mode {
char sm_txclock; /∗ transmit clock sources ∗ /
char sm_rxclock; /∗ receive clock sources ∗ /
char sm_iflags; /∗ data and clock inversion flags (non-zsh) ∗ /
u_char sm_config; /∗ boolean configuration options ∗ /
int sm_baudrate; /∗ real baud rate ∗ /
int sm_retval; /∗ reason codes for ioctl failures ∗ /

} ;

struct hs_stats {
unsigned int ipack; /∗ input packets ∗ /
unsigned int opack; /∗ output packets ∗ /
unsigned int ichar; /∗ input bytes ∗ /
unsigned int ochar; /∗ output bytes ∗ /
int abort; /∗ abort received ∗ /
int crc; /∗ CRC error ∗ /
int cts; /∗ CTS timeouts ∗ /
int dcd; /∗ Carrier drops ∗ /
int overrun; /∗ receive overrun ∗ /
int underrun; /∗ transmit underrun ∗ /
int ierror; /∗ input error ∗ /
int oerror; /∗ output error ∗ /
int nobuffers; /∗ rcv side memory allocation failure ∗ /

int ishort; /∗ input packet too short (< CRC-bytes+1) ∗ /
int ilong; /∗ input packet too long (> mru) ∗ /
int inactive; /∗ input packet rcvd when rcv is inactive ∗ /
int idma; /∗ receive dma error ∗ /

modified 14 April 1993 Solaris 8 7-185

hsi (7D) Devices

int olong; /∗ output packet too long (> mtu) ∗ /
int ohung; /∗ transmit hung (usually missing clock) ∗ /
int odma; /∗ transmit dma error ∗ /

} ;

ERRORS An open() will fail if a STREAMS message block cannot be allocated, or:

ENXIO The unit being opened does not exist.

EBUSY The device is in use by another serial protocol.

An ioctl() will fail if:

EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator would
translate to a null time constant in the ISCC’s registers.

FILES /dev/hih[0-n], /dev/hih
Character-special devices.

/usr/include/sys/ser_sync.h
Header file specifying synchronous serial communication definitions.

SEE ALSO hsi_init(1M), hsi_loop(1M), hsi_stat(1M), hsi_trace(1M)

Refer to the Zilog Z16C35 ISCC Serial Communications Controller Technical Manual for
details of the ISCC’s operation and capabilities.

DIAGNOSTICS hih data open failed, no memory, rq=nnn
hih clone open failed, no memory, rq=nnn A kernel memory allocation failed
for one of the private data structures. The value of nnn is the address of the
read queue passed to open(2).

hih_open: can’t alloc message block
The open could not proceed because an initial STREAMS message block could
not be made available for incoming data.

hih: clone device d must be attached before use!
An operation was attempted through a control path before that path had been
attached to a particular serial channel.

hihn : invalid operation for clone dev.
An inappropriate STREAMS message type was passed through a control path.
Only M_IOCTL and M_PROTO message types are permitted.

hihn : not initialized, can’t send message
An M_DATA message was passed to the driver for a channel that had not been
programmed at least once since the driver was loaded. The ISCC’s registers
were in an unknown state. The S_IOCSETMODE ioctl command performs the
programming operation.

hihn : transmit hung
The transmitter was not successfully restarted after the watchdog timer

7-186 Solaris 8 modified 14 April 1993

Devices hsi (7D)

expired.

hihN: Bad PPA = N.
SunHSI/S driver received a DL_ATTACH_REQ, which has an out-of-range
PPA number N, from upper layers.

hihN: port N not installed.
The SunHSI/S port N, which is referenced by the PPA number in a received
DL_ATTACH_REQ message, is not installed in the system.

hihN: out of STREAMS mblocks.
Running out of streams mblocks for SunHSI/S port N.

hihN: xmit hung.
Transmission hung on SunHSI/S port N. This usually happens because of
cabling problems or due to missing clocks from the CSU/DSU or modem.

hihN: <hih_rxsoft> no buffers - rxbad.
Running out of streams mblocks for SunHSI/S port N in hih_rxsoft() routine.

WARNING: hih_init: changed baudrate from 100000 to 99512.
The baud rate specified was rounded to a value the SunHSI/S hardware can
support.

modified 14 April 1993 Solaris 8 7-187

hsip (7D) Devices

NAME hsip – PCI-Bus based high speed serial line interface.

SYNOPSIS #include <fcntl.h>
#include </usr/include/sys/ser_sync.h>
open(/dev/hihpn, mode);
open(/dev/hihp, mode);

DESCRIPTION The hsip module is a loadable and unloadable STREAMS driver that implements the
sending and receiving of data packets such as HDLC frames over synchronous serial
lines. The hsip driver is a standalone driver that supports HSI/P PCI-Bus based serial
interface hardware and provides phsipcal level data transfer services for upper data
link layer protocols (e.g. HDLC or SDLC).

The hihpn devices provide what is known as a data path which supports the transfer
of data via read(2) and write(2) system calls, as well as ioctl(2) calls. Data path opens
are exclusive in order to protect against injection or diversion of data by another pro-
cess.

The hihp device provides a separate control path for use by programs that need to
configure or monitor a connection independent of any exclusive access restrictions
imposed by data path opens. Up to three control paths may be active on a particular
serial channel at any one time. Control path accesses are restricted to ioctl(2) calls
only; no data transfer is possible.

The HSIP ports support several options for clock sourcing and data encoding. Both
the transmit and receive clock sources can be set to be the external transmit clock
(TxC), external receive clock (RxC), the internal baud rate generator (BRG), or the out-
put of the SCC’s Digital Phase-Lock Loop (DPLL).

The baud rate generator is a programmable divisor that derives a clock frequency
from the PCLK input signal to the SCC. A programmed baud rate is translated into a
16-bit time constant that is stored in the SCC. When using the BRG as a clock source
the driver may answer a query of its current speed with a value different from the one
specified. This is because baud rates translate into time constants in discrete steps, and
reverse translation shows the change. If an exact baud rate is required that cannot be
obtained with the BRG, an external clock source must be selected.

Use of the DPLL option requires the selection of NRZI data encoding and the setting
of a non-zero value for the baud rate, because the DPLL uses the BRG as its reference
clock source.

A local loopback mode is available, primarily for use by the hsip_loop(1m) utility for
testing purposes, and should not be confused with SDLC loop mode, which is not
supported on this interface. Also, an auto-echo feature may be selected that causes all
incoming data to be routed to the transmit data line, allowing the port to act as the
remote end of a digital loop. Neither of these options should be selected casually, or
left in use when not needed.

7-188 Solaris 8 modified 14 April 1997

Devices hsip (7D)

The hsip driver keeps running totals of various hardware generated events for each
channel. These include numbers of packets and characters sent and received, abort
conditions detected by the receiver, receive CRC errors, transmit underruns, receive
overruns, input errors and output errors. Input errors are logged whenever an incom-
ing message must be discarded, such as when an abort or CRC error is detected, a
receive overrun occurs, or when no message block is available to store incoming data.
Output errors are logged when the data must be discarded due to underruns, CTS
drops during transmission, CTS timeouts, or excessive watchdog timeouts caused by a
cable break.

IOCTLS The hsip driver supports several ioctl() commands, including:

S_IOCGETMODE Return a struct scc_mode containing parameters currently in use.
These include the transmit and receive clock sources, boolean loop-
back and NRZI mode flags and the integer baudrate.

S_IOCSETMODE The argument is a struct scc_mode from which the SCC channel
will be programmed.

S_IOCGETSTATS Return a struct sl_stats containing the current totals of hardware-
generated events. These include numbers of packets and charac-
ters sent and received by the driver, aborts and CRC errors
detected, transmit underruns, and receive overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baudrate as an integer. This may not
reflect the actual data transfer rate if external clocks are used.

S_IOCGETMCTL Returns the current state of the CTS and DCD incoming modem
interface signals as an integer.

The following structures are used with hsip ioctl() commands:

struct scc_mode {
char sm_txclock; /∗ transmit clock sources ∗ /
char sm_rxclock; /∗ receive clock sources ∗ /
char sm_iflags; /∗ data and clock inversion flags (non-zsh) ∗ /
u_char sm_config; /∗ boolean configuration options ∗ /
int sm_baudrate; /∗ real baud rate ∗ /
int sm_retval; /∗ reason codes for ioctl failures ∗ /

} ;

struct sl_stats {
int ipack; /∗ input packets ∗ /
int opack; /∗ output packets ∗ /
int ichar; /∗ input bytes ∗ /
int ochar; /∗ output bytes ∗ /
int abort; /∗ abort received ∗ /
int crc; /∗ CRC error ∗ /
int cts; /∗ CTS timeouts ∗ /

modified 14 April 1997 Solaris 8 7-189

hsip (7D) Devices

int dcd; /∗ Carrier drops ∗ /
int overrun; /∗ receive overrun ∗ /
int underrun; /∗ transmit underrun ∗ /
int ierror; /∗ input error ∗ /
int oerror; /∗ output error ∗ /
int nobuffers; /∗ receive side memory allocation failure ∗ /

} ;

ERRORS An open() will fail if a STREAMS message block cannot be allocated, or:

ENXIO The unit being opened does not exist.

EBUSY The device is in use by another serial protocol.

An ioctl() will fail if:

EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator would
translate to a null time constant in the SCC’s registers.

FILES /dev/hihp[0-n], /dev/hihp
Character-special devices.

/usr/include/sys/ser_sync.h
Header file specifying synchronous serial communication definitions.

SEE ALSO hsip_init(1M), hsip_loop(1M), hsip_stat(1M),

Refer to the Motorola MC68360 Quad Integrated Communications Controller Technical
Manual for details of the SCC’s operation and capabilities.

DIAGNOSTICS hihp data open failed, no memory, rq=nnn
hihp clone open failed, no memory, rq=nnn A kernel memory allocation
failed for one of the private data structures. The value of nnn is the address of
the read queue passed to open(2).

hihp_open: can’t alloc message block
The open could not proceed because an initial STREAMS message block could
not be made available for incoming data.

hihp: clone device d must be attached before use!
An operation was attempted through a control path before that path had been
attached to a particular serial channel.

hihpn : invalid operation for clone dev.
An inappropriate STREAMS message type was passed through a control path.
Only M_IOCTL and M_PROTO message types are permitted.

hihpn : not initialized, can’t send message
An M_DATA message was passed to the driver for a channel that had not been
programmed at least once since the driver was loaded. The S_IOCSETMODE
ioctl command performs the programming operation.

7-190 Solaris 8 modified 14 April 1997

Devices hsip (7D)

hihpn : transmit hung
The transmitter was not successfully restarted after the watchdog timer
expired.

modified 14 April 1997 Solaris 8 7-191

hubd (7D) Devices

NAME hubd – USB hub driver

SYNOPSIS h u b@u n it -a d d r ess

The h u b d is a USBA (Solaris USB Architecture) compliant client driver that supports USB
hubs conforming to theUniv er sa l S er ia l B us S pecifi ca tion 2.0.∗ The h u b d driver supports bus-
powered and self-powered hubs. The driver supports hubs with individual port power, ganged
power and no power switching.

When a device is attached to a hub port, the h u b d driver enumerates the device by deter-
mining its type and assigning an address to it. For multi-configuration devices,h u b d sets the
preferred configuration (refer tocfga d m_u sb(1M) to select a configuration). Theh u b d driver
attaches a driver to the device if one is available for the default or selected configuration.
When the device is disconnected from the hub port, theh u b d driver offlines any driver instance
attached to the device.

∗ Hubd for the original USBA framework supports US B 1.0 and1.1 hubs only. Hubd for
the US B A 1.0 framework supportsUS B 2.0 hubs as well. Please see
w w w .sun.com /desk top/w hitepa per s.htm l for more information regardingUS B A 1.0, USB dual
framework, andUS B 2.0.

/k er n el/d r v/h u b d
32 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/sp a r cv9/h u b d
64 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/u sb a 10_h u b d
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_h u b d
64 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/u sb a 10_h u b d .con f
u sb a 10_h u b d configuration file

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding
USB dual framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for a description of the following attributes:

_ ___
ATTRIBUTE TYPE ATTRIBUTE VALUE

7-192 Solaris 8 modified 20 Nov 2002

Devices hubd (7D)

_ ___
Architecture Original USBA drivers

and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ ___

Availability SUNWusb, SUNWusbx_ ___ 
































cfga d m_u sb(1M), a t t r ib u t es(5), u sb a(7D)

W r iting Dev ice Dr iv er s

Univ er sa l S er ia l B us S pecifi ca tion 2.0

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http://w w w .sun.com /io

In addition to being logged, the following messages may also appear on the system
console. All messages are formatted in the following manner:

WARNING: <device path> (usb<instance number>): Error message...

where <in st a n ce n u m b er> is the instance number ofh u b d and <d evice p a t h> is the physical
path to the device in /devices d ir ect or y. M essa ges fr om t h e r oot h u b a r e d isp la yed wit h a
u sb<in st a n ce n u m b er> prefix instead ofh u b<in st a n ce n u m b er> as the root hub is an integrated
part of the host controller.

Connecting a low/full speed device to a high speed external
hub is not supported." 6 (USBA 1.0 only) The USB software does not currently
support low or full speed (USB 1.x) devices connected to an external high
speed hub which is, in turn, connected to a high speed (USB 2.0) port. Do one
of the following to fix:

(1) connect the high speed external hub to a full speed port

(2) connect the low/full speed devices to a full speed external hub

(3) connect the low/full speed devices directly to any USB con-
troller port.

Connecting device on port <num ber>
failed." 6 The driver failed to enumerate the device connected on port
<num ber> of hub. If enumeration fails, disconnect and re-connect.

Global over current condition. Please disconnect hub.
The driver detected an over current condition. This means that the aggregate
current being drawn by the devices on the downstream port exceeds a preset
value. Refer to section 7.2.1.2 and 11.13 of the Univ er sa l S er ia l B us S pecifi ca tion
2.0. You must remove and insert this hub to render it and its down stream devices

modified 20 Nov 2002 Solaris 8 7-193

hubd (7D) Devices

functional again. If this message continues to display for a particular hub, you may
need to remove downstream devices to eliminate the problem.

Cannot access device. Please reconnect <device name>.
This hub has been disconnected because a device other than the original one has
been inserted. The driver informs you of this fact by displaying the name of the
original device.

Devices not identical to the previous one on this port.
Please disconnect and reconnect." 6 Same condition as described above; however
in this case, the driver is unable to identify the original device with a name
string.

Local power has been lost, please disconnect hub.
A USB self-powered hub has lost external power. All USB devices connected
down-stream from this hub will cease to function. Disconnect the hub, plug in
the external power-supply and then plug in the hub again.

