
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

 1994 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD systems, licensed from UNIX Systems
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party
software, including font technology, in this product is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

This product or the products described herein may be protected by one or more U.S., foreign patents, or pending
applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun Logo, SunSoft, Sun Microsystems Computer Corporation and Solaris, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of
Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark.
OPEN LOOK is a registered trademark of Novell, Inc. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic,
SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions  AT&T 1983-1990 and reproduced with permission from AT&T.

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

ii

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

AVAILABILITY
This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, AVAILABILITY indicates which package contains
the command being described on the manual page. In order to use the
command, the specified package must have been installed with the operating
system. If the package was not installed, see pkgadd(1) for information on how
to upgrade.

MT-LEVEL
This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3) for more information.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

Preface iii

IOCTLS
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctls(2) system call is called ioctls and
generates its own heading. IOCTLS for a specific device are listed alphabetically
(on the man page for that specific device). IOCTLS are used for a particular class
of devices all which have an io ending, such as mtio(7).

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

iv

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

FILES
This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

Preface v

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

SunOS 5.4 DDI and DKI Intro (9)

NAME Intro, intro − introduction to device driver interfaces

DESCRIPTION Section 9 provides reference information needed to write device drivers for Solaris 2.x. It
describes the interfaces provided by the Device Driver Interface Driver-Kernel Interface
(DDI/DKI). Drivers that conform to this specification are more likely to work in future
releases and may be portable to other environments.

Porting Software is usually considered portable if it can be adapted to run in a different environ-
ment more cheaply than it can be rewritten. The new environment may include a dif-
ferent processor, operating system, and even the language in which the program is writ-
ten, if a language translator is available. Likewise the new environment might include
multiple processors. More often, however, software is ported between environments that
share an operating system, processor, and source language. The source code is modified
to accommodate the differences in compilers or processors or releases of the operating
system.

In the past, device drivers did not port easily for one or more of the following reasons:

· To enhance functionality, members had been added to kernel data structures accessed
by drivers, or the sizes of existing members had been redefined.

· The calling or return syntax of kernel functions had changed.

· Driver developers did not use existing kernel functions where available, or relied on
undocumented side effects that were not maintained in the next release.

· Architecture-specific code had been scattered throughout the driver when it could
have been isolated.

Operating systems are periodically reissued to customers as a way to improve perfor-
mance, fix bugs, and add new features. This is probably the most common threat to com-
patibility encountered by developers responsible for maintaining software. Another
common problem is upgrading hardware. As new hardware is developed, customers
occasionally decide to upgrade to faster, more capable computers of the same family.
Although they may run the same operating system as those being replaced, architecture-
specific code may prevent the software from porting.

Scope of Interfaces Although application programs have all of the porting problems mentioned, developers
attempting to port device drivers have special challenges. Before describing the
DDI/DKI, it is necessary to understand the position of device drivers in operating sys-
tems.

Device drivers are kernel modules that control data transferred to and received from
peripheral devices but are developed independently from the rest of the kernel. If the
goal of achieving complete freedom in modifying the kernel is to be reconciled with the
goal of binary compatibility with existing drivers, the interaction between drivers and the
kernel must be rigorously regulated. This driver/kernel service interface is the most
important of the three distinguishable interfaces for a driver, summarized as follows:

· Driver−Kernel. I/O System calls result in calls to driver entry point routines. These

modified 28 Jan 1994 9-5

Intro (9) DDI and DKI SunOS 5.4

make up the kernel-to-driver part of the service interface, described in Section 9E.
Drivers may call any of the functions described in Section 9F. These are the driver-
to-kernel part of the interface.

· Driver−Hardware. All drivers (except software drivers) must include code for inter-
rupt handling, and may also perform direct memory access (DMA). These and other
hardware-specific interactions make up the driver/hardware interface.

· Driver−Boot/Configuration Software. The interaction between the driver and the
boot and configuration software is the third interface affecting drivers.

Scope of the
DDI/DKI

The primary goal of the DDI/DKI is to facilitate both source and binary portability across
successive releases of the operating systems on a particular machine. In addition, it pro-
motes source portability across implementations of UNIX on different machines, and
applies only to implementations based on System V Release 4. The DDI/DKI consists of
several sections:

· DDI/DKI Architecture Independent - These interfaces are supported on all imple-
mentations of System V Release 4, and will be supported in future releases of System
V.

· DKI-only - These interfaces are part of System V Release 4, and may not be supported
in future releases of System V. There are only two interfaces in this class, segmap(9E)
and hat_getkpfnum(9F).

· Solaris DDI - These interfaces specific to Solaris, and will be supported in future
releases of Solaris 2.x.

· Solaris SPARC specific DDI - These interfaces are specific to the SPARC processor,
and may not be available on other processors supported by Solaris.

· Solaris x86 specific DDI - These interfaces are specific to the x86 processor, and may
not be available on other processors supported by Solaris.

To achieve the goal of source and binary compatibility, the functions, routines, and struc-
tures specified in the DDI/DKI must be used according to these rules.

· Drivers cannot access system state structures (for example, u and sysinfo) directly.

· For structures external to the driver that may be accessed directly, only the utility
functions provided in Section 9F should be used. More generally, these functions
should be used wherever possible.

· The headers <sys/ddi.h> and <sys/sunddi.h> must be the last header files included
by the driver.

Audience Section 9 is for software engineers responsible for creating, modifying, or maintaining
drivers that run on this operating system and beyond. It assumes that the reader is fami-
liar with system internals and the C Programming Language.

How to Use Section 9 Section 9 is divided into three subsections:

9E Driver Entry Points − contains reference pages for all driver entry point routines.

9F Kernel Functions − contains reference pages for all driver support routines.

9-6 modified 28 Jan 1994

SunOS 5.4 DDI and DKI Intro (9)

9S Data Structures − contains reference pages for driver-related structures.

SEE ALSO Intro(9E), Intro(9F), Intro(9S)

NOTES SunSoft’s implementation of the DDI/DKI was designed to provide binary compatibility
for third-party device drivers across currently supported hardware platforms across
minor releases of the operating system.

However, unforeseen technical issues may force changes to the binary interface of the
DDI/DKI. We cannot therefore promise or in any way assure that DDI/DKI-compliant
device drivers will continue to operate correctly on future releases.

Furthermore, future releases may contain additions to the DDI/DKI to support future
platforms. At that time device drivers wishing to operate across the new set of supported
platforms may require these additions.

modified 28 Jan 1994 9-7

Index

