Preface

OVERVIEW

A man page is provided for both the naive user, and sophisticated user who is familiar with the SunOS operating system and is in need of on-line information. A man page is intended to answer concisely the question “What does it do?” The man pages in general comprise a reference manual. They are not intended to be a tutorial.

The following contains a brief description of each section in the man pages and the information it references:

- Section 1 describes, in alphabetical order, commands available with the operating system.

- Section 1M describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.

- Section 2 describes all of the system calls. Most of these calls have one or more error returns. An error condition is indicated by an otherwise impossible returned value.

- Section 3 describes functions found in various libraries, other than those functions that directly invoke UNIX system primitives, which are described in Section 2 of this volume.
- Section 4 outlines the formats of various files. The C structure declarations for the file formats are given where applicable.

- Section 5 contains miscellaneous documentation such as character set tables, etc.

- Section 7 describes various special files that refer to specific hardware peripherals, and device drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls are also described.

- Section 9 provides reference information needed to write device drivers in the kernel operating systems environment. It describes two device driver interface specifications: the Device Driver Interface (DDI) and the Driver–Kernel Interface (DKI).

- Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a developer may include in a device driver.

- Section 9F describes the kernel functions available for use by device drivers.

- Section 9S describes the data structures used by drivers to share information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally follow this order, but include only needed headings. For example, if there are no bugs to report, there is no BUGS section. See the intro pages for more information and detail about each section, and man(1) for more information about man pages in general.

NAME

This section gives the names of the commands or functions documented, followed by a brief description of what they do.

SYNOPSIS

This section shows the syntax of commands or functions. When a command or file does not exist in the standard path, its full pathname is shown. Literal characters (commands and options) are in bold font and variables (arguments, parameters and substitution characters) are in italic font. Options and arguments are alphabetized, with single letter arguments first, and options with arguments next, unless a different argument order is required.
The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the brackets are omitted, the argument must be specified.

... Ellipses. Several values may be provided for the previous argument, or the previous argument can be specified multiple times, for example, ‘filename ...’.

| Separator. Only one of the arguments separated by this character can be specified at time.

PROTOCOL

This section occurs only in subsection 3R to indicate the protocol description file. The protocol specification pathname is always listed in **bold** font.

AVAILABILITY

This section briefly states any limitations on the availability of the command. These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, **AVAILABILITY** indicates which package contains the command being described on the manual page. In order to use the command, the specified package must have been installed with the operating system. If the package was not installed, see `pkgadd(1)` for information on how to upgrade.

MT-LEVEL

This section lists the **MT-LEVEL** of the library functions described in the Section 3 manual pages. The **MT-LEVEL** defines the libraries’ ability to support threads. See `Intro(3)` for more information.

DESCRIPTION

This section defines the functionality and behavior of the service. Thus it describes concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES. Interactive commands, subcommands, requests, macros, functions and such, are described under **USAGE**.

Preface
IOCTLS

This section appears on pages in Section 7 only. Only the device class which supplies appropriate parameters to the `ioctl(2)` system call is called `ioctl` and generates its own heading. IOCTLS for a specific device are listed alphabetically (on the man page for that specific device). IOCTLS are used for a particular class of devices all which have an `io` ending, such as `mtio(7)`.

OPTIONS

This lists the command options with a concise summary of what each option does. The options are listed literally and in the order they appear in the SYNOPSIS section. Possible arguments to options are discussed under the option, and where appropriate, default values are supplied.

RETURN VALUES

If the man page documents functions that return values, this section lists these values and describes the conditions under which they are returned. If a function can return only constant values, such as 0 or -1, these values are listed in tagged paragraphs. Otherwise, a single paragraph describes the return values of each function. Functions declared as `void` do not return values, so they are not discussed in RETURN VALUES.

ERRORS

On failure, most functions place an error code in the global variable `errno` indicating why they failed. This section lists alphabetically all error codes a function can generate and describes the conditions that cause each error. When more than one condition can cause the same error, each condition is described in a separate paragraph under the error code.

USAGE

This section is provided as a guidance on use. This section lists special rules, features and commands that require in-depth explanations. The subsections listed below are used to explain built-in functionality:

- Commands
- Modifiers
- Variables
- Expressions
- Input Grammar
EXAMPLES

This section provides examples of usage or of how to use a command or function. Wherever possible a complete example including command line entry and machine response is shown. Whenever an example is given, the prompt is shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS and USAGE sections.

ENVIRONMENT

This section lists any environment variables that the command or function affects, followed by a brief description of the effect.

FILES

This section lists all filenames referred to by the man page, files of interest, and files created or required by commands. Each is followed by a descriptive summary or explanation.

SEE ALSO

This section lists references to other man pages, in-house documentation and outside publications.

DIAGNOSTICS

This section lists diagnostic messages with a brief explanation of the condition causing the error. Messages appear in bold font with the exception of variables, which are in italic font.

WARNINGS

This section lists warnings about special conditions which could seriously affect your working conditions — this is not a list of diagnostics.
NOTES

This section lists additional information that does not belong anywhere else on the page. It takes the form of an aside to the user, covering points of special interest. Critical information is never covered here.

BUGS

This section describes known bugs and wherever possible suggests workarounds.
NAME
Intro, intro – introduction to maintenance commands and application programs

AVAILABILITY
This section indicates which package contains the commands being described on this page. To be able to use the command, the indicated package must have been installed with the operating system. For information on how to add a package see pkgadd(1).

DESCRIPTION
This section describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.

Because of command restructuring for the Virtual File System architecture, there are several instances of multiple manual pages that begin with the same name. For example, the mount, pages – mount(1M), mount_cachefs(1M), mount_hfs(1M), mount_nfs(1M), mount_tmpfs(1M), and mount_ufs(1M). In each such case the first of the multiple pages describes the syntax and options of the generic command, that is, those options applicable to all FSTypes (file system types). The succeeding pages describe the functionality of the FSType-specific modules of the command. These pages list the command followed by an underscore (_) and the FSType to which they pertain. Note that the administrator should not attempt to call these modules directly. The generic command provides a common interface to all of them. Thus the FSType-specific manual pages should not be viewed as describing distinct commands, but rather as detailing those aspects of a command that are specific to a particular FSType.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and other arguments according to the following syntax:

```
name [option(s)] [cmdarg(s)]
```

where:

- **name** The name of an executable file
- **option**
 - noargletter(s) or,
 - argletter <>optarg
 where <> is optional white space
- **noargletter** A single letter representing an option without an argument
- **argletter** A single letter representing an option requiring an argument
- **optarg** Argument (character string) satisfying preceding argletter
- **cmdarg** Pathname (or other command argument) not beginning with – or, – by itself indicating the standard input

SEE ALSO
gopt(1), pkgadd(1M), getopt(3C)

DIAGNOSTICS
Upon termination, each command returns 0 for normal termination and non-zero to indicate troubles such as erroneous parameters, bad or inaccessible data, or other inability to cope with the task at hand. It is called variously “exit code,” “exit status,” or “return code,” and is described only where special conventions are involved.

modified 29 Mar 1993
Unfortunately, not all commands adhere to the standard syntax.

<table>
<thead>
<tr>
<th>Name</th>
<th>Appears on Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>accept(1M)</td>
<td>accept or reject print requests</td>
</tr>
<tr>
<td>acct</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>acctcms</td>
<td>acctcms(1M)</td>
<td>command summary from process accounting records</td>
</tr>
<tr>
<td>acctcon1</td>
<td>acctcon(1M)</td>
<td>connect-time accounting</td>
</tr>
<tr>
<td>acctcon2</td>
<td>acctcon(1M)</td>
<td>connect-time accounting</td>
</tr>
<tr>
<td>acctcon</td>
<td>acctcon(1M)</td>
<td>connect-time accounting</td>
</tr>
<tr>
<td>acctdisk</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>acctdisk</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>acctdisk</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>acctdusg</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>acctmerg</td>
<td>acctmerg(1M)</td>
<td>merge or add total accounting files</td>
</tr>
<tr>
<td>accton</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>acctprc1</td>
<td>acctprc(1M)</td>
<td>process accounting</td>
</tr>
<tr>
<td>acctprc2</td>
<td>acctprc(1M)</td>
<td>process accounting</td>
</tr>
<tr>
<td>acctprc</td>
<td>acctprc(1M)</td>
<td>process accounting</td>
</tr>
<tr>
<td>acctsh</td>
<td>acctsh(1M)</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>acctwtmp</td>
<td>acct(1M)</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>adbgen</td>
<td>adbgen(1M)</td>
<td>generate adb script</td>
</tr>
<tr>
<td>add_drv</td>
<td>add_drv(1M)</td>
<td>add a new device driver to the system</td>
</tr>
<tr>
<td>add_install_client</td>
<td>install_scripts(1M)</td>
<td>scripts used to install the Solaris software</td>
</tr>
<tr>
<td>addbadsec</td>
<td>addbadsec(1M)</td>
<td>map out defective disk blocks</td>
</tr>
<tr>
<td>admind</td>
<td>admind(1M)</td>
<td>distributed system administration daemon</td>
</tr>
<tr>
<td>admintool</td>
<td>admintool(1M)</td>
<td>system administration with a graphical user interface</td>
</tr>
<tr>
<td>aliasadm</td>
<td>aliasadm(1M)</td>
<td>manipulate the NIS+ aliases map</td>
</tr>
<tr>
<td>allocate</td>
<td>allocate(1M)</td>
<td>device allocation</td>
</tr>
<tr>
<td>arp</td>
<td>arp(1M)</td>
<td>address resolution display and control</td>
</tr>
<tr>
<td>aset.restore</td>
<td>aset.restore(1M)</td>
<td>restores system files to their content before ASET is installed</td>
</tr>
<tr>
<td>aset</td>
<td>aset(1M)</td>
<td>monitors or restricts accesses to system files and directories</td>
</tr>
<tr>
<td>aspppd</td>
<td>aspppd(1M)</td>
<td>Asynchronous PPP Link Manager</td>
</tr>
<tr>
<td>aspppls</td>
<td>aspppd(1M)</td>
<td>Asynchronous PPP Link Manager</td>
</tr>
</tbody>
</table>

1M-6

modified 29 Mar 1993
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>audit</td>
<td>control the behavior of the audit daemon</td>
</tr>
<tr>
<td>audit_startup</td>
<td>audit subsystem initialization script</td>
</tr>
<tr>
<td>audit_warn</td>
<td>audit daemon warning script</td>
</tr>
<tr>
<td>auditconfig</td>
<td>configure auditing</td>
</tr>
<tr>
<td>auditd</td>
<td>audit daemon</td>
</tr>
<tr>
<td>auditreduce</td>
<td>merge and select audit records from audit trail files</td>
</tr>
<tr>
<td>auditstat</td>
<td>display kernel audit statistics</td>
</tr>
<tr>
<td>automount</td>
<td>install automatic mount points</td>
</tr>
<tr>
<td>automountd</td>
<td>autosfs mount/unmount daemon</td>
</tr>
<tr>
<td>autopush</td>
<td>configures lists of automatically pushed STREAMS modules</td>
</tr>
<tr>
<td>bdconfig</td>
<td>configures the bd (buttons and dials) stream</td>
</tr>
<tr>
<td>boot</td>
<td>start the system kernel or a standalone program</td>
</tr>
<tr>
<td>bootparamd</td>
<td>boot parameter server</td>
</tr>
<tr>
<td>bsmconv</td>
<td>enable/disable the Basic Security Module (BSM) on Solaris</td>
</tr>
<tr>
<td>bsmunconv</td>
<td>enable/disable the Basic Security Module (BSM) on Solaris</td>
</tr>
<tr>
<td>captinfo</td>
<td>convert a termcap description into a terminfo description</td>
</tr>
<tr>
<td>catman</td>
<td>create the cat files for the manual</td>
</tr>
<tr>
<td>cfsadmin</td>
<td>administer disk space used for caching file systems with the Cache File-System (CacheFS)</td>
</tr>
<tr>
<td>cg14config</td>
<td>configure the cgfourteen device</td>
</tr>
<tr>
<td>chargefee</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>check</td>
<td>scripts used to install the Solaris software</td>
</tr>
<tr>
<td>chown</td>
<td>change owner</td>
</tr>
<tr>
<td>chroot</td>
<td>change root directory for a command</td>
</tr>
<tr>
<td>chrtbl</td>
<td>generate character classification and conversion tables</td>
</tr>
<tr>
<td>ckpacct</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>closewtmp</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>cli</td>
<td>clear inode</td>
</tr>
<tr>
<td>colltbl</td>
<td>create string collation routines</td>
</tr>
<tr>
<td>comsat</td>
<td>biff server</td>
</tr>
<tr>
<td>convert4x</td>
<td>converts SunOS 4.x clients to work from Solaris 2.x servers</td>
</tr>
<tr>
<td>crash</td>
<td>examine system images</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>cron</td>
<td>clock daemon</td>
</tr>
<tr>
<td>dd</td>
<td>convert and copy a file</td>
</tr>
<tr>
<td>deallocate</td>
<td>device deallocation</td>
</tr>
<tr>
<td>devattr</td>
<td>lists device attributes</td>
</tr>
<tr>
<td>devconfig</td>
<td>configure device attributes</td>
</tr>
<tr>
<td>devfree</td>
<td>release devices from exclusive use</td>
</tr>
<tr>
<td>devinfo</td>
<td>print device specific information</td>
</tr>
<tr>
<td>devlinks</td>
<td>adds /dev entries for miscellaneous devices and pseudo-devices</td>
</tr>
<tr>
<td>devnm</td>
<td>device name</td>
</tr>
<tr>
<td>devreserv</td>
<td>reserve devices for exclusive use</td>
</tr>
<tr>
<td>df</td>
<td>report number of free disk blocks and files</td>
</tr>
<tr>
<td>df_ufs</td>
<td>report free disk space on ufs file systems</td>
</tr>
<tr>
<td>dfmounts</td>
<td>display mounted resource information</td>
</tr>
<tr>
<td>dfmounts_nfs</td>
<td>display mounted NFS resource information</td>
</tr>
<tr>
<td>dfshares</td>
<td>list available resources from remote or local systems</td>
</tr>
<tr>
<td>dfshares_nfs</td>
<td>list available NFS resources from remote systems</td>
</tr>
<tr>
<td>discover4x</td>
<td>analyze the SunOS 4.1 client support after converting to Solaris 2.1</td>
</tr>
<tr>
<td>disks</td>
<td>adds /dev entries for hard disks attached to the system</td>
</tr>
<tr>
<td>diskscan</td>
<td>perform surface analysis</td>
</tr>
<tr>
<td>dispadmin</td>
<td>process scheduler administration</td>
</tr>
<tr>
<td>dmesg</td>
<td>collect system diagnostic messages to form error log</td>
</tr>
<tr>
<td>dminfo</td>
<td>report information about a device entry in a device maps file</td>
</tr>
<tr>
<td>dodisk</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>domainname</td>
<td>set or display name of the current domain</td>
</tr>
<tr>
<td>drvconfig</td>
<td>configure the /devices directory</td>
</tr>
<tr>
<td>du</td>
<td>summarize disk usage</td>
</tr>
<tr>
<td>edquota</td>
<td>edit user quotas for ufs file system</td>
</tr>
<tr>
<td>eeprom</td>
<td>EEPROM display and load utility</td>
</tr>
<tr>
<td>fdetach</td>
<td>detach a name from a STREAMS-based file descriptor</td>
</tr>
<tr>
<td>fdisk</td>
<td>create or modify fixed disk partition table</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>ff</td>
<td>list file names and statistics for a file system</td>
</tr>
<tr>
<td>ff_ufs</td>
<td>list file names and statistics for a ufs file system</td>
</tr>
<tr>
<td>fingerd</td>
<td>remote user information server</td>
</tr>
<tr>
<td>firmware</td>
<td>bootable firmware programs and firmware commands</td>
</tr>
<tr>
<td>fmthard</td>
<td>populate VTOC on hard disks</td>
</tr>
<tr>
<td>format</td>
<td>disk partitioning and maintenance utility</td>
</tr>
<tr>
<td>fsck</td>
<td>check and repair file systems</td>
</tr>
<tr>
<td>fsck_cachefs</td>
<td>check integrity of data cached with CacheFS</td>
</tr>
<tr>
<td>fsck_s5fs</td>
<td>file system consistency check and interactive repair</td>
</tr>
<tr>
<td>fsck_ufs</td>
<td>file system consistency check and interactive repair</td>
</tr>
<tr>
<td>fsdb</td>
<td>file system debugger</td>
</tr>
<tr>
<td>fsdb_ufs</td>
<td>ufs file system debugger</td>
</tr>
<tr>
<td>fsirand</td>
<td>install random inode generation numbers</td>
</tr>
<tr>
<td>fstyp</td>
<td>determine file system type</td>
</tr>
<tr>
<td>ftpd</td>
<td>file transfer protocol server</td>
</tr>
<tr>
<td>fusage</td>
<td>disk access profiler</td>
</tr>
<tr>
<td>fuser</td>
<td>identify processes using a file or file structure</td>
</tr>
<tr>
<td>fwtmp</td>
<td>manipulate connect accounting records</td>
</tr>
<tr>
<td>gencc</td>
<td>create a front-end to the cc command</td>
</tr>
<tr>
<td>getdev</td>
<td>lists devices based on criteria</td>
</tr>
<tr>
<td>getdgrp</td>
<td>lists device groups which contain devices that match criteria</td>
</tr>
<tr>
<td>getent</td>
<td>get entries from administrative database</td>
</tr>
<tr>
<td>gettable</td>
<td>get DoD Internet format host table from a host</td>
</tr>
<tr>
<td>getty</td>
<td>set terminal type, modes, speed, and line discipline</td>
</tr>
<tr>
<td>getvol</td>
<td>verifies device accessibility</td>
</tr>
<tr>
<td>groupadd</td>
<td>add (create) a new group definition on the system</td>
</tr>
<tr>
<td>groupdel</td>
<td>delete a group definition from the system</td>
</tr>
<tr>
<td>groupmod</td>
<td>modify a group definition on the system</td>
</tr>
<tr>
<td>grpck</td>
<td>password/group file checkers</td>
</tr>
</tbody>
</table>

modified 29 Mar 1993
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gsconfig</td>
<td>initialize the SBus GS graphics accelerator</td>
</tr>
<tr>
<td>gtconfg</td>
<td>initialize the GT Graphics Accelerator and download microcode</td>
</tr>
<tr>
<td>halt</td>
<td>stop the processor</td>
</tr>
<tr>
<td>hostconfg</td>
<td>configure a system’s host parameters</td>
</tr>
<tr>
<td>htable</td>
<td>convert DoD Internet format host table</td>
</tr>
<tr>
<td>id</td>
<td>print the user name, user ID, group name and group ID</td>
</tr>
<tr>
<td>ifconfig</td>
<td>configure network interface parameters</td>
</tr>
<tr>
<td>in.comsat</td>
<td>bin server</td>
</tr>
<tr>
<td>in.fingerd</td>
<td>remote user information server</td>
</tr>
<tr>
<td>in.ftpd</td>
<td>file transfer protocol server</td>
</tr>
<tr>
<td>in.named</td>
<td>Internet domain name server</td>
</tr>
<tr>
<td>in.rarpd</td>
<td>DARPA Reverse Address Resolution Protocol server</td>
</tr>
<tr>
<td>in.rdisc</td>
<td>network router discovery daemon</td>
</tr>
<tr>
<td>in.rexed</td>
<td>remote execution server</td>
</tr>
<tr>
<td>in.rlogin</td>
<td>remote login server</td>
</tr>
<tr>
<td>in.routed</td>
<td>network routing daemon</td>
</tr>
<tr>
<td>in.rshd</td>
<td>remote shell server</td>
</tr>
<tr>
<td>in.rwho</td>
<td>system status server</td>
</tr>
<tr>
<td>in.talkd</td>
<td>server for talk program</td>
</tr>
<tr>
<td>in.telnetd</td>
<td>DARPA TELNET protocol server</td>
</tr>
<tr>
<td>in.tftp</td>
<td>Internet Trivial File Transfer Protocol server</td>
</tr>
<tr>
<td>in.tnamed</td>
<td>DARPA trivial name server</td>
</tr>
<tr>
<td>in.uucpd</td>
<td>UUCP server</td>
</tr>
<tr>
<td>inetd</td>
<td>Internet services daemon</td>
</tr>
<tr>
<td>infocmp</td>
<td>compare or print out terminfo descriptions</td>
</tr>
<tr>
<td>init</td>
<td>process control initialization</td>
</tr>
<tr>
<td>install4x</td>
<td>install SunOS 4.1 diskless/dataless client support on Solaris 2.1 servers</td>
</tr>
<tr>
<td>install</td>
<td>install commands</td>
</tr>
<tr>
<td>install_scripts</td>
<td>scripts used to install the Solaris software</td>
</tr>
<tr>
<td>installboot</td>
<td>install bootblocks in a disk partition</td>
</tr>
<tr>
<td>installf</td>
<td>add a file to the software</td>
</tr>
<tr>
<td>iostat</td>
<td>report I/O statistics</td>
</tr>
<tr>
<td>kadb</td>
<td>a kernel debugger</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>kdmconfg</td>
<td>configure or unconfigure keyboard, display, and mouse options for OpenWindows and internationalization.</td>
</tr>
<tr>
<td>kerbd</td>
<td>generates and validates Kerberos tickets for kernel RPC.</td>
</tr>
<tr>
<td>kernel</td>
<td>UNIX system executable file containing basic operating system services.</td>
</tr>
<tr>
<td>keyserv</td>
<td>server for storing private encryption keys.</td>
</tr>
<tr>
<td>killall</td>
<td>kill all active processes.</td>
</tr>
<tr>
<td>labelit</td>
<td>list or provide labels for file systems.</td>
</tr>
<tr>
<td>labelit_hsfs</td>
<td>provide and print labels for hsfs file systems.</td>
</tr>
<tr>
<td>labelit_ufs</td>
<td>provide and print labels for ufs file systems.</td>
</tr>
<tr>
<td>lastlogin</td>
<td>shell procedures for accounting.</td>
</tr>
<tr>
<td>leoconfig</td>
<td>initialize the Leo (ZX) Graphics Accelerator and download microcode.</td>
</tr>
<tr>
<td>link</td>
<td>link and unlink files and directories.</td>
</tr>
<tr>
<td>list_devices</td>
<td>list allocatable devices.</td>
</tr>
<tr>
<td>listdgrp</td>
<td>lists members of a device group.</td>
</tr>
<tr>
<td>listen</td>
<td>network listener daemon.</td>
</tr>
<tr>
<td>lockd</td>
<td>network lock daemon.</td>
</tr>
<tr>
<td>lockfs</td>
<td>change or report file system locks.</td>
</tr>
<tr>
<td>logins</td>
<td>list user and system login information.</td>
</tr>
<tr>
<td>lpadmin</td>
<td>configure the LP print service.</td>
</tr>
<tr>
<td>lpfilter</td>
<td>administer filters used with the LP print service.</td>
</tr>
<tr>
<td>lpforms</td>
<td>administer forms used with the LP print service.</td>
</tr>
<tr>
<td>lpmmove</td>
<td>start/stop the LP print service and move requests.</td>
</tr>
<tr>
<td>lpsched</td>
<td>start/stop the LP print service and move requests.</td>
</tr>
<tr>
<td>lpshut</td>
<td>start/stop the LP print service and move requests.</td>
</tr>
<tr>
<td>lpsystem</td>
<td>register remote systems with the print service.</td>
</tr>
<tr>
<td>lpusers</td>
<td>set printing queue priorities.</td>
</tr>
<tr>
<td>makedbm</td>
<td>make a dbm file, or get a text file from a dbm file.</td>
</tr>
<tr>
<td>mk</td>
<td>remake the binary system and commands from source code.</td>
</tr>
<tr>
<td>mknifo</td>
<td>make FIFO special file.</td>
</tr>
</tbody>
</table>

modified 29 Mar 1993
INTRO (1M)

Maintenance Commands

SunOS 5.4

- `mkfile` (1M) create a file
- `mkfs` (1M) construct a file system
- `mkfs_ufs` (1M) construct a ufs file system
- `mknod` (1M) make a special file
- `modinfo` (1M) display information about loaded kernel modules
- `modload` (1M) load a kernel module
- `modunload` (1M) unload a module
- `monacct` (1M) shell procedures for accounting
- `monitor` (1M) SPARC system PROM monitor
- `montbl` (1M) create monetary database
- `mount` (1M) mount or unmount file systems and remote resources
 - `mount_cachefs` (1M) mount CacheFS file systems
 - `mount_hfsfs` (1M) mount hfsfs file systems
 - `mount_nfs` (1M) mount remote NFS resources
 - `mount_pcsf` (1M) mount pcfs file systems
 - `mount_s5fs` (1M) mount s5 file systems
 - `mount_tmpfs` (1M) mount tmpfs file systems
 - `mount_ufs` (1M) mount ufs file systems
 - `mountall` (1M) mount, unmount multiple file systems
 - `mountd` (1M) NFS mount request server
 - `mpstat` (1M) report per-processor statistics
 - `mvdir` (1M) move a directory
 - `named-xfer` (1M) Internet domain name server
 - `named` (1M) Internet domain name server
 - `ncheck` (1M) generate a list of path names versus i-numbers
 - `ncheck_ufs` (1M) generate pathnames versus i-numbers for ufs file systems
 - `ndd` (1M) get and set driver configuration parameters
 - `netstat` (1M) show network status
 - `newfs` (1M) construct a new ufs file system
 - `newgrp` (1M) log in to a new group
 - `newkey` (1M) create a new Diffie-Hellman key pair in the publickey database
 - `nfsd` (1M) NFS daemon
 - `nfsstat` (1M) Network File System statistics
 - `nis_cachemgr` (1M) NIS+ utility to cache location information about NIS+ servers
 - `nisaddcred` (1M) create NIS+ credentials
 - `nisaddent` (1M) create NIS+ tables from corresponding /etc files or NIS maps

modified 29 Mar 1993
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nisclient</td>
<td>initialize NIS+ credentials for NIS+ principals</td>
</tr>
<tr>
<td>nisd</td>
<td>NIS+ service daemon</td>
</tr>
<tr>
<td>nisd_resolv</td>
<td>NIS+ service daemon</td>
</tr>
<tr>
<td>nisinit</td>
<td>NIS+ client and server initialization utility</td>
</tr>
<tr>
<td>nislog</td>
<td>display the contents of the NIS+ transaction log</td>
</tr>
<tr>
<td>nisping</td>
<td>send ping to NIS+ servers</td>
</tr>
<tr>
<td>nispopulate</td>
<td>populate the NIS+ tables in a NIS+ domain</td>
</tr>
<tr>
<td>nisserver</td>
<td>set up NIS+ servers</td>
</tr>
<tr>
<td>nissetup</td>
<td>initialize a NIS+ domain</td>
</tr>
<tr>
<td>nisshowcache</td>
<td>NIS+ utility to print out the contents of the shared cache file</td>
</tr>
<tr>
<td>nisstat</td>
<td>report NIS+ server statistics</td>
</tr>
<tr>
<td>nisupdkeys</td>
<td>update the public keys in a NIS+ directory object</td>
</tr>
<tr>
<td>nlsadmin</td>
<td>network listener service administration</td>
</tr>
<tr>
<td>nslookup</td>
<td>query name servers interactively</td>
</tr>
<tr>
<td>nstest</td>
<td>DNS test shell</td>
</tr>
<tr>
<td>nulldm</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>passmgmt</td>
<td>password files management</td>
</tr>
<tr>
<td>pbind</td>
<td>control and query bindings of processes to processors</td>
</tr>
<tr>
<td>pfinstall</td>
<td>tests installation profiles</td>
</tr>
<tr>
<td>ping</td>
<td>send ICMP ECHO_REQUEST packets to network hosts</td>
</tr>
<tr>
<td>pkgadd</td>
<td>transfer software package to the system</td>
</tr>
<tr>
<td>pkgask</td>
<td>stores answers to a request script</td>
</tr>
<tr>
<td>pkchck</td>
<td>check accuracy of installation</td>
</tr>
<tr>
<td>pkgrm</td>
<td>removes a package from the system</td>
</tr>
<tr>
<td>pmadm</td>
<td>port monitor administration</td>
</tr>
<tr>
<td>ports</td>
<td>create /dev entries and inittab entries for serial lines</td>
</tr>
<tr>
<td>poweroff</td>
<td>stop the processor</td>
</tr>
<tr>
<td>praudit</td>
<td>print contents of an audit trail file</td>
</tr>
<tr>
<td>prctmp</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>prdaily</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>prtacct</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>prtconf</td>
<td>print system configuration</td>
</tr>
<tr>
<td>prtdiag</td>
<td>print system diagnostic information</td>
</tr>
<tr>
<td>prtvtoc</td>
<td>print the VTOC of a block device</td>
</tr>
</tbody>
</table>

modified 29 Mar 1993
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psradm</td>
<td>set processors online or offline</td>
</tr>
<tr>
<td>psrinfo</td>
<td>print processor information</td>
</tr>
<tr>
<td>putdev</td>
<td>edits device table</td>
</tr>
<tr>
<td>putdgrp</td>
<td>edits device group table</td>
</tr>
<tr>
<td>pwck</td>
<td>password/group file checkers</td>
</tr>
<tr>
<td>pwconv</td>
<td>installs and updates /etc/shadow with information from /etc/passwd</td>
</tr>
<tr>
<td>quot</td>
<td>summarize file system ownership</td>
</tr>
<tr>
<td>quota</td>
<td>display a user's ufs file system disk quota and usage</td>
</tr>
<tr>
<td>quotacheck</td>
<td>ufs file system quota consistency checker</td>
</tr>
<tr>
<td>quotaoff</td>
<td>turn ufs file system quotas on and off</td>
</tr>
<tr>
<td>quotaon</td>
<td>turn ufs file system quotas on and off</td>
</tr>
<tr>
<td>rarpd</td>
<td>DARPA Reverse Address Resolution Protocol server</td>
</tr>
<tr>
<td>rdate</td>
<td>set system date from a remote host</td>
</tr>
<tr>
<td>rdisc</td>
<td>network router discovery daemon</td>
</tr>
<tr>
<td>re-preinstall</td>
<td>installs the JumpStart software on a system</td>
</tr>
<tr>
<td>reboot</td>
<td>restart the operating system</td>
</tr>
<tr>
<td>reject</td>
<td>accept or reject print requests</td>
</tr>
<tr>
<td>rem_drv</td>
<td>remove a device driver from the system</td>
</tr>
<tr>
<td>removef</td>
<td>remove a file from software database</td>
</tr>
<tr>
<td>repquota</td>
<td>summarize quotas for a ufs file system</td>
</tr>
<tr>
<td>restricted_shell</td>
<td>restricted shell command interpreter</td>
</tr>
<tr>
<td>rexd</td>
<td>RPC-based remote execution server</td>
</tr>
<tr>
<td>rexed</td>
<td>remote execution server</td>
</tr>
<tr>
<td>rlogind</td>
<td>remote login server</td>
</tr>
<tr>
<td>rm_install_client</td>
<td>scripts used to install the Solaris software</td>
</tr>
<tr>
<td>rmmount</td>
<td>removable media mounter that automatically mounts a file system on a CD-ROM and floppy.</td>
</tr>
<tr>
<td>rmt</td>
<td>remote magtape protocol module</td>
</tr>
<tr>
<td>route</td>
<td>manually manipulate the routing tables</td>
</tr>
<tr>
<td>routed</td>
<td>network routing daemon</td>
</tr>
<tr>
<td>rpc.bootparamd</td>
<td>boot parameter server</td>
</tr>
<tr>
<td>rpc.nisd</td>
<td>NIS+ service daemon</td>
</tr>
<tr>
<td>rpc.nisd_resolv</td>
<td>NIS+ service daemon</td>
</tr>
<tr>
<td>rpc.rexd</td>
<td>RPC-based remote execution server</td>
</tr>
<tr>
<td>rpc.rstatd</td>
<td>kernel statistics server</td>
</tr>
<tr>
<td>rpc.usersd</td>
<td>network username server</td>
</tr>
<tr>
<td>rpc.rwalld</td>
<td>network rwall server</td>
</tr>
<tr>
<td>rpc.sprayd</td>
<td>spray server</td>
</tr>
</tbody>
</table>

Intro (1M) Maintenance Commands SunOS 5.4

modified 29 Mar 1993
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpcbind</td>
<td>universal addresses to RPC program number mapper</td>
</tr>
<tr>
<td>rpcinfo</td>
<td>report RPC information</td>
</tr>
<tr>
<td>rpld</td>
<td>x86 Network Booting RPL (Remote Program Load) Server</td>
</tr>
<tr>
<td>rquotad</td>
<td>remote quota server</td>
</tr>
<tr>
<td>rsh</td>
<td>restricted shell command interpreter</td>
</tr>
<tr>
<td>rshd</td>
<td>remote shell server</td>
</tr>
<tr>
<td>rstatd</td>
<td>kernel statistics server</td>
</tr>
<tr>
<td>rtc</td>
<td>provide all real-time clock and GMT-lag management</td>
</tr>
<tr>
<td>runacct</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>runacct</td>
<td>run daily accounting</td>
</tr>
<tr>
<td>rusersd</td>
<td>network username server</td>
</tr>
<tr>
<td>rwall</td>
<td>write to all users over a network</td>
</tr>
<tr>
<td>rwalld</td>
<td>network rwall server</td>
</tr>
<tr>
<td>rwhod</td>
<td>system status server</td>
</tr>
<tr>
<td>sa1</td>
<td>system activity report package</td>
</tr>
<tr>
<td>sa2</td>
<td>system activity report package</td>
</tr>
<tr>
<td>sac</td>
<td>service access controller</td>
</tr>
<tr>
<td>sacadm</td>
<td>service access controller administration</td>
</tr>
<tr>
<td>sadc</td>
<td>system activity report package</td>
</tr>
<tr>
<td>sar</td>
<td>system activity report package</td>
</tr>
<tr>
<td>savecore</td>
<td>save a core dump of the operating system</td>
</tr>
<tr>
<td>sendmail</td>
<td>send mail over the internet</td>
</tr>
<tr>
<td>setmnt</td>
<td>establish mount table</td>
</tr>
<tr>
<td>setuname</td>
<td>changes machine information</td>
</tr>
<tr>
<td>setup_install_server</td>
<td>scripts used to install the Solaris software</td>
</tr>
<tr>
<td>share</td>
<td>make local resource available for mounting by remote systems</td>
</tr>
<tr>
<td>share_nfs</td>
<td>make local NFS filesystems available for mounting by remote systems</td>
</tr>
<tr>
<td>shareall</td>
<td>share, unshare multiple resources</td>
</tr>
<tr>
<td>showmount</td>
<td>show all remote mounts</td>
</tr>
<tr>
<td>showrev</td>
<td>show machine and software revision information</td>
</tr>
<tr>
<td>shutacct</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>shutdown</td>
<td>shut down system, change system state</td>
</tr>
<tr>
<td>snoop</td>
<td>capture and inspect network packets</td>
</tr>
<tr>
<td>spray</td>
<td>spray packets</td>
</tr>
<tr>
<td>sprayd</td>
<td>spray server</td>
</tr>
<tr>
<td>startup</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>statd</td>
<td>network status monitor</td>
</tr>
<tr>
<td>strace</td>
<td>print STREAMS trace messages</td>
</tr>
<tr>
<td>strclean</td>
<td>STREAMS error logger cleanup program</td>
</tr>
<tr>
<td>strerr</td>
<td>STREAMS error logger daemon</td>
</tr>
<tr>
<td>ttydefs</td>
<td>maintain line settings and hunt sequences for TTY ports</td>
</tr>
<tr>
<td>su</td>
<td>become super-user or another user</td>
</tr>
<tr>
<td>sulogin</td>
<td>access single-user mode</td>
</tr>
<tr>
<td>sundiag</td>
<td>SunOS hardware diagnostic program</td>
</tr>
<tr>
<td>suninstall</td>
<td>install the Solaris environment</td>
</tr>
<tr>
<td>swap</td>
<td>swap administrative interface</td>
</tr>
<tr>
<td>swmtool</td>
<td>install, upgrade, and remove software packages</td>
</tr>
<tr>
<td>sxconfig</td>
<td>configure contiguous memory for the SX video subsystem</td>
</tr>
<tr>
<td>sync</td>
<td>update the super block</td>
</tr>
<tr>
<td>syncinit</td>
<td>set serial line interface operating parameters.</td>
</tr>
<tr>
<td>syncloop</td>
<td>synchronous serial loopback test program</td>
</tr>
<tr>
<td>syncstat</td>
<td>report driver statistics from a synchronous serial link.</td>
</tr>
<tr>
<td>sys-unconfig</td>
<td>undo a system’s configuration</td>
</tr>
<tr>
<td>sysdef</td>
<td>output system definition</td>
</tr>
<tr>
<td>sysidconfig</td>
<td>execute system configuration applications, or define set of system configuration applications</td>
</tr>
<tr>
<td>sysidnet</td>
<td>system configuration</td>
</tr>
<tr>
<td>sysidnis</td>
<td>system configuration</td>
</tr>
<tr>
<td>sysidroot</td>
<td>system configuration</td>
</tr>
<tr>
<td>sysidsys</td>
<td>system configuration</td>
</tr>
<tr>
<td>sysidtool</td>
<td>system configuration</td>
</tr>
<tr>
<td>syslogd</td>
<td>log system messages</td>
</tr>
<tr>
<td>talkd</td>
<td>server for talk program</td>
</tr>
<tr>
<td>tapes</td>
<td>adds /dev entries for tape drives attached to the system</td>
</tr>
<tr>
<td>taskstat</td>
<td>prints ASET tasks status</td>
</tr>
<tr>
<td>telinit</td>
<td>process control initialization</td>
</tr>
<tr>
<td>telnetd</td>
<td>DARPA TELNET protocol server</td>
</tr>
<tr>
<td>test_eisa</td>
<td>dump the EISA NVRAM</td>
</tr>
<tr>
<td>tftp</td>
<td>Internet Trivial File Transfer Protocol server</td>
</tr>
<tr>
<td>tic</td>
<td>terminfo compiler</td>
</tr>
<tr>
<td>tnamed</td>
<td>DARPA trivial name server</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>ttyadm</td>
<td>format and output port</td>
</tr>
<tr>
<td></td>
<td>monitor-specific information</td>
</tr>
<tr>
<td>ttyhstmgr</td>
<td>administer hosts on a network</td>
</tr>
<tr>
<td>ttypen</td>
<td>port monitor for terminal ports</td>
</tr>
<tr>
<td>tunefs</td>
<td>tune up an existing file system</td>
</tr>
<tr>
<td>turnacct</td>
<td>shell procedures for accounting</td>
</tr>
<tr>
<td>uadmin</td>
<td>administrative control</td>
</tr>
<tr>
<td>ufsdump</td>
<td>incremental file system dump</td>
</tr>
<tr>
<td>ufsrestore</td>
<td>incremental file system restore</td>
</tr>
<tr>
<td>umount</td>
<td>mount or unmount file systems and remote resources</td>
</tr>
<tr>
<td>umountall</td>
<td>mount, unmount multiple file systems</td>
</tr>
<tr>
<td>unlink</td>
<td>link and unlink files and directories</td>
</tr>
<tr>
<td>unshare</td>
<td>make local resource unavailable for mounting by remote systems</td>
</tr>
<tr>
<td>unshare_nfs</td>
<td>make local NFS filesystems unavailable for mounting by remote systems</td>
</tr>
<tr>
<td>unshareall</td>
<td>share, unshare multiple resources</td>
</tr>
<tr>
<td>useradd</td>
<td>administer a new user login on the system</td>
</tr>
<tr>
<td>userdel</td>
<td>delete a user's login from the system</td>
</tr>
<tr>
<td>usermod</td>
<td>modify a user's login information on the system</td>
</tr>
<tr>
<td>utmp2wtmp</td>
<td>overview of accounting and miscellaneous accounting commands</td>
</tr>
<tr>
<td>uucheck</td>
<td>check the uucp directories and permissions file</td>
</tr>
<tr>
<td>uucico</td>
<td>file transport program for the uucp system</td>
</tr>
<tr>
<td>uucleanup</td>
<td>uucp spool directory clean-up</td>
</tr>
<tr>
<td>uucpd</td>
<td>UUCP server</td>
</tr>
<tr>
<td>uuschced</td>
<td>the scheduler for the uucp file transport program</td>
</tr>
<tr>
<td>Uutry</td>
<td>try to contact remote system with debugging on</td>
</tr>
<tr>
<td>uutry</td>
<td>try to contact remote system with debugging on</td>
</tr>
<tr>
<td>uuxqt</td>
<td>execute remote command requests</td>
</tr>
<tr>
<td>vmstat</td>
<td>report virtual memory statistics</td>
</tr>
<tr>
<td>volcopy</td>
<td>make an image copy of file system</td>
</tr>
<tr>
<td>volcopy_ufs</td>
<td>make an image copy of a ufs file system</td>
</tr>
<tr>
<td>void</td>
<td>Volume Management daemon to manage CD-ROM and floppy devices</td>
</tr>
<tr>
<td>wall</td>
<td>write to all users</td>
</tr>
</tbody>
</table>

modified 29 Mar 1993
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wchrtbl</td>
<td><code>chrtbl(1M)</code> generate character classification and conversion tables</td>
</tr>
<tr>
<td>whodo</td>
<td><code>whodo(1M)</code> who is doing what</td>
</tr>
<tr>
<td>wtmpfix</td>
<td><code>fwtmp(1M)</code> manipulate connect accounting records</td>
</tr>
<tr>
<td>ypbinder</td>
<td><code>ypbind(1M)</code> NIS binder process</td>
</tr>
<tr>
<td>ypininit</td>
<td><code>ypinit(1M)</code> set up NIS client</td>
</tr>
<tr>
<td>ypmake</td>
<td><code>ypmake(1M)</code> rebuild NIS database</td>
</tr>
<tr>
<td>yppoll</td>
<td><code>yppoll(1M)</code> return current version of a NIS map at a NIS server host</td>
</tr>
<tr>
<td>ypset</td>
<td><code>ypset(1M)</code> point ypbind at a particular server</td>
</tr>
<tr>
<td>ypxfr</td>
<td><code>ypxfr(1M)</code> transfer NIS map from a NIS server to host</td>
</tr>
<tr>
<td>zdump</td>
<td><code>zdump(1M)</code> time zone dumper</td>
</tr>
<tr>
<td>zic</td>
<td><code>zic(1M)</code> time zone compiler</td>
</tr>
</tbody>
</table>
NAME
Uutry, uutry – try to contact remote system with debugging on

SYNOPSIS
/usr/lib/uucp/Uutry [-r] [-ctype] [-xdebug-level] system-name

DESCRIPTION
Uutry is a shell script that is used to invoke uucico(1M) to call a remote site. Debugging is initially turned on and is set to the default value of 5. The debugging output is put in file /tmp/system-name.

OPTIONS
−r This option overrides the retry time that is set in file /var/uucp/.Status/system-name.
−ctype The first field in the Devices file is the "Type" field. The −c option forces uucico to only use entries in the "Type" field that match the user specified type. The specified type is usually the name of a local area network.
−xdebug-level debug-level is a number from 0 to 9. Higher numbers give more detailed debugging information.

FILES
/etc/uucp/Devices
/etc/uucp/Limits
/etc/uucp/Permissions
/etc/uucp/Systems
/tmp/system-name
/var/spool/locks/∗
/var/spool/uucp/∗
/var/spool/uucppublic/∗

SEE ALSO
uucp(1C), uux(1C), uucico(1M)

modified 18 May 1993
NAME accept, reject – accept or reject print requests

SYNOPSIS
accept destinations
reject [−r reason] destinations

AVAILABILITY SUNWlp

DESCRIPTION accept allows the queueing of print requests for the named destinations. A destination can be either a printer or a class of printers. Run lpsstat −a to find the status of destinations.

reject prevents queueing of print requests for the named destinations. A destination can be either a printer or a class of printers. Run lpsstat −a to find the status of destinations.

OPTIONS The following option is useful with reject.

−r reason Assign a reason for rejection of requests. This reason applies to all destinations specified. reason is reported by lpsstat −a. It must be enclosed in quotes if it contains blanks. The default reason is unknown reason for existing destinations, and new destination for destinations just added to the system but not yet accepting requests.

FILES /var/spool/lp/

SEE ALSO enable(1), lp(1), lpsstat(1), lpadmin(1M), lpsched(1M)
NAME acct, acctdisk, acctdusg, accton, acctwtmp, closewtmp, utmp2wtmp – overview of accounting and miscellaneous accounting commands

SYNOPSIS /usr/lib/acct/acctdisk
/usr/lib/acct/acctdusg [−uname] [−pfilename]
/usr/lib/acct/accton [filename]
/usr/lib/acct/acctwtmp reason
/usr/lib/acct/closewtmp
/usr/lib/acct/utmp2wtmp

AVAILABILITY SUNWaccr

DESCRIPTION Accounting software is structured as a set of tools (consisting of both C programs and shell procedures) that can be used to build accounting systems. acctsh(1M) describes the set of shell procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into /var/adm/wtmp, as described in utmp(4). The programs described in acctcon(1M) convert this file into session and charging records, which are then summarized by acctmerg(1M).

Process accounting is performed by the system kernel. Upon termination of a process, one record per process is written to a file (normally /var/adm/pacct). The programs in acctprc(1M) summarize this data for charging purposes; acctcms(1M) is used to summarize command usage. Current process data may be examined using acctcom(1).

Process accounting records and connect time accounting records (or any accounting records in the tacct format described in acct(4)) can be merged and summarized into total accounting records by acctmerg (see tacct format in acct(4)). prtacct (see acctsh(1M)) is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk blocks and converts them to total accounting records that can be merged with other accounting records.

acctdusg reads its standard input (usually from find / −print) and computes disk resource consumption (including indirect blocks) by login.

accton without arguments turns process accounting off. If filename is given, it must be the name of an existing file, to which the kernel appends process accounting records (see acct(2) and acct(4)).

acctwtmp writes a utmp(4) record to its standard output. The record contains the current time and a string of characters that describe the reason. A record type of ACCOUNTING is assigned (see utmp(4)). reason must be a string of 11 or fewer characters, numbers, $, or spaces. For example, the following are suggestions for use in reboot and shutdown procedures, respectively:
acctwtmp "acctg on" >> /var/adm/wtmp
acctwtmp "acctg off" >> /var/adm/wtmp

For each user currently logged on, closewtmp puts a false DEAD_PROCESS record in the /var/adm/wtmp file. runacct (see runacct(1M)) uses this false DEAD_PROCESS record so that the connect accounting procedures can track the time used by users logged on before runacct was invoked.

For each user currently logged on, runacct uses utmp2wtmp to create an entry in the file /var/adm/wtmp, created by runacct. Entries in /var/adm/wtmp enable subsequent invocations of runacct to account for connect times of users currently logged in.

OPTIONS

−ufilename Records consisting of those filenames for which acctdusg charges no one are placed in filename (a potential source for finding users trying to avoid disk charges).

−pfilename Specify a password file, filename. This option is not needed if the password file is /etc/passwd.

ENVIRONMENT

If any of the LC_∗ variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the operational behavior of acct for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_∗ variables. If none of the above variables are set in the environment, the "C" (U.S. style) locale determines how acct behaves.

LC_CTYPE determines how acct handles characters. When LC_CTYPE is set to a valid value, acct can display and handle text and filenames containing valid characters for that locale. acct can display and handle Extended Unix Code (EUC) characters where any character can be 1, 2, or 3 bytes wide. acct can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

LC_TIME determines how acct handles date and time formats. In the "C" locale, date and time handling follows the U.S. rules.

FILES

/etc/passwd used for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in sub-class 1M of this manual
/var/adm/pacct current process accounting file
/var/adm/wtmp login/logoff history file

SEE ALSO

acctcom(1), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4), environ(5)

Security, Performance, and Accounting Administration

NOTES

The acctdusg command can process a maximum of
3000 distinct users
during a single invocation of the command. If at some point the actual number of users
exceeds the maximum, the command will not succeed.
NAME acctcms – command summary from process accounting records

SYNOPSIS /usr/lib/acct/acctcms [-a [-o] [-p]] [-c] [-j] [-n] [-s] [-t] filename ...

DESCRIPTION acctcms reads one or more filenames, normally in the form described in acct(4). It adds all records for processes that executed identically-named commands, sorts them, and writes them to the standard output, normally using an internal summary format.

OPTIONS
- a Print output in ASCII rather than in the internal summary format. The output includes command name, number of times executed, total kcore-minutes, total CPU minutes, total real minutes, mean size (in K), mean CPU minutes per invocation, "hog factor", characters transferred, and blocks read and written, as in acctcom(1). Output is normally sorted by total kcore-minutes.

The following options may be used only with the -a option:
- o Output a (non-prime) offshift-time-only command summary.
- p Output a prime-time-only command summary.

When -o and -p are used together, a combination prime-time and non-prime-time report is produced. All the output summaries will be total usage except number of times executed, CPU minutes, and real minutes, which will be split into prime and non-prime.

- c Sort by total CPU time, rather than total kcore-minutes.
- j Combine all commands invoked only once under "***other".
- n Sort by number of command invocations.
- s Any filenames encountered hereafter are already in internal summary format.
- t Process all records as total accounting records. The default internal summary format splits each field into prime and non-prime time parts. This option combines the prime and non-prime time parts into a single field that is the total of both, and provides upward compatibility with old style acctcms internal summary format records.

EXAMPLES A typical sequence for performing daily command accounting and for maintaining a running total is:

 example% acctcms filename ... > today
 example% cp total previoustotal
 example% acctcms -s today previoustotal >
 example% acctcms -a -s today

SEE ALSO acctcom(1), acct(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4)
NOTES

Unpredictable output results if -t is used on new style internal summary format files, or if it is not used with old style internal summary format files.
NAME acctcon, acctcon1, acctcon2 – connect-time accounting

SYNOPSIS /usr/lib/acct/acctcon [−l lineuse [−o reboot]
/usr/lib/acct/acctcon1 [−p] [−t] [−l lineuse] [−o reboot]
/usr/lib/acct/acctcon2

DESCRIPTION acctcon converts a sequence of login/logoff records to total accounting records (see the tacct format in acct(4)). The login/logoff records are read from standard input. The file /var/adm/wtmp is usually the source of the login/logoff records, however, because it may contain corrupted records or system date changes, it should first be fixed using wtmpfix. The fixed version of file /var/adm/wtmp can then be redirected to acctcon. The tacct records are written to standard output.

acctcon is a combination of the programs acctcon1 and acctcon2. acctcon1 converts login/logoff records, taken from the fixed /var/adm/wtmp file, to ASCII output. acctcon2 reads the ASCII records produced by acctcon1 and converts them to tacct records. acctcon1 can be used with the −l and −o options, described below, as well as with the −p and −t options.

OPTIONS −p Print input only, showing line name, login name, and time (in both numeric and date/time formats).
−t acctcon1 maintains a list of lines on which users are logged in. When it reaches the end of its input, it emits a session record for each line that still appears to be active. It normally assumes that its input is a current file, so that it uses the current time as the ending time for each session still in progress. The −t flag causes it to use, instead, the last time found in its input, thus assuring reasonable and repeatable numbers for non-current files.
−l lineuse lineuse is created to contain a summary of line usage showing line name, number of minutes used, percentage of total elapsed time used, number of sessions charged, number of logins, and number of logoffs. This file helps track line usage, identify bad lines, and find software and hardware oddities. Hangup, termination of login(1) and termination of the login shell each generate logoff records, so that the number of logoffs is often three to four times the number of sessions. See init(1M) and utmp(4).
−o reboot reboot is filled with an overall record for the accounting period, giving starting time, ending time, number of reboots, and number of date changes.

EXAMPLES The acctcon command is typically used as follows:
example% acctcon −l lineuse −o reboots < tmpwtmp > ctacct
The acctcon1 and acctcon2 commands are typically used as follows:
ex ample% acctcon1 −l lineuse −o reboots < tmpwtmp | sort +1n +2 > ctmp
example% acctcon2 < ctmp > ctacct

1M-26 modified 8 Apr 1994
SunOS 5.4 Maintenance Commands acctcon (1M)

FILES
/var/adm/wtmp login/logoff summary

SEE ALSO acctcom(1), login(1), acct(1M), acctcms(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), init(1M), runacct(1M), acct(2), acct(4), utmp(4)

Security, Performance, and Accounting Administration

NOTES
The line usage report is confused by date changes. Use wtmpfix (see fwtmp(1M)), with
the /var/adm/wtmp file as an argument, to correct this situation.
The acctcon, acctcon1, and acctcon2 commands can process a maximum of
 6000 distinct sessions
 1000 distinct terminal lines
 2000 distinct login names
during a single invocation of any given command. If at some point the actual number of
any one of these items exceeds the maximum, the command will not succeed.

modified 8 Apr 1994 1M-27
NAME acctmerg – merge or add total accounting files

SYNOPSIS /usr/lib/acct/acctmerg [−a] [−i] [−p] [−t] [−u] [−v] [filename] …

DESCRIPTION acctmerg reads its standard input and up to nine additional files, all in the tacct format (see acct(4)) or an ASCII version thereof. It merges these inputs by adding records whose keys (normally user ID and name) are identical, and expects the inputs to be sorted on those keys.

OPTIONS
−a Produce output in ASCII version of tacct.
−i Input files are in ASCII version of tacct.
−p Print input with no processing.
−t Produce a single record that totals all input.
−u Summarize by user ID, rather than by user ID and name.
−v Produce output in verbose ASCII format, with more precise notation for floating-point numbers.

EXAMPLES The following sequence is useful for making "repairs" to any file kept in this format:

 example% acctmerg −v <filename1 >filename2
 Edit filename2 as desired
 example% acctmerg −i <filename2 >filename1

SEE ALSO acctcom(1), acct(1M), acctcms(1M), acctcon(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4)

Security, Performance, and Accounting Administration
NAME
acctprc, acctprc1, acctprc2 – process accounting

SYNOPSIS
/usr/lib/acct/acctprc
/usr/lib/acct/acctprc1 [ctmp]
/usr/lib/acct/acctprc2

DESCRIPTION
acctprc reads the standard input, in the form described by acct(4), and converts it to total accounting records (see the tacct record in acct(4)). acctprc divides CPU time into prime time and non-prime time and determines mean memory size (in memory segment units). acctprc then summarizes the tacct records, according to user IDs, and adds login names corresponding to the user IDs. The summarized records are then written to the standard output. acctprc1 reads input in the form described by acct(4), adds login names corresponding to user IDs, then writes for each process an ASCII line giving user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and mean memory size (in memory segment units). If ctmp is given, it is expected to contain a list of login sessions sorted by user ID and login name. If this file is not supplied, it obtains login names from the password file, just as acctprc does. The information in ctmp helps it distinguish between different login names sharing the same user ID.

From the standard input, acctprc2 reads records in the form written by acctprc1, summarizes them according to user ID and name, then writes the sorted summaries to the standard output as total accounting records.

EXAMPLES
The acctprc command is typically used as shown below:
example% acctprc < /var/adm/pacct > ptacct

The acctprc1 and acctprc2s commands are typically used as shown below:
example% acctprc1 ctmp < /var/adm/pacct
example% acctprc2 > ptacct

FILES
/etc/passwd system password file

SEE ALSO
acctcom(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctsh(1M), cron(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4)

NOTES
Although it is possible for acctprc1 to distinguish among login names that share user IDs for commands run normally, it is difficult to do this for those commands run from cron(1M), for example. A more precise conversion can be done using the acctwtmp program in acct(1M). acctprc does not distinguish between users with identical user IDs. A memory segment of the mean memory size is a unit of measure for the number of bytes in a logical memory segment on a particular processor.
The **acctprc**, **acctprc1**, and **acctprc2** commands can process a maximum of
6000 distinct sessions
1000 distinct terminal lines
2000 distinct login names
during a single invocation of any given command. If at some point the actual number of
any one of these items exceeds the maximum, the command will not succeed.
NAME acctsh, chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, runacct, shutacct, startup, turnacct – shell procedures for accounting

SYNOPSIS /usr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks]
/usr/lib/acct/dodisk [−o] [filename ...]
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladm filename ...
/usr/lib/acct/prctmp filename
/usr/lib/acct/prdaily [−c] [−l] [mmdd]
/usr/lib/acct/prtacct filename [“heading”]
/usr/lib/acct/runacct [mmdd] [mmdd state]
/usr/lib/acct/shutacct [“reason”]
/usr/lib/acct/startup
/usr/lib/acct/turnacct on off switch

DESCRIPTION chargefee can be invoked to charge a number of units to login-name. A record is written to /var/adm/fee, to be merged with other accounting records by runacct.

ckpacct should be initiated using cron(1M) to periodically check the size of /var/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will be invoked with argument switch. If the number of free disk blocks in the /var file system falls below 500, ckpacct will automatically turn off the collection of process accounting records via the off argument to turnacct. When at least 500 blocks are restored, the accounting will be activated again on the next invocation of ckpacct. This feature is sensitive to the frequency at which ckpacct is executed, usually by cron.

dodisk should be invoked by cron to perform the disk accounting functions.

lastlogin is invoked by runacct to update /var/adm/acct/sum/loginlog, which shows the last date on which each person logged in.

monacct should be invoked once each month or each accounting period. number indicates which month or period it is. If number is not given, it defaults to the current month (01−12). This default is useful if monacct is to executed using cron(1M) on the first day of each month. monacct creates summary files in /var/adm/acct/fiscal and restarts the summary files in /var/adm/acct/sum.

nulladm creates filename with mode 664 and ensures that owner and group are adm. It is called by various accounting shell procedures.

prctmp can be used to print the session record file (normally /var/adm/acct/nite/ctmp created by acctcon(1) (see acctcon(1M)).
prdaily is invoked by runacct to format a report of the previous day’s accounting data. The report resides in /var/adm/acct/sum/rprt/mmdd where mmdd is the month and day of the report. The current daily accounting reports may be printed by typing prdaily. Previous days’ accounting reports can be printed by using the mmdd option and specifying the exact report date desired.

prtacct can be used to format and print any total accounting (tacct) file.

runacct performs the accumulation of connect, process, fee, and disk accounting on a daily basis. It also creates summaries of command usage. For more information, see runacct(1M).

shutacct is invoked during a system shutdown to turn process accounting off and append a reason record to /var/adm/wtmp.

startup can be invoked when the system is brought to a multi-user state to turn process accounting on.

turnacct is an interface to accton (see acct(1M)) to turn process accounting on or off. The switch argument moves the current /var/adm/pacct to the next free name in /var/adm/pacctincr (where incr is a number starting with 1 and incrementing by one for each additional pacct file), then turns accounting back on again. This procedure is called by ckpacct and thus can be taken care of by the cron and used to keep pacct to a reasonable size. shutacct uses turnacct to stop process accounting. startup uses turnacct to start process accounting.

OPTIONS

\-c This option prints a report of exceptional resource usage by command, and may be used on current day’s accounting data only.

\-l This option prints a report of exceptional usage by login id for the specified date. Previous daily reports are cleaned up and therefore inaccessible after each invocation of monacct.

\-o Use acctdusg (see acct(1M)) to do a slower version of disk accounting by login directory. filenames specifies the one or more filesystem names where disk accounting will be done. If filenames are used, disk accounting will be done on these filesystems only. If the \-o option is used, filenames should be mount points of mounted filesystems. If the \-o option is omitted, filenames should be the special file names of mountable filesystems.

FILES

/usr/lib/acct holds all accounting commands listed in section 1M of this manual

/usr/lib/acct/ptecms.awk contains the limits for exceptional usage by command name

/usr/lib/acct/ptelus.awk contains the limits for exceptional usage by login ID

/var/adm/acct/fiscal fiscal reports directory

/var/adm/acct/nite working directory

/var/adm/acct/sum summary directory contains information for monacct

/var/adm/acct/sum/loginlog file updated by last login

modified 8 Apr 1994
SEE ALSO
acctcom(1), acct(1M), acctms(1M), acctcon(1M), acctmerg(1M), cron(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4)

NOTES
The dodisk command can process a maximum of 3000 distinct users during a single invocation of the command. If at some point the actual number of users exceeds the maximum, the command will not succeed.
NAME adbgen – generate adb script

SYNOPSIS /usr/lib/adb/adbgen filename.adb ...

DESCRIPTION adbgen makes it possible to write adb(1) scripts that do not contain hard-coded dependencies on structure member offsets. The input to adbgen is a file named filename.adb which contains header information, then a null line, then the name of a structure, and finally an adb script. adbgen only deals with one structure per file; all member names are assumed to be in this structure. The output of adbgen is an adb script in filename. adbgen operates by generating a C program which determines structure member offsets and sizes, which in turn generate the adb script.

The header lines, up to the null line, are copied verbatim into the generated C program. Typically these are #include statements, which include the headers containing the relevant structure declarations.

The adb script part may contain any valid adb commands (see adb(1)), and may also contain adbgen requests, each enclosed in { }. Request types are:

- Print a structure member. The request form is {member, format}. member is a member name of the structure given earlier, and format is any valid adb format request. For example, to print the p_pid field of the proc structure as a decimal number, you would write {p_pid,d}.

- Reference a structure member. The request form is {*member, base}. member is the member name whose value is desired, and base is an adb register name which contains the base address of the structure. For example, to get the p_pid field of the proc structure, you would get the proc structure address in an adb register, for example <f, and write {*p_pid,<f}.

- Tell adbgen that the offset is ok. The request form is {OFFSETOK}. This is useful after invoking another adb script which moves the adb dot.

- Get the size of the structure. The request form is {SIZEOF}. adbgen replaces this request with the size of the structure. This is useful in incrementing a pointer to step through an array of structures.

- Calculate an arbitrary C expression. The request form is {EXPR, expression}. adbgen replaces this request with the value of the expression. This is useful when more than one structure is involved in the script.

- Get the offset to the end of the structure. The request form is {END}. This is useful at the end of the structure to get adb to align the dot for printing the next structure member.

adbgen keeps track of the movement of the adb dot and generates adb code to move forward or backward as necessary before printing any structure member in a script. adbgen’s model of the behavior of adb’s dot is simple: it is assumed that the first line of the script is of the form struct_address/adb text and that subsequent lines are of the form +/adb text. The adb dot then moves in a sane fashion. adbgen does not check the script to ensure that these limitations are met. adbgen also checks the size of the structure.
member against the size of the `adb` format code and warns you if they are not equal.

EXAMPLES

If there were an include file `x.h` which contained

```c
struct x {
    char *x_cp;
    char x_c;
    int x_i;
};
```

then an `adbgen` file (call it `script.adb`) to print the file `x.h` would be:

```bash
#include "x.h"

x ."x_cp"16t"x_c"8t"x_i"n{x_cp,X}[x_c,C][x_i,D]
```

After running `adbgen` the output file `script` would contain:

```
16t"x_c"8t"x_i"nXC3+D ."x_cp"16t"x_c"8t"x_i"nXC3+D
```

To invoke the script you would type:

```
example% adb program
x$<script
```

FILES

/usr/kvm/lib/adb/* adb scripts for debugging the kernel

SEE ALSO

`adb(1)`, `kadb(1M)`

DIAGNOSTICS

Warnings are given about structure member sizes not equal to `adb` format items and about badly formatted requests. The C compiler complains if you reference a structure member that does not exist. It also complains about an ampersand before array names; these complaints may be ignored.

BUGS

`adb` syntax is ugly; there should be a higher level interface for generating scripts. Structure members which are bit fields cannot be handled because C will not give the address of a bit field. The address is needed to determine the offset.
NAME
add_drv – add a new device driver to the system

SYNOPSIS
add_drv [−b basedir] [−c class_name] [−i ‘identify_name…’] [−m ‘permission’,…’]
 driver_module

AVAILABILITY
SUNWcsu

DESCRIPTION
The add_drv command is used to inform the system about newly installed device drivers.

OPTIONS
−b basedir Sets the path to the root directory of the diskless client. Used on the server to add_drv for a diskless client. The client machine must be rebooted to install the driver.
−c class_name The driver being added to the system exports the class class_name.
−i ‘identify_name’ A whitespace separated list of aliases for the driver driver_module.
−m ‘permission’ Specify the file system permissions for device nodes created by the system on behalf of driver_module.

EXAMPLES
The following example adds the SUNW,example driver to the system, with an alias name of SUNW,alias. It assumes the driver has already been copied to /usr/kernel/drv.

example# add_drv −m ‘* 0666 bin bin’,‘a 0644 root sys’ \
 −i ‘SUNW,alias’ SUNW,example

Every minor node created by the system for the SUNW,example driver will have the permission 0666, and be owned by user bin in the group bin, except for the minor device a, which will be owned by root, group sys, and have a permission of 0644.

The following example adds the driver to the client /export/root/sun1. The driver is installed and loaded when the client machine, sun1, is rebooted.

example# add_drv −m ‘* 0666 bin bin’,‘a 0644 root sys’ \
 −i ‘SUNW,alias’ -b /export/root/sun1 \
 SUNW,example

This second example produces the same result as the first, except the changes are on the diskless client, sun1, and the client must be rebooted for the driver to be installed.

EXIT CODES
add_drv returns 0 on success and 1 on failure.

FILES
/kernel/drv
 boot device drivers, platform-dependent drivers.
/usr/kernel/drv
 other drivers that could potentially be shared between platforms.
/etc/driver_aliases
 driver aliases file.
/etc/driver_classes
 driver classes file.
/etc/minor_perm
 minor node permissions.
/etc/name_to_major
 major number binding.
SEE ALSO

devlinks(1M), disks(1M), drvconfig(1M), kernel(1M), modinfo(1M), ports(1M), rem_drv(1M), tapes(1M), driver.conf(4), system(4), ddi_create_minor_node(9F)

Writing Device Drivers

NOTES

Aliases may require quoting (with double-quotes) if they contain numbers.

BUGS

add_drv will accept a full pathname for driver_module. However, the kernel does not use the full pathname; it only uses the final component and searches the internal module path for the module. This can lead to the kernel loading a different module than expected.

For this reason, it is not recommended that you use add_drv with a full pathname. See kernel(1M) for more information on the module path.
NAME
addbadsec – map out defective disk blocks

SYNOPSIS
addbadsec [−p] [−a blkno [blkno . . .]] [−f filename] raw_device

AVAILABILITY
x86
SUNWcsu

DESCRIPTION
addbadsec is used by the system administrator to map out bad disk blocks. Normally, these blocks are identified during surface analysis, but occasionally the disk subsystem reports unrecoverable data errors indicating a bad block. A block number reported in this way can be fed directly into addbadsec, and the block will be remapped. addbadsec will first attempt hardware remapping. This is supported on SCSI drives and takes place at the disk hardware level. If the target is an IDE drive, then software remapping is used. In order for software remapping to succeed, the partition must contain an alternate slice and there must be room in this slice to perform the mapping.

−p Causes addbadsec to print the current software map. The output shows the defective block and the assigned alternate. This option cannot be used to print the hardware map.

−a Adds the specified blocks to the hardware or software map. If more than one block number is specified, the entire list should be quoted and block numbers should be separated by white space.

−f Adds the specified blocks to the hardware or software map. The bad blocks are listed, one per line, in the specified file.

It should be understood that bad blocks lead to data loss. Remapping a defective block does not repair a damaged file. If a bad block occurs to a disk-resident file system structure such as a superblock, the entire slice might have to be recovered from a backup.

FILES
The raw device should be /dev/rdsk/c?i?d?p0.

SEE ALSO
fdisk(1), fmthard(1), diskscan(1M)
NAME
admind – distributed system administration daemon

SYNOPSIS
admind [−c keywords] [−i secs] [−l logfile] [−O OW_path_name]
[−S security_level] [−v]

AVAILABILITY
SUNWadmfw

DESCRIPTION
admind is the daemon used by system administration tools, such as Administration
Tool and ttyhstmgr, to perform distributed system administration operations.

The admind daemon is started automatically by the inetd daemon whenever a request to
invoke an operation is received. The admind daemon process continues to run for 15
minutes after the last request is completed, unless a different idle-time is specified with
the −i command line option. The admind daemon may be started independently from
the command line, for example, at system boot time. In this case, the −i option has no
effect; admind continues to run, even if there are no active requests.

The admind daemon process can be configured to write tracing information into a log file
by specifying the −c and −l command line options. The −c option specifies a comma-
separated list of keywords indicating the types of information to be logged. The follow-
ning keywords may be useful to you as an administrator:

System-Info Includes messages about when the admind daemon was started
and stopped.

Requests Includes messages about which operations admind invoked and
when.

Errors Includes messages about errors that occurred during the daemon
execution.

* Includes all possible log messages.

The −l option enables logging and optionally specifies the path and file name of the log
file. If no log file is specified, the default log file /var/adm/admin.log is used.

OPTIONS
The following command line options may be useful to you as an administrator when
starting the admind daemon:

−c keywords Specify the types of information to be logged as a comma-separated list
of keywords. The default is to log all types of messages.

−i secs Specify the number of seconds for admind to stay up after the last
request is completed. The default is 15 minutes (900 seconds). If secs is 0
or over 10,000,000, admind stays up forever. −i only applies when
admind is started by the inetd daemon. You may want admind to run
permanently (or for extended durations) on systems that are frequently
administered by applications using admind (for example, a server
managed through Host Manager) to improve application performance.
Enable logging and optionally define the path name to the distributed system administration log file. The default log file is:

/var/adm/admin.log

Define the path name to the OpenWindows home directory. If this option is not specified, the admint daemon will use the OpenWindows home directory defined in the OPENWINHOME environment variable, if defined; the home directory specified in the /etc/OPENWINHOME file, if it exists; or the default directory /usr/openwin. When the admint daemon is started by the inetd daemon, the environment variable OPENWINHOME is typically not defined. If the OpenWindows home directory is not one of the path names specified (/usr/openwin or in the file /etc/OPENWINHOME), the –O option must be added to the admint entry in the inetd.conf(4) configuration file.

Define the level of security to be used by the admint daemon when checking a client’s right to perform an operation on the server system. Security level specifies the authentication mechanism used to provide and check the client’s identity. The client’s identity must be authenticated by the specified mechanism for admint to accept his or her request. The system-wide authentication requirements set by the security level may take precedence over any operation-specific requirements. Consequently, the security level can be used system-wide to ensure that all operations meet minimum authentication requirements, regardless of the requirements assigned specifically to an operation. In addition, the security level determines whether admint will perform authorization access control checking.

Security level may be one of the following:

0 Set authentication type to NONE. All clients’ user and group identities are set to the nobody identity by admint (see SunOS 5.2 Administering Security, Performance, and Accounting). If access is granted to nobody, admint executes the operation. Use this level only for testing.

1 Set authentication type to WEAK. Clients’ user and group identities are set by admint from their authentication credentials. Client identities are accepted by admint when they have satisfied either AUTH_SYS or AUTH_DES authentication mechanisms. The authenticated client identity is checked by admint for authorization to execute the operation. If an operation calls for a stronger security level, admint demotes the user identity to nobody, and then checks whether nobody is authorized to execute the operation. Since AUTH_SYS client credentials are easily forged, this level should be used only in relatively secure environments. No check is done that the user ID of the client represents the same user on the server system.
as on the client system. It is assumed that user and group identities are set up consistently on the network. This security level is the default.

2 Set authentication type to STRONG. Clients’ user and group identities are set by admind from their authentication credential mappings (effectively, user and group IDs from netid.byname for NIS, or cred table for NIS+). Client identities are accepted by admind only when they have satisfied the AUTH_DES authentication mechanism. The admind daemon checks whether the client identity is authorized to execute the operation. This level provides the most secure environment for executing distributed administration operations. It overrides any weaker level specific to an operation. A DES credential must exist for the host running the admind daemon and all administration client user identities.

−v Enable the writing of log messages to the system logger, syslogd. Messages logged include fatal errors encountered while attempting to start the admind daemon process and those specified by the −c trace message keywords.

EXAMPLES

By default, the line in /etc/inetd.conf that starts admind appears as follows:

```
100087/10 tli rpc/udp wait root /usr/sbin/admind admind
```

To make a network as secure as possible, change the line to:

```
100087/10 tli rpc/udp wait root /usr/sbin/admind admind −S 2
```

To minimize delays due to starting up admind, change the line to include the −i option:

```
100087/10 tli rpc/udp wait root /usr/sbin/admind admind −i 86400
```

In this example, the duration that admind remains up after the last operation request was completed is extended to 24 hours (86,400 seconds). Extending the timeout period may enhance performance on servers and workstations that frequently run or are administered by applications that use the admind daemon (for example, ttyhstmgr, or Administration Tool applications such as Printer Manager).

FILES

/var/adm/admin.log distributed system administration default log file
/etc/inetd.conf internet servers database file

SEE ALSO

admintool(1M), inetd(1M), rpcbind(1M), sysidtool(1M), ttyhstmgr(1M), inetd.conf(4)

Security, Performance, and Accounting Administration
File System Administration

NOTES

Whenever inetd fails to start admind, re-register the RPC number for admind, 100087, with rpcbind by sending the inetd process a SIGHUP signal:

```
example% kill −HUP pid
```

or
Sometimes `inetd` does not start `admin` in response to system administration requests, even though the `inetd.conf` file has the correct entry for the `admin` daemon. This can happen when `admin` is started manually from the command line and takes over the previous registration of the `admin` RPC number, 100087, by `inetd`. When the manually-started `admin` daemon is terminated, the `admin` RPC number, 100087, is de-registered with `rpcbind`. Consequently, system administration requests are ignored by `inetd`.

```
example% kill -1
```
NAME
admintool – system administration with a graphical user interface

SYNOPSIS
admintool

DESCRIPTION
admintool presents a graphical user interface for the accomplishment of several system administration tasks in a distributed environment. Membership in the sysadmin group (gid 14) is used to restrict access to administrative tasks. Members of the sysadmin group can use admintool to create, delete, and modify system files. Non-members have read-only permissions (where applicable).

Spot help is available using the Help key on the keyboard. On-line Help handbooks are available from each application, and can also be called from the admintool window.

USAGE
admintool includes the following applications:

Database Manager
The Database Manager application allows complete maintenance of system databases using any of three naming services. The databases are:

- aliases
- auto_home
- bootparams
- ethers
- group
- hosts
- netgroup
- netmasks
- networks
- passwd
- protocols
- rpc
- services
- timezone

The supported naming services are:

- NIS+ Network Information Service Plus, the replacement for NIS.
- NIS Network Information Service, formerly known as YP; NIS databases may not be modified by admintool.
- None Text files in the /etc directory.

Host Manager
The Host Manager application supports the definition of client machines on the server that will serve them. Three types of clients are supported:

- diskless Clients that depend on the server for all disk needs.
- standalone Clients that may use the server as an optional file server.
- dataless Clients that have a local disk but use it only for root and swap.
Printer Manager

The Printer Manager application allows you to install and set up printers on a system or on a network. You can:

- Set up a print server.
- Connect a system to a remote printer.
- Modify print configurations.
- Delete print configurations.

Serial Port Manager

The Serial Port Manager configures a system’s serial port software to work with terminals and modems. The Serial Port Manager provides templates for common terminal and modem configurations which can then be modified for a particular device. The available configuration templates are:

- Terminal – Hardwired
- Modem – Dial-in only
- Modem – Dial-out only
- Modem – Bidirectional
- Initialize Only – No connection

User Account Manager

The User Account Manager allows you to administer user accounts on a network. You can:

- Create new user accounts.
- Modify existing accounts.
- Delete user accounts.

User account information can be managed in any of the three naming services (none, NIS, or NIS+). The User Account Manager can set up home directories with the appropriate files and user account information. It can manage information in the following databases:

- aliases
- auto_home
- cred
- group
- passwd
- shadow

SEE ALSO

nis+(1), admintool(1M), sys-unconfig(1M), sysidtool(1M)

Administration Application Reference Manual
Common Administration Tasks
Peripherals Administration
Security, Performance, and Accounting Administration
User Accounts, Printers, and Mail Administration

modified 07 Apr 1994
NAME
aliasadm – manipulate the NIS+ aliases map

SYNOPSIS
aliasadm -a alias expansion [options comments] [optional flags ...]
aliasadm -c alias expansion [options comments] [optional flags ...]
aliasadm -d alias [optional flags ...]
aliasadm -e alias [optional flags ...]
aliasadm -l alias [optional flags ...]
aliasadm -m alias [optional flags ...]
aliasadm [-I] [-D domainname] [-f filename] [-M mapname]

DESCRIPTION
aliasadm makes changes to the alias map.
The alias map is an NIS+ table object with four columns:

- **alias**: The name of the alias as a null terminated string.
- **expansion**: The value of the alias as it would appear in a sendmail /etc/aliases file.
- **options**: A list of options applicable to this alias. The only option currently supported is CANON. With this option, if the user has requested an inverse alias lookup, and there is more than one alias with this expansion, this alias is given preference.
- **comments**: An arbitrary string containing comments about this alias. The sendmail(1M) command reads this map in addition to the NIS aliases map and the local /etc/aliases database.

OPTIONS
- `-a` Add an alias.
- `-c` Change an alias.
- `-d` Delete an alias.
- `-e` Edit the alias map.
- `-l` Initialize the NIS+ aliases database.
- `-l` List the alias map.
- `-m` Print or match an alias.
- `-D domainname` Edit the map in domain domainname instead of the current domain.
- `-f filename` When editing or listing the database, use filename instead of invoking the editor.
- `-M mapname` Edit mapname instead of mail_aliases.

FILES
/etc/aliases mail aliases for the local host in ASCII format

SEE ALSO
sendmail(1M)

modified 11 May 1993
NAME
allocate – device allocation

SYNOPSIS
allocate [−s] [−U uname] device
allocate [−s] [−U uname] −g dev−type
allocate [−s] [−U uname] −F device

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
allocate manages the ownership of devices through its allocation mechanism. It ensures that each device is used by only one qualified user at a time.

The device argument specifies the device to be manipulated. To preserve the integrity of the device’s owner, the allocate operation is executed on all the device special files associated with that device.

The argument dev−type, is the device type to be operated on. The argument dev−type, can only be used with the −g option.

The default allocate operation, allocates the device special files associated with device to the uid of the current process.

If the −F option is specified, the device cleaning program is executed when allocation is performed. This cleaning program is found in /etc/security/lib. The name of this program is found in the device_allocate(4) entry for the device in the dev−exec field.

OPTIONS
−g dev−type Allocate a non−allocated device with a device–type matching dev−type.
−s Silent. Suppresses any diagnostic output.
−F device Reallocate the device allocated to another user. This option is often used with −U to reallocate a specific device to a specific user. Only the super user is permitted to use this option.
−U uname Use the user ID uname instead of the user ID of the current process when performing the allocate operation. Only the super user is permitted to use this option.

DIAGNOSTICS
allocate returns an nonzero exit status in the event of an error.

FILES
/etc/security/device_allocate
/etc/security/device_maps
/etc/security/dev/*
/etc/security/lib/*

SEE ALSO
bsmconv(1M), device_allocate(4), device_maps(4)
NAME
 arp – address resolution display and control

SYNOPSIS
 arp hostname
 arp -a [unix [kmem]]
 arp -d hostname
 arp -f filename
 arp -s hostname ether_address [temp] [pub] [trail]

AVAILABILITY
 SUNWcsu

DESCRIPTION
 The **arp** program displays and modifies the Internet-to-Ethernet address translation tables used by the address resolution protocol (see **arp(7)**).

 With no flags, the program displays the current ARP entry for **hostname**. The host may be specified by name or by number, using Internet dot notation.

OPTIONS
 -a Display all of the current ARP entries by reading the table from the file **kmem** (default **/dev/kmem**) based on the kernel file **unix** (default **/kernel/unix**). The definition for the flags in the table are:
 P Publish; ARP will respond to ARP requests for this address.
 S Static; not learned for the ARP protocol.
 U Unresolved; waiting for ARP response.
 M Mapping; only used for the multicast entry for 224.0.0.0
 -d Delete an entry for the host called **hostname**. This option may only be used by the super-user.
 -f Read the file named **filename** and set multiple entries in the ARP tables. Entries in the file should be of the form
 hostname ether_address [temp] [pub] [trail]
 (see option -s for argument definitions).
 -s Create an ARP entry for the host called **hostname** with the Ethernet address **ether_address**. The Ethernet address is given as six hexadecimal bytes separated by colons. The entry will be permanent unless the word **temp** is given in the command. If the word **pub** is given, the entry will be published. For instance, this system will respond to ARP requests for **hostname** even though the hostname is not its own. The word **trail** indicates that trailer encapsulations may be sent to this host. **arp -s** can be used for a limited form of proxy ARP when a host on one of the directly attached networks is not physically present on the subnet. Another machine can then be configured to respond to ARP requests using **arp -s**. This is useful in certain SLIP or PPP configurations.

SEE ALSO
 ifconfig(1M), arp(7)
NAME
aset – monitors or restricts accesses to system files and directories

SYNOPSIS
aset [-p] [-d aset_dir] [-l sec_level] [-n user@host] [-u userlist_file]

DESCRIPTION
The Automated Security Enhancement Tool (ASET) is a set of administrative utilities that can improve system security by allowing the system administrators to check the settings of system files, including both the attributes (permissions, ownership, etc.) and the contents of the system files. It warns the users of potential security problems and, where appropriate, sets the system files automatically according to the security level specified.

The security level for *aset* can be specified by setting the –l command line option or the ASETSECLEVEL environment variable to be one of 3 values: low, med, or high. All the functionality operates based on the value of the security level.

At the **low** level, *aset* does not alter any system behavior. It merely performs a number of checks and reports any potential security weaknesses.

At the **med** level, *aset* modifies some of the settings of system files and parameters, thus restricting system access, to reduce the risks from security attacks. Again it will report the security weaknesses and the modifications performed to restrict access. This does not affect the operations of system services. All the system applications and commands will maintain all of their original functionality.

At the **high** level, further restrictions are made to system access, rendering a very defensive system. Security practices which are not normally required are included. Many system files and parameters settings are modified to minimum access permissions. At this level, security is the foremost concern, higher than any other considerations that affect system behavior. The vast majority of system applications and commands will maintain their functionality, although there may be a few that exhibit behaviors that are not familiar in normal system environment.

More exact definitions of these levels (what exactly *aset* will do at each level) can be found in the administrator manual. The *asettenv*(4) file and the master files (see *asetmasters*(4)) determine to a large extent what *aset* performs at each level, and can be used by the experienced administrators to redefine the definitions of the levels to suit their particular needs. These files are provided by default to fit most security conscious environments and in most cases provide adequate security safeguards without modification. They are, however, designed in a way that can be easily edited by experienced administrators with specific needs.

aset can be periodically activated at the specified security level with default definitions using the –p option. *aset* will be automatically activated at a frequency specified by the administrator starting from a designated future time (see *asettenv*(4)). Without the –p option, *aset* will operate only once immediately.

1M-48 modified 11 May 1993
OPTIONS

−p Schedule `aset` to be executed periodically. This adds an entry for `aset` in the `/etc/crontab` file. The `PERIODIC_SCHEDULE` environment variable in the `/usr/aset/asetenv` file is used to define the time for execution. See `crontab(1)` and `asetenv(4)`. If a `crontab(1)` entry for `aset` already exists, a warning is produced in the execution log.

−d `aset_dir` Specify a working directory other than `/usr/aset` for ASET. `/usr/aset` is the default working directory. It is where ASET is installed, and is the `root` directory of all ASET utilities and data files. If another directory is to be used as the ASET working directory you can either define it with the −d option, or by setting the `ASETDIR` environment variable before invoking `aset`. The command line option, if specified, overwrites the environment variable.

−l `sec_level` Specify a security level (`low, med, or high`) for `aset` to operate at. The default level is `low`. Each security level is explained in detail above. The level can also be specified by setting the `ASETSECLEVEL` environment variable before invoking `aset`. The command line option, if specified, overwrites the environment variable.

−n `user@host` Notify `user` at machine `host`. Send the output of `aset` to `user` through e-mail. If this option is not specified, the output is sent to the standard output. Note that this is not the reports of ASET, but rather an execution log including error messages if there are any. This output is typically fairly brief. The actual reports of ASET are found in the `/usr/aset/reports/latest` directory. See the −d option.

−u `userlist_file` Specify a file containing a list of users. `aset` will perform environment checks (for example, `UMASK` and `PATH` variables) on these users. By default, `aset` only checks for `root`. `userlist_file` is an ASCII text file. Each entry in the file is a line that contains only one user name (login name).

USAGE

The following paragraphs discuss the features provided by ASET. Hereafter, each feature is referred to as a task. The first task, `tune`, is intended to be executed only once per installation of ASET. The other tasks are intended to be executed periodically at the specified frequency.

tune Task

This task is used to tighten system file permissions. In standard releases, system files or directories have permissions defined to maximize open information sharing. In a more security conscious environment, the administrator may want to redefine these permission settings to more restrictive values. `aset` allows resetting of these permissions, based on the specified security level. Generally, at the low level the permissions

modified 11 May 1993
are set to what they should be as released. At the medium level the permissions are tightened to ensure reasonable security that is adequate for most environments. At the high level they are further tightened to very restrictive access. The system files affected and the respective restrictions at different levels are configurable, using the `tune.low`, `tune.med`, and `tune.high` files. See `asetmasters(4)`.

cklist Task
System directories that contain relatively static files (that is, their contents and attributes do not change frequently) are examined and compared with a master description file. The `/usr/aset/masters/cklist.level` files are automatically generated the first time the `cklist` task is executed. See `asetenv(4)`. Any discrepancy found is reported. The directories and files are compared based on the following:

- owner and group
- permission bits
- size and checksum (if file)
- number of links
- last modification time

The lists of directories to check are defined in `asetenv(4)`, based on the specified security level, and are configurable using the `CKLISTPATH_LOW`, `CKLISTPATH_MED`, and `CKLISTPATH_HIGH` environment variables. Typically, the lower level lists are subsets of the higher level lists.

usrgrp Task
`aset` checks the consistency and integrity of user accounts and groups as defined in the `passwd` and `group` databases, respectively. Any potential problems are reported. Potential problems for the `passwd` file include:

- `passwd` file entries are not in the correct format.
- User accounts without a password.
- Duplicate user names.
- Duplicate user IDs. Duplicate user IDs are reported unless allowed by the `uid_alias` file. See `asetmasters(4)`.
- Invalid login directories.
- If C2 is enabled, check C2 hidden `passwd` format.

Potential problems for the group file include:

- Group file entries not in the right format.
- Duplicate group names.
- Duplicate group IDs.
- Null group passwords.

`aset` checks the local `passwd` file. If the `YPCHECK` environment variable is set to `true`, `aset` also checks the NIS `passwd` files. See `asetenv(4)`. Problems in the NIS passwd file are only reported and not corrected automatically. The checking is done for all three security levels except where noted.
sysconf Task

aset checks various system configuration tables, most of which are in the `/etc` directory. **aset** checks and makes appropriate corrections for each system table at all three levels except where noted. The following discussion assumes familiarity with the various system tables. See the manual pages for these tables for further details.

The operations for each system table are:

<table>
<thead>
<tr>
<th>System Table</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/hosts.equiv</code></td>
<td>The default file contains a single "+" line, thus making every known host a trusted host, which is not advised for system security. aset performs the following operations:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td><code>/etc/inetd.conf</code></td>
<td>The following entries for system daemons are checked for possible weaknesses.</td>
</tr>
<tr>
<td></td>
<td>tftp(1) does not do any authentication. aset ensures that <code>in.tftpd</code>(1M) is started in the right directory on the server and is not running on clients. At the low level, it gives warnings if the mentioned condition is not true. At the medium and high levels it gives warnings, and changes (if necessary) the <code>in.tftpd</code> entry to include the <code>−s /tftpboot</code> option after ensuring the directory <code>/tftpboot</code> exists.</td>
</tr>
<tr>
<td></td>
<td>ps(1) and <code>netstat</code>(1M) provide valuable information to potential system crackers. These are disabled when aset is executed at a high security level.</td>
</tr>
<tr>
<td></td>
<td>rexd is also known to have poor authentication mechanism. aset disables <code>rexd</code> for medium and high security levels by commenting out this entry. If <code>rexd</code> is activated with the <code>−s</code> (secure RPC) option, it is not disabled.</td>
</tr>
<tr>
<td><code>/etc/aliases</code></td>
<td>The decode alias of UUCP is a potential security weakness. aset disables the alias for medium and high security levels by commenting out this entry.</td>
</tr>
<tr>
<td><code>/etc/default/login</code></td>
<td>The <code>CONSOLE=</code> line is checked to allow root login only at a specific terminal depending on the security level:</td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><code>/etc/vfstab</code></td>
<td>aset checks for world-readable or writeable device files for mounted file systems.</td>
</tr>
<tr>
<td><code>/etc/dfs/dfstab</code></td>
<td>aset checks for file systems that are exported without any restrictions.</td>
</tr>
</tbody>
</table>

modified 11 May 1993

1M-51
At high security level, `aset` ensures `root` is in `/etc/ftpusers` (create if necessary), thus disallowing `ftp(1)` to be used as root.

`/var/adm/utmp` and `/var/adm/utmpx`:
`aset` makes these files not world-writeable for the high level (some applications may not run properly with this setting.)

`/rhosts`:
The usage of a `.rhosts` file for the entire system is not advised. `aset` gives warnings for the low level and moves it to `/rhosts.bak` for levels medium and high.

env Task

`aset` checks critical environment variables for `root` and users specified with the `-u userlist_file` option by parsing the `/profile`, `/login`, and `/cshrc` files. This task checks the `PATH` variable to ensure that it does not contain `.` as a directory, which makes an easy target for `trojan horse` attacks. It also checks that the directories in the `PATH` variable are not world-writeable. Furthermore, it checks the `UMASK` variable to ensure files are not created as readable or writeable by world. Any problems found by these checks are reported.

eeprom Task

Newer versions of the EEPROM allow specification of a `secure` parameter. See `eeprom(1M)`. `aset` recommends that the administrator sets the parameter to `command` for the medium level and to `full` for the high level. It gives warnings if it detects the parameter is not set adequately.

firewall Task

At the high security level, `aset` takes proper measures such that the system can be safely used as a firewall in a network. This mainly involves disabling IP packets forwarding and making routing information invisible. Firewalling provides protection against external access to the network.