Hub driver supports max of <n>
ports on hub. Hence, using the first <num ber of phy sica l por ts> of <n> ports avail-
able." 6 The current hub driver supports hubs that have <n> ports or less. A hub with
more than <n> por ts ha s been plugged in. Only the fi r st <n> out of the tota l <number of
physical ports> ports are usable.

7-194 Solaris 8 modified 20 Nov 2002

Device and Network Interfaces nf (7)

NAME nf – FDDI device driver

SYNOPSIS #include <sys/nf.h>
#include <sys/dlpi.h>

DESCRIPTION nf is a multi-threaded, loadable, clonable, STREAMS hardware device driver support-
ing the connectionless Data Link Provider Interface, dlpi(7), over DP83265A (BSI-2)
FDDI controller in the SBus card. There is no fixed limitation on the number of FDDI
cards supported by the driver. The nf driver provides basic support for the BSI-2,
BMAC and PLAYER+ hardware. Functions include chip initialization, frame transmit
and receive, multicast and promiscuous support, and error recovery and reporting.

The cloning character-special device /dev/nf is used to access BSI-2 controller installed
within the system.

nf and DLPI The nf driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type msgs are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream
with a particular device (ppa). The ppa ID is interpreted as an unsigned long and
indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond
to a valid device instance number for this system. The device is initialized on first
attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

• The max SDU is 4352 (FDDIMTU).

• The min SDU is 0.

• The dlsap address length is 8.

• The MAC type is DL_FDDI.

• The sap length value is –2 meaning the physical address component is fol-
lowed immediately by a 2 byte sap component within the DLSAP address.

• The service mode is DL_CLDLS.

• No optional quality of service (QOS) support is included at present so the
QOS fields are 0.

• The provider style is DL_STYLE2.

• The version is DL_VERSION_2.

• The broadcast address value is Ethernet/IEEE broadcast address
(0xFFFFFF).

modified 17 May 1996 Solaris 8 7-195

nf (7) Device and Network Interfaces

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The nf driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

In addition to Ethernet V2 service, an “802.3 mode” is provided by the driver and
works as follows. sap value 0 is treated as equivalent and represent a desire by the
user for “802.3 mode”. If the value of the sap field of the DL_BIND_REQ is 0, then the
driver computes the length of the message, not including initial M_PROTO mblk, of all
subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames having this
value in the MAC frame header length field and a value of 0xaaaa030000 in the snap
header. All frames received from the media having a “type” field in the range [0-1500]
are assumed to be 802.3 frames and are routed up all open streams which are bound to
sap value 0. If more than one stream is in “802.3 mode” then the frame will be dupli-
cated and routed up multiple streams as DL_UNITDATA_IND messages.

The nf driver DLSAP address format consists of the 6 byte physical (FDDI) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the FDDI ring by
sending DL_UNITDATA_REQ messages to the nf driver. The nf driver will route
received FDDI frames up all those open and bound streams having a sap which
matches the type as DL_UNITDATA_IND messages. Received FDDI frames are dupli-
cated and routed up multiple open streams if necessary. The DLSAP address con-
tained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (FDDI) components.

nf Primitives In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local
host. When used with the DL_PROMISC_SAP flag set this enables/disables reception
of all sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set
this enables/disables reception of all multicast group addresses. The effect of each is

7-196 Solaris 8 modified 17 May 1996

Device and Network Interfaces nf (7)

always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive return the 6 octet MAC address currently associ-
ated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive
is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet MAC address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or EPERM is returned in the DL_ERROR_ACK.
This primitive is destructive in that it affects all other current and future streams
attached to this device. An M_ERROR is sent up all other streams attached to this
device when this primitive on this stream is successful. Once changed, all streams sub-
sequently opened and attached to this device will obtain this new physical address.
Once changed, the physical address will remain so until this primitive is used to
change the physical address again or the system is rebooted, whichever comes first.

By default the first interface will use the systems MAC address but subsequent inter-
faces will use the FDDI local address.

FILES /dev/nf

SEE ALSO smt(7), dlpi(7),

modified 17 May 1996 Solaris 8 7-197

ohci (7D) Devices

NAME ohci – OpenHCI host controller driver

SYNOPSIS u sb@u n it -a d d r ess

The oh ci driver is a USBA (Solaris USB Architecture) compliant nexus driver that supports
the Open Host Contr oller Inter f a ce S pecifi ca tion 1.0a, an industry standard developed by Com-
paq, Microsoft, and National Semiconductor.

The oh ci driver supports bulk, interrupt, control and isochronous transfers.

/k er n el/d r v/oh ci
32 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/sp a r cv9/oh ci
64 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/u sb a 10_oh ci
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_oh ci
64 bit ELF kernel module for USBA 1.0 framework∗

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ ___
ATTRIBUTE TYPE ATTRIBUTE VALUE_ ___

Architecture Original USBA drivers
and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ ___

Availability SUNWusb, SUNWusbx_ ___ 



































a t t r ib u t es(5), eh ci(7D), h u b d(7D), u sb a(7D)

W r iting Dev ice Dr iv er s

Univ er sa l S er ia l B us S pecifi ca tion 2.0

Open Host Contr oller Inter f a ce S pecifi ca tion f or US B 1.0a

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

7-198 Solaris 8 modified 18 Nov 2002

Devices ohci (7D)

http: //w w w .sun.com /io

All host controller errors are passed to the client drivers. Root hub errors are docu-
mented in h u b d(7D).

In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

WARNING: <device path> ohci<instance number>>: Error message...

or

WARNING: <device path> usba10_ohci<instance number>>:
Error message...

Unrecoverable USB Hardware Error.
There was an unrecoverable USB hardware error reported by the OHCI Con-
troller. Please reboot the system. If this problem persists, contact your sys-
tem vendor.

No SOF interrupts.
The USB hardware is not generating St a r t O f F r a m e interrupts. Please reboot the
system. If this problem persists, contact your system vendor.

modified 18 Nov 2002 Solaris 8 7-199

pf (7) Device and Network Interfaces

NAME pf – FDDI device driver

SYNOPSIS #include <sys/pf.h> #include <sys/dlpi.h>

DESCRIPTION pf is a multi-threaded, loadable, clonable, STREAMS hardware device driver support-
ing the connectionless Data Link Provider Interface, dlpi(7), over PBS FDDI controller
in the PCI card. The driver also provides support for Applications to get statistics and
status of Station Management. There is no fixed limitation on the number of FDDI
cards supported by the driver. The pf driver provides basic support for the PBS,
BMAC and PLAYER+ hardware. Functions include chip initialization, LLC/SMT
frame transmit and receive, multicast and promiscuous support, and error recovery
and reporting.

The cloning character-special device /dev/pf is used to access PBS controller installed
within the system.

pf and DLPI The pf driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type msgs are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream
with a particular device (ppa). The ppa ID is interpreted as an unsigned long and
indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond
to a valid device instance number for this system. The device is initialized on first
attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

• The max SDU is 4352 (FDDIMTU).

• The min SDU is 0.

• The dlsap address length is 8.

• The MAC type is DL_FDDI.

• The sap length value is –2 meaning the physical address component is fol-
lowed immediately by a 2 byte sap component within the DLSAP address.

• The service mode is DL_CLDLS.

• No optional quality of service (QOS) support is included at present so the
QOS fields are 0.

• The provider style is DL_STYLE2.

• The version is DL_VERSION_2.

• The broadcast address value is Ethernet/IEEE broadcast address
(0xFFFFFF).

7-200 Solaris 8 modified 14 January 1997

Device and Network Interfaces pf (7)

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The pf driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

In addition to Ethernet V2 service, an “802.3 mode” is provided by the driver and
works as follows. sap value 0 is treated as equivalent and represent a desire by the
user for “802.3 mode”. If the value of the sap field of the DL_BIND_REQ is 0, then the
driver computes the length of the message, not including initial M_PROTO mblk, of all
subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames having this
value in the MAC frame header length field and a value of 0xaaaa030000 in the snap
header. All frames received from the media having a “type” field in the range [0-1500]
are assumed to be 802.3 frames and are routed up all open streams which are bound to
sap value 0. If more than one stream is in “802.3 mode” then the frame will be dupli-
cated and routed up multiple streams as DL_UNITDATA_IND messages.

The pf driver DLSAP address format consists of the 6 byte physical (FDDI) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the FDDI ring by
sending DL_UNITDATA_REQ messages to the pf driver. The pf driver will route
received FDDI frames up all those open and bound streams having a sap which
matches the type as DL_UNITDATA_IND messages. Received FDDI frames are dupli-
cated and routed up multiple open streams if necessary. The DLSAP address con-
tained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (FDDI) components.

pf Primitives In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local
host. When used with the DL_PROMISC_SAP flag set this enables/disables reception
of all sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set
this enables/disables reception of all multicast group addresses. The effect of each is

modified 14 January 1997 Solaris 8 7-201

pf (7) Device and Network Interfaces

always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive return the 6 octet MAC address currently associ-
ated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive
is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet MAC address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or EPERM is returned in the DL_ERROR_ACK.
This primitive is destructive in that it affects all other current and future streams
attached to this device. An M_ERROR is sent up all other streams attached to this
device when this primitive on this stream is successful. Once changed, all streams sub-
sequently opened and attached to this device will obtain this new physical address.
Once changed, the physical address will remain so until this primitive is used to
change the physical address again or the system is rebooted, whichever comes first.

By default the first interface will use the systems MAC address but subsequent inter-
faces will use the FDDI local address.

pf and SMT The driver provides information on its PHYs and some FORMAC error counters.

The user has to include these two lines in the program before the line ’#include
<pfsmt.h>’

#define SMT7_2 0
#define CFG_YES 1

The cloning character special device /dev/pf is used to access the driver. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream
with a particular device(ppa) where ppa corresponds to the interface instance number.

Once in the DL_ATTACHED state, the user need not send a DL_BIND_REQ. The user
can interact with the driver with ioctl(2) calls. The arguments for the ioctl are

ioctl (int fd, int request, SMTCB ∗ smtp)

The request is smt driver specific and can be SMT_GET or SMT_ACT. SMTCB is
defined as follows in the header file pfsmt.h

typedef struct {
int command;
int sub_command;
int param1;
int param2;
int param3;
char ∗ where;
int length;

} SMTCB;

SMT_GET:

7-202 Solaris 8 modified 14 January 1997

Device and Network Interfaces pf (7)

SMT_GET provides a variety of functions such as to read the HPC registers and to get
the smt status. command field of smtp should be initialized to one of the following
values

HPC_BMAC1_REGS : To read the BMAC registers
HPC_READ : To read the HPC registers
HPC_PORT1_REGS : To read RMT port1
and HPC_PORT2_REGS and port2 registers

Some of the commands provide sub commands. The field sub_command should be
initialzed to these sub commands.

1. HPC_BMAC1_REGS

HPC_BMAC1_REGS enables the user to read the BMAC registers. HPC_BMAC1_REGS
provides two sub commands GET_COUNTER_GROUP and GET_NEIGHBOR_ADDR.
GET_COUNTER_GROUP is used to get various SMT counter values.

GET_COUNTER_GROUP needs the SMTCB ∗ smtp to be initialized as follows

COUNTER_GROUP ct;

smtp->command = HPC_BMAC1_REGS;
smtp->sub_command = GET_COUNTER_GROUP;
smtp->where = (char ∗) &ct;
smtp->length = sizeof (ct);

GET_NEIGHBOR_ADDR enables the user to get the MAC address of the Neighbour
station. GET_NEIGHBOR_ADDR needs the SMTCB ∗ smtp to be initialized as follows

char addr_buf[12];

smtp->command = HPC_BMAC1_REGS;
smtp->sub_command = GET_NEIGHBOR_ADDR;
smtp->where = addr_buf;
smtp->length = 12;

2. HPC_READ

HPC_READ enables the user to read the HPC registers. HPC_READ does not provide
any sub commands. HPC_READ needs the SMTCB ∗ smtp to be initialized as follows

smtp->command = HPC_READ;
smtp->param1 = HPC_READ  HPC_SIZE_BYTE

 <HPC_reg_offset>;
smtp->where = (char ∗) smtp;

where HPC_register_offset offset is set of register space provided by the HPC. For the
set of reister offsets refer to the file pfsmt.h

3. HPC_PORT1_REGS and HPC_PORT2_REGS

HPC_PORT1_REGS enables the user to get the status of the Connection Management.
HPC_PORT2_REGS is for the second port if the interface is a DAS. The sub command
for HPC_PORT1_REGS is GET_PORT_GROUP. HPC_PORT1_REGS needs the SMTCB
∗ smtp to be initialized as follows

modified 14 January 1997 Solaris 8 7-203

pf (7) Device and Network Interfaces

FDDI_PORT_GROUP port; smtp->command = HPC_PORT1_REGS;
smtp->sub_command = GET_PORT_GROUP;
smtp->where = (char ∗) &port;
smtp->length = sizeof (port);

The two important status returned in the structure port are port.ecm_state and
port.pcm_state. port.ecm_state corresponds to the current state of the ECM state
machine. The valid values are OUT, IN, TRACE, PATHTEST, INSERT, CHECK and
DEINSERT. The value returned in port.ecm_state is the index into the list of the ECM
States. port.pcm_state corresponds to the current state of the PCM state machine. The
Valid values are OFF, BREAK, TRACE, CONNECT, NEXT, SIGNAL, JOIN, VERIFY,
ACTIVE, MAINT. The value returned in port.pcm_state in an index into the list of
PCM States.

SMT_ACT:

SMT_ACT is supported to set the state of the smt driver. The command field should
always be set to SMT_CTL. SMT_ACT provides two sub commands
SMT_ACCEPT_FRAME and SMT_CLOSE. SMT_ACCEPT_FRAME needs to be used
when any SMT API client is active.

smtp->command = SMT_CTL;
smtp->sub_command = SMT_ACCEPT_FRAME;

SMT_CLOSE needs to be used when the API client exits.

smtp->command = SMT_CTL;
smtp->sub_command = SMT_CLOSE;

To transmit SMT NSA frames the user should bind to FDDI_NSA sap. To transmit
other SMT frames the user may bind to FDDI_SMTINFO sap.

FILES /dev/pf

SEE ALSO dlpi(7)

7-204 Solaris 8 modified 14 January 1997

Devices scsa2usb (7D)

NAME scsa2usb – SCSI to USB bridge driver

SYNOPSIS st or a ge@u n it -a d d r ess

The scsa 2u sb driver is a USBA (Solaris USB architecture) compliant nexus driver that sup-
ports the USB Mass Storage Bulk Only Transport Specification 1.0 a ndUSB
Control/Bulk/Interrupt (CBI) Transport Specification 1.0. Thescsa 2u sb driver also supports
USB storage devices that implement CBI Transport without the interrupt completion for status
(that is, Control/Bulk (CB) devices.) It supports bus-powered and self-powered USB mass
storage devices. This nexus driver is both a USB client driver and a SCSA HBA driver. As
such, thescsa 2u sb driver only supports disk devices that utilize the above two transports.

The scsa 2u sb nexus driver mapsSC SA target driver requests toUSBA client driver requests.

The scsa 2u sb driver creates a child device info node for each logical unit (LUN) on the mass
storage device. The standard SolarisSC SI disk driver is attached to those nodes. Refer to
sd(7D).

This driver supports multiple LUN devices and creates a separate child device info
node for each LUN. All child LUN nodes attach to sd(7D).

All USB mass storage devices are treated as removable media devices. Thus, a USB
mass storage device can be formatted by r m for m a t(1) and managed by Volume Manager.
With or without Volume Manager, you can mount, eject, hot remove and hot insert a USB mass
storage device, as the following sections explain.

Some devices may be supported by the USB mass storage driver even though they do
not identify themselves as compliant with the USB mass storage class.

The scsa 2u sb .con f file contains ana t t r ib u t e-over r id e-list that lists the vendor ID, product ID,
and revision for matching mass storage devices, as well as fields for overriding the default dev-
ice attributes. The entries in this list are commented out by default and may be uncommented to
enable support of particular devices.

Follow the information given in the scsa 2u sb .con f file to see if a particular device can be
supported using the override information. Also see http://w w w .sun.com /io.

Using Volume
Management

Mass storage devices are managed by Volume Manager. vold(1M) creates a device nick-
name which can be listed withej ect(1). The device is mounted usingvolr m m ou n t(1) under
/rmdisk/la bel.

See volr m m ou n t(1M) to unmount the device andej ect(1) to eject the media. If the device is
ejected while it is mounted,vold(1M) unmounts the device before ejecting it. It also kills any
active applications that are accessing the device.

Hot removing a mass storage device with vold(1M) active will fail with a console warning.
To hot remove or insert a USB storage device, first stop vold(1M) b y issu in g t h e com m a n d
/et c/in it .d /volm gt st op. After the device has been removed or inserted, restartvold(1M) by
issuing the command/et c/in it .d /volm gt st a r t.

modified 20 Nov 2002 Solaris 8 7-205

scsa2usb (7D) Devices

You can also permanently disable vold for removable devices by commenting out ther m scsi
line in v old .con f. S ee theSystem Administration Guide, Volume I a ndSolaris Common Desktop
Environment: User’s Guide for details on how to manage a removable device with CDE and
Removable Media Manager. Seed t file.1X under CDE for information on how to use Remov-
able Media Manager.

Using m ou n t(1M) and
u m ou n t(1M)

Use m ou n t(1M) to mount the device andu m ou n t(1M) to unmount the device. Useej ect(1) to
eject the media. Novold nicknames can be used. (vold .1m is disabled.)

Removing the storage device while it is being accessed or mounted will fail with a con-
sole warning. To hot remove the storage device from the system, unmount the file sys-
tem, then kill all applications accessing the device. Next, hot remove the device. A
storage device can be hot inserted at any time.

For a comprehensive listing of (non-bootable) USB mass-storage devices that are com-
patible with this driver, see http: //w w w .sun.com /io.

DEVICE SPECIAL Block special file names are located in /d ev/d sk; raw file names are located in/d ev/r d sk.
Input/output requests to the devices must follow the same restrictions as those forSC SI disks.
Refer tosd(7D).

IOCTLS Refer to d k io(7I) andcd io(7I).

ERRORS Refer to sd(7D).

The device special files for the USB mass storage device are created like those for a
SC SI disk. Refer tosd(7D).

/d ev/d sk /cntndnsn
Block files

/d ev/r d sk /cntndnsn
Raw files

/vol/d ev/a lia ses/zip 0
Symbolic link to the character device for the media in Zip drive 0

/vol/d ev/a lia ses/j a z0
Symbolic link to the character device for the media in Jaz drive 0.

/vol/d ev/a lia ses/r m d isk 0
Symbolic link to the character device for the media in removable drive 0. This is
a generic removable media device.

/k er n el/d r v/scsa 2u sb
32-bit ELF kernel module for original USBA framework∗

/k er n el/d r v/sp a r cv9/scsa 2u sb
64-bit ELF kernel module for original USBA framework∗

/k er n el/d r v/scsa 2u sb .con f
Configuration file; can be used to override specific characteristics for scsa 2u sb
module

7-206 Solaris 8 modified 20 Nov 2002

Devices scsa2usb (7D)

/k er n el/d r v/u sb a 10_scsa 2u sb
32-bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_scsa 2u sb
64-bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/u sb a 10_scsa 2u sb .con f
Configuration file; can be used to override specific characteristics for
u sb a 10_scsa 2u sb module

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ ___
ATTRIBUTE TYPE ATTRIBUTE VALUE_ ___

Architecture Original USBA drivers
and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ ___

Availability SUNWusb, SUNWusbx_ ___ 



































cd r w(1), ej ect(1), r m for m a t(1), volr m m ou n t(1), cfga d m_scsi(1M), cfga d m_u sb(1M), fd isk(1M),
m ou n t(1M), u m ou n t(1M), vold(1M), scsi(4), a t t r ib u t es(5), u sb a(7D), u sb_sd(7D), p cfs(7FS),
cd io(7I), d k io(7I)

W r iting Dev ice Dr iv er s

S y stem A dm inistr a tion Guide, V olum e I

S ola r is Com m on Desk top Env ir onm ent: User ’s Guide

Univ er sa l S er ia l B us S pecifi ca tion 2.0

Univ er sa l S er ia l B us M a ss S tor a ge Cla ss S pecifi ca tion Ov er v iew 1.0

Univ er sa l S er ia l B us M a ss S tor a ge Cla ss B ulk -Only T r a nspor t S pecifi ca tion 1.0

Univ er sa l S er ia l B us M a ss S tor a ge Cla ss Contr ol/B ulk /Inter r upt (CB I) T r a nspor t S pecifi ca tion
1.0

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

Refer to sd(7D).

modified 20 Nov 2002 Solaris 8 7-207

scsa2usb (7D) Devices

In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

Warning: <device path> scsa2usb<instance number>:
Error Message...

or

Warning: <device path> usba10_scsa2usb<instance number>:
Error Message...

Cannot access device. Please reconnect <na m e>.
There was an error in accessing the mass-storage device during reconnect.
Please reconnect the device.

Device reported incorrect luns (adjusting to 1) or device reported <value> luns (adjusting to 1).
The mass-storage device reported that it supports an invalid number of LUNs.
The driver has adjusted the number of LUNs supported to 1.

Device is busy and cannot be suspended. Please close
files, unmount and eject." 6 The system wide suspend failed because the mass-
storage device is busy. Close the device, unmount the file system and eject the
media before retrying the suspend.

Device is not identical to the previous one on this port.
Please disconnect and reconnect." 6 Another USB device has been inserted on a
port that was connected to a mass-storage device. Please disconnect the USB
device and reconnect the mass-storage device back into that port.

Disconnected device was busy, please reconnect.
Disconnection of the mass-storage device failed because the device is busy.
Please reconnect the device.

Reinserted device is accessible again.
The mass-storage device that was hot-removed from its USB slot has been re-
inserted to the same slot and is available for access.

Syncing not supported.
While a system is panicking, a file system is mounted on the mass-storage
media. Syncing is not supported by the scsa 2u sb driver.

NOTES The Zip 100 drive does not comply with Univ er sa l S er ia l B us S pecifi ca tion 1.0 and cannot
be power managed. Power Management support for Zip 100 has been disabled.

If the system panics while a UFS file system is mounted on the mass storage media, no
syncing will take place for the mass-storage device. (Syncing is not supported by the
scsa 2u sb driver.) As a result, the file system on the media will not be consistent on reboot.

If a PCFS file system is mounted, no syncing is needed and the filesystem will be con-
sistent on reboot.

If a mass-storage device is busy, system suspend cannot proceed and the system will
immediately resume again.

7-208 Solaris 8 modified 20 Nov 2002

Devices scsa2usb (7D)

Attempts to remove a mass-storage device from the system will fail. The failure will
be logged to the console. An attempt to replace the removed device with some other
USB device will also fail. To successfully remove a USB mass-storage device you must
"close" all references to it.

An Iomega Zip 100Mb disk cannot be formatted on an Iomega Zip250 drive. See the
Iomega web site at http: //w w w .iom ega .com for details.

Concurrent I/O to devices with multiple LUNs on the same device is not supported.

Some USB CD-RW devices may perform inadequately at their advertised speeds. To
compensate, use USB CD-RW devices at lower speeds (2X versus 4X). See cd r w(1) for
details.

This driver also supports CBI devices that do not use USB interrupt pipe for status
completion.

modified 20 Nov 2002 Solaris 8 7-209

smt (7) Device and Network Interfaces

NAME smt – FDDI SMT Apps Interface device driver

SYNOPSIS #include <sys/nfsmt.h>

DESCRIPTION smt is a multi-threaded, loadable, clonable, STREAMS device driver supporting Data
Link Provider Interface, dlpi(7), for Application programs to get the statistics and
status of the Station Management. smt driver provides packet throughput statistics,
reconfiguration events and interface exceptions. It also provides the information on its
PHYs and some FORMAC error counters.

The user has to include these two lines in the program before the line ’#include
<nfsmt.h>’

#define SMT7_2 0
#define CFG_YES 1

The cloning character special device /dev/smt is used to access the driver. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream
with a particular device(ppa) where ppa corresponds to the interface instance number.

Once in the DL_ATTACHED state, the user need not send a DL_BIND_REQ. The user
can interact with the driver with ioctl(2) calls. The arguments for the ioctl are

ioctl (int fd, int request, SMTCB ∗ smtp)

The request is smt driver specific and can be SMT_GET or SMT_ACT. SMTCB is
defined as follows in the header file nfsmt.h

typedef struct {
int command;
int sub_command;
int param1;
int param2;
int param3;
char ∗ where;
int length;

} SMTCB;

SMT_GET:

SMT_GET provides a variety of functions such as to read the HPC registers and to get
the smt status. command field of smtp should be initialized to one of the following
values

HPC_BMAC1_REGS : To read the BMAC registers
HPC_READ : To read the HPC registers
HPC_PORT1_REGS : To read RMT port1
and HPC_PORT2_REGS and port2 registers

Some of the commands provide sub commands. The field sub_command should be
initialzed to these sub commands.

7-210 Solaris 8 modified 17 May 1996

Device and Network Interfaces smt (7)

1. HPC_BMAC1_REGS

HPC_BMAC1_REGS enables the user to read the BMAC registers. HPC_BMAC1_REGS
provides two sub commands GET_COUNTER_GROUP and GET_NEIGHBOR_ADDR.
GET_COUNTER_GROUP is used to get various SMT counter values.

GET_COUNTER_GROUP needs the SMTCB ∗ smtp to be initialized as follows

COUNTER_GROUP ct;

smtp->command = HPC_BMAC1_REGS;
smtp->sub_command = GET_COUNTER_GROUP;
smtp->where = (char ∗) &ct;
smtp->length = sizeof (ct);

GET_NEIGHBOR_ADDR enables the user to get the MAC address of the Neighbour
station. GET_NEIGHBOR_ADDR needs the SMTCB ∗ smtp to be initialized as follows

char addr_buf[12];

smtp->command = HPC_BMAC1_REGS;
smtp->sub_command = GET_NEIGHBOR_ADDR;
smtp->where = addr_buf;
smtp->length = 12;

2. HPC_READ

HPC_READ enables the user to read the HPC registers. HPC_READ does not provide
any sub commands. HPC_READ needs the SMTCB ∗ smtp to be initialized as follows

smtp->command = HPC_READ;
smtp->param1 = HPC_READ  HPC_SIZE_BYTE

 <HPC_reg_offset>;
smtp->where = (char ∗) smtp;

where HPC_register_offset offset is set of register space provided by the HPC. For the
set of reister offsets refer to the file nfsmt.h

3. HPC_PORT1_REGS and HPC_PORT2_REGS

HPC_PORT1_REGS enables the user to get the status of the Connection Management.
HPC_PORT2_REGS is for the second port if the interface is a DAS. The sub command
for HPC_PORT1_REGS is GET_PORT_GROUP. HPC_PORT1_REGS needs the SMTCB
∗ smtp to be initialized as follows

FDDI_PORT_GROUP port;

smtp->command = HPC_PORT1_REGS;
smtp->sub_command = GET_PORT_GROUP;
smtp->where = (char ∗) &port;
smtp->length = sizeof (port);

The two important status returned in the structure port are port.ecm_state and
port.pcm_state. port.ecm_state corresponds to the current state of the ECM state
machine. The valid values are OUT, IN, TRACE, PATHTEST, INSERT, CHECK and
DEINSERT. The value returned in port.ecm_state is the index into the list of the ECM

modified 17 May 1996 Solaris 8 7-211

smt (7) Device and Network Interfaces

States. port.pcm_state corresponds to the current state of the PCM state machine. The
Valid values are OFF, BREAK, TRACE, CONNECT, NEXT, SIGNAL, JOIN, VERIFY,
ACTIVE, MAINT. The value returned in port.pcm_state in an index into the list of
PCM States.

SMT_ACT:

SMT_ACT is supported to set the state of the smt driver. The command field should
always be set to SMT_CTL. SMT_ACT provides two sub commands
SMT_ACCEPT_FRAME and SMT_CLOSE. SMT_ACCEPT_FRAME needs to be used
when any SMT API client is active.

smtp->command = SMT_CTL;
smtp->sub_command = SMT_ACCEPT_FRAME;

SMT_CLOSE needs to be used when the API client exits.

smtp->command = SMT_CTL;
smtp->sub_command = SMT_CLOSE;

FILES /dev/smt

SEE ALSO nf(7), dlpi(7),

7-212 Solaris 8 modified 17 May 1996

Devices ugen (7D)

NAME ugen – USB generic driver

SYNOPSIS Nod e Na m e@u n it -a d d r ess

#in clu d e <sys/u sb /clien t s/u gen /u sb_u gen .h>

u gen is a generic USBA (Solaris USB Architecture) compliant client character driver that
presents USB devices to applications through a standardop en(2), close(2), r ea d(2), wr it e(2),
a ior ea d(3AIO), a iowr it e(3AIO) Unix interface. Uninterpreted raw data are transferred to and
from the device via file descriptors created for each USB endpoint. Status is obtained by read-
ing file descriptors created for endpoint and full device status.

u gen supports control, bulk, and interrupt-IN transfers. Isochronous and interrupt-OUT transfers
are not supported.

BINDING u gen can bind to a device with one or more interfaces in its entirety, or to a single interface of
that device. The binding type depends on information that is passed toa d d_d r v(1M) or
u p d a t e_d r v(1M).

An a d d_d r v(1M) command bindsu gen to a list of device types it is to control.u p d a t e_d r v(1M)
adds an additional device type to the list of device types being managed by the driver.