ENVIRONMENT

- `ASETDIR` Specify ASET's working directory. Defaults to `/usr/aset`.
- `ASETSECLEVEL` Specify ASET's security level. Defaults to `low`.
- `TASKS` Specify the tasks to be executed by `aset`. Defaults to `all tasks`.

FILES

- `/usr/aset/reports` directory of ASET reports

SEE ALSO

- `crontab(1)`, `ftp(1)`, `ps(1)`, `tftp(1)`, `eeprom(1M)`, `in.tftpd(1M)`, `netstat(1M)`, `asetenv(4)`, `aset-masters(4)`

`Security, Performance, and Accounting Administration`
NAME
aset.restore – restores system files to their content before ASET is installed

SYNOPSIS
aset.restore [−d aset_dir]

DESCRIPTION
aset.restore restores system files that are affected by the Automated Security Enhancement Tool (ASET) to their pre-ASET content. When ASET is executed for the first time, it saves and archives the original system files in the /usr/aset/archives directory. The aset.restore utility reinstates these files. It also deschedules ASET, if it is currently scheduled for periodic execution. See asetenv(4).

Note: If you have made changes to system files after running ASET, these changes are lost when you run aset.restore. If you want to be absolutely sure that you keep the existing system state, it is recommended that you back-up your system before using aset.restore.

You should use aset.restore, under the following circumstances:

 You want to remove ASET permanently and restore the original system (if you want to deactivate ASET, you can remove it from scheduling).
 You are unfamiliar with ASET and want to experiment with it. You can use aset.restore to restore the original system state.
 When some major system functionality is not working properly and you suspect that ASET is causing the problem; you may want to restore the system to see if the problem persists without ASET.

aset.restore requires root privileges to execute.

OPTIONS
−d aset_dir Specify the working directory for ASET. By default, this directory is /usr/aset. With this option the archives directory will be located under aset_dir.

FILES
/usr/aset/archives archive of system files prior to executing aset

SEE ALSO
aset(1M), asetenv(4)

Security, Performance, and Accounting Administration

modified 11 Oct 1991
aspppd (1M) Maintenance Commands SunOS 5.4

NAME
aspppd, aspppls – Asynchronous PPP Link Manager

SYNOPSIS
/usr/sbin/aspppd [−d debug-level]
/usr/sbin/aspppls

AVAILABILITY
SUNWapppr
SUNWapppu

DESCRIPTION
aspppd is the link manager for the asynchronous data link protocol specified in RFC1331,
The Point-to-Point Protocol (PPP) for the Transmission of Multi-protocol Datagrams over
Point-to-Point Links. It is a user level daemon that works in concert with the IP-Dialup
driver (ipdcmd) and PPP streams module (ppp(7)) to provide IP network services over an
analog modem using dialed voice grade telephone lines. The link manager automates the
process of connecting to a peer (remote) host when PPP service with that host is required.
The connection process can be initiated either by sending an IP datagram to a (discon-
ected) peer host or by receiving a notification that a peer host desires to establish a con-
nection.

aspppls is the login service that connects the peer host machine to aspppd. aspppls is
invoked by the serial port monitor when a peer machine logs into a PPP enabled account.
Its purpose is to cause the link manager to accept the incoming call.

OPTIONS
−d debug-level The debug-level is a number between 0 and 9. Higher numbers give more
detailed debugging information. The output is written to the log file
/etc/log/asppp.log.

USAGE
The link manager is invoked at boot time if the configuration file /etc/asppp.cf is present.
After parsing the configuration file and building a path object for each peer host, it sleeps
until (1) an IP datagram is routed to one of the ipd or ipdptp interfaces (see ppp(7)); or
(2) it is notified by the login service that a peer host is attempting to make a connection.
In the first case, it consults the UUCP database, dials the modem, logs into the peer host,
establishes the PPP data link, brings up IP, and forwards the IP datagram that initiated
the process.

In the second case, the link manager opens the file descriptor supplied by the login ser-
vie, establishes the PPP data link, and brings up IP.

If the link manager determines that there has been no IP traffic for the period specified by
the inactivity_timeout keyword, it disconnects the link by bringing down IP and PPP
and closing the connection with the peer host.

The link manager can be reinitialized by sending it the −HUP signal (with kill(1) for
example), which causes it to disconnect all open PPP links and reread the configuration
file.

1M-54 modified 11 Aug 1993
Path

A path is an object that contains the state of a connection with a peer host. Information such as system names, interface names, timeout values, and other attributes are kept in the path object. There exists a path for each potential peer host. Paths are defined in the configuration file.

Interfaces

The link manager supports two types of IP layer interfaces; the point-to-multipoint interface (ipd) and the point-to-point interface (ipdptp) (see ppp(7)).

The point-to-multipoint interface logically connects the host machine to a network containing one or more peer hosts. IP traffic to or from any of the peer hosts is routed through the point-to-multipoint interface. When an ipd interface is configured, only one IP address, that of the host, is assigned. In other words, it behaves very similarly to an Ethernet interface, although the broadcast capability is not supported. This type of interface is well suited for a dial in PPP server.

The point-to-point interface logically connects the host machine with one peer host. Only IP traffic to or from the peer host is routed through this interface. When an ipdptp interface is configured, two IP addresses are assigned. This type of interface is well suited to support a remote, or nomadic, machine.

An interface must be fully configured and enabled (i.e. up) before an IP datagram will be routed to it. It’s also true that a point-to-multipoint interface must be fully configured and enabled before the link manager will associate an incoming connection with it. It’s not necessary, however, for a point-to-point interface to be configured and enabled before an incoming connection will be assigned to it. A point-to-point interface that is "plumbed", but otherwise not configured or enabled (i.e. down), can be used to accept an incoming connection if the path associated with the potential connection contains a dynamic interface specification (e.g. interface ipdptp*). In this case the link manager will select a disabled (down) interface, configure the host and peer addresses, bring it up, and assign it for the duration of the connection.

Routing

Special attention should paid to routing issues that may arise if a host has more than one interface configured and enabled. By definition, a host with more then one enabled interface is a router, and the routing daemon (typically in.routed) will advertise the routes provided by the PPP interfaces. This is normally acceptable behavior for a dial in server, but can cause network disruptions if not administered properly.

To prevent routing information packets (RIP) from flowing over point-to-point interfaces, specify the norip keyword in the /etc/gateways file. See in.routed(1M) for further information.

Configuration File

The primary purpose of the /etc/asppp.cf configuration file is to define each path used by the link manager to establish and maintain communication with a peer system.

The file consists of a sequence of tokens separated by white space (blanks, tabs, and new lines). There are no record boundaries or any other constraints on the placement of the tokens. If a token begins with a pound sign (#), all characters between the pound sign and the next newline (\n) are ignored (i.e. they are treated as a comment).
Alphanumeric tokens are case insensitive and are translated by the lexical analyzer into lower case before further processing.

Groups of tokens are assembled into units known as *paths* (essentially a human-readable form of the path object). A path begins with the keyword *path* and ends at the token found before any subsequent *path* (or *defaults*) keyword or at the last token in the file. The tokens comprising a path are further partitioned into small groups consisting mostly of keyword/value pairs that define the attributes of the current path. If a particular keyword/value pair is not listed for a path, the default value is assumed.

The token sequences that begin with the substrings *ipcp_* or *lcp_* refer to PPP initial configuration options as specified in RFC1332, *The PPP Internet Protocol Control Protocol (IPCP)*. See the RFC for a more complete definition of these options.

The following is an alphabetic list of the token sequences that can be contained in a configuration file. Required sequences are noted.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug_level</td>
<td>number is between 0 and 9. Higher numbers give more detailed debugging information. The output is written to the /etc/log/asppp.log file. The value set by the debug_level keyword overrides the -d command line option.</td>
</tr>
<tr>
<td>defaults</td>
<td>Indicates that all following token sequences up the next path keyword, or the end of file, set default attributes that affect subsequently defined paths.</td>
</tr>
<tr>
<td>default_route</td>
<td>When the IP layer corresponding to the current path is fully operational, add the peer IP address to the route table as the default destination. The route is removed when the IP layer is brought down. Note: the default_route keyword is only installed by point-to-point interfaces.</td>
</tr>
<tr>
<td>ifconfig</td>
<td>parameters (Required) The ifconfig keyword and associated parameters are passed to the shell for evaluation and execution. It’s used to define an interface. See the ifconfig(1M) man page for more information.</td>
</tr>
<tr>
<td>inactivity_timeout</td>
<td>seconds is the maximum number of seconds that the connection associated with the current path can remain idle before it is terminated. 0 may be specified to indicate no timeout. The default is 120 seconds.</td>
</tr>
<tr>
<td>interface</td>
<td>*(ipdn</td>
</tr>
<tr>
<td>ipcp_async_map</td>
<td>hex-number Specifies the async control character map for the current path. The hex-number is the natural (i.e. big endian) form representation of the four octets that comprise the map. The default value is ffffffff.</td>
</tr>
</tbody>
</table>
ipcp_compression (vj | off)
Indicates whether IP compression is enabled or not. If enabled (vj), the Van Jacobson compression algorithm is used. The default is compression (vj).

lcp_compression (on | off)
Indicates whether PPP address, control, and protocol field compression is enabled or not. If enabled, both the address and control field compression and the protocol field compression options are set. The default is compression (on).

lcp_mru number
number specifies a desired maximum receive unit packet size in octets. The default is 1500.

path (Required) Indicates that all following token sequences are to be grouped together as attributes of this (current) path. The collection of attributes comprising the current path are terminated by the occurrence of a subsequent path or defaults keyword or by the end of file.

peer_ip_address IP-address
(Required for point-to-multipoint paths) Associates the IP-address with the current path. The value is ignored if the path specifies a point-to-point interface. The IP-address may be in "dotted decimal", hexadecimal, or symbolic (i.e. hostname) format.

peer_system_name name
(Required) Associates the peer system name with the current path. The name is used to look up modem and peer specific information for outbound connections in the UUCP /etc/uucp/Systems file. For incoming connections, the appropriate path is determined by matching name with the login name that was used to obtain the connection (i.e. an entry in the /etc/passwd file specifies name in the username field).

version n
Specifies that the contents of the configuration file correspond to format version n. If this keyword is present, it must be the first keyword in the file. If absent, the version is assumed to be 1. This document contains the definition of the version 1 format for the configuration file.
The following are examples of typical configuration files.

Remote Machine

In this example, the remote machine is most likely a nomadic or home machine with a single modem.

```
#  
# Dial in to two servers    
#  
ifconfig ipdptp0 plumb nomad1 dialin1 up    
path  
   interface ipdptp0    
   peer_system_name Pdialin1

ifconfig ipdptp1 plumb nomad1 dialin2 up    
path  
   interface ipdptp1    
   peer_system_name Pdialin2    
   lcp_mru 1006
```

Dial In Servers

This example shows a dial in server supporting a point-to-multipoint interface. There may be several modems attached to this server. Note that the network addressed by the \textit{ipd} interface will be advertised by the router, and all traffic destined for that network will be routed through this host. For that reason, it is not wise to support multiple dial in servers with point-to-multipoint interfaces to the same network.

```
#  
# A point-to-multipoint dial in server    
#  
ifconfig ipd0 plumb dialin1 netmask + up    
defaults  
   interface ipd0    
   inactivity_timeout 900    # 15 minutes
path  
   peer_system_name Pnomad1    
path  
   peer_system_name Pnomad2    
path  
   peer_system_name Pnomad3    
   inactivity_timeout 0    # No timeout for this host
path  
   peer_system_name Pnomad4
```
This is another dial in server that supports dynamic point-to-point interfaces. Usually the server has one modem for each interface. One advantage of using dynamic interfaces is that (host) routes will only be advertised when an interface is up. Therefore, multiple dial in servers can be supported.

```
# A dynamic point-to-point dial in server
#
ifconfig ipdptp0 plumb dialin2 down
ifconfig ipdptp1 plumb dialin2 down
ifconfig ipdptp2 plumb dialin2 down
defaults
    interface ipdptp*
    inactivity_timeout 900
    lcp_mru 1006
path peer_system_name Pnomad1
path peer_system_name Pnomad2
path peer_system_name Pnomad3
path peer_system_name Pnomad4
```

FILES
/etc/asppp.cf configuration file
/etc/log/asppp.log message log file
/etc/uucp/Devices
/etc/uucp/Dialers
/etc/uucp/Sysfiles
/etc/uucp/Systems
/tmp/.asppp.fifo communication path between aspppd and aspppls
/usr/sbin/aspppd link manager
/usr/sbin/aspppls login service

SEE ALSO
ifconfig(1M), in.routed(1M), ppp(7)
TCP/IP Network Administration Guide

modified 11 Aug 1993
NAME audit – control the behavior of the audit daemon

SYNOPSIS audit -n | -s | -t

AVAILABILITY The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION The audit command is the general administrator’s interface to maintaining the audit trail. The audit daemon may be notified to read the contents of the audit_control(4) file and re-initialize the current audit directory to the first directory listed in the audit_control file or to open a new audit file in the current audit directory specified in the audit_control file as last read by the audit daemon. The audit daemon may also be signaled to close the audit trail and disable auditing.

OPTIONS

- n Signal audit daemon to close the current audit file and open a new audit file in the current audit directory.
- s Signal audit daemon to read audit control file. The audit daemon stores the information internally.
- t Signal audit daemon to close the current audit trail file, disable auditing and die.

DIAGNOSTICS The audit command will exit with 0 upon success and a positive integer upon failure.

FILES
/etc/security/audit_user
/etc/security/audit_control

SEE ALSO bsmconv(1M), audit(2), audit_control(4), audit_user(4)

NOTES This command does not modify a process’s preselection mask. It only affects which audit directories are used for audit data storage and to specify the minimum size free.

1M-60 modified 6 May 1993
<table>
<thead>
<tr>
<th>NAME</th>
<th>audit_startup – audit subsystem initialization script</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/etc/security/audit_startup</td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See <code>bsmconv(1M)</code> for more information.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The <code>audit_startup</code> script is used to initialize the audit subsystem before the audit daemon is started. This script is configurable by the system administrator, and currently consists of a series of <code>auditconfig(1M)</code> commands to set the system default policy, and download the initial event to class mapping.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td><code>auditconfig(1M), auditd(1M), bsmconv(1M)</code></td>
</tr>
</tbody>
</table>
NAME
audit_warn – audit daemon warning script

SYNOPSIS
/etc/security/audit_warn [option [arguments]]

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
The audit_warn script processes warning or error messages from the audit daemon. When a problem is encountered, the audit daemon, auditd(1M) calls audit_warn with the appropriate arguments. The option argument specifies the error type. The system administrator can specify a list of mail recipients to be notified when an audit_warn situation arises by defining a mail alias called audit_warn in aliases(4). The users that make up the audit_warn alias are typically the audit and root users.

OPTIONS

allhard count
Indicates that the hard limit for all filesystems has been exceeded count times. The default action for this option is to send mail to the audit_warn alias only if the count is 1, and to write a message to the machine console every time. It is recommended that mail not be sent every time as this could result in a the saturation of the file system that contains the mail spool directory.

allsoft
Indicates that the soft limit for all filesystems has been exceeded. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

auditoff
Indicates that someone other than the audit daemon changed the system audit state to something other than AUC_AUDITING. The audit daemon will have exited in this case. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

ebusy
Indicates that the audit daemon is already running. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

getadir count
Indicates that there is a problem getting the directory list from audit_control(4). The audit daemon will hang in a sleep loop until the file is fixed. The default action for this option is to send mail to the audit_warn alias only if count is 1, and to write a message to the machine console every time. It is recommended that mail not be sent every time as this could result in a the saturation of the file system that contains the mail spool directory.
hard filename
Indicates that the hard limit for the file has been exceeded. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

nostart
Indicates that auditing could not be started. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console. Some administrators may prefer to modify audit_warn to reboot the system when this error occurs.

postsigterm
Indicates that an error occurred during the orderly shutdown of the audit daemon. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

soft filename
Indicates that the soft limit for filename has been exceeded. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

tmpfile
Indicates that the temporary audit file already exists indicating a fatal error. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

SEE ALSO audit(1M), auditd(1M), bsmconv(1M), aliases(4), audit.log(4), audit_control(4)
NAME
auditconfig – configure auditing

SYNOPSIS
auditconfig [args]

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
auditconfig provides a command line interface to get and set kernel audit parameters.

OPTIONS
-chkconf
Check the configuration of kernel audit event to class mappings. If the runtime class mask of a kernel audit event does not match the configured class mask, a mismatch is reported.

-conf
Configure kernel audit event to class mappings. Runtime class mappings are changed to match those in the audit event to class database file.

-getcond
Display the kernel audit condition. The condition displayed is the literal string auditing meaning auditing is enabled and turned on (the kernel audit module is constructing and queuing audit records) or noaudit meaning auditing is enabled but turned (the kernel audit module is not constructing and queuing audit records), or disabled meaning that the audit module has not been enabled. See auditon(2) and auditd(1M) for further information.

-setcond[auditing | noaudit]
Set the kernel audit condition to the condition specified where condition is the literal string auditing indicating auditing should be enabled or noaudit indicating auditing should be disabled.

-getclass event
Display the preselection mask associated with the specified kernel audit event. event is the kernel event number or event name.

-setclass event audit_flag[,audit_flag . . .]
Map the kernel event event to the classes specified by audit_flags. event is an event number or name. An audit_flag is a two character string representing an audit class. See audit_control(4) for further information.

-lsevent
Display the currently configured (runtime) kernel and user level audit event information.

-getpinfo pid
Display the audit ID, preselection mask, terminal ID and audit session ID for the specified process.

-setpmask pid flags
Set the preselection mask of the specified process. flags is the ASCII representation of the flags similar to that in audit_control(4).

-setsmask asid flags
Set the preselection mask of all processes with the specified audit session ID.

1M-64 modified 6 May 1993
-setumask
Set the preselection mask of all processes with the specified audit ID.

-lspolicy
Display the kernel audit policies with a description of each policy.

-getpolicy
Display the kernel audit policy.

-setpolicy
Set the kernel audit policy. A policy policy_flag is literal strings that denotes an audit policy. A prefix of + adds the policies specified to the current audit policies. A prefix of - removes the policies specified from the current audit policies. The following are the valid policy flag strings (auditconfg -lspolicy also lists the current valid audit policy flag strings):

arge Include the execv(2) system call environment arguments to the audit record. This information is not included by default.

argv Include the execv(2) system call parameter arguments to the audit record. This information is not included by default.

cnt Do not suspend processes when audit resources are exhausted. Instead, drop audit records and keep a count of the number of records dropped. By default, processes are suspended until audit resources become available.

group Include the supplementary group token in audit records. By default, the group token is not included.

path Add secondary path tokens to audit record. These are typically the pathnames of dynamically linked shared libraries or command interpreters for shell scripts. By default, they are not included.

trail Include the trailer token in every audit record. By default, the trailer token is not included.

seq Include the sequence token as part of every audit record. By default, the sequence token is not included. The sequence token attaches a sequence number to every audit record.

EXAMPLES

map kernel audit event number 10 to the "fr" audit class

% auditconfg -setclass 10 fr

turn on inclusion of exec arguments in exec audit records

% auditconfg -setpolicy argv

modified 6 May 1993
Auditconfig (1M) Maintenance Commands SunOS 5.4

Errors Auditconfig returns 0 upon success and 1 upon failure.

Files
/etc/security/audit_event
/etc/security/audit_class

See Also Auditd(1M), bsmconv(1M), auditon(2), execv(2), audit_class(4), audit_control(4), audit_event(4)

1M-66 modified 6 May 1993
NAME
auditd – audit daemon

SYNOPSIS
/usr/sbin/auditd

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
The audit daemon controls the generation and location of audit trail files. If auditing is desired, auditd reads the audit_control(4) file to get a list of directories into which audit files can be written and the percentage limit for how much space to reserve on each filesystem before changing to the next directory.

If auditd receives the signal SIGUSR1, the current audit file is closed and another is opened. If SIGHUP is received, the current audit trail is closed, the audit_control file reread, and a new trail is opened. If SIGTERM is received, the audit trail is closed and auditing is terminated. The program audit(1M) sends these signals and is recommended for this purpose.

Each time the audit daemon opens a new audit trail file, it updates the file audit_data(4) to include the correct name.

Auditing Conditions
The audit daemon invokes the program audit_warn(1M) under the following conditions with the indicated options:

audit_warn soft pathname
The file system upon which pathname resides has exceeded the minimum free space limit defined in audit_control(4). A new audit trail has been opened on another file system.

audit_warn allsoft
All available file systems have been filled beyond the minimum free space limit. A new audit trail has been opened anyway.

audit_warn hard pathname
The file system upon which pathname resides has filled or for some reason become unavailable. A new audit trail has been opened on another file system.

audit_warn allhard count
All available file systems have been filled or for some reason become unavailable. The audit daemon will repeat this call to audit_warn every twenty seconds until space becomes available. count is the number of times that audit_warn has been called since the problem arose.

audit_warn ebusy
There is already an audit daemon running.

audit_warn tmpfile
The file /etc/security/audit/audit_tmp exists, indicating a fatal error.

modified 6 May 1993
auditd (1M) Maintenance Commands SunOS 5.4

audit_warn nostart
The internal system audit condition is AUC_FCHDONE. Auditing cannot be started without rebooting the system.

audit_warn auditoff
The internal system audit condition has been changed to not be AUC_AUDITING by someone other than the audit daemon. This causes the audit daemon to exit.

audit_warn postsigterm
An error occurred during the orderly shutdown of the auditing system.

audit_warn getacdir
There is a problem getting the directory list from /etc/security/audit/audit_control.
The audit daemon will hang in a sleep loop until this file is fixed.

FILES
/etc/security/audit/audit_control
/etc/security/audit/audit_data

SEE ALSO
audit(1M), audit_warn(1M), bsmconv(1M), auditon(2), auditsvc(2), audit.log(4), audit_control(4), audit_data(4)
NAME
auditreduce – merge and select audit records from audit trail files

SYNOPSIS
auditreduce [options] [audit-trail-file ...]

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
auditreduce allows you to select or merge records from audit trail files. Audit files may be from one or more machines.

The merge function merges together audit records from one or more input audit trail files into a single output file. The records in an audit trail file are assumed to be sorted in chronological order (oldest first) and this order is maintained by auditreduce in the output file.

Unless instructed otherwise, auditreduce will merge the entire audit trail, which consists of all the audit trail files in the directory structure audit_root_dir/*/*files (see audit_control(4) for details of the structure of the audit root). Unless stated with the -R or -S option, audit_root_dir defaults to /etc/security/audit. By using the file selection options it is possible to select some subset of these files, or files from another directory, or files named explicitly on the command line.

The select function allows audit records to be selected on the basis of numerous criteria relating to the record’s content (see audit.log(4) for details of record content). A record must meet all of the record-selection-option criteria to be selected.

Audit Trail Filename Format
Any audit trail file not named on the command line must conform to the audit trail filename format. Files produced by the audit system already have this format. Output file names produced by auditreduce are in this format. It is:

start-time.end-time.suffix

where start-time is the 14-character timestamp of when the file was opened, end-time is the 14-character timestamp of when the file was closed, and suffix is the name of the machine which generated the audit trail file, or some other meaningful suffix (e.g., all, if the file contains a combined group of records from many machines). The end-time may be the literal string not_terminated, to indicate that the file is still being written to by the audit system. Timestamps are of the form yyyyMMddhhmmss (year, month, day, hour, minute, second). The timestamps are in Greenwich Mean Time (GMT).

OPTIONS
File Selection Options
The file selection options indicate which files are to be processed and certain types of special treatment.

-A
All of the records from the input files will be selected regardless of their timestamp. This option effectively disables the -a, -b, and -d options. This is useful in preventing the loss of records if the -D option is used to delete the input files after they are processed. Note, however, that if a record is not selected due to another option, then -A will not override that.

modified 17 Feb 1994

1M-69
−C Only process complete files. Files whose filename end-time timestamp is
not_terminated are not processed (such a file is currently being written to by the
audit system). This is useful in preventing the loss of records if −D is used to
delete the input files after they are processed. It does not apply to files specified
on the command line.

−D suffix
Delete input files after they are processed. The files are only deleted if the entire
run is successful. If auditreduce detects an error while reading a file, then that
file is not deleted. If −D is specified, −A, −C and −O are also implied. suffix is
given to the −O option. This helps prevent the loss of audit records by ensuring
that all of the records are written, only complete files are processed, and the
records are written to a file before being deleted. Note that if both −D and −O are
specified in the command line, the order of specification is significant. The suffix
associated with the latter specification is in effect.

−M machine
Allows selection of records from files with machine as the filename suffix. If −M
is not specified, all files are processed regardless of suffix. −M can also be used to
allow selection of records from files that contain combined records from many
machines and have a common suffix (such as all).

−O suffix
Direct output stream to a file in the current audit_root_dir with the indicated
suffix. suffix may alternatively contain a full pathname, in which case the last
component is taken as the suffix, ahead of which the timestamps will be placed,
ahead of which the remainder of the pathname will be placed.

If the -O option is not specified, the output is sent to the standard output. When
auditreduce places timestamps in the filename, it uses the times of the first and
last records in the merge as the start-time and end-time.

−Q Quiet. Suppress notification about errors with input files.

−R pathname
Specify the pathname of an alternate audit root directory audit_root_dir to be path-
name. Therefore, rather than using /etc/security/audit/* files by default,
pathname/*/files will be examined instead.

−S server
This option causes auditreduce to read audit trail files from a specific location
(server directory). server is normally interpreted as the name of a subdirectory of
the audit root, therefore auditreduce will look in audit_root_dir/server/ files for
the audit trail files.

But if server contains any ‘/’ characters, it is the name of a specific directory not
necessarily contained in the audit root. In this case, server/ files will be consulted.
This option allows archived files to be manipulated easily, without requiring that they be physically located in a directory structure like that of `/etc/security/audit'.

-V Verbose. Display the name of each file as it is opened, and how many records total were written to the output stream.

The record selection options listed below are used to indicate which records are written to the output file produced by `auditreduce'.

Note: Multiple arguments of the same type are not permitted.

- **a date-time**
 Select records that occurred at or after `date-time'. The `date-time' argument is described under **Option Arguments**, below. `date-time' is in local time. The -a and -b options can be used together to form a range.

- **b date-time**
 Select records that occurred before `date-time'.

- **c audit-classes**
 Select records by audit class. Records with events that are mapped to the audit classes specified by `audit-classes' are selected. Audit class names are defined in `audit_class(4)'. The `audit-classes' can be a comma separated list of audit flags like those described in `audit_control(4)'. Using the audit flags, one can select records based upon success and failure criteria.

- **d date-time**
 Select records that occurred on a specific day (a 24-hour period beginning at 00:00:00 of the day specified and ending at 23:59:59). The day specified is in local time. The time portion of the argument, if supplied, is ignored. Any records with timestamps during that day are selected. If any hours, minutes, or seconds are given in `time', they are ignored. -d can not be used with -a or -b.

- **e effective-user**
 Select records with the specified `effective-user'.

- **f effective-group**
 Select records with the specified `effective-group'.

- **g real-group**
 Select records with the specified `real-group'.

- **j subject-ID**
 Select records with the specified `subject-ID' where `subject-ID' is a process ID.

- **m event**
 Select records with the indicated `event'. The `event' is the literal string or the `event' number.

- **o object_type=objectID_value**
 Select records by object type. A match occurs when the record contains the information describing the specified `object_type' and the object ID equals the value specified by `objectID_value'. The allowable object types and values are as follows: `file=pathname'
Select records containing file system objects with the specified pathname, where pathname is a comma separated list of regular expressions. If a regular expression is preceded by a tilda (~), files matching the expression are excluded from the output. For example, the option file="~usr/openwin,/usr,/etc" would select all files in /usr or /etc except those in /usr/openwin. The order of the regular expressions is important because auditreduce processes them from left to right, and stops when a file is known to be either selected or excluded. Thus the option file= /usr, /etc, /usr/openwin would select all files in /usr and all files in /etc. Files in /usr/openwin are not excluded because the regular expression /usr is matched first. Care should be given in surrounding the pathname with quotes so as to prevent the shell from expanding any tildas.

msgid=ID
Select records containing message queue objects with the specified ID where ID is a message queue ID.

pid=ID Select records containing process objects with the specified ID where ID is a process ID. Note: Process are objects when they are receivers of signals.

semid=ID
Select records containing semaphore objects with the specified ID where ID is a semaphore ID.

shmid=ID
Select records containing shared memory objects with the specified ID where ID is a shared memory ID.

sock=port_number|machine
Select records containing socket objects with the specified port_number or the specified machine where machine is a machine name as defined in hosts(4).

−r real-user
Select records with the specified real-user.

−u audit-user
Select records with the specified audit-user.

When one or more filename arguments appear on the command line, only the named files are processed. Files specified in this way need not conform to the audit trail filename format. However, −M, −S, and −R may not be used when processing named files. If the filename is "−" then the input is taken from the standard input.

Option Arguments

audit-trail-file
An audit trail file as defined in audit.log(4). An audit trail file not named on the command line must conform to the audit trail file name format. Audit trail files produced as output of auditreduce are in this format as well. The format is:

start-time . end-time . suffix
start-time is the 14 character time stamp denoting when the file was opened. **end-time** is the 14 character time stamp denoting when the file was closed. **end-time** may also be the literal string **not_terminated**, indicating the file is still being written to by the audit daemon or the file was not closed properly (a system crash or abrupt halt occurred). **suffix** is the name of the machine that generated the audit trail file (or some other meaningful suffix; e.g. **all** would be a good suffix if the audit trail file contains a combined group of records from many machines).

date-time
The **date-time** argument to −a, −b, and −d can be of two forms: An absolute **date-time** takes the form:

```
yyyyymmdd [ hh [ mm [ ss ]]]
```

where **yyyy** specifies a year (with 1970 as the earliest value), **mm** is the month (01-12), **dd** is the day (01-31), **hh** is the hour (00-23), **mm** is the minute (00-59), and **ss** is the second (00-59). The default is 00 for **hh**, **mm**, and **ss**. An offset can be specified as: +nd | h | m | s where **n** is a number of units, and the tags **d**, **h**, **m**, and **s** stand for days, hours, minutes and seconds, respectively. An offset is relative to the starting time. Thus, this form can only be used with the −b option.

event
The literal string or ordinal event number as found in **audit_event**(4). If **event** is not found in the **audit_event** file it is considered invalid.

group
The literal string or ordinal group ID number as found in **group**(4). If **group** is not found in the **group** file it is considered invalid. **group** may be negative.

pathname
A regular expression describing a pathname.

user
The literal username or ordinal user ID number as found in **passwd**(4). If the username is not found in the **passwd** file it is considered invalid. **user** may be negative.

EXAMPLES

praudit(1M) is available to display audit records in a human-readable form.

This will display the entire audit trail in a human-readable form:

```
% auditreduce | praudit
```

If all the audit trail files are being combined into one large file, then deleting the original files could be desirable to prevent the records from appearing twice:

```
% auditreduce −V −D /etc/security/audit/combined/all
```

This will print what user **milner** did on April 13, 1988. The output will be displayed in a human-readable form to the standard output:

```
% auditreduce −d 19880413 −u milner | praudit
```

The above example may produce a large volume of data if **milner** has been busy. Perhaps looking at only login and logout times would be simpler. The −c option will select records from a specified class:
% auditreduce –d 19880413 –u milner –c lo | praudit
To see milner’s login/logout activity for April 13, 14, and 15 the following is used. The results are saved to a file in the current working directory. Note that the name of the output file will have milnerlo as the suffix, with the appropriate timestamp prefixes. Note that the long form of the name is used for the –c option:

% auditreduce –a 19880413 –b +3d –u milner –c login_logout –O milnerlo
To follow milner’s movement about the file system on April 13, 14, and 15 the chdir record types could be viewed. Note that in order to get the same time range as the above example we needed to specify the –b time as the day after our range. This is because 19880416 defaults to midnight of that day, and records before that fall on 0415, the end-day of the range.

% auditreduce –a 19880413 –b 19880416 –u milner –m AUE_CHDIR | praudit
In this example the audit records are being collected in summary form (the login/logout records only). The records are being written to a summary file in a different directory than the normal audit root to prevent the selected records from existing twice in the audit root.

% auditreduce –d 19880330 –c lo –O /etc/security/audit_summary/logins
If activity for user ID 9944 has been observed, but that user is not known to the system administrator, then the following example will search the entire audit trail for any records generated by that user. auditreduce will query the system as to the current validity of ID 9944, and print a warning message if it is not currently active:

% auditreduce –O /etc/security/audit_suspect/user9944 –u 9944
FILES
/etc/security/audit/server/files/* location of audit trails, when stored

SEE ALSO
bsmconv(1M), praudit(1M), audit.log(4), audit_class(4), audit_control(4), group(4), hosts(4), passwd(4)

DIAGNOSTICS
auditreduce will print out error messages if there are command line errors and then exit. If there are fatal errors during the run auditreduce will print an explanatory message and exit. In this case the output file may be in an inconsistent state (no trailer or partially written record) and auditreduce will print a warning message before exiting. Successful invocation returns 0 and unsuccessful invocation returns 1.

Since auditreduce may be processing a large number of input files, it is possible that the machine-wide limit on open files will be exceeded. If this happens, auditreduce will print a message to that effect, give information on how many file there are, and exit.

If auditreduce prints a record’s timestamp in a diagnostic message, that time is in local time. However, when filenames are displayed, their timestamps are in GMT.

BUGS
Conjunction, disjunction, negation, and grouping of record selection options should be allowed.
NAME
auditstat – display kernel audit statistics

SYNOPSIS
auditstat [-c count] [-h numlines] [-i interval] [-n] [-v]

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
auditstat displays kernel audit statistics. The fields displayed are as follows:

- **aud**: The total number of audit records processed by the audit(2) system call.
- **ctl**: This field is obsolete.
- **drop**: The total number of audit records that have been dropped. Records are dropped according to the kernel audit policy. See auditon(2), AUDIT_CNT policy for details.
- **enq**: The total number of audit records put on the kernel audit queue.
- **gen**: The total number of audit records that have been constructed (not the number written).
- **kern**: The total number of audit records produced by user processes (as a result of system calls).
- **mem**: The total number of Kbytes of memory currently in use by the kernel audit module.
- **nona**: The total number of non-attributable audit records that have been constructed. These are audit records that are not attributable to any particular user.
- **rblk**: The total number of times that auditsvc(2) has blocked waiting to process audit data.
- **tot**: The total number of Kbytes of audit data written to the audit trail.
- **wblk**: The total number of times that user processes blocked on the audit queue at the high water mark.
- **wrtn**: The total number of audit records written. The difference between **enq** and **wrtn** is the number of outstanding audit records on the audit queue that have not been written.

modified 6 May 1993
OPTIONS

-\(c \) count
 Display the statistics a total of count times. If count is equal to zero, statistics are displayed indefinitely. A time interval must be specified.

-\(h \) numlines
 Display a header for every numlines of statistics printed. The default is to display the header every 20 lines. If numlines is equal to zero, the header is never displayed.

-\(i \) interval
 Display the statistics every interval where interval is the number of seconds to sleep between each collection.

-\(n \)
 Display the number of kernel audit events currently configured.

-\(v \)
 Display the version number of the kernel audit module software.

ERRORS

auditstat returns 0 upon success and 1 upon failure.

SEE ALSO

auditconfig(1M), bsmconv(1M), audit(2), auditon(2), auditsvc(2)
NAME
automount – install automatic mount points

SYNOPSIS
automount [-t duration] [-v]
/usr/sbin/automount

AVAILABILITY
SUNWcsu

DESCRIPTION
automount is a command that installs automfs mount points and associates an automount map with each mount point. The automfs filesystem monitors attempts to access directories within it and notifies the automountd(1M) daemon. The daemon uses the map to locate a filesystem, which it then mounts at the point of reference within the automfs filesystem. You can assign a map to an automfs mount using an entry in the /etc/auto_master map or a direct map.

If the filesystem is not accessed within an appropriate interval (five minutes by default), the automountd daemon unmounts the filesystem.

The file /etc/auto_master determines the locations of all automfs mount points. By default, this file contains three entries:

```plaintext
# Master map for automounter
#
+auto_master
/net -hosts -nosuid
/home auto_home
```

The +auto_master entry is a reference to an external NIS or NIS+ master map. If one exists, then its entries are read as if they occurred in place of the +auto_master entry. The remaining entries in the master file specify a directory on which an automfs mount will be made followed by the automounter map to be associated with it. Optional mount options may be supplied as an optional third field in each entry. These options are used for any entries in the map that do not specify mount options explicitly. The automount command is usually run without arguments. It compares the entries /etc/auto_master with the current list of automfs mounts in /etc/mnttab and adds, removes or updates automfs mounts to bring the /etc/mnttab up to date with the /etc/auto_master.

At boot time it installs all automfs mounts from the master map. Subsequently, it may be run to install automfs mounts for new entries in the master map or an direct map, or to perform unmounts for entries that have been removed.

OPTIONS

- t duration
 Specify a duration, in seconds, that a file system is to remain mounted when not in use. The default is 5 minutes.

- v
 Verbose mode. Notify of automfs mounts, unmounts or other non-essential information.
A simple map entry (mapping) takes the form:

```
key [−mount-options ] location . . .
```

where `key` is the full pathname of the directory to mount when used in a direct map, or the simple name of a subdirectory in an indirect map. `mount-options` is a comma-separated list of `mount` options, and `location` specifies a file system from which the directory may be mounted. In the case of a simple NFS mount, `location` takes the form:

```
host:pathname
```

`host` is the name of the host from which to mount the file system (it may be omitted if the pathname refers to a local device on which the filesystem resides) and `pathname` is the pathname of the directory to mount.

Replicated Filesystems

Multiple `location` fields can be specified for replicated NFS file systems, in which case `
automount` chooses a server with preference given to a server on the local subnet or net. If each `location` in the list shares the same `pathname` then a single `location` may be used with a comma-separated list of hostnames:

```
hostname,hostname...:pathname
```

Requests for a server may be weighted, with the weighting factor appended to the server name as an integer in parentheses. Servers without a weighting are assumed to have a value of zero (most likely to be selected). Progressively higher values decrease the chance of being selected. In the example,

```
man −ro alpha,bravo,charlie(1),delta(4):/usr/man
```

hosts `alpha` and `bravo` have the highest priority; host `delta`, the lowest.

Note: Server proximity takes priority in the selection process. In the example above, if the server `delta` is on the same network segment as the client, but the others are on different network segments, then `delta` will be selected — the weighting value is ignored. The weighting has effect only when selecting between servers with the same network proximity.

In cases where each server has a different export point, you can still apply the weighting. For example:

```
man −ro alpha:/usr/man bravo,charlie(1):/usr/share/man delta(3):/export/man
```

A mapping can be continued across input lines by escaping the NEWLINE with a `' \n` (backslash). Comments begin with a `'#'` (number sign) and end at the subsequent NEWLINE.
Map Key Substitution

The ‘&’ (ampersand) character is expanded to the value of the key field for the entry in which it occurs. In this case:

```
jane     sparcserver/home/&
```

the & expands to jane.

Wildcard Key

The ‘*’ (asterisk) character, when supplied as the key field, is recognized as the catch-all entry. Such an entry will match any key not previously matched. For instance, if the following entry appeared in the indirect map for /config:

```
*        &:/export/config/&
```

this would allow automatic mounts in /config of any remote file system whose location could be specified as:

```
hostname/export/config/hostname
```

Variable Substitution

Client specific variables can be used within an automount map. For instance, if $HOST appeared within a map, automount would expand it to its current value for the client’s host name. Supported variables are:

- **ARCH**: The output of /usr/kvm/arch. The architecture name. For example “sun4”
- **CPU**: The output of uname -p. The processor type. For example “sparc”
- **HOST**: The output of uname -n. The host name. For example “biggles”
- **OSNAME**: The output of uname -s. The OS name. For example “SunOS”
- **OSREL**: The output of uname -r. The OS release name. For example “5.3”
- **OSVERS**: The output of uname -v. The OS version. For example “beta1.0”

If a reference needs to be protected from affixed characters, you can surround the variable name with ‘{}’ (curly braces).

Multiple Mounts

A multiple mount entry takes the form:

```
key [–mount-options] [[mountpoint] [–mount-options] location…]…
```

The initial /mountpoint is optional for the first mount and mandatory for all subsequent mounts. The optional mountpoint is taken as a pathname relative to the directory named by key. If mountpoint is omitted in the first occurrence, a mountpoint of / (root) is implied.

modified 23 Feb 1994
Given an entry in the indirect map for /src:

```
beta -ro \n  /          svr1,svr2:/export/src/beta  \n  /1.0       svr1,svr2:/export/src/beta/1.0  \n  /1.0/man   svr1,svr2:/export/src/beta/1.0/man
```

The automounter would automatically mount /src/beta, /src/beta/1.0, and /src/beta/1.0/man, as needed, from either svr1 or svr2, whichever host is nearest and responds first.

Other Filesystem Types

The automount assumes NFS mounts as a default filesystem type. Other filesystem types can be described using the `fstype` mount option. Other mount options specific to this filesystem type can be combined with the `fstype` option. The location field must contain information specific to the filesystem type. If the location field begins with a slash, a colon character must be prepended, for instance, to mount a CD filesystem:

```
  cdrom -fstype=hsfs,ro :/dev/sr0
```

or to perform an `autofs` mount:

```
  src -fstype=autofs auto_src
```

Mounts using CacheFS are most useful when applied to an entire map as map defaults. The following entry in the master map describes cached home directory mounts. It assumes the default location of the cache directory,

```
/home auto_home -fstype=cachefs,backfstype=nfs
```

Indirect Maps

An indirect map allows you to specify mappings for the subdirectories you wish to mount under the `directory` indicated on the command line. In an indirect map, each `key` consists of a simple name that refers to one or more filesystems that are to be mounted as needed.

Direct Maps

Entries in a direct map are associated directly with `autofs` mount points. Each `key` is the full pathname of an `autofs` mount point. The direct map as a whole is not associated with any single directory.

Included Maps

The contents of another map can be included within a map with an entry of the form

```
+mapname
```

If `mapname` begins with a slash then it is assumed to be the pathname of a local file. Otherwise the location of the map is determined by the policy of the name service switch according to the entry for the automounter in `/etc/nsswitch.conf`, such as

```
automount: files nis
```

If the name service is `files` then the name is assumed to be that of a local file in `/etc`. If the key being searched for is not found in the included map, the search continues with the next entry.
Special Maps

There are two special maps available: −hosts and −null. The −hosts map is used with the /net directory and assumes that the map key is the hostname of an NFS server. The automountd daemon dynamically constructs a map entry from the server’s list of exported filesystems. For instance, a reference to /net/hermes/usr would initiate an automatic mount of all exported filesystems from hermes that are mountable by the client. References to a directory under /net/hermes will refer to the corresponding directory relative to hermes root.

The −null map, when indicated on the command line, cancels a previous map for the directory indicated. This is most useful in the /etc/auto_master for cancelling entries that would otherwise be inherited from the +auto_master include entry. To be effective, the −null entries must be inserted before the included map entry.

Executable Maps

Local maps that have the execute bit set in their file permissions will be executed by the automounter and provided with a key to be looked up as an argument. The executable map is expected to return the content of an automounter map entry on its stdout or no output if the entry cannot be determined.

Configuration and the auto_master Map

When initiated without arguments, automount consults the master map for a list of autofs mount points and their maps. It mounts any autofs mounts that are not already mounted, and unmounts autofs mounts that have been removed from the master map or direct map.

The master map is assumed to be called auto_master and its location is determined by the name service switch policy. Normally the master map is located initially as a local file /etc/auto_master.

FILES

/etc/auto_master master automount map.
/etc/auto_home map to support automounted home directories.
/etc/nsswitch.conf the name service switch configuration file.

SEE ALSO automountd(1M), mount(1M)

NFS Administration Guide

NOTES

The −hosts map must mount all of the exported NFS filesystems from a server. If frequent access to just a single filesystem is required, it is more efficient to access the filesystem with a map entry that is tailored to mount just the filesystem of interest.

Autofs mount points must not be hierarchically related. automount does not allow an autofs mount point to be created within another autofs mount.

Since each direct map entry results in a new autofs mount such maps should be kept short.

If a directory contains direct map mount points then an ls –I in the directory will force all the direct map mounts to occur.

Entries in both direct and indirect maps can be modified at any time. The new information is used when automountd next uses the map entry to do a mount.
New entries added to a master map or direct map will not be useful until the automount command is run to install them as new autofs mount points. New entries added to an indirect map may be used immediately.

An autofs directory associated with an indirect map shows only currently-mounted entries. This is a deliberate policy to avoid inadvertent mounting of every entry in a map via an ls -l of the directory.

The multiple location feature for NFS mounts allows the automountd daemon to choose the most appropriate server at mount time. While such a mount is in effect, the daemon does not monitor the status of the server. If the server crashes, automountd will not select an alternative server from the list.

Default mount options can be assigned to an entire map when specified as an optional third field in the master map. These options apply only to map entries that have no mount options.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same.
<table>
<thead>
<tr>
<th>NAME</th>
<th>automountd – autofs mount/unmount daemon</th>
</tr>
</thead>
</table>

SYNOPSIS

```bash
automountd [ -Tv ] [ -D name=value ]
```

AVAILABILITY

SUNWcsu

DESCRIPTION

`automountd` is an RPC server that answers file system mount and unmount requests from the `autofs` filesystem. It uses local files or name service maps to locate filesystems to be mounted. These maps are described with the `automount(1M)` command.

The `automountd` daemon is automatically invoked in run level 2.

OPTIONS

- `−T` Trace. Expand each RPC call and display it on the standard output.
- `−v` Verbose. Log status messages to the console.
- `−D name=value`

Assign `value` to the indicated `automount` map substitution variable. These assignments cannot be used to substitute variables in the master map `auto_master`.

FILES

```
/etc/auto_master  master map for automounter
```

SEE ALSO

`automount(1M)`
NAME

autopush – configures lists of automatically pushed STREAMS modules

SYNOPSIS

autopush -f filename
autopush -g -M major -m minor
autopush -r -M major -m minor

AVAILABILITY

SUNWcsr

DESCRIPTION

This command is used to configure the list of modules to be automatically pushed onto the stream when a device is opened. It can also be used to remove a previous setting or get information on a setting.

OPTIONS

-f filename Set up the autopush configuration for each driver according to the information stored in filename. An autopush file consists of lines of four or more fields, separated by spaces as shown below:

 major minor last-minor module1 module2 ... modulen

The first field is a string that specifies the major device name, as listed in the /kernel/drv directory. The next two fields are integers that specify the minor device number and last-minor device number. The fields following represent the names of modules. If minor is -1, then all minor devices of a major driver specified by major are configured, and the value for last-minor is ignored. If last-minor is 0, then only a single minor device is configured. To configure a range of minor devices for a particular major, minor must be less than last-minor.

The last fields of a line in the autopush file represent the list of module names. The maximum number of modules that can be automatically pushed on a stream is eight. The modules are pushed in the order they are specified. Comment lines start with a # sign.

-g Get the current configuration setting of a particular major and minor device number specified with the -M and -m options respectively and displays the autopush modules associated with it. It will also return the starting minor device number if the request corresponds to a setting of a range (as described with the -f option).

-M major Specifies the major device number.

-m minor Specifies the minor device number.

-r Remove the previous configuration setting of the particular major and minor device number specified with the -M and -m options respectively. If the values of major and minor correspond to a previously established setting of a range of minor devices, where minor matches the first minor device number in the range, the configuration would be removed for the entire range.
The following example gets the current configuration settings for the major and minor device numbers as indicated and displays the autopush modules associated with them for the character-special device /dev/term/a:

```
example# autopush −g −M 29 −m 0
Major Minor Lastminor Modules
 29  0   1   ldtterm ttcompat
```

FILES
/etc/iu.ap

SEE ALSO
bdconfig(1M), ttymon(1M), ldtterm(7), sad(7), streamio(7) ttcompat(7)

STREAMS Programmer’s Guide
NAME bdconfig – configures the bd (buttons and dials) stream

SYNOPSIS bdconfig [startup] [off] [on] [term] [status] [verbose]

AVAILABILITY SUNWdialh

DESCRIPTION bdconfig is responsible for configuring the autopush facility and defining to the system what serial device to use for the bd stream.

OPTIONS If no options are given, then an interactive mode is assumed. In this mode the current status is presented along with this usage line, and a series of interactive questions asked to determine the user’s desires.

Root privilege is required to change the configuration. The status option does not require root privilege. bdconfig can be installed as a setuid root program.

The non-interactive options below can be given in any order.

 term Specify to the system the serial device for bd use. This option implies the on option unless the off option is present.
 off Reconfigure the configured term for tty use.
 on Reconfigure the configured term for bd use. If term has not been previously specified, interactive questions are asked to determine the user’s desires.
 startup Configure as was last configured before the system went down. This option is used by the startup script, and precludes the use of the on, off, and term options. This option implies non-interactive mode.
 status Emit the current configuration in terms of the words used as options: off, on, /dev/term/a, /dev/term/b, and so forth. This option implies non interactive mode.
 verbose bdconfig describes what it finds and what it is doing.

EXIT STATUS bdconfig returns 0 on success, 1 on general error, and 2 on argument error.

SEE ALSO autopush(1M), x_buttonest(6), x_dialtest(6), bd(7), sad(7), streamio(7)

NOTES All bdconfig does is configure the AUTOPUSH facility. bdconfig does not actually manipulate the serial port or stream in any way. Only the first open of a dismantled stream will see the effects of a previously run bdconfig.

bdconfig is silent except for error messages unless:

 a) invoked with no args: status / usage line emitted
 b) interactive modes are invoked as described above
 c) the verbose option is used

1M-86 modified 18 May 1993
BUGS

The interface does not support more than one dialbox and one buttonbox, both of which must be on the same serial device.

There should be a library routine to read, parse, and validate records in the iu.ap file, so that `bdconfig` could return to the appropriate record in iu.ap as the default configuration.
NAME

boot – start the system kernel or a standalone program

SPARC SYNOPSIS

ok boot [OBP names] [filename] [boot-flags]
>b [device [(c, u, p)]] [filename] [-a] boot-flags

x86 SYNOPSIS
>
b [filename] [boot-args]
>i

DESCRIPTION

Bootstrapping is the process of loading and executing a standalone program. For the purpose of this discussion, bootstrapping means the process of loading and executing the bootable operating system. Typically, the standalone program is the operating system kernel (see kernel(1M)), but any standalone program can be booted instead. As an example, on a SPARC system, the diagnostic monitor for a machine is a good example of a standalone program other than the operating system that can be booted.

SPARC Bootstrap Procedure
On SPARC systems, the bootstrap procedure on most machines consists of the following basic phases.

After the machine is turned on the system firmware (in PROM) executes power-on self test (POST). The form and scope of these tests depends on the version of the firmware in your system.

After the tests have been completed successfully, the firmware attempts to autoboot if the appropriate flag has been set in the non-volatile storage area used by the firmware. The name of the file to load, and the device to load it from can also be manipulated.

These flags and names can be set using the eeprom(1M) command from the shell, or by using PROM commands from the ‘ok’ prompt after the system has been halted.

The second level program is either ufsboot, (when booting from a disk) or inetboot (when booting across the network). When booting from a disk, the PROM assumes that the primary bootblock resides in blocks 1 to 15 of the local disk. When booting over the network, the PROM makes a reverse ARP request and when it receives a reply, the PROM makes a TFTP request to the server that responded and fetches inetboot across the network and executes it. Inetboot also makes another reverse ARP request, then uses the bootparams protocol to locate its root filesystem. It then fetches the kernel across the network using the NFS protocol and then executes it.

The second level boot program loads the standalone at the appropriate address, and then jumps to the newly loaded standalone.

Typically, the standalone program is /kernel/unix. Once the program is loaded, it starts the UNIX system, mounts the necessary filesystems (see vfstab(4)), and runs /sbin/init to bring the system to the 'initdefault' state specified in /etc/inittab (see inittab(4)).

x86 Bootstrap Procedure
On x86 systems, the bootstrapping process consists of two conceptually distinct phases, primary boot and secondary boot. The primary boot is implemented in the BIOS ROM on the system board, in BIOS extensions in ROMs on peripheral boards, and sometimes in an executive program and BIOS extensions on a boot diskette. It is distinguished by its
ability to control the installed peripheral devices and to provide I/O services through software interrupts. It begins the booting process by loading the first physical sector from a mass storage device or by loading a program over the LAN. The primary boot is implemented in x86 real-mode code.

The secondary boot is loaded by the primary boot and uses I/O services provided by the primary boot. It is implemented in 32-bit, paged, protected mode code, and it is capable of reading files from a file system. There are two separate versions of the secondary boot:

- **ufsboot** boots from a UFS file system on a hard disk or a CD
- **inetboot** boots over a LAN using the NFS protocol

All versions of the secondary boot contain a built-in shell-like command interpreter. The command language is defined below. The interpreter reads the script in `/etc/bootrc`, which controls the booting process. This file can be modified to change defaults or to adapt to a specific machine.

The standard `/etc/bootrc` script prompts the user to enter a `b` character to boot with specified options, an `i` character to invoke the interpreter interactively, or any other character to boot the default kernel, `/kernel/unix`. Once the kernel is loaded, it starts the operating system, loads the necessary modules, mounts the necessary file systems (see `vfstab(4)`), and runs `/sbin/init` to bring the system to the ``initdefault'' state specified in `/etc/inittab` (see `inittab(4)`).

SPARC OPTIONS

- **OBP names** Specify the open boot prom designations. For example, on Desktop SPARC systems, the designation `/sbus/esp@0,0x800000/sd@3,0:a` indicates a SCSI disk (sd) at target 3, lun0 on the SCSI bus, with the esp host adapter plugged into slot 0.

- **filename** Name of a standalone program to boot. The default is to boot `/kernel/unix` from the root partition, but you can specify another program, such as `/stand/diag` on the command line. Some versions of the firmware allow the default filename to be saved in the non-volatile storage area of the system.

- **−a** The boot program interprets this flag to mean ask me, and so it prompts for the name of the standalone. The `−a` flag is then handed onto the standalone.

- **boot-flags** The boot program passes all `boot-flags` to `filename`, they are not interpreted by `boot`. See the `kernel(1M)` and `kadb(1M)` manual pages for information on the options available with the default standalone program, `/kernel/unix`.

x86 OPTIONS

- **filename** Name of a standalone program to boot. The default is to boot `/kernel/unix` from the root partition, but you can specify another program on the command line.

modified 22 Nov 1993
boot (1M) Maintenance Commands SunOS 5.4

The boot program passes all boot-args to filename. They are not interpreted by boot. See the kernel(1M) and kadb(1M) manual pages for information on the options available with the default standalone program, /kernel/unix.

x86 BOOT SEQUENCE DETAILS

After a PC-compatible machine is turned on, the system firmware in the BIOS ROM executes a power-on self test (POST), runs BIOS extensions in peripheral board ROMs, and invokes software interrupt INT 19h, Bootstrap. The INT 19h handler typically performs the standard PC-compatible boot, which consists of trying to read the first physical sector from the first diskette drive, or, if that fails, from the first hard disk. The processor then jumps to the first byte of the sector image in memory.

The first sector on a hard disk contains the master boot block, which contains the master boot program and the FDISK table, named for the PC program that maintains it. The master boot finds the active partition in the FDISK table, loads its first sector, and jumps to its first byte in memory. This completes the standard PC-compatible hard disk boot sequence.

The x86 FDISK partition begins with a one-cylinder boot slice, which contains the partition boot program (pboot) in the first sector, the standard Solaris disk label and volume table of contents (VTOC) in the second and third sectors, and the bootblk program in the fourth and subsequent sectors. When the Solaris FDISK partition is the active partition, the master boot program (mboot) reads the partition boot program in the first sector into memory and jumps to it. It in turn reads the bootblk program into memory and jumps to it. If the drive contains multiple FDISK partitions, the user is given the opportunity to reboot another partition. bootblk reads /ufsboot from the file system in the root slice and jumps to its first byte in memory.

Like all versions of the secondary boot, ufsboot switches the processor to 32-bit, paged, protected mode and performs some limited machine initialization. It then invokes its command interpreter, which interprets /etc/bootrc.

x86 CD-ROM Boot

The standard BIOS ROM and BIOS extensions on SCSI Host Bus Adapters (HBAs) do not support booting from CD-ROM. A special Solaris boot diskette is provided for booting from CD-ROM or other devices not supported by the BIOS. It is typically used to install the Solaris operating system from CD-ROM, although it can also be used for system maintenance or network booting.

This diskette is in the form of a standard DOS diskette, but is not a DOS system disk. It contains an executive program and BIOS extensions that support booting over the network or reading CD-ROMs through various SCSI HBAs. When the diskette is booted, the executive program loads and runs each of the BIOS extension files. If an extension detects the presence of the device it supports, it installs itself in memory and chains its service routine to the appropriate software interrupt.

After the extensions have all been loaded, the executive displays a menu of bootable devices. The user chooses the device to be booted, typically the CD.

1M-90 modified 22 Nov 1993
Once the bootable device has been selected, the boot process proceeds in the same manner as the hard disk boot, i.e., the executive reads the first physical sector from the device and jumps to its first byte.

x86 Network Booting

When booting is to occur over the network, a boot request multicast packet using the Remote Program Load (RPL) protocol is generated by the PC. Somewhere on the same network segment, an RPL server is listening to these boot requests. The information contained in the request is validated and a reply is sent back to the PC. The PC then requests bootfiles to be downloaded to its memory. These bootfiles have been previously configured for this PC. Once downloading has finished, the PC begins executing these programs, which initiate running of the secondary boot program `inetboot`. Like other versions of the secondary boot, `inetboot` switches the processor to 32-bit, paged, protected mode and performs some limited machine initialization. It then issues Reverse Address Resolution Protocol (RARP) requests to find out its own IP address and a `boot-params` RPC to find out which server to mount as its root file system using NFS. When the root has been mounted, it then invokes its command interpreter, which interprets `/etc/bootrc`.

Secondary Boot Programming Language for x86

The wide range of hardware that must be supported on x86 demands great flexibility in the booting process. This flexibility is achieved in part by making the secondary boot programmable. The secondary boot contains an interpreter that accepts a simple command language similar to those of `sh` and `csh`. The primary differences are that pipelines, loops, standard output, and output redirection are not supported.

x86 Lexical Structure

The boot interpreter splits input lines into words separated by blanks and tabs. The metacharacters are dollar sign (`$`), single-quote (`'`), double-quote (`"`), number sign (`#`), new-line, and backslash (`\`). The special meaning of metacharacters can be avoided by preceding them with a backslash. A new-line preceded by a backslash is treated as a blank. A number sign introduces a comment, which continues to the next new-line.

A string enclosed in a pair of single-quote or double-quote characters forms all or part of a single word. White space and new-line characters within a quoted string become part of the word. Characters within a quoted string can be quoted by preceding them with a backslash character; thus a single-quote character can appear in a single-quoted string by preceding it with a backslash. Two backslashes produce a single backslash, and a new-line preceded by a backslash produces a new-line in the string.

x86 Variables

The boot maintains a set of variables, each of which has a string value. The first character of a variable name must be a letter, and subsequent characters can be letters, digits, or underscores. The `set` command creates a variable and/or assigns a value to it, or displays the values of variables. The `unset` command deletes a variable.

Variable substitution is performed when the interpreter encounters a dollar-sign that is not preceded by a backslash. The variable name following the dollar sign is replaced by the value of the variable, and parsing continues at the beginning of the value. Variable substitution is performed in double-quoted strings, but not in single-quoted strings. A variable name can be enclosed in braces to separate it from following characters.

modified 22 Nov 1993
A command is a sequence of words terminated by a new-line character. The first word is the name of the command and subsequent words are arguments to the command. All commands are built-in commands. Standalone programs are executed with the run command.

Commands can be conditionally executed by surrounding them with the if, elseif, else, and endif commands:

```plaintext
if <expr1>
    ...
elseif <expr2>
    ...
elseif <expr3>
    ...
else
    ...
endif
```

An if block may be embedded in other if blocks.

The set, if, and elseif commands evaluate arithmetic expressions with the syntax and semantics of the C programming language. The | |, &&, |, ^, &, ==, !=, <, >, <=, >=, <<, >>, +, −, *, /, %, and ! operators are accepted, as are (,), and comma. Signed 32-bit integer arithmetic is performed.

Expressions are parsed after the full command line has been formed. Each token in an expression must be a separate argument word, so blanks must separate all tokens on the command line.

Before an arithmetic operation is performed on an operand word, it is converted from a string to a signed 32-bit integer value. After an optional leading sign, a leading 0 produces octal conversion and a leading 0x or 0X produces hexadecimal conversion. Otherwise, decimal conversion is performed. A string that is not a legal integer is converted to zero.

Several built-in functions for string manipulation are provided. Built-in function names begin with a dot. String arguments to these functions are not converted to integers. To cause an operator, e.g., -, to be treated as a string, it must be preceded by a backslash, and that backslash must be quoted with another backslash. Also be aware that a null string can produce a blank argument, and thus an expression syntax error. For example:

```plaintext
if .strneq ($usrargX , \- , 1 )
```

is the safe way to test whether the variable usrarg starts with a -, even if it could be null.
x86 I/O

The boot interpreter takes its input from the system console or from one or more files. The source command causes the interpreter to read a file into memory and begin parsing it. The console command causes the interpreter to take its input from the system console. Reaching EOF causes the interpreter to resume parsing the previous input source. CTRL-D entered at the beginning of console line is treated as EOF.

The `echo` command writes its arguments to the display. The `read` command reads the system console and assigns word values to its argument variables.

x86 Debugging

The `verbose` command turns verbose mode on and off. In verbose mode, the interpreter displays lines from the current source file and displays the command as actually executed after variable substitution.

The `singlestep` command turns singlestep mode on and off. In singlestep mode, the interpreter displays `step ?` before processing the next command, and waits for keyboard input, which is discarded. Processing proceeds when ENTER s pressed. This allows slow execution in verbose mode.

x86 Initialization

When the interpreter is first invoked by the boot, it begins execution of a compiled-in initialization string. This string typically consists of `source /etc/bootrc
` to run the boot script in the root file system.

x86 Communication With Standalone Programs

The boot passes information to standalone programs through arguments to the `run` command. A standalone program can pass information back to the boot by setting a boot interpreter variable using the `var_ops()` boot service function. It can also pass information to the kernel using the `setprop()` boot service function. The `whoami` property is set to the name of the standalone program.

x86 Built-in Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>console</td>
<td>Interpret input from the console until CTRL-D.</td>
</tr>
<tr>
<td>echo arg1 ...</td>
<td>Display the arguments separated by blanks and terminate with a new-line.</td>
</tr>
<tr>
<td>echo -n arg1 ...</td>
<td>Display the arguments separated by blanks, but do not terminate with a new-line.</td>
</tr>
<tr>
<td>else</td>
<td>See if.</td>
</tr>
<tr>
<td>elseif</td>
<td>See if.</td>
</tr>
<tr>
<td>endif</td>
<td>See if.</td>
</tr>
<tr>
<td>getprop propname varname</td>
<td>Assign the value of property <code>propname</code> to the variable <code>varname</code>. A property value of length zero produces a null string. If the property does not exist, the variable is not set.</td>
</tr>
</tbody>
</table>
getproplen propname varname
Assign the length in hexadecimal of the value of property propname to the variable varname. Property value lengths include the terminating null. If the property does not exist, the variable is set to 0xFFFFFFFF (-1).

if <expr>
If the expression expr is true, execute instructions to the next elseif, else, or endif. If expr is false, do not execute the instructions.

elseif <expr>
If the preceding if and elseif commands all failed, and expr is true, execute instructions to the next elseif, else, or endif. Otherwise, do not execute the instructions.

else
If the preceding if and elseif commands all failed, execute instructions to the next elseif, else, or endif. Otherwise, do not execute the instructions.

endif
Revert to the execution mode of the surrounding block.

help
Display a help screen that contains summaries of all available boot shell commands.

read name1 ...
Read a line from the console, break it into words, and assign them as values to the variables name1, etc.

readt time ...
Same as read, but timeout after time seconds.

run name arg1 ...
Load and transfer control to the standalone program name, passing it arg1 and further arguments.

set
Display all the current variables and their values.

set name
Set the value of the variable name to the null string.

set name word
Set the value of the variable name to word.

set name <expr>
Set the value of the variable name to the value of expr. expr must consist of more than one word. The value is encoded in unsigned hexadecimal, so that -1 is represented by 0xFFFFFFFF.

setcolor
Set the text mode display attributes. Allowable colors are black, blue, green, cyan, red, magenta, brown, white, gray, lt_blue, lt_green, lt_cyan, lt_red, lt_magenta, yellow, and hi_white.

setprop propname word
Set the value of the property propname to word.
singlestep

Turn on singlestep mode, in which the interpreter displays step? before each command is processed, and waits for keyboard input. Press ENTER to execute the next command.

singlestep off

Turn off singlestep mode.

source name

Read the file name into memory and begin to interpret it. At EOF, return to the previous source of input.

unset name

Delete the variable name.

verbose

verbose on

Turn on verbose mode, which displays lines from source files and commands to be executed.

verbose off

Turn off verbose mode.

The following built-in functions are accepted within expressions:

strcmp

Returns an integer value that is less than, equal to, or greater than zero, as string1 is lexicographically less than, equal to, or greater than string2.

strncmp

Returns an integer value that is less than, equal to, or greater than zero, as string1 is lexicographically less than, equal to, or greater than string2. At most, n characters are compared.

streq

Returns true if string1 is equal to string2, and false otherwise.

strneq

Returns true if string1 is equal to string2, and false otherwise. At most, n characters are compared.

strnd

Scans n locations in memory starting at addr, looking for the beginning of string. The string in memory need not be null-terminated. Returns true if string is found, and false otherwise. strnd can be used to search for strings in the ROM BIOS and BIOS extensions that identify different machines and peripheral boards.

SPARC FILES

/etc/inittab
/kernel/unix
/sbin/init
/stand/diag

modified 22 Nov 1993
The boot program is not smart enough to know which files can be used as bootable programs. If the booting of a file that is not bootable is requested, the boot program loads it and branches to it. What happens after that is unpredictable.
NAME
bsmconv, bsmunconv – enable/disable the Basic Security Module (BSM) on Solaris

SYNOPSIS
/etc/security/bsmconv [rootdir ...]

/etc/security/bsmunconv [rootdir ...]

DESCRIPTION
The `bsmconv` and `bsmunconv` scripts are used to enable or disable the BSM features on a Solaris system. The optional argument `rootdir` is a list of one or more root directories of diskless clients which have already been configured via the Host Manager, see `admintool(1M)`.

To enable or disable BSM on a diskless client, a server, or a stand-alone system, logon as super-user to the system being converted and use the `bsmconv` or `bsmunconv` commands without any options.

To enable or disable BSM on a diskless client from that client’s server, logon to the server as super-user and use `bsmconv`, specifying the root directory of each diskless client you wish to affect. For example, the command

```
myhost# bsmconv /export/root/client1 /export/root/client2
```
will enable BSM on the two machines named `client1` and `client2`. While the command

```
myhost# bsmconv
```
will enable BSM only on the machine called `myhost`. It is no longer necessary to enable BSM on both the server and its diskless clients.

After running `bsmconv` the system can be configured by editing the files in `/etc/security`. Each diskless client has its own copy of configuration files in its root directory. You may wish to edit these files before rebooting each client.

Following the completion of either script, the affected system(s) should be rebooted to allow the auditing subsystem to come up properly initialized.

SEE ALSO
`admintool(1M) auditd(1M), audit_startup(1M), audit.log(4), audit_control(4)`
NAME
capoinfo – convert a termcap description into a terminfo description

SYNOPSIS
capoinfo [−1] [−v . .] [−V] [−w width] filename . . .

DESCRIPTION
capoinfo looks in filename for termcap descriptions. For each one found, an equivalent terminfo description is written to standard output, along with any comments found. A description which is expressed as relative to another description (as specified in the termcap tc = field) is reduced to the minimum superset before being displayed.

If no filename is given, then the environment variable TERMCAP is used for the filename or entry. If TERMCAP is a full pathname to a file, only the terminal whose name is specified in the environment variable TERM is extracted from that file. If the environment variable TERMCAP is not set, then the file /usr/share/lib/termcap is read.

OPTIONS
−1 Display the fields one to a line. Otherwise, the fields are printed several to a line, with a maximum width of 60 characters.
−v Display tracing information on the standard error as the program runs. Specifying additional −v options displays more detailed information.
−V Display the version of the program in use on the standard error and then exit.
−w width Change the output to width characters.

FILES
/usr/share/lib/terminfo/?/* compiled terminal description database
/usr/share/lib/termcap

SEE ALSO
infocmp(1M), curses(3X), terminfo(4)

NOTES
capoinfo should be used to convert termcap entries to terminfo entries because the termcap database may not be supplied in future releases.
NAME
 catman – create the cat files for the manual

SYNOPSIS
 /usr/bin/catman [−n] [−p] [−t] [−w] [−M directory] [−T macro-package]
 [sections]

DESCRIPTION
 catman creates the preformatted versions of the on-line manual from the nroff(1) input
 files. Each manual page is examined and those whose preformatted versions are missing
 or out of date are recreated. If any changes are made, catman recreates the windex data-
 base.

 If there is one parameter not starting with a ‘−’, it is taken to be a space separated list of
 manual sections to create. For example

 catman 1 2 3

 only updates manual sections 1, 2, and 3.

 If an unformatted source file contains only a line of the form .so manx/yyy.x, a symbolic
 link is made in the catx or fmtx directory to the appropriate preformatted manual page.
 This feature allows easy distribution of the preformatted manual pages among a group of
 associated machines (for example, with rdist(1)), since it makes the directories of prefor-
 matted manual pages self-contained and independent of the unformatted entries.

OPTIONS
 −n Do not create (or recreate) the windex database.
 −p Print what would be done instead of doing it.
 −t Create troffed entries in the appropriate fmt subdirectories instead of nroffing into
 the cat subdirectories.
 −w Only create the windex database that is used by whatis(1) and the man(1) −f and
 −k options. No manual reformating is done.
 −M directory
 Update manual pages located in the specified directory (/usr/share/man by
 default).
 −T macro-package
 Use macro-package in place of the standard manual page macros.

ENVIRONMENT
 TROFF The name of the formatter to use when the −t flag is given. If not set, troff(1) is used.

FILES
 /usr/share/man default manual directory location
 /usr/share/man/man?/*.x raw (nroff input) manual sections
 /usr/share/man/cat?/*.x preformatted nroffed manual pages
 /usr/share/man/fmt?/*.x preformatted troffed manual pages
 /usr/share/man/windex table of contents and keyword database
 /usr/lib/makewhatis command script to make windex database
 /usr/share/lib/tmac/an default macro package

modified 28 Feb 1994 1M-99
SEE ALSO

apropos(1), man(1), nroff(1), rdist(1), rm(1), troff(1), whatis(1)

DIAGNOSTICS

man?/xxx.? (.so'ed from man?/yyy.?): No such file or directory

The file outside the parentheses is missing, and is referred to by the file inside them.

target of .so in man?/xxx.? must be relative to /usr/man

catman only allows references to filenames that are relative to the directory
/usr/man.

opendir:man?: No such file or directory

A harmless warning message indicating that one of the directories catman normally looks for is missing.

.: No such file or directory

A harmless warning message indicating catman came across an empty directory.

WARNINGS

If a user, who has previously run catman to install the cat? directories, upgrades the operating system, the entire cat? directory structure should be removed prior to running catman. See rm(1).

NOTES

If the −n option is specified, the /usr/share/man/windex database is not created and the apropos, whatis, man −f, and man −k commands will fail.

If the −M option is specified, the directory argument must not contain a ’,’ since ’,’ is used to delineate section numbers. See man(1).
NAME
cfsadmin – administer disk space used for caching file systems with the Cache File-
System (CacheFS)

SYNOPSIS
cfsadmin –c [–o cacheFS-parameters] cache_directory
cfsadmin –d [cache_ID | all] cache_directory
cfsadmin –l cache_directory
cfsadmin –u [–o cacheFS-parameters] cache_directory

DESCRIPTION
The cfsadmin command provides administrative tools for managing cached file systems. Its functions fall into four general categories:

• cache creation
• deletion of cached file systems
• listing of cache contents and statistics
• resource parameter adjustment when the file system is unmounted.

For each form of the command, you must specify a cache directory, that is, the directory under which the cache is actually stored. A path name in the front file system identifies the cache directory.

You can specify a cache ID when you mount a file system with CacheFS, or you can let the system generate one for you. The –l option includes the cache ID in its listing of information. You must know the cache ID to delete a cached file system.

OPTIONS
–c Create a cache under the directory specified by cache_directory. This directory must not exist prior to cache creation.
–d Remove the file system whose cache ID you specify and release its resources, or remove all file systems in the cache by specifying all. After deleting a file system from the cache, you must run the fsck_cachefs(1M) command to correct the resource counts for the cache.
–l List file systems stored in the specified cache, as well as statistics about them. Each cached file system is listed by cache ID. The statistics document resource utilization and cache resource parameters.
–u Update resource parameters of the specified cache directory. Parameter values can only be increased. To decrease the values, you must remove the cache and recreate it. All file systems in the cache directory must be unmounted when you use this option. Changes will take effect the next time you mount any file system in the specified cache directory. The –u option with no –o option sets all parameters to their default values.

CacheFS Resource Parameters
You can specify the following cacheFS resource parameters as arguments to the –o option. Separate multiple parameters with commas.

maxblocks=n Maximum amount of storage space that CacheFS can use, expressed as a percentage of the total number of blocks in the front file system. If CacheFS does not have exclusive use of the front file system, there is no...
guarantee that all the space the maxblocks parameter allows will be available. The default is 90.

minblocks=n Minimum amount of storage space, expressed as a percentage of the total number of blocks in the front file system, that CacheFS is always allowed to use without limitation by its internal control mechanisms. If CacheFS does not have exclusive use of the front file system, there is no guarantee that all the space the minblocks parameter attempts to reserve will be available. The default is 0.

threshblocks=n A percentage of the total blocks in the front file system beyond which CacheFS cannot claim resources once its block usage has reached the level specified by minblocks. The default is 85.

maxfiles=n Maximum number of files that CacheFS can use, expressed as a percentage of the total number of inodes in the front file system. If CacheFS does not have exclusive use of the front file system, there is no guarantee that all the inodes the maxfiles parameter allows will be available. The default is 90.

minfiles=n Minimum number of files, expressed as a percentage of the total number of inodes in the front file system, that CacheFS is always allowed to use without limitation by its internal control mechanisms. If CacheFS does not have exclusive use of the front file system, there is no guarantee that all the inodes the minfiles parameter attempts to reserve will be available. The default is 0.

threshfiles=n A percentage of the total inodes in the front file system beyond which CacheFS cannot claim inodes once its usage has reached the level specified by minfiles. The default is 85.

maxfilesize=n Largest file size, expressed in megabytes, that CacheFS is allowed to cache. The default is 3.

Note: You cannot decrease the block or inode allotment for a cache. To decrease the size of a cache, you must remove it and create it again with different parameters.

EXAMPLES

The following example creates a cache directory named /cache:

```
example% cfsadmin -c /cache
```

The following example creates a cache named /cache1 that can claim a maximum of 60 percent of the blocks in the front file system, can use 40 percent of the front file system blocks without interference by CacheFS internal control mechanisms, and has a threshold value of 50 percent. The threshold value indicates that after CacheFS reaches its guaranteed minimum, it cannot claim more space if 50 percent of the blocks in the front file system are already used.

```
example% cfsadmin -c -o maxblocks=60,minblocks=40,
sthreshblocks=50 /cache1
```
The following example changes the `maxfilesize` parameter for the cache directory `/cache2` to 2 megabytes:

```
example% cfsadmin -u -o maxfilesize=2 /cache2
```

The following example lists the contents of a cache directory named `/cache3` and provides statistics about resource utilization:

```
example% cfsadmin -l /cache3
```

The following example removes the cached file system with cache ID 23 from the cache directory `/cache3` and frees its resources (the cache ID is part of the information returned by `cfsadmin -l`):

```
example% cfsadmin -d 23 /cache3
```

The following example removes all cached file systems from the cache directory `/cache3`:

```
example% cfsadmin -d all /cache3
```

SEE ALSO `fsck_cachefs(1M)`, `mount_cachefs(1M)`

modified 1 Aug 1992

1M-103
NAME
cg14config – configure the cgfourteen device

SYNOPSIS
/usr/kvm/cg14config [−d device] [−r resolution] [−g gammavalue]
[−G gammafile] [−u degammavalue] [−U degammafile]

AVAILABILITY
SUNWkvm

DESCRIPTION
cg14config sets up state on the selected cgfourteen device.
The −r option is not available when the window system is running.
cg14config is supported only on Desktop SPARCsystems with SX graphics option.
The interface, output, and command location are uncommitted and subject to change in
future releases.

OPTIONS
−d device Use device as the cgfourteen device to configure. Default is /dev/fb.
−r resolution Use resolution as the desired screen resolution. Resolution is specified in
terms of screen width and height (in pixels), and vertical refresh (in hz).
Available resolutions are:
 1024x768@60
 1024x768@66
 1024x768@70
 1152x900@66
 1152x900@76
 1280x1024@66
 1280x1024@76
 1600x1280@66
 1920x1080@72
The default is the value read from the monitor sense codes. Note that some or all
of the resolutions above may not be supported by any given monitor. If a pro-
grammed resolution is outside of the range of allowable values for a monitor,
unpredictable results can occur, including damage to the monitor. Thus, care
should be taken when programming the resolution. See Openboot Command Refer-
ence for a description of how to reset the console device to the default value if it
becomes unusable from programming an unsupported resolution.
−g gammavalue
Each entry of the gamma lookup table will be loaded with entry`(1/gammavalue).
The gamma lookup table has 256 entries. Default gammavalue is 2.2.
−G filename
Initialize the gamma lookup table with the contents of filename. The format of
filename is 256 triplets (red green blue) of non-negative integers separated by
NEWLINE characters. The integers must be in the range 0 to 1023, inclusive.
−u degammavalue
Each entry of the degamma lookup table will be loaded with
entry (degammavalue). The degamma lookup table has 256 entries. Default degammavalue is 2.2.

-U filename
Initialize the degamma lookup table with the contents of filename. The format of filename is 256 entries of non-negative integers separated by NEWLINE characters. The integers must be in the range 0 to 255, inclusive.

EXIT CODES

cg14config returns 0 on success and a positive integer on failure.
1 Selected device is not a cgfourteen device.
2 Requested action failed.
3 Unsupported resolution.
4 Gamma or degamma value out of range.

FILES
/kernel/drv/cgfourteen cgfourteen device driver

SEE ALSO
init(1M), mmap(2)
Platform Notes: SPARCstation 10SX System Configuration Guide
Openboot Command Reference

modified 27 Apr 1993
NAME
 chown – change owner

SYNOPSIS
 /usr/ucb/chown [−f] [−R] owner [group] filename …

DESCRIPTION
 chown changes the owner of the filenames to owner. The owner may be either a decimal
 user ID (UID) or a login name found in the password file. An optional group may also be
 specified. The group may be either a decimal group ID (GID) or a group name found in
 the GID file.

 Only the super-user of the machine where the file is physically located can change owner,
 in order to simplify accounting procedures.

OPTIONS
 −f Do not report errors.

 −R Recursively descend into directories setting the ownership of all files in each
 directory encountered. When symbolic links are encountered, their ownership is
 changed, but they are not traversed.

FILES
 /etc/passwd password file

SEE ALSO
 chgrp(1), chown(2), group(4), passwd(4)
NAME
chroot – change root directory for a command

SYNOPSIS
/usr/sbin/chroot newroot command

AVAILABILITY
SUNWcsu

DESCRIPTION
chroot causes command to be executed relative to newroot. The meaning of any initial slashes (/) in the path names is changed to newroot for command and any of its child processes. Upon execution, the initial working directory is newroot.

Notice that redirecting the output of command to a file:

 chroot newroot command >x

will create the file x relative to the original root of command, not the new one.

The new root path name is always relative to the current root: even if a chroot is currently in effect, the newroot argument is relative to the current root of the running process.

This command can be run only by the super-user.

RETURN VALUES
The exit status of chroot is the return value of command.

EXAMPLE
chroot provides an easy way to extract tar files written with absolute filenames to a different location.

 example# cp /usr/sbin/static/tar /tmp
 example# dd if=/dev/nrst0 | chroot /tmp tar xvf -

Note that tar is statically linked, so you do not have to copy any shared libraries to the newroot filesystem.

SEE ALSO
cd(1), chroot(2)

NOTES
Exercise extreme caution when referencing device files in the new root file system.

modified 16 Feb 1994
NAME

chrtbl, wchrtbl – generate character classification and conversion tables

SYNOPSIS

chrtbl [filename]
wchrtbl [filename]

DESCRIPTION

chrtbl creates character type and numeric layout files for single byte locales. wchrtbl does the same for multibyte locales. The two commands are links to each other.

Character classification tables contain information on character attributes, upper- to lowercase conversion, and codeset character width. The LC_CTYPE file is an array of bytes encoded so simple table lookups can determine character type or perform case mapping, using ctype(3C) or wchar(3C) library routines. Other routines can find the byte count and screen width of characters in supplementary code sets. The LC_NUMERIC file contains format information for numbers. The first byte specifies the decimal delimiter, and the second byte specifies the thousands separator.

Both commands read character classification and conversion information from filename and create three output files in the current directory. If no input file is given, these commands read from standard input. The example section below contains the source filename for ISO 8859-1. For multibyte locales this example needs to be extended.

The first output file, [w]ctype.c is a C language source file, which application programs can use as needed. It contains a (257*2)+7 byte array generated from processing filename. Review the contents of the C source to verify that the array is set up as planned. The first 257 bytes of the array are used for character classification. Symbols used for initializing these bytes represent character classification defined in <ctype.h>; for example, _L means a character is lower case and _S | _B means the character is both a spacing character and a blank. The second 257 bytes of the array are used for character conversion. These bytes are initialized so that characters without conversion information are converted to themselves. If you provide conversion information, the first value of the pair is stored where the second one would normally be stored, and vice versa. For example, if you provide <0x41 0x61>, then 0x61 is stored where 0x41 would normally be stored, and 0x61 is stored where 0x41 would normally be stored. The last 7 bytes are used for character width information for up to three supplementary code sets.

The second output file is binary data containing the same information, but structured for efficient use by the ctype(3C) and wchar(3C) routines. The name of this output file is the value you assign to the keyword LC_CTYPE in filename. The superuser should install this file as /usr/lib/locale/LC_CTYPE/ctype. It must be readable by user, group, and other; execute permission is not necessary. Application programs consult this file when the LC_CTYPE environment is set appropriately, upon calling setlocale(3C).

The third output file is binary data created only if numeric formatting information is specified. The name of this output file is the value you assign to the keyword LC_NUMERIC in filename. The superuser should install this file as /usr/lib/locale/LC_NUMERIC. It must be readable by user, group, and other; execute permission is not necessary. Application programs consult this file when the
LC_NUMERIC environment is set appropriately, upon calling setlocale(3C).

For supplementary codesets, there are three sets of tables. The first set contains three pointer arrays that point to supplementary codeset information tables. If supplementary codeset information is not specified, the contents of the pointers are zeros. The arrays are full of null pointers. The second set contains three supplementary codeset information tables, each specifying minimum and maximum code values to be classified and converted, and also pointers to character classification and conversion tables. If there is no corresponding table, the contents of the pointers are zeros. The third set contains character classification and conversion tables that contain the same information as the single byte table, except codes are represented as process codes and table size is variable. The characters used for initializing values of the character classification table represent character classifications defined in `<wctype.h>'; _E1 through _E8 are for international use and _E9 through _E24 are for language-dependent use.

The syntax of filename provides for data file naming, assignment of characters to character classifications, upper- to lower-case mapping, byte and screen widths for up to three supplementary code sets, plus numeric formatting information. The keywords recognized by [w]chrtbl are:

- LC_CTYPE: name of the first data file created by [w]chrtbl
- isupper: character codes classified as upper-case letters
- islower: character codes classified as lower-case letters
- isdigit: character codes classified as numeric
- isspace: character codes classified as spacing (delimiter) characters
- ispunct: character codes classified as punctuation characters
- iscntrl: character codes classified as control characters
- isblank: character code for the blank (space) character
- isxdigit: character codes classified as hexadecimal digits
- ul: relationship between upper- and lower-case characters
- cswidth: byte count and screen width information
- LC_NUMERIC: name of the second data file created by [w]chrtbl
- decimal_point: decimal delimiter, may be \NNN octal or \xNN hexadecimal
- thousands_sep: thousands separator, may be \NNN octal or \xNN hexadecimal
- LC_CTYPE1: begin definition of supplementary codeset 1
- LC_CTYPE2: begin definition of supplementary codeset 2
- LC_CTYPE3: begin definition of supplementary codeset 3
isphonogram(iswchar1) character codes classified as phonograms in supplementary code sets
isideogram(iswchar2) character codes classified as ideograms in supplementary code sets
isenglish(iswchar3) character codes classified as English letters in supplementary code sets
isnumber(iswchar4) character codes classified as numeric in supplementary code sets
isspecial(iswchar5) character codes classified as special letters in supplementary code sets
iswchar6 character codes classified as other printable letters in supplementary code sets
iswchar7 - iswchar8 reserved for international use
iswchar9 - iswchar24 character codes classified as language-dependent letters/characters

Any lines with a sharp (#) in the first column are treated as comments and are ignored, as are blank lines.

To indicate character codes, use either hexadecimal or octal constants. For example, the letter a can be represented as 0x61 in hexadecimal or 0141 in octal. Constants may be separated by one or more spaces and/or tabs. Use a dash (−) to indicate a range of consecutive numbers. Zero or more spaces may separate the dash from its numbers. Use a backslash (\) for line continuation; only the newline is permitted after a backslash.

The relationship between upper- and lower-case letters (ul) is expressed as ordered pairs of octal or hexadecimal constants: <upper-case_character lower-case_character>. One or more space characters may separate these two constants. Zero or more space may separate angle brackets (< >) from numbers.

The following is the format of an input specification for cswidth: n1:s1,n2:s2,n3:s3
where
n1 byte width for supplementary code set 1, required
s1 screen width for supplementary code set 1
n2 byte width for supplementary code set 2
s2 screen width for supplementary code set 2
n3 byte width for supplementary code set 3
s3 screen width for supplementary code set 3

decimal_point and thousands_sep are specified by a single character, the delimiter.
EXAMPLES

Here is the input file used to create the iso_8859_1 codeset definition table.

<table>
<thead>
<tr>
<th>LC_CTYTP</th>
<th>LC_CTYTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>isupper</td>
<td>0x41 - 0x5a 0xc0 - 0xd6 0xd8 - 0xde</td>
</tr>
<tr>
<td>islower</td>
<td>0x61 - 0x7a 0xdf 0xe0 - 0xf6 0xf8 - 0xff</td>
</tr>
<tr>
<td>isdigit</td>
<td>0x30 - 0x39</td>
</tr>
<tr>
<td>isspace</td>
<td>0x20 0x09 - 0x0d 0xa0</td>
</tr>
<tr>
<td>ispunct</td>
<td>0x21 - 0x2f 0x3a - 0x40 0x5b - 0x60 0x7b - 0x7e \ 0xa1 - 0xbf 0xd7 0xf7</td>
</tr>
<tr>
<td>iscntrl</td>
<td>0x00 - 0x1f 0x7f</td>
</tr>
<tr>
<td>isblank</td>
<td>0x20 0xa0</td>
</tr>
<tr>
<td>isxdigit</td>
<td>0x30 - 0x39 0x61 - 0x66 0x67 - 0x6a 0x41 - 0x46 \ 0xc0 - 0xe0 0xe1 - 0xe2 0xe3 - 0xe4 0xe5 - 0xe6 \ 0xe7 - 0xe8 0xe9 - 0xea 0xeb - 0xec 0xed - 0xee \ 0xef 0xf0 - 0xf6 0xf7</td>
</tr>
<tr>
<td>ul</td>
<td><0x41 0x61> <0x42 0x62> <0x43 0x63> <0x44 0x64> \ <0x45 0x65> <0x46 0x66> <0x47 0x67> <0x48 0x68> \ <0x49 0x69> <0x4a 0x6a> <0x4b 0x6b> <0x4c 0x6c> \ <0x4d 0x6d> <0x4e 0x6e> <0x4f 0x6f> <0x50 0x70> \ <0x51 0x71> <0x52 0x72> <0x53 0x73> <0x54 0x74> \ <0x55 0x75> <0x56 0x76> <0x57 0x77> <0x58 0x78> \ <0x59 0x79> <0x5a 0x7a> <0x5b 0x7b> <0x5c 0x7c> \ <0x5d 0x7d> <0x5e 0x7e> <0x5f 0x7f> <0x60 0x7f></td>
</tr>
<tr>
<td>cswidth</td>
<td>1:1,0:0,0:0</td>
</tr>
<tr>
<td>decimal_point</td>
<td>LC_NUMERIC</td>
</tr>
<tr>
<td>thousands_sep</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>CONTENTS</td>
</tr>
<tr>
<td>LC_CTYTP1</td>
<td>LC_CTYTP</td>
</tr>
<tr>
<td>isupper</td>
<td>0xc0 - 0xd6 0xd8 - 0xde</td>
</tr>
<tr>
<td>islower</td>
<td>0xdf 0xe0 - 0xf6 0xf8 - 0xff</td>
</tr>
<tr>
<td>isspace</td>
<td>0xa0</td>
</tr>
<tr>
<td>ispunct</td>
<td>0xa1 - 0xf6 0xfd</td>
</tr>
<tr>
<td>isblank</td>
<td>0xa0</td>
</tr>
<tr>
<td>ul</td>
<td><0xc0 0x0e0> <0xc1 0x0e1> \ <0xc2 0x0e2> <0xc3 0x0e3> <0xc4 0x0e4> <0xc5 0x0e5> \ <0xc6 0x0e6> <0xc7 0x0e7> <0xc8 0x0e8> <0xc9 0x0e9> \ <0xca 0xea> <0xcb 0xeb> <0xcc 0xec> <0xcd 0xed> \ <0xce 0xee> <0xcf 0xef> <0xd0 0xf0> <0xd1 0xf1> \ <0xd2 0xf2> <0xd3 0xf3> <0xd4 0xf4> <0xd5 0xf5> \ <0xd6 0xf6> <0xd7 0xf7> <0xd8 0xf8> <0xd9 0xf9> \ <0xda 0xfa> <0xdb 0xfb> <0xdc 0xfc></td>
</tr>
<tr>
<td>FILES</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>/usr/include/ctype.h</td>
<td>declarations used by character classification and conversion routines</td>
</tr>
<tr>
<td>/usr/include/wctype.h</td>
<td>declarations used by wide character classification and conversion routines</td>
</tr>
<tr>
<td>/usr/lib/locale/LC_CTYPE/ctype</td>
<td>data file containing character classification, conversion, and codeset width information</td>
</tr>
<tr>
<td>/usr/lib/locale/LC_NUMERIC</td>
<td>data file containing numeric layout information</td>
</tr>
</tbody>
</table>

SEE ALSO ctype(3C), setlocale(3C), iswalpha(3I), environ(5)

NOTES Do not change files under the C locale, as this could cause undefined or nonstandard behavior.
NAME clri – clear inode

SYNOPSIS clri [−F FSType] [−V] special i-number

AVAILABILITY SUNWcsr

DESCRIPTION clri writes zeros on the inodes with the decimal i-number on the filesystem stored on special. After clri, any blocks in the affected file will show up as missing in an fsck(1M) of special.