Names used to bind drivers to the entire device, as well as those used for binding to
just one interface, are shown in the output of the p r t con f -v command. A list of names for
each device is shown in the ouput as that device’s "compatible" property. Each name in the list
is called a "compatible" name. Be sure the device is powered on and connected before you
issuep r t con f -v.

p r t con f entries for most devices with multiple interfaces have "usb,device" as their last compati-
ble name. Their "compatible" property is similar to:

name=’compatible’ type=string items=5
value=’usb472,b0b0.100.config1’ + ’usb472,b0b0.100’ +

’usb472,b0b0.1’ + ’usb472,b0b0’ + ’usb,device’

Names are listed from most specific to most general, and the system searches them in
that order. Specify any name listed before "usb,device" to bind the entire device to
u gen. "usb,device" must not be used. If the system finds no other matching name first,
"usb,device" binds the full device tou sb_m id(7D). u sb_m id then creates a child for each inter-
face, enabling different drivers to bind to each child. Each child will then have its own "com-
patible" property with a list of names. All compatible names of interface children begin with
"usbif." For example:

name=’compatible’ type=string items=2
value=’usbif472,b0b0.100.config1.0’ + ’usbif472,b0b0.config1.0’

If the device has just one configuration and one interface, and is of device class 0, no
default "usb,device" compatible name is added; instead a list of "usbif" compatible
names is appended. For example:

modified 24 Nov 2002 Solaris 8 7-213

ugen (7D) Devices

name=’compatible’ type=string items=8
value=’usb430,100.105’ + ’usb430,100’ + ’usbif430,class3.1.2’ +
’usbif430,class3.1’ + ’usbif430,class3’ + ’usbif,class3.1.2’ +

’usbif,class3.1’ + ’usbif,class3’

To bind the new device type while keeping the original device types, issue an
u p d a t e_d r v(1M) command of the following form (on a single line):

update_drv -a -m ’∗ <device perms> <owner> <group>’
-i ’"<new device type>"’ ugen

or for the dual framework configuration:

update drv -a -m ’∗ <device perms> <owner> <group>’
-i ’"<new device type>"’ usba10_ugen

An example showing how to bind an entire composite device follows:

u p d a t e _ d r v - a - m ’∗ 0 6 6 6 r o o ts y s ’ - i’ " u s b 4 7 2 , b 0 b 0 " ’ u g e n

or for the dual framework configuration:

u p d a t e _ d r v - a - m ’∗ 0 6 6 6 r o o ts y s ’ - i’ " u s b 4 7 2 , b 0 b 0 " ’ u s b a 1 0 _ u g e n

Compatible names representing single interfaces of composite devices are of the fol-
lowing form:

" u s b i f < v i d > , < p i d > . c o n f i g < c f g v a l u e > . < i n t e r f a c e n u m b e r > "

An example showing how to bind a child device representing interface 0 of
configuration 1 of a composite device follows:

update_drv -a -m ’∗ 0666 root sys’
-i ’"usbif472,b0b0.config1.0"’ ugen

or for the dual framework configuration:

update_drv -a -m ’∗ 0666 root sys’
-i ’"usbif472,b0b0.config1.0"’ usba10_ugen

LOGICAL
DEVICE NAME

FORMAT

For each device or child device it manages, u gen creates one logical device name for
device-wide status and one logical device name for endpoint 0. (Ifu gen controls multiple child
devices that correspond to different interfaces of the same device, the multiple device-wide
status and endpoint logical device names created will share control and access the same device
pipes.)u gen also creates logical device names for all other endpoints within the device node’s
binding scope (interface or device), plus logical device names for their status.

When u gen is bound to an entire device, the following logical device names are created (each
on a single line).N represents the instance number of the device type.

7-214 Solaris 8 modified 24 Nov 2002

Devices ugen (7D)

Endpoint 0 (default endpoint):

/dev/usb/<vid>.<pid>/<N>/cntrl0
/dev/usb/<vid>.<pid>/<N>/cntrl0stat

For example:

/dev/usb/472.b0b0/0/cntrl0
/dev/usb/472.b0b0/0/cntrl0stat

Configuration 1, Endpoints > 0, alternate 0:

/dev/usb/<vid>.<pid>/<N>/if<interface#>
<in|out|cntrl><endpoint#>

/dev/usb/<vid>.<pid>/<N>/if<interface#>
<in|out|cntrl><endpoint#>stat

For example:

/dev/usb/472.b0b0/0/if0in1
/dev/usb/472.b0b0/0/if0in1stat

Configuration 1, Endpoints > 0, alternate > 0:

/dev/usb/<vid>.<pid>/<N>/if<interface#>.
<alternate><in|out|cntrl><endpoint#>

/dev/usb/<vid>.<pid>/<N>/if<interface#>.
<alternate<in|out|cntrl><endpoint#>stat

For example:

/dev/usb/472.b0b0/0/if0.1in3
/dev/usb/472.b0b0/0/if0.1in3stat

Configuration > 1, Endpoints > 0, alternate 0:

/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
<in|out|cntrl><endpoint#>

/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
<in|out|cntrl><endpoint#>stat

For example:

/dev/usb/472.b0b0/0/cfg2if0in1

modified 24 Nov 2002 Solaris 8 7-215

ugen (7D) Devices

/dev/usb/472.b0b0/0/cfg2if0in1stat

Configuration > 1, Endpoints > 0, alternate > 0:
/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.

<alternate<in|out|cntrl><endpoint#>
/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.

<alternate<in|out|cntrl><endpoint#>stat

For example:

/dev/usb/472.b0b0/0/cfg2if0.1in1
/dev/usb/472.b0b0/0/cfg2if0.1in1stat

Device status:

/dev/usb/<vid>.<pid>/<N>/devstat

For example:

/dev/usb/472.b0b0/0/devstat

When u gen is bound to a single device interface, the following logical device nodes are
created:

Endpoint 0 (default endpoint):

/dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0
/dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0stat

For example:

/dev/usb/472.b0b0/0/if0cntrl0
/dev/usb/472.b0b0/0/if0cntrl0stat

The format for all other logical device names is identical to the format used when u gen
is bound to the entire device.

Opening the endpoint of a different configuration or different alternate interface will
cause an implicit change of configuration or a switch to an alternate interface. A
configuration change is prohibited when any non-zero endpoint device nodes are open.
An alternate interface switch is prohibited if any endpoint in the same interface is
open.

All u gen logical device name files must be opened exclusively using the O_EXCL flag. Opens
attempted without O_EXCL fail with EACCES. All logical device name files created for return-
ing status must also be opened with O_RDONLY.

7-216 Solaris 8 modified 24 Nov 2002

Devices ugen (7D)

HOT-PLUGGING A device may be hot-removed at any time. Following hot-removal, the device status
changes to USB_DEV_STAT_DISCONNECTED, the status of open endpoints change to
USB_LC_STAT_DISCONNECTED upon their access, and all subsequent transfer
requests fail. Endpoints are reactivated by first reinserting the device and then closing
and reopening all endpoints that were open when the device was disconnected.

CPR
(CHECKPOINT/RESUME)

CPR (Checkpoint/Resume) may be initiated at any time and is treated similarly to a
hot-removal. Upon successful suspend and resume, all subsequent transfer requests fail
as an indication to the application to reinitialize. Applications should close and reopen
all endpoints to reinstate them. All endpoint and device status on Resume (before close
and reopen) is USB_LC_STAT_SUSPENDED. A system suspend will fail while u gen is
performing a transfer.

DEVICE STATUS
MANAGEMENT

Applications can monitor device status changes by reading the device status from the
device status logical name. When opened without O_NONBLOCK and O_NDELAY, all
reads from that file descriptor (with the exception of the the intial read that follows the
open) block until a device status change occurs.

Device statuses are:

USB_DEV_STAT_ONLINE
Device is available.

USB_DEV_STAT_DISCONNECTED
Device has been disconnected.

USB_DEV_STAT_RESUMED
Device has been resumed, however, endpoints which were open on
suspend have not yet been closed and reopened.

USB_DEV_STAT_UNAVAILABLE
Device has been reconnected, however, endpoints which were open on
disconnect have not yet been closed and reopened, or the device is
powered down.

The following code reads the device status device logical name:

int fd;
int status;

if ((fd = open("/dev/usb/472.b0b0/0/devstat",
O_RDONLY|O_EXCL)) < 0) {

/∗ handle error ∗ /
}

if (read(fd, &status, sizeof(status)) != sizeof(status)) {
/∗ handle error ∗ /

}

modified 24 Nov 2002 Solaris 8 7-217

ugen (7D) Devices

switch (status) {
case USB_DEV_STAT_DISCONNECTED:

printf ("Terminating as device has been disconnected./n");
exit (0);

case USB_DEV_STAT_RESUMED:
case USB_DEV_STAT_UNAVAILABLE:

/∗
∗ Close and reopen endpoints to reestablish device access,
∗ then reset device.
∗ /
break;

case USB_DEV_STAT_ONLINE:
default:

break;
}

Endpoint status is returned via the endpoint status device logical names. See the
ERRORS section for more information on endpoint status values.

CONTROL
TRANSFERS

Applications requiring I/O on a control endpoint should open the corresponding logi-
cal device name and use regular UNIX I/O system calls. For example: r ea d(2), wr it e(2),
a ior ea d(3AIO) anda iowr it e(3AIO). p oll(2) is not supported on control endpoints.

A control endpoint must be opened with O_E XC L  O_R DW R and cannot be opened
with O_NO NBL O C K or O_NDE L AY.

For example:

fd = open("/dev/usb/472.b0b0/0/cntrl0", O_EXCL | O_RDWR);

f d s t a t= o p e n (" / d e v / u s b / 4 7 2 . b 0 b 0 / 0 / c n t r l 0 s t a t " ,O _ EX C L | O _ R D O N LY) ;

Control endpoints can be read and written. A r ea d operation receives dataf r om the device
and awr it e operation sends datato the device.

To perform a control-IN transfer, perform a wr it e(2) of USB setup data (see section 9.3 of
the US B 2.0 specification) followed by ar ea d(2) on the same control endpoint to fetch the
desired data. For example:

void init_cntrl_req(
uchar_t ∗ req, uchar_t bmRequestType, uchar_t bRequest,
ushort_t wValue, ushort_t wIndex, ushort_t wLength)

{
req[0] = bmRequestType;
req[1] = bRequest;
req[2] = 0xFF & wValue;

7-218 Solaris 8 modified 24 Nov 2002

Devices ugen (7D)

req[3] = 0xFF & (wValue >> 8);
req[4] = 0xFF & wIndex;
req[5] = 0xFF & (wIndex >> 8);
req[6] = 0xFF & wLength;
req[7] = 0xFF & (wLength >> 8);

}

....

uchar_t dev_descr_req[8];
usb_dev_descr_t descr;

init_cntrl_req(dev_descr_req,
USB_DEV_REQ_DEV_TO_HOST, USB_REQ_GET_DESCR,
USB_DESCR_TYPE_SETUP_DEV, 0, sizeof (descr));

count = write(fd, dev_descr_req, sizeof (dev_descr_req));
if (count != sizeof (dev_descr_req)) {

/∗ do some error recovery ∗ /
...

}

count = read(fd, &descr, sizeof (descr));
if (count != sizeof (descr)) {

/∗ do some error recovery ∗ /
}

The application can issue any number of reads to read data received on a control end-
point. u gen successfully completes all reads, returning the number of bytes transferred. Zero is
returned when there is no data to transfer.

If the r ea d/wr it e fails and returns-1, you can access the endpoint’s status device logical name
for precise error information:

int status;

count = read(fdstat, &status, sizeof (status));
if (count == sizeof (status)) {

switch (status) {
case USB_LC_STAT_SUSPENDED:
case USB_LC_STAT_DISCONNECTED:

/∗ close all endpoints ∗ /
...
break;

default:
...

modified 24 Nov 2002 Solaris 8 7-219

ugen (7D) Devices

break;
}

}
Refer to the ERRORS section for all possible error values.

To perform a control-OUT transfer, write the USB setup data followed by any accom-
panying data bytes.

init_cntrl_req(wbuf,);
bcopy(data, &wuf[8], sizeof (data);

count = write(fd, wbuf, sizeof (wbuf));

A wr it e(2) returns the number of bytes actually transferred, (whether or not thewr it e is com-
pletely successful), provided that some data is actually data transferred. When no data is
transferred,wr it e(2) returns-1. Applications can read the corresponding endpoint status to
retrieve detailed error information.

INTERRUPT
TRANSFERS

Applications requiring data from an interrupt-IN endpoint should open the
corresponding logical device name and use r ea d(2), a ior ea d(3AIO) andp oll(2) system calls.
Interrupt-OUT endpoints are not currently supported.

An interrupt endpoint must be opened with O_E XC L  O_R DO NL Y. It can also be
opened usingO_NO NBL O C K or O_NDE L AY if desired.

f d = o p e n (" / d e v / u s b / 4 7 2 . b 0 b 0 / 0 / i f 0 i n 1 " ,O _ EX C L | O _ R D O N LY) ;

fdstat = open("/dev/usb/472.b0b0/0/if0in1stat", O_EXCL | O_RDONLY);

u gen starts polling interrupt endpoints immediately upon opening them and stops polling them
upon closure. (Polling refers to interrogation of the device by the driver and should not be con-
fused withp oll(2), which is an interrogation of the driver by the application.)

A r ea d(2) of an endpoint opened with theO_NO NBL O C K or O_NDE L AY flags set will not
block when there is insufficient data available to satisfy the request. Ther ea d simply returns
what it can without signifying any error.

u gen enables buffering of up to one second of incoming data. In case of buffer overflow,u gen
stops polling the interrupt endpoint until the application consumes all the data. Ar ea d(2) of an
empty buffer returns-1, sets the endpoint status toUSB_L C_ST AT_I NT R_BUF_F UL L and
causesu gen to start polling the endpoint again. To retrieve the status, the application can open
and read the corresponding endpoint’s status device logical name.

for (;;) {
count = read(fd, buf, sizeof(buf));
if (count == -1) {

int cnt, status;

cnt = read(fdstat, &status, sizeof (status));

7-220 Solaris 8 modified 24 Nov 2002

Devices ugen (7D)

if (cnt == -1) {
/∗ more error recovery here ∗ /

} else {
switch (status) {
case USB_LC_STAT_INTR_BUF_FULL:

...
break;

default:
...
break;

}
}

}
/∗ process the data ∗ /
....

}
u gen will never drop data. However, the device may drop data if the application cannot read it
at the rate that it is produced.

An application can open multiple interrupt-IN endpoints and can call p oll(2) to monitor
the availability of new data.

struct pollfd pfd[2];

bzero(pfd, sizeof (pfd));
pfd[0].fd = fd1; /∗ fd1 is one interrupt endpoint. ∗ /
pfd[0].events = POLLIN;
pfd[1].fd = fd2; /∗ fd2 is another interrupt endpoint. ∗ /
pfd[1].events = POLLIN;

for (;;) {
poll(pfd, 2, -1);

if (pfd[0].revents & POLLIN) {
count = read(fd1, buf, sizeof (buf));
....

}
if (pfd[1].revents & POLLIN) {

count = read(fd2, buf, sizeof (buf));
....

}
}

p oll(2) can also be used for concurrent monitoring of multiple interrupt endpoints and device
status. Substitute the file descriptor of the device status endpoint (opened without
O_NONBLOCK or O_NDELAY) for one of the interrupt endpoints in the code example above.

modified 24 Nov 2002 Solaris 8 7-221

ugen (7D) Devices

BULK
TRANSFERS

Applications requiring I/O on a bulk endpoint can open the corresponding logical
device name and perform regular UNIX I/O system calls. For example: r ea d(2), wr it e(2),
a ior ea d(3AIO) anda iowr it e(3AIO). p oll(2) is not supported on bulk endpoints.

A bulk endpoint must be opened with O_E XC L  O_R DW R and cannot be opened with
O_NO NBL O C K or O_NDE L AY:

f d = o p e n (" / d e v / u s b / 4 7 2 . b 0 b 0 / 0 / i f 0 i n 2 " ,O _ EX C L | O _ R D W R) ;

f d s t a t= o p e n (" / d e v / u s b / 4 7 2 . b 0 b 0 / 0 / i f 0 i n 2 s t a t " ,O _ EX C L | O _ R D O N LY) ;

Data can be read from a bulk-IN endpoint as follows:

count = read(fd, buf, sizeof (buf)):
if (count == -1) {

/∗ error recovery ∗ /
}

Data can be written to a bulk-OUT endpoint as follows:

count = write(fd, buf, sizeof (buf)):
if (count == -1) {

/∗ error recovery ∗ /
}

ERRORS The following statuses are returned by endpoint status device logical names:

USB_LC_STAT_NOERROR
No error.

USB_LC_STAT_CRC
CRC error detected.

USB_LC_STAT_BITSTUFFING
Bit stuffing error.

USB_LC_STAT_DATA_TOGGLE_MM
Data toggle did not match.

USB_LC_STAT_STALL
Endpoint returned stall.

USB_LC_STAT_DEV_NOT_RESP
Device not responding.

USB_LC_STAT_UNEXP_PID
Unexpected Packet Identifier (PID).

USB_LC_STAT_PID_CHECKFAILURE
Check bits on PID failed.

USB_LC_STAT_DATA_OVERRUN
Data overrun.

USB_LC_STAT_DATA_UNDERRUN
Data underrun.

7-222 Solaris 8 modified 24 Nov 2002

Devices ugen (7D)

USB_LC_STAT_BUFFER_OVERRUN
Buffer overrun.

USB_LC_STAT_BUFFER_UNDERRUN
Buffer underrun.

USB_LC_STAT_TIMEOUT
Command timed out.

USB_LC_STAT_NOT_ACCESSED
Not accessed by the hardware.

USB_LC_STAT_UNSPECIFIED_ERR
Unspecified USBA or HCD error.

USB_LC_STAT_NO_BANDWIDTH
No bandwidth available.

USB_LC_STAT_HW_ERR
Host Controller h/w error.

USB_LC_STAT_SUSPENDED
Device was suspended.

USB_LC_STAT_DISCONNECTED
Device was disconnected.

USB_LC_STAT_INTR_BUF_FULL
Interrupt data buffer full.

USB_LC_STAT_INTERRUPTED
Request was interrupted.

USB_LC_STAT_NO_RESOURCES
No resources available for request.

USB_LC_STAT_INTR_POLLING_FAILED
Failed to restart polling.

The following system call er r n o values are returned:

E BUSY
The endpoint has been opened and another open is attempted.

E AC C E S
An endpoint open was attempted with incorrect flags.

E NO T SUP
Operation not supported.

E NXI O
Device associated with the file descriptor does not exist.

ENODEV
Device has been hot-removed or a suspend/resume happened before this com-
mand.

EIO An I/O error occurred. Send a read on the endpoint status minor node to get
the exact error information.

modified 24 Nov 2002 Solaris 8 7-223

ugen (7D) Devices

EINTR
Interrupted system call.

ENOMEM
No memory for the allocation of internal structures.

/dev/usb/<vid>.<pid>/<N>/cntrl0
/dev/usb/<vid>.<pid>/<N>/cntrl0stat

/dev/usb/<vid>.<pid>/<N>/if<interface#>
<in|out|cntrl><endpoint#>

/dev/usb/<vid>.<pid>/<N>/if<interface#>
<in|out|cntrl><endpoint#>stat

/dev/usb/<vid>.<pid>/<N>/if<interface#>.
<alternate><in|out|cntrl<endpoint#>

/dev/usb/<vid>.<pid>/<N>/if<interface#>.
<alternate><in|out|cntrl><endpoint#>stat

/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
<in|out|cntrl><endpoint#>

/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
<in|out|cntrl<endpoint#stat>

/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.
<alternate><in|out|cntrl><endpoint#>

/dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.
<alternate><in|out|cntrl><endpoint#>stat

/dev/usb/<vid>.<pid>/<N>/devstat

/dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0
/dev/usb<vid>.<pid>/<N>/if<interface#>cntrl0stat

where N is an integer representing the instance number of this type of device. (All logical dev-
ice names for a single device share the sameN.)

/k er n el/d r v/u sb a 10_u gen
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_u gen
64 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/u sb a 10_u gen .con f
Configuration file needed for u sb a 10_u gen.

7-224 Solaris 8 modified 24 Nov 2002

Devices ugen (7D)

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture PCI-based SPARC systems_ __
Availability SUNWusb, SUNWusbx_ __ 















u sb a(7D)

http: //w w w .sun.com /desk top/w hitepa per s.htm l

DIAGNOSTICS Instance number too high (<value>)
Too many devices are using this driver.

Too many minor nodes
Device has too many minor nodes. Not all are available.

NOTES Isochronous and interrupt-OUT transfers are not supported.

u gen returns-1 for all commands and setser r n o to E NO DE V when device has been hot-
removed or resumed from a suspend. The application must close and reopen all open minor
nodes to reinstate successful communication.

u gen is available only throughUS B 2.0 ports operated by theUS B A 1.0 framework. Please see
w w w .sun.com /desk top/w hitepa per s.html for more information regarding USB dual framework
implementation, USBA 1.0, and USB 2.0.

modified 24 Nov 2002 Solaris 8 7-225

usb_ac (7D) Devices

NAME usb_ac – USB audio control driver

SYNOPSIS sound-control@unit-address

The u sb_a c driver is a USBA (Solaris USB Architecture) compliant client driver that supports
the US B A udio Cla ss 1.0 specification.

The audio control driver is a USB class driver and offers functionality similar to the
a u d iocs (sun4u) anda u d iot s (Sun Blade 100) drivers which use the Solaris audio mixer frame-
work (m ixer(7I)). Unlike thea u d iocs anda u d iot s drivers, the USB audio device may have
play-only or record-only capability.

Drivers corresponding to other USB audio interfaces on the device, including the
u sb_a s(7D) audio streaming driver or theh id(7D) driver, are plumbed under the USB audio
control driver and do not directly interface with user applications.

The u sb_a c driver supports USB audio class compliant devices with a feature unit. For a list of
recommended devices, visit:w w w .sun.com /io.

APPLICATION
PROGRAM

INTERFACE

This interface is described in the m ixer(7I) anda u d io(7I) man pages.

Driver Versions Applications that open /d ev/a u d io may use theAUDI O_G E T DE V ioct l() to determine which
audio device is being used. The USB audio driver returns the string "USB Audio" in the name
field of the audio_device structure. The version field displays the version number and the config
field displays the string "external."

The USB audio device provides support for an external speaker and microphone.

Audio Mixer Mode Use the /u sr /k er n el/d r v/u sb_a c.con f (original USBA framework) and
/u sr /k er n el/d r v/u sb a 10_u sb_a c.con f (USBA 1.0 framework) configururation files to configure the
USB audio driver. These files determine whether the audio mixer is enabled or disabled. See
the m ixer(7I) manual page for details. You can change the audio mixer mode at any time by
using them ixer ct l(1) or sd t a u d iocon t r ol(1) applications.

Audio Data Formats The USB audio device supports the audio data formats shown below. Please note that
at a minimum, the device must support a sampling frequency of 44100 Hz or 48000
Hz. In the table below, mode "M" indicates that mixer mode is enabled, while "C" indi-
cates that mixer mode is disabled or in compatibility mode.

Sample Rate Encoding Precision Channels Mode
8000 Hz u-Law or A-Law 8 1 or 2 M and C
9600 Hz u-Law or A-Law 8 1 or 2 M and C

11025 Hz u-law or A-law 8 1 or 2 M and C
16000 Hz u-law or A-law 8 1 or 2 M and C
18900 Hz u-law or A-law 8 1 or 2 M and C
22050 Hz u-law or A-law 8 1 or 2 M and C
32000 Hz u-law or A-law 8 1 or 2 M and C
33075 Hz u-law or A-law 8 1 or 2 M and C

7-226 Solaris 8 modified 28 Dec 2001

Devices usb_ac (7D)

37800 Hz u-law or A-law 8 1 or 2 M and C
44100 Hz u-law or A-law 8 1 or 2 M and C
48000 Hz u-law or A-law 8 1 or 2 M and C
8000 Hz linear 8 or 16 1 or 2 M and C
9600 Hz linear 8 or 16 1 or 2 M and C

11025 Hz linear 8 or 16 1 or 2 M and C
16000 Hz linear 8 or 16 1 or 2 M and C
18900 Hz linear 8 or 16 1 or 2 M and C
22050 Hz linear 8 or 16 1 or 2 M and C
32000 Hz linear 8 or 16 1 or 2 M and C
33075 Hz linear 8 or 16 1 or 2 M and C
37800 Hz linear 8 or 16 1 or 2 M and C
44100 Hz linear 8 or 16 1 or 2 M and C
48000 Hz linear 8 or 16 1 or 2 M and C

Audio Status Change
Notification

As described in the a u d io(7I) andm ixer(7I) man pages, it is possible to request asynchro-
nous notification of changes in the state of an audio device.

ERRORS If a device is hot-removed while it is active, all subsequent opens will return EIO. All
other errors are defined in the a u d io(7I) man page.

/u sr /k er n el/d r v/u sb_a c
32 bit ELF kernel module for original USBA framework.∗

/u sr /k er n el/d r v/sp a r cv9/u sb_a c
64 bit ELF kernel module for original USBA framework.∗

/u sr /k er n el/d r v/u sb_a c.con f
u sb_a c audio driver configuration file.

/u sr /k er n el/d r v/u sb a 10_u sb_a c
32 bit ELF kernel module for USBA 1.0 framework.∗

/u sr /k er n el/d r v/sp a r cv9/u sb a 10_u sb_a c
64 bit ELF kernel module for USBA 1.0 framework.∗

/u sr /k er n el/d r v/u sb a 10_u sb_a c.con f
u sb a 10_u sb_a c a u d io driver configuration file.

/d ev/a u d io
Symlink to the system’s primary audio device, not necessarily a USB
audio device.

/d ev/a u d ioct l
/d ev/a u d io control device.

/d ev/sou n d /[0-N]
Represents the audio devices on the system and is not necessarily a USB audio
device.

/d ev/sou n d /[0-N]ct l

modified 28 Dec 2001 Solaris 8 7-227

usb_ac (7D) Devices

/d ev/sou n d audio control device.

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation, USBA 1.0, and USB 2.0

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture Original USBA drivers and files: PCI-based sys-
tems USBA 1.0 drivers and files: PCI-based
SPARC systems_ __

Availability SUNWaud (32-bit)_ __
SUNWaudx (64-bit)_ __

Stability level Evolving_ __ 





























m ixer ct l(1), cfga d m_u sb(1M), ioct l(2), a t t r ib u t es(5), h id(7D), u sb a(7D), u sb_a s(7D), a u d io(7I),
m ixer(7I), st r ea m io(7I), u sb_a h(7M)

W r iting Dev ice Dr iv er s

Univ er sa l S er ia l B us S pecifi ca tion 2.0

Univ er sa l S er ia l B us Dev ice Cla ss Defi nition f or A udio Dev ices, R elea se 1.0

S y stem A dm inistr a tion: B a sic A dm inistr a tion

http://www.sun.com/desktop/whitepapers.html

http: //w w w .sun.com /io

DIAGNOSTICS In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

Warning: <device path> (usb_ac<instance num>): Error Message...

or

Warning: <device path> (usba10_usb_ac<instance num>):
Error Message...

Failure to plumb audio streams drivers.
The usb audio streaming driver or the h id driver could not be plumbed under the
audio control driver and the device is not usable.

Device was disconnected while open. Data may have been
lost." 6 The device was hot-removed or powered off while it was open and a
possible data transfer was in progress. The job was aborted.

Cannot access device. Please reconnect <name>.
There was an error in accessing the device during reconnect. Please reconnect
the device.

Device is not identical to the previous one on this port.

7-228 Solaris 8 modified 28 Dec 2001

Devices usb_ac (7D)

Please disconnect and reconnect." 6 A USB audio device was hot-removed while
open. A new device was hot-inserted which is not identical to the original USB
audio device. Please disconnect the new USB device and reconnect the original
device to the same port.

Busy device has been reconnected.
A device that was hot-removed from a USB port has been re-inserted again.

NOTES The USB audio device will be power managed if the device is idle.

USB audio devices do not have line out or port control.

If a USB audio device is hot-removed while active, it prints a console warning message
requesting you to put the device back in the same port and informing you that there
may be data loss. Hot-removal of an active audio device is strongly discouraged.

Close all applications before hot-removing or hot-inserting a device. If an application
is open when a device is hot-removed, inserting the device in a different port will
create new /d ev/sou n d links but /d ev/a u d io will not be affected. Hotplugging an active device
is not recommended.

On slower IA machines and with higher frequency sample rates, you may encounter
some audio quality problems.

To make a USB audio device the primary audio device (for example: /d ev/a u d io), close
all audio applications, disconnect all USB audio devices, modunload all other audio drivers and
then simply reconnect the USB audio device. This will cause/d ev/a u d io to point to the USB
audio /d ev/sou n d entry.

Most Solaris audio applications and 3rd party audio applications available on Solaris
work well with USB audio devices. For details of the application behavior with USB
audio devices, visit w w w .sun.com /io.

modified 28 Dec 2001 Solaris 8 7-229

usb_ah (7M) STREAMS Modules

NAME usb_ah – USB audio HID STREAMS module

The u sb_a h STREAMS module enables the USB input control device which is a member of the
Human Interface Device (HID) class and provides support for volume change and mute button.
The u sb_a h module is pushed on top of a HID class driver instance (seeh id(7D)) and below an
Audio Control class driver instance (seeu sb_a c(7D)). It translates the HID specific events to
the events that are supported by the Solaris audio mixer framework.