Read and write permission is required on the specified file system device. The inode becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If it is used to zap an inode which does appear in a directory, care should be taken to track down the entry and remove it. Otherwise, when the inode is reallocated to some new file, the old entry will still point to that file. At that point removing the old entry will destroy the new file. The new entry will again point to an unallocated inode, so the whole cycle is likely to be repeated again and again.

OPTIONS

−F FSType Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching special with an entry in the table, or by consulting /etc/default/fs.

−V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

FILES

/etc/default/fs default local file system type
/etc/vfstab list of default parameters for each file system

SEE ALSO fsck(1M), vfstab(4)

NOTES This command may not be supported for all FSTypes.

modified 18 May 1993
NAME
colltbl – create string collation routines

SYNOPSIS
colltbl [filename]

DESCRIPTION The colltbl command reads locale specifica\-
tions for collation order from filename, then creates a shared library composed of four functions: str\-
xfm(3C), wsxfm(3I), strcoll(3C), and wscoll(3I). The last two transform their arguments and perform the comparison directly. If no input file is supplied, colltbl reads from standard input.

The name of the output file is the value you assign to the keyword codeset in filename. The superuser should install this file as /usr/lib/locale/locale/LC_COLLATE/coll.so. It must be readable and executable by user, group, and other. Application programs consult this file when the LC_COLLATE environment is set appropriately, after having called setlocale(3C).

The colltbl command can support languages whose collating sequence can be completely described by the following cases:

- Ordering of single characters within the codeset. For example, in English B is sorted after A, but before C and D.
- Equivalence class definition. A collection of characters is defined to have the same primary sort value. For example, in Finnish the letters French V and W compare equal. Both come after U but before X.
- Ordering of double characters in the collation sequence. For example, in Spanish ch is collated after c, and I is collated after II.
- Ordering of one character as if it consists of two characters. For example, in German the "es-zet" û is sorted as if it were ss. This is a special instance of the case below.
- Substitution of one character string with another character string. For example, spelled-out numbers, month and day names, and so forth, can be transformed so that they sort correctly.
- Null character mapping, so that certain characters in the codeset are ignored during collation. For example, if "-" were ignored during collation, then the strings re-locate and relocate would compare equal.
- Secondary ordering between characters. In the case where two characters are sorted together in the collation sequence, (that is, they have the same "primary" ordering), there is sometimes a secondary ordering that is used if two strings are identical except for characters that have the same primary ordering. For example, in French, the letters e and è have the same primary ordering but e comes before è in the secondary ordering. Thus the word lever would be ordered before lèver, but lèver would be sorted before levitate. (Note that if e came before è in the primary ordering, then lèver would be sorted after levitate.)
The specification file consists of three types of statements:

1. **codeset filename**

 filename is the name of the output file to be created by **colltbl**.

2. **order is order_list**

 order_list is a list of symbols, separated by semicolons, that defines the collating sequence. The special symbol *...* is short-hand for symbols that are lexically sequential. For example,

   ```
   order is a;b;c;d;...;x;y;z
   ```

 specifies the list of lower_case letters. Of course, this could be further shortened to *a;...;z*. Note that symbols surrounding *...* must be single character symbols; parentheses or braces are not allowed.

 A symbol can be up to two bytes in length and can be represented in any one of the following ways:
 - the symbol itself (for example, `a` for the lower-case letter `a`),
 - in octal representation (for example, `\141` or `0141` for the letter `a`), or
 - in hexadecimal representation (for example, `\x61` or `0x61` for the letter `a`).

 Any combination of these may be used as well.

 The backslash character, \ , is used for continuation. No characters are permitted after the backslash character.

 Symbols enclosed in parenthesis are assigned the same primary ordering but different secondary ordering. Symbols enclosed in curly brackets are assigned only the same primary ordering. For example,

   ```
   order is a;b;c;ch;d;(e;e Á);f;...;z;\{1;...;9};A;...;Z
   ```

 In the above example, `e` and `ë` are assigned the same primary ordering and different secondary ordering, digits 1 through 9 are assigned the same primary ordering and no secondary ordering. Only primary ordering is assigned to the remaining symbols. Notice how double letters can be specified in the collating sequence (letter `ch` comes between `c` and `d`).

 If a character is not included in the **order is** statement it is excluded from the ordering and will be ignored during sorting.

3. **substitute string with repl**

 The **substitute** statement substitutes the string *pattern* with the string *repl*. This can be used, for example, to provide rules to sort abbreviated month names numerically:

   ```
   substitute "Jan" with "01"
   substitute "Feb" with "02"
   ...
   substitute "Dec" with "12"
   ```
A simpler use of the substitute statement mentioned above is to substitute one character with two characters, as with the substitution of ss for ß in German.

Null character mapping can also be performed with substitute, as follows:

```
substitute "." with ""'
```

The substitute statement is optional. The order is and codeset statements are required. Any lines in the specification file with a # in the first column are treated as comments and are ignored. Empty lines are also ignored.

EXAMPLES

The following example shows the collation specification required to support a hypothetical telephone book sorting sequence.

The sorting sequence is defined by the following rules:

- Upper and lower case letters must be sorted together, but upper case letters have precedence over lower case letters.
- All special characters and punctuation must be ignored.
- Digits must be sorted as their alphabetic counterparts (0 as zero, 1 as one).
- The CH, Ch, ch combinations must be collated between C and D.
- V and W, v and w must be collated together.

The input specification file to `colltbl` should contain:

```plaintext
codeset telephone
order is (A;a);(B;b);(C;c);(CH;Ch;ch);(D;d);(E;e);(F;f);(G;g);\(H;h);(I;i);(J;j);(K;k);(L;l);(M;m);(N;n);(O;o);(P;p);\(Q;q);(R;r);(S;s);(T;t);(U;u);(V;W);(v;w);(X;x);(Y;y);(Z;z)
substitute "0" with "zero"
substitute "1" with "one"
substitute "2" with "two"
substitute "3" with "three"
substitute "4" with "four"
substitute "5" with "five"
substitute "6" with "six"
substitute "7" with "seven"
substitute "8" with "eight"
substitute "9" with "nine"
```

FILES

```
/usr/lib/locale/locale/LC_COLLATE/coll.so
```

shared library containing collation routines for `locale`

```
/opt/SUNWspro/bin/cc
```

or any C compiler that supports these options:

```
-G to output dynamically linked library
-o to specify output filename
-O to optimize code
-K pic to generate position independent code
```

SEE ALSO

`memory(3C)`, `setlocale(3C)`, `strcoll(3C)`, `strxfrm(3C)`, `wscoll(3I)`, `wsxfrm(3I)`, `environ(5)`

1M-116 modified 18 May 1993
NOTES

Do not change files under the C locale, as this could cause undefined or nonstandard behavior.

modified 18 May 1993
NAME
covet4x – converts SunOS 4.x clients to work from Solaris 2.x servers

SYNOPSIS
/usr/sbin/convert4x [export_root] [client_name]

AVAILABILITY
SUNWhinst

DESCRIPTION
convert4x converts SunOS 4.x clients that were served from a SunOS 4.x server so that
they will now work under the new Solaris 2.x server. The convert4x command is used
after discover4x(1M) and install4x(1M) have been executed on a Solaris 2.x server that
was upgraded from SunOS 4.x. It attempts to locate information about SunOS 4.x clients
that were preserved through the upgrade process.

OPTIONS
export_root Specify a fully qualified pathname for the base directory of the
diskless/dataless client support hierarchy. If unspecified, the default is,
/export.

client_name Specify the name of a client that you wish to convert. If unspecified, the
default is to convert all the SunOS 4.1 clients that are in export_root/root.

SEE ALSO
discover4x(1M), install4x(1M)

SPARC: Installing Solaris Software
x86: Installing Solaris Software
NAME crash – examine system images

SYNOPSIS /usr/sbin/crash [−d dumpfile] [−n namelist] [−w output-file]

DESCRIPTION The crash command is used to examine the system memory image of a running or a crashed system by formatting and printing control structures, tables, and other information. Command line arguments to crash are dumpfile, namelist, and output-file.

OPTIONS −d dumpfile Specify dumpfile as the file containing the system memory image. The default dumpfile is /dev/mem. The system image can also be the pathname of a dump file generated by the savecore utility.

−n namelist Specify the text file namelist which contains the symbol table information needed for symbolic access to the system memory image to be examined. The default namelist is /dev/ksyms. Note: It is recommended that crash dumps be analyzed on a machine having the same kernel architecture as the machine that the dump was taken from.

−w output-file When the crash command is invoked, a session is initiated. The output from a crash session is directed to output-file. The default output-file is the standard output.

USAGE Input during a crash session is of the form:

 function [argument...]

where function is one of the crash functions described in the Functions subsection of this manual page, and arguments are qualifying data that indicate which items of the system image are to be printed.

The default for process-related items is the current process for a running system or the process that was running at the time of the crash for a crashed system. Similarly, the default for thread-related items is the current thread for a running system or the thread that was running at the time of the crash for a crash system. If the contents of a table are being dumped, the default is all active table entries.

Function Options The following function options are available to crash functions wherever they are semantically valid. Valid function options are shown in Functions.

−e Display every entry in a table.

−f Display the full structure.

−p Interpret all address arguments in the command line as physical addresses. If the addresses specified are not physical addresses, results are inconsistent.

−s process Specify a process slot other than the default.

−w filename Redirect the output of a function to filename.
The functions `mode`, `defproc`, and `redirect` correspond to the function options `−p`, `−s`, and `−w`. The `mode` function may be used to set the address translation mode to physical or virtual for all subsequently entered functions; `defproc` sets the value of the process slot argument for subsequent functions; and `redirect` redirects all subsequent output.

Output from `crash` functions may be piped to another program in the following way:

```
function [ argument… ] ! shell_command
```

For example,

```
mount ! grep rw
```

writes all mount table entries with an `rw` flag to the standard output. The redirection option `−w` cannot be used with this feature.

Depending on the context of the function, numeric arguments are assumed to be in a specific radix. Counts are assumed to be decimal. Addresses are always hexadecimal. Table address arguments larger than the size of the function table are interpreted as hexadecimal addresses; those smaller are assumed to be decimal slots in the table. Default bases on all arguments may be overridden. The C conventions for designating the bases of numbers are recognized. A number that is usually interpreted as decimal is interpreted as hexadecimal if it is preceded by `0x` and as octal if it is preceded by `0`. Decimal override is designated by `0d`, and binary by `0b`.

Aliases for functions may be any uniquely identifiable initial substring of the function name. Traditional aliases of one letter, such as `p` for `proc`, remain valid.

Many functions accept different forms of entry for the same argument. Requests for table information accept a table entry number, a physical address, a virtual address, a symbol, a range, or an expression. A range of slot numbers may be specified in the form `a−b` where `a` and `b` are decimal numbers. An expression consists of two operands and an operator. An operand may be an address, a symbol, or a number; the operator may be `+`, `−`, `∗`, `/`, `&`, `|`. An operand that is a number should be preceded by a radix prefix if it is not a decimal number (0 for octal, 0x for hexadecimal, 0b for binary). The expression must be enclosed in parentheses. Other functions accept any of these argument forms that are meaningful.

Two abbreviated arguments to `crash` functions are used throughout. Both accept data entered in several forms. They may be expanded into the following:

```
table_entry = slot number | address | symbol | range | expression
start_addr = address | symbol | expression
```

Functions

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>? [−w filename]</td>
<td>List available functions.</td>
</tr>
<tr>
<td>!command</td>
<td>Escape to the shell and execute <code>command</code>.</td>
</tr>
</tbody>
</table>
as [-e] [-f] [-I] [-p] [-w filename] [proc...]
Print information on process address space. If the -I is specified, all locks
relevant to the address space structure are also displayed.

base [-w filename] number...
Print number in binary, octal, decimal, and hexadecimal. A number in a radix
other than decimal should be preceded by a prefix that indicates its radix as
follows: 0x, hexadecimal; 0, octal; and 0b, binary.

buffer [-w filename] [-format] bufferslot
buffer [-w filename] [-format] [-p] start_addr
Alias: b
Print the contents of a buffer in the designated format. The following format
designations are recognized: -b, byte; -c, character; -d, decimal; -x, hexade-
cimal; -o, octal; and, -i, inode. If no format is given, the previous format is
used. The default format at the beginning of a crash session is hexadecimal.

bufhdr [-f] [-w filename] [[-p] table_entry...]
Alias: buf
Print system buffer headers.

callout [-I] [-w filename]
Alias: c
Print the callout table. If the -I option is specified, the contents of the locks
pertaining to the callout structure are also displayed.

class [-w filename] [table_entry...]
Print information about process scheduler classes.

cpu [-w filename] start_addr...
Display the cpu structure pointed to by start_addr.

cxt [-w filename] start_addr
SPARC: Display the context structure given its starting address.

dblock [-e] [-w filename] [-c class]
dblock [-e] [-w filename] [[-p] table_entry...]
Print allocated streams data block headers. If the class option (-c) is used,
only data block headers for the class specified is printed.

defproc [-w filename] [-c] [-r]
defproc [-w filename] [slot] [-r]
Set the value of the process slot argument. The process slot argument may be
set to the current process’ slot number (-c) or the slot number may be
specified. If the -r option is specified, the process slot number and the current
thread pointer are reset (the process slot number is set to the current process’
slot number and the current thread pointer is set to the currently running
thread). If no argument is entered, the value of the previously set slot number
is printed. At the start of a crash session, the process slot is set to the current
process.
defthread [−p] [−w filename] [−r] [−c thread_addr]
 With no argument defthread displays the address of the current thread. If −c is specified, the current thread is set to point to the currently running thread. If an address is specified the current thread is specified to be that thread. If −r is specified, the default process is also set to be the process pertaining to current thread.

dispq [−w filename] [table_entry…]
 Print the dispatcher (scheduler) queues.

ds [−w filename] virtual_address…
 Alias: ts
 Print the data symbol whose address is closest to, but not greater than, the address entered.

file [−e] [−f] [−w filename] [[−p] table_entry…]
 Alias: f
 Print the file table.

findaddr [−w filename] table slot
 Print the address of slot in table. Only tables available to the size function are available to findaddr.

findslot [−w filename] virtual_address…
 Print the table, entry slot number, and offset for the address entered. Only tables available to the size function are available to findslot.

fs [−f] [−w filename] [[−p] table_entry…]
 Alias: vfssw
 Print the filename system information table.

gdp [−e] [−f] [−l] [−w filename] [[−p] table_entry…]
 x86: Print the gift descriptor protocol table. If the −l option is specified, display all relevant lock information.

hat [−a] [−w filename] start_addr…
 Display the hat structure pointed to by start_addr. If the −a option is specified, the chain of hat structures is displayed.

help [−w filename] function…
 Print a description of the named function, including syntax and aliases.

hment [−a] [−w filename] start_addr…
 Display the hment structure pointed to by start_addr. If the −a option is specified, the chain of hment structures is displayed.

kfp [−w filename] [thread_addr]
 Print the kernel frame pointer (kfp) for the start of a kernel stack trace. If thread_addr is specified the kfp for that thread is printed.

kmastat [−w filename]
 Print kernel memory allocator statistics.
lck [-e] [-w filename][[-p]lock_addr...]
 Alias: I
 Print record locking information. If the -e option is used or lock address arguments are given, the record lock list is printed. If no argument is entered, information on locks relative to UFS inodes is printed.

linkblk [-e] [-w filename][[-p]table_entry...]
 Print the linkblk table.

lwp [-w filename][lwp_addr...]
 Display the lwp structure pointed to by lwp_addr. If no address is specified as an argument, the lwp structure associated with the current thread is displayed.

major [-w filename][entry...]
 Print the MAJOR table.

map [-w filename] mapname...
 Print the map structure of the given mapname.

mblock [-e] [-f] [-w filename][[-p]table_entry...]
 Print allocated streams message block headers.

mode [-w filename][mode]
 Set address translation of arguments to virtual (v) or physical (p) mode. If no mode argument is given, the current mode is printed. At the start of a crash session, the mode is virtual.

mount [-f] [-w filename][[-p]table_entry...]
 Alias: m, vfs
 Print information about mounted filename systems.

mutex [-w filename] mutex_addr...
 Dump the contents of the mutex pointed to by mutex_addr.

mutextable [-w filename]
 Display every entry in the mutex_init_table.

nfsnode [-w filename][node_addr]
 Print the NFS remote nodes.

nm [-w filename] symbol...
 Print value and type for the given symbol.

Alias: rd
Print count values starting at start_addr in one of the following formats: character (-c), decimal (-d), hexadecimal (-x), octal (-o), ASCII (-a), or hexadecimal/character (-h), and one of the following modes: long (-l), short (-t), or byte (-b). The default mode for character and ASCII formats is byte; the default mode for decimal, hexadecimal, and octal formats is long. The format -h prints both hexadecimal and character representations of the addresses dumped; no mode needs to be specified. When format or mode is omitted, the previous value is used. At the start of a crash session, the format is hexadecimal and the mode is long. If no count is entered, 1 is assumed.

page [-e] [-l] [-w filename] [[-p] table_entry...]
Print information about pages. If -l is specified, display all relevant locking information.

pcb [-w filename] [thread_addr]
Print the process control block. If no arguments are given, the active pcb for the current thread is printed. If thread_addr is specified, the pcb associated with that thread is printed.

pcfsnode [-w filename] [node_address]
Print the PCFS filename and directory node tables.

pmgrp [-l] [-w filename] start_addr...
Display the pmgrp structure pointed to by start_addr. If the -l option is specified, the chain of pmgrp structures is displayed.

Print information about the private data of processes being traced. If -l is specified, all relevant locking information is also displayed.

proc [-e] [-f] [-l] [-w filename] [[-p] [-a] table_entry... | #procid...]

proc [-e] [-f] [-l] [-w filename] [-r]
Alias: p
Print the process table. Process table information may be specified in two ways. First, any mixture of table entries and process IDs may be entered. Each process ID must be preceded by a #. Alternatively, process table information for runnable processes may be specified with the runnable option (-r). If the -l option is specified, all relevant locking information is displayed.

pte [-w filename] start_addr...
Display the pte structure pointed to by start_addr.

Print the pseudo ttys presently configured. The -l, -h and -s options give information about the STREAMS modules.ldterm, ptem and pckt, respectively. If the -t option is used, the table for the single pty type specified is printed.
qrun [-w filename]
Print the list of scheduled STREAMS queues.

queue [-e] [-f] [-w filename] [[-p] table_entry…]
Print the allocated STREAMS queues.

quit
Alias: q
Terminate the crash session. Exit.

redirect [-w filename] [-c]
redirect [-w filename] [newfile]
Used with a filename, redirects output of a crash session to newfile. If no argument is given, the filename name to which output is being redirected is printed. Alternatively, the close option (-c) closes the previously set filename and redirects output to the standard output.

rtdptbl [-w filename] [table_entry…]
Print the real-time dispatcher (scheduler) parameter table. See rtdptbl(4).

rtproc [-w filename]
Print information about processes in the real-time scheduler class.

rwlock [-w filename] rw_addr…
Dump the contents of the rwlock (read/write lock) structure pointed to by rw_addr.

search [-w filename] [-m mask] [-s process] [-p] pattern [-p] start_addr length
Print the words in memory that match pattern, beginning at the start_addr for length words. The mask is ANDed (&) with each memory word and the result compared against the pattern. The mask defaults to 0xffffffff.

sema [-w filename] sema_addr…
Dump the contents of the semaphore structure pointed to by sema_addr.

size [-x] [-w filename] [structure_name…]
Print the size of the designated structure. The -x option prints the size in hexadecimal. If no argument is given, a list of the structure names for which sizes are available is printed. The following example lists those structures:

> size

buf callout flckinfo ffonode
filock flox lwp pp
prnode proc snode thread
tty ufs_inode user vfs
vfssw vnode
datab dblk dblock linkblk
mblk mblock msgb queue
stdata streams

modified 11 Nov 1993
sment [-w filepath] start_addr...
 Display the sment structure pointed to by start_addr.

smgrp [-l] [-w filepath] start_addr...
 Display the smgrp structure pointed to by start_addr. If the -l option is specified, the chain of smgrp structures is displayed.

snode [-e] [-f] [-l] [-w filepath] [[-p] table_entry...]
 Print information about open special filenames. If the -l option is specified, all relevant locking information is also displayed.

stack [-w filepath] [-u] [-p] [thread]

stack [-w filepath] [-k] [-p] [thread]
 Alias: s
 Dump the stack. The -u option prints the user stack. The -k option prints the kernel stack. If no arguments are entered, the kernel stack for the current thread is printed. Otherwise, the kernel stack for the currently running thread is printed.

status [-w filepath]
 Print system statistics.

stream [-e] [-f] [-w filepath] [[-p] start_addr...]
 Print the STREAMS table.

strstat [-w filepath]
 Print STREAMS statistics.

trace [-w filepath] [[-p] [thread_addr]]
 Alias: t
 Print stack trace. Displays the stack trace of the currently running or the specified thread.

thread [-e] [-f] [-l] [-w filepath] slot number
 With no option, displays the current thread. If -e is specified, all threads in the system are displayed. Otherwise all threads pointed to by the addresses specified as argument are displayed.

ts [-w filepath] virtual_address...
 Alias: ds
 Print text symbol closest to the designated address.

tsdptbl [-w filepath] [table_entry...]
 Print the time-sharing dispatcher parameter table. See ts_dptbl(4).

tspc [-w filepath]
 Print information about processes in the time-sharing dispatcher parameter table (scheduler class).
tty [-e] [-f] [-1] [-w filename] [-t type [(-p] table_entry...]

Valid types: pp, iu.
Print the tty table. If no arguments are given, the tty table for both tty types is
printed. If the -t option is used, the table for the single tty type specified is
printed. If no argument follows the type option, all entries in the table are
printed. A single tty entry may be specified using start_addr. The -I option
prints the line discipline information.

Alias: ui
Print the UFS inode table. The -d option will list the address and i-number of all
UFS inodes in use and on the free list. If the -I option is specified, all relevant
locking information is also displayed. The -r option will display all free UFS
inodes.

Alias: u
Print the user structure for the designated process. If the -I option is specified,
display all relevant locking information.

var [-w filename]
Alias: v
Print the tunable system parameters.

vfs [-e] [-w filename] [(-p] address...]
Alias: m, mount
Print information about mounted filename systems.

vfsw [(-f] [-w filename] [(-p] table_entry...]
Alias: fs
Print information about configured filename system types.

vnode [-w filename] [-1] [(-p] vnode_addr...]
Print information about vnodes.

vtop [-w filename] [-s process] start_addr...
Print the physical address translation of the virtual address start_addr.

FILES
/dev/mem system image of currently running system
/dev/ksyms system namelist

SEE ALSO savecore(1M), ts_dptbl(4)

NOTES
Kernel core dumps should be examined on the same platform they were created on.
NAME cron – clock daemon

SYNOPSIS /usr/sbin/cron

AVAILABILITY SUNWcsr

DESCRIPTION The cron command starts a process that executes commands at specified dates and times. Regularly scheduled commands can be specified according to instructions found in crontab files in the directory /var/spool/cron/crontabs. Users can submit their own crontab file using the crontab(1) command. Commands which are to be executed only once may be submitted using the at(1) command.

cron only examines crontab or at command files during its own process initialization phase and when the crontab or at command is run. This reduces the overhead of checking for new or changed files at regularly scheduled intervals.

Since cron never exits, it should be executed only once. This is done routinely through /etc/rc2.d/S75cron at system boot time. The file /etc/cron.d/FIFO is used (among other things) as a lock file to prevent the execution of more than one instance of cron.

cron captures the output of the job’s stdout and stderr streams, and, if it is non-empty, mails the output to the user. If the job does not produce output, no mail is sent to the user (unless the job is an at(1) job and the −m option was specified when the job was submitted).

Setting cron Defaults To keep a log of all actions taken by cron, CRONLOG=YES (by default) must be specified in the /etc/default/cron file. If CRONLOG=NO is specified, no logging is done. Keeping the log is a user configurable option since cron usually creates huge log files.

The PATH for user cron jobs can be set using PATH= in /etc/default/cron. The PATH for root cron jobs can be set using SUPATH= in /etc/default/cron. The security implications of setting PATH and SUPATH should be carefully considered.

Example /etc/default/cron file:

 CRONLOG=YES
 PATH=/usr/bin:/usr/ucb:

This example enables logging and sets the default PATH used by non-root jobs to /usr/bin:/usr/ucb:. Root jobs will continue to use /usr/sbin:/usr/bin.

/etc/cron.d/logchecker is a script that checks to see if the log file has exceeded the system ulimit. If so, the log file is moved to /var/cron/log.

FILES /etc/cron.d main cron directory
/ etc/cron.d/FIFO contains cron default settings
/ var/cron/log cron history information
/ var/spool/cron spool area
/ etc/cron.d/logchecker moves log file to /var/cron/log if log file exceeds system ulimit.

1M-128 modified 1 Mar 1994
SEE ALSO

/etc/cron.d/queuedefs queue description file for at, batch, and cron.

at(1), crontab(1), sh(1), queuedefs(4)

DIAGNOSTICS

A history of all actions taken by cron is stored in /var/cron/log and (possibly) /var/cron/olog.
NAME dd – convert and copy a file

SYNOPSIS dd [option=value] …

DESCRIPTION dd copies the specified input file to the specified output with possible conversions. The
standard input and output are used by default. The input and output block sizes may be
specified to take advantage of raw physical I/O. Sizes are specified in bytes; a number
may end with k, b, or w to specify multiplication by 1024, 512, or 2, respectively. Or,
numbers may be separated by x to indicate multiplication.

cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the
first two cases, cbs characters are copied into the conversion buffer, any specified charac-
ter mapping is done, trailing blanks are trimmed, and a new-line is added before sending
the line to output. In the last three cases, characters up to new-line are read into the
conversion buffer and blanks are added to make up an output record of size cbs. ASCII
files are presumed to contain new-line characters. If cbs is unspecified or zero, the ascii,
ebcdic, and ibm options convert the character set without changing the input file’s block
structure; the unblock and block options become a simple file copy.

After completion, dd reports the number of whole and partial input and output blocks.

OPTIONS if=filename Input file name; standard input is default.
of=filename Output file name; standard output is default.
ibs=n Input block size n bytes (default 512).
obs=n Output block size n bytes (default 512).
bs=n Set both input and output block size, superseding ibs and obs. Also, if no
conversion is specified, preserve the input block size instead of packing
short blocks into the output buffer (this is particularly efficient because it
reduces in-memory copying).
cbs=n Conversion buffer size (logical record length).
files=n Copy and concatenate n input files before terminating (makes sense only
where input is a magnetic tape or similar device).
skip=n Skip n input blocks before starting copy (appropriate for magnetic tape,
where isseek is undefined).
isseek=n Seek n blocks from beginning of input file before copying (appropriate
for disk files, where skip can be incredibly slow).
oseek=n Seek n blocks from beginning of output file before copying.
seek=n Identical to oseek, retained for backward compatibility.
count=n Copy only n input blocks.
conv=ascii Convert EBCDIC to ASCII.
ebcdic Convert ASCII to EBCDIC. If converting fixed-length ASCII records
without new-lines, set up a pipeline with dd conv=unblock beforehand.
ibm Slightly different map of ASCII to EBCDIC. For fixed-length ASCII records
without new-lines, see above.
block Convert new-line terminated ASCII records to fixed length.
unblock Convert fixed length ASCII records to new-line terminated records.
lcase Map alphabetics to lower case.
ucase Map alphabetics to upper case.
swab Swap every pair of bytes.
noerror Do not stop processing on an error (limit of 5 consecutive errors).
sync Pad every input block to ibs.
... Several comma-separated conversions.

EXAMPLES
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per
tape block into the ASCII file x:
example% dd if=/dev/rmt/0h of=x ibs=80 obs=8k cbs=80 conv=ascii,lcase
Note: The use of raw magnetic tape. dd is especially suited to I/O on the raw physical
devices because it allows reading and writing in arbitrary block sizes.

ENVIRONMENT
If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the
operational behavior of dd for each corresponding locale category is determined by the
value of the LANG environment variable. If LC_ALL is set, its contents are used to over-
ride both the LANG and the other LC_* variables. If none of the above variables are set in
the environment, the "C" (U.S. style) locale determines how dd behaves.

LC_CTYPE Determines how dd handles characters. When LC_CTYPE is set to a valid
value, dd can display and handle text and filenames containing valid
characters for that locale. dd can display and handle Extended Unix
Code (EUC) characters where any individual character can be one, two,
or three bytes wide. dd can also handle EUC characters of one, two, or
more column widths. In the "C" locale, only characters from ISO 8859-1
are valid.

LC_MESSAGES Determines how diagnostic and informative messages are presented.
This includes the language and style of the messages, and the correct
form of affirmative and negative responses. In the "C" locale, the mes-
sages are presented in the default form found in the program itself (in
most cases, U.S. English).

SEE ALSO cp(1), environ(5)

DIAGNOSTICS
f+p records in(out) numbers of full and partial blocks read(written)

NOTES
Do not use dd to copy files between filesystems having different block sizes.

Using a blocked device to copy a file will result in extra nulls being added to the file to
pad the final block to the block boundary.

When dd reads from a pipe, using the ibs=X and obs=Y operands, the output will always
be blocked in chunks of size Y. When bs=Z is used, the output blocks will be whatever
was available to be read from the pipe at the time.

modified 18 May 1993 1M-131
NAME
deallocate – device deallocation

SYNOPSIS
deallocate [−s] device
deallocate [−s] [−F] device
deallocate [−s] −I

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
deallocate deallocates a device allocated to the evoking user. device can be a device defined in device_allocate(4) or one of the device special files associated with the device. It resets the ownership and the permission on all device special files associated with device, disabling the user’s access to that device. This option can be used by the super user to remove access to the device by another user.

When deallocation or forced deallocation is performed, the appropriate device cleaning program is executed, based on the contents of device_allocate(4). These cleaning programs are normally stored in /etc/security/lib.

OPTIONS

device

Deallocate the device associated with the device special file specified by device.

−s
Silent. Suppress any diagnostic output.

−F device
Force deallocation of the device associated with the file specified by device. Only the super user is permitted to use this option.

−I
Force deallocation of all allocatable devices. Only the super user is permitted to use this option. This option should only be used at system initialization.

DIAGNOSTICS
deallocate returns an nonzero exit status in the event of an error.

FILES
/etc/security/device_allocate
/etc/security/device_maps
/etc/security/dev/*
/etc/security/lib/*

SEE ALSO allocate(1M), bsmconv(1M), device_allocate(4), device_maps(4)
NAME
devattr – lists device attributes

SYNOPSIS
devattr [−v] device [attribute ...]

DESCRIPTION
devattr displays the values for a device’s attributes. The display can be presented in two formats. Used without the −v option, only the attribute values are shown. Used with the −v option, the attributes are shown in an attribute=value format. When no attributes are given on the command line, all attributes for the specified device are displayed in alphabetical order by attribute name. If attributes are given on the command line, only those attributes are shown, displayed in command line order.

OPTIONS

−v
Specifies verbose format. Attribute values are displayed in an attribute=value format.

device
Defines the device whose attributes should be displayed. Can be the pathname of the device or the device alias.

attribute
Defines which attribute, or attributes, should be shown. Default is to show all attributes for a device. See the putdev(1M) manual page for a complete listing and description of available attributes.

ERRORS
The command will exit with one of the following values:

0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table could not be opened for reading.
3 = requested device could not be found in the device table.
4 = requested attribute not defined for specified device.

FILES
/etc/device.tab

SEE ALSO
getdev(1M), putdev(1M)
NAME
devconfig – configure device attributes

SYNOPSIS
devconfig

AVAILABILITY
x86
SUNWinst

DESCRIPTION
devconfig is an interactive editor for device driver hardware configuration files and the
OpenWindows configuration file.

Devices that are not self-identifying require that correct information be supplied in the
hardware configuration file in order for the device to be recognized. Devconfig is
designed to ease the task of maintaining correct device information in the configuration
files.

Prototype configuration information files stored in /usr/lib/devconfig are used to check
user input to ensure that the values provided for each attribute are of the correct type and
fall within legal bounds. See device.cinfo(4) for a description of the format of
configuration information files. The location for the cinfo files can be set by the
DEVCONFIGHOME environment variable.

After making changes to a hardware configuration file that has a driver associated with
it, an attempt is made to reload the driver to verify the attributes. Some drivers may not
be unloadable. In this case, a system reboot must be initiated before the new attributes
can take effect. If necessary, devconfig also updates the OpenWindows configuration
file, OWconfig (see the OpenWindows Reference Manual). devconfig makes a backup copy
of a modified file in a .bak file. In addition, the first version of OWconfig is saved in
OWconfig.save. This is because the original version of OWconfig contains helpful proto-
type information that may be referred to in case OWconfig needs to be edited manually.

If the default location for configuration files is not writable (as is the case during installa-
tion) devconfig writes the updated files in the same location relative to the directory
/tmp/root. No attempt is made to reload the driver in this case.

devconfig is controlled by a simple menu system. The Up/Down arrow keys move the
cursor to different items in a menu. The Left/Right arrow keys move the cursor to dif-
stinct items in a field. The Enter key selects an item. (Note that the Enter key may be
labeled Return on some keyboards.) See the online help for more guidance.

Operation
devconfig first displays a list of configured devices in the system. Selecting a configured
device allows you to view its attributes or unconfigure it. Self-identifying devices can not
be unconfigured by devconfig.

When you add a new device, devconfig displays the supported device categories. After
choosing a device category, devconfig displays the devices supported in that category.
Self-identifying devices cannot be added with devconfig and they are not displayed in
the list of the devices. After you have selected the device to be added, devconfig displays
the list of the device attributes.

Once you have chosen the proper values for the attributes and applied them by using the
Apply button, the device is added to the list of configured devices. You may cancel an operation by using the Cancel button.

FILES

- `/kernel/drv/*.conf`
 hardware configuration files
- `/usr/lib/devconfig/*.cinfo`
 configuration information files
- `/usr/openwin/server/etc/OWconfig`
 network OpenWindows configuration file
- `/etc/openwin/server/etc/OWconfig`
 local OpenWindows configuration file

SEE ALSO

`drvconfig(1M), prtconf(1M), device.cinfo(4),
OpenWindows Reference Manual`
NAME

devfree – release devices from exclusive use

SYNOPSIS

devfree key [device ...]

DESCRIPTION

devfree releases devices from exclusive use. Exclusive use is requested with the command devreserv.

When devfree is invoked with only the key argument, it releases all devices that have been reserved for that key. When called with key and device arguments, devfree releases the specified devices that have been reserved with that key.

OPTIONS

key Designates the unique key on which the device was reserved.

device Defines device that this command will release from exclusive use. Can be the pathname of the device or the device alias.

ERRORS

The command will exit with one of the following values:

0 Successful completion of the task.

1 Command syntax incorrect, invalid option used, or internal error occurred.

2 Device table or device reservation table could not be opened for reading.

3 Reservation release could not be completely fulfilled because one or more of the devices was not reserved or was not reserved on the specified key.

FILES

/etc/device.tab

/etc/devlkfile

SEE ALSO

devreserv(1M)

NOTES

The commands devreserv and devfree are used to manage the availability of devices on a system. These commands do not place any constraints on the access to the device. They serve only as a centralized bookkeeping point for those who wish to use them. Processes that do not use devreserv may concurrently use a device with a process that has reserved that device.
<table>
<thead>
<tr>
<th>NAME</th>
<th>devinfo – print device specific information</th>
</tr>
</thead>
</table>
| SYNOPSIS | /usr/sbin/devinfo -i special
 | /usr/sbin/devinfo -p special |

<table>
<thead>
<tr>
<th>AVAILABILITY</th>
<th>SUNWcsu</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>The devinfo command is used to print device specific information about disk devices on standard out. The command can only be used by the super-user.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>–i</th>
<th>Prints the following device information:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Device name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software version (not supported and prints as 0 in Solaris 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive id number (not supported and prints as 0 in Solaris 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device blocks per cylinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device bytes per block</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of device partitions with a block size greater than zero</td>
</tr>
<tr>
<td></td>
<td>–p</td>
<td>Prints the following device partition information:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device major and minor numbers (in hexadecimal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partition start block</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of blocks allocated to the partition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partition flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partition tag</td>
</tr>
</tbody>
</table>

This command is used by various other commands to obtain device specific information for the making of file systems and determining partition information.

<table>
<thead>
<tr>
<th>SEE ALSO</th>
<th>prtvtoc(1M)</th>
</tr>
</thead>
</table>

modified 24 Feb 1994
NAME devlinks – adds /dev entries for miscellaneous devices and pseudo-devices

SYNOPSIS /usr/sbin/devlinks [-d] [-r rootdir] [-t table-file]

AVAILABILITY SUNWcsu

DESCRIPTION devlinks creates symbolic links from the /dev directory tree to the actual block- and character-special device nodes under the /devices directory tree. The links are created according to specifications found in the table-file (by default /etc/devlink.tab).

devlinks is called each time the system is reconfiguration-booted, and can only be run after drvconfig(1M) is run, since drvconfig(1M) builds the kernel data structures and the /devices tree.

The table-file (normally /etc/devlink.tab) is an ASCII file, with one line per record. Comment lines, which must contain a hash character ('#') as their first character, are allowed. Each entry must contain at least two fields, but may contain three fields. Fields are separated by single TAB characters.

The fields are:

devfs-spec Specification of devinfo nodes that will have links created for them. This specification consists of one or more keyword-value pairs, where the keyword is separated from the value by an equal-sign ('='), and keyword-value pairs are separated from one another by semicolons.

The possible keywords are:

 type The devinfo device type. Possible values are specified in ddi_create_minor_node(9F).

 name The name of the node. This is the portion of the /devices tree entry name that occurs before the first '@' or ':' character.

 addr[n] The address portion of a node name. This is the portion of a node name that occurs between the '@' and the ':' characters. It is possible that a node may have a name without an address part, which is the case for many of the pseudo-device nodes. If a number is given after the addr it specifies a match of a particular comma-separated subfield of the address field: addr1 matches the first subfield, addr2 matches the second, and so on. addr0 is the same as addr and matches the whole field.

 minor[n] The minor portion of a node name – the portion of the name after the '. ' As with addr above, a number after the minor keyword specifies a subfield to match.

Of these four specifications, only the type specification must always be present.
name

Specification of the /dev links that correspond to the devinfo nodes. This field allows devlinks to determine matching /dev names for the /devices nodes it has found. The specification of this field uses escape-sequences to allow portions of the /devices name to be included in the /dev name, or to allow a counter to be used in creating node names. If a counter is used to create a name, the portion of the name before the counter must be specified absolutely, and all names in the /dev/-subdirectory that match (up to and including the counter) are considered to be subdevices of the same device. This means that they should all point to the same directory, name and address under the /devices/-tree.

The possible escape-sequences are:

- **\D** Substitute the device-name (name) portion of the corresponding devinfo node-name.
- **\An** Substitute the \(n\)th component of the address component of the corresponding devinfo node name. Sub-components are separated by commas, and sub-component 0 is the whole address component.
- **\Mn** Substitute the \(n\)th sub-component of the minor component of the corresponding devinfo node name. Sub-components are separated by commas, and sub-component 0 is the whole minor component.
- **\Nn** Substitute the value of a 'counter' starting at \(n\). There can be only one counter for each dev-spec, and counter-values will be selected so they are as low as possible while not colliding with already-existing link names.

In a dev-spec the counter sequence should not be followed by a digit, either explicitly or as a result of another escape-sequence expansion. If this occurs, it would not be possible to correctly match already-existing links to their counter entries, since it would not be possible to unambiguously parse the already-existing /dev-name.

extra-dev-link

Optional specification of an extra /dev link that points to the initial /dev link (specified in field 2). This field may contain a counter escape-sequence (as described for the dev-spec field) but may not contain any of the other escape-sequences. It provides a way to specify an alias of a particular /dev name.
OPTIONS

−d Debugging mode – print out all devinfo nodes found, and indicate what links would be created, but do not do anything.
−r rootdir Use rootdir as the root of the /dev and /devices directories under which the device nodes and links are created. Changing the root directory does not change the location of the /etc/devlink.tab default table, nor is the root directory applied to the filename supplied to the −t option.
−t table-file Set the table file used by devlinks to specify the links that must be created. If this option is not given, /etc/devlink.tab is used. This option gives a way to instruct devlinks just to perform a particular piece of work, since just the links-types that devlinks is supposed to create can be specified in a command-file and fed to devlinks.

ERRORS

If devlinks finds an error in a line of the table-file it prints a warning message on its standard output and goes on to the next line in the table-file without performing any of the actions specified by the erroneous rule.

If it cannot create a link for some filesystem-related reason it prints an error-message and continues with the current rule.

If it cannot read necessary data it prints an error message and continues with the next table-file line.

EXAMPLES

Example /etc/devlink.tab fields are:

```
   type=pseudo;name=win    win\M0
   type=ddi_display framebuffer/\M0    fb\N0
```

The first example states that all devices of type pseudo with a name component of win will be linked to /dev/win\x, where x is the minor-component of the devinfo-name (this is always a single-digit number for the win driver).

The second example states that all devinfo nodes of type ddi_display will be linked to entries under the /dev/framebuffer directory, with names identical to the entire minor component of the /devices name. In addition an extra link will be created pointing from /dev/fbn to the entry under /dev/framebuffer. This entry will use a counter to end the name.

FILES

/dev entries for the miscellaneous devices for general use
/devices device nodes
/etc/devlink.tab the default rule-file

SEE ALSO

ddi_create_minor_node(9F), disks(1M), drvconfig(1M), ports(1M), tapes(1M)

BUGS

It is very easy to construct mutually-contradictory link specifications, or specifications that can never be matched. The program does not check for these conditions.
<table>
<thead>
<tr>
<th>NAME</th>
<th>devnm – device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/usr/sbin/devnm name [name...]</td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The <code>devnm</code> command identifies the special file associated with the mounted file system where the argument <code>name</code> resides. One or more <code>name</code> can be specified.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>The command:</td>
</tr>
<tr>
<td></td>
<td><code>/usr/sbin/devnm /usr</code></td>
</tr>
<tr>
<td></td>
<td>produces:</td>
</tr>
<tr>
<td></td>
<td><code>/dev/dsk/c0t3d0s6 /usr</code></td>
</tr>
<tr>
<td></td>
<td>if <code>/usr</code> is mounted on <code>/dev/dsk/c0t3d0s6</code>.</td>
</tr>
<tr>
<td>FILES</td>
<td>/dev/dsk/*</td>
</tr>
<tr>
<td></td>
<td>/etc/mnttab</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>mnttab(4)</td>
</tr>
</tbody>
</table>
NAME
devreserv – reserve devices for exclusive use

SYNOPSIS
devreserv [key [devicelist ...]]

DESCRIPTION
devreserv reserves devices for exclusive use. When the device is no longer required, use devfree to release it. devreserv reserves at most one device per devicelist. Each list is searched in linear order until the first available device is found. If a device cannot be reserved from each list, the entire reservation fails.

When devreserv is invoked without arguments, it lists the devices that are currently reserved and shows to which key it was reserved. When devreserv is invoked with only the key argument, it lists the devices that are currently reserved to that key.

OPTIONS
key Designates a unique key on which the device will be reserved. The key must be a positive integer.

devicelist Defines a list of devices that devreserv will search to find an available device. (The list must be formatted as a single argument to the shell.)

EXAMPLES
To reserve a floppy disk and a cartridge tape:

```bash
$ key=$$
$ echo "The current Process ID is equal to: $key"
The Current Process ID is equal to: 10658
$ devreserv $key diskette1 ctape1
```

To list all devices currently reserved:

```bash
$ devreserv
disk1 2423
diskette1 10658
ctape1 10658
```

To list all devices currently reserved to a particular key:

```bash
$ devreserv $key
diskette1
ctape1
```

ERRORS
The command will exit with one of the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion of the task.</td>
</tr>
<tr>
<td>1</td>
<td>Command syntax incorrect, invalid option used, or internal error occurred.</td>
</tr>
<tr>
<td>2</td>
<td>Device table or device reservation table could not be opened for reading.</td>
</tr>
<tr>
<td>3</td>
<td>Device reservation request could not be fulfilled.</td>
</tr>
</tbody>
</table>
FILES
/etc/device.tab
/etc/devlkfile

SEE ALSO
devfree(1M)

NOTES
The commands devreserv and devfree are used to manage the availability of devices on a system. Their use is on a participatory basis and they do not place any constraints on the actual access to the device. They serve as a centralized bookkeeping point for those who wish to use them. To summarize, devices which have been reserved cannot be used by processes which utilize the device reservation functions until the reservation has been canceled. However, processes that do not use device reservation may use a device that has been reserved since such a process would not have checked for its reservation status.
NAME

df – report number of free disk blocks and files

SYNOPSIS

```
df [-F FSType] [-abegklntV] [-o FSType-specific_options]
    [ directory | block_device | resource ... ]
```

AVAILABILITY

SUNWcsu

DESCRIPTION

df displays the amount of disk space occupied by mounted or unmounted file systems, directories, or mounted resources, the amount of used and available space, and how much of the file system’s total capacity has been used. **directory** represents a valid directory name. If **directory** is specified, **df** reports on the file system that contains **directory**. **block_device** represents a block special device (for example, `/dev/dsk/c1d0s7`); if **block_device** is specified, the corresponding file system need not be mounted. **resource** is an NFS resource name. Used without arguments or options, **df** reports on all mounted file systems.

OPTIONS

- **–F** Specify the **FSType** on which to operate. This is only needed if the file system is unmounted. The **FSType** should be specified here or be determinable from `/etc/vfstab` by matching the **directory**, **block_device**, or **resource** with an entry in the table, or by consulting `/etc/default/fs`.

- **–a** Report on all file systems including ones whose entries in `/etc/mnttab` have the **ignore** option set.

- **–b** Print the total number of kilobytes free.

- **–e** Print only the number of files free.

- **–g** Print the entire `statvfs` structure. This option is used only for mounted file systems. It cannot be used with the **–o** option. This option will override the **–b, –e, –k, –n, and –t** options.

- **–k** Print the allocation in kilobytes using an alternate format. The available space indicated is the amount the non-superuser has. This option will override the **–b, –e, –n, and –t** options.

- **–l** Report on local file systems only. This option is used only for mounted file systems. It cannot be used with the **–o** option.

- **–n** Print only the **FSType** name. Invoked with no arguments, this option prints a list of mounted file system types. This option is used only for mounted file systems. It cannot be used with the **–o** option.

- **–t** Print full listings with totals. This option will override the **–b, –e, and –n** options.

- **–V** Echo the complete set of file system specific command lines, but do not execute them. The command line is generated by using the options and arguments provided by the user and adding to them information derived from `/etc/mnttab`, `/etc/vfstab`, or `/etc/default/fs`. This option may be used to verify and validate the command line.
Specify *FSType-specific* options. These options are comma-separated, with no intervening spaces. See the manual page for the *FSType-specific* command for details.

FILES
- `/dev/dsk/*` disk devices
- `/etc/default/fs` default local file system type. Default values can be set for the following flags in `/etc/default/fs`. For example: `LOCAL=ufs`
- `/etc/mnttab` mount table
- `/etc/vfstab` list of default parameters for each file system

SEE ALSO
- `mount(1M)`
- `statvfs(2)`
- `mnttab(4)`
- `vfstab(4)`

Manual pages for the *FSType-specific* modules of `df`.

NOTES
The `-F` option is intended for use with unmounted file systems. This command may not be supported for all *FSTypes*.
NAME df_ufs – report free disk space on ufs file systems

SYNOPSIS df –F ufs [generic_options] [–o i] [directory | special]

DESCRIPTION df displays the amount of disk space occupied by ufs file systems, the amount of used and available space, and how much of the file system’s total capacity has been used. Note that the amount of space reported as used and available is less than the amount of space in the file system; this is because the system reserves a fraction of the space in the file system to allow its file system allocation routines to work well. The amount reserved is typically about 10%; this may be adjusted using tunefs(1M). When all the space on the file system except for this reserve is in use, only the super-user can allocate new files and data blocks to existing files. When the file system is overallocated in this way, df may report that the file system is more than 100% utilized.

If neither directory nor special is specified, df displays information for all mounted ufs file systems.

OPTIONS generic_options Options supported by the generic df command. See df(1M) for a description of these options.

–o Specify ufs file system specific options. The available option is:

 i Report the number of used and free inodes. This option may not be used with generic_options.

FILES /etc/mtab list of file systems currently mounted

SEE ALSO df(1M), tunefs(1M), fs_ufs(4), mnttab(4)

NOTES df calculates its results differently for mounted and unmounted file systems. For unmounted systems, the numbers reflect the 10% reservation mentioned above; this reservation is not reflected in df output for mounted file systems. For this reason, the available space reported by the generic command may differ from the available space reported by this module.
NAME
dfmounts – display mounted resource information

SYNOPSIS
dfmounts [-F FSType] [-h] [-o specific_options] [restriction ...]

AVAILABILITY
SUNWcsu

DESCRIPTION
dfmounts shows the local resources shared through a distributed file system FSType
along with a list of clients that have the resource mounted. If restriction is not specified,
dfmounts displays remote resources mounted on the local system. Specific_options as
well as the availability and semantics of restriction are specific to particular distributed
file system types.

If dfmounts is entered without arguments, all remote resources currently mounted on
the local system are displayed, regardless of file system type.

The output of dfmounts consists of an optional header line (suppressed with the -h flag)
followed by a list of lines containing whitespace-separated fields. For each resource, the
fields are:

resource server pathname clients ...

where

resource Specifies the resource name that must be given to the mount(1M)
command.
server Specifies the system from which the resource was mounted.
pathname Specifies the pathname that must be given to the share(1M) com-
mand.
clients Is a comma-separated list of systems that have mounted the
resource. Clients are listed in the form domain., domain.system, or
system, depending on the file system type.

A field may be null. Each null field is indicated by a hyphen (−) unless the remainder of
the fields on the line are also null; in which case, the hyphen may be omitted.

Fields with whitespace are enclosed in quotation marks (" ").

OPTIONS
−F FSType Specify filesystem type. Defaults to the first entry in
/etc/dfs/fstypes.
−h Suppress header line in output.
−o specific_options Specify options specific to the filesystem provided by the −F
option.

FILES
/etc/dfs/fstypes

SEE ALSO
dfshares(1M), mount(1M), share(1M), unshare(1M)

modified 14 Sep 1992
NAME
dfmounts_nfs – display mounted NFS resource information

SYNOPSIS
dfmounts [−F nfs] [−h] [server ...]

DESCRIPTION
dfmounts shows the local resources shared through Network File System (NFS), along with the list of clients that have mounted the resource. The −F flag may be omitted if NFS is the only file system type listed in the file /etc/dfs/fstypes.
dfmounts without options, displays all remote resources mounted on the local system, regardless of file system type.
The output of dfmounts consists of an optional header line (suppressed with the −h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

resource server pathname clients ...

where

resource Does not apply to NFS. Printed as a hyphen (−).
server Specifies the system from which the resource was mounted.
pathname Specifies the pathname that must be given to the share(1M) command.
clients Is a comma-separated list of systems that have mounted the resource.

OPTIONS
−F nfs Specifies the nfs-FSType.
−h Suppress header line in output.
server Displays information about the resources mounted from each server, where server can be any system on the network. If no server is specified, the server is assumed to be the local system.

FILES
/etc/dfs/fstypes

SEE ALSO
mount(1M), share(1M), unshare(1M)
NAME dfshares – list available resources from remote or local systems

SYNOPSIS dfshares [-F FSType] [-h] [-o specific_options] [server ...]

AVAILABILITY SUNWcsu

DESCRIPTION dfshares provides information about resources available to the host through a distributed file system of type FSType. specific_options as well as the semantics of server are specific to particular distributed file systems.

If dfshares is entered without arguments, all resources currently shared on the local system are displayed, regardless of file system type.

The output of dfshares consists of an optional header line (suppressed with the –h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

resource server access transport description

where

resource Specifies the resource name that must be given to the mount(1M) command.
server Specifies the name of the system that is making the resource available.
access Specifies the access permissions granted to the client systems, either ro (for read-only) or rw (for read/write). If dfshares cannot determine access permissions, a hyphen (−) is displayed.
transport Specifies the transport provider over which the resource is shared.
description Describes the resource.

A field may be null. Each null field is indicated by a hyphen (−) unless the remainder of the fields on the line are also null; in which case, the hyphen may be omitted.

OPTIONS –F FSType Specify filesystem type. Defaults to the first entry in /etc/dfs/fstypes.
 –h Suppress header line in output.
 –o specific_options Specify options specific to the filesystem provided by the –F option.

FILES /etc/dfs/fstypes

SEE ALSO dfmounts(1M), mount(1M), share(1M), unshare(1M)
NAME

dfshares_nfs – list available NFS resources from remote systems

SYNOPSIS

dfshares [−F nfs] [−h] [server ...]

DESCRIPTION

dfshares provides information about resources available to the host through Network File System. The −F flag may be omitted if NFS is the first file system type listed in the file /etc/dfs/fstypes.

The query may be restricted to the output of resources available from one or more servers.

dfshares without arguments displays all resources shared on the local system, regardless of file system type.

Specifying server displays information about the resources shared by each server. Server can be any system on the network. If no server is specified, then server is assumed to be the local system.

The output of dfshares consists of an optional header line (suppressed with the −h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

resource server access transport description

where

resource Specifies the resource name that must be given to the mount(1M) command.
server Specifies the system that is making the resource available.
access Specifies the access permissions granted to the client systems; however, dfshares cannot determine this information for an NFS resource and populates the field with a hyphen (-).
transport Specifies the transport provider over which the resource is shared; however, dfshares cannot determine this information for an NFS resource and populates the field with a hyphen (-).
description Describes the resource.

A field may be null. Each null field is indicated by a hyphen (-) unless the remainder of the fields on the line are also null; in which case, the hyphen may be omitted.

OPTIONS

−F nfs Specify the NFS file system type
−h Suppress header line in output.

FILES

/etc/dfs/fstypes

SEE ALSO

mount(1M), share(1M), unshare(1M)
NAME
discover4x – analyze the SunOS 4.1 client support after converting to Solaris 2.1

SYNOPSIS
/usr/sbin/discover4x [export_root]

AVAILABILITY
SUNWhinst

DESCRIPTION
discover4x analyzes the support that remains for SunOS 4.1 clients after the server has been converted to Solaris 2.1.

The discover4x command is most commonly used after a SunOS 4.1 server has been upgraded to a Solaris 2.1 server. This command looks at the SunOS 4.1 client support that exists and creates the databases that are required for installation of SunOS 4.1 diskless/dataless clients on this Solaris 2.1 server. If client support for a given architecture is missing, discover4x attempts to notify the user that they will have to re-install this support using install4x(1M). If you are converting clients that have the same architecture as the server that was converted to Solaris 2.1, you must re-install that architecture using the install4x(1M) command.

OPTIONS
export_root Specify the location of the base directory of the client hierarchy that discover4x should analyze. If unspecified, the default is /export.

SEE ALSO
convert4x(1M), install4x(1M)

SPARC: Installing Solaris Software
x86: Installing Solaris Software

modified 17 Jul 1992
NAME disks – adds /dev entries for hard disks attached to the system
SYNOPSIS /usr/sbin/disks [-r rootdir]
AVAILABILITY SUNWcsu
DESCRIPTION disks creates symbolic links in the /dev/dsk and /dev/rdsk directories pointing to the actual disk device special files under the /devices directory tree. It performs the following steps:

1. disks searches the kernel device tree to see what hard disks are attached to the system. It notes the /devices pathnames for the partitions on the drive and determines the physical component of the corresponding /dev/dsk or /dev/rdsk name.

2. The /dev/dsk and /dev/rdsk directories are checked for disk partition entries – that is, symbolic links with names of the form cN[tN]dNsN, where N represents a decimal number. cN is the logical controller number, an arbitrary number assigned by this program to designate a particular disk controller. The first controller found on the first occasion this program is run on a system, is assigned number 0. tN is the bus-address number of a subsidiary controller attached to a peripheral bus such as SCSI or IPI (the target number for SCSI, and the facility number for IPI controllers). dN is the number of the disk attached to the controller, and sN is the partition, or slice, number of the entry.

3. If only some of the disk partition entries are found in /dev/dsk for a disk that has been found under the /devices directory tree, disks creates the missing symbolic links. If none of the partition entries for a particular disk are found in /dev/dsk, disks checks to see if any entries exist for other disks attached to the same controller, and if so, creates new entries using the same controller number as used for other disks on the same controller. If no other /dev/dsk entries are found for partitions of disks belonging to the same physical controller as the current disk, disks assigns the lowest-unused controller number and creates entries for the disk partitions using this newly-assigned controller number.

disks is called each time the system is reconfiguration-booted. disks can only be run after drvconfig(1M) is run, since drvconfig(1M) builds the kernel data structures and the /devices tree.

Of interest to device driver writers are the devices that disks considers disk devices. Device nodes of type DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD, and DDI_NT_CD_CHAN are considered disk devices (see ddi_create_minor_node(9F) for more information on node types).

OPTIONS
 -r rootdir Cause disks to presume that the /dev/dsk, /dev/rdsk and /devices directory trees are found under rootdir, not directly under /.
ERRORS
If `disks` finds entries of a particular logical controller linked to different physical controllers, it prints an error message and exits without making any changes to the `/dev` directory, since it cannot determine which of the two alternative logical-to-physical mappings is correct. The links should be manually corrected or removed before another reconfiguration-boot is performed.

FILES
```
/dev/dsk/*     entries for the hard disk for general use
/dev/rdsk/*   device nodes
/devices/*    device nodes
```

SEE ALSO `devlinks(1M)`, `drvconfig(1M)`, `ports(1M)`, `tapes(1M)`, `ddi_create_minor_node(9F)`
NAME
diskscan – perform surface analysis

SYNOPSIS
diskscan [−W] [−n] [−y] raw_device

AVAILABILITY
x86
SUNWcsu

DESCRIPTION
diskscan is used by the system administrator to perform surface analysis on a portion of a hard disk. The disk portion may be a raw partition or slice; it is identified using its raw device name. By default, the specified portion of the disk is read (non-destructive) and errors reported on standard error. In addition, a progress report is printed on standard out. The list of bad blocks should be saved in a file and later fed into addbadsec(1M), which will remap them.

−W Causes diskscan to perform write and read surface analysis. This type of surface analysis is destructive and should be invoked with caution.

−n Causes diskscan to suppress linefeeds when printing progress information on standard out.

−y Causes diskscan to suppress the warning regarding destruction of existing data that is issued when −W is used.

FILES
The raw device should be /dev/rdsk/c?t?d?[ps]?

SEE ALSO
fdisk(1), fmthard(1), addbadsec(1M)
NAME
dispadmin – process scheduler administration

SYNOPSIS
dispadmin –l
 dispadmin –c class –g [–r res]
 dispadmin –c class –s file

AVAILABILITY
SUNWcsu

DESCRIPTION
The dispadmin command displays or changes process scheduler parameters while the
system is running.

dispadmin does limited checking on the values supplied in file to verify that they are
within their required bounds. The checking, however, does not attempt to analyze the
effect that the new values have on the performance of the system. Inappropriate values
can have a negative effect on system performance. (See Security, Performance, and
Accounting Administration.)

OPTIONS
−l
 Lists the scheduler classes currently configured in the system.

−c class
 Specifies the class whose parameters are to be displayed or changed.
 Valid class values are: RT for the real-time class, TS for the time-sharing
 class, and IA for the inter-active class. The time-sharing and inter-active
classes share the same scheduler, so changes to the scheduling parame-
ters of one will change those of the other.

−g
 Gets the parameters for the specified class and writes them to the stan-
dard output. Parameters for the real-time class are described in
 rt_dptbl(4). Parameters for the time-sharing and inter-active classes are
described in ts_dptbl(4).

−r res
 When using the −g option you may also use the −r option to specify a
 resolution to be used for outputting the time quantum values. If no
 resolution is specified, time quantum values are in milliseconds. If res is
 specified it must be a positive integer between 1 and 1000000000
 inclusive, and the resolution used is the reciprocal of res in seconds. For
 example, a res value of 10 yields time quantum values expressed in
tenths of a second; a res value of 1000000 yields time quantum values
 expressed in microseconds. If the time quantum cannot be expressed as
 an integer in the specified resolution, it is rounded up to the next
 integral multiple of the specified resolution.

−s file
 Sets scheduler parameters for the specified class using the values in file.
 These values overwrite the current values in memory—they become the
 parameters that control scheduling of processes in the specified class.
 The values in file must be in the format output by the −g option. More-
 over, the values must describe a table that is the same size (has same
 number of priority levels) as the table being overwritten.
Super-user privileges are required in order to use the −s option.
Note: The −g and −s options are mutually exclusive: you may not retrieve the table at the
same time you are overwriting it.

EXAMPLES
The following command retrieves the current scheduler parameters for the real-time class
from kernel memory and writes them to the standard output. Time quantum values are
in microseconds.

dispadmin −c RT −g −r 1000000

The following command overwrites the current scheduler parameters for the real-time
class with the values specified in rt.config.

dispadmin −c RT −s rt.config

The following command retrieves the current scheduler parameters for the time-sharing
class from kernel memory and writes them to the standard output. Time quantum values
are in nanoseconds.

dispadmin −c TS −g −r 1000000000

The following command overwrites the current scheduler parameters for the time-
sharing class with the values specified in ts.config.

dispadmin −c TS −s ts.config

SEE ALSO
priocntl(1), priocntl(2), rt_dptbl(4), ts_dptbl(4),
System Services Guide

DIAGNOSTICS
dispadmin prints an appropriate diagnostic message if it fails to overwrite the current
scheduler parameters due to lack of required permissions or a problem with the specified
input file.
<table>
<thead>
<tr>
<th>NAME</th>
<th>dmesg – collect system diagnostic messages to form error log</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/usr/bin/dmesg [] /usr/sbin/dmesg []</td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Note: dmesg is made obsolete by syslogd(1M) for maintenance of the system error log. dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the standard output. The messages are those printed or logged by the system when errors occur. If the ‘−’ flag is given, then dmesg computes (incrementally) the new messages since the last time it was run and places these on the standard output.</td>
</tr>
<tr>
<td>FILES</td>
<td>/var/adm/msgbuf scratch file for memory of ‘−’ option</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>syslogd(1M)</td>
</tr>
</tbody>
</table>
NAME
dminfo – report information about a device entry in a device maps file

SYNOPSIS
dminfo [−v] [−a] [−f pathname]
dminfo [−v] [−a] [−f pathname] −n dev−name ...
dminfo [−v] [−a] [−f pathname] −d dev−path ...
dminfo [−v] [−a] [−f pathname] −t dev−type ...
dminfo [−v] [−a] [−f pathname] −u dm−entry

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
dminfo reports and updates information about the device_maps(4) file.

OPTIONS
−v
Verbose. Print the requested entry or entries, one line per entry, on the standard output. If no entries are specified, all are printed.

−a
Succeed if any of the requested entries are found. If used with −v, all entries that match the requested case(s) are printed.

−f pathname
Use a device_maps file with pathname instead of /etc/security/device_maps.

−n dev−name
Search by dev−name. Search device_maps(4) for a device_name field matching dev−name. This option cannot be used with −d, −t or −u.

−d dev−path
Search by dev−path. Search device_maps(4) for a device special path-name in the device_list field matching the dev−path argument. This option cannot be used with −n, −t or −u.

−t dev−type
Search by dev−type. Search device_maps(4) for a device_type field matching the given dev−type. This option cannot be used with −d, −n or −u.

−u dm−entry
Update the device_maps(4) file. This option is provided to add entries to the device_maps(4) file. The dm−entry must be a complete device_maps(4) file entry. The dm−entry has fields, as in the device_maps file. It uses the colon (:) as a field separator, and white space as the device_list subfield separators. The dm−entry is not made if any fields are missing, or if the dm−entry would be a duplicate. The default device maps file can be updated only by the super user.

DIAGNOSTICS
dminfo returns an exit code of 0 if successful, 1 if the request failed, and 2 if the invocation syntax was incorrect.
FILES
/etc/security/device_maps

SEE ALSO
bsmconv(1M), device_maps(4)
domainname (1M) Maintenance Commands SunOS 5.4

NAME
domainname – set or display name of the current domain

SYNOPSIS
domainname [name-of-domain]

DESCRIPTION
Without an argument, domainname displays the name of the current domain, which typically encompasses a group of hosts or passwd entries under the same administration. The domainname command is used by various components of Solaris to resolve names for types such as passwd, hosts and aliases. By default, various naming services such as NIS, NIS+, the Internet Domain Name Service (DNS) and sendmail(1M) use this domainname to resolve names. The domainname is normally a valid Internet domain name.

The domainname for various naming services can also be set by other means. For example, ypinit can be used to specify a different domain for all NIS calls. The file /etc/resolv.conf can be used to specify a different domain for DNS lookups. For sendmail, the domainname can be specified through the sendmail_vars entry in the /etc/nsswitch.conf file, or through the /etc/mail/sendmail.cf file.

Only the super-user can set the name of the domain by specifying the new domainname as an argument. The domain name of the machine is usually set during boot-time through the domainname command in the /etc/init.d/inetinit file. If the new domain name is not saved in the /etc/defaultdomain file, the machine will revert back to the old domain after rebooting.

FILES
/etc/defaultdomain
/etc/init.d/inetinit
/etc/mail/sendmail.cf
/etc/nsswitch.conf
/etc/resolv.conf

SEE ALSO
nis+(1), nischown(1), nispasswd(1), hostconfig(1M), named(1M), nisaddcred(1M), sendmail(1M), ypinit(1M), sys-unconfig(1M), aliases(4), hosts(4), nsswitch.conf(4), passwd(4)
NAME
drvcon®g – configure the /devices directory

SYNOPSIS
drvcon®g [-b] [-d] [-a alias_name] [-c class_name] [-i filename] [-m major_num]

[-r rootdir]

AVAILABILITY
SUNWcsu

DESCRIPTION
drvcon®g creates the /devices directory tree which describes in the filesystem namespace
the hardware layout of a particular machine. Hardware devices present on the machine
and powered on as well as pseudo-drivers are represented under /devices. Normally
this command is run automatically after a new driver has been installed (with
add_drv(1M)) and the system has been rebooted.

OPTIONS
−b Add a new major number to name binding into the kernel
name_to_major tables.
−d Debug. Print out debugging information about the devices it has found.
−a alias_name Add the name alias_name to the list of aliases that this driver is known by.
This option, if used, must be used with the −m major_num, the −b and the
−i filename options.
−c class_name The driver being added to the system exports the class class_name.
−i filename Only configure the devices for the driver named filename.
−m major_num Specify the major number major_num for this driver to add to the kernel’s
name_to_major binding tables.
−r rootdir Build the device tree under the directory specified by rootdir instead of
the default /devices directory.

drvcon®g reads the /etc/minor_perm file to obtain permission information and applies
the permissions only to nodes which it has just created. It does not change permissions
on already existing nodes. The format of the /etc/minor_perm file is as follows:

name:minor_name permissions owner group

minor_name may either be * (for all minor nodes exported by this driver) or it may be the
actual name of the minor node. For example:

sd:* 0640 root sys
mm:kmem 0640 root bin

The above example sets all devices exported by the sd node to 0640 permissions, owned
by root, with group sys. The kmem device exported by the mm driver is set to 0640 per-
mission, owned by root, with group bin.

SEE ALSO
add_drv(1M), devlinks(1M), disks(1M), modinfo(1M), modload(1M), modunload(1M),
ports(1M), rem_drv(1M), tapes(1M)

modified 14 Sep 1992
NAME

du – summarize disk usage

SYNOPSIS

du [-arskod] [name ...]

DESCRIPTION

The du command reports the number of 512 byte blocks contained in all files and (recursively) directories within each directory and file specified. The block count includes the indirect blocks of the file. If no names are given, the current directory is used.

If the -a option is not used, non-directories given as arguments are not listed. If neither -s or -a is specified, an output line is generated for each directory only.

A file with two or more links is counted only once.

OPTIONS

- a An output line is generated for each file.
- r Generates messages about directories that cannot be be read, files that cannot be opened, etc., rather than being silent (the default).
- s Only the grand total (for each of the specified names) is given.
- k Print allocation in kilobytes.
- o Don’t add child directories’ usage to a parent’s total. Without this option, the usage listed for a particular directory is the space taken by the files in that directory, as well as the files in all directories beneath it. This option does nothing if -s is used.
- d Don’t cross filesystem boundaries. "du -d /" would report usage only on the root partition, for example.

SEE ALSO

File System Administration

NOTES

If there are links between files in different directories where the directories are on separate branches of the file system hierarchy, du will count the excess files more than once.

Files with holes in them will get an incorrect block count.
NAME edquota – edit user quotas for ufs file system
SYNOPSIS edquota [−p proto_user] username . . .
edquota −t
DESCRIPTION edquota is a quota editor. One or more users may be specified on the command line. For each user a temporary file is created with an ASCII representation of the current disk quotas for that user for each mounted ufs file system that has a quotas file, and an editor is then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the editor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(1) unless the EDITOR environment variable specifies otherwise. Only the super-user may edit quotas. In order for quotas to be established on a file system, the root directory of the file system must contain a file, owned by root, called quotas. (See quotaon(1M).)

proto_user and username can be numeric, corresponding to the uid of a user. Unassigned uids may be specified; unassigned names may not. In this way, default quotas can be established for users who are later assigned a uid.

If no options are specified, the temporary file created will have one or more lines of the form

 fs mount_point blocks (soft =number, hard =number) inodes (soft =number, hard =number)

The number fields may be modified to reflect desired values.

OPTIONS −p Duplicate the quotas of the proto_user specified for each username specified. This is the normal mechanism used to initialize quotas for groups of users.

−t Edit the soft time limits for each file system. If the time limits are zero, the default time limits in /usr/include/sys/fs/ufs_quota.h are used. The temporary file created will have one or more lines of the form

 fs mount_point blocks time limit = number tmunit, files time limit = number tmunit

tmunit may be one of “month”, “week”, “day”, “hour”, “min” or “sec”; characters appended to these keywords are ignored, so you may write “months” or “minutes” if you prefer. The number and tmunit fields may be modified to set desired values. Time limits are printed in the greatest possible time unit such that the value is greater than or equal to one. If “default” is printed after the tmunit, this indicates that the value shown is zero (the default).
edquota (1M) - Maintenance Commands

FILES

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>quotas</td>
<td>quota file at the file system root</td>
</tr>
<tr>
<td>/etc/mnttab</td>
<td>table of mounted file systems</td>
</tr>
</tbody>
</table>

SEE ALSO

- vi(1), quota(1M), quotacheck(1M), quotaon(1M), repquota(1M), quotactl(7)

NOTES

`quotacheck(1M)` *must* be invoked when setting initial quota limits for users; if not, the quota limit remains 0 and no changes made with `edquota(1M)` will take effect.

1M-164 modified 14 Mar 1994
NAME
eeprom – EEPROM display and load utility

SYNOPSIS
SUN-4 SYSTEMS
eeprom [-] [-c] [-i] [-f device] [parameter [=value] ...]

Desktop
SPARCsystems,
SPARCsystem 600MP
SERIES
eeprom [-] [-f device] [parameter [=value] ...]

AVAILABILITY
SPARC
SUNWcsu

DESCRIPTION
eeprom displays or changes the values of parameters in the EEPROM. It processes parameters in the order given. When processing a parameter accompanied by a value, eeprom makes the indicated alteration to the EEPROM; otherwise it displays the parameter’s value. When given no parameter specifiers, eeprom displays the values of all EEPROM parameters. A ‘−’ (hyphen) flag specifies that parameters and values are to be read from the standard input (one parameter or parameter=value per line).

Only the super-user may alter the EEPROM contents.
eeprom verifies the EEPROM checksums and complains if they are incorrect; if the −i flag is specified, erroneous checksums are ignored. If the −c flag is specified, all incorrect checksums are recomputed and corrected in the EEPROM.

OPTIONS
−c Correct bad checksums. (Ignored on SPARCstation 1 systems.)
−i Ignore bad checksums. (Ignored on SPARCstation 1 systems.)
−f device Use device as the EEPROM device.

NVRAM
CONFIGURATION
PARAMETERS
SUN-4 SYSTEMS

bad_login number of bad login tries (16-bit unsigned integer, 0 if reset)
The parameter bad_login maintains the count of bad login tries. It may be reset to zero (0) by specifying bad_login=reset.

banner banner string

bootdev char(char(hex-int,hex-int,hex-int)) (with char a character, and hex-int a hexadecimal integer.)
columns number of columns on screen (8-bit integer)
console b&w or ttya or ttyb or color
custom_logo true or false
default_boot true or false
diagdev %c%c (%x,%x,%x) — diagnostic boot device
diagpath diagnostic boot path
Maintenance Commands

hwupdate: a valid date (including today and now)

kbdtype: 8 bit integer (0 for all Sun keyboards)

keyclick: true or false

memsize: 8 bit integer (megabytes of memory on machine)

memtest: 8 bit integer (megabytes of memory to test)

password: PROM monitor password (8-bytes) The content of the password parameter is never displayed to any user. If the security mode is not none, the super-user may change the PROM monitor password by entering:

```bash
example# eeprom password=
```

rows: number of rows on screen (8-bit integer)

scrsise: 1024x1024, 1152x900, 1600x1280, or 1440x1440

secure: none, command, or full If secure=none the PROM monitor runs in the non-secure mode. In this mode all PROM monitor commands are allowed with no password required. If secure=command the PROM monitor is in the command secure mode. In this mode, only the b (boot) command with no parameters and the c (continue) command with no parameters may be entered without a password being required. Any other command requires that the PROM monitor password be entered. If secure=full the PROM monitor is in the fully secure mode. In this mode, only the c (continue) command with no parameters may be entered without a password being required. Entry of any other command requires that the PROM monitor password be entered. Note: the system will not auto-reboot in fully secure mode. The PROM monitor password must be entered before the boot process will take place. When changing the security mode from non-secure to either command secure or fully secure, eeprom prompts for the entry and re-entry of a new PROM password as in the passwd(1) command. Changing from one secure mode to the other secure mode, or to the non-secure mode does not prompt for a password. Changing to non-secure mode erases the password.

ttya_baud: baud rate (16-bit decimal integer)

ttyb_baud: baud rate (16-bit decimal integer)

ttya_no_rtsdtr: true or false

ttyb_no_rtsdtr: true or false

ttya_use_baud: true or false

ttyb_use_baud: true or false

watchdog_reboot: true or false
Not all OpenBoot systems support all parameters. Defaults may vary depending on the system and the PROM revision.

auto-boot?
If true, boot automatically after power-on or reset. Defaults to true.

boot-device
Device from which to boot. Defaults to disk.

boot-file
File to boot (an empty string lets the secondary booter choose default). Defaults to empty string.

boot-from
Boot device and file (OpenBoot PROM version 1.x only). Defaults to vmunix.

boot-from-diag
Diagnostic boot device and file (OpenBoot PROM version 1.x only). Defaults to le(unix).

diag-device
Diagnostic boot source device. Defaults to net.

diag-file
File from which to boot in diagnostic mode. Defaults to empty string.

diag-switch?
If true, run in diagnostic mode. Defaults to true.

fcode-debug?
If true, include name parameter for plug-in device FCodes. Defaults to false.

hardware-revision
System version information.

input-device
Power-on input device (usually keyboard, ttya, or ttyb). Defaults to keyboard.

keyboard-click?
If true enable keyboard click. Defaults to false.

keymap
Keymap for custom keyboard.

last-hardware-update
System update information.

local-mac-address?
If true, network drivers use their own MAC address, not system’s. Defaults to false.

mfg-switch?
If true, repeat system self-tests until interrupted with STOP-A. Defaults to false.

nvramrc
Contents of NVRAMRC. Defaults to empty.

oem-baner
Custom OEM banner (enabled by setting oem-baner? to true). Defaults to empty string.

oem-baner?
If true, use custom OEM banner. Defaults to false.

oem-logo
Byte array custom OEM logo (enabled by setting oem-logo? to true). Displayed in hexadecimal.

oem-logo?
If true, use custom OEM logo (else, use Sun logo). Defaults to false.

output-device
Power-on input device (usually screen, ttya, or ttyb). Defaults to screen.

sbus-probe-list
Which SBus slots are probed and in what order. Defaults to 0123.

screen-#columns
Number of on-screen columns (characters/line). Defaults to 80.

screen-#rows
Number of on-screen rows (lines). Defaults to 34.

scsi-initiator-id
SCSI bus address of host adapter, range 0-7. Defaults to 7.
Maintenance Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd-targets</td>
<td>Map SCSI disk units (OpenBoot PROM version 1.x only). Defaults to 31204567, which means that unit 0 maps to target 3, unit 1 maps to target 1, and so on.</td>
</tr>
<tr>
<td>security-#badlogins</td>
<td>Number of incorrect security password attempts.</td>
</tr>
<tr>
<td>security-mode</td>
<td>Firmware security level (options: none, command, or full). If set to command or full, system will prompt for PROM security password. Defaults to none.</td>
</tr>
<tr>
<td>security-password</td>
<td>Firmware security password (never displayed). Can be set only when security-mode is set to command or full.</td>
</tr>
<tr>
<td>example# eeprom security-password=</td>
<td>Changing PROM password:</td>
</tr>
<tr>
<td></td>
<td>New password:</td>
</tr>
<tr>
<td></td>
<td>Retype new password:</td>
</tr>
<tr>
<td>selftest-#megs</td>
<td>Metabytes of RAM to test. Ignored if diag-switch? is true. Defaults to 1.</td>
</tr>
<tr>
<td>skip-vme-loopback?</td>
<td>If true, POST does not do VMEbus loopback tests. Defaults to false.</td>
</tr>
<tr>
<td>st-targets</td>
<td>Map SCSI tape units (OpenBoot PROM version 1.x only). Defaults to 45670123, which means that unit 0 maps to target 4, unit 1 maps to target 5, and so on.</td>
</tr>
<tr>
<td>sunmon-compat?</td>
<td>If true, display Restricted Monitor prompt (>). Defaults to false.</td>
</tr>
<tr>
<td>testarea</td>
<td>One-byte scratch field, available for read/write test. Defaults to 0.</td>
</tr>
<tr>
<td>tpe-link-test?</td>
<td>Enable 10baseT link test for built-in twisted pair Ethernet. Defaults to true.</td>
</tr>
<tr>
<td>ttya-mode</td>
<td>TTYA (baud rate, #bits, parity, #stop, handshake). Defaults to 9600,8,n,1,−. Fields, in left-to-right order, are:</td>
</tr>
</tbody>
</table>

 - **baud rate**: 110, 300, 1200, 4800, 9600 . . .
 - **data bits**: 5, 6, 7, 8
 - **parity**: n(none), e(even), o(odd), m(mark), s(space)
 - **stop bits**: 1, 1.5, 2
 - **handshake**: −(none), h(hardware:rts/cts), s(software:xon/xoff)
ttyb-mode
TTYB (baud rate, #bits, parity, #stop, handshake).
Defaults to 9600,8,n,1,-.
Fields, in left-to-right order, are:
 baud rate: 110, 300, 1200, 4800, 9600 . . .
 data bits: 5, 6, 7, 8
 stop bits: 1, 1.5, 2
 parity: n(none), e(even), o(odd), m(mark), s(space)
 handshake: −(none), h(hardware:rts/cts), s(software:xon/xoff)

ttya-ignore-cd
If true, operating system ignores carrier-detect on TTYA.
Defaults to true.
ttyb-ignore-cd
If true, operating system ignores carrier-detect on TTYB.
Defaults to true.
ttya-rts-dtr-off
If true, operating system does not assert DTR and RTS on TTYA.
Defaults to false.
ttyb-rts-dtr-off
If true, operating system does not assert DTR and RTS on TTYB.
Defaults to false.
use-nvramrc?
If true, execute commands in NVRAMRC during system start-up.
Defaults to false.
version2?
If true, hybrid (1.x/2.x) PROM comes up in version 2.x.
Defaults to true.
watchdog-reboot?
If true, reboot after watchdog reset. Defaults to false.

EXAMPLES
The following example demonstrates the method for changing from one to two the number of megabytes of RAM that the system will test.

example# eeprom selftest-#megs
selftest-#megs=1

example# eeprom selftest-#megs=2

example# eeprom selftest-#megs
selftest-#megs=2

The following example demonstrates the method for setting the auto-boot? parameter to true.

example# eeprom auto-boot?=true

Note that on SunOS 4.x systems, when the eeprom command is executed in user mode, the parameters with a trailing question mark (?) need to be enclosed in double quotation marks (" ").

example% eeprom "auto-boot?=true"

FILES
/dev/openprom device file

SEE ALSO
passwd(1)
NAME
fdetach – detach a name from a STREAMS-based file descriptor

SYNOPSIS
fdetach path

DESCRIPTION
The fdetach command detaches a STREAMS-based file descriptor from a name in the file system. path is the path name of the object in the file system name space, which was previously attached (see fattach(3C)). The user must be the owner of the file or a user with the appropriate privileges. All subsequent operations on path will operate on the underlying file system entry and not on the STREAMS file. The permissions and status of the entry are restored to the state they were in before the STREAMS file was attached to the entry.

SEE ALSO
fattach(3C), fdetach(3C), streamio(7)
STREAMS Programmer’s Guide
NAME fdisk – create or modify fixed disk partition table

SYNOPSIS fdisk [−o offset] [−s size] [−P fill_patt] [−S geom_file]
[−w | r | d | n | I | B | t | g | G | R] [−F fdisk_file] [−W creat_fdisk_file] [−h]

AVAILABILITY x86
SUNWcsr

DESCRIPTION This command is used to create and modify the partition table and install the master boot
record that is put in the first sector of the fixed disk. This table is used by the first-stage
bootstrap to identify parts of the disk reserved for different operating systems, and to
identify the partition containing the second-stage bootstrap (the active Solaris partition).
The rdevice argument must be used to specify the raw device associated with the fixed
disk, for example, /dev/rdsk/c0t0d0p0.

The program can operate in three different modes. The first is interactive mode. In
interactive mode, the program displays the partition table as it exists on the disk, and
then presents a menu allowing the user to modify the table. The menu, questions, warn-
ings, and error messages are intended to be self-explanatory.

In interactive mode, if there is no partition table on the disk, the user is given the options
of creating a default partitioning or specifying the initial table values. The default parti-
tioning allocates the entire disk for the Solaris x86 system and makes the Solaris system
partition active. In either case, when the initial table is created, fdisk also writes out the
first-stage bootstrap code along with the partition table.

The second mode of operation is used for automated entry addition, entry deletion, or
replacement of the entire fdisk table. This mode can add or delete an entry described on
the command line. In this mode the entire fdisk table can be read in from a file replacing
the original table. fdisk can also be used to create this file. There is a command line
option that will cause fdisk to replace any fdisk table with the default of the whole disk
for the Solaris x86 system.

The third mode of operation is used for disk diagnostics. In this mode, a section of the
disk can be filled with a user specified pattern, and mode sections of the disk can also be
read or written.

Menu Options The menu options for interactive mode given by the fdisk program are:

Create a partition

This option allows the user to create a new partition. The maximum number
of partitions is 4. The program will ask for the type of the partition
(SOLARIS, MS-DOS, UNIX, or other). It will then ask for the size of the parti-
tion as a percentage of the disk.
The user may also enter the letter c at this point, in which case the program will ask for the starting cylinder number and size of the partition in cylinders. If a c is not entered, the program will determine the starting cylinder number where the partition will fit. In either case, if the partition would overlap an existing partition or will not fit, a message is displayed and the program returns to the original menu.

Change Active (Boot from) partition

This option allows the user to specify the partition where the first-stage bootstrap will look for the second-stage bootstrap, otherwise known as the active partition.

Delete a partition

This option allows the user to delete a previously created partition. Note that this will destroy all data in that partition.

Use the following options to include your modifications to the partition table at this time or to cancel the session without modifying the table:

- **Exit** This option writes the new version of the table created during this session with fdisk out to the fixed disk, and exits the program.
- **Cancel** This option exits without modifying the partition table.

OPTIONS

The following options apply to fdisk:

- **−S geom_file** Set the label geometry to the content of the geom_file. The geom_file contains one specification line. Each line is delimited by a new-line character (\n). If the first character of a line is an asterisk (*), the line is treated as a comment. Each line is composed of entries that are position-dependent, are separated by “white space,” and have the following format:

 PCYL NCYL ACYL BCYL NHEADS NSECTORS SECTSIZ

 where the entries have the following values:

 - **PCYL** This is the number of physical cylinders for the drive.
 - **NCYL** This is the number of usable cylinders for the drive.
 - **ACYL** This is the number of alt cylinders for the drive.
 - **BCYL** This is the number of offset cylinders for the drive (should be zero).
 - **NHEADS** The number of heads for this drive.
 - **NSECTORS** The number of sectors per track.
 - **SECTSIZ** The size in bytes of a sector.

- **−g** Get the label geometry for disk and display on stdout (see the −S option for the format).

- **−G** Get the physical geometry for disk and display on stdout (see the −S option for the format).
−n Don’t update fdisk table unless explicitly specified by another option. If no other options are used, −n will only write the master boot record to the disk. In addition, note that fdisk will not come up in interactive mode if the −n option is specified.

−I Forgo device checks. This is used to generate a file image of what would go on a disk without using the device. Note that you must use −S with this option (see above).

−B Default to one Solaris partition that uses the whole disk.

−t Adjust incorrect slice table entries so that they will not cross partition table boundaries.

−T Remove incorrect slice table entries that span partition table boundaries.

−b master_boot Let the user specify file master_boot for the master boot program. The default for this is /usr/lib/fs/ufs/mboot.

−R Treat disk as read-only. This is for testing purposes.

−W fdisk_file Create an fdisk file fdisk_file from disk table. This can be used with the −F option below.

Add a partition as described by the argument (see the −F option below for the format).

Delete a partition as described by the argument (see the −F option below for the format). Note that the argument must be an exact match or the entry will not be deleted!

−F fdisk_file Use fdisk file fdisk_file to initialize table. The fdisk_file contains up to four specification lines. Each line is delimited by a new-line character (\n). If the first character of a line is an asterisk (*), the line is treated as a comment. Each line is composed of entries that are position-dependent, are separated by “white space” or colons, and have the following format:

\n id act bhead bsect bcyl ehead esect ecyl rsect numsect

where the entries have the following values:

\n id This is the type of partition and the correct numeric values may be found in fdisk.h.

act This is the active partition flag; 0 means not active and 128 means active.

bhead This is the head where the partition starts. If this is set to 0, fdisk will correctly fill this in from other information.

bsect This is the sector where the partition starts. If this is set to 0, fdisk will correctly fill this in from other
information.

bcyl
This is the cylinder where the partition starts. If this is set to 0, **fdisk** will correctly fill this in from other information.

ehead
This is the head where the partition ends. If this is set to 0, **fdisk** will correctly fill this in from other information.

esect
This is the sector where the partition ends. If this is set to 0, **fdisk** will correctly fill this in from other information.

ecyl
This is the cylinder where the partition ends. If this is set to 0, **fdisk** will correctly fill this in from other information.

rsect
The relative sector from the beginning of the disk where the partition starts. This must be specified and can be used by **fdisk** to fill in other fields.

numsect
The size in sectors of this disk partition. This must be specified and can be used by **fdisk** to fill in other fields.

−r
Read from disk and write to stdout. See −o and −s, which specify the starting point and size of the operation.

−w
Write to disk and read from stdin. See −o and −s, which specify the starting point and size of the operation.

−P *fill_patt*
Fill disk with pattern *fill_patt*. *fill_patt* can be decimal or hex and is used as number for constant long word pattern. If *fill_patt* is #, then pattern is block # for each block. Pattern is put in each block as long words and fills each block (see −o and −s).

−o *Offset*
Block offset from start of disk. This option is used for −P, −r, and −w. Zero is assumed when this option is not used.

−s *size*
Number of blocks to perform operation on (see −o).

−d
Turn on verbose debug mode. This will cause **fdisk** to print its state on stderr as it is used. The output from this option should not be used with −F.

−h
Issue verbose message; message will list all options and supply an explanation for each.

DIAGNOSTICS
Most messages will be self-explanatory. The following may appear immediately after starting the program:

Fdisk: cannot open <device>
This indicates that the device name argument is not valid.
Fdisk: unable to get device parameters for device <device>
This indicates a problem with the configuration of the fixed disk, or an error in
the fixed disk driver.

Fdisk: error reading partition table
This indicates that some error occurred when trying initially to read the fixed
disk. This could be a problem with the fixed disk controller or driver, or with the
configuration of the fixed disk.