/k er n el/st r m od /u sb_a h
32-bit ELF kernel STREAMS module for USBA 1.0 framework∗

/k er n el/st r m od /sp a r cv9/u sb_a h
64-bit ELF kernel STREAMS module for USBA 1.0 framework∗

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture PCI-based SPARC systems_ __
Availability SUNWusb, SUNWusbx_ __
Interface Stability Evolving_ __ 


















m ixer ct l(1), h id(7D), u sb a(7D), u sb_a c(7D), u sb_a s(7D), u sb_m id(7D), a u d io(7I), m ixer(7I)

S T R EA M S P r ogr a m m ing Guide

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

Univ er sa l S er ia l B us S pecifi ca tion 2.0

Dev ice Cla ss Defi nition f or Hum a n Inter f a ce Dev ices (HID) 1.1

http: //w w w .sun.com /desk top/w hitepa per s.htm l

DIAGNOSTICS None

NOTES If USB audio drivers are not loaded, buttons will not be active.

7-230 Solaris 8 modified 18 Nov 2001

Devices usb_as (7D)

NAME usb_as – USB audio streaming driver

SYNOPSIS sound@unit-address

The u sb_a s driver is a USBA (Solaris USB Architecture) compliant client driver that supports
the US B A udio Cla ss 1.0 specification.

The u sb_a s driver processes audio data messages during play and record and sets sample fre-
quency, precision, encoding and other functions on request from the USB audio control driver.
Seeu sb_a c(7D).

This driver is plumbed under the USB audio control driver and does not directly inter-
face with the user application.

/u sr /k er n el/d r v/u sb_a s
32 bit ELF kernel module for original USBA framework∗

/u sr /k er n el/d r v/sp a r cv9/u sb_a s
64 bit ELF kernel module for original USBA framework∗

/u sr /k er n el/d r v/u sb a 10_u sb_a s
32 bit ELF kernel module for USBA 1.0 framework∗

/u sr /k er n el/d r v/sp a r cv9/u sb a 10_u sb_a s
64 bit ELF kernel module for USBA 1.0 framework∗

/u sr /k er n el/d r v/u sb a 10_u sb_a s.con f
u sb a 10_u sb_a s configuration file

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture Original USBA drivers and files: PCI-based
systems

USBA 1.0 drivers and files: PCI-based SPARC
systems_ __

Availability SUNWaud, SUNWaudx_ __
Stability level Evolving_ __ 

































m ixer ct l(1), a t t r ib u t es(5), u sb a(7D), u sb_a c(7D), a u d io(7I), m ixer(7I), st r ea m io(7I)

W r iting Dev ice Dr iv er s

modified 24 Nov 2002 Solaris 8 7-231

usb_as (7D) Devices

Univ er sa l S er ia l B us S pecifi ca tion 2.0

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http://w w w .sun.com /io

DIAGNOSTICS In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

Warning: <device path> usb_as<instance num>: Error Message...

or

Warning: <device path> usba10_usb_as<instance num>:
Error Message...

where <device path> is the physical path to the device in /d evices directory.

No bandwidth available.
There is no bandwidth available for the isochronous pipe. As a result, no data
will be transferred during play and record.

Cannot access device. Please reconnect <name>.
There was an error in accessing the device during reconnect. Please reconnect
the device.

Device is not identical to the previous one on this port.
Please disconnect and reconnect." 6 A USB audio streaming interface was hot-
removed while open. A new device was hot-inserted which is not identical to
the original USB audio device. Please disconnect the new USB device and recon-
nect the original device to the same port.

NOTES The USB audio streaming interface will be power managed if device is idle.

7-232 Solaris 8 modified 24 Nov 2002

Devices usb_mid (7D)

NAME usb_mid – USB Multi Interface Driver

SYNOPSIS d evice@unit-a ddr ess

The u sb_m id driver is aUSBA (Solaris Universal Serial Bus Architecture) compliant nexus
driver that binds to device level nodes of a composite (multi interface) device if no vendor or
class specific driver is available. Theu sb_m id driver attempts to bind drivers to each of the
composite device’s interfaces.

/k er n el/d r v/u sb_m id
32-bit ELF kernel module for original USBA framework∗

/k er n el/d r v/sp a r cv9/u sb_m id
64-bit ELF kernel module for original USBA framework∗

/k er n el/d r v/u sb a 10_u sb_m id
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_u sb_m id
64 bit ELF kernel module for USBA 1.0 framework∗

k er n el/d r v/u sb a 10_u sb_m id .con f
u sb a 10_u sb_m id configuration file

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for a description of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture Original USBA drivers and files: PCI-based sys-
tems USBA 1.0 drivers and files: PCI-based
SPARC systems_ __

Availability SUNWusbx (32-bit)_ __
SUNWusb (64-bit)_ __ 



























cfga d m_u sb(1M), a t t r ib u t es(5), u sb a(7D)

Univ er sa l S er ia l B us S pecifi ca tion 2.0

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

modified 24 Nov 2002 Solaris 8 7-233

usb_mid (7D) Devices

In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

Warning: <device path> usb_mid<instance number>: Error Message...

or

Warning: <device path> usba10_usb_mid<instance number:
Error Message...

Cannot access device. Please reconnect <dev ice na m e>.
This device has been disconnected because a device other than the original one
has been inserted. The driver informs you of this fact by displaying the name of
the original device.

Device not identical to the previous one on this port.
Please disconnect and reconnect." 6 Same condition as described above; however
in this case, the driver is unable to identify the original device with a name
string.

7-234 Solaris 8 modified 24 Nov 2002

Devices usb_sd (7D)

NAME usb_sd – USB disk and storage device driver

SYNOPSIS d isk@t a r get ,lu n : p a r t it ion

The u sb_sd driver supports devices which comply with the USB mass storage specification. It
works in conjunction with thescsa 2u sb(7D) driver. It treats all USB devices as removable
media by default, unless a device is exempted by ascsa 2u sb configuration file entry. (refer to
scsa 2u sb(7D)).

To determine the disk drive type, use the SC SI /AT AP I inquiry command and read the
volume label stored on block 0 of the drive. (The volume label describes the disk geometry
and partitioning and must be present for the disk to be mounted by the system.) A volume label
is not required for removable, rewritable or read-only media.

DEVICE SPECIAL
FILES

Block-files access the disk using normal buffering mechanism and are read-from and
written-to without regard to physical disk records. A "raw" interface enables direct
transmission between the disk and the user’s read or write buffer. A single read or
wr it e call usually results in a single I/O operation; raw I/O is therefore more efficient when
many bytes are transmitted. Block files names are found in/d ev/d sk; raw file names are found
in /d ev/r d sk.

I/O requests to the raw device must be aligned on a 512-byte (DE V_BSI Z E) boundary
and all I/O request lengths must be in multiples of 512 bytes. Requests that do not meet these
requirements will trigger anE I NVAL error. There are no alignment or length restrictions on
I/O requests to the block device.

CD-ROM DRIVE
SUPPORT

A CD-ROM disk is single-sided and contains approximately 640 megabytes of data or
74 minutes of audio. When the CD-ROM is opened, the eject button is disabled to
prevent manual removal of the disk until the last close() is called. No volume label is
required for a CD-ROM. The disk geometry and partitioning information are constant and
never change. If the CD-ROM contains data recorded in a Solaris-aware file system format, it
can be mounted using the appropriate Solaris file system support.

DVD-ROM DRIVE
SUPPORT

DVD-ROM media can be single or double-sided and can be recorded upon using a
single or double layer structure. Double-layer media provides parallel or opposite track
paths. A DVD-ROM can hold from between 4.5 Gbytes and 17 Gbytes of data, depend-
ing on the layer structure used for recording and if the DVD-ROM is single or double-
sided.

When the DVD-ROM is opened, the eject button is disabled to prevent the manual
removal of a disk until the last close() is called. No volume label is required for a DVD-
ROM. If the DVD-ROM contains data recorded in a Solaris-aware file system format, it can be
mounted using the appropriate Solaris file system support.

ZIP/JAZ DRIVE
SUPPORT

Z I P /J AZ media provide varied data capacity points; a singleJ AZ drive can store up to 2
GBytes of data, while a ZIP-250 can store up to 250MBytes of data.Z I P /J AZ drives can be
read-from or written-to using the appropriate drive.

modified 24 Nov 2002 Solaris 8 7-235

usb_sd (7D) Devices

When a Z I P /J AZ drive is opened, the eject button is disabled to prevent the manual removal of
a disk until the lastclose() is called. No volume label is required for aZ I P /J AZ drive. If the
Z I P /J AZ drive contains data recorded in a Solaris-aware file system format, it can be mounted
using the appropriate Solaris file system support.

DEVICE
STATISTICS

SUPPORT

Each device maintains I/O statistics for the device and for partitions allocated for that
device. For each device/partition, the driver accumulates reads, writes, bytes read,
and bytes written. The driver also initiates hi-resolution time stamps at queue entry
and exit points to enable monitoring of residence time and cumulative residence-
length product for each queue.

Not all device drivers make per-partition IO statistics available for reporting.

IOCTLS Refer to d k io(7I), andcd io(7I)

ERRORS E AC C E S
Permission denied

E BUSY
The partition was opened exclusively by another thread

E F AUL T
The argument features a bad address

E I NVAL
Invalid argument

E NO T T Y
The device does not support the requested ioctl function

E NXI O
During opening, the device did not exist. During close, the drive unlock
failed

E R O F S
The device is read-only

E AG AI N
Resource temporarily unavailable

E I NT R
A signal was caught during the execution of the ioct l() function

E NO M E M
Insufficient memory

E P E R M
Insufficent access permission

E I O An I/O error occurred. Refer to notes for details on copy-protected
DVD-ROM media.

7-236 Solaris 8 modified 24 Nov 2002

Devices usb_sd (7D)

FILES /k er n el/d r v/u sb_sd
32-bit ELF kernel module for both USB frameworks∗

/k er n el/d r v/sp a r cv9/u sb_sd
64-bit ELF kernel module for both USB frameworks∗

/d ev/d sk /cn t n d n sn
block files

/d ev/r d sk /cn t n d n sn
raw files

Where:

cn controller n

tn SCSI target id n (0-6)

dn SCSI LUN n (0-7 normally; some HBAs support LUNs to 15 or 32. See the
specific manpage for details)

sn partition n (0-7)

∗ Please see http: //w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding
USB dual framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture PCI-based SPARC systems_ __
Availability SUNWusb, SUNWusbx_ __ 















sa r(1), cfga d m_scsi(1M), fd isk(1M), for m a t(1M), iost a t(1M), close(2), ioct l(2), lseek(2), r ea d(2),
wr it e(2), scsi(4), filesyst em(5), scsa 2u sb(7D), h sfs(7FS),p cfs(7FS),u d fs(7FS),cd io(7I),
d k io(7I), scsi_ifset ca p(9F), scsi_r eset(9F)

A N S I S m a ll Com puter S y stem Inter f a ce-2 (S CS I-2)

A T A P a ck et Inter f a ce f or CD-R OM s, S F F -8020i

M t.F uji Com m a nds f or CD a nd DV D, S F F 8090v 3

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http://w w w .sun.com /io

DIAGNOSTICS Error for Command:’<com m a nd na m e>’
Er r o r Le v e l :F a t a l
R e q u e s t e d B l o c k :<n>
Er r o r B l o c k :<m>
V e n d o r : ’<v endor na m e>’
S e r i a lN u m b e r : ’<ser ia l num ber>’
S e n s e K e y :<sense k ey na m e>

modified 24 Nov 2002 Solaris 8 7-237

usb_sd (7D) Devices

ASC: 0x<a> (<ASC name>), ASCQ: 0x, FRU: 0x<c>
The command indicated by <command name> failed. The Requested Block is
the block where the transfer started and the Error Block is the block that caused
the error. Sense Key, ASC, andASC Q information is returned by the target in
response to a request sense command.

Caddy not inserted in drive
The drive is not ready because no caddy has been inserted.

Check Condition on REQUEST SENSE
A REQUEST SENSE command completed with a check condition. The original
command will be retried a number of times.

Label says <m> blocks Drive says <n> blocks
There is a discrepancy between the label and what the drive returned on the
R E AD C AP AC I T Y command.

Not enough sense information
The request sense data was less than expected.

Request Sense couldn’t get sense data
The R E Q UE ST SE NSE command did not transfer any data.

Reservation Conflict
The drive was reserved by another initiator.

SCSI transport failed: reason ’xxxx’: { retrying giving
up} " 6 The host adapter has failed to transport a command to the target for the
reason stated. The driver will either retry the command or, ultimately, give up.

Unhandled Sense Key<n>
The REQUEST SENSE data included an invalid sense.

Unit not ready. Additional sense code 0x<n>
The drive is not ready.

Can’t do switch back to mode 1
A failure to switch back to read mode 1.

Corrupt label - bad geometry
The disk label is corrupted.

Corrupt label - label checksum failed
The disk label is corrupted.

Corrupt label - wrong magic number
The disk label is corrupted.

Device busy too long
The drive returned busy during a number of retries.

Disk not responding to selection
The drive is powered down or died

Failed to handle UA
A retry on a Unit Attention condition failed.

7-238 Solaris 8 modified 24 Nov 2002

Devices usb_sd (7D)

I/O to invalid geometry
The geometry of the drive could not be established.

Incomplete read/write - retrying/giving up
There was a residue after the command completed normally.

No bp for direct access device format geometry
A bp with consistent memory could not be allocated.

No bp for disk label
A bp with consistent memory could not be allocated.

No bp for fdisk
A bp with consistent memory could not be allocated.

No bp for rigid disk geometry
A bp with consistent memory could not be allocated.

No mem for property
Free memory pool exhausted.

No memory for direct access device format geometry
Free memory pool exhausted.

No memory for disk label
Free memory pool exhausted.

No memory for rigid disk geometry
The disk label is corrupted.

No resources for dumping
A packet could not be allocated during dumping.

Offline
Drive went offline; probably powered down.

Requeue of command fails
Driver attempted to retry a command and experienced a transport error.

sdrestart transport failed()
Driver attempted to retry a command and experienced a transport error.

Transfer length not modulo
Illegal request size.

Transport of request sense fails()
Driver attempted to submit a request sense command and failed.

Transport rejected()
Host adapter driver was unable to accept a command.

Unable to read label
Failure to read disk label.

Unit does not respond to selection
Drive went offline; probably powered down.

modified 24 Nov 2002 Solaris 8 7-239

usb_sd (7D) Devices

DVD-ROM media containing DVD-Video data may follow/adhere to the requirements
of content scrambling system or copy protection scheme. Reading of copy-protected
sector will cause I/O error. Users are advised to use the appropriate playback software
to view video contents on DVD-ROM media containing DVD-Video data.

7-240 Solaris 8 modified 24 Nov 2002

Devices usba (7D)

NAME usba – Solaris USB Architecture (USBA)

USB provides a low-cost means for attaching peripheral devices, including mass-
storage devices, keyboards, mice, and printers, to a system. For complete information
on USB, go to the USB website at http: //w w w .usb.or g.

USB supports 126 hot-pluggable USB devices per USB bus. The maximum data transfer
rate is 12 Mbits per second (Mbps).

The USBA consists of the original USBA framework and a more evolved framework
called US B A 1.0. The original USBA framework provides compatibility with all drivers which
worked before the current release. The USBA 1.0 f r a m ew or k suppor ts m or e dev ices (including
US B 2.0 devices), and offers better performance than the original USBA framework.

In this release, the original USBA framework operates all US B 1.0 andUS B 1.1 ports
(including on-board ports), and the USB 1.0 f r a m ew or k oper a tes a llUSB 2.0 por ts (such a s P CI
US B 2.0, or US B 2.0/1394 combo cards).p r t con f(1M) with the -D option associates devices
with drivers whose names begin with "usba10" when theUS B A 1.0 framework services those
devices. Please seew w w .sun.com /desk top/w hitepa per s.htm l for more information regarding the
USB dual framework.

The US B A 1.0 framework adheres to theUniv er sa l S er ia l B us 2.0 specification. The original
USBA framework adheres to theUS B 1.1 specification. Both provide a transport layer abstrac-
tion to USB client drivers.

FILES Drivers and modules of the original USB framework are:
_ ____________________________

FRAMEWORK MODULE_ ____________________________
/kernel/misc/[sparcv9]/usba_ ____________________________ 








_ __
CLIENT DRIVER FUNCTION/DEVICE_ __

/kernel/drv/[sparcv9]/hid HID class_ __
/kernel/drv/[sparcv9]/hubd hub class_ __
/kernel/drv/[sparcv9]/scsa2usb mass storage class_ __
/kernel/drv/[sparcv9]/usbprn printer class_ __
/usr/kernel/drv/[sparcv9]/usb_as audio streaming_ __
/usr/kernel/drv/[sparcv9]/usb_ac audio control_ __
/kernel/drv/[sparcv9]/usb_mid multi-interface device_ __ 




































_ __
CLIENT STREAMS MODULES FUNCTION/DEVICE_ __

/kernel/strmod/[sparcv9]/usbkbm keyboard_ __
/kernel/strmod/[sparcv9]/usbms mouse_ __ 















modified 24 Nov 2002 Solaris 8 7-241

usba (7D) Devices

_ __
HOST CONTROLLER INTERFACE DRIVERS DEVICE_ __
/kernel/drv/[sparcv9]/ohci Open HCI_ __ 












Drivers and modules of the USB 1.0 framework are:
_ _______________________________

FRAMEWORK MODULE_ _______________________________
/kernel/misc/[sparcv9]/usba10_ _______________________________ 








_ __
CLIENT DRIVER FUNCTION/DEVICE_ __

/kernel/drv/[sparcv9]/usba10_hid HID class_ __
/kernel/drv/[sparcv9]/usba10_hubd hub class_ __

mass storage class /kernel/drv/[sparcv9]/usba10_scsa2usb_ __
/kernel/drv/[sparcv9]/usba10_usbprn printer class_ __
/kernel/drv/[sparcv9]/usba10_usb_as audio streaming_ __
/kernel/drv/[sparcv9]/usba10_usb_ac audio control_ __

multi-interface device /kernel/drv/[sparcv9]/usba10_/usb_mid_ __ 



































_ __
CLIENT STREAMS MODULES FUNCTION/DEVICE_ __

/kernel/strmod/[sparcv9]/usbkbm1 keyboard_ __
/kernel/strmod/[sparcv9]/usbms1 mouse_ __
/kernel/strmod/[sparcv9]/usb_ah audio HID_ __ 


















_ __
HOST CONTROLLER INTERFACE DRIVERS DEVICE_ __
/kernel/drv/[sparcv9]/usba10_ehci Enhanced HCI_ __
/kernel/drv/[sparcv9]/usba10_ohci Open HCI_ __ 















See a t t r ib u t es(5) for a description of the following attributes:

_ __
ATTRIBUTE TYPE ATTRIBUTE VALUE_ __

Architecture Original USBA
drivers and files:
PCI-based systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ __

Availability SUNWusb

7-242 Solaris 8 modified 24 Nov 2002

Devices usba (7D)

_ __
SUNWusbx_ __   

cfga d m_u sb(1M), a t t r ib u t es(5), eh ci(7D), h id(7D), h u b d(7D), oh ci(7D), scsa 2u sb(7D),
u sb_a c(7D), u sb_a h(7D), u sb_a s(7D), u sb k b m(7D), u sb_m id(7D), u sb m s(7D), u sb p r n(7D)

Univ er sa l S er ia l B us S pecifi ca tions 1.1 a nd 2.0.

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

The messages described below may appear on the system console as well as being
logged. All messages are formatted in the following manner:

WARNING: Error message...

<name><number>: obsolete driver:
usb_pipe_policy is <actual_version> expecting <version>" 6 The driver is using
an older revision of USBA. The pipe policy revision used is older and this
driver is not supported on the current platform. <na m e><num ber> refer to the
driver name and its instance number, respectively.

No driver found for device <device_name>
(interface <number> node name=<node_name>)" 6 The installed Solaris
software does not contain a supported driver for this hardware. <num ber> is
the interface number.

No driver found for device <name>.
The installed Solaris software does not contain a supported driver for this
hardware. <na m e> could be the device path name or the device name.

Onlining <path name> failed (<number>).
The USB device driver could not be brought online due to internal kernel errors.
<num ber> is the value returned due to the failure.

The driver for <name> is not forUS B A 1.0
A device plugged into a port managed by the US B A 1.0 framework has only an
original-USBA-framework-compatible driver installed. Please plug into a port managed
by the original USBA framework. (Please see the DESCRIPTION section above regard-
ing the dual framework.)

Attempt to corrupt USB list at <address>
An internal USB data structure is inconsistent. Please reboot the system.

Draining callbacks timed out.
A USB device or its driver is malfunctioning. Please hot-remove and reconnect
the device, or reboot.

modified 24 Nov 2002 Solaris 8 7-243

usbkbm (7M) STREAMS Modules

NAME usbkbm – keyboard STREAMS module for Sun USB Keyboard

SYNOPSIS

open("/dev/kbd", O_RDWR)

The u sb k b m ST R E AM S module processes byte streams generated by a keyboard attached to a
USB port. USB keyboard is a member of Human Interface Device (HID) Class, andu sb k b m
only supports the keyboard protocol defined in the specification. Definitions for altering key-
board translation and reading events from the keyboard are in <sys/k b io.h> and <sys/k b d .h>.

The u sb k b m ST R E AM S module adheres to the interfaces exported byk b(7M). Refer to the
DE SC R I P T I O N section of k b(7M) for a discussion of the keyboard translation modes and the
I O C T L section for the supportedioct l(2) requests.

USB Keyboardu sb k b m returns different values for the following ioctls thank b(7M):

K I O C T YP E
This ioct l() returns a new keyboard type defined for theUSB keyboard. All types are
listed below:

KB_SUN3 Sun Type 3 keyboard
KB_SUN4 Sun Type 4 keyboard
KB_ASCII ASCII terminal masquerading as keyboard
KB_PC Type 101 PC keyboard
KB_USB USB keyboard

The USB keyboard type isK B_USB; u sb k b m will return K B_USB in response to the
K I O C T YP E ioctl.

K I O C L AYO UT
The argument is a pointer to an in t. The layout code specified by theb C ou n t r yC od e
value returned in theH I D descriptor is returned in the int pointed to by the argument.
The cou n t r ycod es are defined in 6.2.1 of theH I D 1.0 specification.

K I O C C M D

K BD_C M D_C L I C K /K BD_C M D_NO C L I C K
The k b(7M) indicates that inappropriate commands for particular keyboards are
ignored. Because clicking is not supported on theUSB keyboard,u sb k b m
ignores this command

K BD_C M D_SE T L E D
Set keyboard LEDs. Same as k b(7M).

K BD_C M D_G E T L AYO UT
The country codes defined in 6.2.1 of the H I D 1.0 specification are returned.

K BD_C M D_BE L L /K BD_C M D_NO BE L L

7-244 Solaris 8 modified 20 Nov 2002

STREAMS Modules usbkbm (7M)

This command is supported although the USB keyboard does not have a
buzzer. The request for the bell is rerouted.

K BD_C M D_R E SE T
There is no notion of resetting the keyboard as there is for the type4 key-
board. u sb k b m ignores this command and does not return an error.

/k er n el/st r m od /u sb k b m
32 bit ELF kernel module for original USBA framework∗

/k er n el/st r m od /sp a r cv9/u sb k b m
64 bit ELF kernel module for original USBA framework∗

/k er n el/st r m od /u sb k b 1
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/st r m od /sp a r cv9/u sb k b 1
64 bit ELF kernel module for USBA 1.0 framework∗

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE___

Architecture Original USBA drivers
and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems___

Availability SUNWusb, SUNWusbx___ 



































d u m p k eys(1), k b d(1), loa d k eys(1), ioct l(2), k eyt a b les(4), a t t r ib u t es(5), h id(7D), u sb a(7D),
t er m io(7I), k b(7M)

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

DIAGN0STICS None

modified 20 Nov 2002 Solaris 8 7-245

usbms (7M) STREAMS Modules

NAME usbms – USB mouse STREAMS module

SYNOPSIS

#include <sys/vuid_event.h>

#include <sys/msio.h>

#include <sys/msreg.h>

The u sb m s ST R E AM S module processes byte streams generated by aUSB mouse. A USB
mouse is a member of the Human Interface Device (HID) class and theu sb m s module supports
only the mouse boot protocol defined in theH I D specification. Theu sb m s module must be
pushed on top of theH I D class driver (seeh id(7D)). In the VUI D_F I R M_E VE NT mode, the
u sb m s module translates packets from theUSB mouse into Firm events. The Firm event struc-
ture is defined in <sys/vu id_even t .h>. The ST R E AM S module state is initially set to raw or
VUI D_NAT I VE mode which performs no message processing. See theHID 1.0 specification
for the raw format of the mouse packets. To initiate mouse protocol conversion to Firm events,
change the state toVUI D_F I R M_E VE NT.

VUI DG F O R M AT
This option returns the current state of the ST R E AM S module. The state of the
u sb m s ST R E AM S module may be eitherVUI D_NAT I VE (no message processing) or
VUI D_F I R M_E VE NT (convert to Firm events).

VUI DSF O R M AT
The argument is a pointer to an in t. Set the state of theST R E AM S module to the
in t pointed to by the argument.

typedef struct vuid_addr_probe {
short base; /∗ default vuid device addr directed too ∗ /
union {

short next; /∗ next addr for default when VUIDSADDR ∗ /
short current; /∗ current addr of default when VUIDGADDR ∗ /

} data;
} Vuid_addr_probe;

VUI DSADDR
The argument is a pointer to a Vu id_a d d r_p r ob e structure. VUI DSADDR sets the
virtual input device segment address indicated by base to next.

If base does not equal VK E Y_F I R ST, E NO DE V is returned.

VUI DG ADDR
The argument is a pointer to a Vu id_a d d r_p r ob e structure. Return the address of the
virtual input device segment indicated by base to current.

If base does not equal VK E Y_F I R ST, E NO DE V is returned.

7-246 Solaris 8 modified 20 Nov 2002

STREAMS Modules usbms (7M)

ioct l() requests for changing and retrieving mouse parameters use theM s_p a r m s structure:

typedef struct {
int jitter_thresh;
int speed_law;
int speed_limit;

} Ms_parms;

j it t er_t h r esh is the "jitter threshold" of the mouse. Motions fewer thanj it t er_t h r esh units along
both axes are accumulated and then sent up the stream after 1/12 second.

sp eed_la w indicates whether extremely large motions are to be ignored. If it is1, a "speed
limit" is applied to mouse motions. Motions along either axis of more thansp eed_lim it units
are discarded.

M SI O G E T P AR M S
The argument is a pointer to a M s_p a r a m s structure. Theu sb m s module parameters
are returned in the structure.

M SI O SE T P AR M S
The argument is a pointer to a M s_p a r a m s structure. Theu sb m s module parameters
are set according to the values in the structure.

/k er n el/st r m od /u sb m s
32 bit ELF kernel module for original USBA framework∗

/k er n el/st r m od /sp a r cv9/u sb m s
64 bit ELF kernel module for original USBA framework∗

/k er n el/st r m od /u sb m s1
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/st r m od /sp a r cv9/u sb m s1
64 bit ELF kernel module for USBA 1.0 framework∗

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for a description of the following attributes:

_ ___
ATTRIBUTE TYPE ATTRIBUTE VALUE_ ___

Architecture Original USBA drivers
and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ ___

Availability SUNWusb, SUNWusbx_ ___ 



































modified 20 Nov 2002 Solaris 8 7-247

usbms (7M) STREAMS Modules

ioct l(2), a t t r ib u t es(5), h id(7D), u sb a(7D)

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w /sun.com /io

DIAGNOSTICS None

7-248 Solaris 8 modified 20 Nov 2002

Devices usbprn (7D)

NAME usbprn – USB printer class driver

SYNOPSIS #include <sys/usb/clients/printer/usb_printer.h>

#include <sys/ecppio.h>

usbprn@unit-address

The u sb p r n driver is a USBA (Solaris USB Architecture) compliant client driver that supports
the US B P r inter Cla ss 1.0 specification. Theu sb p r n driver supports a subset of theecp p(7D)
parallel port driver functionality. However, unlike the STREAMS-basedecp p driver, u sb p r n is a
character driver.

The u sb p r n driver supports all USB printer-class compliant printers. For a list of recommended
printers and USB parallel printer adapters, visit http://w w w .sun.com /io.

The u sb p r n driver supports non-PostScript printers that utilize third-party PostScript conversion
packages such as GhostScript. Conversion packages can be obtained from the Solaris Software
companion CD, available athttp: //w w w .sun.com /sof tw a r e/sola r is/bina r ies/pa ck a ge.htm l.

DEFAULT
OPERATION

With certain minor exceptions (outlined in the Notes sections below), the u sb p r n driver
supports a subset of theecp p(7D) ioctl interfaces:

Configuration variables are set to their default values each time the USB printer device
is attached. The wr it e_t im eou t period (defined in the ECPPIOC_SETPARMS ioctl description
below) is set to 90 seconds. The mode is set to centronics mode (ECPP_CENTRONICS).
Parameters can be changed through the ECPPIOC_SETPARMS ioctl and read through the
ECPPIOC_GETPARMS ioctl. Each time the USB printer device is opened, the device is
marked as busy and all further opens will return EBUSY. Once the device is open, applications
can write to the device and the driver can send data and obtain device id and status.