Fdisk: error writing boot record
This indicates that some error occurred when trying to write the new partition
table out to the fixed disk. This could be a problem with the fixed disk controller,
the disk itself, the driver, or the configuration of the fixed disk.

FILES
/dev/rdsk/c0t0d0p0

SEE ALSO fmthard(1M), prtvtoc(1M)
NAME
ff – list file names and statistics for a file system

SYNOPSIS
ff [-F FSType] [-V] [generic_options] [-o specific_options] special ...

DESCRIPTION
ff prints the pathnames and inode numbers of files in the file system which resides on the special device special. Other information about the files may be printed using options described below. Selection criteria may be used to instruct ff to only print information for certain files. If no selection criteria are specified, information for all files considered will be printed (the default); the -i option may be used to limit files considered to those whose inodes are specified.

Output is sorted in ascending inode number order. The default line produced by ff is:
 path-name i-number

The maximum information the command will provide is:
 path-name i-number size uid

OPTIONS
- F
Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table, or by consulting /etc/default/fs.

- V
Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option may be used to verify and validate the command line.

generic_options
Options that are supported by most FSType-specific modules of the command. The following options are available:

- I
Do not print the i-node number after each path name.

- l
Generate a supplementary list of all path names for multiply-linked files.

- p prefix
The specified prefix will be added to each generated path name. The default is '.' (dot).

- s
Print the file size, in bytes, after each path name.

- u
Print the owner’s login name after each path name.

- a n
Select if the file has been accessed in n days.

- m n
Select if the file has been written or created in n days.

- c n
Select if file’s status has been changed in n days.

- n file
Select if the file has been modified more recently than the argument file.
−i i-node-list Generate names for only those i-nodes specified in i-node-list. i-node-list is a list of numbers separated by commas (with no intervening spaces).

−o Specify FSType-specific options in a comma separated (without spaces) list of suboptions and keyword-attribute pairs for interpretation by the FSType-specific module of the command.

FILES
/etc/default/fs default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs

 LOCAL: The default partition for a command if no FSType is specified.

 /etc/vfstab list of default parameters for each file system

SEE ALSO find(1), ncheck(1M), stat(2), vfstab(4)

MANUAL pages for the FSType-specific modules of ff.

NOTES This command may not be supported for all FSTypes.

The −a, −m, and −c flags examine the st_atime, st_mtime, and st_ctime fields of the stat structure respectively. (See stat(2)).
NAME

ff_ufs – list file names and statistics for a ufs file system

SYNOPSIS

ff -F ufs [generic_options] [-o a.m.s] special . . .

DESCRIPTION

ff prints the pathnames and inode numbers of files in the file system which resides on the special device special. ff is described in ff(1M); ufs-specific options are described below.

OPTIONS

- Specify ufs file system specific options. The options available are:

 a Print the ‘.’ and ‘..’ directory entries.
 m Print mode information.
 s Print only special files and files with set-user-ID mode.

SEE ALSO

find(1), ff(1M), ncheck(1M)
NAME
firmware – bootable firmware programs and firmware commands

AVAILABILITY
SPARC

DESCRIPTION
Between the time most computers are turned on and the boot program is loaded to bootstrap the machine, the computer is in an operating state known as the firmware state. In the firmware state, a small program in non-volatile memory is running on the machine, and the user can perform certain system operations usually unavailable from single- or multi-user operating states.

There are two basic kinds of firmware operations:

- **Running firmware commands.** These commands might include commands for displaying the Equipped Device Table, performing a system memory dump, displaying the firmware version, creating a floppy key, etc. These commands are executed by the firmware program.

- **Running bootable programs.** These include the operating system (/kernel/unix) and other bootable programs (such as a program to fill the Equipped Device Table). These programs are located in the /stand file system. When a bootable program is requested from firmware, the firmware program loads and executes the program, passing control of the system to the bootable program.

Some firmware programs, allow you to request the configuration of a new bootable operating system from firmware by specifying the name of a configuration file (usually /stand/system) as the name of the program to boot; see `system(4)`.

See the hardware guide that accompanies your computer for descriptions of the firmware commands and programs available with your machine.

SEE ALSO
- `system(4)`

File System Administration

WARNINGS
The firmware program typically does not know if a requested program is bootable or not; requesting a program that is not bootable from firmware can lead to unpredictable results.

modified 3 Jul 1990
NAME
fmthard – populate VTOC on hard disks

SPARC SYNOPSIS
/usr/sbin/fmthard -d data | -n volume_name | -s datafile [-i] /dev/rdsk/c?[t?]d?s2

x86 SYNOPSIS
/usr/sbin/fmthard -d data | -n volume_name | -s datafile [-i][-p pboot][-b bootblk]
/dev/rdsk/c?[t?]d?s2

AVAILABILITY
SUNWcsr

DESCRIPTION
The fmthard command updates the VTOC (Volume Table of Contents) on hard disks and, on x86 systems, adds boot information to the Solaris fdisk partition. One or more of the options -s datafile, -d data, or -n volume_name, must be used to request modifications to the disk label. To print disk label contents, see prtvoc(1M). The /dev/rdsk/c?[t?]d?s2 file must be the character special file of the device where the new VTOC is to be installed. On x86 systems, fdisk(1M) must be run on the drive before fmthard.

If you are using an x86 system, note that the term ‘‘partition’’ in this page refers to slices within the x86 fdisk partition on x86 machines. Do not confuse the partitions created by fmthard with the partitions created by fdisk.

OPTIONS
The following options apply to fmthard:

- `i`
 This option allows the command to create the desired VTOC table, but prints the information to standard output instead of modifying the VTOC on the disk.

- `d data`
 The data argument of this option is a string representing the information for a particular partition in the current VTOC. The string must be of the format `part:tag:flag:start:size` where `part` is the partition number, `tag` is the ID tag of the partition, `flag` is the set of permission flags, `start` is the starting sector number of the partition, and `size` is the number of sectors in the partition. See the description of the datafile below for more information on these fields.

- `n volume_name`
 This option is used to give the disk a volume_name up to 8 characters long.

- `s datafile`
 This option is used to populate the VTOC according to a datafile created by the user. If the datafile is ‘‘-’’, fmthard reads from standard input. The datafile format is described below. This option causes all of the disk partition timestamp fields to be set to zero.

Every VTOC generated by fmthard will also have partition 2 (the whole disk). Partition 2 is the only partition that can overlap others.

The datafile contains one specification line for each partition, starting with partition 0. Each line is delimited by a new-line character (\n). If the first character of a line is an asterisk (*), the line is treated as a comment.
Each line is composed of entries that are position-dependent, separated by "white space" and having the following format:

```
partition tag flag starting_sector size_in_sectors
```

where the entries have the following values.

- **partition**
 - The partition number: 0-15 decimal or 0x0-0xf hexadecimal.

- **tag**
 - The partition tag: a two-digit hex number. The following are reserved codes: 0x00 (V_UNASSIGNED), 0x01 (V_BOOT), 0x02 (V_ROOT), 0x03 (V_SWAP), 0x04 (V_USR), 0x05 (V_BACKUP), 0x06 (V_STAND), 0x07 (V_VAR) and 0x08 (V_HOME).

- **flag**
 - The flag allows a partition to be flagged as unmountable or read only, the masks being: V_UNMNT 0x01, and V_RONLY 0x10. For mountable partitions use 0x00.

- **starting sector**
 - The sector number (decimal) on which the partition starts.

- **size in sectors**
 - The number (decimal) of sectors occupied by the partition.

Note that you can save the output of a `prtvtoc` command to a file, edit the file, and use it as the `datafile` argument to the `-s` option.

x86 Options

The functionality provided by the following two x86 options is also provided by `installboot(1M)`. Because the functionality described here may be removed in future versions of `fmthard`, you should use `installboot` to install boot records. The following options currently apply to `fmthard`:

- **-p pboot**
 - This option allows the user to override the default partition boot file, which is `/usr/lib/fs/ufs/pboot`.

- **-b bootblk**
 - This option allows the user to override the default `bootblk` file, which is `/usr/lib/fs/ufs/bootblk`.

SEE ALSO

- `format(1M)`, `prtvtoc(1M)`
- `fdisk(1M)`, `installboot(1M)`

NOTES

Special care should be exercised when overwriting an existing VTOC, as incorrect entries could result in current data being inaccessible. As a precaution, save the old VTOC.

`fmthard` cannot write a disk label on an unlabeled disk. Use `format(1M)` for this purpose.
NAME format – disk partitioning and maintenance utility

SYNOPSIS format [−f command-file] [−l log-file] [−x data-file] [−d disk-name] [−t disk-type]
[−p partition-name] [−s] [−m] [−M] [disk-list]

AVAILABILITY SUNWcsr

DESCRIPTION format enables you to format, label, repair and analyze disks on your system. Unlike previous disk maintenance programs, format runs under SunOS. Because there are limitations to what can be done to the system disk while the system is running, format is also supported within the memory-resident system environment. For most applications, however, running format under SunOS is the more convenient approach.

format first uses the disk list defined in data-file if the −x option is used. format then checks for the FORMAT_PATH environment variable, a colon-separated list of filenames and/or directories. In the case of a directory, format searches for a file named format.dat in that directory; a filename should be an absolute pathname, and is used without change. format adds all disk and partition definitions in each specified file to the working set. Multiple identical definitions are silently ignored. If FORMAT_PATH is not set, the path defaults to /etc/format.dat.

disk-list is a list of disks in the form c?t?d? or /dev/rdsk/c?t?d?s?. With the latter form shell wildcard specifications are supported. For example, specifying /dev/rdsk/c2* will cause format to work on all drives connected to controller c2 only. If no disk-list is specified, format lists all the disks present in the system.

OPTIONS

−f command-file Take command input from command-file rather than the standard input. The file must contain commands that appear just as they would if they had been entered from the keyboard. With this option, format does not issue continue? prompts; there is no need to specify y(es) or n(o) answers in the command-file. In non-interactive mode, format does not initially expect the input of a disk selection number. The user must specify the current working disk with the −d disk-name option when format is invoked, or specify disk and the disk selection number in the command-file.

−l log-file Log a transcript of the format session to the indicated log-file, including the standard input, the standard output and the standard error.

−x data-file Use the list of disks contained in data-file.

−d disk-name Specify which disk should be made current upon entry into the program. The disk is specified by its logical name (for instance, −c0t1d0). This can also be accomplished by specifying a single disk in the disk list.

−t disk-type Specify the type of disk which is current upon entry into the program. A disk’s type is specified by name in the data file. This option can only be used if a disk is being made current as described above.
−p partition-name
Specify the partition table for the disk which is current upon entry into
the program. The table is specified by its name as defined in the data file.
This option can only be used if a disk is being made current, and its type
is either specified or available from the disk label.

−s
Silent. Suppress all of the standard output. Error messages are still
displayed. This is generally used in conjunction with the −f option.

−m
Enable extended messages. Provides more detailed information in the
event of an error.

−M
Enable extended and diagnostic messages. Provides extensive informa-
tion on the state of an SCSI device's mode pages, during formatting.

FILES
/etc/format.dat
default data file

SEE ALSO
ipi(7), sd(7), xy(7)

File System Administration
NAME
fsck – check and repair file systems

SYNOPSIS
```
fsck [ −F FSType ] [ −m ] [ −V ] [ special ... ]
fsck [ −F FSType ] [ −n | N | y | Y ] [ −V ] [ −o FSType-specific-options ]
[ special ... ]
```

AVAILABILITY
SUNWcsr

DESCRIPTION
`fsck` audits and interactively repairs inconsistent file system conditions. If the file system is inconsistent the default action for each correction is to wait for the user to respond `yes` or `no`. If the user does not have write permission `fsck` defaults to a `no` action. Some corrective actions will result in loss of data. The amount and severity of data loss may be determined from the diagnostic output.

FSType-specific-options are options specified in a comma-separated (with no intervening spaces) list of options or keyword-attribute pairs for interpretation by the *FSType*-specific module of the command.

special represents the block or character special device (for example, `/dev/rdsk/c1d0s7`) on which the file system resides. In general, the character special device should be used. `fsck` will not work on a block device if it is mounted.

If no *special* device is specified `fsck` checks the file systems listed in in `/etc/vfstab`. Those entries in `/etc/vfstab` which have a character special device entry in the *fsckdev* field and have a non-zero numeric entry in the *fsckpass* field will be checked. Specifying `−F FSType` limits the file systems to be checked to those of the type indicated.

If *special* is specified, but `−F` is not, the file system type will be determined by looking for a matching entry in `/etc/vfstab`. If no entry is found, the default local file system type specified in `/etc/default/fs` will be used.

If a file system type supports parallel checking (for example, *ufs*) some file systems eligible for checking may be checked in parallel. Consult the file system-specific man page (for example, `fsck_ufs(1M)`) for more information.

OPTIONS
- **−F FSType**
 Specify the file system type on which to operate.
- **−m**
 Check but do not repair. This option checks that the file system is suitable for mounting, returning the appropriate exit status. If the file system is ready for mounting, `fsck` displays a message such as:
  ```
  ufs fsck: sanity check: /dev/rdsk/c0t3d0s1 okay
  ```
- **−n | N**
 Assume a `no` response to all questions asked by `fsck`; do not open the file system for writing.
- **−V**
 Echo the expanded command line but do not execute the command. This option may be used to verify and validate the command line.
−y | Y Assume a yes response to all questions asked by fsck.
−o specific-options These specific-options can be any combination of the following separated by commas (with no intervening spaces).
 b=n Use block n as the super block for the file system. Block 32 is always one of the alternate super blocks. The location of other super blocks may be determined by running newfs(1M) with the −Nv options specified.
 c If the file system is in the old (static table) format, convert it to the new (dynamic table) format. If the file system is in the new format, convert it to the old format provided the old format can support the file system configuration. In interactive mode, fsck will list the direction the conversion is to be made and ask whether the conversion should be done. If a negative answer is given, no further operations are done on the file system. In preen mode, the direction of the conversion is listed and done if possible without user interaction. Conversion in preen mode is best used when all the file systems are being converted at once. The format of a file system can be determined from the first line of output from fstyp(1M).
 It should be noted that the c option is seldom used and is included only for compatibility with pre-4.1 releases. There is no guarantee that this option will be included in future releases.
 f Force checking of file systems regardless of the state of their super block clean flag.
 p ("preen") Check and fix the file system non-interactively. Exit immediately if there is a problem requiring intervention. This option is required to enable parallel file system checking.
 w Check writable file systems only.

EXIT CODES
0 file system is okay and does not need checking
1 erroneous parameters are specified
32 file system is unmounted and needs checking (fsck −m only)
33 file system is already mounted
34 cannot stat device
36 uncorrectable errors detected - terminate normally
37 a signal was caught during processing
39 uncorrectable errors detected - terminate immediately
40 for root, same as 0.
FILES
/\etc/\default/fs
default local file system type. Default values can be set for the following flags in /\etc/\default/fs. For example: LOCAL=ufs

LOCAL: The default partition for a command if no FSType is specified.

/\etc/vfstab
list of default parameters for each file system

SEE ALSO clri(1M), crash(1M), fsck_ufs(1M), fsdb_ufs(1M), fsirand(1M), fstyp(1M), mkfs(1M), mkfs_ufs(1M), mountall(1M), newfs(1M), reboot(1M), fs_ufs(4), vfstab(4)
Manual pages for the FSType-specific modules of fsck.

WARNINGS
The operating system buffers file system data. Running fsck on a mounted file system can cause the operating system’s buffers to become out of date with respect to the disk. For this reason, the file system should be unmounted when fsck is used. If this is not possible, care should be taken that the system is quiescent and that it is rebooted immediately after fsck is run. Quite often, however, this will not be sufficient. A panic will probably occur if running fsck on a file system modifies the file system.

NOTES
This command may not be supported for all FSTypes.
NAME

fsck_cachefs – check integrity of data cached with CacheFS

SYNOPSIS

fsck −F cachefs [−m | −o noclean] cache_directory

DESCRIPTION

The CacheFS version of the fsck command checks the integrity of a cache directory. By default it corrects any CacheFS problems it finds. There is no interactive mode. The most likely invocation of fsck for CacheFS file systems is at boot time from an entry in the /etc/vfstab file (see vfstab(4)).

OPTIONS

Two command line options are available:

−m Check, but do not repair.
−o noclean Force a check on the cache even if there is no reason to suspect there is a problem.

EXAMPLES

The following example forces a check on the cache directory /cache3:

example% fsck -F cachefs -o noclean /cache3

SEE ALSO

cfsadmin(1M), fsck(1M), mount_cachefs(1M), vfstab(4)
NAME
fsck_s5fs – file system consistency check and interactive repair

SYNOPSIS
fsck -F s5fs [generic_options] [special ...]
fsck -F s5fs [generic_options] [−o specific-options] [special ...]

AVAILABILITY
x86
SUNWs53

DESCRIPTION
fsck audits and interactively repairs inconsistent conditions on file systems. A file system to be checked may be specified by giving the name of the block or character special device or by giving the name of its mount point if a matching entry exists in /etc/vfstab. If no special device is specified, all s5 file systems specified in the vfstab with a fsckdev entry will be checked.

In the case of correcting serious inconsistencies, by default, fsck asks for confirmation before making a repair and waits for the operator to respond either yes or no. If the operator does not have write permission on the file system, fsck will default to a −n (no corrections) action. See fsck(1M).

Repairing some file system inconsistencies may result in loss of data. The amount and severity of data loss may be determined from the diagnostic output.

fsck automatically corrects innocuous inconsistencies such as unreferenced inodes, missing blocks in the free list, blocks appearing in the free list and also in files, or incorrect counts in the superblock automatically. It displays a message for each inconsistency corrected that identifies the nature of the correction on which the file system took place. After successfully correcting a file system, fsck prints the number of files on that file system and the number of used and free blocks.

Inconsistencies checked are as follows:

- Blocks claimed by more than one inode or the free list.
- Blocks claimed by an inode or the free list outside the range of the file system.
- Incorrect link counts.
- Incorrect directory sizes.
- Bad inode format.
- Blocks not accounted for anywhere.
- Directory checks, file pointing to unallocated inode, inode number out of range, absence of ‘.’ and ‘..’ entries in any directory.
- Superblock checks: more blocks for inodes than there are in the file system.
- Bad free block list format.
- Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator’s concurrence, reconnected by placing them in the lost+found directory. The name assigned is the inode number. If the lost+found directory does not exist, it is created.
OPTIONS

See generic `fsck(1M)` for `generic_options` and details for specifying `special`.

−o Specify s5 file system specific options. These options can be any combination of the following separated by commas (with no intervening spaces):

 f or F
 Fast check; duplicate blocks and free list check only.
 I After all other output is done, print i-number/pathname correspondences for damaged files.
 t scratchfile
 If there is insufficient memory and a temporary file is necessary to complete file system checking, use `scratchfile` as the temporary file.
 T scratchfile
 Same as above.
 s cyl:skip
 If it is necessary to rewrite (salvage) the free block list to correct an inconsistency, interleave the blocks such that, to the extent possible within each group of `cyl` consecutive free blocks, the interval between blocks is `skip`. For example, with an interleave of 8:3, in each group of eight consecutive free blocks, the order on the free list would be 1 4 7 2 5 8 3 6. If no `cyl:skip` is given, the value is either taken from the superblock, or, if unspecified (either has a value of 0), 400:7 is used. For obscure historical reasons, interleave specification of “3” and “4” (without colons) are taken to mean 200:5 and 418:7, respectively.
 S cyl:skip
 Same as above, except rewrite the free block list unconditionally.
 q Quiet; produce less verbose output.
 D Perform more extensive directory checking than normal.
 p (‘‘preen’’) Check and fix the file system non-interactively. Exit immediately if there is a problem requiring intervention.
 ? Print usage message.

FILES

/etc/vfstab list of default parameters for each file system

SEE ALSO

fsck(1M)

NOTES

It is usually faster to check the character special device than the block special device.
NAME

fsck_ufs – file system consistency check and interactive repair

SYNOPSIS

fsck −F ufs [generic-options] [special ...]
fsck −F ufs [generic-options] [−o specific-options] [special ...]

DESCRIPTION

fsck audits and interactively repairs inconsistent conditions on file systems. A file system to be checked may be specified by giving the name of the block or character special device or by giving the name of its mount point if a matching entry exists in /etc/vfstab.

special represents the block or character special device (for example, /dev/rdsk/c1d0s7) on which the file system resides. In general, the character special device should be used.

fsck will not work on a block device if it is mounted.

If no special device is specified, all ufs file systems specified in the vfstab with a fsckdev entry will be checked. If the −p (‘preen’) option is specified, ufs file systems with an fsckpass number greater than one are checked in parallel. See fsck(1M).

In the case of correcting serious inconsistencies, by default, fsck asks for confirmation before making a repair and waits for the operator to respond either yes or no. If the operator does not have write permission on the file system, fsck will default to a −n (no corrections) action. See fsck(1M).

Repairing some file system inconsistencies may result in loss of data. The amount and severity of data loss may be determined from the diagnostic output.

fsck automatically corrects innocuous inconsistencies such as unreferenced inodes, too-large link counts in inodes, missing blocks in the free list, blocks appearing in the free list and also in files, or incorrect counts in the superblock automatically. It displays a message for each inconsistency corrected that identifies the nature of the correction on which the file system took place. After successfully correcting a file system, fsck prints the number of files on that file system, the number of used and free blocks, and the percentage of fragmentation.

Inconsistencies checked are as follows:

- Blocks claimed by more than one inode or the free list.
- Blocks claimed by an inode or the free list outside the range of the file system.
- Incorrect link counts.
- Incorrect directory sizes.
- Bad inode format.
- Blocks not accounted for anywhere.
- Directory checks, file pointing to unallocated inode, inode number out of range, absence of ‘.’ and ‘.’ as the first two entries in each directory.
- Super Block checks: more blocks for inodes than there are in the file system.
- Bad free block list format.
- Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator’s concurrence, reconnected by placing them in the lost+found directory. The name assigned is the inode number. If the lost+found directory does not exist, it is created. If there is
insufficient space in the lost+found directory, its size is increased.

OPTIONS

The generic-options consist of the following options:

−m Check but do not repair. This option checks that the file system is suitable for mounting, returning the appropriate exit status. If the file system is ready for mounting, fsck displays a message such as:

ufs fsck: sanity check: /dev/rdsk/c0t3d0s1 okay

−n | N Assume a no response to all questions asked by fsck; do not open the file system for writing.

−V Echo the expanded command line, but do not execute the command. This option may be used to verify and validate the command line.

−y | Y Assume a yes response to all questions asked by fsck.

See generic fsck(1M) for the details for specifying special.

−o specific-options Specify ufs file system specific options. These options can be any combination of the following separated by commas (with no intervening spaces).

b=n Use block n as the super block for the file system. Block 32 is always one of the alternate super blocks. The location of other super blocks may be determined by running newfs(1M) with the −Nv options specified.

c If the file system is in the old (static table) format, convert it to the new (dynamic table) format. If the file system is in the new format, convert it to the old format provided the old format can support the file system configuration. In interactive mode, fsck will list the direction the conversion is to be made and ask whether the conversion should be done. If a negative answer is given, no further operations are done on the file system. In preen mode, the direction of the conversion is listed and done if possible without user interaction. Conversion in preen mode is best used when all the file systems are being converted at once. The format of a file system can be determined from the first line of output from fstyp(1M).

It should be noted that the c option is seldom used and is included only for compatibility with pre-4.1 releases. There is no guarantee that this option will be included in future releases.

f Force checking of file systems regardless of the state of their super block clean flag.

p (“preen”) Check and fix the file system non-interactively. Exit immediately if there is a problem requiring intervention. This option is required to enable parallel file system checking.

w Check writable file systems only.
FILES

/etc/vfstab list of default parameters for each file system

SEE ALSO
clri(1M), crash(1M), fsck(1M), fsdb_ufs(1M), fsirand(1M), fstyp(1M), mkfs(1M),
mkfs_ufs(1M), mountall(1M), newfs(1M), reboot(1M), fs_ufs(4), vfstab(4)

WARNINGS
The operating system buffers file system data. Running fsck on a mounted file system
can cause the operating system’s buffers to become out of date with respect to the disk.
For this reason, the file system should be unmounted when fsck is used. If this is not pos-
sible, care should be taken that the system is quiescent and that it is rebooted immedi-
ately after fsck is run. Quite often, however, this will not be sufficient. A panic will
probably occur if running fsck on a file system modifies the file system.

NOTES
It is usually faster to check the character special device than the block special device.
NAME fsdb – file system debugger

SYNOPSIS fsdb [−F FSType] [−V] [−o FSType-specific_options] special

DESCRIPTION fsdb is a file system debugger that allows for the manual repair of a file system after a crash. special is a special device used to indicate the file system to be debugged. fsdb is intended for experienced users only. FSType is the file system type to be debugged. Since different FSTypes have different structures and hence different debugging capabilities, the manual pages for the FSType-specific fsdb should be consulted for a more detailed description of the debugging capabilities.

OPTIONS −F Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table, or by consulting /etc/default/fs.

−V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option may be used to verify and validate the command line.

−o Specify FSType-specific options.

FILES /etc/default/fs default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs

 LOCAL: The default partition for a command if no FSType is specified.

/etc/vfstab list of default parameters for each file system

SEE ALSO vfstab(4)

Manual pages for the FSType-specific modules of fsdb.

NOTES This command may not be supported for all FSTypes.
NAME

fsdb_ufs – ufs file system debugger

SYNOPSIS

fsdb –F ufs [generic_options] –o z i-number special

DESCRIPTION

The ufs fsdb is a non-interactive utility which is functionally the same as clri(1M).

generic_options are options supported by the generic fsdb command.

OPTIONS

–o Specify ufs file system specific options. The option available is:

 z i-number Clear the i-node identified by i-number in the filesystem
 residing on special device special.

SEE ALSO

crli(1M), fsck(1M), fsdb(1M), fs_ufs(4)
NAME
fsirand – install random inode generation numbers

SYNOPSIS
fsirand [−p] special

DESCRIPTION
fsirand installs random inode generation numbers on all the inodes on device special, and also installs a file system ID in the superblock. This helps increase the security of file systems exported by NFS.

fsirand must be used only on an unmounted file system that has been checked with fsck(1M). The only exception is that it can be used on the root file system in single-user mode, if the system is immediately re-booted afterwards.

OPTIONS
−p Print out the generation numbers for all the inodes, but do not change the generation numbers.

SEE ALSO
fsck(1M)
NAME fstyp – determine file system type

SYNOPSIS fstyp [−v] special

AVAILABILITY SUNWcsr

DESCRIPTION fstyp allows the user to determine the file system type of unmounted file systems using heuristic programs.

An fstyp module for each file system type to be checked is executed; each of these modules applies an appropriate heuristic to determine whether the supplied special file is of the type for which it checks. If it is, the program prints on standard output the usual file system identifier for that type (for example, “ufs”) and exits with a return code of 0; if none of the modules succeed, the error message unknown_fstyp (no matches) is returned and the exit status is 1. If more than one module succeeds, the error message unknown_fstyp (multiple matches) is returned and the exit status is 2.

OPTIONS −v Produce verbose output. This is usually information about the file systems superblock and varies across different FSTypes.

NOTES The use of heuristics implies that the result of fstyp is not guaranteed to be accurate.
NAME fusage – disk access profiler

SYNOPSIS /usr/sbin/fusage [mount_point | block_special_device ...]

AVAILABILITY SUNWcsu

DESCRIPTION When used with no options, fusage reports block I/O transfers, in kilobytes, to and from all locally mounted file systems. The count data are cumulative since the time of the mount.

The report includes one section for each file system and advertised resource, and has one entry for each remotely mounted file system. Sections are ordered by device name; advertised resources that are not complete file systems will immediately follow the sections for the file systems they are in.

OPTIONS

mount_point Reports on the named file system.

block_special_device Block special device.

SEE ALSO crash(1M), df(1M), mount(1M)
NAME

fuser – identify processes using a file or file structure

SYNOPSIS

AVAILABILITY

SUNWcsu

DESCRIPTION

fuser displays the process IDs of the processes that are using the files specified as arguments. Each process ID is followed by a letter code, interpreted as follows: if the process is using the file as 1) its current directory, the code is c; 2) its root directory, the code is r; 3) an open file, the code is o; or 4) its text file, the code is t. For block special devices with mounted file systems, all processes using any file on that device are listed. For all types of files (text files, executables, directories, devices, and so on), only the processes using that file are reported.

If more than one group of files are specified, the options may be respecified for each additional group of files. A lone dash cancels the options currently in force.

The process IDs are printed as a single line on the standard output, separated by spaces and terminated with a single new line. All other output is written on standard error.

Any user with permission to read /dev/kmem and /dev/mem can use fuser. Only the super-user can terminate another user’s process.

OPTIONS

−c Report on files that are mount points for file systems, and any files within that mounted file system.

−f Print a report for the named file, not for files within a mounted file system.

−k Send the SIGKILL signal to each process. Since this option spawns kills for each process, the kill messages may not show up immediately (see kill(2)).

−u Display the user login name in parentheses following the process ID.

FILES

/kernel/unix for system namelist
/dev/kmem for system image
/dev/mem also for system image

SEE ALSO

ps(1), mount(1M), kill(2), signal(3C)

NOTES

Because fuser works with a snapshot of the system image, it may miss processes that begin using a file while fuser is running. Also, processes reported as using a file may have stopped using it while fuser was running. These factors should discourage the use of the −k option.
NAME
fwtmp, wtmpfix – manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [−ic]
/usr/lib/acct/wtmpfix [file...]

DESCRIPTION
fwtmp reads from the standard input and writes to the standard output, converting binary records of the type found in /var/adm/wtmp to formatted ASCII records. The ASCII version is useful when it is necessary to edit bad records.

wtmpfix examines the standard input or named files in utmp.h format, corrects the time/date stamps to make the entries consistent, and writes to the standard output. A hyphen (−) can be used in place of file to indicate the standard input. If time/date corrections are not performed, acctcon(1M) will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to /var/adm/wtmp. The first record is the old date denoted by the string "old time" placed in the line field and the flag OLD.TIME placed in the type field of the utmp structure. The second record specifies the new date and is denoted by the string new time placed in the line field and the flag NEW.TIME placed in the type field. wtmpfix uses these records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity of the name field to ensure that it consists solely of alphanumeric characters or spaces. If it encounters a name that is considered invalid, it will change the login name to INVALID and write a diagnostic to the standard error. In this way, wtmpfix reduces the chance that acctcon will fail when processing connect accounting records.

OPTIONS
−ic Denotes that input is in ASCII form, and output is to be written in binary form.

FILES
/var/adm/wtmp
/usr/include/utmp.h

SEE ALSO
acctcom(1), ed(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), runacct(1M), acct(2), acct(4), utmp(4)

Security, Performance, and Accounting Administration
NAME

gencc – create a front-end to the cc command

SYNOPSIS

gencc

DESCRIPTION

The gencc command is an interactive command designed to aid in the creation of a front-end to the cc command. Since hard-coded pathnames have been eliminated from the C Compilation System (CCS), it is possible to move pieces of the CCS to new locations without recompilation. The new locations of moved pieces can be specified through the −Y option to the cc command. However, it is inconvenient to supply the proper −Y options with every invocation of the cc command. Further, if a system administrator moves pieces of the CCS, such movement should be invisible to users.

The front-end to the cc command that gencc generates is a one-line shell script that calls the cc command with the proper −Y options specified. The front-end to the cc command will also pass all user-supplied options to the cc command.

gencc prompts for the location of each tool and directory that can be respecified by a −Y option to the cc command. If no location is specified, it assumes that that piece of the CCS has not been relocated. After all the locations have been prompted for, gencc will create the front-end to the cc command.

gencc creates the front-end to the cc command in the current working directory and gives the file the same name as the cc command. Thus, gencc can not be run in the same directory containing the actual cc command. Further, if a system administrator has redistributed the CCS, the actual cc command should be placed in a location that is not typically in a user’s path (for example, /usr/lib). Such placement will prevent users from accidentally invoking the cc command without using the front-end.

FILES

./cc front-end to cc

SEE ALSO

cc(1B)

NOTES

gencc does not produce any warnings if a tool or directory does not exist at the specified location. Also, gencc does not actually move any files to new locations.

The gencc command is obsolete.
NAME
getdev – lists devices based on criteria

SYNOPSIS
/usr/bin/getdev [−ae] [criteria ...] [device ...]

DESCRIPTION
getdev generates a list of devices that match certain criteria. The criteria includes a list of attributes (given in expressions) and a list of devices. If no criteria are given, all devices are included in the list.

Devices must satisfy at least one of the criteria in the list unless the −a option is used. Then, only those devices which match all of the criteria in a list will be included.

Devices which are defined on the command line and which match the criteria are included in the generated list. However, if the −e option is used, the list becomes a set of devices to be excluded from the list.

criteria defines the criteria that a device must match to be included in the generated list. Should be specified by giving expressions.

device defines the devices which should be included in the generated list. This can be the pathname of the device or the device alias.

Criteria Expression Types
There are four possible expression types which the criteria specified in the criteria argument may follow:

attribute=value Selects all devices whose attribute attribute is defined and is equal to value.
attribute!=value Selects all devices whose attribute attribute is defined and does not equal value.
attribute:* Selects all devices which have the attribute attribute defined.
attribute!:* Selects all devices which do not have the attribute attribute defined.

See the putdev(1M) manual page for a complete listing and description of available attributes.

OPTIONS
−a Specifies that a device must match all criteria to be included in the list generated by this command. The option has no effect if no criteria are defined.

−e Specifies that the list of devices which follows on the command line should be excluded from the list generated by this command. (Without the −e the named devices are included in the generated list.) The flag has no effect if no devices are defined.

ERRORS
The command will exit with one of the following values:
0 = Successful completion of the task.
1 = Command syntax incorrect, invalid option used, or internal error occurred.
2 = Device table could not be opened for reading.

modified 5 Jul 1990
FILES /etc/device.tab
SEE ALSO devattr(1M), getdgrp(1M), putdev(1M), putdgrp(1M)
NAME
getdgrp – lists device groups which contain devices that match criteria

SYNOPSIS
/usr/sbin/getdgrp [-ael] [criteria . . .] [dgroup . . .]

DESCRIPTION
getdgrp generates a list of device groups that contain devices matching the given criteria. The criteria is given in the form of expressions. criteria can be one expression or a list of expressions which a device must meet for its group to be included in the list generated by getdgrp. If no criteria are given, all device groups are included in the list.

Devices must satisfy at least one of the criteria in the list. However, the –a option can be used to define that a "logical and" operation should be performed. Then, only those groups containing devices which match all of the criteria in a list will be included.

dgroup defines a set of device groups to be included in the list. Device groups that are defined and which contain devices matching the criteria are included. However, if the –e option is used, this list defines a set of device groups to be excluded. When the –e option is used and criteria is also defined, the generated list will include device groups containing devices which match the criteria and are not in the command line list.

criteria defines criteria that a device must match before a device group to which it belongs can be included in the generated list.

dgroup defines device groups which should be included in or excluded from the generated list.

Criteria Expression Types

There are four possible expressions types which the criteria specified in the criteria argument may follow:

attribute=value Selects all device groups with a member whose attribute attribute is defined and is equal to value.
attribute!=value Selects all device groups with a member whose attribute attribute is defined and does not equal value.
attribute:* Selects all device groups with a member which has the attribute attribute defined.
attribute!:* Selects all device groups with a member which does not have the attribute attribute defined.

See putdev(1M) for a complete listing and description of available attributes.

OPTIONS

–a Specifies that a device must match all criteria to be included in the list generated by this command. The option has no effect if no criteria are defined.

–e Specifies that the list of device groups on the command line should be excluded from the list generated by this command. (Without the –e option the named device groups are included in the generated list.) The flag has no effect if no devices are defined.
−l Specifies that all device groups (subject to the −e option and the dgroup list) should be listed even if they contain no valid device members. This option has no affect if criteria is specified on the command line.

ERRORS The command will exit with one of the following values:
0 Successful completion of the task.
1 Command syntax incorrect, invalid option used, or internal error occurred.
2 Device table or device group table could not be opened for reading.

FILES /etc/device.tab
 /etc/dgroup.tab

SEE ALSO devattr(1M), getdev(1M), putdev(1M), putdgrp(1M)
NAME
getent – get entries from administrative database

SYNOPSIS
/usr/bin/getent database [key . . .]

DESCRIPTION
getent gets a list of entries from the administrative database specified by database. The information comes from one or more of the sources that are specified for the database in /etc/nsswitch.conf.

database is the name of the database to be examined. This can be passwd, group, hosts, services, protocols, ethers, or networks. For each of these databases, it uses the appropriate library routines described in getpwnam(3C), getgrnam(3C), gethostbyname(3N), getservbyname(3N), getprotobyname(3N), ethers(3N), and getnetbyname(3N), respectively.

Each key must be in a format appropriate for searching on the respective database; for example, it can be a username or numeric-uid for passwd, hostname or IP address for hosts, or service, service/protocol, port, or port/proto for services.

getent prints out the database entries that match each of the supplied keys, one per line, in the format of the matching administrative file: passwd(4), group(4), hosts(4), services(4), protocols(4), ethers(4), or networks(4). If no key is given, all entries returned by the corresponding enumeration library routine (for example, getpwnam or gethostent) are printed.

ERRORS
getent exits with one of the following values:
0 Successful completion of the task.
1 Command syntax incorrect, invalid option used, or internal error occurred.
2 At least one of the specified entry names was not found in the database.
3 There is no support for enumeration on this database.

FILES
/etc/nsswitch.conf name service switch configuration file
/etc/passwd password file
/etc/group group file
/etc/hosts host name database
/etc/services Internet services and aliases
/etc/protocols protocol name database
/etc/ethers Ethernet address to hostname database or domain
/etc/networks network name database

SEE ALSO
ethers(3N), getgrnam(3C), gethostbyname(3N), getnetbyname(3N),
getservbyname(3N), getprotobyname(3N), getpwnam(3C), nsswitch.conf(4)

modified 8 Mar 1994
NAME
gettable – get DoD Internet format host table from a host

SYNOPSIS
/usr/sbin/gettable host

AVAILABILITY
SUNWnisu

DESCRIPTION
gettable is a simple program used to obtain the DoD Internet host table from a “hostname” server. The specified host is queried for the table. The table is placed in the file hosts.txt.

gettable operates by opening a TCP connection to the port indicated in the service specification for “hostname”. A request is then made for all names and the resultant information is placed in the output file.

gettable is best used in conjunction with the htable(1M) program which converts the DoD Internet host table format to that used by the network library lookup routines.

SEE ALSO
htable(1M)

NOTES
Should allow requests for only part of the database.
NAME
getty – set terminal type, modes, speed, and line discipline

SYNOPSIS
```
/usr/lib/saf/ttymon [ -h ] [ -t timeout ] line [ speed [ type [ linedisc ] ] ]
```
```
/usr/lib/saf/ttymon −c file
```

AVAILABILITY
SUNWcsr

DESCRIPTION
getty is a symbolic link to /usr/lib/saf/ttymon. It is included for compatibility with previous releases for the few applications that still call getty directly. getty can only be executed by the super-user, (a process with the user ID root). Initially getty prints the login prompt, waits for the user’s login name, and then invokes the login command. getty attempts to adapt the system to the terminal speed by using the options and arguments specified on the command line.

When given no optional arguments, getty specifies the following: The speed of the interface is set to 300 baud, either parity is allowed, new-line characters are converted to carriage return-line feed, and tab expansion is performed on the standard output. getty types the login prompt before reading the user’s name a character at a time. If a null character (or framing error) is received, it is assumed to be the result of the user pressing the BREAK key. This will cause getty to attempt the next speed in the series. The series that getty tries is determined by what it finds in /etc/ttydefs.

OPTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>The name of a TTY line in /dev to which getty is to attach itself. getty uses this string as the name of a file in the /dev directory to open for reading and writing.</td>
</tr>
<tr>
<td>−h</td>
<td>If the −h flag is not set, a hangup will be forced by setting the speed to zero before setting the speed to the default or a specified speed.</td>
</tr>
<tr>
<td>−t timeout</td>
<td>Specifies that getty should exit if the open on the line succeeds and no one types anything in timeout seconds.</td>
</tr>
<tr>
<td>speed</td>
<td>The speed argument is a label to a speed and TTY definition in the file /etc/ttydefs. This definition tells getty at what speed to run initially, what the initial TTY settings are, and what speed to try next, (should the user press the BREAK key to indicate that the speed is inappropriate). The default speed is 300 baud.</td>
</tr>
<tr>
<td>type and linedisc</td>
<td>These options are obsolete and will be ignored.</td>
</tr>
<tr>
<td>−c file</td>
<td>The −c option is no longer supported. Instead use /usr/sbin/sttydefs −l to list the contents of the /etc/ttydefs file and perform a validity check on the file.</td>
</tr>
</tbody>
</table>

modified 14 Sep 1992
FILES
/etc/ttydefs

SEE ALSO
ct(1C), login(1), sttydefs(1M), ttymon(1M), ioctl(2), tty(7)
NAME
getvol - verifies device accessibility

SYNOPSIS
/usr/bin/getvol [−l label] device

/getusr/bin/getvol [−f | −F] [−o w] [−l label] [−x label] device

DESCRIPTION
getvol verifies that the specified device is accessible and that a volume of the appropriate medium has been inserted. The command is interactive and displays instructional prompts, describes errors, and shows required label information.

device names the device which should be verified for accessibility.

OPTIONS
−n Runs the command in non-interactive mode. The volume is assumed to be inserted upon command invocation.

−l label Specifies that the label label must exist on the inserted volume (can be overridden by the −o option).

−f Formats the volume after insertion, using the format command defined for this device in the device table.

−F Formats the volume after insertion and places a file system on the device. Also uses the format command defined for this device in the device table.

−o Allows the administrator to override a label check.

−w Allows administrator to write a new label on the device. User is prompted to supply the label text. This option is ineffective if the −n option is enabled.

−x label Specifies that the label label must exist on the device. This option should be used in place of the −l option when the label can only be verified by visual means. Use of the option causes a message to be displayed asking the administrator to visually verify that the label is indeed label.

ERRORS
The command will exit with one of the following values:
0 Successful completion of the task.
1 Command syntax incorrect, invalid option used, or internal error occurred.
3 Device table could not be opened for reading.

FILES
/etc/device.tab

NOTES
This command uses the device table to determine the characteristics of the device when performing the volume label checking.
NAME groupadd – add (create) a new group definition on the system

SYNOPSIS /usr/sbin/groupadd [−g gid [−o]] group

AVAILABILITY SUNWcsu

DESCRIPTION The groupadd command creates a new group definition on the system by adding the appropriate entry to the /etc/group file.

OPTIONS
−g gid The group id for the new group. This group id must be a non-negative decimal integer below MAXUID as defined in the <param.h> header. The group ID defaults to the next available (unique) number above the highest number currently assigned. For example, if groups 100, 105, and 200 are assigned as groups, the next default group number will be 201. (Group IDs from 0-99 are reserved by SunOS for future applications.)

−o This option allows the gid to be duplicated (non-unique).

group A string of printable characters that specifies the name of the new group, up to a maximum of eight characters. It may not include a colon (:) or newline (\n).

ERRORS The groupadd command exits with one of the following values:

0 Success.
2 Invalid command syntax. A usage message for the groupadd command is displayed.
3 An invalid argument was provided to an option.
4 gid is not unique (when −o option is not used).
9 group is not unique.
10 Cannot update the /etc/group file.

FILES /etc/group

SEE ALSO users(1B), groupdel(1M), groupmod(1M), logins(1M), useradd(1M), userdel(1M), usermod(1M), group(4)

NOTES groupadd only adds a group definition to the local system. If a network nameservice such as NIS or NIS+ is being used to supplement the local /etc/group file with additional entries, groupadd cannot change information supplied by the network nameservice. However groupadd will verify the uniqueness of group name and group ID against the external nameservice.
NAME

 groupdel – delete a group definition from the system

SYNOPSIS

 /usr/sbin/groupdel group

AVAILABILITY

 SUNWcsu

DESCRIPTION

 The groupdel command deletes a group definition from the system. It deletes the
 appropriate entry from the /etc/group file.

OPTIONS

 group A string of printable characters that specifies the group to be deleted.

FILES

 /etc/group

SEE ALSO

 users(1B), groupadd(1M), groupmod(1M), login(1M), useradd(1M), userdel(1M),
 usermod(1M)

DIAGNOSTICS

 The groupdel command exits with one of the following values:

 0 Success.
 2 Invalid command syntax. A usage message for the groupdel command is
 displayed.
 6 group does not exist.
 10 Cannot update the /etc/group file.

NOTES

 groupdel only deletes a group definition that is in the local /etc/group file. If a network
 nameservice such as NIS or NIS+ is being used to supplement the local /etc/group file with
 additional entries, groupdel cannot change information supplied by the network
 nameservice.
NAME groupmod – modify a group definition on the system

SYNOPSIS /usr/bin/groupmod [−g gid [−o]] [−n name] group

AVAILABILITY SUNWcsu

DESCRIPTION The groupmod command modifies the definition of the specified group by modifying the appropriate entry in the /etc/group file.

OPTIONS
 −g gid The group id for the new group. This group id must be a non-negative decimal integer below MAXUID as defined in < param.h >. The group ID defaults to the next available (unique) number above 99. (Group IDs from 0-99 are reserved by SunOS for future applications.)
 −o This option allows the gid to be duplicated (non-unique).
 −n name A string of printable characters that specifies a new name for the group. It may not include a colon (:) or newline (\n).

FILES /etc/group

SEE ALSO users(1B), groupadd(1M), groupdel(1M), logins(1M), useradd(1M), userdel(1M), usermod(1M)

DIAGNOSTICS The groupmod command exits with one of the following values:

 0 Success.
 2 Invalid command syntax. A usage message for the groupmod command is displayed.
 3 An invalid argument was provided to an option.
 4 gid is not unique (when the −o option is not used).
 6 group does not exist.
 9 name already exists as a group name.
 10 Cannot update the /etc/group file.

NOTES groupmod only modifies group definitions in the /etc/group file. If a network nameservice such as NIS or NIS+ is being used to supplement the local /etc/group file with additional entries, groupmod cannot change information supplied by the network nameservice. However groupmod will verify the uniqueness of group name and group id against the external nameservice.
NAME gsconfig – initialize the SBus GS graphics accelerator

SYNOPSIS /usr/sbin/gsconfig [−u ucode-filename] [fbunit ...]

DESCRIPTION gsconfig loads and starts the appropriate microcode in the SBus GS cgtdlewle(7) integrated accelerator and frame buffer.

For example, the command line:

 /usr/sbin/gsconfig /dev/fbs/cgtwelve0

loads the GS microcode into the cgtdlewle(7) integrated accelerator and frame buffer.

The GS is loaded automatically at boot time according to the shell script /etc/init.d/gsconfig. This file contains a gsconfig command like the example above. If another configuration is desired, edit the command line in /etc/init.d/gsconfig.

The default ucode-filename is /usr/lib/gs.ucode.

The default fbunit is /dev/fbs/cgtwelve0.

OPTIONS −u microcode-file Load the specified file as the alternate microcode to the GS.

FILES /dev/fbs/cgtwelve0 SBus 24-bit frame buffer and graphics accelerator
 /usr/lib/gs.ucode GS microcode file
 /etc/init.d/gsconfig GS initialization script

SEE ALSO cgtdlewle(7)

NOTES It is inadvisable to run the gsconfig command while the configured device is being used; unpredictable results may occur. If it is necessary to reload the GS microcode, exit the window system, run the gsconfig program, and bring the window system back up.
gtcon®g (1M) Maintenance Commands SunOS 5.4

NAME
gtcon®g – initialize the GT Graphics Accelerator and download microcode

SYNOPSIS
/usr/sbin/gtcon®g [−d device-filename] [−f filename] [−s0 filename]
[−s1 filename] [−I microcode-directory] [−E bit-code] [−g | G gamma-value]
[−degamma8 | DEGAMMA8 on | off] [−i] [−m | M monitor-type] [−c 1-14]
[−w 2-9] [−v]

DESCRIPTION
gtcon®g initializes the GT Graphics Accelerator and downloads microcode from the host. It is normally run as a part of /etc/init.d/gtcon®g to download GT microcode files and to complete GT initialization.

The standard version of the file /etc/init.d/gtcon®g contains the following gtcon®g command line:

 /usr/sbin/gtcon®g

If another configuration is desired, edit the command line in /etc/init.d/gtcon®g.

It is inadvisable to run the gtcon®g command while the configured device is being used; unpredictable results may occur. If it is necessary to change the gtcon®g command, bring the system down gently, boot single user, edit the gtcon®g line in the /etc/init.d/gtcon®g file, and bring the system back up multi-user.

Filenames may be either relative or absolute pathnames. Relative pathnames are prepended with the path specified by −I, or the default path /usr/lib.

OPTIONS
−d device-filename
 Specifies the GT special file. The default is /dev/gt0.

−f filename
 Specifies the Front End microcode file. The default is gt.ucode.

−s0 filename
 Specifies the Setup Processor 0 microcode file. The default is gt.c30.ucode.

−s1 filename
 Specifies the Setup Processor 1 microcode file. The default is gt.c31.ucode.

−I microcode-directory
 Specifies the directory containing microcode files. The default is /usr/lib.

−E bit-code
 Initializes the cursor enable plane to contain all zeros or all ones. The default is 0.

−g gamma-value
 Specifies the gamma correction value. The default is 2.22.

−G gamma-value
 Loads the gamma correction table only; does not initialize the GT or download microcode.

1M-214 modified 8 Nov 1993
--degamma8 on | off
 Specifies automatic inverse gamma correction of 8-bit indexed color maps. This allows colormaps with built-in gamma correction to work properly on GT. The default is on.

--DEGAMMA8 on | off
 Like degamma8, but only specifies automatic inverse gamma correction; does not otherwise initialize GT or download microcode.

-i
 Initialize the GT backend.

-m monitor-type
 Specifies the monitor type of 1280_76, 1280_67, or stereo. The default is 1280_67.

-M monitor-type
 Sets the monitor type only; does not initialize the GT or download microcode.

-c 1-14
 Sets the OpenWindows server CLUT quota. The default is 8.

-w 2-9
 Sets the OpenWindows server WID plane quota. The default is 5.

-v
 Sets verbose mode.

FILES
/dev/fbs/gt0 GT Graphics Accelerator file
gt.ucode GT Front End microcode file
gt.c30.ucode Setup Processor 0 microcode file
gt.c31.ucode Setup Processor 1 microcode file
/usr/lib directory that normally contains the microcode files
/etc/init.d/gtconfig local gt initialization script

SEE ALSO mmap(2), fbio(7), gt(7)
NAME halt, poweroff – stop the processor

SYNOPSIS
/usr/sbin/halt [-lnqy]
/usr/sbin/poweroff [-lnqy]

AVAILABILITY SUNWcsr

DESCRIPTION
halt and poweroff write out any pending information to the disks and then stop the processor. poweroff will have the machine remove power, if possible.

halt and poweroff normally log the system shutdown to the system log daemon, syslogd(1M), and place a shutdown record in the login accounting file /var/adm/wtmp. These actions are inhibited if the −n or −q options are present.

OPTIONS
−l Suppress sending a message to the system log daemon, syslogd(1M), about who executed halt.
−n Prevent the sync(1M) before stopping.
−q Quick halt. No graceful shutdown is attempted.
−y Halt the system, even from a dialup terminal.

FILES
/var/adm/wtmp login accounting file

SEE ALSO
init(1M), reboot(1M), shutdown(1M), sync(1M), syslogd(1M)

NOTES
halt does not execute the rc0 scripts as do shutdown(1M) and init(1M).

poweroff is equivalent to init 5.
NAME

hostconfig – configure a system’s host parameters

SYNOPSIS

/usr/bin/hostconfig \(-p\) protocol [\(-d\)] [\(-n\)] [\(-v\)] [\(-i\) interface] [\(-f\) hostname]

AVAILABILITY

SUNWcsr

DESCRIPTION

The hostconfig program uses a network protocol to acquire a machine’s “host parameters” and then sets these parameters on the system. The program selects which protocol to use based on the argument to the required \(-p\) flag. Different protocols may set different host parameters. Currently, two protocols are defined but only one protocol is supported.

OPTIONS

\(-p\) bootparams

Use the “whoami” call of the RPC “bootparams” protocol. This sets the system’s hostname, domainname, and default IP router parameters.

\(-p\) bootp

Use the BOOTP protocol (not currently supported).

\(-d\)

Enable “debug” output.

\(-n\)

Run the network protocol, but do not set the acquired parameters into the system.

\(-v\)

Enable verbose output.

\(-i\) interface

Use only the named network interface to run the protocol.

\(-f\) hostname

Run the protocol as if this machine were named hostname.

EXAMPLES

To configure a machine’s host parameters using the “bootparams whoami” protocol with a verbose output, use

example% hostconfig \(-p\) bootparams \(-v\)

To see what parameters would be set using the “bootparams whoami” protocol, use

example% hostconfig \(-p\) bootparams \(-n\) \(-v\)

SEE ALSO

hostname(1B), domainname(1M), route(1M)
NAME htable – convert DoD Internet format host table

SYNOPSIS
/usr/sbin/htable filename

AVAILABILITY SUNWnisu

DESCRIPTION htable converts a host table in the format specified by RFC 952 to the format used by the network library routines. Three files are created as a result of running htable: hosts, networks, and gateways. The hosts file is used by the gethostbyname(3N) routines in mapping host names to addresses. The networks file is used by the getnetbyname(3N) routines in mapping network names to numbers. The gateways file is used by the routing daemon to identify “passive” Internet gateways.

If any of the files localhosts, localnetworks, or localgateways are present in the current directory, the file’s contents is prepended to the output file without interpretation. This allows sites to maintain local aliases and entries which are not normally present in the master database.

htable is best used in conjunction with the gettable(1M) program which retrieves the DoD Internet host table from a host.

FILES localhosts
 localnetworks
 localgateways

SEE ALSO gettable(1M), gethostbyname(3N), getnetbyname(3N)

NOTES Does not properly calculate the gateways file.
<table>
<thead>
<tr>
<th>NAME</th>
<th>id – print the user name, user ID, group name and group ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/usr/bin/id [-a]</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>id displays your user ID, user name, group ID and group name. If your real ID and your effective IDs do not match, both are printed.</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>-a Reports user name, user ID and all the groups to which the user belongs.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>getuid(2)</td>
</tr>
</tbody>
</table>
NAME ifconfig – configure network interface parameters

SYNOPSIS /sbin/ifconfig interface [address_family] [address [dest_address]] [up] [down]
 [auto-revarp] [netmask mask] [broadcast_address] [metric n] [mtu n]
 [trailers | −trailers] [private | −private] [arp | −arp] [plumb | unplumb]
/usr/sbin/ifconfig interface [address_family] [address [dest_address]] [up] [down]
 [auto-revarp] [netmask mask] [broadcast_address] [metric n] [mtu n]
 [trailers | −trailers] [private | −private] [arp | −arp] [plumb | unplumb]

AVAILABILITY SUNWcsr

DESCRIPTION ifconfig is used to assign an address to a network interface and/or to configure network interface parameters. ifconfig must be used at boot time to define the network address of each interface present on a machine; it may also be used at a later time to redefine an interface’s address or other operating parameters. Used without options, ifconfig displays the current configuration for a network interface. If a protocol family is specified, ifconfig will report only the details specific to that protocol family. Only the super-user may modify the configuration of a network interface.

The interface parameter is a string of the form name unit, for example le0 or ie1. Three special interface names, −a, −ad and −au, are reserved and refer to all or a subset of the interfaces in the system. If one of these interface names is given, the commands following it are applied to all of the interfaces that match:

−a Apply the commands to all interfaces in the system.
−ad Apply the commands to all “down” interfaces in the system.
−au Apply the commands to all “up” interfaces in the system.

Since an interface may receive transmissions in differing protocols, each of which may require separate naming schemes, the parameters and addresses are interpreted according to the rules of some address family, specified by the address_family parameter. The address families currently supported are ether and inet. If no address family is specified, inet is assumed.

For the TCP/IP family (inet), the address is either a host name present in the host name data base (see hosts(4)) or in the Network Information Service (NIS) map hosts, or a TCP/IP address expressed in the Internet standard “dot notation”. Typically, an Internet address specified in dot notation will consist of your system’s network number and the machine’s unique host number. A typical Internet address is 192.9.200.44, where

192.9.200 is the network number and 44 is the machine’s host number.

For the ether address family, the address is an Ethernet address represented as

x:x:x:x:x:x where x is a hexadecimal number between 0 and FF.

If the dest_address parameter is supplied in addition to the address parameter, it specifies the address of the correspondent on the other end of a point to point link.
OPTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>Enable the use of the Address Resolution Protocol in mapping between network level addresses and link level addresses (default). This is currently implemented for mapping between TCP/IP addresses and 10Mb/s Ethernet addresses.</td>
</tr>
<tr>
<td>−arp</td>
<td>Disable the use of the Address Resolution Protocol.</td>
</tr>
<tr>
<td>auto-revarp</td>
<td>Use the Reverse Address Resolution Protocol (RARP) to automatically acquire an address for this interface.</td>
</tr>
<tr>
<td>down</td>
<td>Mark an interface “down”. When an interface is marked “down”, the system will not attempt to transmit messages through that interface. If possible, the interface will be reset to disable reception as well. This action does not automatically disable routes using the interface.</td>
</tr>
<tr>
<td>plumb</td>
<td>Open the device associated with the interface name and setup the streams needed for TCP/IP to use the device. Before this is done the interface will not show up in the output of <code>ifconfig −a</code>.</td>
</tr>
<tr>
<td>unplumb</td>
<td>Destroy any streams associated with this device and close the device. After this command is executed the device name should not show up in the output of <code>ifconfig −a</code>.</td>
</tr>
<tr>
<td>private</td>
<td>Tells the in.routed routing daemon that the interface should not be advertised.</td>
</tr>
<tr>
<td>−private</td>
<td>Specify unadvertised interfaces.</td>
</tr>
<tr>
<td>trailers</td>
<td>This flag used to cause a non-standard encapsulation of inet packets on certain link levels. Drivers supplied with this release no longer use this flag, but it is ignored for compatibility.</td>
</tr>
<tr>
<td>−trailers</td>
<td>Disable the use of a “trailer” link level encapsulation.</td>
</tr>
<tr>
<td>up</td>
<td>Mark an interface “up”. This happens automatically when setting the first address on an interface. The up option enables an interface after an <code>ifconfig down</code>, reinitializing the hardware.</td>
</tr>
<tr>
<td>broadcast address</td>
<td>(inet only.) Specify the address to use to represent broadcasts to the network. The default broadcast address is the address with a host part of all 1’s. A + (plus sign) given for the broadcast value causes the broadcast address to be reset to a default appropriate for the (possibly new) address and netmask. Note: The arguments of <code>ifconfig</code> are interpreted left to right, and therefore <code>ifconfig −a netmask + broadcast +</code> and <code>ifconfig −a broadcast + netmask +</code> may result in different values being assigned for the interfaces’ broadcast addresses.</td>
</tr>
</tbody>
</table>
metric n
Set the routing metric of the interface to \(n \), default 0. The routing metric is used by the routing protocol. Higher metrics have the effect of making a route less favorable; metrics are counted as addition hops to the destination network or host.

mtu n
Set the maximum transmission unit of the interface to \(n \). For many types of networks the mtu has an upper limit, for example, 1500 for Ethernet.

netmask mask
(inet only.) Specify how much of the address to reserve for subdividing networks into sub-networks. The mask includes the network part of the local address and the subnet part, which is taken from the host field of the address. The mask can be specified as a single hexadecimal number with a leading 0x, with a dot-notation address, or with a pseudo-network name listed in the network table `networks(4)`. The mask contains 1’s for the bit positions in the 32-bit address which are to be used for the network and subnet parts, and 0’s for the host part. The mask should contain at least the standard network portion, and the subnet field should be contiguous with the network portion. If a ‘+’ (plus sign) is given for the netmask value, the mask is looked up in the `netmasks database` using the interface network number as the key. Netmask data may be located in the local `/etc/netmasks` file, or the NIS or NIS+ `netmasks.byaddr` map. The system administrator may configure the source and lookup order in the `netmasks database` via the name service switch.

EXAMPLES
If your workstation is not attached to an Ethernet, the `ie0` interface should be marked “down” as follows:

```bash
example% ifconfig ie0 down
```

To print out the addressing information for each interface, use the following command:

```bash
example% ifconfig -a
```

To reset each interface’s broadcast address after the netmasks have been correctly set, use the next command:

```bash
example% ifconfig -a broadcast +
```

To change the Ethernet address for interface `ie0`, use the following command:

```bash
example% ifconfig ie0 ether aa:1:2:3:4:5
```

FILES
`/etc/netmasks` netmask data

SEE ALSO
`in.routed(1M), netstat(1M), ethers(3N), hosts(4), netmasks(4), networks(4), nsswitch.conf(4), arp(7)`

DIAGNOSTICS
Messages indicating the specified interface does not exist, the requested address is unknown, or the user is not privileged and tried to alter an interface’s configuration.
NOTES

It is recommended that the names broadcast, down, private, trailers, up, and the other possible option names not be selected when choosing host names. Choosing anyone of these names as host names will cause bizarre problems that can be extremely difficult to diagnose.
NAME in.comsat, comsat – biff server

SYNOPSIS /usr/sbin/in.comsat

AVAILABILITY SUNWcsu

DESCRIPTION comsat is the server process which listens for reports of incoming mail and notifies users who have requested to be told when mail arrives. It is invoked as needed by inetd(1M), and times out if inactive for a few minutes.

comsat listens on a datagram port associated with the biff service specification (see services(4)) for one line messages of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned on (by a biff y), the offset is used as a seek offset into the appropriate mailbox file, and the first 7 lines or 560 characters of the message are printed on the user’s terminal. Lines which appear to be part of the message header other than the From, To, Date, or Subject lines are not printed when displaying the message.

FILES /var/adm/utmp to find out who is logged in and on what terminals

SEE ALSO inetd(1M), services(4)

NOTES The message header filtering is prone to error.
NAME in.fingerd, fingerd – remote user information server

SYNOPSIS /usr/bin/in.fingerd

AVAILABILITY SUNWcsu

DESCRIPTION fingerd implements the server side of the Name/Finger protocol, specified in RFC 742. The Name/Finger protocol provides a remote interface to programs which display information on system status and individual users. The protocol imposes little structure on the format of the exchange between client and server. The client provides a single command line to the finger server which returns a printable reply.

fingerprintd waits for connections on TCP port 79. Once connected, it reads a single command line terminated by RETURN-LINEFEED and passes the arguments to fingerprint(1), prepended with −s. fingerprintd closes its connections as soon as the output is finished.

FILES /var/adm/utmp user and accounting information
/etc/passwd system password file
/var/adm/lastlog last login times
$HOME/.plan user’s plans
$HOME/.project user’s projects

SEE ALSO fingerprint(1)

NOTES Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program can result in meaningless attempts at option negotiation being sent to the server, which will foul up the command line interpretation. fingerprintd should be taught to filter out IAC’s and perhaps even respond negatively (IAC will not) to all option commands received.
NAME in.ftpd, ftpd – file transfer protocol server

SYNOPSIS in.ftpd [−dl] [−timeout]

DESCRIPTION in.ftpd is the Internet File Transfer Protocol (FTP) server process. The server is invoked by the Internet daemon inetd(1M) each time a connection to the FTP service (see services(4)) is made.

OPTIONS
−d Debugging information is logged to the system log daemon syslogd(1M).
−l Each FTP session is logged to the system log daemon syslogd(1M).
−timeout Set the inactivity timeout period to timeout seconds. The FTP server will timeout an inactive session after 15 minutes.

Requests The FTP server currently supports the following FTP requests; case is not distinguished.
 ABOR abort previous command
 ACCT specify account (ignored)
 ALLO allocate storage (vacuously)
 APPE append to a file
 CDUP change to parent of current working directory
 CWD change working directory
 DELE delete a file
 HELP give help information
 LIST give list files in a directory (ls −lg)
 MKD make a directory
 MODE specify data transfer mode
 NLST give name list of files in directory (ls)
 NOOP do nothing
 PASS specify password
 PASV prepare for server-to-server transfer
 PORT specify data connection port
 PWD print the current working directory
 QUIT terminate session
 RETR retrieve a file
 RMD remove a directory
 RNFR specify rename-from file name
 RNTO specify rename-to file name
 STOR store a file

1M-226 modified 18 Oct 1993
STOU store a file with a unique name
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory
XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XRMD remove a directory

The remaining FTP requests specified in RFC 959 are recognized, but not implemented.

The FTP server will abort an active file transfer only when the ABOR command is preceded by a Telnet “Interrupt Process” (IP) signal and a Telnet “Synch” signal in the command Telnet stream, as described in RFC 959.

`in.ftpd` interprets file names according to the “globbing” conventions used by `sh(1)`. This allows users to utilize the metacharacters: `* ? [] { } ~`

`in.ftpd` authenticates users according to four rules.

1) The user name must be in the password data base, `/etc/passwd`, and have a password that is not null. A password must always be provided by the client before any file operations may be performed.

2) If the user name appears in the file `/etc/ftpusers`, ftp access is denied.

3) ftp access is denied if the user’s shell (from `/etc/passwd`) is not listed in the file `/etc/shells`. If the file `/etc/shells` does not exist, then the user’s shell must be one of the following:

 `/usr/bin/sh` `/usr/bin/csh` `/usr/bin/ksh`
 `/usr/bin/jsh` `/bin/sh` `/bin/csh`
 `/bin/ksh` `/bin/jsh` `/sbin/sh`
 `/sbin/jsh`

4) If the user name is “anonymous” or “ftp”, an entry for the user name ftp must be present in the password and shadow files. The user is then allowed to log in by specifying any password — by convention this is given as the user’s e-mail address (such as `user@host.Sun.COM`). Do not specify a valid shell in the password entry of the ftp user, and do not give it a valid password (use NP in the encrypted password field of the shadow file).

For anonymous ftp users, `in.ftpd` takes special measures to restrict the client’s access privileges. The server performs a chroot(2) command to the home directory of the “ftp” user. In order that system security is not breached, it is recommended that the “ftp” subtree be constructed with care; the following rules are suggested.
Make the home directory owned by `ftp` and unwritable by anyone. This directory should not be on a file system mounted with the `nosuid` option.

Make this directory owned by the super-user and unwritable by anyone. Make this a symbolic link to `ftp/usr/bin`. The program `ls(1)` must be present to support the list commands. This program should have mode 111.

Make this directory owned by the super-user and unwritable by anyone. Copy the following shared libraries from `/usr/lib` into this directory:

- `ld.so`
- `libc.so`
- `libdl.so`
- `libintl.so`
- `libw.so`
- `libnsl.so`
- `libsocket.so`
- `nss_nis.so`
- `nss_nisplus.so`
- `nss_dns.so`
- `nss_files.so`
- `straddr.so`

Make this directory owned by the super-user and unwritable by anyone. Copies of the files `passwd(4)`, `group(4)`, and `netconfig(4)` must be present for the `ls` command to work properly. These files should be mode 444.

Make this directory mode 777 and owned by `ftp`. Users should then place files which are to be accessible via the anonymous account in this directory.

Make this directory owned by the super-user and unwritable by anyone. First perform `ls −IL` on the device files listed below to determine their major and minor numbers, then use `mknod` to create them in this directory.

- `/dev/zero`
- `/dev/tcp`
- `/dev/udp`
- `/dev/ticotsord`
EXAMPLES
To set up anonymous ftp, add the following entry to the /etc/passwd file. In this case, /export/ftp was chosen to be the anonymous ftp area, and the shell is the non-existent file /nosuchshell. This prevents users from logging in as the ftp user.

```
```

Add the following entry to /etc/shadow:

```
ftp:NP:6445::::::
```

The following is a shell script that will set up the anonymous ftp area. It presumes that names are resolved using NIS.

```
#!/bin/sh
# script to setup SunOS 5.3 anonymous ftp area
#

# handle the optional command line argument
case $# in
  0) ftphome="`grep 'ftp:' /etc/passwd | cut -d: -f6`"
     ;;
  1) if [ "$1" = "start" ]; then
      ftphome="`grep 'ftp:' /etc/passwd | cut -d: -f6`"
     else
      ftphome=$1
     fi
     ;;
*) echo "Usage: $0 [anon-ftp-root]"
     exit 1
     ;;
esac

if [ -z "${ftphome}" ]; then
  echo "$0: ftphome must be non-null"
  exit 2
fi

# This script assumes that ftphome is neither / nor /usr so ...
if [ "${ftphome}" = "/" -o "${ftphome}" = "/usr" ]; then
  echo "$0: ftphome must not be / or /usr"
  exit 2
fi

# If ftphome does not exist but parent does, create ftphome
if [ ! -d ${ftphome} ]; then

modified 18 Oct 1993
# lack of -p below is intentional
mkdir ${ftphome}
fi

echo Setting up anonymous ftp area ${ftphome} for SunOS 5.3

# Ensure that the /usr/bin directory exists
if [ ! -d ${ftphome}/usr/bin ]; then
  mkdir -p ${ftphome}/usr/bin
fi

cp /usr/bin/ls ${ftphome}/usr/bin
chmod 111 ${ftphome}/usr/bin/ls

# Now set the ownership and modes to match the man page
chown root ${ftphome}/usr/bin
chmod 555 ${ftphome}/usr/bin

# this may not be the right thing to do
# but we need the bin -> usr/bin link
if [ -r ${ftphome}/bin ]; then
  mv -f ${ftphome}/bin ${ftphome}/Obin
  ln -s usr/bin ${ftphome}
fi

# Ensure that the /usr/lib and /etc directories exist
if [ ! -d ${ftphome}/usr/lib ]; then
  mkdir -p ${ftphome}/usr/lib
fi
if [ ! -d ${ftphome}/etc ]; then
  mkdir -p ${ftphome}/etc
fi

# Most of the following are needed for basic operation, except
# for libc.so.1, libnsl.so, libnss_nis.so, libsocket.so, and straddr.so which are
# needed to resolve NIS names.

cp /usr/lib/ld.so /usr/lib/ld.so.1 ${ftphome}/usr/lib

cp /usr/lib/$(lib).so.1 ${ftphome}/usr/lib
rm -f ${ftphome}/usr/lib/$(lib).so

modified 18 Oct 1993


```
ln -s ./${lib}.so.1 ${ftphome}/usr/lib/${lib}.so
done

rm -f ${ftphome}/usr/lib/straddr.so
ln -s ./straddr.so.2 ${ftphome}/usr/lib/straddr.so

cp /usr/lib/straddr.so.2 ${ftphome}/usr/lib

cp /etc/passwd /etc/group /etc/netconfig ${ftphome}/etc
chmod 555 ${ftphome}/usr/lib/*
chmod 444 ${ftphome}/etc/*

Now set the ownership and modes
chown root ${ftphome}/usr/lib ${ftphome}/etc
chmod 555 ${ftphome}/usr/lib ${ftphome}/etc

Ensure that the /dev directory exists
if [! -d ${ftphome}/dev]; then
 mkdir -p ${ftphome}/dev
fi

make device nodes. ticotsord and udp are necessary for
'ls' to resolve NIS names.
prefix="/devices/pseudo/mm@0:"

for device in zero
do
 line=`ls -l ${prefix}${device} | sed -e 's/,//'`
 major=`echo $line | awk '{print $5}'`
 minor=`echo $line | awk '{print $6}'`
 rm -f ${ftphome}/dev/${device}
 mknod ${ftphome}/dev/${device} c ${major} ${minor}
done

prefix="/devices/pseudo/clone@0:"

for device in tcp udp ticotsord
do
 line=`ls -l ${prefix}${device} | sed -e 's/,//'`
 major=`echo $line | awk '{print $5}'`
 minor=`echo $line | awk '{print $6}'`
 rm -f ${ftphome}/dev/${device}
 mknod ${ftphome}/dev/${device} c ${major} ${minor}
done
chmod 666 ${ftphome}/dev/*
```

modified 18 Oct 1993

1M-231
## Now set the ownership and modes
chown root ${ftphome}/dev
chmod 555 ${ftphome}/dev

if [ ! -d ${ftphome}/pub ]; then
    mkdir -p ${ftphome}/pub
fi
chown ftp ${ftphome}/pub
chmod 777 ${ftphome}/pub

### DIAGNOSTICS

in.ftpd logs various errors to syslogd, with a facility code of daemon.

#### Info Severity

These messages are logged only if the –I flag is specified.

FTP: connection from host at time
A connection was made to ftpd from the host host at the date and time time.

FTP: User user timed out after timeout seconds at time
The user user was logged out because they had not entered any commands after timeout seconds; the logout occurred at the date and time time.

#### Debug Severity

These messages are logged only if the –d flag is specified.

FTP: command: command
A command line containing command was read from the FTP client.

lost connection
The FTP client dropped the connection.

<--- replycode
<--- replycode--
A reply was sent to the FTP client with the reply code replycode. The next message logged will include the message associated with the reply. If a – follows the reply code, the reply is continued on later lines.

### SEE ALSO

ftp(1), ls(1), aset(1M), inetd(1M), mknod(1M), syslogd(1M), chroot(2), getsockopt(3N),
group(4), inetd.conf(4), netconfig(4), netrc(4), passwd(4), services(4)


### NOTES

The anonymous account is inherently dangerous and should be avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effective user id of the logged in user, reverting to the super-user only when binding addresses to sockets. The possible security holes have been extensively scrutinized, but are possibly incomplete.

/etc/ftpusers contains a list of users who cannot access the system; the format of the file is one user name per line.

modified 18 Oct 1993
**NAME**
in.named, named, named-xfer – Internet domain name server

**SYNOPSIS**
in.named [−b bootfile ] [ −d level ] [ −p port ]
named-xfer

**AVAILABILITY**
SUNWcsu

**DESCRIPTION**
in.named is the Internet domain name server. It is used by hosts on the Internet to provide access to the Internet distributed naming database. See RFC 1034 and RFC 1035 for more details. With no arguments, in.named reads /etc/named.boot for any initial data, and listens for queries on a privileged port.

named-xfer is called by in.named whenever in.named needs to perform a Zone Transfer. named-xfer should not be called independently.

### /etc/named.boot File Entries

The following is a sample of /etc/named.boot file entries:

```plaintext
; boot file for name server
; type domain source file or host
; domain berkeley.edu
primary berkeley.edu named.db
secondary cc.berkeley.edu 10.2.0.78 128.32.0.10
cache . named.ca
```

- The **domain** line specifies that berkeley.edu is the domain of the given server.
- The **primary** line states that the file named.db contains authoritative data for berkeley.edu. The file named.db contains data in the Zone file format, described in RFC 1035, except that all domain names are relative to the origin; in this case, berkeley.edu (see Zone File Format below for a more detailed description).
- The **secondary** line specifies that all authoritative data under cc.berkeley.edu is to be transferred from the name server at 10.2.0.78. If the transfer fails it will try 128.32.0.10, and continue for up to ten tries at that address. The secondary copy is also authoritative for the domain.
- The **cache** line specifies that data in named.ca is to be placed in the cache (typically such data as the locations of root domain servers). The file named.ca is in the same format as named.db.

Modified 13 May 1994
Zone File Format

The Zone file consists of entries of the form:

```
$INCLUDE < filename >
$ORIGIN < domain >
 < domain > < opt_ttl > < opt_class > < type > < resource_record_data >
```

where `domain` is "." for the root, "@" for the current origin, or a standard domain name. If `domain` is a standard domain name that does not end with ".", the current origin is appended to the domain. Domain names ending with "." are unmodified.

The `opt_ttl` field is an optional integer number for the time-to-live field. It defaults to zero.

The `opt_class` field is currently one token, `IN` for the Internet.

The `type` field is one of the following tokens; the data expected in the `resource_record_data` field is in parentheses.

- **A** A host address (dotted quad).
- **CNAME** The canonical name for an alias (domain).
- **HINFO** Host information (cpu_type OS_type).
- **MB** A mailbox domain name (domain).
- **MG** A mail group member (domain).
- **MINFO** Mailbox or mail list information (request_domain error_domain).
- **MR** A mail rename domain name (domain).
- **MX** A mail exchanger (domain).
- **NS** An authoritative name server (domain).
- **NULL** A null resource record (no format or data).
- **PTR** A domain name pointer (domain).
- **SOA** Marks the start of a zone of authority (5 numbers). See RFC 1035.
- **TXT** Arbitrary number of strings.
- **WKS** A well know service description (not implemented yet).

OPTIONS

- `-b bootfile` Use `bootfile` rather than `/etc/named.boot`.
- `-d level` Print debugging information. `level` is a number indicating the level of messages printed.
- `-p port` Use a different `port` number.

FILES

- `/etc/named.boot` name server configuration boot file
- `/etc/named.pid` the process ID
- `/var/tmp/named.run` debug output
- `/var/tmp/named_dump.db` dump of the name servers database

1M-234 modified 13 May 1994
### SEE ALSO

- kill(1), resolver(3N), signal(3B), resolv.conf(4)

### NOTES

The following signals have the specified effect when sent to the server process using the `kill(1)` command.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGHUP</td>
<td>Reads <code>/etc/named.boot</code> and reloads database.</td>
</tr>
<tr>
<td>SIGINT</td>
<td>Dumps the current database and cache to <code>/var/tmp/named_dump.db</code>.</td>
</tr>
<tr>
<td>SIGUSR1</td>
<td>Turns on debugging; each subsequent SIGUSR1 increments debug level.</td>
</tr>
<tr>
<td>SIGUSR2</td>
<td>Turns off debugging completely.</td>
</tr>
</tbody>
</table>
in.rarpd (1M)  Maintenance Commands  SunOS 5.4

NAME
in.rarpd, rarpd – DARPA Reverse Address Resolution Protocol server

SYNOPSIS
/usr/sbin/in.rarpd [ −d ] −a
/usr/sbin/in.rarpd [ −d ] device unit

AVAILABILITY
SUNWcsu

DESCRIPTION
in.rarpd starts a daemon that responds to Reverse Address Resolution Protocol (RARP) requests. The daemon forks a copy of itself that runs in background. It must be run as root.

RARP is used by machines at boot time to discover their Internet Protocol (IP) address. The booting machine provides its Ethernet address in a RARP request message. Using the ethers and hosts databases, in.rarpd maps this Ethernet address into the corresponding IP address which it returns to the booting machine in an RARP reply message. The booting machine must be listed in both databases for in.rarpd to locate its IP address. in.rarpd issues no reply when it fails to locate an IP address.

in.rarpd uses the STREAMS-based Data Link Provider Interface (DLPI) message set to communicate directly with the datalink device driver.

OPTIONS
−a  Get the list of available network interfaces from IP using the SIOCGIFADDR ioctl and start a RARP daemon process on each interface returned.
−d  Print assorted debugging messages while executing.

EXAMPLES
The following command starts an in.rarpd for each network interface name returned from /dev/ip:
example# /usr/sbin/in.rarpd −a

The following command starts one in.rarpd on the device /dev/le with the device instance number 0.
example# /usr/sbin/in.rarpd le 0

FILES
/etc/ethers  file or NIS+ map
/etc/hosts  file or NIS+ map
/tftpboot
/dev/ip
/dev/arp

SEE ALSO
boot(1M), ifconfig(1M), ethers(4), hosts(4), netconfig(4), dlpi(7)

1M-236  modified 14 Sep 1992
NAME

in.rdisc, rdisc – network router discovery daemon

SYNOPSIS

/usr/sbin/in.rdisc [ −a ] [ −f ] [ −s ] [ send-address ] [ receive-address ]
/usr/sbin/in.rdisc −r [ −p preference ] [ −T interval ] [ send-address ] [ receive-address ]

AVAILABILITY

SUNWcsu

DESCRIPTION

in.rdisc implements the ICMP router discovery protocol. The first form of the command is used on hosts and the second form is used on routers. On a host, in.rdisc is invoked at boot time to populate the network routing tables with default routes. On a router, it is also invoked at boot time in order to start advertising the router to all the hosts.

Host (First Form)

On a host, in.rdisc listens on the ALL_HOSTS (224.0.0.1) multicast address for ROUTER_ADVERTISE messages from routers. The received messages are handled by first ignoring those listed router addresses with which the host does not share a network. Among the remaining addresses, the ones with the highest preference are selected as default routers and a default route is entered in the kernel routing table for each one of them.

Optionally, in.rdisc can avoid waiting for routers to announce themselves by sending out a few ROUTER_SOLICITATION messages to the ALL_ROUTERS (224.0.0.2) multicast address when it is started.

A timer is associated with each router address. The address will no longer be considered for inclusion in the routing tables if the timer expires before a new advertise message is received from the router. The address will also be excluded from consideration if the host receives an advertise message with the preference being maximally negative.

Router (Second Form)

When in.rdisc is started on a router, it uses the SIOCGIFCONF ioctl (2) to find the interfaces configured into the system and it starts listening on the ALL_ROUTERS multicast address on all the interfaces that support multicast. It sends out advertise messages to the ALL_HOSTS multicast address advertising all its IP addresses. A few initial advertise messages are sent out during the first 30 seconds and after that it will transmit advertise messages approximately every 600 seconds.

When in.rdisc receives a solicitation message, it sends an advertise message to the host that sent the solicitation message.

When in.rdisc is terminated by a signal, it sends out an advertise message with the preference being maximally negative.

OPTIONS

−a

Accept all routers independent of the preference they have in their advertise messages. Normally, in.rdisc only accepts (and enters in the kernel routing tables) the router or routers with the highest preference.

modified 1 Feb 1993
−f  Run `in.rdisc` forever even if no routers are found. Normally, `in.rdisc` gives up if it has not received any `advertise` message after soliciting three times, in which case it exits with a non-zero exit code. If `−f` is not specified in the first form then `−s` must be specified.

−r  Act as a router, rather than a host.

−s  Send three `solicitation` messages initially to quickly discover the routers when the system is booted. When `−s` is specified, `in.rdisc` exits with a non-zero exit code if it can not find any routers. This can be overridden with the `−f` option.

−p `preference`  Set the preference transmitted in the `solicitation` messages. The default is zero.

−T `interval`  Set the interval between transmitting the `advertise` messages. The default time is 600 seconds.

**SEE ALSO**  `in.routed(1M), ioctl(2), icmp(7), inet(7)`

NAME

in.rexecd, rexecd – remote execution server

SYNOPSIS

in.rexecd

DESCRIPTION

in.rexecd is the server for the rexec(3N) routine. The server provides remote execution facilities with authentication based on user names and passwords. It is invoked automatically as needed by inetd(1M), and then executes the following protocol:

1) The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary stream to be used for the stderr. A second connection is then created to the specified port on the client’s machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial socket.

4) A null terminated password of at most 16 characters is retrieved on the initial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is limited by the upper bound on the size of the system’s argument list.

6) rexecd then validates the user as is done at login time and, if the authentication was successful, changes to the user’s home directory, and establishes the user and group protections of the user. If any of these steps fail the connection is aborted and a diagnostic message is returned.

7) A null byte is returned on the connection associated with the stderr and the command line is passed to the normal login shell of the user. The shell inherits the network connections established by rexecd.

SEE ALSO

inetd(1M), rexec(3N)

DIAGNOSTICS

All diagnostic messages are returned on the connection associated with the stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in step 7 above upon successful completion of all the steps prior to the command execution).

username too long
The name is longer than 16 characters.

password too long
The password is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as configured into the system).
Login incorrect.
    No password file entry for the user name existed.
Password incorrect.
    The wrong password was supplied.
No remote directory.
    The chdir command to the home directory failed.
Try again.
    A fork by the server failed.
/usr/bin/sh: ...
    The user's login shell could not be started.
NAME  
in.rlogind, rlogind – remote login server  

SYNOPSIS  
/usr/sbin/in.rlogind

AVAILABILITY  
SUNWcsu

DESCRIPTION  
in.rlogind is the server for the rlogin(1) program. The server provides a remote login facility with authentication based on privileged port numbers.  
in.rlogind is invoked by inetd(1M) when a remote login connection is established, and executes the following protocol:  

- The server checks the client’s source port. If the port is not in the range 0-1023, the server aborts the connection.  
- The server checks the client’s source address. If an entry for the client exists in both /etc/hosts and /etc/hosts.equiv, a user logging in from the client is not prompted for a password. If the address is associated with a host for which no corresponding entry exists in /etc/hosts, the user is prompted for a password, regardless of whether or not an entry for the client is present in /etc/hosts.equiv (see hosts(4) and hosts.equiv(4)).

Once the source port and address have been checked, in.rlogind allocates a pseudo-terminal and manipulates file descriptors so that the slave half of the pseudo-terminal becomes the stdin, stdout, and stderr for a login process. The login process is an instance of the login(1) program, invoked with the −r option. The login process then proceeds with the authentication process as described in in.rshd(1M); but if automatic authentication fails, it reprompts the user to login.

The parent of the login process manipulates the master side of the pseudo-terminal, operating as an intermediary between the login process and the client instance of the rlogin program. In normal operation, a packet protocol is invoked to provide Ctrl-S/ Ctrl-Q type facilities and propagate interrupt signals to the remote programs. The login process propagates the client terminal’s baud rate and terminal type, as found in the environment variable, TERM; see environ(4).

SEE ALSO  
login(1), rlogin(1), in.rshd(1M), inetd(1M), environ(4), hosts(4), hosts.equiv(4)

DIAGNOSTICS  
All diagnostic messages are returned on the connection associated with the stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1.

Hostname for your address unknown.  
No entry in the host name database existed for the client’s machine.

Try again.  
A fork by the server failed.
/usr/bin/sh: ... 
The user’s login shell could not be started.

NOTES
The authentication procedure used here assumes the integrity of each client machine and the connecting medium. This is insecure, but is useful in an “open” environment. A facility to allow all data exchanges to be encrypted should be present.
NAME

in.routed, routed – network routing daemon

SYNOPSIS

/usr/sbin/in.routed [ -s ] [ -q ] [ -t ] [ -g ] [ -S ] [ logfile ]

AVAILABILITY

SUNWcsu

DESCRIPTION

in.routed is invoked at boot time to manage the network routing tables. The routing daemon uses a variant of the Xerox NS Routing Information Protocol in maintaining up-to-date kernel routing table entries.

In normal operation, in.routed listens on udp(7) socket 520 (decimal) for routing information packets. If the host is an internetwork router, it periodically supplies copies of its routing tables to any directly connected hosts and networks.

When in.routed is started, it uses the SIOCGIFCONF ioctl(2) to find those directly connected interfaces configured into the system and marked “up” (the software loopback interface is ignored). If multiple interfaces are present, it is assumed the host will forward packets between networks. in.routed then transmits a request packet on each interface (using a broadcast packet if the interface supports it) and enters a loop, listening for request and response packets from other hosts.

When a request packet is received, in.routed formulates a reply based on the information maintained in its internal tables. The response packet contains a list of known routes, each marked with a “hop count” metric (a count of 16, or greater, is considered “infinite”). The metric associated with each route returned, provides a metric relative to the sender.

request packets received by in.routed are used to update the routing tables if one of the following conditions is satisfied:

- No routing table entry exists for the destination network or host, and the metric indicates the destination is “reachable” (that is, the hop count is not infinite).
- The source host of the packet is the same as the router in the existing routing table entry. That is, updated information is being received from the very internetwork router through which packets for the destination are being routed.
- The existing entry in the routing table has not been updated for some time (defined to be 90 seconds) and the route is at least as cost effective as the current route.
- The new route describes a shorter route to the destination than the one currently stored in the routing tables; the metric of the new route is compared against the one stored in the table to decide this.

When an update is applied, in.routed records the change in its internal tables and generates a response packet to all directly connected hosts and networks. in.routed waits a short period of time (no more than 30 seconds) before modifying the kernel’s routing tables to allow possible unstable situations to settle.

In addition to processing incoming packets, in.routed also periodically checks the routing table entries. If an entry has not been updated for 3 minutes, the entry’s metric is set to infinity and marked for deletion. Deletions are delayed an additional 60 seconds to

modified 15 Nov 1993

1M-243
insure the invalidation is propagated throughout the internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly connected hosts and networks.

In addition to the facilities described above, in.routed supports the notion of “distant” passive and active gateways. When in.routed is started up, it reads the file gateways to find gateways which may not be identified using the SIOCGIFCONF ioctl. Gateways specified in this manner should be marked passive if they are not expected to exchange routing information, while gateways marked active should be willing to exchange routing information (that is, they should have a in.routed process running on the machine). Passive gateways are maintained in the routing tables forever. Information regarding their existence is not included in any routing information transmitted. Active gateways are treated equally to network interfaces. Routing information is distributed to the gateway and if no routing information is received for a period of time, the associated route is deleted.

The gateways is comprised of a series of lines, each in the following format:

```
< net | host > filename1 gateway filename2 metric value < passive | active >
```

The net or host keyword indicates if the route is to a network or specific host.

filename1 is the name of the destination network or host. This may be a symbolic name located in networks or hosts, or an Internet address specified in “dot” notation; see inet(3N).

filename2 is the name or address of the gateway to which messages should be forwarded.

value is a metric indicating the hop count to the destination host or network.

The keyword passive or active indicates if the gateway should be treated as passive or active (as described above).

OPTIONS

- **g**
  Is used on internetwork routers to offer a route to the “default” destination. This is typically used on a gateway to the Internet, or on a gateway that uses another routing protocol whose routes are not reported to other local routers.

- **q**
  Is the opposite of the –s option.

- **s**
  Forces in.routed to supply routing information whether it is acting as an internetwork router or not.

- **S**
  If in.routed is not acting as an internetwork router it will, instead of entering the whole routing table in the kernel, only enter a default route for each internetwork router. This reduces the memory requirements without losing any routing reliability.
All packets sent or received are printed on standard output. In addition, \texttt{in.routed} will not divorce itself from the controlling terminal so that interrupts from the keyboard will kill the process. Any other argument supplied is interpreted as the name of the file in which \texttt{in.routed}'s actions should be logged. This log contains information about any changes to the routing tables and a history of recent messages sent and received which are related to the changed route.

\textbf{FILES}

\begin{itemize}
  \item /etc/gateways for distant gateways
  \item /etc/networks associations of Internet Protocol network numbers with network names
  \item /etc/hosts Internet host table
\end{itemize}

\textbf{SEE ALSO}

ioctl\texttt{(2)}, inet\texttt{(7)}, udp\texttt{(7)}

\textbf{NOTES}

The kernel’s routing tables may not correspond to those of \texttt{in.routed} for short periods of time while processes that utilize existing routes exit; the only remedy for this is to place the routing process in the kernel.

\texttt{in.routed} should listen to intelligent interfaces, such as an IMP, and to error protocols, such as ICMP, to gather more information.
NAME
in.rshd, rshd – remote shell server

SYNOPSIS
in.rshd host.port

DESCRIPTION
in.rshd is the server for the rsh(1) program. The server provides remote execution facilities with authentication based on privileged port numbers.

in.rshd is invoked by inetd(1M) each time a shell service is requested, and executes the following protocol:

1) The server checks the client’s source port. If the port is not in the range 0-1023, the server aborts the connection. The client’s host address (in hex) and port number (in decimal) are the arguments passed to in.rshd.

2) The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII number, base 10.

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary stream to be used for the stderr. A second connection is then created to the specified port on the client’s machine. The source port of this second connection is also in the range 0-1023.

4) The server checks the client’s source address. If the address is associated with a host for which no corresponding entry exists in the host name data base (see hosts(4)), the server aborts the connection.

5) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user name is interpreted as a user identity to use on the server’s machine.

6) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user name is interpreted as the user identity on the client’s machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is limited by the upper bound on the size of the system’s argument list.

8) in.rshd then validates the user according to the following steps. The remote user name is looked up in the password file and a chdir is performed to the user’s home directory. If the lookup fails, the connection is terminated. If the chdir fails, it does a chdir to / (root). If the user is not the super-user, (user ID 0), the file /etc/hosts.equiv is consulted for a list of hosts considered “equivalent”. If the client’s host name is present in this file, the authentication is considered successful. If the lookup fails, or the user is the super-user, then the file .rhosts in the home directory of the remote user is checked for the machine name and identity of the user on the client’s machine. If this lookup fails, the connection is terminated.

9) A null byte is returned on the connection associated with the stderr and the command line is passed to the normal login shell of the user. (The PATH variable is set to /usr/bin.) The shell inherits the network connections established by in.rshd.
FILES
/etc/hosts.equiv

SEE ALSO
rsh(1), inetd(1M), hosts(4)

DIAGNOSTICS
The following diagnostic messages are returned on the connection associated with stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1 in step 9 above (0 is returned above upon successful completion of all the steps prior to the command execution).

locuser too long
The name of the user on the client’s machine is longer than 16 characters.

remuser too long
The name of the user on the remote machine is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as configured into the system).

Hostname for your address unknown.
No entry in the host name database existed for the client’s machine.

Login incorrect.
No password file entry for the user name existed.

Permission denied.
The authentication procedure described above failed.

Can’t make pipe.
The pipe needed for the stderr was not created.

Try again.
A fork by the server failed.

NOTES
The authentication procedure used here assumes the integrity of each client machine and the connecting medium. This is insecure, but is useful in an “open” environment. A facility to allow all data exchanges to be encrypted should be present.
NAME in.rwhod, rwhod – system status server

SYNOPSIS /usr/sbin/in.rwhod [-m [ ttl ]]

AVAILABILITY SUNWcsu

DESCRIPTION in.rwhod is the server which maintains the database used by the rwho(1) and ruptime(1) programs. Its operation is predicated on the ability to broadcast or multicast messages on a network.

in.rwhod operates as both a producer and consumer of status information. As a producer of information it periodically queries the state of the system and constructs status messages which are broadcast or multicast on a network. As a consumer of information, it listens for other in.rwhod servers’ status messages, validating them, then recording them in a collection of files located in the directory /var/spool/rwho.

The rwho server transmits and receives messages at the port indicated in the rwho service specification, see services(4). The messages sent and received, are of the form:

```c
struct outmp {
 char out_line[8]; /* tty name */
 char out_name[8]; /* user id */
 long out_time; /* time on */
};

struct whod {
 char wd_vers;
 char wd_type;
 char wd_fill[2];
 int wd_sendtime;
 int wd_recvtime;
 char wd_hostname[32];
 int wd_loadav[3];
 int wd_boottime;
 struct whoent {
 struct outmp we_utmp;
 int we_idle;
 } wd_we[1024 / sizeof (struct whoent)];
};
```

All fields are converted to network byte order prior to transmission. The load averages are as calculated by the w(1) program, and represent load averages over the 5, 10, and 15 minute intervals prior to a server’s transmission. The host name included is that returned by the uname(2) system call. The array at the end of the message contains information about the users who are logged in to the sending machine. This information includes the contents of the utmp(4) entry for each non-idle terminal line and a value indicating the time since a character was last received on the terminal line.

1M-248 modified 12 Nov 1993
Messages received by the `rwho` server are discarded unless they originated at a `rwho` server’s port. In addition, if the host’s name, as specified in the message, contains any unprintable ASCII characters, the message is discarded. Valid messages received by `in.rwhod` are placed in files named `whod.hostname` in the directory `/var/spool/rwho`. These files contain only the most recent message, in the format described above.

Status messages are generated approximately once every 60 seconds. `in.rwhod` performs an `nlist(3E)` on `/dev/ksyms` every 10 minutes to guard against the possibility that this file is not the system image currently operating.

**OPTIONS**

```
-m [ttl]
```

Use the rwho IP multicast address (224.0.1.3) when transmitting. Receive announcements both on this multicast address and on the IP broadcast address. If `ttl` is not specified `in.rwhod` will multicast on all interfaces but with the IP TimeToLive set to 1 (that is, packets will not be forwarded by multicast routers.) If `ttl` is specified `in.rwhod` will only transmit packets on one interface and setting the IP TimeToLive to the specified `ttl`.

**FILES**

```
/dev/ksyms system namelist
/var/spool/rwho/rwhod/.* information about other machines
```

**SEE ALSO**

`ruptime(1)`, `rwho(1)`, `w(1)`, `uname(2)`, `nlist(3E)`, `services(4)`, `utmp(4)`

**WARNINGS**

This service can cause network performance problems when used by several hosts on the network. It is not run at most sites by default. If used, include the multicast option (`-m`).

**NOTES**

This service takes up progressively more network bandwidth as the number of hosts on the local net increases. For large networks, the cost becomes prohibitive.

`in.rwhod` should relay status information between networks. People often interpret the server dying as a machine going down.
<table>
<thead>
<tr>
<th>NAME</th>
<th>in.talkd, talkd – server for talk program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>in.talkd</td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>talkd is a server used by the talk(1) program. It listens at the UDP port indicated in the “talk” service description; see services(4). The actual conversation takes place on a TCP connection that is established by negotiation between the two machines involved.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>talk(1), inetd(1M), services(4)</td>
</tr>
<tr>
<td>NOTES</td>
<td>The protocol is architecture dependent.</td>
</tr>
</tbody>
</table>
**NAME**
in.telnetd, telnetd – DARPA TELNET protocol server

**SYNOPSIS**
/usr/sbin/in.telnetd

**AVAILABILITY**
SUNWcsu

**DESCRIPTION**
in.telnetd is a server that supports the DARPA standard TELNET virtual terminal protocol. in.telnetd is invoked by the internet server (see inetd(1M)), normally for requests to connect to the TELNET port as indicated by the /etc/services file (see services(4)).
in.telnetd operates by allocating a pseudo-terminal device for a client, then creating a login process which has the slave side of the pseudo-terminal as its standard input, output, and error. in.telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET protocol and passing characters between the remote client and the login process.

When a TELNET session is started up, in.telnetd sends TELNET options to the client side indicating a willingness to do remote echo of characters, to suppress go ahead, and to receive terminal type information from the remote client. If the remote client is willing, the remote terminal type is propagated in the environment of the created login process. The pseudo-terminal allocated to the client is configured to operate in “cooked” mode, and with XTABS, ICRNL, and ONLCR enabled (see termio(7)).
in.telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. in.telnetd is willing to have the remote client do: binary, terminal type, and suppress go ahead.

**SEE ALSO**
telnet(1), services(4), termio(7)


**NOTES**
Some TELNET commands are only partially implemented.
The TELNET protocol allows for the exchange of the number of lines and columns on the user’s terminal, but in.telnetd doesn’t make use of them.
Binary mode has no common interpretation except between similar operating systems
The terminal type name received from the remote client is converted to lower case.
The packet interface to the pseudo-terminal should be used for more intelligent flushing of input and output queues.
in.telnetd never sends TELNET go ahead commands.
NAME  
in.tftpd, tftpd – Internet Trivial File Transfer Protocol server

SYNOPSIS  
in.tftpd [ −s ] [ homedir ]

DESCRIPTION  
tftpd is a server that supports the Internet Trivial File Transfer Protocol (TFTP). This server is normally started by inetd(1M) and operates at the port indicated in the tftp Internet service description in the /etc/inetd.conf file. By default, the entry for in.tftpd in /etc/inetd.conf is commented out. To make in.tftpd operational, the comment character(s) must be deleted from the file. See inetd.conf(4).

Before responding to a request, the server attempts to change its current directory to homedir; the default directory is /tftpboot.

The use of tftp does not require an account or password on the remote system. Due to the lack of authentication information, in.tftpd will allow only publicly readable files to be accessed. Files may be written only if they already exist and are publicly writable. Note that this extends the concept of "public" to include all users on all hosts that can be reached through the network; this may not be appropriate on all systems, and its implications should be considered before enabling this service.

in.tftpd runs with the user ID and group ID set to [G]UID_NOBODY under the assumption that no files exist with that owner or group. However, nothing checks this assumption or enforces this restriction.

OPTIONS  
−s Secure. When specified, the directory change to homedir must succeed. The daemon also changes its root directory to homedir.

FILES  
/etc/inetd.conf

SEE ALSO  
tftp(1), inetd(1M), netconfig(4)


1M-252

modified 18 Oct 1993
NAME  
in.tnamed, tnamed – DARPA trivial name server

SYNOPSIS  
/usr/sbin/in.tnamed [ −v ]

AVAILABILITY  
SUNWcsu

DESCRIPTION  
in.tnamed is a server that supports the DARPA Name Server Protocol. The name server operates at the port indicated in the “name” service description (see services(4)), and is invoked by inetd(1M) when a request is made to the name server.

OPTIONS  
−v    Invoke the daemon in verbose mode.

SEE ALSO  
uucp(1C), inetd(1M), services(4)

NOTES  
The protocol implemented by this program is obsolete. Its use should be phased out in favor of the Internet Domain Name Service (DNS) protocol.
NAME
in.uucpd, uucpd – UUCP server

SYNOPSIS
/usr/sbin/in.uucpd [-n]

AVAILABILITY
SUNWbnuu

DESCRIPTION
in.uucpd is the server for supporting UUCP connections over networks.
in.uucpd is invoked by inetd(1M) when a UUCP connection is established (that is, a connection to the port indicated in the “uucp” service specification; see services(4)), and executes the following protocol:

1) The server prompts with login:. The uucico(1M) process at the other end must supply a username.

2) Unless the username refers to an account without a password, the server then prompts with Password:. The uucico process at the other end must supply the password for that account.

If the username is not valid, or is valid but refers to an account that does not have /usr/lib/uucp/uucico as its login shell, or if the password is not the correct password for that account, the connection is dropped. Otherwise, uucico is run, with the user ID, group ID, group set, and home directory for that account, with the environment variables USER and LOGNAME set to the specified username, and with a −u flag specifying the username. Unless the −n flag is specified, entries are made in /var/adm/utmp, /var/adm/wtmp, and /var/adm/lastlog for the username. in.uucpd must be invoked by a user with appropriate privilege (usually root) in order to be able to verify that the password is correct.

FILES
/var/adm/utmp accounting
/var/adm/wtmp accounting
/var/adm/lastlog time of last login

SEE ALSO
inetd(1M), uucico(1M), services(4)

DIAGNOSTICS
All diagnostic messages are returned on the connection, after which the connection is closed.

user read
An error occurred while reading the username.

passwd read
An error occurred while reading the password.

Login incorrect.
The username is invalid or refers to an account with a login shell other than /usr/lib/uucp/uucico, or the password is not the correct password for the account.
NAME
inetd – Internet services daemon

SYNOPSIS
inetd [−d] [−s] [−t] [−t] [configuration-file]

AVAILABILITY
SUNWcsu

DESCRIPTION
inetd is the server process for the Internet standard services. It is usually started up at
system boot time. The configuration-file lists the services that inetd is to provide. If no
configuration-file is given on the command line, inetd reads its configuration information
from the file /etc/inetd.conf. See inetd.conf(4) for more information on the format of this
file. inetd listens for service requests on the TCP or UDP ports associated with each of
the service listed in the configuration file. When a request arrives, inetd executes the
server program associated with the service.

A service can be configured to be “single-threaded”, in which case inetd waits for the
server process to exit before starting a second server process. RPC services can also be
started by inetd.

inetd provides a number of simple Internet services internally. These include echo, dis-
card, chargen (character generator), daytime (human readable time), and time (machine
readable time, in the form of the number of seconds since midnight, January 1, 1900).

inetd rereads its configuration file once when it is started and again whenever it receives
a hangup signal, SIGHUP. New services can be activated, and existing services deleted
or modified by editing the configuration file, then sending inetd a SIGHUP signal.

OPTIONS
−d Runs inetd in the foreground and enables debugging output.
−s Allows you to run inetd “stand-alone,” outside the Service Access Facility
(SAF). If the −s option is omitted, inetd will attempt to contact the service
access controller (SAC) and will exit if SAC is not already running. See
sac(1M).
−t Instructs inetd to trace the incoming connections for all of its TCP services.
It does this by logging the client’s IP address and TCP port number, along
with the name of the service, using the syslog(3) facility. UDP services can
not be traced. When tracing is enabled, inetd uses the syslog facility code
"daemon" and "notice" priority level.

SEE ALSO
in.ftpd(1M), in.rexedc(1M), in.rshd(1M), in.tftpd(1M), sac(1M), inetd.conf(4)

Postel, Jon, “Echo Protocol,” RFC 862, Network Information Center, SRI International,

Postel, Jon, “Discard Protocol,” RFC 863, Network Information Center, SRI International,

Postel, Jon, “Character Generator Protocol,” RFC 864, Network Information Center, SRI

modified 15 Dec 1993 1M-255

WARNINGS
Do not configure udp services as nowait. This will cause a race condition where the inetd program selects on the socket and the server program reads from the socket. Many server programs will be forked and performance will be severely compromised.

NOTES
For RPC services, inetd listens on all the transports (not only tcp and udp) as specified for each service in the inetd.conf(4) file.
NAME
infocmp – compare or print out terminfo descriptions

SYNOPSIS
/usr/bin/infocmp [−d] [−c] [−n] [−I] [−L] [−C] [−r] [−u] [−s d] i 1 c [−v] [−V]
[−I] [−w width] [−A directory] [−B directory] [termname . . .]

DESCRIPTION
infocmp compares a binary terminfo entry with other terminfo entries, rewrites a terminfo
description to take advantage of the use= terminfo field, or prints out a terminfo
description from the binary file (term) in a variety of formats. It displays boolean fields
first, then numeric fields, followed by the string fields. If no options are specified and
zero, or one termname is specified, the –I option is assumed. If more than one termname is
specified, the –d option is assumed.

OPTIONS
The –d, –c, and –n options can be used for comparisons. infocmp compares the terminfo
description of the first terminal termname with each of the descriptions given by
the entries for the other terminal's termname. If a capability is defined for only one of the
terminals, the value returned will depend on the type of the capability: F for boolean vari-
ables, –1 for integer variables, and NULL for string variables.

–d
Produce a list of each capability that is different between two entries. This
option is useful to show the difference between two entries, created by dif-
ferent people, for the same or similar terminals.

–c
Produce a list of each capability that is common between two entries. Capa-
bilities that are not set are ignored. This option can be used as a quick check
to see if the –u option is worth using.

–n
Produce a list of each capability that is in neither entry. If no termname is
given, the environment variable TERM will be used for both of the termnames.
This can be used as a quick check to see if anything was left out of a descrip-
tion.

The –I, –L, and –C options will produce a source listing for each terminal named.

–I
Use the terminfo names.

–L
Use the long C variable name listed in <term.h>.

–C
Use the termcap names. The source produced by the –C option may be used
directly as a termcap entry, but not all of the parameterized strings may be
changed to the termcap format. infocmp will attempt to convert most of the
parameterized information, but anything not converted will be plainly
marked in the output and commented out. These should be edited by hand.

–r
When using –C, put out all capabilities in termcap form.

If no termname is given, the environment variable TERM will be used for the terminal
name.

All padding information for strings will be collected together and placed at the beginning
of the string where termcap expects it. Mandatory padding (padding information with a
trailing '/') will become optional.
All `termcap` variables no longer supported by `terminfo`, but are derivable from other `terminfo` variables, will be displayed. Not all `terminfo` capabilities will be translated; only those variables which were part of `termcap` will normally be displayed. Specifying the `-r` option will take off this restriction, allowing all capabilities to be displayed in `termcap` form.

Note that because padding is collected to the beginning of the capability, not all capabilities are displayed. Mandatory padding is not supported. Because `termcap` strings are not as flexible, it is not always possible to convert a `terminfo` string capability into an equivalent `termcap` format. A subsequent conversion of the `termcap` file back into `terminfo` format will not necessarily reproduce the original `terminfo` source.

Some common `terminfo` parameter sequences, their `termcap` equivalents, and some terminal types which commonly have such sequences, are:

<table>
<thead>
<tr>
<th><code>terminfo</code></th>
<th><code>termcap</code></th>
<th>Representative Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>%p1%c</code></td>
<td><code>%</code></td>
<td>adm</td>
</tr>
<tr>
<td><code>%p1%d</code></td>
<td><code>%d</code></td>
<td>hp, ANSI standard, vt100</td>
</tr>
<tr>
<td><code>%p1%x%+%c</code></td>
<td><code>%+x</code></td>
<td>concept</td>
</tr>
<tr>
<td><code>%i</code></td>
<td><code>%i</code></td>
<td>ANSI standard, vt100</td>
</tr>
<tr>
<td><code>%p1%?%x&gt;%t%p1%y+%%;</code></td>
<td><code>%&gt;xy</code></td>
<td>concept</td>
</tr>
<tr>
<td><code>%p2</code> is printed before <code>%p1</code></td>
<td><code>%r</code></td>
<td>hp</td>
</tr>
</tbody>
</table>

`-u` Produce a `terminfo` source description of the first terminal `termname` which is relative to the sum of the descriptions given by the entries for the other terminals' `termnames`. It does this by analyzing the differences between the first `termname` and the other `termnames` and producing a description with `use=` fields for the other terminals. In this manner, it is possible to retrofit generic `terminfo` entries into a terminal’s description. Or, if two similar terminals exist, but were coded at different times, or by different people so that each description is a full description, using `infocmp` will show what can be done to change one description to be relative to the other.

A capability is displayed with an at-sign (@) if it no longer exists in the first `termname`, but one of the other `termname` entries contains a value for it. A capability’s value is displayed if the value in the first `termname` is not found in any of the other `termname` entries, or if the first of the other `termname` entries that has this capability gives a different value for that capability.

The order of the other `termname` entries is significant. Since the `terminfo` compiler `tic` does a left-to-right scan of the capabilities, specifying two `use=` entries that contain differing entries for the same capabilities will produce different results, depending on the order in which the entries are given. `infocmp` will flag any such inconsistencies between the other `termname` entries as they are found.
Alternatively, specifying a capability after a use= entry that contains, it will cause the
second specification to be ignored. Using infocomp to recreate a description can be a use-
ful check to make sure that everything was specified correctly in the original source
description.

Another error that does not cause incorrect compiled files, but will slow down the compi-
lation time, is specifying superfluous use= fields. infocomp will flag any superfluous
use= fields.

−s  Sorts the fields within each type according to the argument below:
    d  Leave fields in the order that they are stored in the terminfo database.
    i  Sort by terminfo name.
    l  Sort by the long C variable name.
    c  Sort by the termcap name.

If the −s option is not given, the fields are sorted alphabetically by the terminfo
name within each type, except in the case of the −C or the −L options, which cause the sorting to be done by the termcap name or the long C vari-
able name, respectively.

−v  Print out tracing information on standard error as the program runs.
−V  Print out the version of the program in use on standard error and exit.
−1  Print the fields one to a line. Otherwise, the fields are printed several to a line
to a maximum width of 60 characters.

−w width  Changes the output to width characters.

The location of the compiled terminfo database is taken from the environment variable
TERMINFOD. If the variable is not defined, or the terminal is not found in that location, the
system terminfo database, usually in /usr/share/lib/terminfo, is used. The options −A
and −B may be used to override this location.

−A directory  Set TERMINFOD for the first termname.
−B directory  Set TERMINFOD for the other termnames. With this, it is possible to
compare descriptions for a terminal with the same name located in
two different databases. This is useful for comparing descriptions
for the same terminal created by different people.

FILES
usr/share/lib/terminfo/*/  Compiled terminal description database.

SEE ALSO captoinfo(1M), tic(1M), curses(3X), terminfo(4)
NAME
init, telinit – process control initialization

SYNOPSIS
/sbin/init [ 0123456abcQqSs ]
/etc/telinit [ 0123456abcQqSs ]

AVAILABILITY
SUNWcsr

DESCRIPTION
init is a general process spawner. Its primary role is to create processes from information stored in the file /etc/inittab.

At any given time, the system is in one of eight possible run levels. A run level is a software configuration under which only a selected group of processes exists. Processes spawned by init for each of these run levels are defined in /etc/inittab. init can be in one of eight run levels, 0–6 and S or s (S and s are identical). The run level changes when a privileged user runs /sbin/init. This sends appropriate signals to the original init spawned by the operating system at boot time, saying which run level to invoke.

When the system is booted, init is invoked and the following occurs. First, it reads /etc/default/init to set environment variables. This is typically where TZ (time zone) and locale-related environments such as LANG or LC_CTYPE get set.

init then looks in /etc/inittab for the initdefault entry (see inittab(4)). If one exists, init usually uses the run level specified in that entry as the initial run level to enter. If there is no initdefault entry in /etc/inittab, init asks the user to enter a run level from the virtual system console. If an S or s is entered, init goes to the single-user state. In this state, the virtual console terminal is assigned to the user’s terminal and is opened for reading and writing. The command /sbin/su is invoked and a message is generated on the physical console saying where the virtual console has been relocated. Use either init or telinit to change the run level of the system. Note that if the shell is terminated (using an end-of-file), init only re-initializes to the single-user state if /etc/inittab does not exist.

If a 0 through 6 is entered, init enters the corresponding run level. Run levels 0, 5, and 6 are reserved states for shutting the system down. Run levels 2, 3, and 4 are available as multi-user operating states.

If this is the first time since power up that init has entered a run level other than single-user state, init first scans /etc/inittab for boot and bootwait entries (see inittab(4)). These entries are performed before any other processing of /etc/inittab takes place, providing that the run level entered matches that of the entry. In this way any special initialization of the operating system, such as mounting file systems, can take place before users are allowed onto the system. init then scans /etc/inittab and executes all other entries that are to be processed for that run level.

To spawn each process in /etc/inittab, init reads each entry and for each entry that should be respawned, it forks a child process. After it has spawned all of the processes specified by /etc/inittab, init waits for one of its descendant processes to die, a powerfail signal, or a signal from another init or telinit process to change the system’s run level. When one of these conditions occurs, init re-examines /etc/inittab.
New entries can be added to /etc/inittab at any time; however, init still waits for one of the above three conditions to occur before re-examining /etc/inittab. To get around this, init Q or init q command wakes init to re-examine /etc/inittab immediately.

When init comes up at boot time and whenever the system changes from the single-user state to another run state, init sets the ioctl(2) states of the virtual console to those modes saved in the file /etc/ioctl.syscon. This file is written by init whenever the single-user state is entered.

When a run level change request is made, init sends the warning signal (SIGTERM) to all processes that are undefined in the target run level. init waits five seconds before forcibly terminating these processes by sending a kill signal (SIGKILL).

When init receives a signal telling it that a process it spawned has died, it records the fact and the reason it died in /var/adm/utmp and /var/adm/wtmp if it exists (see who(1)). A history of the processes spawned is kept in /var/adm/wtmp.

If init receives a powerfail signal (SIGPWR) it scans /etc/inittab for special entries of the type powerfail and powerwait. These entries are invoked (if the run levels permit) before any further processing takes place. In this way init can perform various cleanup and recording functions during the powerdown of the operating system.

telinit, which is linked to /sbin/init, is used to direct the actions of init. It takes a one-character argument and signals init to take the appropriate action.

<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Go into firmware.</td>
</tr>
<tr>
<td>1</td>
<td>Put the system in system administrator mode. All file systems are mounted. Only a small set of essential kernel processes are left running. This mode is for administrative tasks such as installing optional utility packages. All files are accessible and no users are logged in on the system.</td>
</tr>
<tr>
<td>2</td>
<td>Put the system in multi-user mode. All multi-user environment terminal processes and daemons are spawned. This state is commonly referred to as the multi-user state.</td>
</tr>
<tr>
<td>3</td>
<td>Start the remote file sharing processes and daemons. Mount and advertise remote resources. Run level 3 extends multi-user mode and is known as the remote-file-sharing state.</td>
</tr>
<tr>
<td>4</td>
<td>Is available to be defined as an alternative multi-user environment configuration. It is not necessary for system operation and is usually not used.</td>
</tr>
<tr>
<td>5</td>
<td>Shut the machine down so that it is safe to remove the power. Have the machine remove power, if possible.</td>
</tr>
<tr>
<td>6</td>
<td>Stop the operating system and reboot to the state defined by the initdefault entry in /etc/inittab.</td>
</tr>
<tr>
<td>a, b, c</td>
<td>process only those /etc/inittab entries having the a, b, or c run level set. These are pseudo-states, which may be defined to run certain commands, but which do not cause the current run level to change.</td>
</tr>
</tbody>
</table>
Q, q
Re-examine /etc/inittab.

S, s
Enter single-user mode. When this occurs, the terminal which executed this command becomes the system console. This is the only run level that doesn’t require the existence of a properly formatted /etc/inittab file. If this file does not exist, then by default, the only legal run level that init can enter is the single-user mode. When the system comes up to S or s, file systems for users’ files are not mounted and only essential kernel processes are running. When the system comes down to S or s, all mounted file systems remain mounted, and all processes started by init that should only be running in multi-user mode are killed. In addition, any process that has a utmp entry will be killed. This last condition insures that all port monitors started by the SAC are killed and all services started by these port monitors, including ttymon login services, are killed. Other processes not started directly by init will remain running. For example, cron remains running.

FILES
/etc/inittab controls process dispatching by init
/var/adm/utmp accounting information
/var/adm/wtmp history of all logins since file was last created
/etc/ioctl.syscon environment variables.
/dev/console system console device
/etc/default/init

Default values can be set for the following flags in /etc/default/init.
For example: TZ=US/Pacific
TZ Either specifies the timezone information (see ctime(3C)) or the name of a timezone information file /usr/share/lib/zoneinfo.
LC_CTYPE Character characterization information.
LC_MESSAGES Message translation.
LC_MONETARY Monetary formatting information.
LC_NUMERIC Numeric formatting information.
LC_TIME Time formatting information.
LC_ALL If set, all other LC_* environmental variables take-on this value.
LANG If LC_ALL is not set, and any particular LC_* is also not set, the value of LANG is used for that particular environmental variable.

SEE ALSO
login(1), sh(1), stty(1), who(1), shutdown(1M), ttymon(1M), kill(2), ctime(3C), init-tab(4), utmp(4), utmpx(4), termio(7)

DIAGNOSTICS
If init finds that it is respawning an entry from /etc/inittab more than ten times in two minutes, assumes that there is an error in the command string in the entry, and generates an error message on the system console. It will then refuse to respawn this entry until either five minutes has elapsed or it receives a signal from a user-spawned init or telinit.
This prevents `init` from eating up system resources when someone makes a typographical error in the `inittab` file, or a program is removed that is referenced in `/etc/inittab`. When attempting to boot the system, failure of `init` to prompt for a new run level may be caused by the virtual system console being linked to a device other than the physical system console.

**NOTES**

`init` and `telinit` can be run only by a privileged user.

The `S` or `s` state must not be used indiscriminately in `/etc/inittab`. When modifying this file, it is best to avoid adding this state to any line other than `initdefault`.

If a default state is not specified in the `initdefault` entry in `/etc/inittab`, state 6 is entered. Consequently, the system will loop by going to firmware and rebooting continuously.

If the `utmp` file cannot be created when booting the system, the system will boot to state “s” regardless of the state specified in the `initdefault` entry in `/etc/inittab`. This can occur if the `/var` file system is not accessible.
NAME
install – install commands

SYNOPSIS
/usr/sbin/install −c dira [ −m mode ] [ −u user ] [ −g group ] [ −o ] [ −s ] file
/usr/sbin/install −f dirb [ −m mode ] [ −u user ] [ −g group ] [ −o ] [ −s ] file
/usr/sbin/install −n dirc [ −m mode ] [ −u user ] [ −g group ] [ −o ] [ −s ] file
/usr/sbin/install −d | −i [ −m mode ] [ −u user ] [ −g group ] [ −o ] [ −s ] dirx ...
/usr/sbin/install [ −m mode ] [ −u user ] [ −g group ] [ −o ] [ −s ] file [ dirx ... ]

AVAILABILITY
SUNWcsr

DESCRIPTION
install is most commonly used in “makefiles” (see make(1S)) to install a file in specific locations, or to create directories within a file system. Each file is installed by copying it into the appropriate directory.

install uses no special privileges to copy files from one place to another. The implications of this are:

- You must have permission to read the files to be installed.
- You must have permission to copy into the destination directory.
- You must have permission to change the modes on the final copy of the file if you want to use the −m option.
- You must be super-user if you want to specify the ownership of the installed file with the −u or −g options. If you are not the super-user, the installed file will be owned by you, regardless of who owns the original.

install prints messages telling the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install searches a set of default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for a file with the same name as file. When the first occurrence is found, install issues a message saying that it is overwriting that file with file, and proceeds to do so. If the file is not found, the program states this and exits.

If one or more directories (dirx ...) are specified after file, those directories are searched before the default directories.

OPTIONS
−c dira Install file in the directory specified by dira, if file does not yet exist. If it is found, install issues a message saying that the file already exists, and exits without overwriting it.
−f dirb Force file to be installed in given directory, even if the file already exists. If the file being installed does not already exist, the mode and owner of the new file will be set to 755 and bin, respectively. If the file already exists, the mode and owner will be that of the already existing file.
−n dirc If file is not found in any of the searched directories, it is put in the directory specified in dirc. The mode and owner of the new file will be set to 755 and bin, respectively.
−d Create a directory. Missing parent directories are created as required as in
SunOS 5.4

Maintenance Commands

install (1M)

**mkdir** 
- **p** If the directory already exists, the owner, group and mode will be set to the values given on the command line.

- **i** Ignore default directory list, searching only through the given directories (dirx ...).

- **m mode** The mode of the new file is set to mode. Set to **0755** by default.

- **u user** The owner of the new file is set to user. Only available to the super-user. Set to **bin** by default.

- **g group** The group id of the new file is set to group. Only available to the super-user. Set to **bin** by default.

- **o** If file is found, save the “found” file by copying it to **OLD** file in the directory in which it was found. This option is useful when installing a frequently used file such as **/bin/sh** or **/lib/saf/ttymon**, where the existing file cannot be removed.

- **s** Suppress printing of messages other than error messages.

**SEE ALSO** chgrp(1), chmod(1), chown(1), cp(1), make(1S), mkdir(1), chown(1M)

modified 14 Sep 1992

1M-265
NAME  install4x – install SunOS 4.1 diskless/dataless client support on Solaris 2.1 servers

SYNOPSIS  /usr/sbin/install4x [ −e export_root ] [ −m cdrom_mount_point ]

AVAILABILITY  SUNWhinst

DESCRIPTION  install4x is most commonly used after upgrading a SunOS 4.1 server to Solaris 2.1. It is used to install the components of a SunOS 4.1 system that are required to support diskless/dataless clients that existed before the converting.

The interface to install4x is interactive. If the user does not specify options on the command line, they are prompted for any required options.

OPTIONS  

−e export_root  Specify the location of the export directory, where install4x installs the SunOS 4.1 components. If unspecified, the default value is /export.

−m cdrom_mount_point  Specify the location of the CD-ROM containing the SunOS 4.1 distribution. If unspecified, the default value is /cdrom.

SEE ALSO  convert4x(1M), discover4x(1M)

SPARC: Installing Solaris Software

x86: Installing Solaris Software

1M-266  modified 17 Jul 1992
NAME
install_scripts, add_install_client, rm_install_client, setup_install_server, check – scripts used to install the Solaris software

SYNOPSIS
./add_install_client [−i IP_address] [−e Ethernet_address]
[−s server_name:path] [−c server_name:path] host_name arch

./rm_install_client host_name

./setup_install_server install_dir_path | −b boot_dir_path arch

./check [−p] install_dir_path

DESCRIPTION
These commands are located on the Solaris CD in the /cdrom/cdrom0/s0 directory. (If the Solaris CD has been copied to a local disk, these scripts will be in the path to that directory.) You can use them for a variety of installation tasks. Specifically,

- Use add_install_client and rm_install_client to add or remove clients for network installation.
- Use setup_install_server to copy the Solaris CD to a disk or to copy just the boot software of the Solaris CD to a disk (i.e., set up a boot server)
- Use check to validate the rules in a rules file (this is only necessary if you are setting up a custom JumpStart installation).

OPTIONS
add_install_client
- i Specify the IP address of the client to be installed.
- e Specify the Ethernet address of the system to be installed.
- s server_name:path This option is required only when using add_install_client from a boot server. Specify the name of the server and the absolute path of the Solaris installation image that will be used for this installation. path is either the path to a mounted Solaris CD or a path to a directory with a copy of the Solaris CD.
- c server_name:path This option is required only to specify a JumpStart directory for a custom JumpStart installation. server_name is the host name of the server with a JumpStart directory. path is the absolute path to the JumpStart directory.

host_name This is the name of the client that you are going to install.
arch This is the kernel architecture of the system you are going to install. Valid arguments are:

SYSTEMS Kernel Architecture
x86 i86pc
Sun-4/110, Sun-4/[2,3,4]xx sun4
SPARCstation1, 1+ sun4c
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rm_install_client</strong></td>
<td><code>host_name</code>         This is the name of the client that you are going to remove.</td>
</tr>
<tr>
<td><strong>setup_install_server</strong></td>
<td><code>install_dir_path</code> Specify the absolute path of the directory in which you want to copy the Solaris software.</td>
</tr>
<tr>
<td></td>
<td><code>-b boot_dir_path</code> Specify the absolute path of the directory in which you want to copy the Solaris boot software. <em>server</em> is the host name of the install server and is only required if the CD-ROM is on a remote system.</td>
</tr>
<tr>
<td></td>
<td><code>arch</code> This is the kernel architecture of the client to be installed. (See previous list for valid arguments.)</td>
</tr>
<tr>
<td><strong>check</strong></td>
<td><code>-p install_dir_path</code> Specifies the absolute path to the Solaris installation image (either the mounted Solaris CD-ROM or a copy of the Solaris CD-ROM on the local disk). Using this option ensures you are using the most recent check program to validate your rules file.</td>
</tr>
</tbody>
</table>

**EXAMPLES**

The following `add_install_client` commands add clients for network installation from a mounted Solaris CD on an install server.

```bash
example% # cd /cdrom/cdrom0/s0
example% # ./add_install_client system_1 sun4c
example% # ./add_install_client system_2 i86pc
```

The following `add_install_client` commands add clients for network installation from a mounted Solaris CD on an install server. The `-c` option specifies a server and path to a JumpStart directory that has a rules and profile files for performing a custom JumpStart installation.

```bash
example% # cd /cdrom/cdrom0/s0
example% # ./add_install_client -c install_server:/jumpstart system_1
example% # ./add_install_client -c install_server:/jumpstart system_2
```
The following `rm_install_client` commands remove system information about the named clients on the install server.

```
example% # cd /cdrom/cdrom0/s0
example% # ./rm_install_client holmes
example% # ./rm_install_client watson
```

The following `setup_install_server` command copies the mounted Solaris CD to a directory named `/export/install` on the local disk. (This requires approximately 200 Mbytes of disk space.)

```
example% # cd /cdrom/cdrom0/s0
example% # ./setup_install_server /export/install
```

The following `setup_install_server` command copies the boot software of a mounted Solaris CD to a directory named `/boot_dir` on system that is going to be a boot server for a subnet. You must enter the command once for each client architecture to be installed on the subnet.

```
example% # cd /cdrom/cdrom0/s0
example% # ./setup_install_server -b /boot_dir sun4c
example% # ./setup_install_server -b /boot_dir sun4m
```

The following `check` command validates the syntax of the rules file used for a custom JumpStart installation.

```
example% # cd jumpstart_dir_path
example% # ./check -p /cdrom/cdrom0/s0
```
NAME  installboot – install bootblocks in a disk partition

SPARC SYNOPSIS  /usr/sbin/installboot bootblk raw-disk-device

x86 SYNOPSIS  /usr/sbin/installboot pboot bootblk raw-disk-device

AVAILABILITY  SUNWcsu

DESCRIPTION  The boot(1M) program is loaded from disk by bootblock code which resides in the appropriate boot area of a disk partition. bootblk is the name of the bootblock code. raw-disk-device is the name of the disk device onto which the bootblock code is to be installed; it must be a character device which is readable and writable. Naming conventions for a SCSI drive are c?t?d?s? and c?d?s? for an IDE drive.

SPARC EXAMPLES  The ufs bootblock is in /usr/lib/fs/ufs/bootblk. To install the bootblock on slice 0 of target 0 on controller 1, use:

    example# /usr/sbin/installboot /usr/lib/fs/ufs/bootblk
    /dev/rdsk/c1t0d0s0

x86 EXAMPLES  The ufs bootblock is in /usr/lib/fs/ufs/pboot. To install the bootblock on slice 2 of target 0 on controller 1, use:

    example# /usr/sbin/installboot /usr/lib/fs/ufs/pboot
    /dev/rdsk/c1t0d0s2

SEE ALSO  od(1), boot(1M), init(1M), kadb(1M), kernel(1M), reboot(1M), rpc.bootparamd(1M), init.d(4), SPARC: Installing Solaris Software, x86: Installing Solaris Software

SPARC only  monitor(1M)

WARNINGS  installboot will fail if the bootblk or pboot files don’t exist or if the raw disk device isn’t a character device.
NAME
installf – add a file to the software installation database

SYNOPSIS
installf [ -c class ] pkginst pathname [ ftype [ major minor ] [ mode owner group ] ]
installf -f [ -c class ] pkginst

AVAILABILITY
SUNWcsu

DESCRIPTION
installf informs the system that a pathname not listed in the pkgmap(4) file is being created or modified. It should be invoked before any file modifications have occurred.

When the second synopsis is used, the pathname descriptions will be read from standard input. These descriptions are the same as would be given in the first synopsis but the information is given in the form of a list. The descriptions should be in the form: pathname [ ftype [ major minor ] [ mode owner group ] ].

After all files have been appropriately created and/or modified, installf should be invoked with the -f synopsis to indicate that installation is final. Links will be created at this time and, if attribute information for a pathname was not specified during the original invocation of installf, or was not already stored on the system, the current attribute values for the pathname will be stored. Otherwise, installf verifies that attribute values match those given on the command line, making corrections as necessary. In all cases, the current content information is calculated and stored appropriately.

OPTIONS
-c class  Class to which installed objects should be associated. Default class is none.
pkginst  Name of package instance with which the pathname should be associated.
pathname  Pathname that is being created or modified.
ftype  A one-character field that indicates the file type. Possible file types include:
   b  block special device
c  character special device
d  directory
e  a file to be edited upon installation or removal
f  a standard executable or data file
l  linked file
p  named pipe
s  symbolic link
v  volatile file (one whose contents are expected to change)
x  an exclusive directory

major  The major device number. The field is only specified for block or character special devices.
minor  The minor device number. The field is only specified for block or character special devices.
**mode**
The octal mode of the file (for example, 0664). A question mark (?) indicates that the mode will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.

**owner**
The owner of the file (for example, **bin** or **root**). The field is limited to 14 characters in length. A question mark (?) indicates that the owner will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.

**group**
The group to which the file belongs (for example, **bin** or **sys**). The field is limited to 14 characters in length. A question mark (?) indicates that the group will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.

**−f**
Indicates that installation is complete. This option is used with the final invocation of installf (for all files of a given class).

**EXAMPLES**
The following example shows the use of **installf**, invoked from an optional preinstall or postinstall script:

```
create /dev/xt directory
(needs to be done before drvinstall)
installf $PKGINST /dev/xt d 755 root sys || exit 2
majno=`/usr/sbin/drvinstall --m /etc/master.d/xt
--d $BASEDIR/data/xt.o --v1.0' | |
exit 2
i=0
while [$i -lt $limit]
do
 for j in 0 1 2 3 4 5 6 7
do
 echo /dev/xtij c $majno `expr $i * 8 + $j'
 644 root sys |
 echo /dev/xtij=/dev/xt/ij
 done
 i=`expr $i + 1`
i=`expr $i + 1'
 [$i -le 9] && i="0$i" # add leading zero
done | installf $PKGINST - || exit 2
finalized installation, create links
installf $PKGINST - || exit 2
```

**SEE ALSO**
pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), removef(1M)
NOTES

When *ftype* is specified, all applicable fields, as shown below, must be defined:

<table>
<thead>
<tr>
<th>FTYPE</th>
<th>REQUIRED FIELDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, x, d, f, v, or e</td>
<td>mode owner group</td>
</tr>
<tr>
<td>c or b</td>
<td>major minor mode owner group</td>
</tr>
</tbody>
</table>

The `installf` command will create directories, named pipes and special devices on the original invocation. Links are created when `installf` is invoked with the `−f` option to indicate installation is complete.

Links should be specified as `path1=path2`. `path1` indicates the destination and `path2` indicates the source file.

Files installed with `installf` will be placed in the class *none*, unless a class is defined with the command. Subsequently, they will be removed when the associated package is deleted. If this file should not be deleted at the same time as the package, be certain to assign it to a class which is ignored at removal time. If special action is required for the file before removal, a class must be defined with the command and an appropriate class action script delivered with the package.

When classes are used, `installf` must be used in one of the following forms:

- `installf −c class1 . . .`
- `installf −f −c class1 . . .`
- `installf −c class2 . . .`
- `installf −f −c class2 . . .`
NAME

iostat – report I/O statistics

SYNOPSIS

/usr/bin/iostat [−cdDItx] [−l n] [ disk ... ] [ interval count ]

DESCRIPTION

iostat iteratively reports terminal and disk I/O activity, as well as CPU utilization. The first line of output is for all time since boot; each subsequent line is for the prior interval only.

To compute this information, the kernel maintains a number of counters. For each disk, the kernel counts reads, writes, bytes read, and bytes written. The kernel also takes hi-res time stamps at queue entry and exit points, which allows it to keep track of the residence time and cumulative residence-length product for each queue. Using these values, iostat produces highly accurate measures of throughput, utilization, queue lengths, transaction rates and service time. For terminals collectively, the kernel simply counts the number of input and output characters.

For more general system statistics, use sar(1), sar(1M), or vmstat(1M).

See Peripherals Administration for device naming conventions for disks.

OPTIONS

iostat’s activity class options default to tdc (terminal, disk, and CPU). If any activity class options are specified, the default is completely overridden. Therefore, if only −d is specified, neither terminal nor CPU statistics will be reported. The last disk option specified (−d, −D, or −x) is the only one that is used.

−c       Report the percentage of time the system has spent in user mode, in system mode, waiting for I/O, and idling.
−d       For each disk, report the number of kilobytes transferred per second, the number of transfers per second, and the average service time in milliseconds.
−D       For each disk, report the reads per second, writes per second, and percentage disk utilization.
−I       Report the counts in each interval, rather than rates (where applicable).
−t       Report the number of characters read and written to terminals per second.
−x       For each disk, report extended disk statistics. The output is in tabular form.
−l n     Limit the number of disks included in the report to n; the disk limit defaults to 4 for −d and −D, and unlimited for −x. Note: disks explicitly requested (see disk below) are not subject to this disk limit.

disk     Explicitly specify the disks to be reported; in addition to any explicit disks, any active disks up to the disk limit (see −l above) will also be reported.

count    Only print count reports.
interval Report once each interval seconds.
**EXAMPLES**

```
example% iostat -xtc 5 2
```

<table>
<thead>
<tr>
<th>disk</th>
<th>r/s</th>
<th>w/s</th>
<th>Kr/s</th>
<th>Kw/s</th>
<th>wait</th>
<th>actv</th>
<th>svc_t</th>
<th>%w</th>
<th>%b</th>
<th>tin</th>
<th>tout</th>
<th>us</th>
<th>sy</th>
<th>wt</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd0</td>
<td>6.2</td>
<td>0.0</td>
<td>21.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>24.1</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>84</td>
<td>4</td>
<td>94</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>sd1</td>
<td>1.8</td>
<td>0.0</td>
<td>14.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>41.6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>sd2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>sd3</td>
<td>5.6</td>
<td>0.2</td>
<td>25.7</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>22.5</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>84</td>
<td>3</td>
<td>85</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

```
example%
```

The fields have the following meanings:

- **disk**: name of the disk
- **r/s**: reads per second
- **w/s**: writes per second
- **Kr/s**: kilobytes read per second
- **Kw/s**: kilobytes written per second
- **wait**: average number of transactions waiting for service (queue length)
- **actv**: average number of transactions actively being serviced (removed from the queue but not yet completed)
- **svc_t**: average service time, in milliseconds
- **%w**: percent of time there are transactions waiting for service (queue non-empty)
- **%b**: percent of time the disk is busy (transactions in progress)

**FILES**

- `/dev/kmem`
- `/dev/ksyms`
- `/kernel/unix`

**SEE ALSO**

- `sar(1)`, `sar(1M)`, `vmstat(1M)`

*Peripheral Administration*

modified 5 Mar 1993
NAME       kadb – a kernel debugger

SPARC SYNOPSIS     ok boot device_specifier kadb
                   > b kadb [ −d ] [ boot-flags ]

x86 SYNOPSIS       > run kadb [ −d ] [ b-flags ]

AVAILABILITY       SUNWcar

DESCRIPTION       kadb is an interactive debugger with a user interface similar to that of adb(1), the assembly language debugger. kadb must be loaded prior to the standalone program it is to debug. kadb runs with the same environment as the standalone program, so it shares many resources with that program. The debugger is cognizant of and able to control multiple processors, should they be present in a system.

Unlike adb, kadb runs in the same supervisor virtual address space as the program being debugged — although it maintains a separate context. The debugger runs as a co-process that cannot be killed (no ‘:k’) or rerun (no ‘:r’). There is no signal control (no ‘:i’, ‘:t’, or ‘:Si’), although the keyboard facilities (CTRL-C, CTRL-S, and CTRL-Q) are simulated.

In the case of the UNIX system kernel, the keyboard abort sequence will suspend kernel operations and break into the debugger. On a SPARC system, the keyboard abort sequence is L1-A for the console, and BREAK for a serial line. On an x86 system, the keyboard abort sequence is CTRL-ALT-D for the console. kadb gives the prompt:

kadb[#]

where # is the CPU it is currently executing on.

Since the kernel is composed of the core image file (/kernel/unix) and the set of loadable modules already in memory, kadb has the capability of debugging all of these by traversing special data structures. kadb makes use of this feature to allow it to reference any kernel data structure, even if it resides in a loadable module. kadb will set the ‘−d’ flag by default so the program being debugged can tell it is being watched. If this flag is not given, kadb will load and immediately run the default kernel (/kernel/unix).

On a SPARC system, device_specifier specifies the device to load from (see monitor(1M)).

Most adb commands function in kadb as expected. As with ‘adb −k’, $p works when debugging kernels. The verbs ? and / are equivalent in kadb, since there is only one address space in use.

Additional Commands       kadb has the following additional commands. (Note: for the general syntax of adb commands, see adb(1).)

[ ] Like :e in adb(1), but requires only one keystroke and no RETURN character.

] Like :s in adb(1), but requires only one keystroke and no RETURN character.

1M-276 modified 2 Jun 1994


Additional x86 Commands

:a
Sets a hardware access (read or write) breakpoint using the processor hardware facilities. The syntax and action for this is the same as :b in adb(1), with the following exceptions:

- the breakpoint will trigger if any bytes from the breakpoint for length bytes are being accessed. See $l below for setting the length of a hardware breakpoint.
- breakpoints should be aligned for the length specified. Any address is valid for length 1. Addresses divisible by 2 should be used for length 2 (short). Addresses divisible by 4 should be used for length 4 (long).
- for an access to be detected it must complete the instruction that caused the access. This means that this breakpoint will stop after the access not before.
- there are a limited number of hardware breakpoint registers (4) and when set this will use one.
- since this breakpoint does not modify memory locations this will work on locations that are not in core at the time the breakpoint is set.

:w
Like :a above, but will only break on a write to the specified address.

:p
Like :a above, but will only break when an instruction at the specified address is run. Note that the $l operation has no effect on this type of breakpoint. This breakpoint will occur before the instruction is executed.

$l
Sets the default data length for an access or write breakpoint. The syntax for this command is [length]$l. Length can be set to one for byte, two for short and 4 for long word accesses. If length is left off byte will be assumed. Once set this value will affect any newly set access or write breakpoints. But will not affect ones set before this operation.

$pb
Has two additional columns that adb(1) does not have. The first is the type column which indicates soft for a normal breakpoint, access for an access hardware breakpoint, write for a write hardware breakpoint, and inst for an instruction hardware breakpoint. The second is the len column which for access and write breakpoints indicate the length of the operation to break on.

:i
Will input a byte for display from the address specified io port. For example .B 330:i will input from address port 330.

:o
Will output a byte to the address specified io port. [address],[data]:o will output data byte to address io port. For example 330,80:o will output 80 to address port 330.

modified 2 Jun 1994
OPTIONS

-d Interactive startup. If this flag is given, kadb will stop after it is loaded and display the prompt as kadb: and the name of the default program to debug. For example:

kadb: /kernel/unix

The user may either press Return to use the default, or backspace and type in the name of another program to debug.

boot-flags

You can specify boot flags as arguments when invoking kadb. Boot flags are passed to the program being debugged. See the manual page boot(1M) for relevant boot flags.

USAGE

Kernel Macros

As with adb, macros can be compiled and used with kadb, but they must be linked into kadb directly and not read from a file at runtime. The $M command lists macros currently compiled into kadb.

FILES

/kadb the debugger itself
/kernel/unix the default kernel

SEE ALSO adb(1), boot(1M)

SPARC Only kernel(1M), monitor(1M)

DIAGNOSTICS

kadb gives the same cryptic response as adb.

BUGS

SPARC: kadb cannot reliably single-step over instructions which change the processor status register.

kadb has no way of displaying built in macros.
NAME
kdmconfg – configure or unconfigure keyboard, display, and mouse options for
OpenWindows and internationalization

SYNOPSIS
kdmconfg −c | −u [ −s host ] [ −v ] [ −f ]

AVAILABILITY
x86
SUNWos86r

DESCRIPTION
The kdmconfg program configures or unconfigures the /etc/defaultkb and
/etc/openwin/server/etc/OWconfig files with the keyboard, display and mouse information
relevant to a client’s machine. It can also be used to set up the display, pointer, and
keyboard entries in the bootparams database on a server machine.

The kdmconfg program is not normally run from a shell prompt, except when run with
the −s option. When configuring a client during an initial installation or reconfigure
reboot, the sysidconfg(1M) program will invoke kdmconfg with the −c option, and
when the user executes the sys-unconfig(1M) program, kdmconfg will be executed with
the −u option.

OPTIONS
The valid options are:

−c  Run the program in the configuration mode. This mode is used to create
or update the defaultkb and OWconfig files. When invoked in this way, kdmconfg first looks for
the relevant configuration information in the bootparams databases. The bootparams databases available to
the client are all of the /etc/bootparams files on servers on the same subnet as the
client, provided the server machine is running the bootparamd(1M) daemon. kdmconfg is invoked with the −c option when called by
sysidconfig.

−u  Unconfigure the system, returning it to an “out-of-the-box” state. In this
state, the factory default keyboard, mouse and display are selected as a result of removing the /etc/openwin/server/etc/OWconfig and
/etc/defaultkb files.

−s client  Set up the bootparams database on this machine for the specified client. This option presents the same screens as it does when run on a client,
but instead writes the resulting information to the /etc/bootparams file. Either the −c or the −u option must be used in conjuction with the −s
option. Also, −s implies the use of the −f option. That is, the program
will always present the screens to the user when invoked this way. This option will reconfigure the nsswitch.conf file to look for a bootparams
data base on a local server. This option is only available to the superuser.

−v  Enable verbose mode. Normally, kdmconfg will not produce any output. This option is helpful for debugging, as it records the different
actions taken by kdmconfg on stderr.

modified 8 December 1993
−f Force screens mode. When invoked with −f, no network probing will be performed. This is helpful when debugging the client’s configuration environment. Note that the −s option implies the use of −f, bypassing network probing when setting up a server.

FILES
/etc/defaultkb
/etc/openwin/server/etc/OWconfig
/etc/bootparams
/etc/nsswitch.conf

SEE ALSO admintool(1M), bootparamd(1M), sys-unconfig(1M), sysidconfig(1M), bootparams(4)

NOTES The −s option is an uncommitted option, and may be replaced by functionality in the admintool(1M) hostmanager functions in a later release of Solaris.
NAME  kerbd – generates and validates Kerberos tickets for kernel RPC

SYNOPSIS  /usr/sbin/kerbd [ −dg ]

AVAILABILITY  SUNWcsu

DESCRIPTION  kerbd is the usermode daemon which interfaces between kernel RPC and the Kerberos key distribution center (KDC) for the purposes of generating and validating Kerberos authentication tickets. In addition, kerbd maps Kerberos user names into local user and group ids. By default, all groups that the requested user belongs to will be included in the grouplist credential. kerbd is automatically started when the system enters the multi-user state.

OPTIONS  

−d  Run in debug mode. kerbd will output various information about Kerberos tickets being processed.

−g  Do not initialize the grouplist in the user credential when mapped from Kerberos’ principal name. If this option is selected, only each user’s group from the passwd entry will be included in mapped credentials.

SEE ALSO  kdestroy(1), kerberos(1), kinit(1), krb.conf(4)

modified 01 Jan 1994
NAME

kernel – UNIX system executable file containing basic operating system services

SYNOPSIS

/kernel/unix [-arsv]

AVAILABILITY

SUNWcar

DESCRIPTION

The operating system image, or kernel, is the collection of software made up of the core image file (/kernel/unix) and all of the modules loaded at any instant in time. The system will not function without a kernel to control it.

The kernel is loaded by the boot(1M) command in a machine-specific way. The kernel may be loaded from disk or CDROM ("diskfull boot") or over the network ("diskless boot"). In either case, the directories under /kernel must be readable and must contain executable code which is able to perform the required kernel service. If the −a flag is given, the user is able to supply different pathnames for the default locations of the kernel and modules.

The 'moddir' variable contains a colon-separated list of directories that the kernel searches for modules. 'moddir' can be set in the /etc/system file; it defaults to /kernel:/usr/kernel.

The kernel configuration can be controlled using the /etc/system file (see system(4)).

OPTIONS

−a  Ask the user for configuration information, such as where to find the system file, where to mount root, and even override the name of the kernel itself. Default responses will be contained in square brackets ([ ]), and the user may simply enter RETURN to use the default response (note that RETURN is labeled ENTER on some keyboards). /dev/null may be entered at the prompt which asks for the pathname of the system configuration file. See system(4).

−r  Reconfiguration boot. The system will probe all attached hardware devices and assign nodes in the file system to represent only those devices actually found. It will also configure the logical namespace in /dev as well as the physical namespace in /devices. See add_drv(1M) and rem_drv(1M) for additional information about maintaining device drivers.

−s  Boot only to init level 's'. See init(1M).

−v  Boot with verbose messages enabled. If this flag is not given, the messages are still printed, but the output is directed to the system logfile. See syslogd(1M).

SPARC EXAMPLES

To boot in single-user interactive mode, use one of the following:

ok boot −as
ok boot /kernel/unix −as
ok boot disk3 /kernel/unix −as

modified 22 Mar 1994
x86 EXAMPLES
To boot in single-user interactive mode, use one of the following:

> b -as
> b /kernel/unix -as

DIAGNOSTICS
The kernel gives various warnings and error messages. If the kernel detects an unrecoverable fault, it will panic or halt.

FILES
/kernel/unix  statically loadable portion of the kernel
/kernel/drv    loadable device drivers
/kernel/exec   modules used to exec processes
/kernel/fs     file system modules
/kernel/misc   miscellaneous system-related modules
/kernel/sched  operating system schedulers
/kernel/strmod System V STREAMS loadable modules
/kernel/sys    loadable system calls
/etc/system   system configuration file
/usr/kernel   common directory for loadable kernel modules

SEE ALSO
add_drv(1M), boot(1M), kadb(1M), rem_drv(1M), savecore(1M), syslogd(1M), system(4)

SPARC Only
monitor(1M)

DIAGNOSTICS
The kernel gives various warnings and error messages. If the kernel detects an unrecoverable fault, it will panic or halt.

BUGS
Bugs in the kernel often result in kernel panics.
Reconfiguration boot does not currently remove filesystem entries for devices that have been physically removed from the system.
NAME  keyserv – server for storing private encryption keys

SYNOPSIS  keyserv [ -d ] [ -D ] [ -n ]

AVAILABILITY  SUNWcsu

DESCRIPTION  keyserv is a daemon that is used for storing the private encryption keys of each user logged into the system. These encryption keys are used for accessing secure network services such as secure NFS and NIS+.

Normally, root’s key is read from the file /etc/.rootkey when the daemon is started. This is useful during power-fail reboots when no one is around to type a password.

OPTIONS  
- d  Disable the use of default keys for nobody.
- D  Run in debugging mode and log all requests to keyserv.
- n  Root’s secret key is not read from /etc/.rootkey. Instead, keyserv prompts the user for the password to decrypt root’s key stored in the publickey database and then stores the decrypted key in /etc/.rootkey for future use. This option is useful if the /etc/.rootkey file ever gets out of date or corrupted.

FILES  /etc/.rootkey

SEE ALSO  keylogin(1), keylogout(1), publickey(4)
NAME     killall – kill all active processes

SYNOPSIS /usr/sbin/killall [ signal ]

AVAILABILITY SUNWcsr

DESCRIPTION killall is used by shutdown(1M) to kill all active processes not directly related to the shutdown procedure.

killall terminates all processes with open files so that the mounted file systems will be unbusied and can be unmounted.

killall sends signal (see kill(1)) to the active processes. If no signal is specified, a default of 15 is used.

The killall command can be run only by the super-user.

SEE ALSO kill(1), ps(1), fuser(1M), shutdown(1M), signal(3C)
NAME
labelit – list or provide labels for file systems

SYNOPSIS
/usr/sbin/labelit [ −F FSType ] [ −V ] [ −o specific_options ] special [ operands ]

AVAILABILITY
SUNWcsu

DESCRIPTION
labelit is used to write or display labels on unmounted disk file systems or file systems
being copied to tape.
The special name should be the disk partition (for example, /dev/rdsk/c0d0s6), or the tape
device (for example, /dev/rmt/0). The device may not be on a remote machine. operands
are FSType-specific. Consult the manual page of the FSType-specific labelit command for
detailed descriptions. If no operands are specified, labelit will display the value of the
labels.

OPTIONS
−F Specify the FSType on which to operate. The FSType should either be specified
here or be determinable from /etc/vfstab by matching the special with an entry
in the table. If no matching entry is found, the default file system type
specified in /etc/default/fs will be used.
−V Echo complete command line. This option may be used to verify and validate
the command line. Additional information obtained using a /etc/vfstab
lookup is included in the output. The command is not executed.
−o Specify FSType-specific options.

FILES
/etc/vfstab list of default parameters for each file system
/etc/default/fs default local file system type. Default values can be set for the following
flags in /etc/default/fs. For example: LOCAL=ufs
LOCAL: The default partition for a command if no FSType is specified.

SEE ALSO
volcopy(1M), vfstab(4)
Manual pages for the FSType-specific modules of labelit

NOTES
This command may not be supported for all FSTypes.
NAME
labelit hsfs – provide and print labels for hsfs file systems

SYNOPSIS
/usr/sbin/labelit –F hsfs [ generic_options ] [ –o specific_options ] special

DESCRIPTION
labelit can be used to provide labels for unmounted CD-ROM images (CD-ROMs may
not be labeled, as they are read-only media).

generic_options are options supported by the generic labelit command.

If no specific_options are specified, labelit prints the current value of all label fields.
The special name should be the physical disk section (for example, /dev/dsk/c0d0s6).

OPTIONS
–o
Use one or more of the following name=value pairs separated by commas (with
no intervening spaces) to specify values for specific label fields. According to the
ISO 9660 specification, only certain sets of characters may be used to fill in these
labels. Thus, “d-characters” below refers to the characters ‘A’ through ‘Z’, the
digits ‘0’ through ‘9’, and the ‘_’ (underscore) character. “a-characters” below
refers to ‘A’ through ‘Z’, ‘0’ through ‘9’, space, and the following characters:
!"%&'()∗+-./:;<=>?_.

absfile= Abstract file identifier, d-characters, 37 characters maximum.
applid= Application identifier, d-characters, 128 characters maximum.
bibfile= Bibliographic file identifier, d-characters, 37 characters maximum.
copyfile= Copyright file identifier, d-characters, 128 maximum.
prepid= Data preparer identifier, d-characters, 128 maximum.
pubid= Publisher identifier, d-characters, 128 maximum.
sysid= System identifier, a-characters, 32 maximum.
volid= Volume identifier, d-characters, 32 maximum.
volsetid= Volume set identifier, d-characters, 128 maximum.

SEE ALSO
labelit(1M), volcopy(1M)
labelit_ufs – provide and print labels for ufs file systems

SYNOPSIS
/usr/sbin/labelit -F ufs [ generic_options ] special [ fsname volume ]

DESCRIPTION
labelit is used to write labels on unmounted disk file systems or file systems being copied
to tape. Such labels may be used to uniquely identify volumes, and are used by volume-
oriented programs such as volcopy(1M).

generic_options are options supported by the generic labelit command. See labelit(1M).
The special name should be the physical disk section (for example, /dev/dsk/c0d0s6), or
the tape (for example, /dev/rmt/0). The device may not be on a remote machine.
The fsname argument represents the mount point (for example, root, u1, and so on) of the
file system. volume may be used to represent the physical volume name.

If fsname and volume are not specified, labelit prints the current values of these labels.
Both fsname and volume are limited to six or fewer characters.

SEE ALSO
labelit(1M), volcopy(1M), fs_ufs(4)
leoconfg – initialize the Leo (ZX) Graphics Accelerator and download microcode

SYNOPSIS
/usr/sbin/leoconfg [ -c ] [ -h ] [ -i ] [ -v ] [ -d device_filename ]
   [ -f filename ] [ -g gamma_value ] [ -I microcode_directory ]
   [ -degamma8 ] DEGAMMA8 on | off ] [ -m monitor_type ]
/usr/sbin/leoconfg -G gamma_value [ -v ]
/usr/sbin/leoconfg -M monitor_type [ -v ]

DESCRIPTION
leoconfg initializes the Leo (ZX) Graphics Accelerator and downloads microcode from
the host. leoconfg is normally run as a part of the /etc/init.d/leoconfg script to down-
load the Leo microcode file and to complete Leo initialization. The standard version of
the file /etc/init.d/leoconfg runs leoconfg with the following command line options:
   /usr/sbin/leoconfg ${MONTYPE} -v -d $devpath/$inst
   -I /usr/lib
If another configuration is desired, edit the leoconfg script in the /etc/init.d/leoconfg file.
It is inadvisable to run the leoconfg command while the configured device is being used;
unpredictable results may occur. To run leoconfg, first bring the window system down.
File names may be either relative or absolute path names. Relative path names are
prepended with the path specified by -I, or the default path /usr/lib.

OPTIONS
   -c  Checks that the microcode has loaded correctly.
   -h  Display help menu of valid command arguments.
   -i  Initialize the Leo system.
   -v  Verbose. Display detailed progress reports.
   -d device_filename
      Specifies the Leo special file. The default is /dev/fbs/leo0.
   -f filename
      Specifies the microcode file. The default is leo.ucode.
   -I microcode_directory
      Specifies the directory containing the microcode files. The default is /usr/lib.
   -g gamma_value
      Specifies the gamma correction value. The default is 2.22.
−G gamma_value
Loads the gamma correction table only; does not initialize Leo or download microcode. Any other option besides −v will cause an invalid option message to be displayed.

−degamma8 on | off
Specifies automatic inverse gamma correction of 8-bit indexed color maps. This allows color maps with built-in gamma correction to work properly on Leo. The default is on.

−DEGAMMA8 on | off
Like degamma8, but only specifies automatic inverse gamma correction; does not otherwise initialize Leo or download microcode.

−m monitor_type
Specifies the monitor type, where monitor_type must be one of the following:

- 1280_76  1280 × 1024 @ 76 Hz, non-interlaced.
- 1280_67  1280 × 1024 @ 67 Hz, non-interlaced.
- 1152_76  1152 × 900 @ 76 Hz, non-interlaced.
- 1152_66  1152 × 900 @ 66 Hz, non-interlaced.
- 1024_76  1024 × 768 @ 76 Hz, non-interlaced.
- 1024_60  1024 × 768 @ 60 Hz, non-interlaced.
- stereo_108 960 × 680 @ 108 Hz, non-interlaced, stereo.
- stereo_114 960 × 680 @ 112 Hz, non-interlaced, stereo.
- pal 770 × 575 @ 50 Hz, interlaced (PAL).
- nts 640 × 480 @ 60 Hz, interlaced (NTSC).

−M monitor_type
Specifies the monitor type only; does not initialize the Leo or download microcode. Any other option besides −v will cause an invalid option message to be displayed. The monitor_type value is the same as for the −m option.

**EXAMPLES**
The following example switches the monitor type to the maximum resolution of 1280 × 1024 at 76 Hz:

```
example% /usr/sbin/leoconfig −M 1280_76 −v
```

**FILES**

- /dev/fbs leo0
  device special file
- leo.ucode
  Leo microcode file
- /usr/lib
  directory that normally contains microcode file
- /etc/init.d leoconfig
  local Leo initialization script

**SEE ALSO**
mmap(2), fbio(7), leo(7)
NAME    link, unlink – link and unlink files and directories

SYNOPSIS /usr/sbin/link file1 file2
          /usr/sbin/unlink file

AVAILABILITY SUNWcsu

DESCRIPTION The link command is used to create a file name that points to another file. file1 is the existing file, file2 is the newly-created file. Linked files and directories can be removed by the unlink command; however, it is strongly recommended that the rm and rmdir commands be used instead of the unlink command.

The only difference between ln and link and unlink is that the latter do exactly what they are told to do, abandoning all error checking. This is because they directly invoke the link and unlink system calls.

SEE ALSO ln(1), rm(1), link(2), unlink(2)

NOTES These commands can be run only by the super-user.
NAME

list_devices – list allocatable devices

SYNOPSIS

list_devices [−s] [−U uid] −l [device]
list_devices [−s] [−U uid] −n [device]
list_devices [−s] [−U uid] −u [device]

AVAILABILITY

The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION

list_devices lists the allocatable devices in the system according to specified qualifications.

The device and all device special files associated with the device are listed. The device argument is optional and if it is not present, all relevant devices are listed.

OPTIONS

−l [device]

List the pathname(s) of the device special files associated with the device that are allocatable to the current process. If device is given, list only the files associated with the specified device.

−n [device]

List the pathname(s) of device special files associated with the device that are allocatable to the current process but are not currently allocated. If device is given, list only the files associated with that device.

−s Silent. Suppresses any diagnostic output.

−u [device]

List the pathname(s) of device special files, associated with the device that are allocated to the owner of the current process. If device is given, list only the files associated with that device.

−U uid Use the user ID uid instead of the real user ID of the current process when performing the list_devices operation. Only the super user can use this option.

DIAGNOSTICS

list_devices returns an nonzero exit status in the event of an error.

FILES

/etc/security/device_allocate
/etc/security/device_maps
/etc/security/dev/*
/usr/security/lib/*

SEE ALSO

allocate(1M), bsmconv(1M), deallocate(1M), device_allocate(4), device_maps(4)
<table>
<thead>
<tr>
<th>NAME</th>
<th>listdgrp – lists members of a device group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td><code>/usr/bin/listdgrp dgroup ...</code></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>listdgrp displays the members of the device groups specified by the <code>dgroup</code> list.</td>
</tr>
<tr>
<td>ERRORS</td>
<td>This command will exit with one of the following values:</td>
</tr>
<tr>
<td></td>
<td>0 = successful completion of the task.</td>
</tr>
<tr>
<td></td>
<td>1 = command syntax incorrect, invalid option used, or internal error occurred.</td>
</tr>
<tr>
<td></td>
<td>2 = device group table could not be opened for reading.</td>
</tr>
<tr>
<td></td>
<td>3 = device group <code>dgroup</code> could not be found in the device group table.</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>To list the devices that belong to group <code>partitions</code>:</td>
</tr>
<tr>
<td></td>
<td><code>example% listdgrp partitions</code></td>
</tr>
<tr>
<td></td>
<td>root</td>
</tr>
<tr>
<td></td>
<td>swap</td>
</tr>
<tr>
<td></td>
<td>usr</td>
</tr>
<tr>
<td>FILES</td>
<td><code>/etc/dgroup.tab</code></td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>putdgrp(1M)</td>
</tr>
</tbody>
</table>
NAME
listen – network listener daemon

SYNOPSIS
/usr/lib/saf/listen [ −m devstem ] net_spec

DESCRIPTION
The listen process “listens” to a network for service requests, accepts requests when they arrive, and invokes servers in response to those service requests. The network listener process may be used with any connection-oriented network (more precisely, with any connection-oriented transport provider) that conforms to the Transport Layer Interface (TLI) Specification.

The listener internally generates a pathname for the minor device for each connection; it is this pathname that is used in the utmp entry for a service, if one is created. By default, this pathname is the concatenation of the prefix /dev/netspec with the decimal representation of the minor device number. In either case, the representation of the minor device number will be at least two digits (for example, 05 or 27), or longer when it is necessary to accommodate minor device numbers larger than 99.

SERVER INVOCATION
When a connection indication is received, the listener creates a new transport endpoint and accepts the connection on that endpoint. Before giving the file descriptor for this new connection to the server, any designated STREAMS modules are pushed and the configuration script is executed, (if one exists). This file descriptor is appropriate for use with either TLI (see t_sync(3N) ) or the sockets interface library.

By default, a new instance of the server is invoked for each connection. When the server is invoked, file descriptor 0 refers to the transport endpoint, and is open for reading and writing. File descriptors 1 and 2 are copies of file descriptor 0; no other file descriptors are open. The service is invoked with the user and group IDs of the user name under which the service was registered with the listener, and with the current directory set to the HOME directory of that user.

Alternatively, a service may be registered so that the listener will pass connections to a standing server process through a FIFO or a named STREAM, instead of invoking the server anew for each connection. In this case, the connection is passed in the form of a file descriptor that refers to the new transport endpoint. Before the file descriptor is sent to the server, the listener interprets any configuration script registered for that service using doconfig(3N), although doconfig is invoked with both the NORUN and NOASSIGN flags. The server receives the file descriptor for the connection in a strrecvfd structure using an I_RECVFD ioctl(2).

For more details about the listener and its administration, see nlsadmin(1M).

OPTIONS
−mdevstem The listener will use devstem as the prefix for the pathname.

FILES
/etc/saf/pmtag/*
SEE ALSO  nlsadmin(1M), pmadm(1M), sac(1M), sacadm(1M), ioctl(2), doconfig(3N),
nlsgetcall(3N), nlsprovider(3N), t_sync(3N), streamio(7)

NOTES  When passing a connection to a standing server, the user and group IDs contained in the
strrecvfd structure will be those for the listener (that is, they will both be 0); the user
name under which the service was registered with the listener is not reflected in these
IDs.

When operating multiple instances of the listener on a single transport provider, there is
a potential race condition in the binding of addresses during initialization of the listeners,
if any of their services have dynamically assigned addresses. This condition would
appear as an inability of the listener to bind a static-address service to its otherwise valid
address, and would result from a dynamic-address service having been bound to that
address by a different instance of the listener.
NAME  lockd – network lock daemon

SYNOPSIS  /usr/lib/nfs/lockd [ -t timeout ] [ -g graceperiod ]

DESCRIPTION  lockd processes lock requests that are either sent locally by the kernel, or remotely by another lock daemon. lockd forwards lock requests for remote data to the server site’s lock daemon through RPC/XDR. lockd then requests the status monitor daemon, statd(1M), for monitor service. The reply to the lock request will not be sent to the kernel until the status daemon and the server site’s lock daemon have replied.

If either the status monitor or server site’s lock daemon is unavailable, the reply to a lock request for remote data is delayed until all daemons become available.

When a server recovers, it waits for a grace period for all client-site lock daemons to submit reclaim requests. Client-site lock daemons, on the other hand, are notified by the status monitor daemon of the server recovery and promptly resubmits previously granted lock requests. If a lock daemon fails to secure a previously granted lock at the server site, then it sends SIGLOST to a process.

OPTIONS  
- t timeout  Use timeout seconds as the interval, instead of the default value (15 seconds) to retransmit a lock request to the remote server.
- g graceperiod  Use graceperiod seconds as the grace period duration, instead of the default value (45 seconds).

SEE ALSO  statd(1M), fcntl(2), lockf(3C), signal(3C)
NAME
lockfs – change or report file system locks

SYNOPSIS
/usr/sbin/lockfs [ -dhnuw ] [ -c string ] [ -a ] [ file-system ... ]

DESCRIPTION
lockfs is used to change and report the status of file system locks. lockfs reports the lock status and unlocks the file systems that were improperly left locked by an application such as ufsdump(1M). This could occur if ufsdump(1M) is killed using kill(1).

Using lockfs to lock a file system is discouraged because this requires extensive knowledge of SunOS internals to be used effectively and correctly.

file-system is a list of pathnames separated by white space. If file-system is not specified, and -a is specified, lockfs is run on all mounted, ufs type file systems.

When invoked with no arguments, lockfs lists the ufs file systems that are locked.

OPTIONS
You must be super-user to use any of the following options, with the exception of the -a option.

- a  Apply command to all mounted, ufs type file systems. file-system is ignored when -a is specified.

- d  delete-lock (dlock) the specified file-system. dlock suspends access that could remove directory entries.

- h  Hard-lock (hlock) the specified file-system. hlock returns an error on every access to the locked file system, and cannot be unlocked. hlocked file systems can be unmounted.

- n  Name-lock (nlock) the specified file-system. nlock suspends accesses that could change or remove existing directories entries.

- u  Unlock (ulock) the specified file-system. ulock awakens suspended accesses.

- w  Write-lock (wlock) the specified file-system. wlock suspends writes that would modify the file system. Access times are not kept while a file system is write-locked.

- c string  Accept a string that is passed as the comment field. The -c only takes affect when the lock is being set using either the d, h, n, u, or w options.

EXAMPLES
In the following examples, filesystem is the pathname of the mounted-on directory (mount point). Locktype is one of “write,” “name,” “delete,” “hard,” or “unlock.” When enclosed in parenthesis, the lock is being set. Comment is a string set by the process that last issued a lock command.
The following example shows the `lockfs` output when only the `-a` option is specified.

```
example# /usr/sbin/lockfs -a
Filesystem Locktype Comment
/ unlock
/var unlock
example#
```

The following example shows the `lockfs` output when the `-w` option is used to write lock the `/var` file system and the comment string is set using the `-c` option. The `-a` option is then specified on a separate command line.

```
example# /usr/sbin/lockfs -w -c "lockfs: write lock example" /var
example# /usr/sbin/lockfs -a
Filesystem Locktype Comment
/ unlock
/var write lockfs: write lock example
example#
```

The following example shows the `lockfs` output when the `-u` option is used to unlock the `/var` file system and the comment string is set using the `-c` option.

```
example# /usr/sbin/lockfs -u "lockfs: unlock example" /var
example# /usr/sbin/lockfs /var
Filesystem Locktype Comment
/var unlock lockfs: unlock example
example#
```

SEE ALSO `kill(1)`, `ufsdump(1M)`, `fs_ufs(4)`

File System Administration

DIAGNOSTICS

file system: Not owner
You must be root to use this command.

deadlock condition detected/avoided
A file is enabled for accounting or swapping, on file system.

deadlock condition detected/avoided
Another process is setting the lock on file system.
NAME
logins – list user and system login information

SYNOPSIS
/usr/bin/logins [−admoptux] [−g group...] [−l login...]

DESCRIPTION
This command displays information on user and system logins known to the system.
Contents of the output is controlled by the command options and can include the follow-
ing: user or system login, user id number, passwd account field value (user name or
other information), primary group name, primary group id, multiple group names, mul-
tiple group ids, home directory, login shell, and four password aging parameters. The
default information is the following: login id, user id, primary group name, primary
primary group id and the account field value. Output is sorted by user id, system logins, followed
by user logins.

OPTIONS
−a Add two password expiration fields to the display. The fields show how
many days a password can remain unused before it automatically becomes
inactive, and the date that the password will expire.
−d Selects logins with duplicate uids.
−m Displays multiple group membership information.
−o Formats output into one line of colon-separated fields.
−p Selects logins with no passwords.
−s Selects all system logins.
−t Sorts output by login instead of by uid.
−u Selects all user logins.
−x Prints an extended set of information about each selected user. The extended
information includes home directory, login shell and password aging informa-
tion, each displayed on a separate line. The password information consists
of password status (PS for password, NP for no password or LK for locked).
If the login is passworded, status is followed by the date the password was
last changed, the number of days required between changes, and the number
of days allowed before a change is required. The password aging information
shows the time interval that the user will receive a password expiration warn-
ing message (when logging on) before the password expires.
−g group Selects all users belonging to group, sorted by login. Multiple groups can be
specified as a comma-separated list.
−l login Selects the requested login. Multiple logins can be specified as a comma-
separated list. Depending on the nameservice lookup types set in
/etc/nsswitch.conf, the information can come from the /etc/passwd and
/etc/shadow files and other nameservices.

NOTES
Options may be used together. If so, any login that matches any criteria will be
displayed. When the −l and −g options are combined, a user will only be listed once,
even if the user belongs to more than one of the selected groups.

modified 5 Jul 1990 1M-299
NAME
lpadmin – configure the LP print service

SYNOPSIS
lpadmin
lpadmin -p printer options
lpadmin -x dest
lpadmin -d [ dest ]
lpadmin -S print-wheel -A alert-type [ -W minutes ] [ -Q requests ]
lpadmin -M -f form-name [ -a [ -o filebreak ] [ -t tray-number ]]

AVAILABILITY
SUNWlpu

DESCRIPTION
lpadmin configures the LP print service by defining printers and devices. It is used to add and change printers, to remove printers from service, to set or change the system default destination, to define alerts for printer faults, and to mount print wheels.

OPTIONS

Adding or Changing a Printer

The first form of the lpadmin command (lpadmin -p printer options) is used to configure a new printer or to change the configuration of an existing printer. When creating a new printer, one of three options (-v, -U, or -s) must be supplied. In addition, only one of the following may be supplied: -e, -i, or -m; if none of these three options is supplied, the model standard is used. The -h and -l options are mutually exclusive. Printer and class names may be no longer than 14 characters and must consist entirely of the characters A-Z, a-z, 0-9, dash (-) and underscore (_). If -s is specified, the following options are invalid: -A, -e, -F, -h, -i, -l, -M, -m, -o, -U, -v, and -W.

The following printer options may appear in any order.

-A alert-type [ -W minutes ]
The -A option is used to define an alert that informs the administrator when a printer fault is detected, and periodically thereafter, until the printer fault is cleared by the administrator. The alert-types are:

mail Send the alert message using mail (see mail(1)) to the administrator.
write Write the message to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is chosen arbitrarily.
quiet Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the fault has been cleared and printing resumes, messages will again be sent when another fault occurs with the printer.

showfault Attempt to execute a fault handler on each system that has a print job in the queue. The fault handler is /etc/lp/alerts/printer. It is invoked with three parameters: printer_name, date, file_name. The file_name is the name of a file containing the fault message.

none Do not send messages; any existing alert definition for the printer will be removed. No alert will be sent when the printer faults until a different
alert-type (except quiet) is used.

shell-command
   Run the shell-command each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blank spaces embedded in the command, enclose the command in quotes. Note that the mail and write values for this option are equivalent to the values mail user-name and write user-name respectively, where user-name is the current name for the administrator. This will be the login name of the person submitting this command unless he or she has used the su command to change to another user ID. If the su command has been used to change the user ID, then the user-name for the new ID is used.

list
   Display the type of the alert for the printer fault. No change is made to the alert.

The message sent appears as follows:

   The printer printer has stopped printing for the reason given below. Fix the problem and bring the printer back on line. Printing has stopped, but will be restarted in a few minutes; issue an enable command if you want to restart sooner. Unless someone issues a change request

   lp −i request-id −P ...

   to change the page list to print, the current request will be reprinted from the beginning.

   The reason(s) it stopped (multiple reasons indicate reprinted attempts):

   reason

   The LP print service can detect printer faults only through an adequate fast filter and only when the standard interface program or a suitable customized interface program is used. Furthermore, the level of recovery after a fault depends on the capabilities of the filter.

   If the printer is all, the alerting defined in this command applies to all existing printers.

   If the −W option is not used to arrange fault alerting for printer, the default procedure is to mail one message to the administrator of printer per fault. This is equivalent to specifying −W once or −W 0. If minutes is a number greater than zero, an alert will be sent at intervals specified by minutes.

−c class
   Insert printer into the specified class. class will be created if it does not already exist.

−D comment
   Save this comment for display whenever a user asks for a full description of printer (see lpsat(1)). The LP print service does not interpret this comment.

−e printer
   Copy the interface program of an existing printer, to be the interface program for
printer. (Options −i and −m may not be specified with this option.)

−F fault-recovery

This option specifies the recovery to be used for any print request that is stopped because of a printer fault, according to the value of fault-recovery:

continue    Continue printing on the top of the page where printing stopped. This requires a filter to wait for the fault to clear before automatically continuing.

beginning   Start printing the request again from the beginning.

wait        Disable printing on printer and wait for the administrator or a user to enable printing again.

During the wait, the administrator or the user who submitted the stopped print request can issue a change request that specifies where printing should resume. (See the −i option of the lp command.) If no change request is made before printing is enabled, printing resumes at the top of the page where stopped, if the filter allows; otherwise, the request is printed from the beginning.

−f allow:form-list

−f deny:form-list

Allow or deny the forms in form-list to be printed on printer. By default no forms are allowed on a new printer.

For each printer, the LP print service keeps two lists of forms: an “allow-list” of forms that may be used with the printer, and a “deny-list” of forms that may not be used with the printer. With the −f allow option, the forms listed are added to the allow-list and removed from the deny-list. With the −f deny option, the forms listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the forms in the list may be used on the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is not, the forms in the deny-list may not be used with the printer. All forms can be excluded from a printer by specifying −f deny:all. All forms can be used on a printer (provided the printer can handle all the characteristics of each form) by specifying −f allow:all.

The LP print service uses this information as a set of guidelines for determining where a form can be mounted. Administrators, however, are not restricted from mounting a form on any printer. If mounting a form on a particular printer is in disagreement with the information in the allow-list or deny-list, the administrator is warned but the mount is accepted. Nonetheless, if a user attempts to issue a print or change request for a form and printer combination that is in disagreement with the information, the request is accepted only if the form is currently mounted on the printer. If the form is later unmounted before the request can print, the request is canceled and the user is notified by mail.

If the administrator tries to specify a form as acceptable for use on a printer that doesn’t have the capabilities needed by the form, the command is rejected.
Note the other use of \(-f\), with the \(-M\) option, below.

The \(-T\) option must be invoked first with \texttt{lpadmin} to identify the printer type before the \(-f\) option can be used.

\textbf{\(-h\)} Indicate that the device associated with the printer is hardwired. If neither of the mutually exclusive options, \(-h\) and \(-l\), is specified, \(-h\) is assumed.

\textbf{\(-I\ content-type-list\)}

Allow printer to handle print requests with the content types listed in a \texttt{content-type-list}. If the list includes names of more than one type, the names must be separated by commas or blank spaces. (If they are separated by blank spaces, the entire list must be enclosed in double quotes.)

The type \texttt{simple} is recognized as the default content type for files in the UNIX system. A \texttt{simple} type of file is a data stream containing only printable ASCII characters and the following control characters.

<table>
<thead>
<tr>
<th>Control Character</th>
<th>Octal Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>backspace</td>
<td>10\textsubscript{8}</td>
<td>move back one character, except at beginning of line</td>
</tr>
<tr>
<td>tab</td>
<td>11\textsubscript{8}</td>
<td>move to next tab stop</td>
</tr>
<tr>
<td>linefeed (newline)</td>
<td>12\textsubscript{8}</td>
<td>move to beginning of next line</td>
</tr>
<tr>
<td>form feed</td>
<td>14\textsubscript{8}</td>
<td>move to beginning of next page</td>
</tr>
<tr>
<td>carriage return</td>
<td>15\textsubscript{8}</td>
<td>move to beginning of current line</td>
</tr>
</tbody>
</table>

To prevent the print service from considering \texttt{simple} a valid type for the printer, specify either an explicit value (such as the printer type) in the \texttt{content-type-list}, or an empty list. If you do want \texttt{simple} included along with other types, you must include \texttt{simple} in the \texttt{content-type-list}.

Except for \texttt{simple}, each \texttt{content-type} name is freely determined by the administrator. If the printer type is specified by the \(-T\) option, then the printer type is implicitly considered to be also a valid content type.

\textbf{\(-i\ interface\)}

Establish a new interface program for \texttt{printer}. \texttt{interface} is the pathname of the new program. (The \(-e\) and \(-m\) options may not be specified with this option.)

\textbf{\(-l\)} Indicate that the device associated with \texttt{printer} is a login terminal. The LP scheduler (\texttt{lpsched}) disables all login terminals automatically each time it is started. (The \(-h\) option may not be specified with this option.)

\textbf{\(-M -f\ form-name \[-a \[-o filebreak\] \[-t\ tray-number\]\]}

Mount the form \texttt{form-name} on \texttt{printer}. Print requests that need the pre-printed form \texttt{form-name} will be printed on \texttt{printer}. If more than one printer has the form mounted and the user has specified any (with the \(-d\) option of the \texttt{lp} command) as the printer destination, then the print request will be printed on the one printer that also meets the other needs of the request.
The page length and width, and character and line pitches needed by the form are compared with those allowed for the printer, by checking the capabilities in the terminfo database for the type of printer. If the form requires attributes that are not available with the printer, the administrator is warned but the mount is accepted. If the form lists a print wheel as mandatory, but the print wheel mounted on the printer is different, the administrator is also warned but the mount is accepted.

If the −a option is given, an alignment pattern is printed, preceded by the same initialization of the physical printer that precedes a normal print request, with one exception: no banner page is printed. Printing is assumed to start at the top of the first page of the form. After the pattern is printed, the administrator can adjust the mounted form in the printer and press return for another alignment pattern (no initialization this time), and can continue printing as many alignment patterns as desired. The administrator can quit the printing of alignment patterns by typing q.

If the −o filebreak option is given, a formfeed is inserted between each copy of the alignment pattern. By default, the alignment pattern is assumed to correctly fill a form, so no formfeed is added.

If the −t tray-number option is specified, printer tray tray-number will used.

A form is “unmounted” either by mounting a new form in its place or by using the −f none option. By default, a new printer has no form mounted.

Note the other use of −f without the −M option above.

−M −S print-wheel
Mount the print-wheel on printer. Print requests that need the print-wheel will be printed on printer. If more than one printer has print-wheel mounted and the user has specified any (with the −d option of the lp command) as the printer destination, then the print request will be printed on the one printer that also meets the other needs of the request.

If the print-wheel is not listed as acceptable for the printer, the administrator is warned but the mount is accepted. If the printer does not take print wheels, the command is rejected.

A print wheel is “unmounted” either by mounting a new print wheel in its place or by using the option −S none. By default, a new printer has no print wheel mounted.

Note the other uses of the −S option without the −M option described below.

−m model
Select model interface program, provided with the LP print service, for the printer. (Options −e and −i may not be specified with this option.)
−o option

Each −o option in the list below is the default given to an interface program if the option is not taken from a preprinted form description or is not explicitly given by the user submitting a request (see lp(1)). The only −o options that can have defaults defined are as follows:

- `length`=`scaled-decimal-number`
- `width`=`scaled-decimal-number`
- `cpi`=`scaled-decimal-number`
- `lpi`=`scaled-decimal-number`
- `stty`=`'stty-option-list'`

The term `scaled-decimal-number` refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a “trailing” letter attached to the number. Three types of scaled decimal numbers can be used with the LP print service: numbers that show sizes in centimeters (marked with a trailing `c`); numbers that show sizes in inches (marked with a trailing `i`); and numbers that show sizes in units appropriate to use (without a trailing letter), that is, lines, characters, lines per inch, or characters per inch.

The first four default option values must agree with the capabilities of the type of physical printer, as defined in the terminfo database for the printer type. If they do not, the command is rejected.

The `stty-option-list` is not checked for allowed values, but is passed directly to the stty program by the standard interface program. Any error messages produced by stty when a request is processed (by the standard interface program) are mailed to the user submitting the request.

For each option not specified, the defaults for the following attributes are defined in the terminfo entry for the specified printer type.

- `length`
- `width`
- `cpi`
- `lpi`

The default for `stty` is

```
stty='9600 cs8 –cstopb –parenb ixon
–ixany opost –olcuc onlcr –ocrm1 –onocr
–onlret –ofill n10 cr0 tab0 bs0 vt0 ff0'
```

modified 22 Feb 1994
You can set any of the \(-o\) options to the default values (which vary for different types of printers), by typing them without assigned values, as follows:

\begin{verbatim}
    length=
    width=
    cpi=
    lpi=
    stty=
\end{verbatim}

\-o nobanner
  Allow a user to submit a print request specifying that no banner page be printed.

\-o banner
  Force a banner page to be printed with every print request, even when a user asks for no banner page. This is the default; you must specify \-o nobanner if you want to allow users to be able to specify \-o nobanner with the \texttt{lp} command.

\-P paper-name
  Specify a paper type list that the printer supports.

\-r class
  Remove printer from the specified class. If printer is the last member of class, then class will be removed.

\-S list
  Allow either the print wheels or aliases for character sets named in list to be used on the printer.

  If the printer is a type that takes print wheels, then list is a comma or space separated list of print wheel names. (Enclose the list with quotes if it contains blank spaces.) These will be the only print wheels considered mountable on the printer. (You can always force a different print wheel to be mounted.) Until the option is used to specify a list, no print wheels will be considered mountable on the printer, and print requests that ask for a particular print wheel with this printer will be rejected.

  If the printer is a type that has selectable character sets, then list is a comma or blank separated list of character set name “mappings” or aliases. (Enclose the list with quotes if it contains blank spaces.) Each “mapping” is of the form

  \begin{verbatim}
  known-name=alias
  \end{verbatim}

  The known-name is a character set number preceded by cs (such as cs3 for character set three) or a character set name from the terminfo database entry csnm. See terminfo(4). If this option is not used to specify a list, only the names already known from the terminfo database or numbers with a prefix of cs will be acceptable for the printer.

  If list is the word none, any existing print wheel lists or character set aliases will be removed.

  Note the other uses of the \-S with the \-M option described above.
The −T option must be invoked first with lpadmin to identify the printer type before the −S option can be used.

−s system-name[!printer-name]
Make a remote printer (one that must be accessed through another system) accessible to users on your system. system-name is the name of the remote system on which the remote printer is located; it must be listed in the systems table (/etc/lp/Systems). printer-name is the name used on the remote system for that printer. For example, if you want to access printer1 on system1, and you want it called printer2 on your system:

−p printer2 −s system1!printer1

−T printer-type-list
Identify the printer as being of one or more printer-types. Each printer-type is used to extract data from the terminfo database; this information is used to initialize the printer before printing each user’s request. Some filters may also use a printer-type to convert content for the printer. If this option is not used, the default printer-type will be unknown; no information will be extracted from terminfo so each user request will be printed without first initializing the printer. Also, this option must be used if the following are to work: −o cpi, −o lpi, −o width, and −o length options of the lpadmin and lp commands, and the −S and −f options of the lpadmin command.

If the printer-type-list contains more than one type, then the content-type-list of the −I option must either be specified as simple, as empty (−I ""), or not specified at all.

−t number-of-trays
Specify the number of trays when creating the printer.

−u allow:login-ID-list
−u deny:login-ID-list
Allow or deny the users in login-ID-list access to the printer. By default all users are allowed on a new printer. The login-ID-list argument may include any or all of the following constructs:

login-ID a user on any system
system-name:login-ID a user on system system-name
system-name!all all users on system system-name
all!login-ID a user on all systems
all all users on all systems

For each printer, the LP print service keeps two lists of users: an “allow-list” of people allowed to use the printer, and a “deny-list” of people denied access to the printer. With the −u allow option, the users listed are added to the allow-list and removed from the deny-list. With the −u deny option, the users listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the users in the list may use the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is
not, the users in the deny-list may not use the printer. All users can be denied access to the printer by specifying \texttt{−u deny:all}. All users may use the printer by specifying \texttt{−u allow:all}.

\texttt{−U dial-info}

The \texttt{−U} option allows your print service to access a remote printer. (It does not enable your print service to access a remote printer service.) Specifically, \texttt{−U} assigns the “dialing” information \texttt{dial-info} to the printer. \texttt{dial-info} is used with the \texttt{dial} routine to call the printer. Any network connection supported by the Basic Networking Utilities will work. \texttt{dial-info} can be either a phone number for a modem connection, or a system name for other kinds of connections. Or, if \texttt{−U direct} is given, no dialing will take place, because the name \texttt{direct} is reserved for a printer that is directly connected. If a system name is given, it is used to search for connection details from the file \texttt{/etc/uucp/Systems} or related files. The Basic Networking Utilities are required to support this option. By default, \texttt{−U direct} is assumed.

\texttt{−v device}

Associate a \texttt{device} with \texttt{printer}. \texttt{device} is the path name of a file that is writable by \texttt{lp}. Note that the same \texttt{device} can be associated with more than one printer.

Removing a Printer Destination

The \texttt{−x dest} option removes the destination \texttt{dest} (a printer or a class), from the LP print service. If \texttt{dest} is a printer and is the only member of a class, then the class will be deleted, too. If \texttt{dest} is \texttt{all}, all printers and classes are removed. No other options are allowed with \texttt{−x}.

Setting/Changing the System Default Destination

The \texttt{−d [dest]} option makes \texttt{dest} (an existing printer or class) the new system default destination. If \texttt{dest} is not supplied, then there is no system default destination. No other options are allowed with \texttt{−d}.

Setting an Alert for a Print Wheel

\texttt{−S print-wheel −A alert-type [−W minutes] [−Q requests]}

The \texttt{−S print-wheel} option is used with the \texttt{−A alert-type} option to define an alert to mount the print wheel when there are jobs queued for it. If this command is not used to arrange alerting for a print wheel, no alert will be sent for the print wheel. Note the other use of \texttt{−A}, with the \texttt{−p} option, above.

The \texttt{alert-types} are:

\begin{itemize}
  \item \texttt{mail} \ Send the alert message using the \texttt{mail} command to the administrator.
  \item \texttt{write} \ Write the message, using the \texttt{write} command, to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is arbitrarily chosen.
  \item \texttt{quiet} \ Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the \texttt{print-wheel} has been mounted and subsequently unmounted, messages will again be sent when the number of print requests reaches the threshold specified by the \texttt{−Q} option.
  \item \texttt{none} \ Do not send messages until the \texttt{−A} option is given again with a different \texttt{alert-type} (other than \texttt{quiet}).
\end{itemize}
shell-command

Run the shell-command each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blanks embedded in the command, enclose the command in quotes. Note that the mail and write values for this option are equivalent to the values mail user-name and write user-name respectively, where user-name is the current name for the administrator. This will be the login name of the person submitting this command unless he or she has used the su command to change to another user ID. If the su command has been used to change the user ID, then the user-name for the new ID is used.

list

Display the type of the alert for the print wheel on standard output. No change is made to the alert.

The message sent appears as follows:

The print wheel print-wheel needs to be mounted
on the printer(s):

printer (integer, requests)

integer print requests await this print wheel.

The printers listed are those that the administrator had earlier specified were candidates for this print wheel. The number integer listed next to each printer is the number of requests eligible for the printer. The number integer shown after the printer list is the total number of requests awaiting the print wheel. It will be less than the sum of the other numbers if some requests can be handled by more than one printer.

If the print-wheel is all, the alerting defined in this command applies to all print wheels already defined to have an alert.

If the −W option is not given, the default procedure is that only one message will be sent per need to mount the print wheel. Not specifying the −W option is equivalent to specifying −W once or −W 0. If minutes is a number greater than zero, an alert will be sent at intervals specified by minutes.

If the −Q option is also given, the alert will be sent when a certain number (specified by the argument requests) of print requests that need the print wheel are waiting. If the −Q option is not given, or requests is 1 or any (which are both the default), a message is sent as soon as anyone submits a print request for the print wheel when it is not mounted.

FILES

/var/spool/lp/*
/etc/lp
/etc/lp/alerts/printer fault handler for lpadmin.

SEE ALSO

enable(1), lp(1), lpstat(1), stty(1), accept(1M), lpsched(1M), lpsystem(1M), dial(3N), terminfo(4)

modified 22 Feb 1994
NAME
lpfilter – administer filters used with the LP print service

SYNOPSIS
/usr/sbin/lpfilter -f filter-name -F path-name
/usr/sbin/lpfilter -f filter-name -| -i | -x | -l

AVAILABILITY
SUNWlp

DESCRIPTION
The lpfilter command is used to add, change, delete, and list a filter used with the LP print service. These filters convert the content type of a file to a content type acceptable to a printer.

The argument all can be used instead of a filter-name with any of these options. When all is specified with the -F or - option, the requested change is made to all filters. Using all with the -i option has the effect of restoring to their original settings all filters for which predefined settings were initially available. Using the all argument with the -x option results in all filters being deleted, and using it with the -l option produces a list of all filters.

OPTIONS
-F path-name To add or change a filter. (-F path-name or - for standard input).
-f filter-name Adds filter-name to the filter table.
-i To reset an original filter to its factory setting.
-x To delete a filter.
-l To list a filter description.

USAGE
Adding or Changing a Filter

The filter named in the -f option is added to the filter table. If the filter already exists, its description is changed to reflect the new information in the input.

The filter description is taken from the path-name if the -F option is given, or from standard input if the - option is given. One of the two must be given to define or change a filter. If the filter named is one originally delivered with the LP print service, the -i option will restore the original filter description.

When an existing filter is changed with the -F or - option, items that are not specified in the new information are left as they were. When a new filter is added with this command, unspecified items are given default values. (See below.)

Filters are used to convert the content of a request into a data stream acceptable to a printer. For a given print request, the LP print service will know the following:

- the type of content in the request,
- the name of the printer,
- the type of the printer,
- the types of content acceptable to the printer, and
- the modes of printing asked for by the originator of the request.
It uses this information to find a filter or a pipeline of filters that will convert the content into a type acceptable to the printer.

Below is a list of items that provide input to this command, and a description of each item. All lists are comma or space separated.

**Input types:** content-type-list
**Output types:** content-type-list
**Printer types:** printer-type-list
**Printers:** printer-list
**Filter type:** filter-type
**Command:** shell-command
**Options:** template-list

**Input types**
This gives the types of content that can be accepted by the filter. (The default is any.)

**Output types**
This gives the types of content that the filter can produce from any of the input content types. (The default is any.)

**Printer types**
This gives the type of printers for which the filter can be used. The LP print service will restrict the use of the filter to these types of printers. (The default is any.)

**Printers**
This gives the names of the printers for which the filter can be used. The LP print service will restrict the use of the filter to just the printers named. (The default is any.)

**Filter type**
This marks the filter as a slow filter or a fast filter. Slow filters are generally those that take a long time to convert their input. They are run while unconnected to a printer, to keep the printers from being tied up while the filter is running. If a listed printer is on a remote system, the filter type for it must have the value slow. Fast filters are generally those that convert their input quickly, or those that must be connected to the printer when run. These will be given to the interface program to run while connected to the physical printer.

**Command**
This specifies which program to run to invoke the filter. The full program pathname as well as fixed options must be included in the shell-command; additional options are constructed, based on the characteristics of each print request and on the **Options** field. A command must be given for each filter.

The command must accept a data stream as standard input and produce the converted data stream on its standard output. This allows filter pipelines to be constructed to convert data not handled by a single filter.
Options

This is a comma separated list of templates used by the LP print service to construct options to the filter from the characteristics of each print request listed in the table later.

In general, each template is of the following form:

\[ \text{keyword pattern} = \text{replacement} \]

The \textit{keyword} names the characteristic that the template attempts to map into a filter-specific option; each valid \textit{keyword} is listed in the table below.

A \textit{pattern} is one of the following: a literal pattern of one of the forms listed in the table, a single asterisk (*), or a regular expression. If \textit{pattern} matches the value of the characteristic, the template fits and is used to generate a filter specific option.

The \textit{replacement} is what will be used as the option.

Regular expressions are the same as those found in the \texttt{ed}(1) or \texttt{vi}(1) commands. This includes the \texttt{\(...\)} and \texttt{\n} constructions, which can be used to extract portions of the \textit{pattern} for copying into the \textit{replacement}, and the \&, which can be used to copy the entire \textit{pattern} into the \textit{replacement}.

The \textit{replacement} can also contain a *; it too, is replaced with the entire \textit{pattern}, just like the \& of \texttt{ed}(1).

<table>
<thead>
<tr>
<th>\textbf{lp Option}</th>
<th>\textbf{Characteristic}</th>
<th>\textbf{keyword}</th>
<th>\textbf{Possible patterns}</th>
</tr>
</thead>
<tbody>
<tr>
<td>–T</td>
<td>Content type (input)</td>
<td>INPUT</td>
<td>content-type</td>
</tr>
<tr>
<td>N/A</td>
<td>Content type (output)</td>
<td>OUTPUT</td>
<td>content-type</td>
</tr>
<tr>
<td>N/A</td>
<td>Printer type</td>
<td>TERM</td>
<td>printer-type</td>
</tr>
<tr>
<td>–d</td>
<td>Printer name</td>
<td>PRINTER</td>
<td>printer-name</td>
</tr>
<tr>
<td>–f, –o cpi=</td>
<td>Character pitch</td>
<td>CPI</td>
<td>integer</td>
</tr>
<tr>
<td>–f, –o lpi=</td>
<td>Line pitch</td>
<td>LPI</td>
<td>integer</td>
</tr>
<tr>
<td>–f, –o length=</td>
<td>Page length</td>
<td>LENGTH</td>
<td>integer</td>
</tr>
<tr>
<td>–f, –o width=</td>
<td>Page width</td>
<td>WIDTH</td>
<td>integer</td>
</tr>
<tr>
<td>–P</td>
<td>Pages to print</td>
<td>PAGES</td>
<td>page-list</td>
</tr>
<tr>
<td>–S</td>
<td>Character set</td>
<td>CHARSET</td>
<td>character-set-name</td>
</tr>
<tr>
<td>–f</td>
<td>Print wheel</td>
<td>CHARSET</td>
<td>print-wheel-name</td>
</tr>
<tr>
<td>–f</td>
<td>Form name</td>
<td>FORM</td>
<td>form-name</td>
</tr>
<tr>
<td>–y</td>
<td>Modes</td>
<td>MODES</td>
<td>mode</td>
</tr>
<tr>
<td>–n</td>
<td>Number of copies</td>
<td>COPIES</td>
<td>integer</td>
</tr>
</tbody>
</table>
EXAMPLES

For example, the template

\texttt{MODES\ landscape = --l}

shows that if a print request is submitted with the \texttt{--y\ landscape} option, the filter will be given the option \texttt{--l}. As another example, the template

\texttt{TERM\ * = --T\ *}

shows that the filter will be given the option \texttt{--T\ printer-type} for whichever \texttt{printer-type} is associated with a print request using the filter.

As a last example, consider the template

\texttt{MODES\ prwidth\=\(.\star\) = --w\1}

Suppose a user gives the command

\texttt{lp\ --y\ prwidth=10}

From the table above, the LP print service determines that the \texttt{--y} option is handled by a \texttt{MODES} template. The \texttt{MODES} template here works because the pattern \texttt{prwidth\=\(.\star\)} matches the \texttt{prwidth=10} given by the user. The replacement \texttt{--w\1} causes the LP print service to generate the filter option \texttt{--w10}.

If necessary, the LP print service will construct a filter pipeline by concatenating several filters to handle the user’s file and all the print options. (See \texttt{sh(1)} for a description of a pipeline.) If the print service constructs a filter pipeline, the \texttt{INPUT} and \texttt{OUTPUT} values used for each filter in the pipeline are the types of input and output for that filter, not for the entire pipeline.

Deleting a Filter

The \texttt{--x} option is used to delete the filter specified in \texttt{filter-name} from the LP filter table.

Listing a Filter

The \texttt{--l} option is used to list the description of the filter named in \texttt{filter-name}. If the command is successful, the following message is sent to standard output:

\begin{verbatim}
Input types: content-type-list
Output types: content-type-list
Printer types: printer-type-list
Printers: printer-list
Filter type: filter-type
Command: shell-command
Options: template-list
\end{verbatim}

If the command fails, an error message is sent to standard error.

SEE ALSO \texttt{ed(1), lp(1), vi(1), lpadmin(1M)}

\textit{User Accounts, Printers, and Mail Administration}
NAME
lpforms – administer forms used with the LP print service

SYNOPSIS
lpforms 
lpforms −f form-name option

lpforms −f form-name −A alert-type [ −P paper-name [ −d ] ] [ −Q requests ]
[ −W minutes ]

AVAILABILITY
SUNWlpu

DESCRIPTION
The lpforms command administers the use of preprinted forms, such as company letterhead paper, with the LP print service. A form is specified by its form-name. Users may specify a form when submitting a print request (see lp(1)). The argument all can be used instead of form-name with either of the command lines shown above. The first command line allows the administrator to add, change, and delete forms, to list the attributes of an existing form, and to allow and deny users access to particular forms. The second command line is used to establish the method by which the administrator is alerted that the form form-name must be mounted on a printer.

OPTIONS
−f formname Specify a form.

The first form of lpforms requires that one of the following option (−, −l, −F, −x) must be used:
−F pathname To add or change form form-name, as specified by the information in pathname.
− To add or change form form-name, as specified by the information from standard input.
−x To delete form form-name (this option must be used separately; it may not be used with any other option).
−l To list the attributes of form form-name.

The second form of the lpforms command requires the −A alert-type option. The other options are optional.
−A alert-type Defines an alert to mount the form when there are queued jobs which need it.
−P paper-name [ −d ] Specify the paper name when creating the form. If −d is specified, this paper is the default.
−Q requests An alert will be sent when a certain number of print requests that need the form are waiting.
−W minutes An alert will be sent at intervals specified by minutes.

USAGE
Adding or Changing a Form

The −F pathname option is used to add a new form, form-name, to the LP print service, or to change the attributes of an existing form. The form description is taken from pathname if the −F option is given, or from the standard input if the − option is used. One of these
two options must be used to define or change a form. 

*pathname* is the path name of a file that contains all or any subset of the following information about the form.

- **Page length**: `scaled−decimal−number_1`
- **Page width**: `scaled−decimal−number_2`
- **Number of pages**: integer
- **Line pitch**: `scaled−decimal−number_3`
- **Character pitch**: `scaled−decimal−number_4`
- **Character set choice**: `character-set/print-wheel [mandatory]`
- **Ribbon color**: `ribbon-color`
- **Comment**: `comment`
- **Alignment pattern**: `[content-type]` `content`

The term “scaled-decimal-number” refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a “trailing” letter attached to the number. Three types of scaled decimal numbers can be used with the LP print service: numbers that show sizes in centimeters (marked with a trailing `c`); numbers that show sizes in inches (marked with a trailing `i`); and numbers that show sizes in units appropriate to use (without a trailing letter); lines, characters, lines per inch, or characters per inch.

Except for the last two lines, the above lines may appear in any order. The **Comment:** and **comment** items must appear in consecutive order but may appear before the other items, and the **Alignment pattern:** and the **content** items must appear in consecutive order at the end of the file. Also, the **comment** item may not contain a line that begins with any of the key phrases above, unless the key phrase is preceded with a > sign. Any leading > sign found in the **comment** will be removed when the comment is displayed. There is no case distinction among the key phrases.

When this command is issued, the form specified by **form-name** is added to the list of forms. If the form already exists, its description is changed to reflect the new information. Once added, a form is available for use in a print request, except where access to the form has been restricted, as described under the **−u** option. A form may also be allowed to be used on certain printers only.

A description of each form attribute is below:

**Page length** and **Page Width**

Before printing the content of a print request needing this form, the generic interface program provided with the LP print service will initialize the physical printer to handle pages `scaled−decimal−number_1` long, and `scaled−decimal−number_2` wide using the printer type as a key into the **terminfo**(4) database.

The page length and page width will also be passed, if possible, to each filter used in a request needing this form.
Number of pages
Each time the alignment pattern is printed, the LP print service will attempt to truncate the content to a single form by, if possible, passing to each filter the page subset of 1-integer.

Line pitch and Character pitch
Before printing the content of a print request needing this form, the interface program provided with the LP print service will initialize the physical printer to handle these pitches, using the printer type as a key into the terminfo(4) database. Also, the pitches will be passed, if possible, to each filter used in a request needing this form. scaled—decimal—number is in lines-per-centimeter if a c is appended, and lines-per-inch otherwise; similarly, scaled—decimal—number is in characters-per-centimeter if a c is appended, and characters-per-inch otherwise. The character pitch can also be given as elite (12 characters-per-inch), pica (10 characters-per-inch), or compressed (as many characters-per-inch as possible).

Character set choice
When the LP print service alerts an administrator to mount this form, it will also mention that the print wheel print-wheel should be used on those printers that take print wheels. If printing with this form is to be done on a printer that has selectable or loadable character sets instead of print wheels, the interface programs provided with the LP print service will automatically select or load the correct character set. If mandatory is appended, a user is not allowed to select a different character set for use with the form; otherwise, the character set or print wheel named is a suggestion and a default only.

Ribbon color
When the LP print service alerts an administrator to mount this form, it will also mention that the color of the ribbon should be ribbon-color.

Comment
The LP print service will display the comment unaltered when a user asks about this form (see lpstat(1)).

Alignment pattern
When mounting this form, an administrator can ask for the content to be printed repeatedly, as an aid in correctly positioning the preprinted form. The optional content-type defines the type of printer for which content had been generated. If content-type is not given, simple is assumed. Note that the content is stored as given, and will be readable only by the user lp.
When an existing form is changed with this command, items missing in the new information are left as they were. When a new form is added with this command, missing items will get the following defaults:

- Page Length: 66
- Page Width: 80
- Number of Pages: 1
- Line Pitch: 6
- Character Pitch: 10
- Character Set Choice: any
- Ribbon Color: any

### Deleting a Form

The `-x` option is used to delete the form `form-name` from the LP print service.

### Listing Form Attributes

The `-l` option is used to list the attributes of the existing form `form-name`. The attributes listed are those described under **Adding and Changing a Form**, above. Because of the potentially sensitive nature of the alignment pattern, only the administrator can examine the form with this command. Other people may use the `lpstat(1)` command to examine the non-sensitive part of the form description.

### Allowing and Denying Access to a Form

The `-u` option, followed by the argument `allow:login-ID-list` or `-u deny:login-ID-list` lets you determine which users will be allowed to specify a particular form with a print request. This option can be used with the `-F` or `-f` option, each of which is described above under **Adding or Changing a Form**.

The `login-ID-list` argument may include any or all of the following constructs:

- `login-ID` A user on any system
- `system_name!login-ID` A user on system `system_name`
- `system_name!all` All users on system `system_name`
- `all!login-ID` A user on all systems
- `all` All users on all systems

The LP print service keeps two lists of users for each form: an “allow-list” of people allowed to use the form, and a “deny-list” of people that may not use the form. With the `-u allow` option, the users listed are added to the allow-list and removed from the deny-list. With the `-u deny` option, the users listed are added to the deny-list and removed from the allow-list. (Both forms of the `-u` option can be run together with the `-F` or the `-f` option.)

If the allow-list is not empty, only the users in the list are allowed access to the form, regardless of the content of the deny-list. If the allow-list is empty but the deny-list is not, the users in the deny-list may not use the form, (but all others may use it). All users can be denied access to a form by specifying `-f deny:all`. All users can be allowed access to a form by specifying `-f allow:all`. (This is the default.)
The \texttt{-f form-name} option is used with the \texttt{-A alert-type} option to define an alert to mount the form when there are queued jobs which need it. If this option is not used to arrange alerting for a form, no alert will be sent for that form.

The method by which the alert is sent depends on the value of the \texttt{alert-type} argument specified with the \texttt{-A} option. The \texttt{alert-types} are:

- \texttt{mail} : Send the alert message using the \texttt{mail} command to the administrator.
- \texttt{write} : Write the message, using the \texttt{write} command, to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is arbitrarily chosen.
- \texttt{quiet} : Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the form \texttt{form-name} has been mounted and subsequently unmounted, messages will again be sent when the number of print requests reaches the threshold specified by the \texttt{-Q} option.
- \texttt{showfault} : Attempt to execute a form alert handler on each system that has a print job for that form in the queue. The fault handler is \texttt{/etc/lp/alerts/form}. It is invoked with three parameters: \texttt{form_name}, \texttt{date}, \texttt{file_name}. \texttt{file_name} is the name of a file containing the form alert message.
- \texttt{none} : Do not send messages until the \texttt{-A} option is given again with a different \texttt{alert-type} (other than \texttt{quiet}).
- \texttt{shell-command} : Run the \texttt{shell-command} each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blank spaces embedded in the command, enclose the command in quotes. Note that the \texttt{mail} and \texttt{write} values for this option are equivalent to the values \texttt{mail login-ID} and \texttt{write login-ID} respectively, where \texttt{login-ID} is the current name for the administrator. This will be the login name of the person submitting this command unless he or she has used the \texttt{su} command to change to another login-ID. If the \texttt{su} command has been used to change the user ID, then the \texttt{user-name} for the new ID is used.
- \texttt{list} : Display the type of the alert for the form on standard output. No change is made to the alert.

The message sent appears as follows:

\begin{itemize}
  \item The \texttt{form form-name} needs to be mounted on the printer(s):
  \begin{verbatim}
  printer (integer, requests).
  integer, print requests await this form.
  \end{verbatim}
  \item Use the \texttt{ribbon-color} ribbon.
  \item Use the \texttt{print-wheel} print wheel, if appropriate.
\end{itemize}
The printers listed are those that the administrator has specified as candidates for this form. The number integer_1 listed next to each printer is the number of requests eligible for the printer. The number integer_2 shown after the list of printers is the total number of requests awaiting the form. It will be less than the sum of the other numbers if some requests can be handled by more than one printer. The ribbon-color and print-wheel are those specified in the form description. The last line in the message is always sent, even if none of the printers listed use print wheels, because the administrator may choose to mount the form on a printer that does use a print wheel.

Where any color ribbon or any print wheel can be used, the statements above will read:

   Use any ribbon.
   Use any print-wheel.

If form-name is any, the alert-type defined in this command applies to any form for which an alert has not yet been defined. If form-name is all, the alert-type defined in this command applies to all forms.

If the −W minutes option is not given, the default procedure is that only one message will be sent per need to mount the form. Not specifying the −W option is equivalent to specifying −W once or −W 0. If minutes is a number greater than 0, an alert will be sent at intervals specified by minutes.

If the −Q requests option is also given, the alert will be sent when a certain number (specified by the argument requests) of print requests that need the form are waiting. If the −Q option is not given, or the value of requests is 1 or any (which are both the default), a message is sent as soon as anyone submits a print request for the form when it is not mounted.

Listing the Current Alert

The −f option, followed by the −A option and the argument list is used to list the alert-type that has been defined for the specified form form-name. No change is made to the alert. If form-name is recognized by the LP print service, one of the following lines is sent to the standard output, depending on the type of alert for the form.

   − When requests requests are queued:
     alert with shell-command every minutes minutes
   − When requests requests are queued:
     write to user-name every minutes minutes
   − When requests requests are queued:
     mail to user-name every minutes minutes
   − No alert

The phrase every minutes minutes is replaced with once if minutes (−W minutes) is 0.

Terminating an Active Alert

The −A quiet option is used to stop messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the form has been mounted and then unmounted, messages will again be sent when the number of print requests reaches the threshold requests.
Removing an Alert Definition

No messages will be sent after the \texttt{−A none} option is used until the \texttt{−A} option is given again with a different \textit{alert-type}. This can be used to permanently stop further messages from being sent as any existing alert definition for the form will be removed.

FILES

\texttt{/etc/lp/alerts/form} fault handler for \texttt{lpform}.

SEE ALSO

lp(1), lpadmin(1M), lpstat(1), terminfo(4)

\textit{User Accounts, Printers, and Mail Administration}
NAME
lpsched, lpshut, lpmove – start/stop the LP print service and move requests

SYNOPSIS
/usr/lib/lp/lpsched
lpshut
lpmove requests dest
lpmove dest1 dest2

DESCRIPTION
lpsched starts the LP print service; this can be done only by root.
lpshut shuts down the print service. All printers that are printing at the time lpshut is
invoked will stop printing. When lpsched is started again, requests that were printing at
the time a printer was shut down will be reprinted from the beginning.
lpmove moves requests that were queued by lp(1) between LP destinations. lpmove can
only be used among local printers.
The first form of the lpmove command moves the named requests to the LP destination
dest. requests are request-IDs as returned by lp. If a request was originally queued for a
class, or the special destination any, the destination of the request will be changed to dest.
The request will be printable only on dest and not on other members of the class or other
acceptable printers.
The second form of the lpmove command attempts to move all requests for destination
dest1 to destination dest2. lp will then reject any new requests for dest1.
Note that when moving requests, lpmove never checks the acceptance status of the new
destination (see accept(1M)). Also, the request-IDs of the moved request are not changed,
so that users can still find their requests. The lpmove command will not move requests
that have options (content type, form required, and so on) that cannot be handled by the
new destination.

FILES
/var/spool/lp/

SEE ALSO
enable(1), lp(1), lpstat(1), accept(1M), lpadmin(1M)
User Accounts, Printers, and Mail Administration

1M-322 modified 5 Feb 1994
NAME
lpsystem – register remote systems with the print service

SYNOPSIS
lpsystem [-t type] [-T timeout] [-R retry] [-y "comment"] system-name [system-name ...]
lpsystem -I [system-name ...]
lpsystem -r system-name [system-name ...]
lpsystem -A

AVAILABILITY
SUNWlpu

DESCRIPTION
The lpsystem command is used to define parameters for the LP print service, with respect to communication with remote systems. Only a privileged user (that is, the owner of the login root) may execute the lpsystem command.

Specifically, the lpsystem command is used to define remote systems with which the local LP print service can exchange print requests. These remote systems are described to the local LP print service in terms of several parameters that control communication: type, retry and timeout. These parameters are defined in /etc/lp/Systems. You can edit this file with a text editor (such as vi) but editing is not recommended.

The type parameter defines the remote system as one of two types: s5 (SunOS 5.x operating system), or bsd. The default type is s5.

The timeout parameter specifies the length of time (in minutes) that the print service should allow a network connection to be idle. If the connection to the remote system is idle (that is, there is no network traffic) for \( N \) minutes, then drop the connection. (When there is more work the connection will be re-established.) Legal values are \( n, 0, \) and \( N \), where \( N \) is an integer greater than 0. The value \( n \) means “never time out”; \( 0 \) means “as soon as the connection is idle, drop it.” The default is \( n \).

The retry parameter specifies the length of time to wait before trying to re-establish a connection to the remote system, when the connection was dropped abnormally (that is, a network error). Legal values are \( n, 0, \) and \( N \), where \( N \) is an integer greater than 0 and it means “wait \( N \) minutes before trying to reconnect. (The default is 10 minutes.) The value \( n \) means “do not retry dropped connections until there is more work”; \( 0 \) means “try to reconnect immediately.”

The comment argument allows you to associate a free form comment with the system entry. This is visible when lpsystem -l is used.

system-name is the name of the remote system from which you want to be able to receive jobs, and to which you want to be able to send jobs. If the system-name is a plus sign (“+”), then anonymous client support is enabled. That is, your system will accept remote print jobs from any other print client (bsd or s5). This is enabled by default in /etc/lp/Systems; any other entries in the /etc/lp/Systems file will be superfluous. The other parameters listed on the line beginning with the plus sign are for reference only, and will not actually change the behavior of lpsched(1M).

The command lpsystem -l [system-name] will print out a description of the parameters associated with system-name (if a system has been specified), or with all the systems in its database (if system-name has not been specified).

modified 18 Dec 1992

1M-323
The command `lpsystem -r system-name` will remove the entry associated with `system-name`. The print service will no longer accept jobs from that system or send jobs to it, even if the remote printer is still defined on the local system.

The command `lpsystem -A` will print out the TCP/IP address of the local machine in a format to be used when configuring the local port monitor to accept requests from a SunOS system.

**OPTIONS**

- `-t type` Specifies the remote system type.
- `-T timeout` Specifies the time allowed for a network connection to be idle. `timeout` is in minutes. Default is to never time out.
- `-R retry` Specifies time to wait before trying to reestablish a connection for a remote system.
- `-y comment` The comment argument allows you to associate a free form comment with the system entry.
- `-l [system-name]` Prints out a description of the parameters associated with `system-name`, or with all the systems in its database.
- `-r system-name` Removes the entry associated with `system-name`.
- `-A` Prints out the TCP/IP address in a format.

**FILES**

`/var/spool/lp/* /etc/lp/*`

**SEE ALSO**

`lpsched(1M), nlsadmin(1M), sacadm(1M), netdir(3N), hosts(4), netconfig(4), services(4)`

*Network Interfaces Programmer's Guide*

*File System Administration*

**NOTES**

With respect to `/etc/lp/Systems`, this information is relatively minimal with respect to controlling network communications. Network addresses and services are handled by the `Netconfig` and `Netdir` facilities (see the `File System Administration` for a discussion of network addresses and services.) Port monitors handle listening for remote service requests and routing the connection to the print service (see the `File System Administration` for a discussion of port monitors.)

If the `Netconfig` and `Netdir` facilities are not set up properly, out-bound remote print service probably will not work. Similarly, if the local port monitors are not set up to route remote print requests to the print service, then service for remote systems will not be provided. (See “Allowing Remote Systems to Access Local Printers” and “Configuring a Local Port Monitor” in the `File System Administration` to find out how to do this.)

With respect to the semantics of the `timeout` and `retry` values, the print service uses one process for each remote system with which it communicates, and it communicates with a remote system only when there is work to be done on that system or work being sent from that system.

The system initiating the connection is the “master” process and the system accepting the connection is the “slave” process. This designation serves only to determine which process dies (the slave) when a connection is dropped. This helps prevent there from being
more than one process communicating with a remote system. Furthermore, all connections are bi-directional, regardless of the master/slave designation. You cannot control a system’s master/slave designation. Now, keeping all this information in mind, if a master process times out, then both the slave and master will exit. If a slave times out, then it is possible that the master may still live and retry the connection after the retry interval. Therefore, one system’s resource management strategy can effect another system’s strategy.

With respect to `lpsystem -A`: a SunOS 4.x system (described with `-t bsd`) can be connected to your system only via TCP/IP, and print requests from a SunOS system can come in to your machine only via a special port (515). The address given to you from `lpsystem` will be the address of your system and port 515. This address is used by your TCP/IP port monitor (see `sacadm(1M)` and `nlsadmin(1M)`) to “listen” on that address and port, and to route connections to the print service. (This procedure is discussed in the *File System Administration*.) The important point here is that this is where you get the address referred to in that procedure.

The command `lpsystem -A` will not work if your system name and IP address are not listed in `/etc/inet/hosts`, (see `hosts(4)`), and the printer service is not listed in `/etc/inet/services`, (see `services(4)`).

The file `/etc/lp/Systems` is set by default to support anonymous print clients. This feature can be disabled if one wishes greater security for print jobs. However, it should be noted that this will increase the amount of work required of the system administrator. A good backup of this file is strongly recommended if anonymous print client support is disabled.
NAME
lpusers – set printing queue priorities

SYNOPSIS
lpusers −d priority-level
lpusers −q priority-level −u login-ID-list
lpusers −u login-ID-list
lpusers −q priority-level
lpusers −l

AVAILABILITY
SUNWlps

DESCRIPTION
The lpusers command sets limits to the queue priority level that can be assigned to jobs submitted by users of the LP print service.

The first form of the command (with −d) sets the system-wide priority default to priority-level, where priority-level is a value of 0 to 39, with 0 being the highest priority. If a user does not specify a priority level with a print request (see lp(1)), the default priority level is used. Initially, the default priority level is 20.

The second form of the command (with −q and −u) sets the default highest priority-level (0-39) that the users in login-ID-list can request when submitting a print request. The login-ID-list argument may include any or all of the following constructs:

- login-ID: A user on any system
- system_name!login-ID: A user on the system system_name
- system_name!all: All users on system system_name
- all!login-ID: A user on all systems
- all: All users on all systems

Users that have been given a limit cannot submit a print request with a higher priority level than the one assigned, nor can they change a request that has already been submitted to have a higher priority. Any print requests submitted with priority levels higher than allowed will be given the highest priority allowed.

The third form of the command (with −u) removes any explicit priority level for the specified users.

The fourth form of the command (with −q) sets the default highest priority level for all users not explicitly covered by the use of the second form of this command.

The last form of the command (with −l) lists the default priority level and the priority limits assigned to users.

OPTIONS
−d priority-level Set the system-wide priority default to priority-level.
−q priority-level −u login-ID-list
Set the default highest priority-level that the users in login-ID-list can request when submitting a print request.
−u login-ID-list  Remove any explicit priority level for the specified users.
−q priority-level  Set the default highest priority level for all users not explicitly covered.
−l  List the default priority level and the priority limits assigned to users.

SEE ALSO  lp(1)
NAME

makedbm – make a dbm file, or get a text file from a dbm file

SYNOPSIS


makedbm [-u dbmfilename]

AVAILABILITY

SUNWcsu

DESCRIPTION

The makedbm command takes infile and converts it to a pair of files in ndbm(3) format, namely outfile.pag and outfile.dir. Each line of the input file is converted to a single dbm record. All characters up to the first TAB or SPACE form the key, and the rest of the line is the data. If a line ends with ‘\’ (backslash), the data for that record is continued on to the next line. makedbm does not treat ‘#’ (pound-sign) as a special character. infile can be ‘−’ (dash), in which case the standard input is read.

makedbm is mainly used in generating dbm files for the NIS name service, and, to that end, it generates a special entry with the key yp_last_modified, which is the date of infile (or the current time, if infile is ‘− ’). The entries that have keys with the prefix yp_ are interpreted by NIS server utilities.

OPTIONS

−l

Lower case. Convert the keys of the given map to lower case, so that, for example, host name matches will succeed independent of upper or lower case distinctions.

−s

Secure map. Accept connections from secure NIS networks only.

−i yp_input_file

Create a special entry with the key yp_input_file.

−o yp_output_name

Create a special entry with the key yp_output_name.

−d yp_domain_name

Create a special entry with the key yp_domain_name.

−m yp_master_name

Create a special entry with the key yp_master_name. If no master host name is specified, yp_master_name will be set to the local host name.

−u dbmfilename

Undo a dbm file; i.e., print out the file in text format, one entry per line, with a single space separating keys from values.

SEE ALSO

ndbm(3)
NAME
mk – remake the binary system and commands from source code

DESCRIPTION
All source code for the UNIX system is distributed in the directory /usr/src. The directory tree rooted at /usr/src includes source code for the operating system, libraries, commands, miscellaneous data files necessary for the system and procedures to transform this source code into an executable system.

Within the /usr/src directory are the cmd, lib, uts, head, and stand directories, as well as commands to remake the parts of the system found under each of these sub-directories. These commands are named :mk and :mkdir where dir is the name of the directory to be recreated. Each of these :mkdir commands rebuilds all or part of the directory it is responsible for. The :mk command runs each of the other commands in order and thus recreates the whole system. The :mk command is distributed only to source code licensees.

Each command, with its associated directory, is described below.

:mklib
The lib directory contains the source code for the system libraries. The most important of these is the C library. Each library is in its own sub-directory. If any arguments are specified on the :mklib command line then only the given libraries are rebuilt. The argument \* causes it to rebuild all libraries found under the lib directory.

:mkhead
The head directory contains the source code versions of the headers found in the /usr/include directory. The :mkhead command installs the headers given as arguments. The argument \* causes it to install all headers.

:mkuts
The uts directory contains the source code for the UNIX Operating System. The :mkuts command takes no arguments and invokes a series of makefiles that recreates the operating system.

Associated with the operating system is a set of headers that describe the user interface to the operating system. The source for these headers is found in a sub-directory within the uts directory tree. The user-accessible versions of these headers are found in the /usr/include/sys directory. The :mksyshead command installs these headers into the /usr/include/sys directory.

:mkstand
The stand directory contains stand-alone commands and boot programs. The :mkstand command rebuilds and installs these programs. Note that these stand-alone programs are only applicable to the DEC processors and are not built for any other machine.

:mkcmd
The cmd directory contains the source code for all the commands available on the system. There are two types of entries within the cmd directory: commands whose source code consists of only one file with one of the following suffixes: .l, .y, .c, .s, .sh, or a sub-directory that contains the multiple source files that comprise a particular command or subsystem.

modified 3 Jul 1990
Each sub-directory is assumed to have a makefile (see `make(1S)`) with the name `command.mk` that takes care of creating everything associated with that directory and its sub-directories.

The `:mkcmd` command transforms source code into an executable command based on a set of predefined rules. If the `:mkcmd` command encounters a sub-directory within the `cmd` directory then it runs the makefile found in that sub-directory. If no makefile is found then an error is reported. For single-file commands, the predefined rules are dependent on the file's suffix. C programs (.c) are compiled by the C compiler and loaded stripped with shared text. Assembly language programs (.s) are assembled and loaded stripped. Yacc programs (.y) and lex programs (.l) are processed by `yacc()` and `lex()` respectively, before C compilation. Shell programs (.sh) are copied to create the command. Each of these operations leaves a command in the `/cmd` directory which is then installed into a user-accessible directory by using `/usr/sbin/install`.

The arguments to `:mkcmd` are either command names or subsystem names. Some subsystems distributed with the UNIX system are: `acct`, `graf`, `sgs`, `sccs`, and `text`. Prefacing the `:mkcmd` command with an assignment to the shell variable `$ARGS` causes the indicated components of the subsystem to be rebuilt.

For example, the entire `sccs` subsystem can be rebuilt by:

```
/usr/src/:mkcmd sccs
```

while the `delta` component of `sccs` can be rebuilt by:

```
ARGS="delta" /usr/src/:mkcmd sccs
```

The `log` command, which is a part of the `stat` package, which is itself a part of the `graf` package, can be rebuilt by:

```
ARGS="stat log" /usr/src/:mkcmd graf
```

The argument `\*` causes all commands and subsystems to be rebuilt.

Makefiles throughout the system, and particularly in the `cmd` directory, have a standard format. In particular, `:mkcmd` depends on each makefile having target entries for `install` and `clobber`. The `install` target should cause everything over which the makefile has jurisdiction to be built and installed by `/usr/sbin/install`. The `clobber` target should cause a complete cleanup of all unnecessary files resulting from the previous invocation. The commands that use the `CLOBBER` environment variable are `:mkcmd`, `:mklib`, and `:mkuts`. These commands all check the `CLOBBER` variable before executing `make clobber`. If this variable is set to `OFF`, then `make clobber` is not performed. If the variable is not set or is set to anything other than `OFF`, the `make clobber` is performed.

An effort has been made to separate the creation of a command from source and its installation on the running system. The command `/usr/sbin/install` is used by `:mkcmd` and most makefiles to install commands in standard directories on the system. The use of `install` allows maximum flexibility in the administration of the system. The `install` command makes very few assumptions about where a command is located, who owns it, and
what modes are in effect. All assumptions may be overridden on invocation of the command, or more permanently by redefining a few variables in install. The purpose of install is to install a new version of a command in the same place, with the same attributes as the prior version.

In addition, the use of a separate command to perform installation allows for the creation of test systems in other than standard places, easy movement of commands to balance load, and independent maintenance of makefiles.

SEE ALSO install(1M), make(1S)
NAME

mkfifo – make FIFO special file

SYNOPSIS

mkfifo path ...

DESCRIPTION

mkfifo creates the FIFO special files named by its argument list. The arguments are taken sequentially, in the order specified; and each FIFO special file is either created completely or, in the case of an error or signal, not created at all.

If errors are encountered in creating one of the special files, mkfifo writes a diagnostic message to the standard error and continues with the remaining arguments, if any.

The mkfifo command calls the library routine mkfifo(3C). The path argument is passed to the path argument in the routine. The file permission bits are set by the process file creation mask (bitwise inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH).

SEE ALSO

mkfifo(3C)

DIAGNOSTICS

mkfifo returns exit code 0 if all FIFO special files were created normally; otherwise it prints a diagnostic and returns a value greater than 0.
NAME
mkfile – create a file

SYNOPSIS
mkfile [−nv] size[ k | b | m] filename . . .

AVAILABILITY
SUNWcsu

DESCRIPTION
mkfile creates one or more files that are suitable for use as NFS-mounted swap areas, or as local swap areas. The sticky bit is set, and the file is padded with zeroes by default. The default size is in bytes, but it can be flagged as kilobytes, blocks, or megabytes, with the k, b, or m suffixes, respectively.

OPTIONS
−n Create an empty filename. The size is noted, but disk blocks are not allocated until data is written to them. Files created with this option cannot be swapped over local UFS mounts.
−v Verbose. Report the names and sizes of created files.

SEE ALSO
swap(1M)
NAME
mkfs – construct a file system

SYNOPSIS
mkfs [ −F FSType ] [ generic_options ] [ −o FSType-specific_options ] raw_device_file
[ operands ]

AVAILABILITY
SUNWcsu

DESCRIPTION
mkfs constructs a file system on the the raw_device_file by calling the specific mkfs module indicated by −F FSType.

Note: ufs file systems are normally created with the newfs(1M) command.

generic_options are independent of file system type. FSType-specific_options is a comma-
separated list of keyword=value pairs (with no intervening spaces), which are FSType-
specific. raw_device_file specifies the disk partition on which to write the file system. It is
required and must be the first argument following the specific_options (if any). operands
are FSType-specific. See the FSType-specific manual page of mkfs (for example, mkfs_ufs(1M)) for a detailed description.

OPTIONS
The following are the generic options for mkfs:

−F Specify the FSType to be constructed. If −F is not specified, the FSType is
determined from /etc/vfstab by matching the raw_device_file with a vfstab
entry, or by consulting the /etc/default/fs file.

−V Echo the complete command line, but do not execute the command. The com-
mand line is generated by using the options and arguments provided and
adding to them information derived from /etc/vfstab or /etc/default/fs. This
option may be used to verify and validate the command line.

−m Return the command line which was used to create the file system. The file
system must already exist. This option provides a means of determining the
command used in constructing the file system.

−o Specify FSType-specific options. See the manual page for the mkfs module
specific to the file system type.

FILES
/etc/default/fs Default file system type. Default values can be set for the following flags
in /etc/default/fs. For example: LOCAL=ufs
   LOCAL: The default partition for a command if no FSType is specified.

/etc/vfstab List of default parameters for each file system

SEE ALSO
newfs(1M), vfstab(4)
Manual pages for the FSType-specific modules of mkfs.

NOTES
This command may not be supported for all FSTypes.
NAME
mkfs_ufs – construct a ufs file system

SYNOPSIS
mkfs –F ufs [ generic_options ] [ –o FSType_specific_options ] raw_device_file [ size ]

DESCRIPTION
The ufs-specific module of mkfs builds a ufs file system with a root directory and a lost+found directory (see fsck(1M)).

Note: The ufs-specific mkfs is rarely run directly; use the newfs(1M) command instead.

raw_device_file indicates the disk partition to write on unless the –o N option has been specified, or either the –V or –m generic options are passed from the generic mkfs module. size specifies the number of sectors in the file system. This argument must follow the raw_device_file argument, and is required (even with –o N) unless the –V or –m generic options are specified.

generic_options are supported by the generic mkfs command. See mkfs(1M) for a description of these options.

OPTIONS
–o
Use one or more of the following values separated by commas (with no intervening spaces) to specify ufs-specific options:

N
Print out the file system parameters without actually creating the file system.

nsect=n
The number of sectors per track on the disk. The default is 32.

ntrack=n
The number of tracks per cylinder on the disk. The default is 16.

bsize=n
Logical block size, either 4096 or 8192. The default is 8192.

fragsize=n
The smallest amount of disk space in bytes to allocate to a file. The value must be a power of 2 selected from the range 512 to the logical block size. If logical block size is 4096, legal values are 512, 1024, 2048 and 4096; if logical block size is 8192, 8192 is also a legal value. The default is 1024.

cgsize=n
The number of cylinders per cylinder group. The default is 16.

free=n
The minimum percentage of free space to maintain in the file system. This space is off-limits to normal users. Once the file system is filled to this threshold, only the superuser can continue writing to the file system. This parameter can be subsequently changed using the tunefs(1M) command. The default is 10%.

rps=n
The rotational speed of the disk, in revolutions per second. The default is 60.
nbpi=n  The number of bytes per inode, which specifies the
density of inodes in the file system. The number is
divided into the total size of the file system to deter-
mine the fixed number of inodes to create. It should
reflect the expected average size of files in the file sys-
tem. If fewer inodes are desired, a larger number
should be used; to create more inodes a smaller
number should be given. The default is 2048.

opt=n  Space or time optimization preference; s specifies
optimization for space, t specifies optimization for
time. The default is t. This parameter may be subse-
quently changed with the tunefs(1M) command.

apc=n  The number of alternates per cylinder to reserve for
bad block replacement (SCSI devices only). The default
is 0.

gap=n  Rotational delay. The expected time (in milliseconds) to
service a transfer completion interrupt and initiate a
new transfer on the same disk. The value is used to
decide how much rotational spacing to place between
successive blocks in a file. This parameter can be subse-
quently changed using the tunefs(1M) command. The
default is disk-type dependent.

nrpos=n  The number of different rotational positions in which
to divide a cylinder group. The default is 8.

maxcontig=n  The maximum number of blocks, belonging to one file,
that will be allocated contiguously before inserting a
rotational delay. For a 4K file system, the default is 14;
for an 8K file system it is 7. This parameter can be subse-
quently changed using the tunefs(1M) command.

Note: This parameter also controls clustering. Regard-
less of the value of gap, clustering is enabled only
when maxcontig is greater than 1. Clustering allows
higher I/O rates for sequential I/O and is described in
tunefs(1M).

Alternatively, parameters can be entered as a list of space-separated
values (without keywords) whose meaning is positional. In this case, the
−o option is omitted and the list follows the size operand. This is the
way newfs passes the parameters to mkfs.

SEE ALSO  fsck(1M), mkfs(1M), newfs(1M), tunefs(1M), dir_ufs(4), fs_ufs(4)
DIAGNOSTICS

Warning: insufficient space in super block for rotational layout tables with nsect
sblock.fs_nsect and ntrak sblock.fs_ntrak. (File system performance may be
impaired.)

Occurs typically on very high density disks. On such disks, the file system structure
cannot encode the proper disk layout information, resulting in suboptimal
performance.

Warning: inode blocks/cyl group (grp) >= data blocks (num) in last cylinder

User request for inodes/byte (with the nbpi keyword) and the disk geometry
results in a situation in which the last truncated cylinder group can not contain
the correct number of data blocks; some disk space is wasted.

Warning: num sector(s) in last cylinder group unallocated

User parameters and disk geometry conflict; some disk space is lost. A possible
cause is the specified size being smaller than the partition size.
NAME
mknod – make a special file

SYNOPSIS
/usr/sbin/mknod name [ b | c major minor ] [ p ]

AVAILABILITY
SUNWcsr

DESCRIPTION
mknod makes a directory entry for a special file.

OPTIONS
b Indicates a block-type special file.
c Indicates a character-type special file.
p Used to create a FIFO (named pipe).

major Specifies the major device number.
minor Specifies the minor device number; can be either decimal or octal. The assign-
ment of major device numbers is specific to each system. You must be the
super-user to use this form of the command.

name A special file to be created.

SEE ALSO
ftp(1), in.ftpd(1M), mknod(2), symlink(2)

NOTES
If mknod() is used to create a device in a remote directory (Remote File Sharing), the
major and minor device numbers are interpreted by the server.

With the advent of physical device naming, it would be preferable to create a symbolic
link to the physical name of the device (in the /devices subtree) rather than using mknod.
NAME
modinfo – display information about loaded kernel modules

SYNOPSIS
/usr/sbin/modinfo [ −i module-id ]

AVAILABILITY
SUNWcsu

DESCRIPTION
modinfo displays information about the loaded modules. The format of the information
is as follows:

Id Loadaddr Size Info Rev Module Name

where Id is the module ID, Loadaddr is the starting text address, size is the size of text,
data, and bss in bytes, Info is module specific info, Rev is the revision of the loadable
modules system, and Module Name is the filename and description of the module.
The module specific information is the block and character major numbers for drivers,
the system call number for system calls, or, for other module types, the index into the
appropriate kernel table:

- fmodsw for streams modules
- vfssw for filesystems
- class for scheduling classes
- execsw for exec modules

OPTIONS
−i module-id Display information about this module only.

EXAMPLES
The following example displays the status of module 2:

example% modinfo −i 2

Id Loadaddr Size Info Rev Module Name
2 ff08e000 1734 − 1 swappgeneric
(root and swap configuration)

SEE ALSO
modload(1M), modunload(1M)
NAME  modload – load a kernel module

SYNOPSIS  modload [−p] [−e exec_file] filename

AVAILABILITY  SUNWcsu

DESCRIPTION  modload loads the loadable module filename into the running system. filename is an object file produced by ld −r. If filename is an absolute pathname then the file specified by that absolute path is loaded. If filename does not begin with a ‘/’ then the path to load filename is relative to the current directory unless the −p option is specified. The kernel’s modpath variable can be set using the /etc/system file. The default value of the kernel’s modpath variable is set to the path where the operating system was loaded. Typically this is /kernel/usr/kernel. Hence if you type:

    example# modload drv/foo

Then the kernel will look for ./drv/foo.

If you type:

    example# modload −p drv/foo

Then the kernel will look for /kernel/drv/foo and then /usr/kernel/drv/foo.

OPTIONS  

−p  Use the kernel’s internal modpath variable as the search path for the module.

−e exec_file  Specify the name of a shell script or executable image file that is executed after the module is successfully loaded. The first argument passed is the module ID (in decimal). The other argument is module specific. The module specific information is: the block and character major numbers for drivers, the system call number for system calls, or, for other module types, the index into the appropriate kernel table. See modinfo(1M).

SEE ALSO  add_drv(1M), kernel(1M), ld(1), modunload(1M), modinfo(1M), system(4), modldrv(9S), modlstrmod(9S), modlinkage(9S), module_info(9S)

Peripherals Administration
Writing Device Drivers

NOTES  Use add_drv(1M) to add device drivers, not modload. See Writing Device Drivers for procedures on adding device drivers.
**NAME**
modunload – unload a module

**SYNOPSIS**
modunload -i module_id [ -e exec_file ]

**AVAILABILITY**
SUNWcsu

**DESCRIPTION**
modunload unloads a loadable module from the running system. The *module_id* is the ID of the module as shown by modinfo(1M). If ID is 0, all modules that were autoloaded which are unloadable, are unloaded. Modules loaded by modload(1M) are not affected.

**OPTIONS**
- *-i module_id* Specify the module to be unloaded.
- *-e exec_file* Specify the name of a shell script or executable image file to be executed before the module is unloaded. The first argument passed is the module id (in decimal). There are two additional arguments that are module specific. For loadable drivers, the second and third arguments are the block major and character major numbers respectively. For loadable system calls, the second argument is the system call number. For loadable exec classes, the second argument is the system call number. For loadable filesystems, the second argument is the index into the *execsw* table. For loadable streams modules, the second argument is the index into the *vfssw* table. For loadable scheduling classes, the second argument is the index into the class array. Minus one is passed for an argument that does not apply.

**SEE ALSO**
modinfo(1M), modload(1M)

modified 29 Mar 1993
NAME

monitor – SPARC system PROM monitor

SYNOPSIS

L1−A
BREAK

AVAILABILITY

SPARC

DESCRIPTION

The CPU board of a workstation contains an EPROM (or set of EPROMs), called the monitor, which controls the system during startup. The monitor tests the system before attempting to boot the operating system. If you interrupt the boot procedure by holding down L1 while typing a or A on the workstation keyboard (or BREAK if the console is a dumb terminal), the Open Boot PROM monitor issues the prompt:

ok

and accepts commands interactively. When security mode is on or when the value of the NVRAM parameter sunmon-compat? is TRUE (or in the old SunMON PROM), the default prompt is ‘>’, and the message

Type b (boot), c (continue), or n (new command mode)

gets displayed prior to the monitor prompt ‘>’.

Modes

The Open Boot PROM monitor supports three security modes (non-secure, command secure, and fully secure) plus an authentication password. Access to monitor commands is controlled by these security modes. In non-secure mode all monitor commands are allowed. In command secure mode, only the b (boot) command with no arguments and the c (continue) command with no arguments may be entered without supplying the authentication password. In fully secure mode, only the c (continue) command with no arguments may be entered without supplying the authentication password. Note: Systems do not auto-reboot in fully secure mode. The authentication password must be entered before booting will take place.

OPEN BOOT PROM USAGE

Here are some useful commands from the Open Boot PROM. For a complete list of commands, please refer to the Open Boot PROM User’s Guide.

Stack Comments

A stack comment such as (n1 n2-- n3) or (adr len --) or (--) listed after each command name shows the effect on the stack of executing that command items before the -- are used by the command and removed from the stack. These items must be present on the stack before the command may properly execute. Items after the -- are left on the stack after the command completes execution, and are available for use by subsequent commands. For example:

<table>
<thead>
<tr>
<th>Stack input</th>
<th>Stack output</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ (n1 n2-- n3)</td>
<td>Divide n1/n2, e.g. 8 2 / leaves &quot;4&quot; on the stack</td>
</tr>
<tr>
<td>dump (adr len --)</td>
<td>Display memory, e.g. 2000 40 dump</td>
</tr>
</tbody>
</table>

1M-342

modified 4 Mar 1993
All stack items are 32-bit numbers. The name given for any stack item indicates the proper interpretation or usage for that item.

a b c d etc.          Arbitrary numbers, no assumptions made
x x1 x2 x3           Extended-precision (64-bit) numbers
(2 stack items)
n n1 n2 n3           Normal signed values (32-bit)
+n u                 Unsigned, positive values (32-bit)
char                 7-bit value (smallest byte), high byte unspecified
byte                 bxx     8-bit value (smallest byte in 32-bit word)
words                wxx     16-bit value (smallest 2 bytes in 32-bit word)
long                 32-bit value
flag                 xxx?    0=false, any other value=true (usually -1)
adr                  Memory address (generally virtual address)
adr16                Memory address, must be 16-bit aligned
adr32                Memory address, must be 32-bit aligned

Memory Access, modify, or test memory locations.

! ( n adr -- ) Stores 32-bit number into variable at adr
+! ( n adr -- ) Adds n to 32-bit number stored in variable at adr
2! ( n1 n2 adr -- ) Stores 2 numbers at adr; n2 at lower address
2@ ( adr -- n1 n2) Fetches 2 numbers from adr; n2 from lower address
@ ( adr -- n ) Fetches a number from the variable at adr
? ( adr16 -- ) Displays the 32-bit number at adr
C! ( n adr -- ) Stores low byte of n at adr
C@ ( adr - byte ) Fetches a byte from adr
C? ( adr -- ) Displays the byte at adr
BLANK ( adr len -- ) Sets len bytes of memory to ASCII space at adr
CMOVE ( adr1 adr2 cnt -- ) Copies cnt bytes, starts with lo byte
CMOVE> ( adr1 adr2 cnt -- ) Copies cnt bytes, starts with hi byte
COMP ( adr1 adr2 len -- n ) Compares two byte arrays including case.
                n=0 if same, +/- 1 if different
DUMP ( adr len -- ) Displays len bytes of memory
ERASE ( adr len -- ) Sets len bytes memory to zero at adr
FILL ( adr u byte -- ) Sets u bytes of memory to byte
L! ( l adr:32 -- ) Stores the 32-bit number at adr, must be 32-bit aligned
L@ ( adr:32 -- ) Fetches the 32-bit long word at adr, must be 32-bit aligned
L? ( adr:32 -- ) Displays the 32-bit number at adr
MOVE ( adr1 adr2 u -- ) Copies u bytes from adr1 to adr2,
### Monitor (1M) Maintenance Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF (adr16 --)</td>
<td>Stores false (32-bit 0) at adr</td>
</tr>
<tr>
<td>ON (adr16 --)</td>
<td>Stores true (32-bit -1) at adr</td>
</tr>
<tr>
<td>UNALIGNED-L! (long adr --)</td>
<td>Stores 32-bit number at adr</td>
</tr>
<tr>
<td>UNALIGNED-W! (word adr --)</td>
<td>Stores 16-bit number at adr</td>
</tr>
<tr>
<td>UNALIGNED-L@ (adr -- long)</td>
<td>Fetches 32-bit number from adr</td>
</tr>
<tr>
<td>UNALIGNED-W@ (adr -- word)</td>
<td>Fetches 16-bit number from adr</td>
</tr>
<tr>
<td>LFLIPS (adr len --)</td>
<td>Exchanges 16-bit words within 32-bit long words in the specified region</td>
</tr>
<tr>
<td>WFLIPS (adr len --)</td>
<td>Exchanges bytes within 16-bit words in the specified region</td>
</tr>
<tr>
<td>W! (w adr16 --)</td>
<td>Stores a 16-bit word at adr *</td>
</tr>
<tr>
<td>W@ (adr16 -- w)</td>
<td>Fetches the unsigned 16-bit word at adr *</td>
</tr>
<tr>
<td>W? (adr16 --)</td>
<td>Displays the 16-bit number at adr</td>
</tr>
<tr>
<td>&lt;W@ (adr16 -- n)</td>
<td>Fetches the signed 16-bit word at adr *</td>
</tr>
<tr>
<td></td>
<td>* must be 16-bit aligned</td>
</tr>
</tbody>
</table>

### Assembly-language Programming

- **CODE name ( -- )** Begins the creation of an assembly language routine called name. Commands that follow are interpreted as assembler mnemonics.
- **C; ( -- )** Ends the creation of an assembly language routine. Automatically assembles the Forth interpreter "next" function so that the created assembly-code word, when executed, returns control to the calling routine as usual.
- **LABEL name ( -- )** Begins the creation of an assembly language routine called name. Words created with LABEL leave the address of the code on the stack when executed. Commands that follow are interpreted as assembler mnemonics. As with code, LABEL is present even if the assembler is not installed.
- **END-CODE ( -- )** Ends the assembly-language patch started with LABEL

### Defining Words

- **: (colon) ( -- )** Begins colon definition
- **; (semicolon) ( -- )** Ends colon definition
- **CONSTANT name (n -- )** Creates a constant
- **VARIABLE name ( -- )** Creates a data variable
- **VALUE name (n -- )** Creates named value-type variable (change with IS)

---

1M-344 modified 4 Mar 1993
**Dictionary Search**

Search dictionary for desired definitions.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>` name ( -- acf )</td>
<td>Finds the word (while interpreting)</td>
</tr>
<tr>
<td><code>[</code> name ( -- acf )</td>
<td>Finds word (while compiling) which call the word whose compilation address is acf</td>
</tr>
<tr>
<td>$FIND ( adr len -- adr len false</td>
<td>acf n )</td>
</tr>
<tr>
<td>FIND ( pstr -- {acf n}</td>
<td>{pstr 0} )</td>
</tr>
<tr>
<td>SEE see ( -- )</td>
<td>Decompiles (or assembles) word</td>
</tr>
<tr>
<td>(SEE) ( acf -- )</td>
<td>Decompiles (or assembles) word</td>
</tr>
<tr>
<td>SIFT ( pstr -- )</td>
<td>Displays names of all dictionary entries containing string pointed to by pstr</td>
</tr>
<tr>
<td>SIFTING ccc ( -- )</td>
<td>Displays names of all dictionary entries containing that sequence of characters. ccc contains no spaces.</td>
</tr>
<tr>
<td>WORDS ( -- )</td>
<td>Displays names of all words</td>
</tr>
</tbody>
</table>

**Memory Allocation**

ALLOC-MEM ( n-bytes -- adr ) Allocates n bytes of memory and returns its address

FREE-MEM ( adr n-bytes -- ) Frees memory allocated by ALLOC-MEM

**Time Utilities**

GET-MSECS ( -- ms ) Returns the approximate current time, in milliseconds

MS ( n -- ) Delays for n milliseconds. Resolution is 1 millisecond

**Data Exception Tests**

CPEEK ( adr -- false | byte true ) Reads the 8-bit value at adr, returns false if unsuccessful

WPEEK ( adr -- false | word true ) Reads the 16-bit value at adr, returns false if unsuccessful

LPEEK ( adr -- false | long true ) Reads the 32-bit value at adr, returns false if unsuccessful

CPOKE ( byte adr -- ok?) Writes the 8-bit value at adr, returns false if unsuccessful

WPOKE ( words adr -- ok? ) Writes the 16-bit value at adr, returns false if unsuccessful

LPOKE ( long adr -- ok? ) Writes the 32-bit value at adr, returns false if unsuccessful

modified 4 Mar 1993
<table>
<thead>
<tr>
<th>Miscellaneous Operations</th>
<th>CACHEABLE</th>
<th>( space -- cache-space )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Modifies the address space so that the subsequent address mapping is made cacheable</td>
</tr>
<tr>
<td></td>
<td>FIRMWARE-VERSION</td>
<td>( -- n )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns major/minor CPU firmware version, that is, 0x00020001 = firmware version 2.1</td>
</tr>
<tr>
<td></td>
<td>PGMAP?</td>
<td>( virt -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays page map entry (decoded and in English) corresponding to virtual address virt</td>
</tr>
<tr>
<td></td>
<td>RESET</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resets the entire systems (similar to doing a power cycle)</td>
</tr>
<tr>
<td></td>
<td>NOOP</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does nothing</td>
</tr>
<tr>
<td>SBus Access and Handling</td>
<td>BYTE-LOAD</td>
<td>( adr len -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interprets downloaded FCode binary file</td>
</tr>
<tr>
<td></td>
<td>CPU-INTR&gt;SBUS</td>
<td>( n1 -- n2 )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converts CPU interrupt level to an SBus interrupt level</td>
</tr>
<tr>
<td></td>
<td>MAP-SBUS</td>
<td>( phys size -- virt )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maps a region of memory in ‘sbus’ address space</td>
</tr>
<tr>
<td></td>
<td>PROBE-SLOT</td>
<td>( slot# -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probes the SBus slot whose number is taken from the stack</td>
</tr>
<tr>
<td></td>
<td>SBUS-INTR&gt;CPU</td>
<td>( sbus-intr# -- cpu-intr# )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Translates SBus interrupt# into CPU interrupt#</td>
</tr>
<tr>
<td>Diagnostic Test</td>
<td>PROBE-SCSI</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies attached SCSI devices</td>
</tr>
<tr>
<td></td>
<td>TEST-ALL</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests all devices that have a built-in self-test method</td>
</tr>
<tr>
<td></td>
<td>TEST FLOPPY</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests the floppy drive, if installed</td>
</tr>
<tr>
<td></td>
<td>TEST /MEMORY</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests main memory (number of megabytes indicated in NVRAM configuration parameter self-test-#megs)</td>
</tr>
<tr>
<td></td>
<td>MEMORY-TEST-SUITE</td>
<td>( adr len -- status )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls memory tester for the given region</td>
</tr>
<tr>
<td></td>
<td>TEST NET</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests the network connection</td>
</tr>
<tr>
<td></td>
<td>WATCH-NET</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitors the network connection (not on all systems)</td>
</tr>
<tr>
<td></td>
<td>WATCH-CLOCK</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests the clock function</td>
</tr>
<tr>
<td>System Information</td>
<td>BANNER</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays power-on banner</td>
</tr>
<tr>
<td></td>
<td>ENET-ADDR</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays the current Ethernet address</td>
</tr>
<tr>
<td></td>
<td>IDPROM</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays IDPROM contents, formatted</td>
</tr>
<tr>
<td></td>
<td>VERSION</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays the version and date of boot PROM</td>
</tr>
<tr>
<td></td>
<td>TRAPS</td>
<td>( -- )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays a list of SPARC trap types</td>
</tr>
</tbody>
</table>
## Emergency Commands

<table>
<thead>
<tr>
<th>Key</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1-A</td>
<td>Stores current operation and redirects input to come from keyboard</td>
</tr>
<tr>
<td>L1-F</td>
<td>Presses and hold during power-up to redirect input and output to ttya, skip SBus probing and most self-test</td>
</tr>
<tr>
<td>L1-D</td>
<td>Presses and hold during power-up to set the input NVRAM parameter diag-switch? to true (system in diagnostic mode)</td>
</tr>
<tr>
<td>L1-N</td>
<td>Presses and hold during power-up to reset all NVRAM parameters to default settings</td>
</tr>
</tbody>
</table>

## Disk Drives

<table>
<thead>
<tr>
<th>Key</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJECT-FLOPPY</td>
<td>Ejects the diskette from the floppy drive</td>
</tr>
<tr>
<td>SYNC</td>
<td>Calls SunOS to write any pending information to the hard disk. Also boots after syncing file systems</td>
</tr>
</tbody>
</table>

## I/O Control

<table>
<thead>
<tr>
<th>Key</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>Selects source for subsequent input (ttya, ttyb, or keyboard)</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Selects source for subsequent output (ttya, ttyb, or screen)</td>
</tr>
<tr>
<td>IO</td>
<td>Selects source for subsequent input and output</td>
</tr>
<tr>
<td>L1-A</td>
<td>Redirects input to come from keyboard</td>
</tr>
</tbody>
</table>

## Line Editor Commands

- Ones marked * also work with nvedit keystroke editor.

<table>
<thead>
<tr>
<th>Key</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control-B</td>
<td>Backward one character</td>
</tr>
<tr>
<td>Esc-B</td>
<td>Backward one word</td>
</tr>
<tr>
<td>Control-F</td>
<td>Forward one character</td>
</tr>
<tr>
<td>Esc-F</td>
<td>Forward one word</td>
</tr>
<tr>
<td>Control-A</td>
<td>Start of line</td>
</tr>
<tr>
<td>Control-E</td>
<td>End of line</td>
</tr>
<tr>
<td>Control-H</td>
<td>Erases previous character (also Delete or Back Space)</td>
</tr>
<tr>
<td>Esc-H</td>
<td>Erases previous portion of word (also Control W)</td>
</tr>
<tr>
<td>Control-D</td>
<td>Erases this character</td>
</tr>
<tr>
<td>Esc-D</td>
<td>Erases this portion of word, from here to end of word</td>
</tr>
<tr>
<td>Control-K</td>
<td>Erases forward, from here to end of line</td>
</tr>
<tr>
<td>Control-L</td>
<td>Shows command history list</td>
</tr>
<tr>
<td>Control-N</td>
<td>Recalls subsequent command line</td>
</tr>
<tr>
<td>Control-U</td>
<td>Erases entire line</td>
</tr>
<tr>
<td>Control-R</td>
<td>Retypes line</td>
</tr>
<tr>
<td>Control-Q</td>
<td>Quote next character (to type a control-character)</td>
</tr>
<tr>
<td>Control-P</td>
<td>Recalls previous command line (also Control-N)</td>
</tr>
<tr>
<td>Control-Y</td>
<td>Inserts save buffer content before the cursor</td>
</tr>
</tbody>
</table>

modified 4 Mar 1993
### nvramrc Editor Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVEDIT</td>
<td>Enters the nvramrc editor. If data remains in the temporary buffer from a previous nvedit session, NVEDIT resumes editing those previous contents. If not, NVEDIT reads the content of nvramrc into the temporary buffer and begins editing it.</td>
</tr>
<tr>
<td>NVSTORE</td>
<td>Copies the contents of the temporary buffer to nvramrc and discards the contents of the temporary buffer.</td>
</tr>
<tr>
<td>NVQUIT</td>
<td>Stops editing nvramrc and discards the changes.</td>
</tr>
<tr>
<td>NVRECOVER</td>
<td>Attempts to recover the contents of the nvramrc if they have been lost as a result of the execution of set-defaults, then enters the nvramrc editor as with NVEDIT. Fails if NVEDIT is execute between the time that the nvramrc contents were lost and the time that NVRECOVER is executed.</td>
</tr>
<tr>
<td>NVRUN</td>
<td>Executes the contents of the temporary buffer.</td>
</tr>
</tbody>
</table>

### Debugging

Symbolic debugging support.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG name( -- )</td>
<td>Marks the named Forth word for debugging. Subsequent attempts to execute that word enter the Forth source-level debugger. Debugging basic Forth words like &quot;.&quot; is not recommended. After executing debug, the execution speed of the system may decrease, until debugging is turned off with debug off.</td>
</tr>
<tr>
<td>(DEBUG ( acf -- )</td>
<td>Marks for debugging the word whose compilation address is acf.</td>
</tr>
<tr>
<td>STEPPING ( -- )</td>
<td>Sets &quot;step mode&quot; for the Forth source-level debugger, allowing the interactive step-by-step execution of the word being debugged. Step mode is the default.</td>
</tr>
<tr>
<td>TRACING ( -- )</td>
<td>Sets &quot;trace mode&quot; for the Forth source-level debugger, the execution of the word being debugged will be traced, showing the name and stack contents for each word called by that word.</td>
</tr>
<tr>
<td>DEBUG-OFF ( -- )</td>
<td>Turns off the Forth source-level debugger.</td>
</tr>
<tr>
<td>RESUME ( -- )</td>
<td>Exits from a &quot;subordinate interpreter&quot; back to the stepper (see the F key-stroke).</td>
</tr>
<tr>
<td>SPACE ( -- )</td>
<td>Executes the word just displayed and proceeds to the next word.</td>
</tr>
<tr>
<td>D ( -- )</td>
<td>Marks for debugging the word whose name was just displayed and then execute it.</td>
</tr>
<tr>
<td>U ( -- )</td>
<td>Unmarks the word being debugged, marks its caller for debugging, and finish executing the word that was previously being debugged.</td>
</tr>
<tr>
<td>C ( -- )</td>
<td>Switches from stepping to tracing, thus...</td>
</tr>
</tbody>
</table>
tracing the remainder of the execution of the word being debugged

F ( -- ) Starts a subordinate Forth interpreter. When that interpreter exits (with RESUME), control returns to the debugger at the place where the F command was executed

Q ( -- ) Aborts the execution of the word being debugged and all its callers, returns to the Monitor

### Breakpoint Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.bp ( -- )</td>
<td>Displays all current set breakpoints</td>
</tr>
<tr>
<td>+bp ( adr -- )</td>
<td>Adds a breakpoint at the given address</td>
</tr>
<tr>
<td>-bp ( adr -- )</td>
<td>Removes the breakpoint at the given address</td>
</tr>
<tr>
<td>--bp ( -- )</td>
<td>Removes the most recently set breakpoint</td>
</tr>
<tr>
<td>bpoft ( -- )</td>
<td>Removes all breakpoints</td>
</tr>
<tr>
<td>.breakpoint ( -- )</td>
<td>Performs a specified action(s) when a breakpoint occurs</td>
</tr>
<tr>
<td>step ( -- )</td>
<td>Single step one instruction</td>
</tr>
<tr>
<td>steps ( n -- )</td>
<td>Executes n steps</td>
</tr>
<tr>
<td>hop ( -- )</td>
<td>Like step, but treats a subroutine call as a single instruction</td>
</tr>
<tr>
<td>hops ( n -- )</td>
<td>Executes n hops</td>
</tr>
<tr>
<td>skips ( -- )</td>
<td>Skips (do not execute) the current instruction</td>
</tr>
<tr>
<td>.step ( -- )</td>
<td>Performs a specified action(s) when a single step occurs</td>
</tr>
<tr>
<td>till ( adr -- )</td>
<td>Executes until the given address is encountered, equivalent to +bp go</td>
</tr>
<tr>
<td>return ( -- )</td>
<td>Executes until the end of this subroutine</td>
</tr>
<tr>
<td>returnL ( -- )</td>
<td>Executes until the end of this leaf subroutine</td>
</tr>
<tr>
<td>finish-loop ( -- )</td>
<td>Executes until the end of this loop</td>
</tr>
<tr>
<td>go ( -- )</td>
<td>Continues from a breakpoint</td>
</tr>
<tr>
<td>gos ( n -- )</td>
<td>Executes go n times</td>
</tr>
<tr>
<td>.instruction ( -- )</td>
<td>Displays the address, opcode for the last encountered breakpoint</td>
</tr>
</tbody>
</table>

### Symbolic Debugging Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.ADR ( adr -- )</td>
<td>Displays the symbolic name (plus offset) for the given address</td>
</tr>
<tr>
<td>LOADSYMS ( adr1 len adr2 -- )</td>
<td>Loads a symbol table for use by the disassembler adrl len is the virtual address and length in bytes of an xdr-encoded array of symbol entries</td>
</tr>
</tbody>
</table>

modified 4 Mar 1993
### Disassembler Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS</td>
<td>(adr --) Displays the symbolic name (plus offset) for the given address</td>
</tr>
<tr>
<td>+DIS</td>
<td>(--) Continues disassembling where the last disassembly left off</td>
</tr>
</tbody>
</table>

### SPARC Register Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%g0 through %g7</td>
<td>(value) Returns the value in the given register</td>
</tr>
<tr>
<td>%o0 through %o7</td>
<td>(value) Returns the value in the given register</td>
</tr>
<tr>
<td>%L0 through %L7</td>
<td>(value) Returns the value in the given register</td>
</tr>
<tr>
<td>%I0 through %I7</td>
<td>(value) Returns the value in the given register</td>
</tr>
<tr>
<td>%pc %npc %psr</td>
<td>(value) Returns the value in the given register</td>
</tr>
<tr>
<td>%y %wim %tbr</td>
<td>(value) Returns the value in the given floating point register</td>
</tr>
<tr>
<td>%f0 through %f31</td>
<td>(value) Returns the value in the floating point register</td>
</tr>
<tr>
<td>%fsr</td>
<td>(value) Returns the value in the Floating Point Status Register</td>
</tr>
<tr>
<td>TO regname</td>
<td>(value --) Changes the value stored in any of the above registers. Use in the form: value TO regname</td>
</tr>
<tr>
<td>SET-PC</td>
<td>(value --) Sets %pc to the given value, and %npc to (value+4)</td>
</tr>
<tr>
<td>W</td>
<td>(window# --) Sets the current window, for displaying %ix %lx or %ox</td>
</tr>
<tr>
<td>CTRACE</td>
<td>(--) Displays the return stack showing C subroutines</td>
</tr>
<tr>
<td>.LOCALS</td>
<td>(--) Displays the values in the I, L and O registers</td>
</tr>
<tr>
<td>.PSR</td>
<td>(--) Formatted display of the %psr data</td>
</tr>
<tr>
<td>.REGISTERS</td>
<td>(--) Displays values in %g0 through %g7, plus %pc, %npc, %psr, %y, %wim, %tbr</td>
</tr>
<tr>
<td>.FREGISTERS</td>
<td>(--) Displays values in %f0 through %f31</td>
</tr>
<tr>
<td>.WINDOW</td>
<td>(window# --) Same as w locals, displays the desired window</td>
</tr>
</tbody>
</table>

### Monitor

- **Revert to restricted monitor ( > prompt ).**
- **OLD-MODE** (--) Goes to Restricted Monitor, supports only bxx(boot xx) and c (go)

### Help

- **On line help for common commands.**
- **HELP** (--) Shows main help commands
- **HELP category** (--) Shows help for these commands
- **HELP name** (--) Shows help for single command

### SUNMON PROM USAGE

The following commands are available systems with older SunMON-based PROM:

- **+ | –** Increment or decrement the current address and display the contents of the new location.
- **^C source destination n** (caret-C) Copy, byte-by-byte, a block of length n from the source address to the destination address.
destination address.

*I program
(caret-I) Display the compilation date and location of program.

'T virtual_address
(caret-T) Display the physical address to which virtual_address is mapped.

b [ ! ] [ device (c,u,p) ] [ pathname ] [ arguments_list ]

b[?] Reset appropriate parts of the system and bootstrap a program. A ‘I’ (preceding the device argument) prevents the system reset from occurring. Programs can be loaded from various devices (such as a disk, tape, or Ethernet). ‘b’ with no arguments will cause a default boot, either from a disk, or from an Ethernet controller. ‘b?’ displays all boot devices and their device arguments, where device is one of:

- le Lance Ethernet
- ie Intel Ethernet
- sd SCSI disk, CDROM
- st SCSI 1/4” or 1/2” tape
- fd Diskette
- id IPI disk
- mt Tape Master 9-track 1/2” tape
- xd Xylogics 7053 disk
- xt Xylogics 1/2” tape
- xy Xylogics 440/450 disk

c A controller number (0 if only one controller),

u A unit number (0 if only one driver), and

p A partition.

pathname
A pathname for a program such as /stand/diag.

arguments_list
A list of up to seven arguments to pass to the program being booted.

c [virtual_address]
Resume execution of a program. When given, virtual_address is the address at which execution will resume. The default is the current PC. Registers are restored to the values shown by the d, and r commands.

d [window_number]
Display (dump) the state of the processor. The processor state is observable only after:

- An unexpected trap was encountered.
- A user program dropped into the monitor (by calling abortent).
- The user manually entered the monitor by typing L1–A or BREAK.

The display consists of the following:

- The special registers: PSR, PC, nPC, TBR, WIM, and Y
- Eight global registers, and
- 24 window registers (8 in, 8 local, and 8 out), corresponding to one of the 7 available windows. If a Floating-Point Unit is on board, its status register along with 32 floating-point registers are also shown.

`window_number`

Display the indicated `window_number`, which can be any value between 0 and 6, inclusive. If no window is specified and the PSR’s current window pointer contains a valid window number, registers from the window that was active just prior to entry into the monitor are displayed. Otherwise, registers from window 0 are displayed.

`e [virtual_address][action]...`

Open the 16-bit word at `virtual_address` (default zero). The address is interpreted in the address space defined by the `s` command. See the `a` command for a description of `action`.

`f virtual_address1 virtual_address2 pattern [size]`

Fill the bytes, words, or long words from `virtual_address1` (lower) to `virtual_address2` (higher) with the constant, `pattern`. The `size` argument can take one of the following values:

- `b` byte format (the default)
- `w` word format
- `l` long word format

For example, the following command fills the address block from 0x1000 to 0x2000 with the word pattern, 0xABCD:

```
f 1000 2000 ABCD W
```

`g [vector] [argument]`

Goto (jump to) a predetermined or default routine (first form), or to a user-specified routine (second form). The value of `argument` is passed to the routine. If the `vector` or `virtual_address` argument is omitted, the value in the PC is used as the address to jump to.

To set up a predetermined routine to jump to, a user program must, prior to executing the monitor’s `g` command, set the variable `*romp->v_vector_cmd` to be equal to the virtual address of the desired routine. Predetermined routines need not necessarily return control to the monitor.

The default routine, defined by the monitor, prints the user-supplied `vector` according to the format supplied in `argument`. This format can be one of:

- `%x` hexadecimal
- `%d` decimal

`g0` When the monitor is running as a result of the system being interrupted, force a panic and produce a crash dump.

`g4` When the monitor is running as a result of the system being interrupted, force a kernel stack trace.
Display the help menu for monitor commands and their descriptions. To return to the monitor’s basic command level, press ESCAPE or q before pressing RETURN.

Modify cache data RAM command. Display and/or modify one or more of the cache data addresses. See the a command for a description of action.

Modify cache tag RAM command. Display and/or modify the contents of one or more of the cache tag addresses. See the a command for a description of action.

Reset the system. If reset_level is:

0 Reset VMEbus, interrupt registers, video monitor (Sun-4 systems). This is the default.
1 Software reset.
2 Power-on reset. Resets and clears the memory. Runs the EPROM-based diagnostic self test, which can take several minutes, depending upon how much memory is being tested.

Display the system banner.

Open the long word (32 bit) at memory address virtual_address (default zero). The address is interpreted in the address space defined by the s command (below). See the a command for a description of action.

Open the segment map entry that maps virtual_address (default zero). The address is interpreted in the address space defined by the s command. See the a command for a description of action.

Disable, enable, or invalidate the cache, respectively.

Open the byte location specified by virtual_address (default zero). The address is interpreted in the address space defined by the s command. See the a command for a description of action.

Open the page map entry that maps virtual_address (default zero) in the address space defined by the s command. See the a command for a description of action.

Open the EEPROM eeprom_offset (default zero) in the EEPROM address space. All addresses are referenced from the beginning or base of the EEPROM in physical address space, and a limit check is performed to insure that no address beyond the EEPROM physical space is accessed. This command is used to display or modify configuration parameters, such as: the amount of memory to test during self test, whether to display a standard or custom banner, if a serial port (A or B)
is to be the system console, etc. See the \texttt{a} command for a description of \texttt{action}.

\texttt{r [register\_number ]}

\texttt{r [register\_type ]}

\texttt{r [w window\_number ]}

Display and/or modify one or more of the IU or FPU registers. A hexadecimal \texttt{register\_number} can be one of:

\begin{verbatim}
0x00—0x0f window(0,i0)—window(0,i7), window(0,i0)—window(0,i7)
0x16—0x1f window(1,i0)—window(1,i7), window(1,i0)—window(1,i7)
0x20—0x2f window(2,i0)—window(2,i7), window(2,i0)—window(2,i7)
0x30—0x3f window(3,i0)—window(3,i7), window(3,i0)—window(3,i7)
0x40—0x4f window(4,i0)—window(4,i7), window(4,i0)—window(4,i7)
0x50—0x5f window(5,i0)—window(5,i7), window(5,i0)—window(5,i7)
0x60—0x6f window(6,i0)—window(6,i7), window(6,i0)—window(6,i7)
0x70—0x77 g0, g1, g2, g3, g4, g5, g6, g7
0x78—0x7d PSR, PC, nPC, WIM, TBR, Y
0x7e—0x9e FSR, f0—f31
\end{verbatim}

Register numbers can only be displayed after an unexpected trap, a user program has entered the monitor using the \texttt{abortent} function, or the user has entered the monitor by manually typing \texttt{L1-A} or \textbf{BREAK}.

If a \texttt{register\_type} is given, the first register of the indicated type is displayed. \texttt{register\_type} can be one of:

\begin{verbatim}
f  floating-point
\textbf{g}  global
\textbf{s}  special
\end{verbatim}

If \texttt{w} and a \texttt{window\_number (0—6)} are given, the first in-register within the indicated window is displayed. If \texttt{window\_number} is omitted, the window that was active just prior to entering the monitor is used. If the PSR’s current window pointer is invalid, window 0 is used.

\texttt{s [asi ]}

Set or display the Address Space Identifier. With no argument, \texttt{s} displays the current Address Space Identifier. The \texttt{asi} value can be one of:

\begin{verbatim}
0x2  control space
0x3  segment table
0x4  Page table
0x8  user instruction
0x9  supervisor instruction
\end{verbatim}
With no arguments, display the current I/O device characteristics including: current input device, current output device, baud rates for serial ports A and B, an input-to-output echo indicator, and virtual addresses of mapped UART devices. With arguments, set or configure the current I/O device. With the u argument (uu...), set the I/O device to be the virtual_address of a UART device currently mapped.

`echo` Can be either e to enable input to be echoed to the output device, or ne, to indicate that input is not echoed.

`port` Assign the indicated port to be the current I/O device. port can be one of:
- a serial port A
- b serial port B
- k the workstation keyboard
- s the workstation screen

`baud_rate` Any legal baud rate.

`options` can be any combination of:
- i input
- o output
- u UART
- e echo input to output
- ne do not echo input
- r reset indicated serial port (a and b ports only)

If either a or b is supplied, and no options are given, the serial port is assigned for both input and output. If k is supplied with no options, it is assigned for input only. If s is supplied with no options, it is assigned for output only.

`v virtual_address1 virtual_address2 [size]`
Display the contents of virtual_address1 (lower) virtual_address2 (higher) in the format specified by size:
- b byte format (the default)
- w word format
- l long word format

Enter return to pause for viewing; enter another return character to resume the
display. To terminate the display at any time, press the space bar.

For example, the following command displays the contents of virtual address space from address 0x1000 to 0x2000 in word format:

```
v 1000 2000 W
```

```
w [virtual_address] [argument]
```

Set the execution vector to a predetermined or default routine. Pass `virtual_address` and `argument` to that routine.

To set up a predetermined routine to jump to, a user program must, prior to executing the monitor’s `w` command, set the variable `*romp->v_vector_cmd` to be equal to the virtual address of the desired routine. Predetermined routines need not necessarily return control to the monitor.

The default routine, defined by the monitor, prints the user-supplied `vector` according to the format supplied in `argument`. This format can be one of:

- `%x` hexadecimal
- `%d` decimal

```
x
```

Display a menu of extended tests. These diagnostics permit additional testing of such things as the I/O port connectors, video memory, workstation memory and keyboard, and boot device paths.

```
y c context_number
yp | s context_number virtual_address
```

Flush the indicated context, context page, or context segment.

- `c` flush context `context_number`
- `p` flush the page beginning at `virtual_address` within context `context_number`
- `s` flush the segment beginning at `virtual_address` within context `context_number`

SEE ALSO `boot(1M)`, `eeprom(1M)`
NAME

montbl – create monetary database

SYNOPSIS

montbl [-o outfile] infile

DESCRIPTION

The montbl command takes as input a specification file, infile, that describes the formatting conventions for monetary quantities for a specific locale. infile describes the monetary formatting conventions for a specific locale. The output of montbl is suitable for use by localeconv(3C), after the super-user has installed outfile as /usr/lib/locale/locale/LC_MONETARY. This file must be readable by everybody.

Before calling localeconv(), a program should set the locale category LC_MONETARY using setlocale(3C). This file is used by the localeconv() function to initialize the monetary specific fields of a structure of type struct lconv. For a description of the fields in this structure, see localeconv(3C).