Note:

Unlike the ecpp(7D) driver,u sb p r n resets configuration variables to their default
values with eacha t t a ch(9E). (Theecp p(7D) driver resets configuration variables with
eachop en(2).)

WRITE
OPERATION

A wr it e(2) operation returns the number of bytes successfully written to the device. If a failure
occurs while a driver is transferring data to printer, the contents of the status bits are captured
at the time of the error and can be retrieved by the application program using the
ECPPIOC_GETERRioct l(2) call. The captured status information is overwritten each time an
ECPPIOC_TESTIO ioct l(2) occurs.

The u sb p r n driver supportsp r n io(7I) interfaces. Note that theP R NI O C_R E SE T command has
no effect on USB printers.

The following ioct l(2) calls are supported for backward compatibility and are not recom-
mended for new applications.

E C P P I O C_G E T P AR M S
Gets current transfer parameters. The argument is a pointer to st r u ct

modified 30 Dec 2001 Solaris 8 7-249

usbprn (7D) Devices

ecpp_transfer_parms. If parameters are not configured after the device is opened, the
structure will be set to its default configuration.

Note:

Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is currently sup-
ported inu sb p r n.

E C P P I O C_SE T P AR M S
Sets transfer parameters. The argument is a pointer to a st r u ct
ecpp_transfer_parms. If a parameter is out of range,E I NVAL is returned. If the peri-
pheral or host device cannot support the requested mode,E P R O T O NO SUP P O R T is
returned.

The transfer parameters structure is defined in <sys/ecp p io.h>:

struct ecpp_transfer_parms{
int write_timeout;
int mode;

} ;

The wr it e_t im eou t field, which specifies how long the driver will take to transfer 8192
bytes of data to the device, is set to a default value of 90 seconds. Thewr it e_t im eou t
field must be greater than one second and less than 300 seconds (five minutes.)

Note:

Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is currently sup-
ported inu sb p r n. Also, the semantics ofwr it e_t im eou t in u sb p r n differ from ecp p(7D).
Refer toecp p(7D) for information.

BP P I O C_T E ST I O
Tests the transfer readiness of a print device and checks status bits to determine
if a wr it e(2) will succeed. If status bits are set, a transfer will fail. If a transfer will
succeed, zero is returned. If a transfer fails, the driver returnsE I O and the state of the
status bits are captured. The captured status can be retrieved using the
BPPIOC_GETERRioct l(2) call. BPPIOC_TESTIO and BPPIOC_GETERR are compati-
ble to the ioctls specified inb p p(7D).

Note:

Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is currently sup-
ported inu sb p r n. Additionally, b u s_er r or and t im eou t_occu r r ed fields are not used in
the u sb p r n interface. (Inecp p(7D), t im eou t_occu r r ed is used.)

BP P I O C_G E T E R R
Get last error status. The argument is a pointer to a st r u ct b p p_er r or_st a t u s. This
structure indicates the status of all the appropriate status bits at the time of the most
recent error condition during awr it e(2) call, or the status of the bits at the most
recent BPPIOC_TESTIO ioct l(2) call.

7-250 Solaris 8 modified 30 Dec 2001

Devices usbprn (7D)

struct bpp_error_status{
char timeout_occurred; /∗ not used∗ /
char bus_error; /∗ not used∗ /
uchar_t pin_status; /∗ status of pins which

/∗ could cause error∗ /
} ;

The pin_status field indicates possible error conditions. The error status struc-
ture b p p_er r or_st a t u s is defined in the include file <sys/b p p_io.h>. The valid bits for
p in_st a t u s can beBP P_E R R_E R R, BP P_SL C T_E R R, andBP P_P E_E R R. A set bit indi-
cates that the associated pin is asserted.

Note:

Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is currently sup-
ported inu sb p r n. Additionally, theb u s_er r or and t im eou t_occu r r ed fields are not used
in the u sb p r n interface. (Inecp p(7D), t im eou t_occu r r ed is used.) Unlikeecp p(7D), the
BPP_BUSY_ERR status bit is not supported by USB printers.

E C P P I O C_G E T DE VI D
Gets the IEEE 1284 device ID from the peripheral. The argument is a pointer to
a st r u ct ecp p_d evice_id. Applications should set mode to ECPP_CENTRONICS. If
another mode is used, the driver will returnE P R O T O NO SUP P O R T. len is the length of
the buffer pointed to bya d d r. r len is the actual length of the device ID string returned
from the peripheral. If the returnedr len is greater thanlen, the application should call
ECPPIOC_GETDEVID a second time with a buffer length equal tor len.

The 1284 device ID structure:

struct ecpp_device_id {
int mode; /∗ mode to use for reading device id ∗ /
int len; /∗ length of buffer ∗ /
int rlen; /∗ actual length of device id string ∗ /
char ∗ addr; /∗ buffer address ∗ /

Note:

Unlike ecpp(7D), only the ECPP_CENTRONICS mode is currently supported in
u sb p r n.

READ
OPERATION

The r ea d operation is not supported and returnsE I O.

ERRORS E BUSY
The device has been opened and another open is attempted. An attempt has
been made to unload the driver while one of the units is open.

E I NVAL

modified 30 Dec 2001 Solaris 8 7-251

usbprn (7D) Devices

An unsupported IOCTL has been received. A ECPPIOC_SETPARMS ioct l(2) is
attempted with an out of range value in theecp p_t r a n sfer_p a r m s structure.

E I O The driver has received an unrecoverable device error, or the device is not
responding, or the device has stalled when attempting an access. A wr it e(2) or
ioct l(2) did not complete due to a peripheral access. Ar ea d(2) system call has been
issued.

E NXI O
The driver has received an op en(2) request for a unit for which the attach failed.

E NO DE V
The driver has received an op en(2) request for a device that has been disconnected.

E P R O T O NO SUP P O R T
The driver has received a ECPPIOC_SETPARMS ioct l(2) for a mode argument other
than ECPP_CENTRONICS in theecp p_t r a n sfer_p a r m s structure.

/k er n el/d r v/u sb p r n
32 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/sp a r cv9/u sb p r n
64 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/u sb a 10_u sb p r n
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_u sb p r n
64 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/u sb a 10_u sb p r n .con f
u sb a 10_u sb p r n configuration file

/d ev/p r in t er s/n
Character special files

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ ___
ATTRIBUTE TYPE ATTRIBUTE VALUE_ ___

Architecture Original USBA drivers
and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ ___

Availability SUNWusb, SUNWusbx_ ___ 



































7-252 Solaris 8 modified 30 Dec 2001

Devices usbprn (7D)

cfga d m_u sb(1M), p r in t m gr(1M), ioct l(2), op en(2), r ea d(2), wr it e(2), a t t r ib u t es(5), b p p(7D),
ecp p(7D), u sb a(7D), p r n io(7I), a t t a ch(9E)

W r iting Dev ice Dr iv er s

Univ er sa l S er ia l B us S pecifi ca tion 2.0

US B Dev ice Cla ss Defi nition f or P r inting Dev ices 1.0

S y stem A dm inistr a tion Guide: B a sic A dm inistr a tion

http: //w w w .sun.com /desk top/w hitepa per s.htm l

http: //w w w .sun.com /io

DIAGNOSTICS In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

Warning: <device path> usbprn<instance num>: Error Message...

or

Warning: <device path> usba10_usbprn<instance num>:
Error Message...

Device was disconnected while open. Data may have been
lost." 6 The device has been hot-removed or powered off while it was open
and a possible data transfer was in progress. The job may be aborted.

Cannot access device. Please reconnect <device name>.
There was an error in accessing the printer during reconnect. Please reconnect
the device.

Device is not identical to the previous one on this port.
Please disconnect and reconnect." 6 A USB printer was hot-removed while open.
A new device was hot-inserted which is not identical to the original USB
printer. Please disconnect the new USB device and reconnect the original printer
to the same port.

Device has been reconnected, but data may have been lost.
The printer that was hot-removed from its USB port has been re-inserted again
to the same port. It is available for access but the job that was running prior to
the hot-removal may be lost.

NOTES The USB printer will be power managed if the device is closed.

If a printer is hot-removed before a job completes, the job is terminated and the driver
will return EIO. All subsequent opens will return E NO DE V. If a printer is hot-removed,
an LP reconfiguration may not be needed if a printer is re-inserted on the same port. If re-
inserted on a different port, an LP reconfiguration may be required.

The USB Parallel Printer Adapter is not hotpluggable. The printer should be connected
to USB Parallel Printer Adapter before plugging the USB cable into host or hub port
and should be removed only after disconnecting the USB cable of USB Parallel Printer
Adapter from the host or hub port.

modified 30 Dec 2001 Solaris 8 7-253

usbser_edge (7D) Devices

NAME usbser_edge – Digi Edgeport USB to serial converter driver

SYNOPSIS #include <fcntl.h>

#include <sys/termios.h>

usbser_edge@unit

The u sb ser_ed ge driver is a loadable STREAMS and USBA (Solaris USB Architecture) com-
pliant client driver which provides basic asynchronous communication support for Digi
Edgeport USB-to-serial converters. Supported devices include Edgeport/2, Edgeport/21,
Edgeport/4, Edgeport/421, Edgeport/8 and Edgeport/416. Serial device streams are built with
appropriate modules that are pushed atop theu sb ser_ed ge driver by thea u t op u sh(1M) facility.

The u sb ser_ed ge module supports thet er m io(7I) device control functions specified by flags in
the c_cfla g word of thet er m ios structure, and by theI G NBR K, I G NP AR, P AR M R K and
I NP C K flags in thec_ifla g word of thet er m ios structure. All othert er m io(7I) functions must
be performed by STREAMS modules pushed atop the driver. When a device is opened, the
ld t er m(7M) andt t com p a t(7M) STREAMS modules are automatically pushed on top of the
stream, providing the standardt er m io(7I) interface.

Use device logical names /d ev/t er m /[0-9]∗ to access the serial ports. These names are typi-
cally used to provide a logical access point for a dial-in line that is used with a modem.

To allow a single tty line to be connected to a modem and used for incoming and out-
going calls, a special feature is available that is controlled by the minor device number.
By accessing through device logical name/d ev/cu a /[0-9]∗ , it is possible to open a port
without the Carrier Detect signal being asserted, either through hardware or an equivalent
software mechanism. These devices are commonly known as dial-out lines.

Unlike onboard serial ports, the u sb ser_ed ge ports cannot serve as a local serial console.

APPLICATION
PROGRAMMING

INTERFACE

A dial-in line can be opened only if the corresponding dial-out line is closed. A block-
ing /d ev/t er m open waits until the/d ev/cu a line is closed (which drops Data Terminal Ready,
after which Carrier Detect usually drops as well) and carrier is detected again. A non-blocking
/d ev/t er m open returns an error if the/d ev/cu a is open.

If the /d ev/t er m line is opened successfully (usually only when carrier is recognized on the
modem), the corresponding/d ev/cu a line cannot be opened. This allows a modem and port to
be used for dial-in (by enabling the line for login in/et c/in it t a b) or dial-out (byt ip(1), or
u u cp(1C)) when no one is logged in on the line.

Device hot-removal is functionally equivalent to modem disconnect event, as defined
in t er m io(7I).

IOCTLS The u sb ser_ed ge driver supports the standard set oft er m io(7I) ioctl commands.

Input and output line speeds can be set to the following baud rates: 0, 50, 75, 110, 134,
150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, or 230400.
Input and output line speeds cannot be set independently; for example, when the
output speed is set, the input speed is automatically set to the same speed.

7-254 Solaris 8 modified 24 Nov 2002

Devices usbser_edge (7D)

ERRORS An op en () fails under the following conditions:

E NXI O
The unit being opened does not exist.

E BUSY
The /d ev/cu a (dial-out) device is being opened while the/dev/term (dial-in device) is
open, or the dial-in device is being opened with a no-delay open while the dial-out dev-
ice is open.

E BUSY
The unit has been marked as exclusive-use by another process with a
T I O C E XC L ioct l() call.

E I O USB device I/O error.

/k er n el/d r v/u sb ser_ed ge
32 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/sp a r cv9/u sb ser_ed ge
64 bit ELF kernel module for original USBA framework∗

/k er n el/d r v/u sb a 10_u sb ser_ed ge
32 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/sp a r cv9/u sb a 10_u sb ser_ed ge
64 bit ELF kernel module for USBA 1.0 framework∗

/k er n el/d r v/u sb a 10_u sb ser_ed ge.con f
u sb a 10_u sb ser_ed ge configuration file

/d ev/cu a /[0-9]∗
dial-out tty lines

/d ev/t er m /[0-9]∗
dial-in tty lines

∗ Please see w w w .sun.com /desk top/w hitepa per s.htm l for more information regarding USB dual
framework implementation,US B A 1.0, andUS B 2.0.

See a t t r ib u t es(5) for descriptions of the following attributes:

_ ___
ATTRIBUTE TYPE ATTRIBUTE VALUE_ ___

Architecture Original USBA drivers
and files: PCI-based
systems

USBA 1.0 drivers and
files: PCI-based
SPARC systems_ ___

Availability SUNWusb, SUNWusbx_ ___ 



































modified 24 Nov 2002 Solaris 8 7-255

usbser_edge (7D) Devices

st r con f(1), t ip(1), u u cp(1C), a u t op u sh(1M), ioct l(2), op en(2), t er m ios(3C), a t t r ib u t es(5),
u sb a(7D), t er m io(7I), ld t er m(7M), t t com p a t(7M)

http: //w w w .sun.com /desk top/w hitepa per s.htm l

DIAGNOSTICS In addition to being logged, the following messages may appear on the system con-
sole. All messages are formatted in the following manner:

Warning: <device path> usbser_edge<instance num>: Error Message...

or

Warning: <device path> usba10_usbser_edge<instance num>:
Error Message...

Device was disconnected while open. Data may have been
lost. " 6 The device was hot-removed or powered off while it was open and a
possible data transfer was in progress.

Device is not identical to the previous one on this port.
Please disconnect and reconnect." 6 The USB device was hot-removed while
open. A new device was hot-inserted which is not identical to the original dev-
ice. Please disconnect the new device and reconnect the original device to the
same port.

Device has been reconnected, but data may have been lost.
The device that was hot-removed from its USB port has been re-inserted again
to the same port. It is available for access but data from a previous transfer may
be lost.

Cannot access device. Please reconnect <name>.
The device was hot-removed and has not been reconnected. Please reconnect the
device.

7-256 Solaris 8 modified 24 Nov 2002

	front.pdf
	Solaris on Sun Hardware Reference Manual Supplement
	Preface

	How This Book Is Organized
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