```
struct lconv {
 char *decimal_point; /* "" (zero length string) */
 char *thousands_sep; /* "" (zero length string) */
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits; /* CHAR_MAX */
 char frac_digits; /* CHAR_MAX */
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
};
```

The specification file specifies the value of each struct lconv member, except for the first two members, decimal_point and thousands_sep, which are set by the LC_NUMERIC category of setlocale(3C). Each member’s value is given on a line in the order defined in the lconv structure.

Blank lines and comment lines starting with # are ignored. Characters in strings may be in octal or hex representation; for example, \141 or \x61 indicate the letter ‘a’. If there is no specification line for a given structure member, the default ‘C’ locale value for is used (these values are shown as comments in the struct lconv definition above). Here is a specification file for Japan. Note that \3 is in octal, as specified by ANSI C. The string \xa1\xef is a multibyte sequence for the Yen symbol ‘¥’.
# first eight items have string values, remaining items have
# numeric values.
# grouping= \3
# int_curr_symbol= JPY
# currency_symbol= \xa1\xef
# mon_decimal_point= .
# mon_thousands_sep= ,
# mon_grouping= \3
# positive_sign=
# negative_sign= -
# int_frac_digits= 0
# frac_digits= 0
# p_cs_precedes= 1
# p_sep_by_space= 0
# n_cs_precedes= 1
# n_sep_by_space= 0
# p_sign_posn= 1
# n_sign_posn= 4

OPTIONS
  −o outfile     Write output to outfile; otherwise, write output to LC_MONETARY.

FILES
  /usr/lib/locale/locale/LC_MONETARY  LC_MONETARY database for locale

SEE ALSO
  localeconv(3C), setlocale(3C)

NOTES
  Do not change files under the C locale, as this could cause undefined or nonstandard
behavior.

1M-358  modified 12 Nov 1991
NAME

mount, umount – mount or unmount file systems and remote resources

SYNOPSIS

mount [ -p | -v ]
mount [ -F FSType ] [ generic_options ] [ -o specific_options ] [ -O ]
special | mount_point

mount [ -F FSType ] [ generic_options ] [ -o specific_options ] [ -O ]
special mount_point

mount -a [ -F FSType ] [ -V ] [ current_options ] [ -o specific_options ]
[ mount_point . . . ]

umount [ -V ] [ -o specific_options ] special | mount_point

umount -a [ -V ] [ -o specific_options ] [ mount_point . . . ]

AVAILABILITY

SUNWcsr

DESCRIPTION

mount attaches a file system to the file system hierarchy at the mount_point, which is the
pathname of a directory. If mount_point has any contents prior to the mount operation,
these are hidden until the file system is unmounted.

umount unmounts a currently mounted file system, which may be specified either as a
mount_point or as special, the device on which the file system resides.

mount and umount maintain a table of mounted file systems in /etc/mnttab, which is
described in mnttab(4). mount adds an entry to the mount table; umount removes an
entry from the table.

When invoked with both the special and mount_point arguments and the -F option, mount
validates all arguments except for special and invokes the appropriate FSType-specific
mount module. If invoked with no arguments, mount lists all the mounted file systems
recorded in the mount table, /etc/mnttab. If invoked with a partial argument list (with
only one of special or mount_point, or with both special or mount_point specified but not
FSType), mount will search /etc/vfstab for an entry that will supply the missing argu-
ments. If no entry is found, and the special argument starts with "/", the default local
file system type specified in /etc/default/fs will be used. Otherwise the default remote
file system type will be used. The default remote file system type is determined by the
first entry in the /etc/dfs/fstypes file. After filling in missing arguments, mount will
invoke the FSType-specific mount module.

Only a super-user can mount or unmount file systems using mount and umount. How-
ever, any user can use mount to list mounted file systems and resources.

OPTIONS

-F FSType

Used to specify the FSType on which to operate. The FSType must be
specified or must be determinable from /etc/vfstab, or by consulting
/etc/default/fs or /etc/dfs/fstypes.

-a [ mount_points . . . ]

Perform mount or umount operations in parallel, when possible.

modified 24 Feb 1994

1M-359
If mount points are not specified, `mount` will mount all file systems whose `/etc/vfstab"mount at boot" field is "yes". If mount points are specified, then `/etc/vfstab"mount at boot" field will be ignored.

If mount points are specified, `umount` will only umount those mount points. If none is specified, then `umount` will attempt to umount all filesystems in `/etc/mnttab`, with the exception of certain system required file systems: `/`, `/usr`, `/usr/kvm`, `/var`, `/proc`, `/dev/fd`, and `/tmp`.

`-p` Print the list of mounted file systems in the `/etc/vfstab` format. Must be the only option specified.

`-v` Print the list of mounted file systems in verbose format. Must be the only option specified.

`-V` Echo the complete command line, but do not execute the command. `umount` generates a command line by using the options and arguments provided by the user and adding to them information derived from `/etc/mnttab`. This option should be used to verify and validate the command line.

generic_options Options that are commonly supported by most FSType-specific command modules. The following options are available:

`-m` Mount the file system without making an entry in `/etc/mnttab`.

`-r` Mount the file system read-only.

`-o` Specify FSType-specific options in a comma separated (without spaces) list of suboptions and keyword-attribute pairs for interpretation by the FSType-specific module of the command. (See `mount_ufs`(1M))

`-O` Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error "device busy".

FILES

/etc/mnttab Mount table
/etc/default/fs default local file system type. Default values can be set for the following flags in `/etc/default/fs`. For example: LOCAL=ufs

LOCAL: The default partition for a command if no FSType is specified.

/etc/vfstab list of default parameters for each file system.

SEE ALSO

`mount_cachefs`(1M), `mount_hfs`(1M), `mount_nfs`(1M), `mount_tmpfs`(1M),
`mount_ufs`(1M), `mountall`(1M), `umountall`(1M), `setmnt`(1M), `mnttab`(4), `vfstab`(4),
`lofs`(7), `pcfs`(7)
NOTES

A server should not attempt to mount its own filesystems (see lofs(7)).
If the directory on which a file system is to be mounted is a symbolic link, the file system
is mounted on the directory to which the symbolic link refers, rather than on top of the
symbolic link itself.
NAME

mount_cachefs – mount CacheFS file systems

SYNOPSIS

mount –F cachefs [ generic_options ]
    –o backfstype=file_system_type [ other cacheFS options ] special mount_point

DESCRIPTION

The CacheFS-specific version of the mount command mounts a cached file system; if necessary, it NFS-mounts its back file system. It also provides a number of CacheFS-specific options for controlling the caching process. For more information regarding back file systems, refer to File System Administration

OPTIONS

To mount a CacheFS file system, use the generic mount command with the –F option followed by the argument cachefs. The following generic mount options are available:

--m Mount the file system without making an entry in the /etc/mnttab file.
--O Overlay mount. Allows the filesystem to be mounted over an existing mount point, making the underlying filesystem inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, mount will fail with the error:

    mount –F cachefs: mount failed Device busy.

--r Mount the file system read-only.

The following arguments to the –o option are specifically for CacheFS mounts. Use commas to separate multiple options. Note: the backfstype argument must be specified.

backfstype=file_system_type
The file system type of the back file system (for example, nfs).

backpath=path
Specifies where the back file system is already mounted. If this argument is not supplied, CacheFS determines a mount point for the back file system. The back file system must be read-only.

cachedir=directory
The name of the cache directory.

cacheid=ID
ID is a string specifying a particular instance of a cache. If you do not specify a cache ID, CacheFS will construct one.

write-around | non-shared
Write modes for CacheFS. The write-around mode (the default) handles writes the same as NFS does; that is, writes are made to the back file system, and the affected file is purged from the cache. You can use the non-shared mode when you are sure that no one else will be writing to the cached file system. In this mode, all writes are made to both the front and the back file system, and the file remains in the cache.

noconst
By default, consistency checking is performed. Disable consistency checking by specifying noconst only if you mount the file system read-only.

local-access
Causes the front file system to interpret the mode bits used for access checking instead of having the back file system verify access
 permissions. Do not use this argument with secure NFS.

`purge` Purge any cached information for the specified file system.

`rw | ro` Read-write (default) or read-only.

`suid | nosuid` Allow (default) or disallow set-uid execution.

`acregmin=n` Specifies that cached attributes are held for at least \( n \) seconds after file modification. After \( n \) seconds, CacheFS checks to see if the file modification time on the back file system has changed. If it has, all information about the file is purged from the cache and new data is retrieved from the back file system. The default value is 30 seconds.

`acregmax=n` Specifies that cached attributes are held for no more than \( n \) seconds after file modification. After \( n \) seconds, all file information is purged from the cache. The default value is 30 seconds.

`acdirmin=n` Specifies that cached attributes are held for at least \( n \) seconds after directory update. After \( n \) seconds, CacheFS checks to see if the directory modification time on the back file system has changed. If it has, all information about the directory is purged from the cache and new data is retrieved from the back file system. The default value is 30 seconds.

`acdirmax=n` Specifies that cached attributes are held for no more than \( n \) seconds after directory update. After \( n \) seconds, all directory information is purged from the cache. The default value is 30 seconds.

`actimeo=n` Sets `acregmin`, `acregmax`, `acdirmin`, and `acdirmax` to \( n \).

**EXAMPLES**

The following example CacheFS-mounts the file system `server1:/user2`, which is already NFS-mounted on `/usr/abc` as `/xyz`.

```
example% mount -F cachefs -o backfstype=nfs,backpath=/usr/abc,
 cachedir=/cache1 server1:/user2 /xyz
```

The lines similar to the following appear in the `/etc/mnttab` file after the `mount` command is executed:

```
server1:/user2 /usr/abc nfs
/usr/abc /cache1/xyz cachefs backfstype=nfs
```

**SEE ALSO**
cfsadmin(1M), fsck_cachefs(1M), mount(1M)

`File System Administration`
mount_hsfs 1M

NAME
mount_hsfs – mount hsfs file systems

SYNOPSIS
mount –F hsfs [ generic_options ] [ –o FSType-specific_options ] [ –O ]
   special | mount_point
mount –F hsfs [ generic_options ] [ –o FSType-specific_options ] [ –O ]
   special mount_point

DESCRIPTION
mount attaches a High Sierra file system (hsfs) to the file system hierarchy at the
mount_point, which is the pathname of a directory. If mount_point has any contents prior
to the mount operation, these are hidden until the file system is unmounted.

If mount is invoked with special or mount_point as the only arguments, mount will search
/etc/vfstab to fill in the missing arguments, including the FSType-specific_options; see
mount(1M) for more details.

If the file system being mounted contains Rock Ridge extensions, by default they will be
used, enabling support of features not normally available under High Sierra file systems
such as symbolic links, and special files.

OPTIONS
generic_options
See mount(1M) for the list of supported options.

–o Specify hsfs file system specific options. If invalid options are specified, a warn-
ing message is printed and the invalid options are ignored. The following
options are available:

   ro Mount the file system read-only. This option is required.
   nrr ‘no Rock Ridge’: if Rock Ridge extensions are present in the file sys-
tem, ignore them; interpret it as a regular High Sierra file system.

   notraildot File names on High Sierra file systems consist of a proper name and
   an extension separated by a ‘.’ (dot) character. By default, the separat-
ing dot is always considered part of the file’s name for all file access
operations, even if there is no extension present. Specifying notrail-
dot makes it optional to specify the trailing dot to access a file whose
name lacks an extension.

   Exceptions:
   This option is effective only on file systems for which Rock
   Ridge extensions are not active, either because they are not
   present on the CD-ROM, or they are explicitly ignored via the
   nrr option. If Rock Ridge extensions are active, hsfs quietly
   ignores this option.

   nomapcase File names on High Sierra cdroms with no Rock Ridge extensions
   present should be uppercase characters only. By default, hsfs maps
   file names read from a non-Rock Ridge disk to all lowercase charac-
ters. nomapcase turns off this mapping. The exceptions for

1M-364 modified 20 Apr 1994
notrailingdot discussed above apply to nomapcase.

nosuid  By default the file system is mounted with setuid execution allowed. Specifying nosuid causes the file system to be mounted with setuid execution disallowed.

-O  Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error “device busy”.

FILES
/etc/mnttab  table of mounted file systems
/etc/vfstab  list of default parameters for each file system

SEE ALSO  mount(1M), mountall(1M), mount(2), mnttab(4), vfstab(4)

NOTES  If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.
NAME  
mount_nfs – mount remote NFS resources

SYNOPSIS  
mount [ −F nfs ] [ −r ] [ −m ] [ −o specific_options ] [ −O ] resource | mount_point

DESCRIPTION  
mount attaches a named resource to the file system hierarchy at the pathname location
mount_point, which must already exist. If mount_point has any contents prior to the
mount operation, the contents remain hidden until the resource is once again unmounted.
If the resource is listed in the vfstab file, the command line can specify either resource or
mount_point, and mount will consult vfstab for more information. If the −F option is
omitted, mount takes the file system type from vfstab.

mount maintains a table of mounted file systems in /etc/mttab, described in mttab(4).

OPTIONS  
−r  Mount the specified file system read-only.
−m  Do not append an entry to the /etc/mttab table of mounted file systems
−o specific_options
   Set file system specific options according to a comma-separated list chosen from
   words below.
   rw | ro  resource is mounted read-write or read-only. The default is rw.
suid | nosuid  Setuid execution allowed or disallowed. The default is suid.
remount  If a file system is mounted read-only, remounts the file system
         read-write.
bg | fg  If the first attempt fails, retry in the background, or, in the fore-
         ground. The default is fg.
retry=n  The number of times to retry the mount operation. The default
         is 10000.
port=n  The server IP port number. The default is NFS_PORT.
grpid  By default, the GID associated with a newly created file will
        obey the System V semantics; that is, the GID is set to the effective
        GID of the calling process. This behavior may be overridden
        on a per-directory basis by setting the set-GID bit of the
        parent directory; in this case, the GID of a newly created file is
        set to the GID of the parent directory (see open(2) and
        mkdir(2)). Files created on file systems that are mounted with the
        grpid option will obey BSD semantics independent of
        whether the set-GID bit of the parent directory is set; that is, the
        GID is unconditionally inherited from that of the parent direc-
        tory.
rsizer=n  Set the read buffer size to n bytes. The default value is 8192.
wsize=n  Set the write buffer size to n bytes. The default value is 8192.
timeo=n  Set the NFS timeout to n tenths of a second. The default value is
        11.
retrans=n  Set the number of NFS retransmissions to n. The default value is
        5.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft</td>
<td>hard</td>
</tr>
<tr>
<td>intr</td>
<td>nointr</td>
</tr>
<tr>
<td>secure</td>
<td>Use DES authentication for NFS transactions.</td>
</tr>
<tr>
<td>posix</td>
<td>Request POSIX.1 semantics for the file system. Requires a mount version 2 <code>mountd(1M)</code> on the server.</td>
</tr>
<tr>
<td>kerberos</td>
<td>Use Kerberos authentication for NFS transactions.</td>
</tr>
<tr>
<td>noac</td>
<td>Suppress attribute caching.</td>
</tr>
<tr>
<td>acregmin=n</td>
<td>Hold cached attributes for at least n seconds after file modification. The default value is 3.</td>
</tr>
<tr>
<td>acregmax=n</td>
<td>Hold cached attributes for no more than n seconds after file modification. The default value is 60.</td>
</tr>
<tr>
<td>acdirmin=n</td>
<td>Hold cached attributes for at least n seconds after directory update. The default value is 30.</td>
</tr>
<tr>
<td>acdirmax=n</td>
<td>Hold cached attributes for no more than n seconds after directory update. The default value is 60.</td>
</tr>
<tr>
<td>actimeo=n</td>
<td>Set min and max times for regular files and directories to n seconds.</td>
</tr>
<tr>
<td>-O</td>
<td>Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error “device busy”.</td>
</tr>
</tbody>
</table>

**NFS FILE SYSTEMS**

**Background vs. Foreground**

File systems mounted with the bg option indicate that `mount` is to retry in the background if the server’s mount daemon (`mountd(1M)`) does not respond. `mount` retries the request up to the count specified in the `retry=n` option. Once the file system is mounted, each NFS request made in the kernel waits `timeo=n` tenths of a second for a response. If no response arrives, the time-out is multiplied by 2 and the request is retransmitted. When the number of retransmissions has reached the number specified in the `retrans=n` option, a file system mounted with the soft option returns an error on the request; one mounted with the hard option prints a warning message and continues to retry the request.

**Hard vs. Soft**

File systems that are mounted read-write or that contain executable files should always be mounted with the hard option. Applications using soft mounted filesystems may incur unexpected I/O errors.

**Authenticated Requests**

The server may require authenticated NFS requests from the client. Either secure or kerberos authentication may be required.
**File Attributes**

To improve NFS read performance, files and file attributes are cached. File modification times get updated whenever a write occurs. However, file access times may be temporarily out-of-date until the cache gets refreshed.

The attribute cache retains file attributes on the client. Attributes for a file are assigned a time to be flushed. If the file is modified before the flush time, then the flush time is extended by the time since the last modification (under the assumption that files that changed recently are likely to change soon). There is a minimum and maximum flush time extension for regular files and for directories. Setting `actimeo=n` sets flush time to \( n \) seconds for both regular files and directories.

**EXAMPLES**

To mount an NFS file system:

```bash
example# mount serv:/usr/src /usr/src
```

To mount an NFS file system readonly with no suid privileges:

```bash
example# mount -r -o nosuid serv:/usr/src /usr/src
```

**FILES**

- `/etc/mnttab` table of mounted file systems
- `/etc/dfs/fstypes` default distributed file system type
- `/etc/vfstab` table of automatically mounted resources

**SEE ALSO**

`mountall(1M)`, `mountd(1M)`, `mkdir(2)`, `mount(2)`, `open(2)`, `umount(2)`, `mnttab(4)`

**NOTES**

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

SunOS 4.X used the `biod` maintenance procedure to perform parallel read-ahead and write-behind on NFS clients. SunOS 5.X obsoleted `biod` with multi-threaded processing, which transparently performs parallel read-ahead and write-behind.
NAME
mount_pcfs – mount pcfs file systems

SYNOPSIS
mount –F pcfs [ generic_options ] [ –o FSType-specific_options ] special | mount_point
mount –F pcfs [ generic_options ] [ –o FSType-specific_options ] special mount_point

AVAILABILITY
x86
SUNWesu

DESCRIPTION
mount attaches an MS-DOS file system (pcfs) to the file system hierarchy at the
mount_point, which is the pathname of a directory. If mount_point has any contents prior
to the mount operation, these are hidden until the file system is unmounted.
If mount is invoked with special or mount_point as the only arguments, mount will search
/etc/vfstab to fill in the missing arguments, including the FSType-specific_options; see
mount(1M) for more details.
The special argument can be one of two special device file types:
• A floppy disk, such as /dev/diskette0 or /dev/diskette1.
• A DOS logical drive on a hard disk expressed as device-name:logical-drive, where
device-name specifies the special block device-file for the whole disk and logical-drive is
either a drive letter (c through z) or a drive number (1 through 24). Examples are
/dev/dsk/c0t0d0p0:c and /dev/dsk/c0t0d0p0:1.
The special device file type must have a formatted MS-DOS file system with either a 12-bit
or a 16-bit File Allocation Table. Regular or BIG-DOS (greater than 32 megabytes in size)
partitions can be mounted.

OPTIONS
generic_options
See mount(1M) for the list of supported options.
–o Specify pcfs file system specific options. If invalid options are specified, a warn-
ing message is printed and the invalid options are ignored. The following
options are available:
  rw | ro Mount the file system read/write or read-only. The default is rw.

FILES
/etc/mnttab table of mounted file systems
/etc/vfstab list of default parameters for each file system

SEE ALSO
mount(1M), mountall(1M), mount(2), mnttab(4), vfstab(4), pcfs(7)

NOTES
If the directory on which a file system is to be mounted is a symbolic link, the file system
is mounted on the directory to which the symbolic link refers, rather than on top of the
symbolic link itself.

pcfs is currently not NFS mountable. Trying to mount a pcfs file system through NFS
will fail with an EACCES error.

modified 15 Oct 1993
NAME

mount_s5fs – mount s5 file systems

SYNOPSIS

mount –F s5fs [ generic_options ] [ –o FSType-specific_options ] special | mount_point
mount –F s5fs [ generic_options ] [ –o FSType-specific_options ] special mount_point

AVAILABILITY

x86
SUNWs53

DESCRIPTION

mount attaches a s5 file system to the file system hierarchy at the mount_point, which is the pathname of a directory. If mount_point has any contents prior to the mount operation, these are hidden until the file system is unmounted.

If mount is invoked with special or mount_point as the only arguments, mount will search /etc/vfstab to fill in the missing arguments, including the FSType-specific_options. See mount(1M).

If special and mount_point are specified without any FSType-specific_options, the default is rw.

OPTIONS

See mount(1M) for the list of supported generic_options.

–o Specify s5 file system specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored. The following options are available:

   f     Fake an /etc/mnttab entry, but do not actually mount any file systems. Parameters are not verified.

   n     Mount the file system without making an entry in /etc/mnttab.

   rw | ro  Read-write or read-only. Default is rw.

   remount Used in conjunction with rw. A file system mounted read-only can be remounted read-write. Fails if the file system is not currently mounted or if the file system is mounted rw.

FILES

/etc/mnttab  table of mounted file systems
/etc/vfstab  list of default parameters for each file system

SEE ALSO

mount(1M), mountall(1M), mount(2), mnttab(4), vfstab(4)

NOTES

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.

1M-370  modified 31 May 1993
### NAME
mount_tmpfs – mount tmpfs file systems

### SYNOPSIS
```
mount [-F tmpfs] [-o size=sz] [-O] special mount_point
```

### DESCRIPTION
*tmpfs* is a memory based file system which uses kernel resources relating to the VM system and page cache as a file system.

*mount* attaches a *tmpfs* file system to the file system hierarchy at the pathname location *mount_point*, which must already exist. If *mount_point* has any contents prior to the *mount* operation, these remain hidden until the file system is once again unmounted.

The *special* argument is usually specified as *swap* but is in fact disregarded and assumed to be the virtual memory resources within the system.

### OPTIONS
- **-o size=**
  - The *sz* argument controls the size of this particular *tmpfs* file system. If the argument is has a `k` suffix, the number will be interpreted as a number of kilobytes. An `m` suffix will be interpreted as a number of megabytes. No suffix is interpreted as bytes. In all cases, the actual size of the file system is the number of bytes specified, rounded up to the physical pagesize of the system.

- **-O**
  - Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error “device busy”.

### FILES
- `/etc/mnttab`
  - table of mounted file systems

### SEE ALSO
- `mount(1M)`, `mkdir(2)`, `mount(2)`, `open(2)`, `umount(2)`, `mnttab(4)`, `tmpfs(7)`

### NOTES
If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.
NAME  
mount_ufs – mount ufs file systems

SYNOPSIS  
mount −F ufs [ generic_options ] [ −o FSType-specific_options ] [ −O ]  
special | mount_point

mount −F ufs [ generic_options ] [ −o FSType-specific_options ] [ −O ]  
special mount_point

DESCRIPTION  
mount attaches a ufs file system to the file system hierarchy at the mount_point, which is  
the pathname of a directory. If mount_point has any contents prior to the mount operation, these are hidden until the file system is unmounted.

If mount is invoked with special or mount_point as the only arguments, mount will search /etc/vfstab to fill in the missing arguments, including the FSType-specific_options. See mount(1M).

If special and mount_point are specified without any FSType-specific_options, the default is rw.

OPTIONS  
See mount(1M) for the list of supported generic_options.

−o  Specify ufs file system specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored. The following options are available:

f  Fake an /etc/mnttab entry, but do not actually mount any file systems. Parameters are not verified.

m  Mount the file system without making an entry in /etc/mnttab.

quota  Quotas are turned on for the file system.

rw | ro  Read-write or read-only. Default is rw.

rq  Read-write with quotas turned on. Equivalent to rw, quota.

nosuid  By default the file system is mounted with Setuid execution allowed. Specifying nosuid causes the file system to be mounted with setuid execution disallowed. nosuid can also be used to disallow setuid when mounting devices.

remount  Used in conjunction with rw. A file system mounted read-only can be remounted read-write. Fails if the file system is not currently mounted or if the file system is mounted rw.

intr | nointr  Allow(do not allow) keyboard interrupts to kill a process that is waiting for an operation on a locked file system. The default is intr.

−O  Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error “device busy”.

1M-372  
modified 29 Apr 1994
FILES
/etc/mnttab  table of mounted file systems
/etc/vfstab  list of default parameters for each file system

SEE ALSO
mount(1M), mountall(1M), mount(2), mnttab(4), vfstab(4)

NOTES
If the directory on which a file system is to be mounted is a symbolic link, the file system
is mounted on the directory to which the symbolic link refers, rather than on top of the
symbolic link itself.
NAME

mountall, umountall – mount, unmount multiple file systems

SYNOPSIS

mountall [-F FSType] [-l | -r] [file_system_table]

umountall [-F FSType] [-l | -r]

AVAILABILITY

SUNWcsr

DESCRIPTION

mountall is used to mount file systems specified in a file system table. The file system table must be in vfstab(4) format. If no file_system_table is specified, /etc/vfstab will be used. If ‘~’ is specified as file_system_table, mountall will read the file system table from the standard input. mountall only mounts those file systems with the automnt field set to yes in the file_system_table.

Each file system which has an fsckdev entry specified in the file system table will be checked using fsck(1M) in order to determine if it may be safely mounted. If the file system does not appear mountable, it is fixed using fsck before the mount is attempted. File systems with a ‘~’ entry in the fsckdev field will be mounted without first being checked.

umountall causes all mounted file systems except root, /proc, /var, and /usr to be unmounted. If the FSType is specified, mountall and umountall limit their actions to the FSType specified.

OPTIONS

-F Specify the FSType of the file system to be mounted or unmounted.

-l Limit the action to local file systems.

-r Limit the action to remote file system types.

SEE ALSO

fsck(1M), mount(1M), mnttab(4), vfstab(4)

DIAGNOSTICS

No messages are printed if the file systems are mountable and clean. Error and warning messages come from fsck(1M) and mount(1M).
NAME  mountd – NFS mount request server
SYNOPSIS  mountd
DESCRIPTION  mountd is an RPC server that answers file system mount requests. It reads the file
/etc/dfs/sharetab (described in sharetab(4)), to determine which file systems are available
for mounting by which machines. It also provides information as to what file systems are
mounted by which clients. This information can be printed using the dfmounts(1M)
command.
The mountd daemon is automatically invoked in run level 3.
Only super-user can run the mountd daemon.
FILES  /etc/dfs/sharetab
SEE ALSO  dfmounts(1M), sharetab(4)
NAME       mpstat – report per-processor statistics

SYNOPSIS   /usr/bin/mpstat [ interval [ count ] ]

AVAILABILITY SUNWcsu

DESCRIPTION mpstat reports per-processor statistics in tabular form. Each row of the table represents
the activity of one processor. The first table summarizes all activity since boot; each subsequent table summarizes activity for the preceding interval. All values are rates (events
per second) unless otherwise noted.

mpstat reports the following information:

<table>
<thead>
<tr>
<th>CPU</th>
<th>processor ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>minf</td>
<td>minor faults</td>
</tr>
<tr>
<td>mjf</td>
<td>major faults</td>
</tr>
<tr>
<td>xcal</td>
<td>inter-processor cross-calls</td>
</tr>
<tr>
<td>intr</td>
<td>interrupts</td>
</tr>
<tr>
<td>ithr</td>
<td>interrupts as threads (not counting clock interrupt)</td>
</tr>
<tr>
<td>csw</td>
<td>context switches</td>
</tr>
<tr>
<td>icsw</td>
<td>involuntary context switches</td>
</tr>
<tr>
<td>migr</td>
<td>thread migrations (to another processor)</td>
</tr>
<tr>
<td>smtx</td>
<td>spins on mutexes (lock not acquired on first try)</td>
</tr>
<tr>
<td>srw</td>
<td>spins on readers/writer locks (lock not acquired on first try)</td>
</tr>
<tr>
<td>syscl</td>
<td>system calls</td>
</tr>
<tr>
<td>usr</td>
<td>percent user time</td>
</tr>
<tr>
<td>sys</td>
<td>percent system time</td>
</tr>
<tr>
<td>wt</td>
<td>percent wait time</td>
</tr>
<tr>
<td>idl</td>
<td>percent idle time</td>
</tr>
</tbody>
</table>

OPTIONS

interval  Report once each interval seconds.

count    Only print count reports.

FILES

/dev/kmem
/dev/ksyms
/kernel/unix

SEE ALSO sar(1), iostat(1M), sar(1M), vmstat(1M)

1M-376  modified 16 Feb 1993
NAME        mvdir – move a directory

SYNOPSIS    /usr/sbin/mvdir  dirname  name

DESCRIPTION mvdir moves directories within a file system.  dirname must be a directory.  If name does not exist, it will be created as a directory.  If name does exist, and is a directory,dirname will be created as name/dirname.  dirname and name may not be on the same path; that is, one may not be subordinate to the other.  For example:

    example% mvdir x/y x/z

    is legal, but

    example% mvdir x/y x/y/z

    is not.

SEE ALSO    mkdir(1), mv(1)

WARNINGS    Only the super-user can use mvdir.
NAME ncheck – generate a list of path names versus i-numbers

SYNOPSIS ncheck [ −F FSType ] [ −V ] [ generic_options ] [ −o FSType-specific_options ] [ special . . . ]

AVAILABILITY SUNWcsu

DESCRIPTION ncheck with no options generates a path-name versus i-number list of all files on special. If special is not specified on the command line the list is generated for all specials in /etc/vfstab which have a numeric fsckpass. special is a block special device on which the file system exists.

OPTIONS

−F Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by finding an entry in the table that has a numeric fsckpass field and an fsckdev that matches special.

−V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option may be used to verify and validate the command line.

generic_options Options that are commonly supported by most FSType-specific command modules. The following options are available:

−i i-list Limit the report to the files on the i-list that follows. The i-list must be separated by commas with no intervening spaces.

−a Print the names ‘.’ and ‘.’., which are ordinarily suppressed.

−s Report only special files and files with set-user-ID mode. This option may be used to detect violations of security policy.

−o Specify FSType-specific options in a comma separated (without spaces) list of suboptions and keyword-attribute pairs for interpretation by the FSType-specific module of the command.

FILES /etc/vfstab list of default parameters for each file system

SEE ALSO vfstab(4) Manual pages for the FSType-specific modules of ncheck

NOTES This command may not be supported for all FSTypes.
NAME  ncheck_ufs – generate pathnames versus i-numbers for ufs file systems

SYNOPSIS  ncheck -F ufs [ generic_options ] [ -o m | [ special ... ] ]

DESCRIPTION  ncheck -F ufs generates a pathname versus i-number list of files for the ufs file system residing on special. Names of directory files are followed by /.

OPTIONS  See ncheck(1M) for the list of generic_options supported.

- o  Specify ufs file system specific options. The available option is:

  m  Print mode information.

DIAGNOSTICS  When the file system structure is improper, ‘??’ denotes the “parent” of a parentless file and a pathname beginning with ‘…’ denotes a loop.

SEE ALSO  ff(1M), ncheck(1M)
NAME

ndd – get and set driver configuration parameters

SYNOPSIS

ndd [ −set ] driver parameter [ value ]

AVAILABILITY

SUNWcsu

DESCRIPTION

ndd gets and sets selected configuration parameters in some kernel drivers. Currently, ndd only supports the drivers that implement the TCP/IP Internet protocol family. Each driver chooses which parameters to make visible using ndd. Since these parameters are usually tightly coupled to the implementation, they are likely to change from release to release. Some parameters may be read-only.

If the −set option is omitted, ndd queries the named driver, retrieves the value associated with the specified parameter, and prints it. If the −set option is given, ndd passes value, which must be specified, down to the named driver which assigns it to the named parameter.

By convention, drivers that support ndd also support a special read-only parameter named “?” which can be used to list the parameters supported by the driver.

EXAMPLES

To see which parameters are supported by the TCP driver, use the following command:

tcp

NOTE: The parameter name “?” may need to be escaped with a backslash to prevent its being interpreted as a shell meta character.

The following command sets the value of the parameter ip_forwarding in the IP driver to zero. This disables IP packet forwarding.

ip_forwarding

example% ndd −set /dev/ip ip_forwarding 0

To view the current IP forwarding table, use the following command:

ip_ire_status

example% ndd /dev/ip ip_ire_status

SEE ALSO

ioctl(2), arp(7), ip(7), tcp(7), udp(7)

NOTES

The parameters supported by each driver may change from release to release. Like programs that read /dev/kmem, user programs or shell scripts that execute ndd should be prepared for parameter names to change.

The ioctl() command that ndd uses to communicate with drivers is likely to change in a future release. User programs should avoid making dependencies on it.

The meanings of many ndd parameters make sense only if you understand how the driver is implemented.
NAME
netstat – show network status

SYNOPSIS
netstat [ −an ] [ system ] [ core ]
netstat [ −s | −g | −m | −p | −f address_family ] [ −P protocol ] [ −n ] [ system ] [ core ]
netstat −i [ −I interface [ interval ] [ system ] [ core ]
netstat −r [ −an ] [ system ] [ core ]
netstat −M [ −ns ] [ system ] [ core ]

DESCRIPTION
netstat displays the contents of various network-related data structures in various formats, depending on the options you select. The first form of the command displays a list of active sockets for each protocol. The second form selects one from among various other network data structures. The third form displays the routing table and the fourth form the multicast routing table.

OPTIONS
−a Show the state of all sockets and all routing table entries; normally sockets used by server processes are not shown and only interface, host, network and default routes are shown.
−f address_family Limit statistics or address control block reports to those of the specified address_family, which can be one of:
   inet For the AF_INET address family, or
   unix For the AF_UNIX address family.
−g Show the multicast group memberships for all interfaces.
−i Show the state of the interfaces that are used for TCP/IP traffic. (See ifconfig(1M)).
−m Show the STREAMS statistics.
−n Show network addresses as numbers. netstat normally displays addresses as symbols. This option may be used with any of the display formats.
−p Show the address resolution (ARP) tables.
−r Show the routing tables.
−s Show per-protocol statistics. When used with the −M option, show multicast routing statistics instead.
−v Verbose. Show additional information for the sockets and the routing table.
−I interface Show the state of a particular interface. interface can be any valid interface such as ie0 or le0.
−M Show the multicast routing tables. When used with the −s option, show multicast routing statistics instead.
DISPLAYS

Active Sockets (First Form)

The display for each active socket shows the local and remote address, the send and receive queue sizes (in bytes), the send and receive windows (in bytes), and the internal state of the protocol.

The symbolic format normally used to display socket addresses is either:

hostname.port

when the name of the host is specified, or:

network:port

if a socket address specifies a network but no specific host.

The numeric host address or network number associated with the socket is used to look up the corresponding symbolic hostname or network name in the hosts or networks database.

If the network or hostname for an address is not known (or if the −n option is specified), the numerical network address is shown. Unspecified, or “wildcard”, addresses and ports appear as “∗”. For more information regarding the Internet naming conventions, refer to inet(7).

TCP Sockets

The possible state values for TCP sockets are as follows:

- CLOSED: Closed. The socket is not being used.
- LISTEN: Listening for incoming connections.
- SYN_SENT: Actively trying to establish connection.
- SYN_RECEIVED: Initial synchronization of the connection under way.
- ESTABLISHED: Connection has been established.
- CLOSE_WAIT: Remote shut down; waiting for the socket to close.
- FIN_WAIT_1: Socket closed; shutting down connection.
- CLOSING: Closed, then remote shutdown; awaiting acknowledgment.
- LAST_ACK: Remote shut down, then closed; awaiting acknowledgment.
- FIN_WAIT_2: Socket closed; waiting for shutdown from remote.
- TIME_WAIT: Wait after close for remote shutdown retransmission.

Network Data Structures (Second Form)

The form of the display depends upon which of the −i, −g, −m, −p or −s options you select. If you specify more than one of these options, netstat displays the information for each one of them.

Routing Table (Third Form)

The routing table display lists the available routes and the status of each. Each route consists of a destination host or network, and a gateway to use in forwarding packets. The flags column shows the status of the route (U if “up”), whether the route is to a gateway (G), and whether the route was created dynamically by a redirect (D). If the −a option is specified there will be routing entries with flags for combined routing and address.
resolution entries (A), broadcast addresses (B), and the local addresses for the host (L).

Interface routes are created for each interface attached to the local host; the gateway field for such entries shows the address of the outgoing interface.

The refcnt column gives the current number of routes that share the same link layer address.

The use column displays the number of packets sent using an combined routing and address resolution (A) or a broadcast (B) route. For a local (L) route this count is the number of packets received, and for all other routes it is the number of times the routing entry has been used to create a new combined route and address resolution entry.

The interface entry indicates the network interface utilized for the route.

Multicast Routing
Tables (Fourth Form)

The multicast routing table consists of the virtual interface table and the actual routing table.

SEE ALSO
ifconfig(1M), iostat(1M), vmstat(1M), hosts(4), networks(4), protocols(4), services(4)

NOTES
The kernel’s tables can change while netstat is examining them, creating incorrect or partial displays.

modified 7 Dec 1993
NAME  
newfs – construct a new ufs file system

SYNOPSIS  
newfs [ −Nv ] [ mkfs-options ] raw-device

DESCRIPTION  
newfs is a “friendly” front-end to the mkfs(1M) program for making ufs file systems on disk partitions. newfs calculates the appropriate parameters to use and calls mkfs. raw-device is the name of a raw special device residing in /dev/rdsk (for example, /dev/rdsk/c0t0d0s6) on which to create the file system.

If you run newfs interactively (that is, standard input is a tty), newfs will prompt for confirmation before making the file system.

Note: You must be super-user to use this command.

OPTIONS  
−N  Print out the file system parameters that would be used in creating the file system without actually creating the file system.
−v  Verbose. newfs prints out its actions, including the parameters passed to mkfs.

mkfs-options
Options that override the default parameters are:
−a apc  The number of alternate blocks per cylinder (SCSI devices only) to reserve for bad block replacement. The default is 0.
−b bsize  The logical block size of the file system in bytes (either 4096 or 8192). The default is 8192.
−c cgize  The number of cylinders per cylinder group (ranging from 1 to 32). The default is 16.
−d gap  Rotational delay. The expected time (in milliseconds) to service a transfer completion interrupt and initiate a new transfer on the same disk. It is used to decide how much rotational spacing to place between successive blocks in a file. This parameter can be subsequently changed using the tunefs(1M) command. The default is disk-type dependent.
−f fragsize  The smallest amount of disk space in bytes to allocate to a file. The values must be a power of two selected from the range 512 to the logical block size. If logical block size is 4096, legal values are 512, 1024, 2048 and 4096; if logical block size is 8192, 8192 is also a legal value. The default is 1024.
−i nbpi  The number of bytes per inode. This specifies the density of inodes in the file system. The number is divided into the total size of the file system to determine the fixed number of inodes to create. It should reflect the expected average size of files in the file system. If fewer inodes are desired, a larger number should be used; to create more inodes a smaller number should be given. The default is 2048.
−m free  The minimum percentage of free space to maintain in the file system. This space is off-limits to normal users. Once the file system is filled to this threshold, only the super-user can continue writing to the file system. This parameter can be subsequently changed using the tunefs(1M) command. The default is 10%.

−n nrpos  The number of different rotational positions in which to divide a cylinder group. The default is 8.

−o opt (space or time). The file system can either be instructed to try to minimize the time spent allocating blocks, or to try to minimize the space fragmentation on the disk. If the minimum free space threshold (as specified by the −m option) is less than 10%, space optimization will be used.

−r rpm  The speed of the disk in revolutions per minute. The default is 3600.

−s size  The size of the file system in sectors. The default is to use the entire partition.

−t ntrack  The number of tracks per cylinders on the disk. The default is taken from the disk label.

−C maxcontig  The maximum number of blocks, belonging to one file, that will be allocated contiguously before inserting a rotational delay. For a 4K file system, the default is 14; for an 8K file system, the default is 7. This parameter can be subsequently changed using the tunefs(1M) command.

Note: This parameter also controls clustering. Regardless of the value of gap, clustering is enabled only when maxcontig is greater than 1. Clustering allows higher I/O rates for sequential I/O and is described in tunefs(1M).

EXAMPLES  The following example verbosely displays the parameters for the raw special device, c0t0d0s6, but does not actually create a new file system:

example# newfs −Nv /dev/rdsk/c0t0d0s6
mkfs −F ufs −o N /dev/rdsk/c0t0d0s6 1112940 54 15 8192 1024 16 10 60 2048 t 0 −1 8
/dev/rdsk/c0t0d0s6: 1112940 sectors in 1374 cylinders of 15 tracks, 54 sectors
569.8MB in 86 cyl groups (16 c/g, 6.64MB/g, 3072 i/g)
super-block backups (for fsck −b #) at:
32, 13056, 26080, 39104, 52128, 65152, 78176, 91200, 104224,
...
example#

SEE ALSO  fsck(1M), fsck_ufs(1M), mkfs(1M), mkfs_ufs(1M), tunefs(1M), fs_ufs(4)
DIAGNOSTICS

newfs: special No such file or directory
The device specified does not exist, or a disk partition was not specified.

special: cannot open
You must be super-user to use this command.
NAME  
newgrp – log in to a new group

SYNOPSIS  
newgrp [-] [ group ]

DESCRIPTION  
newgrp logs a user into a new group by changing a user’s real and effective group ID. The user remains logged in and the current directory is unchanged. The execution of newgrp always replaces the current shell with a new shell, even if the command terminates with an error (unknown group).

Any variable that is not exported is reset to null or its default value. Exported variables retain their values. System variables (such as PS1, PS2, PATH, MAIL, and HOME), are reset to default values unless they have been exported by the system or the user. For example, when a user has a primary prompt string (PS1) other than $ (default) and has not exported PS1, the user’s PS1 will be set to the default prompt string $, even if newgrp terminates with an error. Note that the shell command export (see sh(1)) is the method to export variables so that they retain their assigned value when invoking new shells.

With no arguments, newgrp changes the user’s group IDs (real and effective) back to the group specified in the user’s password file entry. This is a way to exit the effect of an earlier newgrp command.

If the first argument to newgrp is a −, the environment is changed to what would be expected if the user actually logged in again as a member of the new group.

A password is demanded if the group has a password and the user is not listed in /etc/group as being a member of that group. The only way to create a password for a group is to use passwd(1), then cut and paste the password from /etc/shadow to /etc/group. Group passwords are antiquated and not often used.

ENVIRONMENT  
If any of the LC_* variables ( LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY ) (see environ(5)) are not set in the environment, the operational behavior of newgrp for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how newgrp behaves.

LC_CTYPE  
Determines how newgrp handles characters. When LC_CTYPE is set to a valid value, newgrp can display and handle text and filenames containing valid characters for that locale. newgrp can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. newgrp can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

LC_MESSAGES  
Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).
**FILES**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/group</code></td>
<td>system’s group file</td>
</tr>
<tr>
<td><code>/etc/passwd</code></td>
<td>system’s password file</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`login(1), sh(1), intro(2), group(4), passwd(4), environ(5)`
NAME  newkey – create a new Diffie-Hellman key pair in the publickey database

SYNOPSIS  newkey −h hostname [ −s nisplus | nis | files ]
           newkey −u username [ −s nisplus | nis | files ]

AVAILABILITY  SUNWcswu

DESCRIPTION  newkey establishes new public keys for users and machines on the network. These keys are needed when using secure RPC or secure NFS service.

newkey prompts for a password for the given username or hostname and then creates a new public/secret Diffie-Hellman 192 bit key pair for the user or host. The secret key is encrypted with the given password. The key pair can be stored in the /etc/publickey file, the NIS publickey map, or the NIS+ cred.org_dir table.

newkey consults the publickey entry in the name service switch configuration file (see nsswitch.conf(4)) to determine which naming service is used to store the secure RPC keys. If the publickey entry specifies a unique name service, newkey will add the key in the specified name service. However, if there are multiple name services listed, newkey cannot decide which source to update and will display an error message. The user is required to specify the source explicitly with the −s option.

In the case of NIS, newkey should be run by the superuser on the master NIS server for that domain. In the case of NIS+, newkey should be run by the superuser on a machine which has permission to update the cred.org_dir table of the new user/host domain.

In the case of NIS+, nisaddcred(1) should be used to add new keys.

OPTIONS  
−h hostname         Create a new public/secret key pair for the privileged user at the given hostname. Prompts for a password for the given hostname.
−u username         Create a new public/secret key pair for the given username. Prompts for a password for the given username.
−s nisplus          Update the database in the specified source: nisplus (for NIS+), nis (for NIS), or files. Other sources may be available in the future.
−s nis
−s files

SEE ALSO  chkey(1), keylogin(1), nisaddcred(1M), nisclient(1M), nsswitch.conf(4), publickey(4)

modified 4 Mar 1993
NAME
nfsd – NFS daemon

SYNOPSIS
nfsd [-a] [-p protocol] [-t device] [nservers]

DESCRIPTION
nfsd starts the daemon that handles client file system requests. Only the super-user can run this daemon.

The nfsd daemon is automatically invoked in run level 3 with the –a option.

OPTIONS
- a            Start a NFS daemon over all available connectionless transports.
- p protocol   Start a NFS daemon over the specified protocol.
- t device     Start a NFS daemon for the transport specified by the given device.
nservers      This sets the maximum number of concurrent NFS requests that the server can handle. This concurrency is achieved by up to nservers threads created as needed in the kernel. nservers should be based on the load expected on this server. Eight is the usual number of nservers. If nservers is not specified, the maximum number of concurrent NFS requests will default to one.

FILES
.nfsXXX        client machine pointer to an open-but-unlinked file

SEE ALSO
ps(1), mountd(1M), sharetab(4)

BUGS
The NFS service uses kernel threads to process all of the NFS requests. Currently, system utilization associated with these threads is not charged to the nfsd process. Therefore, ps(1) can report 0 cpu time associated with the NFS daemon, even though NFS processing is taking place on the server.
NAME  nfsstat – Network File System statistics

SYNOPSIS  nfsstat [ −cmnrsz ]

AVAILABILITY  SUNWcsu

DESCRIPTION  nfsstat displays statistical information about the NFS (Network File System) and RPC (Remote Procedure Call), interfaces to the kernel. It can also be used to reinitialize this information. If no options are given the default is

nfsstat −cnrs

That is, display everything, but reinitialize nothing.

OPTIONS

−c  Display client information. Only the client side NFS and RPC information will be printed. Can be combined with the −n and −r options to print client NFS or client RPC information only.

−m  Display statistics for each NFS mounted file system. This includes the server name and address, mount flags, current read and write sizes, the retransmission count, and the timers used for dynamic retransmission. The srtt value contains the smoothed round trip time, the dev value contains the estimated deviation, and the cur value is the current backed-off retransmission value.

−n  Display NFS information. NFS information for both the client and server side will be printed. Can be combined with the −c and −s options to print client or server NFS information only.

−r  Display RPC information.

−s  Display server information.

−z  Zero (reinitialize) statistics. This option is for use by the super-user only, and can be combined with any of the above options to zero particular sets of statistics after printing them.

DISPLAYS  The server RPC display includes the following fields:

- calls  The total number of RPC calls received.
- badcalls  The total number of calls rejected by the RPC layer (the sum of badlen and xdrcall as defined below).
- nullrecv  The number of times an RPC call was not available when it was thought to be received.
- badlen  The number of RPC calls with a length shorter than a minimum-sized RPC call.
- xdrcall  The number of RPC calls whose header could not be XDR decoded.

The server NFS display shows the number of NFS calls received (calls) and rejected (badcalls), and the counts and percentages for the various calls that were made.

modified 30 May 1991
The client RPC display includes the following fields:

- **calls**: The total number of RPC calls made.
- **badcalls**: The total number of calls rejected by the RPC layer.
- **retrans**: The number of times a call had to be retransmitted due to a timeout while waiting for a reply from the server.
- **badxid**: The number of times a reply from a server was received which did not correspond to any outstanding call.
- **timeout**: The number of times a call timed out while waiting for a reply from the server.
- **wait**: The number of times a call had to wait because no client handle was available.
- **newcred**: The number of times authentication information had to be refreshed.
- **timers**: The number of times the calculated time-out value was greater than or equal to the minimum specified time-out value for a call.

The client NFS display shows the number of calls sent and rejected, as well as the number of times a CLIENT handle was received (`nclget`), the number of times a call had to sleep while awaiting a handle (`nclsleep`), as well as a count of the various calls and their respective percentages.

**SEE ALSO**

- SPARC: Installing Solaris Software
- x86: Installing Solaris Software

modified 30 May 1991
NAME nis_cachemgr – NIS+ utility to cache location information about NIS+ servers

SYNOPSIS /usr/sbin/nis_cachemgr [-i] [-n] [-v]

AVAILABILITY SUNWnisu

DESCRIPTION The nis_cachemgr daemon maintains a cache of the NIS+ directory objects. The cache contains location information necessary to contact the NIS+ servers that serve the various directories in the name space. This includes transport addresses, information needed to authenticate the server, and a time to live field which gives a hint on how long the directory object can be cached. The cache helps to improve the performance of the clients that are traversing the NIS+ name space. nis_cachemgr should be running on all the machines that are using NIS+. However, it is not required that the nis_cachemgr program be running in order for NIS+ requests to be serviced.

The cache maintained by this program is shared by all the processes which access NIS+ on that machine. The cache is maintained in a file that is memory mapped (see mmap(2)) by all the processes. On start up, nis_cachemgr initializes the cache from the cold start file (see nisinit(1M)) and preserves unexpired entries that already exist in the cache file. Thus, the cache survives machine reboots.

The nis_cachemgr program is normally started from a system startup script.

Note: The nis_cachemgr program makes NIS+ requests under the NIS+ principal name of the host on which it runs. Before running nis_cachemgr, security credentials for the host should be added to the cred.org_dir table in the host’s domain using nisaddcred(1M). Credentials of type DES will be needed if the NIS+ service is operating at security level 2 (see rpc.nisd(1M)). See the WARNINGS section, below. Additionally, a "keylogin -r" needs to be done on the machine.

nisshowcache(1M) can be used to look at the cached objects.

OPTIONS -i Force nis_cachemgr to ignore the previous cache file and reinitialize the cache from just the cold start file. By default, the cache manager initializes itself from both the cold start file and the old cache file, thereby maintaining the entries in the cache across machine reboots.

-n Run nis_cachemgr in an insecure mode. By default, before adding a directory object to the shared cache, on the request of another process on the machine, it checks the encrypted signature on the request to make sure that the directory object is a valid one and is sent by an authorized server. In this mode, nis_cachemgr adds the directory object to the shared cache without making this check.

-v This flag sets verbose mode. In this mode, the nis_cachemgr program logs not only errors and warnings, but also additional status messages. The additional messages are logged using syslog(3) with a priority of LOG_INFO.

modified 26 Sep 1992

FILES
/var/nis/NIS_SHARED_DIRCACHE the shared cache file
/var/nis/NIS_COLD_START the coldstart file
/etc/init.d/rpc initialization scripts for NIS+

SEE ALSO
keylogin(1), nisaddcred(1M), nisinit(1M), nisshowcache(1M), rpc.nisd(1M), mmap(2),
syslog(3), nisfiles(4)

DIAGNOSTICS
The nis_cachemgr daemon logs error messages and warnings using syslog (see syslog(3)). Error messages are logged to the DAEMON facility with a priority of LOG_ERR, and warning messages with a priority of LOG_WARNING. Additional status messages can be obtained using the −v option.

WARNINGS
If the host principal does not have the proper security credentials in the cred.org_dir table for its domain, then running this program without the −n insecure mode option may significantly degrade the performance of processes issuing NIS+ requests.
**NAME**

nisaddcred – create NIS+ credentials

**SYNOPSIS**

nisaddcred [ -p principal ] [ -P nis_principal ] [ -l login_password ] auth_type

[ domain_name ]
nisaddcred -r [ nis_principal ] [ domain_name ]

**AVAILABILITY**

SUNWnisu

**DESCRIPTION**

The **nisaddcred** command is used to create security credentials for NIS+ principals. NIS+ credentials serve two purposes. The first is to provide authentication information to various services; the second is to map the authentication service name into a NIS+ principal name.

When the **nisaddcred** command is run, these credentials get created and stored in a table named **cred.org_dir** in the default NIS+ domain. If **domain_name** is specified, the entries are stored in the **cred.org_dir** of the specified domain. Note that the credentials of normal users must be stored in the same domain as their passwords.

It is simpler to add credentials using **nisclient**(1M), because it obtains the required information itself. **nispopulate**(1M) can also be used to add credentials for entries in the **hosts** and the **passwd** NIS+ tables.

NIS+ principal names are used in specifying clients that have access rights to NIS+ objects. For more details, refer to the “Principal Names” subsection of the **nis+**(1) manual page. See **nischmod**(1), **nischown**(1), **nis_objects**(3N), and **nis_groups**(3N). Various other services can also implement access control based on these principal names.

The **cred.org_dir** table is organized as follows:

<table>
<thead>
<tr>
<th>cname</th>
<th>auth_type</th>
<th>auth_name</th>
<th>public_data</th>
<th>private_data</th>
</tr>
</thead>
<tbody>
<tr>
<td>fred.foo.com</td>
<td>LOCAL</td>
<td>2990</td>
<td>10,102,44</td>
<td></td>
</tr>
<tr>
<td>fred.foo.com</td>
<td>DES</td>
<td><a href="mailto:unix.2990@foo.com">unix.2990@foo.com</a></td>
<td>098...819</td>
<td>3b8...ab2</td>
</tr>
</tbody>
</table>

The **cname** column contains a canonical representation of the NIS+ principal name. By convention, this name is the login name of a user, or the host name of a machine, followed by a dot ("."") followed by the fully qualified “home” domain of that principal.

For users, the home domain is defined to be the domain where their DES credentials are kept. For hosts, their home domain is defined to be the domain name returned by the **domainname**(1M) command executed on that host.

There are two types of **auth_type** entries in the **cred.org_dir** table. Those with authentication type LOCAL, and those with authentication type DES. **auth_type**, specified on the command line in upper or lower case, should be either **local** or **des**.

Entries of type LOCAL are used by the NIS+ service to determine the correspondence between fully qualified NIS+ principal names and users identified by UIDs in the domain containing the **cred.org_dir** table.
This correspondence is required when associating requests made using the AUTH_SYS RPC authentication flavor (see rpc_clnt_auth(3N)) to a NIS+ principal name. It is also required for mapping a UID in one domain to its fully qualified NIS+ principal name whose home domain may be elsewhere. The principal’s credentials for any authentication flavor may then be sought for within the cred.org_dir table in the principal’s home domain (extracted from the principal name). The same NIS+ principal may have LOCAL credential entries in more than one domain. Only users, and not machines, have LOCAL credentials. In their home domain, users of NIS+ should have both types of credentials.

The auth_name associated with the LOCAL type entry is a UID that is valid for the principal in the domain containing the cred.org_dir table. This may differ from that in the principal’s home domain. The public information stored in public_data for this type contains a list of GIDs for groups in which the user is a member. The GIDs also apply to the domain in which the table resides. There is no private data associated with this type. Neither a UID nor a principal name should appear more than once among the LOCAL entries in any one cred.org_dir table.

The DES auth_type is used for Secure RPC authentication (see secure_rpc(3N)). The authentication name associated with the DES auth_type is a Secure RPC netname. A Secure RPC netname has the form unix.id@domain, where domain must be the same as the domain of the principal. For principals that are users the id must be the UID of the principal in the principal’s home domain. For principals that are hosts, the id is the host’s name. In Secure RPC, processes running under effective UID 0 (root) are identified with the host principal. Unlike LOCAL, there cannot be more than one DES credential entry for one NIS+ principal in the NIS+ namespace.

The public information in an entry of authentication type DES is the public key for the principal. The private information in this entry is the private key of the principal encrypted by the principal’s network password.

User clients of NIS+ should have credentials of both types in their home domain. In addition, a principal must have a LOCAL entry in the cred.org_dir table of each domain from which the principal wishes to make authenticated requests. A client of NIS+ that makes a request from a domain in which it does not have a LOCAL entry will be unable to acquire DES credentials. A NIS+ service running at security level 2 or higher will consider such users unauthenticated and assign them the name nobody for determining access rights.

This command can only be run by those NIS+ principals who are authorized to add or delete the entries in the cred table.

If credentials are being added for the caller itself, nisaddcred automatically performs a keylogin for the caller.

**OPTIONS**

- **−p principal** Use the principal name principal to fill the auth_name field for this entry. For LOCAL credentials, the name supplied with this option should be a string specifying a UID. For DES credentials, the name should be a Secure RPC netname of the form unix.id@domain, as described earlier. If the −p option is not specified, the auth_name field is constructed from the effective UID of the current process and the name of the local domain.
−P nis_principal
Use the NIS+ principal name nis_principal. This option should be used when creating LOCAL credentials for users whose home domain is different than the local machine’s default domain.

Whenever the −P option is not specified, nisaddcred constructs a principal name for the entry as follows. When it is not creating an entry of type LOCAL, nisaddcred calls nis_local_principal, which looks for an existing LOCAL entry for the effective UID of the current process in the cred.org_dir table and uses the associated principal name for the new entry. When creating an entry of authentication type LOCAL, nisaddcred constructs a default NIS+ principal name by taking the login name of the effective UID for its own process, and appending to it a dot (‘.’) followed by the local machine’s default domain. If the caller is a superuser, the machine name is used instead of the login name.

−l login_password
Use the login_password specified as the password to encrypt the secret key for the credential entry. This overrides the prompting for a password from the shell. This option is intended for administration scripts only. Prompting guarantees not only that no one can see your password on the command line using ps(1) but it also checks to make sure you have not made any mistakes. NOTE: login_password does not really HAVE to be the user’s password but if it is, it simplifies logging in.

−r [ nis_principal ]
Remove all credentials associated with the principal nis_principal from the cred.org_dir table. This option can be used when removing a client or user from the system. If nis_principal is not specified the default is to remove credentials for the current user. If domain_name is not specified, the operation is executed in the default NIS+ domain.

EXIT CODES
This command returns 0 on success and 1 on failure.

EXAMPLES
The following example would add a LOCAL entry with a UID 2970 for the NIS+ principal name fredw.some.domain.

        example% nisaddcred −p 2970 −P fredw.some.domain.local

Note that credentials are always added in the cred.org_dir table in the domain where nisaddcred is run, unless domainname is specified as the last parameter on the command line. If credentials are being added from the domain server for its clients, then domainname should be specified. The caller should have adequate permissions to create entries in the cred.org_dir table.

The system administrator can add a DES credential for the same user, using the following example:

        example% nisaddcred −p unix.2970@some.domain −P fredw.some.domain

modified 15 Jul 1993
Here, 2970 is the UID assigned to the user, fredw. some.domain comes from the user’s home domain, and fredw comes from the password file. Please note that DES credentials can be added only after the LOCAL credentials have been added.

Note that the secure RPC netname does not end with a dot ("." ) while the NIS+ principal name (specified with the –P option) does. This command should be executed from a machine in the same domain as is the user.

The following example shows how to add a machine’s DES credentials in the same domain.

    example% nisaddcred –p unix.foo@some.domain –P foo.some.domain

Please note that no LOCAL credentials are needed in this case.

The following example would add a LOCAL entry with the UID of the current user and the NIS+ principal name of tony.some.other.domain.

    example% nisaddcred –P tony.some.other.domain. local

You can list the cred entries for a particular principal with nismatch(1).

SEE ALSO  chkey(1), keylogin(1), nis+(1), nischmod(1), nischown(1), nismatch(1), nistbladm(1),
           nisclient(1M), nispopulate(1M), nis_local_names(3N), rpc_clint_auth(3N),
           secure_rpc(3N), nis_objects(3N), nis_groups(3N)

NOTES  The cred.org_dir NIS+ table replaces the maps publickey.byname and netid.byname used in NIS (YP).
NAME  nisaddent – create NIS+ tables from corresponding /etc files or NIS maps

SYNOPSIS  


/usr/lib/nis/nisaddent [-D defaults] [-Parmv] [-t table] -y ypdomain [-Y map]

/usr/lib/nis/nisaddent -d [-AMq] [-t table] type [nisdomain]

DESCRIPTION  nisaddent creates entries in NIS+ tables from their corresponding /etc files and NIS maps. This operation is customized for each of the standard tables that are used in the administration of Solaris systems. The type argument specifies the type of the data being processed. Legal values for this type are one of aliases, bootparams, ethers, group, hosts, netid, netmasks, networks, passwd, protocols, publickey, rpc, services, shadow, or timezone for the standard tables, or key-value for a generic two-column (key, value) table. For a site specific table, which is not of key-value type, one can use nistbladm(1) to administer it.

The NIS+ tables should have already been created by nistbladm(1), nissetup(1M), or nisserver(1M).

It is easier to use nispopulate(1M) instead of nisaddent to populate the system tables. By default, nisaddent reads from the standard input and adds this data to the NIS+ table associated with the type specified on the command line. An alternate NIS+ table may be specified with the -t option. For type key-value, a table specification is required.

Note that the data type can be different than the table name (-t). For example, the automounter tables have key-value as the table type.

Although, there is a shadow data type, there is no corresponding shadow table. Both the shadow and the passwd data is stored in the passwd table itself.

Files may be processed using the -f option, and NIS version 2 (YP) maps may be processed using the -y option. The merge option is not available when reading data from standard input.

When a ypdomain is specified, the nisaddent command takes its input from the dbm files for the appropriate NIS map (mail.alises, bootparams, ethers.byaddr, group.byname, hosts.byaddr, netid.byname, netmasks.byaddr, networks.byname, passwd.byname, protocols.byname, publickey.byname, rpc.bynumber, services.byname, or timezone.byname). An alternate NIS map may be specified with the -Y option. For type key-value, a map specification is required. The map must be in the /var/yp/ypdomain directory on the local machine. Note that ypdomain is case sensitive. ypfpbr(1M) can be used to get the NIS maps.

If a nisdomain is specified, nisaddent operates on the NIS+ table in that NIS+ domain, otherwise the default domain is used.

modified 15 Jul 1993
In terms of performance, loading up the tables is fastest when done through the dbm files (−y).

OPTIONS

−a Add the file or map to the NIS+ table without deleting any existing entries. This option is the default. Note that this mode only propagates additions and modifications, not deletions.

−p Process the password field when loading password information from a file. By default, the password field is ignored because it is usually not valid (the actual password appears in a shadow file).

−q Dump tables in "quick" mode. The default method for dumping tables processes each entry individually. For some tables (e.g., hosts), multiple entries must be combined into a single line, so extra requests to the server must be made. In "quick" mode, all of the entries for a table are retrieved in one call to the server, so the table can be dumped more quickly. However, for large tables, there is a chance that the process will run out of virtual memory and the table will not be dumped.

−r Replace the file or map in the existing NIS+ table by first deleting any existing entries, and then add the entries from the source (/etc files, or NIS+ maps). This option has the same effect as the −m option. The use of this option is strongly discouraged due to its adverse impact on performance, unless there are a large number of changes.

−m Merge the file or map with the NIS+ table. This is the most efficient way to bring an NIS+ table up to date with a file or NIS map when there are only a small number of changes. This option adds entries that are not already in the database, modifies entries that already exist (if changed), and deletes any entries that are not in the source. Use the −m option whenever the database is large and replicated, and the map being loaded differs only in a few entries. This option reduces the number of update messages that have to be sent to the replicas. Also see the −r option.

−d Dump the NIS+ table to the standard output in the appropriate format for the given type. For tables of type key-value, use niscat(1) instead. To dump the cred table, dump the publickey and the netid types.

−v Verbose.

−f file Specify that file should be used as the source of input (instead of the standard input).

−y ypdomain Use the dbm files for the appropriate NIS map, from the NIS domain ypdomain, as the source of input. The files are expected to be on the local machine in the /var/yp/ypdomain directory. If the machine is not an NIS server, use ypxfr(1M) to get a copy of the dbm files for the appropriate map.

−Y map Use the dbm files for map as the source of input.

−t table Specify that table should be the NIS+ table for this operation. This should be a
relative name as compared to your default domain or the domainname if it has been specified.

−P Follow concatenation path. This option specifies that lookups should follow the concatenation path of a table if the initial search is unsuccessful.

−A All data. This option specifies that the data within the table and all of the data in tables in the initial table’s concatenation path be returned.

−M Master server only. This option specifies that lookups should be sent to the master server. This guarantees that the most up-to-date information is seen at the possible expense that the master server may be busy, or that it may be made busy by this operation.

−D defaults

This option specifies a different set of defaults to be used during this operation. The defaults string is a series of tokens separated by colons. These tokens represent the default values to be used for the generic object properties. All of the legal tokens are described below.

ttl=time

This token sets the default time to live for objects that are created by this command. The value time is specified in the format as defined by the nischttl(1) command. The default is 12 hours.

owner=ownername

This token specifies that the NIS+ principal ownername should own the created object. The default for this value is the principal who is executing the command.

group=groupname

This token specifies that the group groupname should be the group owner for the object that is created. The default is NULL.

access=rights

This token specifies the set of access rights that are to be granted for the given object. The value rights is specified in the format as defined by the nischmod(1) command. The default is −−−−rmcdr−−−−r−−−.

EXIT CODES

This command returns 0 on success and 1 on failure.

EXAMPLES

This example adds the contents of /etc/passwd to the passwd.org_dir table.

example% cat /etc/passwd | nisaddent passwd

The next example adds the shadow information; note that the table type here is “shadow”, not “passwd”, even though the actual information is stored in the passwd table.

example% cat /etc/shadow | nisaddent shadow

This example replaces the hosts.org_dir table with the contents of /etc/hosts (in verbose mode).

example% nisaddent −rv −f /etc/hosts hosts

modified 15 Jul 1993
This example merges the `passwd` map from `yypdomain` with the `passwd.org_dir.nisdomain` table (in verbose mode). The example assumes that the `/var/yp/myypdomain` directory contains the `yppasswd` map.

```
example% nisaddent -mv -y myypdomain passwd nisdomain
```

This example merges the `auto.master` map from `myypdomain` with the `auto_master.org_dir` table.

```
example% nisaddent -m -y myypdomain -Y auto.master \
 -t auto_master.org_dir key-value
```

This example dumps the `hosts.org_dir` table.

```
example% nisaddent -d hosts
```

### ENVIRONMENT

<table>
<thead>
<tr>
<th>NIS_DEFAULTS</th>
<th>This variable contains a default string that will override the NIS+ standard defaults. If the <code>−D</code> switch is used, those values will then override both the NIS_DEFAULTS variable and the standard defaults.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS_PATH</td>
<td>If this variable is set, and neither the <code>nisdomain</code> nor the <code>table</code> are fully qualified, each directory specified in <code>NIS_PATH</code> will be searched until the table is found (see <code>nisdefaults(1)</code>).</td>
</tr>
</tbody>
</table>

### SEE ALSO

`niscat(1), nischmod(1), nisdefaults(1), nisbladm(1), nispopulate(1M), nisserver(1M), nissetup(1M), ypxfr(1M), hosts(4), passwd(4), shadow(4)`
NAME
nisclient - initialize NIS+ credentials for NIS+ principals

SYNOPSIS
/usr/lib/nis/nisclient  [-c | [-x] | [-o] | [-v] | [-l <network_password>]]
  [-d <NIS+_domain>]  [ client_name ...]
/usr/lib/nis/nisclient -i [-x] | [-v] | -h <NIS+_server_host>
  [-a <NIS+_server_addr>] | [-d <NIS+_domain>] | [-S 0] | 2]
/usr/lib/nis/nisclient -u [-x] | [-v]
/usr/lib/nis/nisclient -r [-x]

DESCRIPTION
The nisclient shell script can be used to:

- create NIS+ credentials for hosts and users
- initialize NIS+ hosts and users
- restore the network service environment

NIS+ credentials are used to provide authentication information of NIS+ clients to NIS+ service.

Use the first synopsis (−c) to create individual NIS+ credentials for hosts or users. You must be logged in as a NIS+ principal in the domain for which you are creating the new credentials. You must also have write permission to the local "cred" table. The client_name argument accepts any valid host or user name in the NIS+ domain (for example, the client_name must exist in the hosts or passwd table). nisclient verifies each client_name against both the host and passwd tables, then adds the proper NIS+ credentials for hosts or users. Note that if you are creating NIS+ credentials outside of your local domain, the host or user must exist in the host or passwd tables in both the local and remote domains.

By default, nisclient will not overwrite existing entries in the credential table for the hosts and users specified. To overwrite, use the −o option. After the credentials have been created, nisclient will print the command that must be executed on the client machine to initialize the host or the user. The −c option requires a network password for the client which is used to encrypt the secret key for the client. You can either specify it on the command line with the −l option or the script will prompt you for it. You can change this network password later with nispasswd(1) or chkey(1).

nisclient -c is not intended to be used to create NIS+ credentials for all users and hosts which are defined in the passwd and hosts tables. To define credentials for all users and hosts, use nispopulate(1M).

Use the second synopsis (−i) to initialize a NIS+ client machine. −i option can be used to convert machines to use NIS+ or to change the machine’s domainname. You must be logged in as super-user on the machine that is to become a NIS+ client. Your administrator must have already created the NIS+ credential for this host by using nisclient -c or nispopulate −C. You will need the network password your administrator created. nisclient will prompt you for the network password to decrypt your secret key and then for this machine’s root login password to generate a new set of secret/public keys. If the NIS+ credential was created by your administrator using nisclient -c, then you can
simply use the initialization command that was printed by the nisclient script to initialize this host instead of typing it manually.

To initialize an unauthenticated NIS+ client machine, use the “−i” option with “−S 0”. With these options, the nisclient -i option will not ask for any passwords.

During the client initialization process, files that are being modified are backed up as <files>.no_nisplus. The files that are usually modified during a client initialization are: /etc/defaultdomain, /etc/nsswitch.conf, /etc/inet/hosts, and, if it exists, /var/nis/NIS_COLD_START. Note that a file will not be saved if a backup file already exists.

The −i option does not set up an NIS+ client to resolve hostnames using DNS. Please refer to the DNS documentation for information on setting up DNS. (See resolv.conf(4)).

NOTE: It is not necessary to initialize either NIS+ root master servers or machines that were installed as NIS+ clients using suninstall(1M).

Use the third synopsis ( −u ) to initialize a NIS+ user. You must be logged in as the user on a NIS+ client machine in the domain where your NIS+ credentials have been created. Your administrator should have already created the NIS+ credential for your username using nisclient -c or nispopulate(1M). You will need the network password your administrator used to create the NIS+ credential for your username. nisclient will prompt you for this network password to decrypt your secret key and then for your login password to generate a new set of secret/public keys.

Use the fourth synopsis ( −r ) to restore the network service environment to whatever you were using before nisclient -i was executed. You must be logged in as super-user on the machine that is to be restored. The restore will only work if the machine was initialized with nisclient -i because it uses the backup files created by the −i option.

Reboot the machine after initializing a machine or restoring the network service.

OPTIONS

−a <NIS+_server_addr> specifies the IP address for the NIS+ server. This option is ONLY used with the −i option.

−c adds DES credentials for NIS+ principals.

−d <NIS+_domain> specifies the NIS+ domain where the credential should be created when used in conjunction with the −c option. It specifies the name for the new NIS+ domain when used in conjunction with the −i option. The default is your current domainname.

−h <NIS+_server_host> specifies the NIS+ server’s hostname. This option is ONLY used with the −i option.

−i initializes an NIS+ client machine.

−l <network_password> specifies the network password for the clients. This option is ONLY used with the −c option. If this option is not specified, the script will prompt you for the network password.

−o overwrite existing credential entries. The default is not to overwrite. This is ONLY used with the −c option.
−r
restores the network service environment.

−S 0|2
specifies the authentication level for the NIS+ client. Level 0 is for unauthenticated clients and level 2 is for authenticated (DES) clients. The default is to set up with level 2 authentication. This is *ONLY* used with -i option. nisclient always uses level 2 authentication (DES) for both -c and -u options. There is no need to run nisclient with -u and -c for level 0 authentication.

−u
initializes an NIS+ user.

−v
runs the script in verbose mode.

−x
turns the “echo” mode on. The script just prints the commands that it would have executed. Note that the commands are not actually executed. The default is off.

EXAMPLES
To add the DES credential for host sunws and user fred in the local domain:

```
example% /usr/lib/nis/nisclient −c sunws fred
```

To add the DES credential for host sunws and user fred in domain xyz.sun.com.:

```
example% /usr/lib/nis/nisclient −c −d xyz.sun.com. sunws fred
```

To initialize host sunws as an NIS+ client in domain xyz.sun.com. where nisplus_server is a server for the domain xyz.sun.com.:

```
example# /usr/lib/nis/nisclient −i −h nisplus_server −d xyz.sun.com.
```

The script will prompt you for the IP address of nisplus_server if the server is not found in the /etc/hosts file. The −d option is needed only if your current domain name is different from the new domain name.

To initialize host sunws as an unauthenticated NIS+ client in domain xyz.sun.com. where nisplus_server is a server for the domain xyz.sun.com.:

```
example# /usr/lib/nis/nisclient −i −S 0
 −h nisplus_server −d xyz.sun.com. −a 129.140.44.1
```

To initialize user fred as an NIS+ principal, log in as user fred on an NIS+ client machine.

```
example% /usr/lib/nis/nisclient −u
```

FILES
/var/nis/NIS_COLD_START
This file contains a list of servers, their transport addresses, and their Secure RPC public keys that serve the machines default domain.

/etc/defaultdomain
the system default domainname

/etc/nsswitch.conf
configuration file for the name-service switch

/etc/inet/hosts
local host name database

modified 01 Jun 1993
SEE ALSO  chkey(1), keylogin(1), nis+(1), nispasswd(1), keyserv(1M), nisaddcred(1M), nisinit(1M), nispopulate(1M), suninstall(1M), nsswitch.conf(4), resolv.conf(4)
NAME  nisinit – NIS+ client and server initialization utility

SYNOPSIS  nisinit –r
            nisinit –p Y | D | N parent_domain host ...
            nisinit –c –H host | –B | –C coldstart

DESCRIPTION  nisinit initializes a machine to be a NIS+ client or an NIS+ root master server. It may be easier to use nisclient(1M) or nisserver(1M) to accomplish this same task.

OPTIONS
–r  Initialize the machine to be a NIS+ root server. This option creates the file /var/nis/root.object and initialize it to contain information about this machine. It uses the sysinfo(2) system call to retrieve the name of the default domain.

To initialize the machine as an NIS+ root server, it is advisable to use the “−r” option of nisserver(1M), instead of using “nisinit –r”.

–p Y | D | N parent_domain host ...

This option is used on a root server to initialize a /var/nis/parent.object to make this domain a part of the namespace above it. Only root servers can have parent objects. A parent object describes the namespace “above” the NIS+ root. If this is an isolated domain, this option should not be used. The argument to this option tells the command what type of name server is serving the domain above the NIS+ domain. When clients attempt to resolve a name that is outside of the NIS+ namespace, this object is returned with the error NIS_FOREIGNNS indicating that a name space boundary has been reached. It is up to the client to continue the name resolution process.

The parameter parent_domain is the name of the parent domain in a syntax that is native to that type of domain. The list of host names that follow the domain parameter are the names of hosts that serve the parent domain. If there is more than one server for a parent domain, the first host specified should be the master server for that domain.

Y  The “Y” argument specifies that the parent directory is a NIS version 2 domain.

D  The “D” argument specifies that the parent directory is a DNS domain.

N  The “N” argument specifies that the parent directory is another NIS+ domain. This option is useful for connecting a pre-existing NIS+ subtree into the global namespace.

Note: In the current implementation, the NIS+ clients do not take advantage of the –p feature. Also, since the parent object is currently not replicated on root replica servers, it is recommended that this option not be used.
−c This option initializes the machine to be a NIS+ client. There are three initialization options available: initialize by coldstart, initialize by hostname, and initialize by broadcast. The most secure mechanism is to initialize from a trusted coldstart file. The second option is to initialize using a hostname that you specify as a trusted host. The third method is to initialize by broadcast and it is the least secure method.

−C coldstart
This option causes the file coldstart to be used as a prototype coldstart file when initializing a NIS+ client. This coldstart file can be copied from a machine that is already a client of the NIS+ namespace. For maximum security, an administrator can encrypt and encode (with uuencode(1C)) the coldstart file and mail it to an administrator bringing up a new machine. The new administrator would then decode (with uudecode), decrypt, and then use this file with the nisinit command to initialize the machine as an NIS+ client. If the coldstart file is from another client in the same domain, the nisinit command may be safely skipped and the file copied into the /var/nis directory as /var/nis/NIS_COLD_START.

−H hostname
This option specifies that the host hostname should be contacted as a trusted NIS+ server. The nisinit command will iterate over each transport in the NETPATH environment variable and attempt to contact rpcbind(1M) on that machine. This hostname must be reachable from the client without the name service running. For IP networks this means that there must be an entry in /etc/hosts for this host when nisinit is invoked.

−B
This option specifies that the nisinit command should use an IP broadcast to locate a NIS+ server on the local subnet. Any machine that is running the NIS+ service may answer. No guarantees are made that the server that answers is a server of the organization’s namespace. If this option is used, it is advisable to check with your system administrator that the server and domain served are valid. The binding information can be dumped to the standard output using the nisshowcache(1M) command.

Note: nisinit −c will just enable navigation of the NIS+ name space from this client. To make NIS+ your name service, modify the file /etc/nsswitch.conf to reflect that. See nsswitch.conf(4) for more details.

RETURN VALUES
nisinit returns 0 on success and 1 on failure.

EXAMPLES
This example initializes the machine as an NIS+ client using the host freddy as a trusted server.

example# nisinit −cH freddy
This example sets up a client using a trusted coldstart file.
example# nisinit −c /tmp/colddata
This example sets up a client using an IP broadcast.

example# nisinit −cB
This example sets up a root server.

example# nisinit −r

ENVIRONMENT

NETPATH
This environment variable may be set to the transports to try when con-
tacting the NIS+ server (see netconfig(4)). The client library will only
attempt to contact the server using connection oriented transports.

FILES
/var/nis/NIS_COLD_START
This file contains a list of servers, their transport addresses, and
their Secure RPC public keys that serve the machine’s default
domain.

/var/nis/hostname/root.object
This file describes the root object of the NIS+ namespace. It is a
standard XDR-encoded NIS+ directory object that can be modified
by authorized clients using the nis_modify() interface.

/var/nis/hostname/parent.object
This file describes the namespace that is logically above the NIS+
namespace. The most common type of parent object is a DNS
object. This object contains contact information for a server of that
domain.

/etc/hosts
Internet host table.

SEE ALSO
nis+(1), uudecode(1C), nisclient(1M), nisserver(1M), nisshowcache(1M), sysinfo(2),
hosts(4), netconfig(4), nisfiles(4)
NAME  nislog – display the contents of the NIS+ transaction log

SYNOPSIS  /usr/sbin/nislog [ −h | −t num ] [ −v ] [ directory ... ]

AVAILABILITY  SUNWnisu

DESCRIPTION  nislog displays the contents of the NIS+ server transaction log on the standard output. This command can be used to track changes in the namespace. The /var/nis/hostname.log file contains the transaction log maintained by the NIS+ server. hostname is the string returned by uname -n. When updates occur, they are logged to this file and then propagated to replicas as log transactions. When the log is checkpointed, updates that have been propagated to the replicas are removed.

The nislog command can only be run on an NIS+ server by superuser. It displays the log entries for that server only.

If directory is not specified, the entire log is searched. Otherwise, only those logs entries that correspond to the specified directories are displayed.

OPTIONS  
−h [ num ]  Display num transactions from the “head” of the log. If the numeric parameter is omitted, it is assumed to be 1. If the numeric parameter is 0, only the log header is displayed.

−t [ num ]  Display num transactions from the “tail” of the log. If the numeric parameter is omitted, it is assumed to be 1. If the numeric parameter is 0, only the log header is displayed.

−v  Verbose mode.

FILES  /var/nis/hostname.log  transaction log

SEE ALSO  nis+(1), uname(1), rpc.nisd(1M), nisfiles(4)
NAME
nisping – send ping to NIS+ servers

SYNOPSIS
/usr/lib/nis/nisping [ −uf ] [ −H hostname ] [ −r | directory ]
/usr/lib/nis/nisping −C [ −a ] [ −H hostname ] [ directory ]

DESCRIPTION
In the first SYNOPSIS line, the nisping command sends a “ping” to all replicas of a NIS+
directory. Once a replica receives a ping, it will check with the master server for the
directory to get updates. Prior to pinging the replicas, this command attempts to deter-
dine the last update "seen" by a replica and the last update logged by the master. If these
two timestamps are the same, the ping is not sent. The −f (force) option will override this
feature.

Under normal circumstances, NIS+ replica servers get the new information from the mas-
ter NIS+ server within a short time. Therefore, there should not be any need to use nisping.

In the second SYNOPSIS line, the nisping −C command sends a checkpoint request to the
servers. If no directory is specified, the home domain, as returned by nisdefaults(1), is
checkpointed. If all directories, served by a given server, have to be checkpointed, then
use the −a option.

On receiving a checkpoint request, the servers would commit all the updates for the
given directory from the table log files to the database files. This command, if sent to the
master server, will also send updates to the replicas if they are out of date. This option is
needed because the database log files for NIS+ are not automatically checkpointed. nisping
should be used at frequent intervals (such as once a day) to checkpoint the NIS+ data-
base log files. This command can be added to the crontab(1) file. If the database log files
are not checkpointed, their sizes will continue to grow.

OPTIONS
−a Checkpoint all directories on the server.
−C Send a request to checkpoint, rather than a ping, to each server. The
servers schedule to commit all the transactions to stable storage.
−H hostname Only the host hostname is sent the ping, checked for an update time, or
checkpointed.
−f Force a ping, even though the timestamps indicate there is no reason to
do so. This option is useful for debugging.
−r This option can be used to update or get status about the root object
from the root servers, especially when new root replicas are added or
deleted from the list.

If used without −u option, −r will send a ping request to the servers
serving the root domain. When the replicas receive a ping, they will
update their root object if needed.
The −r option can be used with all other options except with the −C
option; the root object need not be checkpointed.
nisping (1M)                  Maintenance Commands              SunOS 5.4

`−u`  Display the time of the last update; no servers are sent a ping.

**RETURN VALUES**

`−1`  No servers were contacted, or the server specified by the `−H` switch could not be contacted.

0  Success.

1  Some, but not all, servers were successfully contacted.

**EXAMPLES**

This example pings all replicas of the default domain:

```bash
example% nisping
```

Note that this example will not ping the the `org_dir` and `group_dir` subdirectories within this domain.

This example pings the server `example` which is a replica of the `org_dir.foo.com` directory:

```bash
example% nisping −H example org_dir.foo.com.
```

This example checkpoints all servers of the `org_dir.bar.com` directory.

```bash
example% nisping −C org_dir.bar.com.
```

**ENVIRONMENT**

`NIS_PATH`  If this variable is set, and the NIS+ directory name is not fully qualified, each directory specified will be searched until the directory is found.

**SEE ALSO**

`crontab(1)`, `nisdefaults(1)`, `nislog(1M)`, `nis_admin(3N)`, `nisfiles(4)`

**NOTES**

If the server specified by the `−H` option does not serve the directory, then no ping is sent.

1M-412  modified 19 Feb 1993
NAME
nispopulate – populate the NIS+ tables in a NIS+ domain.

SYNOPSIS
/usr/lib/nis/nispopulate -Y [ -x ] [ -f ] [ -u ] [ -v ]
[-S 0 | 2] [ -l <network_passwd> ] [ -d <NIS+_domain> ]
-h <NIS_server_host> [ -a <NIS_server_addr> ]
-y <NIS_domain> [ table ] …

/usr/lib/nis/nispopulate -F [ -x ] [ -f ] [ -u ] [ -v ] [-S 0 | 2]
[-d <NIS+_domain> ] [ -l <network_passwd> ]
[-p <directory_path> ] [ table ] …

/usr/lib/nis/nispopulate -C [ -x ] [ -f ] [ -v ] [ -d <NIS+_domain> ]
[-l <network_passwd> ] [ hosts | passwd ]

DESCRIPTION
The nispopulate shell script can be used to populate NIS+ tables in a specified domain
from their corresponding files or NIS maps. nispopulate assumes that the tables have
been created either through nisserver(1M) or nissetup(1M).

The table argument accepts standard names that are used in the administration of Solaris
systems and non-standard key-value type tables. See nisaddent(1M) for more information
on key-value type tables. If the table argument is not specified, nispopulate will automatically
populate each of the standard tables. These standard (default) tables are:
auto_master, auto_home, ethers, group, hosts, networks, passwd, protocols, services,
rpc, netmasks, bootparams, netgroup, aliases and shadow. Note that the shadow table
is only used when populating from files. The non-standard tables that nispopulate
accepts are those of key-value type. These tables must first be created manually with the
nistbladm(1) command.

Use the first synopsis (−Y) to populate NIS+ tables from NIS maps. nispopulate uses
ypxfr(1M) to transfer the NIS maps from the NIS servers to the /var/yp/<NIS_domain>
directory on the local machine. Then, it uses these files as the input source. Note that
<NIS_domain> is case sensitive. Make sure there is enough disk space for that directory.

Use the second synopsis (−F) to populate NIS+ tables from local files. nispopulate will
use those files that match the table name as input sources in the current working direc-
tory or in the specified directory.

Note that when populating the hosts and passwd tables, nispopulate will automatically
create the NIS+ credentials for all users and hosts which are defined in the hosts and
passwd tables, respectively. A network passwd is required to create these credentials.
This network password is used to encrypt the secret key for the new users and hosts.
This password can be specified using the −l option or it will use the default password,
“nisplus”. nispopulate will not overwrite any existing credential entries in the credential
table. Use nisclient(1M) to overwrite the entries in the cred table. It creates both LOCAL
and DES credentials for users, and only DES credentials for hosts. To disable automatic
credential creation, specify the “−S 0” option.

modified 01 Jun 1993

1M-413
The third synopsis (-C) is used to populate NIS+ credential table with level 2 authentication (DES) from the passwd and hosts tables of the specified domain. The valid table arguments for this operation are passwd and hosts. If this argument is not specified then it will use both passwd and hosts as the input source.

If nispopulate was earlier used with "-S 0" option, then no credentials were added for the hosts or the users. If later the site decides to add credentials for all users and hosts, then this (-C) option can be used to add credentials.

**OPTIONS**

- **-a <NIS_server_addr>** specifies the IP address for the NIS server. This option is ONLY used with the -Y option.

- **-C** populate the NIS+ credential table from passwd and hosts tables using DES authentication (security level 2).

- **-d <NIS+_domain.>** specifies the NIS+ domain. The default is the local domain.

- **-F** populates NIS+ tables from files.

- **-f** forces the script to populate the NIS+ tables without prompting for confirmation.

- **-h <NIS_server_host>** specifies the NIS server hostname from where the NIS maps are copied from. This is ONLY used with the -Y option. This host must be already exist in either the NIS+ hosts table or /etc/hosts file. If the hostname is not defined, the script will prompt you for its IP address, or you can use the -a option to specify the address manually.

- **-l <network_passwd>** specifies the network password for populating the NIS+ credential table. This is ONLY used when you are populating the hosts and passwd tables. The default passwd is “nisplus”.

- **-n** does not overwrite local NIS maps in /var/yp/<NISdomain> directory if they already exist. The default is to overwrite the existing NIS maps in the local /var/yp/<NISdomain> directory. This is ONLY used with the -Y option.

- **-p <directory_path>** specifies the directory where the files are stored. This is ONLY used with the -F option. The default is the current working directory.

- **-S 0|2** specifies the authentication level for the NIS+ clients. Level 0 is for unauthenticated clients and no credentials will be created for users and hosts in the specified domain. Level 2 is for authenticated (DES) clients and DES credentials will be created for users and hosts in the specified domain. The default is to set up with level 2 authentication (DES).

There is no need to run nispopulate with -C for level 0 authentication.
−u updates the NIS+ tables (ie., adds, deletes, modifies) from either files or NIS maps. This option should be used to bring an NIS+ table up to date when there are only a small number of changes. The default is to add to the NIS+ tables without deleting any existing entries. Also, see the −n option for updating NIS+ tables from existing maps in the /var/yp directory.

−v runs the script in verbose mode.

-x turns the "echo" mode on. The script just prints the commands that it would have executed. Note that the commands are not actually executed. The default is off.

−Y populate the NIS+ tables from NIS maps.

−y <NIS_domain> specifies the NIS domain to copy the NIS maps from. This is ONLY used with the −Y option. The default domainname is the same as the local domainname.

ENVIRONMENT

TMPDIR nispopulate normally creates temporary files in the directory /tmp. You may specify another directory by setting the environment variable TMPDIR to your chosen directory. If TMPDIR is not a valid directory, then nispopulate will use /tmp).

EXAMPLES

To populate all the NIS+ standard tables in the domain xyz.sun.com. from NIS maps of the yp.sun.COM domain as input source where host yp_host is a YP server of yp.sun.COM:


To update all of the NIS+ standard tables from the same NIS domain and hosts shown above:

    nis_server# /usr/lib/nis/nispopulate -Y -u -y yp.sun.COM -h yp_host \
            -d xyz.sun.com.

To populate the hosts table in domain xyz.sun.com. from the hosts file in the /var/nis/files directory and using "somepasswd" as the network password for key encryption:

    nis_server# /usr/lib/nis/nispopulate -F -p /var/nis/files -l somepasswd hosts

To populate the passwd table in domain xyz.sun.com. from the passwd file in the /var/nis/files directory without automatically creating the NIS+ credentials:

    nis_server# /usr/lib/nis/nispopulate -F -p /var/nis/files \
            -d xys.sun.com. -S 0 passwd

To populate the credential table in domain xyz.sun.com. for all users defined in the passwd table.

    nis_server# /usr/lib/nis/nispopulate -C -d xys.sun.com. passwd

To create and populate a non-standard key-value type NIS+ table, "private", from the file /var/nis/files/private: (nispopulate assumes that the private.org_dirkey-value type table has already been created).
nispopulate (1M)

Maintenance Commands

SunOS 5.4

nis_server# /usr/bin/nistbladm -D access=og=rmcd,nw=r 
   -c private key=S,nogw= value=,nogw= private.org.dir
nis_server# /usr/lib/nis/nispopulate -F -p /var/nis/files private

FILES
/etc/hosts  local host name database
/var/yp     NIS(YP) domain directory
/var/nis    NIS+ domain directory
/tmp

SEE ALSO  nis+(1), nistbladm(1), nisaddcred(1M), nisaddent(1M), nisclient(1M), nisserver(1M), nissetup(1M), rpc.nisd(1M), ypxfr(1M)

1M-416  modified 01 Jun 1993
NAME  nisserver – set up NIS+ servers.

SYNOPSIS  

```
 [-g <NIS+_groupname>] [-t <network_passwd>]
```

```
 [-g <NIS+_groupname>] [-h <NIS+_server_host>]
```

```
 [-h <NIS+_server_host>]
```

DESCRIPTION  The nisserver shell script can be used to set up a root master, non-root master, and replica NIS+ servers with level 2 security (DES).

When setting up a new domain, this script creates the NIS+ directories (including groups_dir and org_dir) and system table objects for the domain specified. It does not populate the tables. You will need to use nispopulate(1M) to populate the tables.

Use the first synopsis (−r) to set up a root master server. You must be logged in as superuser on the server machine.

Use the second synopsis (−M) to set up a non-root master server for the specified domain. You must be logged in as an NIS+ principal on a NIS+ machine and have write permission to the parent directory of the domain that you are setting up. The new non-root master server machine must already be an NIS+ client (see nisclient(1M)) and have the rpc.nisd daemon running (see rpc.nisd(1M)).

Use the third synopsis (−R) to set up a replica server for both root and non-root domains. You must be logged in as an NIS+ principal on a NIS+ machine and have write permission to the parent directory of the domain that you are replicating. The new non-root replica server machine must already be an NIS+ client (see nisclient(1M)) and have the rpc.nisd daemon running (see rpc.nisd(1M)).

OPTIONS  

- d <NIS+_domain> specifies the name for the NIS+ domain. The default is your local domain.
- f forces the NIS+ server setup without prompting for confirmation.
- g <NIS+_groupname> specifies the NIS+ group name for the new domain. This option is not valid with −R option. The default group is admin.<domain>.
- h <NIS+_server_host> specifies the hostname for the NIS+ server. It must be a valid host in the local domain. Use a fully qualified hostname (for example, hostx.xyz.sun.com.) to specify a host outside of your local domain. This option is ONLY used for setting up non-root master or replica servers. The default for non-root master server setup is to use the same list of servers as the parent domain. The default for replica server setup is the local hostname.

modified 01 Jun 1993  1M-417
−I <network_password> specifies the network password with which to create the credentials for the root master server. This option is ONLY used for master root server setup (−r option). If this option is not specified, the script will prompt you for the login password.

−M sets up the specified host as a master server. Make sure that rpc.nisd(1M) is running on the new master server before this command is executed.

−R sets up the specified host as a replica server. Make sure that rpc.nisd(1M) is running on the new replica server.

−r sets up the server as a root master server. Use the -R option to set up a root replica server.

−v runs the script in verbose mode.

−x turns the "echo" mode on. The script just prints the commands that it would have executed. Note that the commands are not actually executed. The default is off.

−Y sets up an NIS+ server with NIS-compatibility mode. The default is to set up the server without NIS-compatibility mode.

EXAMPLES

To set up a root master server for domain sun.com:

root_server# /usr/lib/nis/nisserver -r -d sun.com.

For the following examples make sure that the new servers are NIS+ clients and rpc.nisd is running on these hosts before executing nisserver.

To set up a replica server for domain sun.com on host sunreplica:

root_server# /usr/lib/nis/nisserver -R -d sun.com. -h sunrep

To set up a non-root master server for domain xyz.sun.com. on host sunxyz with the NIS+ groupname as admin-mgr.xyz.sun.com:

root_server# /usr/lib/nis/nisserver -M -d xyz.sun.com. -h sunxyz \
   −g admin-mgr.xyz.sun.com.

To set up a non-root replica server for domain xyz.sun.com on host sunabc:

sunxyz# /usr/lib/nis/nisserver -R -d xyz.sun.com. -h sunabc

SEE ALSO nis+(1), nisgrpadm(1), nismkdir(1), nisaddcred(1M), nisclient(1M), nisinit(1M), nismkdir(1), nispopulate(1M), nissetup(1M), rpc.nisd(1M)
NAME
nissetup – initialize a NIS+ domain

SYNOPSIS
/usr/lib/nis/nissetup [ -Y ] [ domain ]

DESCRIPTION
nissetup is a shell script that sets up a NIS+ domain to service clients that wish to store system administration information in a domain named domain. This domain should already exist prior to executing this command (see nismkdir(1) and nisinit(1M)).

A NIS+ domain consists of a NIS+ directory and its subdirectories: org_dir and groups_dir. org_dir stores system administration information and groups_dir stores information for group access control.

nissetup creates the subdirectories org_dir and groups_dir in domain. Both subdirectories will be replicated on the same servers as the parent domain. After the subdirectories are created, nissetup creates the default tables that NIS+ serves. These are auto_master, auto_home, bootparams, cred, ethers, group, hosts, mail_aliases, netmasks, networks, passwd, protocols, rpc, services, and timezone. The nissetup script uses the nistbladm(1) command to create these tables. The script can be easily customized to add site specific tables that should be created at setup time.

This command is normally executed just once per domain.

OPTIONS
- Y Specify that the domain will be served as both a NIS+ domain as well as an NIS domain using the backward compatibility flag. This will set up the domain to be less secure by making all the system tables readable by unauthenticated clients as well.

SEE ALSO
nis+(1), nismkdir(1), nistbladm(1), nisaddent(1M), nisinit(1M) nisserver(1M),

NOTES
While this command creates the default tables, it does not initialize them with data. This is accomplished with the nisaddent(1M) command.

It is easier to use the nisserver(1M) script to create subdirectories and the default tables.
### NAME
nisshowcache – NIS+ utility to print out the contents of the shared cache file

### SYNOPSIS
/usr/lib/nis/nisshowcache [ −v ]

### DESCRIPTION
**nisshowcache** prints out the contents of the per-machine NIS+ directory cache that is shared by all processes accessing NIS+ on the machine. By default, **nisshowcache** only prints out the directory names in the cache along with the cache header. The shared cache is maintained by **nis_cachemgr**(1M).

### OPTIONS
−v  Verbose mode. Print out the contents of each directory object, including information on the server name and its universal addresses.

### FILES
/var/nis/NIS_SHARED_DIRCACHE

### SEE ALSO
nis_cachemgr**(1M), syslogd**(1M), nisfiles**(4)**

### DIAGNOSTICS
Error messages are sent to the **syslogd**(1M) daemon.
NAME
nisstat – report NIS+ server statistics

SYNOPSIS
/usr/lib/nis/nisstat [−H host] [ directory ]

DESCRIPTION
The nisstat command queries a NIS+ server for various statistics about its operations. These statistics may vary between implementations and from release to release. Not all statistics are available from all servers. Requesting a statistic from a server that does not support that statistic is never fatal, it simply returns “unknown statistic”.

By default, statistics are fetched from the server(s) of the NIS+ directory for the default domain. If directory is specified, servers for that directory are queried.

Supported statistics for this release are as follows:

root server  This reports whether the server is a root server.

NIS compat mode  This reports whether the server is running in NIS compat mode.

DNS forwarding in NIS mode
This reports whether the server in NIS compat mode will forward host lookup calls to DNS.

security level  This reports the security level of this server.

serves directories  This lists the directories served by this server.

Operations
This statistic returns results in the form:

OP=opname:C=calls:E=errors:T=micros

Where opname is replaced by the RPC procedure name or operation, calls is the number of calls to this procedure that have been made since the server started running, errors is the number of errors that have occurred while processing a call, and micros is the average time in microseconds to complete the last 16 calls.

Directory Cache
This statistic reports the number of calls to the internal directory object cache, the number of hits on that cache, the number of misses, and the hit rate percentage.

Group Cache
This statistic reports the number of calls to the internal NIS+ group object cache, the number of hits on that cache, the number of misses, and the hit rate percentage.

Static Storage
This statistic reports the number of bytes the server has allocated for its static storage buffers.

Dynamic Storage
This statistic reports the amount of heap the server process is currently using.

Uptime
This statistic reports the time since the service has been running.

OPTIONS
−H host  Normally all servers for the directory are queried. With this option, only the machine named host is queried. If the named machine does not serve the directory, no statistics are returned.

modified 22 Feb 1993
ENVIRONMENT | NIS_PATH
If this variable is set, and the NIS+ directory name is not fully qualified, each directory specified will be searched until the directory is found (see nisdefaults(1)).

SEE ALSO | nisdefaults(1)
NAME
nisupdkeys – update the public keys in a NIS+ directory object

SYNOPSIS
/usr/lib/nis/nisupdkeys [ −a | −C | −H host ] [ directory ]

/usr/lib/nis/nisupdkeys −s [ −a | −C | −H host ]

DESCRIPTION
This command updates the public keys in an NIS+ directory object. When the public key for a NIS+ server is changed, the new key must be propagated to all directory objects that reference that server.

nisupdkeys reads a directory object and attempts to get the public key for each server of that directory. These keys are placed in the directory object and the object is then modified to reflect the new keys.

If directory is present, the directory object for that directory is updated. Otherwise the directory object for the default domain is updated.

On the other hand, nisupdkeys −s gets a list of all the directories served by host and updates those directory objects. This assumes that the caller has adequate permission to change all the associated directory objects. The list of directories being served by a given server can also be obtained by nisstat(1M).

Before you do this operation, make sure that the new address/public key has been propagated to all replicas.

OPTIONS
−a Update the universal addresses of the NIS+ servers in the directory object. Currently, this only works for the TCP/IP family of transports. This option should be used when the IP address of the server is changed. The server’s new address is resolved using gethostbyname(3N) on this machine. The /etc/nsswitch.conf file must point to the correct source for the hosts entry for this resolution to work.

−C Specify to clear rather than set the public key. Communication with a server that has no public key does not require the use of secure RPC.

−H host Limit key changes only to the server named host. If the hostname is not a fully qualified NIS+ name, then it is assumed to be a host in the default domain. If the named host does not serve the directory, no action is taken.

-s Update all the NIS+ directory objects served by the specified server. This assumes that the caller has adequate access rights to change all the associated directory objects. If the NIS+ principal making this call does not have adequate permissions to update the directory objects, those particular updates will fail and the caller will be notified. If the rpc.nisd on host cannot return the list of servers it serves, the command will print an error message. The caller would then have to invoke nisupdkeys multiple times (as in the first synopsis), once per NIS+ directory that it serves.

EXAMPLES
The following example updates the keys for servers of the foo.bar domain.

example% nisupdkeys foo.bar.

modified 22 Feb 1993
This example updates the key for host *fred* which serves the *foo.bar*. domain.

example% nisupdkeys -H fred foo.bar.

This example clears the public key for host *wilma* in the *foo.bar*. directory.

example% nisupdkeys -CH wilma foo.bar.

This example updates the public key in all directory objects that are served by the host *wilma*.

example% nisupdkeys -s -H wilma

**SEE ALSO**

chkey(1), niscat(1), nisaddcred(1M), gethostbyname(3N), nis_objects(3N)

**NOTES**

The user executing this command must have modify access to the directory object for it to succeed. The existing directory object can be displayed with the niscat(1) command using the -o option.

This command does not update the directory objects stored in the NIS_COLD_START file on the NIS+ clients.

If a server is also the root master server, then nisupdkeys -s cannot be used to update the root directory.
NAME
nlsadmin – network listener service administration

SYNOPSIS
/usr/sbin/nlsadmin −x
/usr/sbin/nlsadmin [ options ] net_spec
/usr/sbin/nlsadmin [ options ] −N port_monitor_tag
/usr/sbin/nlsadmin −V
/usr/sbin/nlsadmin −c cmd | −o streamname [ −p modules ] [ −A address | −D ]
[ −R prognum: versnum ]

AVAILABILITY
SUNWcsu

DESCRIPTION nlsadmin is the administrative command for the network listener process(es) on a machine. Each network has at least one instance of the network listener process associated with it; each instance (and thus, each network) is configured separately. The listener process “listens” to the network for service requests, accepts requests when they arrive, and invokes servers in response to those service requests. The network listener process may be used with any network (more precisely, with any connection-oriented transport provider) that conforms to the transport provider specification.

nlsadmin can establish a listener process for a given network, configure the specific attributes of that listener, and start and kill the listener process for that network. nlsadmin can also report on the listener processes on a machine, either individually (per network) or collectively.

net_spec represents a particular listener process. Specifically, net_spec is the relative path name of the entry under /dev for a given network (that is, a transport provider). address is a transport address on which to listen and is interpreted using a syntax that allows for a variety of address formats. By default, address is interpreted as the symbolic ASCII representation of the transport address. An address preceded by \x will let you enter an address in hexadecimal notation. Note that address must appear as a single word to the shell, thus it must be quoted if it contains any blanks.

Changes to the list of services provided by the listener or the addresses of those services are put into effect immediately.

OPTIONS nlsadmin may be used with the following combinations of options and arguments:
−x Report the status of all of the listener processes installed on this machine.
net_spec Print the status of the listener process for net_spec.
−q net_spec
Query the status of the listener process for the specified network, and reflects
the result of that query in its exit code. If a listener process is active, nlsadmin
will exit with a status of 0; if no process is active, the exit code will be 1; the
exit code will be greater than 1 in case of error.

−v net_spec
Print a verbose report on the servers associated with net_spec, giving the ser-
vice code, status, command, and comment for each. It also specifies the uid
the server will run as and the list of modules to be pushed, if any, before the
server is started.

−z service_code net_spec
Print a report on the server associated with net_spec that has service code
service_code, giving the same information as in the −v option.

−q −z service_code net_spec
Query the status of the service with service code service_code on network
net_spec, and exits with a status of 0 if that service is enabled, 1 if that service
is disabled, and greater than 1 in case of error.

−l address net_spec
Change or set the transport address on which the listener listens (the general
listener service). This address can be used by remote processes to access the
servers available through this listener (see the −a option, below).
If address is just a dash (−), nlsadmin reports the address currently configured,
instead of changing it.
A change of address takes effect immediately.

−t address net_spec
Change or set the address on which the listener listens for requests for termi-
nal service but is otherwise similar to the −l option above. A terminal service
address should not be defined unless the appropriate remote login software is
available; if such software is available, it must be configured as service code 1
(see the −a option, below).

−i net_spec
Initialize an instance of the listener for the network specified by net_spec; that
is, create and initialize the files required by the listener as well as starting that
instance of the listener. Note that a particular instance of the listener should
be initialized only once. The listener must be initialized before assigning
addresses or services.

−a service_code [ −p modules ] [ −w name ] −c cmd −y comment net_spec
Add a new service to the list of services available through the indicated
listener. service_code is the code for the service, cmd is the command to be
invoked in response to that service code, comprised of the full path name of
the server and its arguments, and comment is a brief (free-form) description of
the service for use in various reports. Note that cmd must appear as a single
word to the shell; if arguments are required, the cmd and its arguments must
be enclosed in quotation marks. The comment must also appear as a single word to the shell. When a service is added, it is initially enabled (see the −e and −d options, below).

Service codes are alphanumeric strings, and are administered by AT&T. The numeric service codes 0 through 100 are reserved for internal use by the listener. Service code 0 is assigned to the nlps server, which is the service invoked on the general listening address. In particular, code 1 is assigned to the remote login service, which is the service automatically invoked for connections to the terminal login address.

If the −p option is specified, then modules will be interpreted as a list of STREAMS modules for the listener to push before starting the service being added. The modules are pushed in the order they are specified. modules should be a comma-separated list of modules, with no white space included.

If the −w option is specified, then name is interpreted as the user name from /etc/passwd that the listener should look up. From the user name, the listener obtains the user ID, the group ID(s), and the home directory for use by the server. If −w is not specified, the default is to use the user name listen.

A service must explicitly be added to the listener for each network on which that service is to be available. This operation will normally be performed only when the service is installed on a machine, or when populating the list of services for a new network.

−r service_code net_spec
Remove the entry for the service_code from that listener’s list of services. This is normally done only in conjunction with the de-installation of a service from a machine.

−e service_code net_spec
−d service_code net_spec
Enable or disable (respectively) the service indicated by service_code for the specified network. The service must previously have been added to the listener for that network (see the −a option, above). Disabling a service will cause subsequent service requests for that service to be denied, but the processes from any prior service requests that are still running will continue unaffected.

−s net_spec
−k net_spec
Start and kill (respectively) the listener process for the indicated network. These operations are normally performed as part of the system startup and shutdown procedures. Before a listener can be started for a particular network, it must first have been initialized (see the −i option, above). When a listener is killed, processes that are still running as a result of prior service requests will continue unaffected.
Under the Service Access Facility, it is possible to have multiple instances of the listener on a single net_spec. In any of the above commands, the option −N port_monitor_tag may be used in place of the net_spec argument. This argument specifies the tag by which an instance of the listener is identified by the Service Access Facility. If the −N option is not specified (that is, the net_spec is specified in the invocation), then it will be assumed that the last component of the net_spec represents the tag of the listener for which the operation is destined. In other words, it is assumed that there is at least one listener on a designated net_spec, and that its tag is identical to the last component of the net_spec. This listener may be thought of as the primary, or default, listener for a particular net_spec.

nlsadmin is also used in conjunction with the Service Access Facility commands. In that capacity, the following combinations of options can be used:

−V Write the current version number of the listener’s administrative file to the standard output. It is used as part of the sacadm command line when sacadm adds a port monitor to the system.

−c cmd | −o streamname [ −p modules ] [ −A address | −D ] [ −R prognum : versnum ]

Format the port monitor-specific information to be used as an argument to pmadm(1M).

The −c option specifies the full path name of the server and its arguments. cmd must appear as a single word to the shell, and its arguments must therefore be surrounded by quotes.

The −o option specifies the full path name of a FIFO or named STREAM through which a standing server is actually receiving the connection.

If the −p option is specified, then modules will be interpreted as a list of STREAMS modules for the listener to push before starting the service being added. The modules are pushed in the order in which they are specified. modules must be a comma-separated list, with no white space included.

If the −A option is specified, then address will be interpreted as the server’s private address. The listener will monitor this address on behalf of the service and will dispatch all calls arriving on this address directly to the designated service. This option may not be used in conjunction with the −D option.

If the −D option is specified, then the service is assigned a private address dynamically, that is, the listener will have the transport provider select the address each time the listener begins listening on behalf of this service. For RPC services, this option will be often be used in conjunction with the −R option to register the dynamically assigned address with the rpcbinder. This option may not be used in conjunction with the −A option.

When the −R option is specified, the service is an RPC service whose address, program number, and version number should be registered with the rpcbinder for this transport provider. This registration is performed each time the listener begins listening on behalf of the service. prognum and versnum are the program number and version number, respectively, of the RPC service.
nlsadmin may be invoked by any user to generate reports; all operations that affect a listener’s status or configuration may only be run by a super-user. The options specific to the Service Access Facility may not be used together with any other options.

SEE ALSO  listen(1M), pmadm(1M), rpcbind(1M), sacadm(1M)

NOTES  Dynamically assigned addresses are not displayed in reports as statically assigned addresses are.
NAME
nslookup – query name servers interactively

SYNOPSIS
nslookup [ −opt ] [ host | − ] [ server ]

AVAILABILITY
SUNWcsu

DESCRIPTION
nslookup is an interactive program to query ARPA Internet domain name servers. The
user can contact servers to request information about a specific host, or print a list of
hosts in the domain.

OPTIONS
−opt
   Allows you to set options as in the interactive set option shown below. For
   example −querytype=HINFO to ask for host information instead of the default
   query type of A for address information.

host
   Look up the host host directly and do not go into interactive mode.

−
   Use the name server specified next on the command line instead of the servers
   in /etc/resolv.conf. NOTE: that if both host and server are specified on the
   command line this − argument becomes optional.

server
   Use the name server specified. This can be either a name or an Internet address.
   If this fails, it will default to using the entries in the /etc/resolv.conf file.

USAGE

Overview
The Internet domain name-space is tree-structured, with five top-level domains at
present:

   COM    commercial establishments
   EDU    educational institutions
   ORG    not-for-profit organizations
   GOV    government agencies
   MIL    MILNET hosts

If you are looking for a specific host, you need to know something about the host’s organ-
ization in order to determine the top-level domain it belongs to. For instance, if you want
to find the Internet address of a machine at UCLA, do the following:

• Connect with the root server using the root command. The root server of the
  name space has knowledge of the top-level domains.

• Since UCLA is a university, its domain name is ucla.edu. Connect with a server
  for the ucla.edu domain with the command server ucla.edu. The response will
  print the names of hosts that act as servers for that domain. Note: the root server
  does not have information about ucla.edu, but knows the names and addresses
  of hosts that do. Once located by the root server, all future queries will be sent to
  the UCLA name server.
To request information about a particular host in the domain (for instance, *locus*), just type the host name. To request a listing of hosts in the UCLA domain, use the `ls` command. The `ls` command requires a domain name (in this case, `ucla.edu`) as an argument.

If you are connected with a name server that handles more than one domain, all lookups for host names must be fully specified with its domain. For instance, the domain `harvard.edu` is served by `seismo.css.gov`, which also services the `css.gov` and `cornell.edu` domains. A lookup request for the host `aiken` in the `harvard.edu` domain must be specified as `aiken.harvard.edu`. However, the

```
set domain = name
```

and

```
set defname
```

commands can be used to automatically append a domain name to each request.

After a successful lookup of a host, use the `finger` command to see who is on the system, or to `finger` a specific person. To get other information about the host, use the

```
set querytype = value
```

command to change the type of information desired and request another lookup. (*finger* requires the type to be *A*.)

### Commands

To exit, type Ctrl-D (EOF).

The command line length must be less than 80 characters.

An unrecognized command will be interpreted as a host name.

#### `host [server]`

Look up information for `host` using the current default server, or using `server` if it is specified.

#### `server domain`

Change the default server to `domain`. `ls`erver uses the initial server to look up information about `domain` while `server` uses the current default server. If an authoritative answer can not be found, the names of servers that might have the answer are returned.

#### `root`

Change the default server to the server for the root of the domain name space. Currently, the host `ns.nic.ddn.mil` is used; this command is a synonym for `ls`erver `ns.nic.ddn.mil`. The name of the root server can be changed with the `set root` command.

#### `finger [name]`

Connect with the finger server on the current host, which is defined by a previous successful lookup for a host’s address information (see the `set querytype = A` command). As with the shell, output can be redirected to a named file using `>` and `>>`. 
ls [-ah]
List the information available for domain. The default output contains host
names and their Internet addresses. The -a option lists aliases of hosts in the
domain. The -h option lists CPU and operating system information for the
domain. As with the shell, output can be redirected to a named file using > and
>>. When output is directed to a file, hash marks are printed for every 50 records
received from the server.
view filename
Sort and list the output of the ls command with more(1).
help
Print a brief summary of commands.
set keyword [ = value ] This command is used to change state information that affects the
lookups. Valid keywords are:
all Print the current values of the various options to set. Information about
the current default server and host is also printed.
[no]deb[ug]
Turn debugging mode on. A lot more information is printed about the
packet sent to the server and the resulting answer. The default is node-
bug.
[no]def[ault]
Append the default domain name to every lookup. The default is node-
name.
do[main]=filename
Change the default domain name to filename. The default domain name
is appended to all lookup requests if defname option has been set. The
default is the value in /etc/resolv.conf.
q[querytype] = value
Change the type of information returned from a query to one of:
A The host’s Internet address (the default).
CNAME The canonical name for an alias.
HINFO The host CPU and operating system type.
MD The mail destination.
MX The mail exchanger.
MB The mailbox domain name.
MG The mail group member.
MINFO The mailbox or mail list information.
(Other types specified in the RFC883 document are valid, but are not very
useful.)
[no]recurse
Tell the name server to query other servers if it does not have the infor-
mation. The default is recurse.
ret[ry] = count
Set the number of times to retry a request before giving up to count. When a reply to a request is not received within a certain amount of time (changed with set timeout), the request is resent. The default is count is 2.

ro[ot] = host
Change the name of the root server to host. This affects the root command. The default root server is ns.nic.ddn.mil.

t[timeout] = interval
Change the time-out for a reply to interval seconds. The default interval is 10 seconds.

[no]v[c]
Always use a virtual circuit when sending requests to the server. The default is novc.

FILES
/etc/resolv.conf initial domain name and name server addresses

SEE ALSO
nstest(1M), resolver(3N), resolv.conf(4)
RFC 882, RFC 883

DIAGNOSTICS
If the lookup request was not successful, an error message is printed. Possible errors are:

Time-out
The server did not respond to a request after a certain amount of time (changed with set timeout = value) and a certain number of retries (changed with set retry = value).

No information
Depending on the query type set with the set querytype command, no information about the host was available, though the host name is valid.

Non-existent domain
The host or domain name does not exist.

Connection refused
Network is unreachable
The connection to the name or finger server could not be made at the current time. This error commonly occurs with finger requests.

Server failure
The name server found an internal inconsistency in its database and could not return a valid answer.

Refused
The name server refused to service the request.
The following error should not occur and it indicates a bug in the program.

**Format error**

The name server found that the request packet was not in the proper format.
NAME
nstest – DNS test shell

SYNOPSIS
nstest [-d] [-i] [-r] [-v] [-p port] [inet_addr [logfile]]

DESCRIPTION
nstest is an interactive DNS test program. Queries are formed and sent by user command; any reply received is printed on the standard output. inet_addr is the Internet address of the DNS resolver to which nstest should send its queries. If inet_addr is not included, nstest first tries to contact a DNS server on the local host; if that fails, it tries the servers listed in the /etc/resolv.conf file. If a logfile is supplied, nstest uses it to log the queries sent and replies received.

OPTIONS

- d Causes nstest to create a file named ns_packet.dump (if it does not exist) and write into it a raw (binary) copy of each packet sent. If ns_packet.dump does exist, nstest will truncate it.
- i Sets the RES_IGNTC flag on the queries it makes. See resolver(3N) for a description of the RES_IGNTC flag.
- r Turns off the RES_RECURSE flag on the queries it makes. See resolver(3N) for a description of the RES_RECURSE flag.
- v Turns on the RES_USEVC and RES_STAYOPEN flags on the res_send() calls made. See resolver(3N) for a description of the RES_USEVC and RES_STAYOPEN flags.
- p Causes nstest to use the supplied port instead of the default name server port.

USAGE
When nstest starts, it prints a prompt (">") and waits for user input. DNS queries are formed by typing a key letter followed by the appropriate argument. Each key letter results in a call to res_mkquery() with op set to either IQUERY or QUERY and type set to one of the type values (defined in <arpa/nameser.h>). (Any other key letter than those listed below causes nstest to print a summary of the following table.)

Key Letter & Argument	Op	Type
 ahost               | QUERY | T_A  |
 Aaddr               | IQUERY | T_A |
 Buser               | QUERY | T_MG |
 buser               | QUERY | T_MB |
 chost               | QUERY | T_CNAME |
 host                | QUERY | T_UINFO |
 Ggid                | IQUERY | T_GID |
 ghost               | QUERY | T_GID |
 hhost               | QUERY | T_HINFO |
 ihost               | QUERY | T_MINFO |
 Mhost               | QUERY | T_MAILB |
 mhost               | QUERY | T_MX |

modified 7 Apr 1994
### Examples

To fetch the address of host `playground.sun.com` from the Sun name server, the user would enter:

```
$ nstest 192.9.5.1
> aplayground.sun.com
```

`nstest` would return the following:

```c
res_mkquery(0, playground.sun.com, 1, 1)
res_send()
```

**HEADER:**
- `opcode = QUERY, id = 1, rcode = NOERROR`
- `header flags: rd`
- `qdcount = 1, ancount = 0, nscount = 0, arcount = 0`

**QUESTIONS:**
- `playground.sun.com, type = A, class = IN`

Querying server (# 1) address = 192.9.5.1

got answer:

**HEADER:**
- `opcode = QUERY, id = 1, rcode = NOERROR`
- `header flags: qr aa rd ra`
- `qdcount = 1, ancount = 1, nscount = 0, arcount = 0`
QUESTIONS:
playground.sun.com, type = A, class = IN

ANSWERS:
playground.sun.com
  type = A, class = IN, ttl = 1 day, dlen = 4
  internet address = 192.9.5.5

To look up a PTR record, enter:
$ nstest 192.9.5.1
> p5.5.9.192.in-addr.arpa
nstest would return the following:
res_mkquery(0, 5.5.9.192.in-addr.arpa, 1, 12)
res_send()
HEADER:
  opcode = QUERY, id = 2, rcode = NOERROR
  header flags: rd
  qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:
5.5.9.192.in-addr.arpa, type = PTR, class = IN

Querying server (# 1) address = 192.9.5.1
got answer:
HEADER:
  opcode = QUERY, id = 2, rcode = NOERROR
  header flags: qr aa rd ra
  qdcount = 1, ancount = 1, nscount = 0, arcount = 0

QUESTIONS:
5.5.9.192.in-addr.arpa, type = PTR, class = IN

ANSWERS:
5.5.9.192.in-addr.arpa
  type = PTR, class = IN, ttl = 7 hours 47 mins 2 secs, dlen = 23
  domain name = playground.sun.com

FILES
/usr/include/arpa/nameser.h  include file for implementation of DNS protocol
/usr/include/resolv.h          include file for the resolver daemon (in.named)

SEE ALSO nslookup(1M), resolver(3N)
NAME
passmgmt – password files management

SYNOPSIS
passmgmt –a options name
passmgmt –m options name
passmgmt –d name

AVAILABILITY
SUNWcsu

DESCRIPTION
The passmgmt command updates information in the password files. This command
works with both /etc/passwd and /etc/shadow.

passmgmt –a adds an entry for user name to the password files. This command does not
create any directory for the new user and the new login remains locked (with the string
∗LK∗ in the password field) until the passwd(1) command is executed to set the pass-
word.

passmgmt –m modifies the entry for user name in the password files. The name field in
the /etc/shadow entry and all the fields (except the password field) in the /etc/passwd
entry can be modified by this command. Only fields entered on the command line will be
modified.

passmgmt –d deletes the entry for user name from the password files. It will not remove
any files that the user owns on the system; they must be removed manually.

passmgmt can be used only by the super-user.

OPTIONS
–c comment A short description of the login, enclosed in quotes. It is limited to a max-
imum of 128 characters and defaults to an empty field.

–h homedir Home directory of name. It is limited to a maximum of 256 characters and
defaults to /usr/home.

–u uid UID of the name. This number must range from 0 to the maximum non-
negative value for the system. It defaults to the next available UID greater
than 99. Without the –o option, it enforces the uniqueness of a UID.

–o This option allows a UID to be non-unique. It is used only with the –u
option.

–g gid GID of the name. This number must range from 0 to the maximum non-
negative value for the system. The default is 1.

–s shell Login shell for name. It should be the full pathname of the program that
will be executed when the user logs in. The maximum size of shell is 256
characters. The default is for this field to be empty and to be interpreted as
/usr/bin/sh.

–l logname This option changes the name to logname. It is used only with the –m option.
The total size of each login entry is limited to a maximum of 511 bytes in each of the pass-
word files.
FILE
/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO
passwd(1), useradd(1M), userdel(1M), usermod(1M), passwd(4), shadow(4)

DIAGNOSTICS
The passmgmt command exits with one of the following values:
0  Success.
1  Permission denied.
2  Invalid command syntax. Usage message of the passmgmt command is displayed.
3  Invalid argument provided to option.
4  UID in use.
5  Inconsistent password files (for example, name is in the /etc/passwd file and not in the /etc/shadow file, or vice versa).
6  Unexpected failure. Password files unchanged.
7  Unexpected failure. Password file(s) missing.
8  Password file(s) busy. Try again later.
9  name does not exist (if −m or −d is specified), already exists (if −a is specified), or logname already exists (if −m −l is specified).

NOTES
You cannot use a colon or carriage return as part of an argument because it is interpreted as a field separator in the password file.

This command will be removed in a future release. Its functionality has been replaced and enhanced by useradd, userdel, and usermod. These commands are currently available.

This command only modifies password definitions in the local /etc/passwd and /etc/shadow files. If a network nameservice such as NIS or NIS+ is being used to supplement the local files with additional entries, passmgmt cannot change information supplied by the network nameservice.

modified 14 Sep 1992
NAME  

pbind – control and query bindings of processes to processors

SYNOPSIS  

pbind -b processor_id pid ...
pbind -u pid ...
pbind [-q ] [ pid ... ]

AVAILABILITY  

SUNWcsu

DESCRIPTION  

pbind binds all the LWPs (light-weight processes) of a process to a processor, or removes or displays the bindings.

OPTIONS  

-\b

  binds all the LWPs of the specified processes to the processor processor_id.

-\u

  removes the bindings of all LWPs of the specified processes.

-\q

  Displays the bindings of the specified processes, or of all processes.

USAGE  

The -\b option binds all of the LWPs of the specified processes to the specified processor. The processor must be present and on-line, which can be determined by the psrinfo(1M) command.

When an LWP is bound to a processor, it will be executed only by that processor except when the LWP requires a resource that is provided only by another processor. The binding is not exclusive, that is, the processor is free execute other LWPs as well.

Bindings are inherited, so new LWPs and processes created by a bound LWP will have the same binding. Binding an interactive shell to a processor, for example, binds all commands executed by the shell.

The superuser may bind or unbind any process, and other users can use pbind to bind or unbind any process for which the user has permission to signal. That is, any process that has the same effective user ID as the user.

The -\u option removes the bindings from all the LWPs of the specified processes, allowing them to be executed on any on-line processor.

The -\q option displays the bindings of the specified processes. If a process is composed of multiple LWPs, which have different bindings, the bindings of only one of the bound LWPs will be shown.

EXAMPLES  

Binding processes  

The following command binds processes 204 and 223 to processor 2:

```
example% pbind -b 2 204 223
```

This generates the messages:

```
process id 204: was 2, now 2
process id 223: was 3, now 2
```
Unbinding a process

To unbind process 204:

```
example% pbind -u 204
```

Querying Bindings

The command

```
example% pbind -q 1 149 101
```

generates the following output:

```
process id 1: 0
process id 149: 3
process id 101: not bound
```

This example demonstrates that process 1 is bound to processor 0, process 149 has at least one LWP bound to CPU3, and process 101 has no bound LWPs.

SEE ALSO

`psrinfo(1M), psradm(1M), processor_bind(2), processor_info(2), sysconf(3C)`

DIAGNOSTICS

`pbind: cannot query pid 31: No such process`

The process specified did not exist or has exited.

`pbind: cannot bind pid 31: Not owner`

The user does not have permission to bind the process.

`pbind: cannot bind pid 31: Invalid argument`

The specified processor is offline.
NAME
pfinstall – tests installation profiles

SYNOPSIS

DESCRIPTION
When the initial_install argument is defined in a profile, you can use the pfinstall command to test the profile without performing an actual installation. pfinstall enables you to test a profile by using either:

- The disk configuration on the system where pfinstall is being run.
- A disk configuration file created by the prtvtoc(1M) command. For example, disk configuration files enable you to test profiles for all the different systems on your network from one system.

pfinstall is available only on a system running the Solaris 2.x environment.

OPTIONS

–D
pfinstall uses the system’s disk configuration to test the profile. You must be root to execute the pfinstall command with the –D option.

–d disk_config
pfinstall uses a disk configuration file, disk_config, to test the profile. A disk configuration file can be created by using the prtvtoc(1M) command.

–c path
The path to the Solaris 2.x installation image. This is required if the image is not mounted on /cdrom. (For example, use this option if you copied the installation image to disk or mounted the CD-ROM on a directory other than /cdrom.)

profile
The file name of the profile to test.

rootdisk
A disk’s device name that specifies where to install the root (/) file system. Must be in the form cXtXdX.

You should run pfinstall from the directory where the profile and disk_config files reside (such as the profile directory). If the profile or disk_config file is not in the directory where pfinstall is run, you must specify the path to the particular file.

EXAMPLES
The following examples use pfinstall to test the marketing profile:

example% /usr/sbin/install.d/pfinstall –D marketing
example% /usr/sbin/install.d/pfinstall –d 104_test marketing
example% /usr/sbin/install.d/pfinstall –D –c /export/install marketing

SEE ALSO
prtvtoc(1M)

WARNINGS
If the –d or –D option is not specified, pfinstall will perform an actual installation on the system by using the specified profile, and the data on the system will be overwritten.
NOTES
To create a disk configuration file:
1. Locate a system with the disk size needed for testing a particular profile.
2. Determine the device name for the system’s disk.
3. Redirect the output of `prtvtoc(1M)` to create the disk configuration file:
   ```
 example% prtvtoc /dev/rdsk/device_name > disk_config
   ```
   Where
   ```
 /dev/rdsk/device_name
   ```
   is the device name of the system’s disk (in the form `cXtXdXs2`)
   ```
 disk_config
   ```
   is the disk configuration file name.

   The following example creates a disk configuration file, `104_test`, on a system with a 104-Mbyte disk, whose device name is `c0t3d0`:
   ```
 example% prtvtoc /dev/rdsk/c0t3d0s2 > 104_test
   ```

   You can also create a disk configuration file that includes multiple disks. In the following example, a disk configuration file is created that includes two, 104-Mbyte disks. When creating disk configuration files with multiple disks, it is important to make sure that each disk in the file is specified with a different target.
   ```
 example% cat 104_test 104_test > dual104_test
   ```

   To test a profile with a specific system memory size, set `SYS_MEMSIZE` to the specific memory size (in Mbytes) before running `pfinstall`:
   ```
 # SYS_MEMSIZE=memory_size
 # export SYS_MEMSIZE
   ```

modified 27 July 1993
NAME  ping – send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS  
/usr/sbin/ping host [ timeout ]
/usr/sbin/ping [ -s ] [ -dlnrRv ] [ -i interface ] [ -I interval ] [ -t ttl ] host [ packetsize ]
[ count ]

AVAILABILITY  SUNWcsu

DESCRIPTION  ping utilizes the ICMP protocol’s ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from the specified host or network gateway. If host responds, ping will print host is alive on the standard output and exit. Otherwise after timeout seconds, it will write no answer from host. The default value of timeout is 20 seconds.

When the -s flag is specified, ping sends one datagram per second (adjustable with -I), and prints one line of output for every ECHO_RESPONSE that it receives. No output is produced if there is no response. In this second form, ping computes round trip times and packet loss statistics; it displays a summary of this information upon termination or timeout. The default datagram packet size is 64 bytes, or you can specify a size with the packetsize command-line argument. If an optional count is given, ping sends only that number of requests.

When using ping for fault isolation, first ping the local host to verify that the local network interface is running.

If ping is successful and the host responds, the exit status is 0. If a host does not respond, or an error was returned, the exit status is 1.

OPTIONS  
-d  Set the SO_DEBUG socket option.
-1  Loose source route. Use this option in the IP header to send the packet to the given host and back again. Usually specified with the -R option.
-L  Turn off loopback of multicast packets. Normally, if there are members in the host group on the outgoing interface, a copy of the multicast packets will be delivered to the local machine.
-n  Show network addresses as numbers. ping normally displays addresses as host names.
-r  Bypass the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has been dropped by the router daemon (see in.routed(1M)).
-R  Record route. Sets the IP record route option, which will store the route of the packet inside the IP header. The contents of the record route will only be printed if the -v option is given, and only be set on return packets if the target host preserves the record route option across echos, or the -I option is given.
−v Verbose output. List any ICMP packets, other than ECHO_RESPONSE, that are received.

−i interface
Specify the outgoing interface to use for multicast packets. The default interface for multicast packets is determined from the (unicast) routing tables.

−I interval
Specify the interval between successive transmissions. The default is one second.

−t ttl Specify the IP time to live for multicast packets. The default time to live for multicast is one hop.

SEE ALSO ifconfig(1M), in.routed(1M), netstat(1M), rpcinfo(1M), icmp(7)
**NAME**

pkgadd – transfer software package to the system

**SYNOPSIS**

pkgadd [ −n ] [ −a admin ] [ −d device ] [ −R root_path ] [ −r response ]

[pkginst1 \ pkginst2 ] ...

pkgadd −s spool [ −d device ] [ pkginst1 \ pkginst2 ] ...]

**AVAILABILITY**

SUNWcsu

**DESCRIPTION**

pkgadd transfers the contents of a software package from the distribution medium or directory to install it onto the system. Used without the −d option, pkgadd looks in the default spool directory for the package (/var/spool/pkg). Used with the −s option, it reads the package to a spool directory instead of installing it.

Certain unbundled and third-party packages are no longer entirely compatible with the latest version of pkgadd. These packages require user interaction throughout the installation and not just at the very beginning.

To install these older packages (released prior to Solaris 2.4), set the following environment variable:

NONABI_SCRIPTS=TRUE

pkgadd will permit keyboard interaction throughout the installation as long as this environment variable is set.

**OPTIONS**

−n Installation occurs in non-interactive mode. The default mode is interactive.

−a admin Define an installation administration file, admin, to be used in place of the default administration file. The token none overrides the use of any admin file, and thus forces interaction with the user. Unless a full path name is given, pkgadd first looks in the current working directory for the administration file. If the specified administration file is not in the current working directory, pkgadd looks in the /var/sadm/install/admin directory for the administration file.

−d device Install or copy a package from device. device can be a full path name to a directory or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp or /floppy/floppy_name). It can also be a device alias (for example, /floppy/floppy0).

−R root_path Define the full path name of a subdirectory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path.

−r response Identify a file or directory which contains output from a previous pkgask session. This file supplies the interaction responses that would be requested by the package in interactive mode. response must be a full pathname.

−s spool Reads the package into the directory spool instead of installing it.

pkginst Specify the package instance or list of instances to be installed. The token all...
may be used to refer to all packages available on the source medium. The format pkginst.* can be used to indicate all instances of a package.

When executed without options, pkgadd uses /var/spool/pkg (the default spool directory).

EXAMPLES

The following example installs a package from a Solaris CD-ROM. You are prompted for the name of the package you want to install.

eexample% pkgadd -d /cdrom/Solaris_2_3/s0/Solaris_2.3

SEE ALSO

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), installf(1M), pkgask(1M), pkgrm(1M), removef(1M), admin(4)

NOTES

When transferring a package to a spool directory, the −r, −n, and −a options cannot be used.

The −r option can be used to indicate a directory name as well as a filename. The directory can contain numerous response files, each sharing the name of the package with which it should be associated. This would be used, for example, when adding multiple interactive packages with one invocation of pkgadd.

Each package would need a response file. If you create response files with the same name as the package (that is, pkinst1 and pkinst2), then name the directory in which these files reside after the −r.

The −n option causes the installation to halt if any interaction is needed to complete it.
NAME    pkgask – stores answers to a request script

SYNOPSIS  pkgask [−d device ] [ −R root_path ] −r response pkginst1 [ pkginst2 ] …

AVAILABILITY  SUNWcsu

DESCRIPTION  pkgask allows the administrator to store answers to an interactive package (one with a request script). Invoking this command generates a response file that is then used as input at installation time. The use of this response file prevents any interaction from occurring during installation since the file already contains all of the information the package needs.

OPTIONS
−d device  Run the request script for a package on device. device can be a directory path-name or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp, /dev/diskette, and /dev/dsk/c1d0s0). The default device is the installation spool directory.

−R root_path  Define the full path name of a subdirectory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path.

−r response  Identify a file or directory which should be created to contain the responses to interaction with the package. The name must be a full pathname. The file, or directory of files, can later be used as input to the pkgadd command.

pkginst  Specify the package instance, or list of instances for which request scripts will be created. The token all may be used to refer to all packages available on the source medium.

SEE ALSO  pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgchk(1M), pkgrm(1M), removef(1M)

NOTES  The −r option can be used to indicate a directory name as well as a filename. The directory name is used to create numerous response files, each sharing the name of the package with which it should be associated. This would be used, for example, when you will be adding multiple interactive packages with one invocation of pkgadd. Each package would need a response file. To create multiple response files with the same name as the package instance, name the directory in which the files should be created and supply multiple instance names with the pkgask command. When installing the packages, you will be able to identify this directory to the pkgadd command.
NAME  pkgchk – check accuracy of installation

SYNOPSIS  pkgchk [-l | -acfqv | -nx | -p path1 [ path2 ... ]] [-i file] [ pkginst ...]
            pkgchk -d device [-R root_dir] [-l | -v] [-p path1 [ path2 ... ]] [-i file] [ pkginst ...]
            pkgchk -m pkgmap [-e envfile] [-l | -acfqv] [-nx] [-i file] [-p path1 [ path2 ... ]]

AVAILABILITY  SUNWcsu

DESCRIPTION  pkgchk checks the accuracy of installed files or, by using the -l option, displays information about package files. pkgchk checks the integrity of directory structures and the files. Discrepancies are reported on stderr along with a detailed explanation of the problem.

The first synopsis defined above is used to list or check the contents and/or attributes of objects that are currently installed on the system. Package names may be listed on the command line, or by default, the entire contents of a machine will be checked.

The second synopsis is used to list or check the contents of a package which has been spooled on the specified device, but not installed. Note that attributes cannot be checked for spooled packages.

The third synopsis is used to list or check the contents and/or attributes of objects which are described in the indicated pkgmap.

OPTIONS  
  -l      List information on the selected files that make up a package. This option is not compatible with the a, c, f, g, and v options.
  -a      Audit the file attributes only, do not check file contents. Default is to check both.
  -c      Audit the file contents only, do not check file attributes. Default is to check both.
  -f      Correct file attributes if possible. If used with the -x option, this option removes hidden files. When pkgchk is invoked with this option it creates directories, named pipes, links and special devices if they do not already exist.
  -q      Quiet mode. Do not give messages about missing files.
  -v      Verbose mode. Files are listed as processed.
  -n      Do not check volatile or editable files. This should be used for most post-installation checking.
  -x      Search exclusive directories, looking for files which exist that are not in the installation software database or the indicated pkgmap file.
  -p path Only check the accuracy of the pathname or pathnames listed. path can be one or more pathnames separated by commas (or by white space, if the list is quoted).
  -i file  Read a list of pathnames from file and compares this list against the installation software database or the indicated pkgmap file. Pathnames which are not contained in file are not checked.
−d device Specify the device on which a spooled package resides. device can be a directory pathname or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp or /dev/diskette).

−R root_dir Defines the full path name of a subdirectory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path.

−m pkgmap Check the package against the pkgmap file pkgmap.

−e envfile Request that the pkginfo file named as envfile be used to resolve parameters noted in the specified pkgmap file.

pkginst Specify the package instance or instances to be checked. The format pkginst.* can be used to check all instances of a package. The default is to display all information about all installed packages.

SEE ALSO pkginfo(1), pkgtrans(1), pkgadd(1M), pkgask(1M), pkgrm(1M)
NAME
pkgrm – removes a package from the system

SYNOPSIS
pkgrm [ −n ] [ −R root_dir ] [ −a admin ] [ pkginst1 [ pkginst2 ] . . . ]
pkgrm −s spool [ pkginst ]

AVAILABILITY
SUNWcsu

DESCRIPTION
pkgrm will remove a previously installed or partially installed package from the system. A check is made to determine if any other packages depend on the one being removed. If a dependency exists, the action taken is defined in the admin file.
The default state for the command is in interactive mode, meaning that prompt messages are given during processing to allow the administrator to confirm the actions being taken. Non-interactive mode can be requested with the −n option.
The −s option can be used to specify the directory from which spooled packages should be removed.
Certain unbundled and third-party packages are no longer entirely compatible with the latest version of pkgrm. These packages require user interaction throughout the removal and not just at the very beginning.
To remove these older packages (released prior to Solaris 2.4), set the following environment variable:
NONABI_SCRIPTS=TRUE
pkgrm will permit keyboard interaction throughout the removal as long as this environment variable is set.

OPTIONS
−n Non-interactive mode. If there is a need for interaction, the command will exit. Use of this option requires that at least one package instance be named upon invocation of the command.
−R Defines the full path name of a subdirectory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path.
−a admin Use the installation administration file, admin, in place of the default admin file. pkgrm first looks in the current working directory for the administration file. If the specified administration file is not in the current working directory, pkgrm looks in the /var/sadm/install/admin directory for the administration file.
−s spool Remove the specified package(s) from the directory spool. The default directory for spooled packages is /var/sadm/spool/okg.
pkginst Specifies the package to be removed. The format pkginst.* can be used to remove all instances of a package.
SEE ALSO  pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1M), removef(1M)
NAME  pmadm – port monitor administration

SYNOPSIS  pmadm -a [-p pmtag | -t type] -s svctag -i id -m pmspecific
             -v ver [-f xu] [-y comment] [-z script]

          pmadm -r -p pmtag -s svctag
          pmadm -e -p pmtag -s svctag
          pmadm -d -p pmtag -s svctag
          pmadm -l [-t type | -p pmtag] [-s svctag]
          pmadm -L [-t type | -p pmtag] [-s svctag]
          pmadm -g -p pmtag -s svctag [-z script]
          pmadm -g -s svctag -t type [-z script]

AVAILABILITY  SUNWcsu

DESCRIPTION  pmadm is the administrative command for the lower level of the Service Access Facility hierarchy, that is, for service administration. A port may have only one service associated with it although the same service may be available through more than one port. In order to uniquely identify an instance of a service, the pmadm command must identify both the port monitor or port monitors through which the service is available (−p or −t) and the service (−s). See the option descriptions below.

pmadm performs the following functions:

− add or remove a service
− enable or disable a service
− install or replace a per-service configuration script
− print requested service information

Any user on the system may invoke pmadm to request service status (−l or −L) or to print per-service configuration scripts (−g without the −z option). pmadm with other options may be executed only by a privileged user.

OPTIONS  The options have the following meanings:

−a  Add a service. pmadm adds an entry for the new service to the port monitor’s administrative file. Because of the complexity of the options and arguments that follow the −a option, it may be convenient to use a command script or the menu system to add services.

−d  Disable a service. Add x to the flag field in the entry for the service svctag in the port monitor’s administrative file. This is the entry used by port monitor pmtag. See the −f option, below, for a description of the flags available.
−e Enable a service. Remove x from the flag field in the entry for the service svctag in the port monitor administrative file. This is the entry used by port monitor pmtag. See the −f option, below, for a description of the flags available.

−fx u The −f option specifies one or both of the following two flags which are then included in the flag field of the entry for the new service in the port monitor’s administrative file. If the −f option is not included, no flags are set and the default conditions prevail. By default, a new service is enabled and no utmp entry is created for it. A −f option without a following argument is illegal.

x Do not enable the service svctag available through port monitor pmtag.

u Create a utmp entry for service svctag available through port monitor pmtag.

−g Print, install, or replace a per-service configuration script. The −g option with a −p option and a −s option prints the per-service configuration script for service svctag available through port monitor pmtag. The −g option with a −p option, a −s option, and a −z option installs the per-service configuration script contained in the file script as the per-service configuration script for service svctag available through port monitor pmtag. The −g option with a −s option, a −t option, and a −z option installs the file script as the per-service configuration script for service svctag available through any port monitor of type type. Other combinations of options with −g are invalid.

−i id id is the identity that is to be assigned to service svctag when it is started. id must be an entry in /etc/passwd.

−l The −l option requests service information. Used by itself and with the options described below it provides a filter for extracting information in several different groupings.

−l By itself, the −l option lists all services on the system.

−l −p pmtag Lists all services available through port monitor pmtag.

−l −s svctag Lists all services with tag svctag.

−l −p pmtag −ssvctag Lists service svctag.

−l −t type Lists all services available through port monitors of type type.

−l −t type −ssvctag Lists all services with tag svctag available through a port monitor of type type.

Other combinations of options with −l are invalid.

−L The −L option is identical to the −l option except that output is printed in a condensed format.
−m pmspec
  pmspec is the port monitor-specific portion of the port monitor administrative
  file entry for the service.

−p pmtag
  Specifies the tag associated with the port monitor through which a service
  (specified as −s svctag) is available.

−r Remove a service. When pmadm removes a service, the entry for the service is
  removed from the port monitor’s administrative file.

−s svctag
  Specifies the service tag associated with a given service. The service tag is
  assigned by the system administrator and is part of the entry for the service in
  the port monitor’s administrative file.

−t type
  Specifies the the port monitor type.

−v ver
  Specifies the version number of the port monitor administrative file. The version
  number may be given as

  −v ‘pmspec −V’

  where pmspec is the special administrative command for port monitor pmtag.
  This special command is ttyadm for ttymon and nlsadmin for listen. The ver-
  sion stamp of the port monitor is known by the command and is returned when
  pmspec is invoked with a −V option.

−y comment
  Associate comment with the service entry in the port monitor administrative file.

−z script
  Used with the −g option to specify the name of the file that contains the per-
  service configuration script. Modifying a configuration script is a three-step pro-
  cedure. First a copy of the existing script is made (−g alone). Then the copy is
  edited. Finally, the copy is put in place over the existing script (−g with −z).

OUTPUT
If successful, pmadm will exit with a status of 0. If it fails for any reason, it will exit with
a nonzero status.

Options that request information write the requested information to the standard output.
A request for information using the −l option prints column headers and aligns the infor-

ation under the appropriate headings. In this format, a missing field is indicated by a
hyphen. A request for information in the condensed format using the −L option prints
the information in colon-separated fields; missing fields are indicated by two successive
colons. # is the comment character.
EXAMPLES

Add a service to a port monitor with tag \texttt{pntag}. Give the service the tag \texttt{svctag}. Port monitor-specific information is generated by \texttt{specpm}. The service defined by \texttt{svctag} will be invoked with identity \texttt{root}.

\begin{verbatim}
  pmadm -a -p pntag -s svctag -i root -m `specpm -a arg1 -b arg2'
  -v `specpm -V'
\end{verbatim}

Add a service with service tag \texttt{svctag}, identity \texttt{guest}, and port monitor-specific information generated by \texttt{specpm} to all port monitors of type \texttt{type}:

\begin{verbatim}
  pmadm -a -s svctag -i guest -t type -m `specpm -a arg1 -b arg2'
  -v `specpm -V'
\end{verbatim}

Remove the service \texttt{svctag} from port monitor \texttt{pntag}:

\begin{verbatim}
  pmadm -r -p pntag -s svctag
\end{verbatim}

Enable the service \texttt{svctag} available through port monitor \texttt{pntag}:

\begin{verbatim}
  pmadm -e -p pntag -s svctag
\end{verbatim}

Disable the service \texttt{svctag} available through port monitor \texttt{pntag}:

\begin{verbatim}
  pmadm -d -p pntag -s svctag
\end{verbatim}

List status information for all services:

\begin{verbatim}
  pmadm -l
\end{verbatim}

List status information for all services available through the port monitor with tag \texttt{ports}:

\begin{verbatim}
  pmadm -l -p ports
\end{verbatim}

List the same information in condensed format:

\begin{verbatim}
  pmadm -L -p ports
\end{verbatim}

List status information for all services available through port monitors of type \texttt{listen}:

\begin{verbatim}
  pmadm -l -t listen
\end{verbatim}

Print the per-service configuration script associated with the service \texttt{svctag} available through port monitor \texttt{pntag}:

\begin{verbatim}
  pmadm -g -p pntag -s svctag
\end{verbatim}

FILES

\begin{verbatim}
/etc/saf/pntag\_config
/etc/saf/pntag/svctag
/var/saf/pntag/*
\end{verbatim}

SEE ALSO

sac(1M), sacadm(1M), doconfig(3N)
NAME
ports – create /dev entries and inittab entries for serial lines

SYNOPSIS
/usr/sbin/ports [ −r rootdir ]

AVAILABILITY
SUNWcsu

DESCRIPTION
The ports command creates symbolic links from /dev/term and /dev/cua to the serial-port character device files in /devices and adds new entries in /etc/inittab for non-system ports found. System-board ports are given single lower-case letters for names (such as a and b) while other ports are named numerically.

ports searches the kernel device tree to find the serial devices attached to the system. It also checks /dev/term and /dev/cua to see what symbolic links to serial devices already exist. ports then does the following:
1. Assigns new numbers (or letters for system-board ports) to ports that are attached to the system but do not have /dev/term and /dev/cua entries. The numbers or letters assigned are the lowest-unused numbers or letters.
2. Removes dangling links: links from /dev/term and /dev/cua pointing to no-longer-existing ports.
4. Invokes sacadm(1M) to make new port monitor entries for the new devices. This is not done automatically for on-board ports; on workstations these ports are often not used for dial-in sessions, so a port-monitor for one of these ports must be created explicitly.

If the configuration has not changed, ports exits without doing anything.

Of interest to device driver writers are the devices that ports considers serial devices. Device nodes of type DDI_NT_SERIAL, DDI_NT_SERIAL_MB, DDI_NT_SERIAL_DO, and DDI_NT_SERIAL_MB_DO are considered serial devices (see ddi_create_minor_node(9F) for more information on node types).

OPTIONS
−r rootdir Cause ports to presume that the /dev/term, /dev/cua, and /devices directories are found under rootdir, not directly under / . If this argument is specified, sacadm(1M) is not invoked, since it would update terminal administration files under /etc without regard to the rootdir.

FILES
/dev/term/*
/dev/cua/*
/etc/inittab
/etc/saf/*

SEE ALSO
devlinks(1M), disks(1M), pmadm(1M), sacadm(1M), tapes(1M), ddi_create_minor_node(9F)

modified 27 Jan 1993
NAME
praudit – print contents of an audit trail file

SYNOPSIS
praudit [ -lrs ] [ -ddel ] [ filename ... ]

AVAILABILITY
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION
praudit reads the listed filenames (or standard input, if no filename is specified) and interprets the data as audit trail records as defined in audit.log(4). By default, times, user and group IDs (UIDs and GIDs, respectively) are converted to their ASCII representation. Record type and event fields are converted to their ASCII representation. A maximum of 100 audit files can be specified on the command line.

OPTIONS
- l
  Prints one line per record. The record type and event fields are always converted to their short ASCII representation as is done for the -s option.

- r
  Print records in their raw form. Times, UIDs, GIDs, record types, and events are displayed as integers. This option and the -s option are exclusive. If both are used, a format usage error message is output.

- s
  Print records in their short form. All numeric fields are converted to ASCII and displayed. The short ASCII representations for the record type and event fields are used. This option and the -r option are exclusive. If both are used, a format usage error message is output.

- del
  Use del as the field delimiter instead of the default delimiter, which is the comma. If del has special meaning for the shell, it must be quoted. The maximum size of a delimiter is four characters.

FILES
/etc/security/audit_event
/etc/security/audit_class

SEE ALSO
bsmconv(1M), audit(2), getauditflags(3), audit.log(4), audit_class(4), audit_event(4) group(4), passwd(4)

1M-458
modified 6 May 1993
NAME
prtconf – print system configuration

SPARC SYNOPSIS
/etc/prtconf [ −F ] [ −p ] [ −P ] [ −v ]

x86 SYNOPSIS
/etc/prtconf [ −P ] [ −v ]

AVAILABILITY
SUNWcsr

DESCRIPTION
The prtconf command prints the system configuration information. The output includes the total amount of memory, and the configuration of system peripherals formatted as a device tree.

OPTIONS
−P Include information about pseudo devices. By default, information regarding pseudo devices is omitted.
−v Specifies verbose mode.
−F (SPARC only). Return the device pathname of the console frame buffer, if one exists. If there is no frame buffer, prtconf returns a non-zero exit code. This flag overrides all others, and returns only the name of the console, frame buffer device or a non-zero exit code. For example, if the console frame buffer on a SPARCstation 1 is cgthree in SBus slot #3, the command returns:

/sbus@1,f80000000/cgthree@3,0. This option could be used to create a symlink for /dev/fb to the actual console device.

−p (SPARC only). Displays information derived from the device tree provided by the firmware (PROM).

EXIT CODES
If successful, prtconf returns 0. If an error occurs, prtconf prints an error message and returns 1. For example, when an illegal option is specified, prtconf returns 1. On a SPARC system, when the −F option is specified and the console output device is not a framebuffer, prtconf returns 1.

SPARC EXAMPLES
Running prtconf on a Sun4/65 series machine produces the following sample output:

example% prtconf

System Configuration: Sun Microsystems sun4c
Memory size: 16 Megabytes
System Peripherals (Software Nodes):

Sun 4_65
options, instance #0
zs, instance #0
zs, instance #1
fd (driver not attached)
audio (driver not attached)
sbus, instance #0

modified 5 Nov 1993
prtconf (1M)  

Maintenance Commands  

SunOS 5.4

---

dma, instance #0
esp, instance #0
sd (driver not attached)
st (driver not attached)
sd, instance #0
sd, instance #1 (driver not attached)
sd, instance #2 (driver not attached)
sd, instance #3
sd, instance #4 (driver not attached)
sd, instance #5 (driver not attached)
sd, instance #6 (driver not attached)
le, instance #0
cgsix (driver not attached)
auxiliary-io (driver not attached)
interrupt-enable (driver not attached)
memory-error (driver not attached)
counter-timer (driver not attached)
eeprom (driver not attached)
pseudo, instance #0

---

x86 EXAMPLES

Running **prtconf** on an x86 machine produces the following sample output:

```
#/etc/prtconf

Memory Size : 12 Megabytes

System Peripherals (Software Nodes):

i86pc, unit #0
isa, unit #0
dpt, unit #0
cmdk, unit #0
cmdk, unit #1
cmdk, unit #2
cmdk, unit #3 (No driver.)
cmdk, unit #4 (No driver.)
cmdk, unit #5 (No driver.)
cmdk, unit #6
cmtp, unit #0
cmtp, unit #1 (No driver.)
cmtp, unit #2 (No driver.)
aha, unit #0
cmdk, unit #7
```
cmdk, unit #11 (No driver.)
cmdk, unit #12 (No driver.)
cmdk, unit #13 (No driver.)
cmtp, unit #3 (No driver.)
cmtp, unit #4 (No driver.)
cmtp, unit #5 (No driver.)
chanmux, unit #0
kd, unit #0
fdc, unit #0
   fd, unit #0
   fd, unit #0
options, unit #0
objmgr, unit #0
pseudo, unit #0

SEE ALSO
modinfo(1M), sysdef(1M)
openprom(7)

NOTES
The output of the \texttt{prtconf()} command is highly dependent on the version of the PROM installed in the system. The output will be affected in potentially all circumstances. The \texttt{driver not attached} message means that no driver is currently attached to that instance of the device. In general, drivers are loaded and installed (and attached to hardware instances) on demand, and when needed, and may be uninstalled and unloaded when the device is not in use.
NAME
prtdiag – print system diagnostic information

SYNOPSIS
/usr/kvm/prtdiag [ -v ]

AVAILABILITY
SUNWkvm

DESCRIPTION
prtdiag displays system configuration and diagnostic information.
The diagnostic information lists any failed Field Replaceable Units (FRUs) in the system.
prtdiag is supported only on sun4d machines.
The interface, output, and location in the directory hierarchy for prtdiag are uncommitted and subject to change in future releases.

OPTIONS
- v  verbose mode.
     Displays the time of the most recent AC Power failure, and the most recent system watchdog information.

     This information is useful only to depot repair and manufacturing for detailed diagnostics of FRUs.

EXAMPLES
The example below displays sample output from a SPARCcenter 2000 machine.

eexample% /usr/kvm/prtdiag
System Configuration:  Sun Microsystems  sun4d SPARCcenter 2000
System clock frequency: 40 MHz
Memory size: 448Mb
Number of XDBuses: 2

<table>
<thead>
<tr>
<th>CPU Units: Frequency Cache-Size</th>
<th>Memory Units: Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MHz MB</td>
<td>B: MHz MB</td>
</tr>
<tr>
<td>Board1: 40 1.0</td>
<td>40 1.0</td>
</tr>
<tr>
<td>Board4: 40 1.0</td>
<td>40 1.0</td>
</tr>
<tr>
<td>Board7: 40 1.0</td>
<td>40 1.0</td>
</tr>
<tr>
<td>Board8:</td>
<td></td>
</tr>
</tbody>
</table>

SBus Cards

Board1: 0: dma/esp(scsi) ‘SUNW,500-1902’
        lebuffer/le(network) ‘SUNW,500-1902’
1: dma/esp(scsi) ‘SUNW,500-1902’
        lebuffer/le(network) ‘SUNW,500-1902’
2: cgsix ‘SUNW,501-1672’
3: dma/esp(scsi) ‘500-1869-01’
        lebuffer/le(network) ‘500-1869-01’

Board4: 0: <empty>
1: dma/esp(scsi) ‘500-1902-01’
        lebuffer/le(network) ‘500-1902-01’
2: bf ‘SUNW,501-1732’

1M-462 modified 13 Aug 1993
Failed Field Replaceable Units (FRU) in System:
==============================================
SBus Card unavailable on System Board #7
Failed Field Replaceable Unit is SBus card 0
cpu-unit unavailable on System Board #8
Failed Field Replaceable Unit is SuperSPARC Module A

The example below displays sample verbose output from a SPARCcenter 2000.

eexample% /usr/kvm/prtdiag -v

System Configuration: Sun Microsystems sun4d SPARCcenter 2000
System clock frequency: 40 MHz
Memory size: 448Mb
Number of XDBuses: 2

<table>
<thead>
<tr>
<th>CPU Units: Frequency Cache-Size</th>
<th>Memory Units: Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MHz</td>
<td>MB</td>
</tr>
<tr>
<td>Board1:</td>
<td>40</td>
</tr>
<tr>
<td>Board4:</td>
<td>40</td>
</tr>
<tr>
<td>Board7:</td>
<td>40</td>
</tr>
<tr>
<td>Board8:</td>
<td>32</td>
</tr>
</tbody>
</table>

SBus Cards

Board1: 0: dma/esp(scsi) 'SUNW,500-1902'
         lebuffer/le(network) 'SUNW,500-1902'
         1: dma/esp(scsi) 'SUNW,500-1902'
         lebuffer/le(network) 'SUNW,500-1902'
         2: cgsix 'SUNW,501-1672'
         3: dma/esp(scsi) '500-1869-01'
         lebuffer/le(network) '500-1869-01'

Board4: 0: <empty>
         1: dma/esp(scsi) '500-1902-01'
         lebuffer/le(network) '500-1902-01'
         2: bf 'SUNW,501-1732'
         3: bf 'SUNW,501-1732'

Board7: 0: <empty>
         1: <empty>
         2: <empty>
Failed Field Replaceable Units (FRU) in System:

SBus Card unavailable on System Board #7
Failed Field Replaceable Unit is SBus card 0

cpu-unit unavailable on System Board #8
Failed Field Replaceable Unit is SuperSPARC Module A

Most recent AC Power Failure:

Sat May 22 14:21:18 1993

Analysis of most recent System Watchdog:

Log Date: Thu Feb 18 22:28:15 1993

Analysis for Board 7

MXCC
Asynchronous Error
Error Valid, CCOP=130 ERR= 2 PA=9.10081000
BW0 (CPU B)
Client Device Error, Internal Error(s) = IOWSCE

RETURN VALUES prtdiag returns 1 if failed FRUs are detected in the system, otherwise a 0 is returned.

SEE ALSO prtconf(1M), psrinfo(1M), modinfo(1M), sysdef(1M), openprom(7)
NAME
prtvtoc – print the VTOC of a block device

SYNOPSIS
/usr/sbin/prtvtoc [ −fhs ] [ −t vfstab ] [ −m mnttab ] device

AVAILABILITY
SUNWcsr

DESCRIPTION
The prtvtoc command allows the contents of the VTOC (volume table of contents) to be viewed. The command can be used only by the super-user. The device name can be the file name of a raw device in the form of /dev/rdsk/c?t?d?s2 or can be the file name of a block device in the form of /dev/dsk/c?t?d?s2.

OPTIONS
−f Report on the disk free space, including the starting block address of the free space, number of blocks, and unused partitions.
−h Omit the headers from the normal output.
−s Omit all headers but the column header from the normal output.
−t vfstab
Use vfstab as the list of filesystem defaults, in place of /etc/vfstab.
−m mnttab
Use mnttab as the list of mounted filesystems, in place of /etc/mnttab.

EXAMPLES
The command line entry and system response shown below are for a 424-megabyte hard disk:

example# prtvtoc /dev/rdsk/c0t3d0s2
*/dev/rdsk/c0t3d0s2 partition map
*
* Dimension:
* 512 bytes/sector
* 80 sectors/track
* 9 tracks/cylinder
* 720 sectors/cylinder
* 2500 cylinders
* 1151 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
<table>
<thead>
<tr>
<th>* Partition</th>
<th>Tag</th>
<th>Flags</th>
<th>First Sector</th>
<th>Sector Count</th>
<th>Last Sector</th>
<th>Mount Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>00</td>
<td>76320</td>
<td>0</td>
<td>76319</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>01</td>
<td>76320</td>
<td>132480</td>
<td>208799</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>00</td>
<td>0</td>
<td>828720</td>
<td>828719</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>00</td>
<td>208800</td>
<td>131760</td>
<td>340559</td>
<td>/opt</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>00</td>
<td>340560</td>
<td>447120</td>
<td>787679</td>
<td>/usr</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>00</td>
<td>787680</td>
<td>41040</td>
<td>828719</td>
<td>/export/home</td>
</tr>
</tbody>
</table>

dev#prtvtoc (1M) Maintenance Commands SunOS 5.4

* Partition Tag Flags First Sector Sector Count Sector Mount Directory

**Example**

Codes for TAG are:

<table>
<thead>
<tr>
<th>NAME</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNASSIGNED</td>
<td>0</td>
</tr>
<tr>
<td>BOOT</td>
<td>1</td>
</tr>
<tr>
<td>ROOT</td>
<td>2</td>
</tr>
<tr>
<td>SWAP</td>
<td>3</td>
</tr>
<tr>
<td>USR</td>
<td>4</td>
</tr>
<tr>
<td>BACKUP</td>
<td>5</td>
</tr>
<tr>
<td>STAND</td>
<td>6</td>
</tr>
<tr>
<td>HOME</td>
<td>8</td>
</tr>
</tbody>
</table>

FLAG indicates how the partition is to be mounted.

<table>
<thead>
<tr>
<th>NAME</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUNTABLE, READ AND WRITE</td>
<td>00</td>
</tr>
<tr>
<td>NOT MOUNTABLE</td>
<td>01</td>
</tr>
<tr>
<td>MOUNTABLE, READ ONLY</td>
<td>10</td>
</tr>
</tbody>
</table>

The following example shows output for the `−f` option for the same disk as above.

Example# prtvtoc −f /dev/rdsk/c0t3d0s0
FREE_START=0 FREE_SIZE=0 FREE_COUNT=0 FREE_PART=4

**SEE ALSO**

devinfo(1M), format(1M), fmthard(1M)

**WARNINGS**
The `mount` command does not check the "not mountable" bit.
NAME
psradm – set processors online or offline

SYNOPSIS
psradm -f | -n [ -v ] processor_id
psradm -a -f | -n [ -v ]

AVAILABLE
SUNWcsu

DESCRIPTION
psradm takes a processor offline or brings it online. An offline processor will do little or no work. The actual effect of being offline may vary from machine to machine.

OPTIONS
-f Take the specified processors offline.
-n Bring the specified processors online.
-a Perform the action on all processors, or as many as possible.
-v Output a message giving the results of each attempted operation.

USAGE
This command is restricted to the superuser.
A processor may not be taken offline if there are LWPs which are bound to the processor. On some architectures, it might not be possible to take certain processors offline if, for example, the system depends on some resource provided by the processor. At least one processor must remain online.

EXAMPLES
Set processors 2 and 3 offline:
  psradm -f 2 3
Set all processors online:
  psradm -n -a

FILES
/etc/wtmp for records logging processor status changes

SEE ALSO
psrinfo(1M), p_online(2)

DIAGNOSTICS
psradm: processor 4: Invalid argument
The specified processor doesn’t exist in the configuration.

psradm: processor 3: Device busy
The specified processor could not be taken offline because it either has LWPs bound to it, is the last online processor in the system, or is needed by the system because it provides some essential service.

psradm: processor 0: Not owner
The user does not have permission to change processor status.
NAME

psrinfo – print processor information

SYNOPSIS

```bash
psrinfo [-v] [processor_id ...]
psrinfo --s processor_id
```

AVAILABILITY

SUNWcsu

DESCRIPTION

`psrinfo` shows information on configured processors. Without arguments, it prints a line for each processor, telling whether it is online or offline, and when that status last changed.

OPTIONS

- `-v` Use verbose mode, showing information on processor type and clock speed.
- `-s` Use silent mode. Output only a 1 or 0 for the specified processor.

USAGE

Displays information about the specified processors, or all processors, if none are specified. Without arguments, information on online/offline status and time of last change is given. With the `-v` argument, information on processor type, floating point unit type, and clock speed are printed as well. If any of this information cannot be determined, it will be printed as “unknown.”

The `-s` argument is provided for convenient use in shell scripts. When `-s` is specified, `psrinfo` will output 1 if the specified processor is online, and 0 otherwise.

EXAMPLES

To print the verbose status of all processors:

```bash
psrinfo -v
```

Shell usage to determine if a processor is online:

```bash
if [""psrinfo -s 3 2>/dev/null"" -eq 1]
then
 echo "processor 3 is up"
fi
```

FILES

`/etc/wtmp` records are read to determine last status change time.

SEE ALSO

`psradm(1M), processor_info(2), p_online(2)`

DIAGNOSTICS

`psrinfo: processor 9: Invalid argument`

The specified processor does not exist.
NAME  putdev – edits device table

SYNOPSIS  
putdev -a alias [attribute=value [...]]
putdev -m device attribute=value [attribute=value [...]]
putdev -d device [attribute [...]]

DESCRIPTION  putdev can add a new device to the device table, modify an existing device description or remove a device entry from the table. The first synopsis is used to add a device. The second synopsis is used to modify existing entries by adding or changing attributes. If a specified attribute is not defined, this option adds that attribute to the device definition. If a specified attribute is already defined, it modifies the attribute definition. The third synopsis is used to delete either an entire device entry or, if the attribute argument is used, to delete an attribute assignment for a device.

OPTIONS  
-a  Add a device to the device table using the specified attributes. The device must be referenced by its alias.

-m  Modify a device entry in the device table. If an entry already exists, it adds any specified attributes that are not defined. It also modifies any attributes which already have a value with the value specified by this command.

-d  Remove a device from the device table, when executed without the attributes argument. Used with the attribute argument, it deletes the given attribute specification for device from the table.

alias  Designate the alias of the device to be added.

device  Designate the pathname or alias of the device whose attribute is to be added, modified, or removed.

attribute  Designate a device attribute to be added, modified, or deleted. Can be any of the device attributes described under NOTES except alias. This prevents an accidental modification or deletion of a device’s alias from the table.

value  Designate the value to be assigned to a device’s attribute.

NOTES  
The following list shows the standard device attributes, used by applications such as ufsdump(1M) and ufsrestore(1M), which can be defined for a device. You are not limited to this list, you can define any attribute you like. See the File System Administration for more information.

alias  The unique name by which a device is known. No two devices in the database may share the same alias name. The name is limited in length to 14 characters and should contain only alphanumeric characters and the following special characters if they are escaped with a backslash: underscore (_), dollar sign ($), hyphen (−), and period (·).
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bdevice</td>
<td>The pathname to the block special device node associated with the device, if any. The associated major/minor combination should be unique within the database and should match that associated with the cdevice field, if any. (It is the administrator’s responsibility to ensure that these major/minor numbers are unique in the database.)</td>
</tr>
<tr>
<td>capacity</td>
<td>The capacity of the device or of the typical volume, if removable.</td>
</tr>
<tr>
<td>cdevice</td>
<td>The pathname to the character special device node associated with the device, if any. The associated major/minor combination should be unique within the database and should match that associated with the bdevice field, if any. (It is the administrator’s responsibility to ensure that these major/minor numbers are unique in the database.)</td>
</tr>
<tr>
<td>cyl</td>
<td>Used by the command specified in the mkfscmd attribute.</td>
</tr>
<tr>
<td>desc</td>
<td>A description of any instance of a volume associated with this device (such as floppy diskette).</td>
</tr>
<tr>
<td>dpartlist</td>
<td>The list of disk partitions associated with this device. Used only if type=disk. The list should contain device aliases, each of which must have type=dpart.</td>
</tr>
<tr>
<td>dparttype</td>
<td>The type of disk partition represented by this device. Used only if type=dpart. It should be either fs (for file system) or dp (for data partition).</td>
</tr>
<tr>
<td>erasecmd</td>
<td>The command string that, when executed, erases the device.</td>
</tr>
<tr>
<td>fmtcmd</td>
<td>The command string that, when executed, formats the device.</td>
</tr>
<tr>
<td>fsname</td>
<td>The file system name on the file system administered on this partition, as supplied to the /usr/sbin/labelit command. This attribute is specified only if type=dpart and dparttype=fs.</td>
</tr>
<tr>
<td>gap</td>
<td>Used by the command specified in the mkfscmd attribute.</td>
</tr>
<tr>
<td>mkfscmd</td>
<td>The command string that, when executed, places a file system on a previously formatted device.</td>
</tr>
<tr>
<td>mountpt</td>
<td>The default mount point to use for the device. Used only if the device is mountable. For disk partitions where type=dpart and dparttype=fs, this attribute should specify the location where the partition is normally mounted.</td>
</tr>
<tr>
<td>nblocks</td>
<td>The number of blocks in the file system administered on this partition. Used only if type=dpart and dparttype=fs.</td>
</tr>
<tr>
<td>ninodes</td>
<td>The number of inodes in the file system administered on this partition. Used only if type=dpart and dparttype=fs.</td>
</tr>
<tr>
<td>norewind</td>
<td>The name of the character special device node that allows access to the serial device without rewinding when the device is closed.</td>
</tr>
<tr>
<td>pathname</td>
<td>Defines the pathname to an i-node describing the device (used for non-block or character device pathnames, such as directories).</td>
</tr>
</tbody>
</table>
type

A token that represents inherent qualities of the device. Standard types include: 9-track, ctape, disk, directory, diskette, dpart, and qtape.

volname

The volume name on the file system administered on this partition, as supplied to the /usr/sbin/labelit command. Used only if type=dpart and dparttype=fs.

volume

A text string used to describe any instance of a volume associated with this device. This attribute should not be defined for devices which are not removable.

ERRORS

The command will exit with one of the following values:

0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table could not be opened for reading, or new device table could not be created.
3 = if executed with the −a option, indicates that an entry in the device table with the alias alias already exits. If executed with the −m or −d options, indicates that no entry exists for device device.
4 = indicates that −d was requested and one or more of the specified attributes were not defined for the device.

FILES

/etc/device.tab

SEE ALSO

devattr(1M), putdgrp(1M), ufsdump(1M), ufsrestore(1M)

File System Administration
NAME                  putdgrp – edits device group table

SYNOPSIS               putdgrp [ -d ] dgroup [ device ... ]

DESCRIPTION            putdgrp modifies the device group table. It performs two kinds of modification. It can modify the table by creating a new device group or removing a device group. It can also change group definitions by adding or removing a device from the group definition.

When the command is invoked with only a dgroup specification, the command adds the specified group name to the device group table if it does not already exist. If the -d option is also used with only the dgroup specification, the command deletes the group from the table.

When the command is invoked with both a dgroup and a device specification, it adds the given device name(s) to the group definition. When invoked with both arguments and the -d option, the command deletes the device name(s) from the group definition.

When the command is invoked with both a dgroup and a device specification and the device group does not exist, it creates the group and adds the specified devices to that new group.

OPTIONS                -d        Delete the group or, if used with device, delete the device from a group definition.
                        dgroup    Specify a device group name.
                        device    Specify the pathname or alias of the device that is to be added to, or deleted from, the device group.

ERRORS                 The command will exit with one of the following values:
                        0 = successful completion of the task.
                        1 = command syntax incorrect, invalid option used, or internal error occurred.
                        2 = device group table could not be opened for reading or a new device group table could not be created.
                        3 = if executed with the -d option, indicates that an entry in the device group table for the device group dgroup does not exist and so cannot be deleted. Otherwise, indicates that the device group dgroup already exists and cannot be added.
                        4 = if executed with the -d option, indicates that the device group dgroup does not have as members one or more of the specified devices. Otherwise, indicates that the device group dgroup already has one or more of the specified devices as members.
EXAMPLES
To add a new device group:

```bash
putdgrp floppies
```
To add a device to a device group:

```bash
putdgrp floppies diskette2
```
To delete a device group:

```bash
putdgrp -d floppies
```
To delete a device from a device group:

```bash
putdgrp -d floppies diskette2
```

FILES
/etc/dgroup.tab

SEE ALSO
listdgrp(1M), putdev(1M)
NAME  pwck, grpck – password/group file checkers

SYNOPSIS  
/usr/sbin/pwck [ filename ]  
/usr/sbin/grpck [ filename ]

AVAILABILITY  SUNWcsu

DESCRIPTION  pwck scans the password file and notes any inconsistencies. The checks include validation of the number of fields, login name, user ID, group ID, and whether the login directory and the program-to-use-as-shell exist. The default password file is /etc/passwd.

grpck verifies all entries in the group file. This verification includes a check of the number of fields, group name, group ID, whether any login names belong to more than NGROUPS_MAX groups and that all login names appear in the password file. The default group file is /etc/group.

FILES  
/etc/group
/etc/passwd

SEE ALSO  getpwent(3C), group(4), passwd(4)

DIAGNOSTICS  Group entries in /etc/group with no login names are flagged.

Group file ‘filename’ is empty
The /etc/passwd or /etc/group file is an empty file.

cannot open file filename: No such file or directory
The /etc/passwd or /etc/group file does not exist.

NOTES  If no filename argument is given, grpck checks the local group file, /etc/group, and also makes sure that all login names encountered in the checked group file are known to the system getpwent(3C) routine. This means that the login names may be supplied by a network name service.
NAME       pwconv – installs and updates /etc/shadow with information from /etc/passwd

SYNOPSIS   pwconv

AVAILABILITY    SUNWcsu

DESCRIPTION   The pwconv command creates and updates /etc/shadow with information from /etc/passwd.

pwconv relies on a special value of ‘x’ in the password field of /etc/passwd. This value of ‘x’ indicates that the password for the user is already in /etc/shadow and should not be modified.

If the /etc/shadow file does not exist, this command will create /etc/shadow with information from /etc/passwd. The command populates /etc/shadow with the user’s login name, password, and password aging information. If password aging information does not exist in /etc/passwd for a given user, none will be added to /etc/shadow. However, the last changed information will always be updated.

If the /etc/shadow file does exist, the following tasks will be performed:

- Entries that are in the /etc/passwd file and not in the /etc/shadow file will be added to the /etc/shadow file.
- Entries that are in the /etc/shadow file and not in the /etc/passwd file will be removed from /etc/shadow.
- Password attributes (for example, password and aging information) that exist in an /etc/passwd entry will be moved to the corresponding entry in /etc/shadow.

The pwconv command can only be used by the super-user.

FILES       /etc/opasswd
             /etc/oshadow
             /etc/passwd
             /etc/shadow

SEE ALSO    passwd(1), passmgmt(1M), usermod(1M), passwd(4)

DIAGNOSTICS  pwconv exits with one of the following values:

0              SUCCESS.
1              Permission denied.
2              Invalid command syntax.
3              Unexpected failure. Conversion not done.
4              Unexpected failure. Password file(s) missing.
5              Password file(s) busy. Try again later.
6              Bad entry in /etc/shadow file.
NAME  quot – summarize file system ownership

SYNOPSIS  quot [ −acfhnv ] [ filesystem ]

DESCRIPTION  quot displays the number of blocks (1024 bytes) in the named filesystem currently owned by each user. There is a limit of 2048 blocks. Files larger than this will be counted as a 2048 block file, but the total block count will be correct.

OPTIONS  
−a  Generate a report for all mounted file systems.
−c  Display three columns giving a file size in blocks, the number of files of that size, and a cumulative total of blocks containing files of that size or a smaller size.
−f  Display count of number of files as well as space owned by each user. This option is incompatible with the −c and −v options.
−h  Estimate the number of blocks in the file. This does not account for files with holes in them.
−n  Attach names to the list of files read from standard input. quot −n cannot be used alone, because it expects data from standard input. For example, the pipeline ncheck filesystem | sort +0n | quot −n filesystem will produce a list of all files and their owners. This option is incompatible with all other options.
−v  In addition to the default output, display three columns containing the number of blocks not accessed in the last 30, 60, and 90 days.

FILES  
/etc/mnttab  mounted file systems
/etc/passwd  to get user names

SEE ALSO  du(1M)

NOTES  This command may only be used by the super-user.
NAME  quota – display a user’s ufs file system disk quota and usage

SYNOPSIS  quota [ −v ] [ username ]

DESCRIPTION  quota displays users’ ufs disk usage and limits. Only the super-user may use the optional username argument to view the limits of other users.

quota without options only display warnings about mounted file systems where usage is over quota. Remotely mounted file systems which do not have quotas turned on are ignored.

username can be the numeric UID of a user.

OPTIONS  
−v  Display user’s quota on all mounted file systems where quotas exist.

FILES  /etc/mnttab  list of currently mounted file systems

SEE ALSO  edquota(1M), quotaon(1M), quotacheck(1M), repquota(1M), rquotad(1M)

NOTES  quota will also display quotas for NFS mounted ufs-based file systems if the rquotad daemon is running. See rquotad(1M).

modified 18 Dec 1991
NAME  quotacheck – ufs file system quota consistency checker

SYNOPSIS  quotacheck [-p] [-v] filesystem ...
           quotacheck -a [-pv]

DESCRIPTION  quotacheck examines each mounted ufs file system, builds a table of current disk usage, and compares this table against the information stored in the file system’s disk quota file. If any inconsistencies are detected, both the quota file and the current system copy of the incorrect quotas are updated.

filesystem is either a file system mount point or the block device on which the file system resides.

quotacheck expects each file system to be checked to have a quota file named quotas in the root directory. If none is present, quotacheck will not check the file system.

quotacheck accesses the character special device in calculating the actual disk usage for each user. Thus, the file systems that are checked should be quiescent while quotacheck is running.

OPTIONS  
  -p  Check quotas of file systems in parallel.
  -v  Indicate the calculated disk quotas for each user on a particular file system. quotacheck normally reports only those quotas modified.
  -a  Check the file systems which /etc/mnttab indicates are ufs file systems. These file systems must be read-write mounted with disk quotas enabled, and must have an rq entry in the mntopts field in /etc/vfstab.

FILES  
  /etc/mnttab mounted file systems
  /etc/vfstab list of default parameters for each file system

SEE ALSO edquota(1M), quota(1M), quotaon(1M), repquota(1M), quotactl(7)
NAME quotaon, quotaoff – turn ufs file system quotas on and off

SYNOPSIS

quotaon [ −v ] filesystem ...
quotaon −a [ −v ]
quotaoff [ −v ] filesystem ...
quotaoff −a [ −v ]

DESCRIPTION

quotaon turns on disk quotas for one or more ufs file systems.

Before a file system may have quotas enabled, a file named quotas, owned by root, must exist in the root directory of the file system. See edquota(1M) for details on how to modify the contents of this file.

quotaoff turns off disk quotas for one or more ufs file systems.

The file systems specified must already be mounted.

These commands update the mntopts field of the appropriate entries in /etc/mnttab to indicate when quotas are on or off for each file system. If quotas are on, “quota” will be added to mntopts; if quotas are off, mntopts will be marked “noquota”.

filesystem must be either the mount point of a file system, or the block device on which the file system resides.

OPTIONS

quotaon

−a This option is normally used at boot time to enable quotas. It applies only to those file systems in /etc/vfstab which have “rq” in the mntopts field, are currently mounted “rw”, and have a quotas file in the root directory.

−v Display a message for each file system after quotas are turned on.

quotaoff

−a Force all file systems in /etc/mnttab to have their quotas disabled.

−v Display a message for each file system affected.

FILES

/etc/mnttab mounted file systems
/etc/vfstab list of default parameters for each file system

SEE ALSO

edquota(1M), quota(1M), quotacheck(1M), repquota(1M), mnttab(4), vfstab(4), quotactl(7)

modified 15 Mar 1994
NAME  rdate – set system date from a remote host

SYNOPSIS  rdate hostname

DESCRIPTION  rdate sets the local date and time from the hostname given as an argument. You must be super-user on the local system. Typically rdate can be inserted as part of a startup script.
NAME
re-preinstall – installs the JumpStart software on a system

SYNOPSIS
/usr/sbin/install.d/re-preinstall target-slice
cdrom-mnt-pt/export/exec/kvm/sparc.release/sbin/install.d/re-preinstall
   [ −m cdrom-mnt-pt ] [ −k karch ] target-slice

AVAILABILITY
re-preinstall exists only on the Solaris CD.

DESCRIPTION
re-preinstall installs the JumpStart software (Preinstall Boot Image) on a system, so you
can power-on the system and have it automatically install the Solaris software (perform a
JumpStart installation on the system). Some new systems have the JumpStart software
already preinstalled.

There are two ways to use the re-preinstall command. The most common way is to run
re-preinstall on a system to install the JumpStart software on its own default boot disk.
This is useful if you want to restore a system to its original factory conditions.

You can also run re-preinstall on a system to install JumpStart software on any attached
disk. Once you install the JumpStart software on a disk, you can move the disk to a dif-
ferent system and perform a JumpStart installation on the different system.

re-preinstall creates a standard file system on the specified target-slice (usually slice 0),
and re-preinstall makes sure there is enough space on the target-slice for the JumpStart
software, which usually requires 16 Mbytes. If sufficient space is not available, re-
preinstall fails with the following message:
   re-preinstall: target-slice is less than 16 Megabytes, please reformat it.
You can use the format(1M) command to create sufficient space on the target-slice for the
JumpStart software.

OPTIONS
−m cdrom-mnt-pt   Absolute path, or mount point, to the Solaris CD. The default is
                 /cdrom.
−k karch          Kernel architecture of the system that will use the disk with the
                 JumpStart software. The default is the kernel architecture of the sys-
                 tem running re-preinstall. (Use the uname −m command to deter-
                 mine a system’s kernel architecture.)
target-slice      Device name of the disk slice where the JumpStart software will be
                 installed (usually slice 0). For example, c0t3d0s0.

EXAMPLES
re-preinstall on a system and install the JumpStart software on its own default boot disk:
1. Boot the system from the Solaris CD in single-user mode at the “ok” prompt.
   ok boot cdrom -s
2. When the system is in single-user mode, use the `eeprom(1M)` command to determine the system’s default boot disk. If no slice is specified for the system’s default boot disk, the system boots from slice 0 of the specified disk, by default. Note that when you turn on a re-preinstalled system, the system looks for the JumpStart software on the disk slice that it boots from.

3. Run the `re-preinstall` command with only the `target-slice` argument; `target-slice` must be the device name of the disk you determined in Step 2.

   For example, the following command installs the JumpStart software on the system’s default boot disk, `c0t3d0s0`:

   ```bash
 example# /usr/sbin/install.d/re-preinstall c0t3d0s0
   ```

Perform the following steps to run `re-preinstall` on a system and install the JumpStart software on an attached disk for another system:

1. Mount the Solaris CD.
2. Use the `format(1M)` command to determine the `target-slice` where JumpStart will be installed.
3. Determine the kernel architecture of the system that will use the re-preinstalled disk.
4. Run `re-preinstall` with the `−m cdrom-mnt-pt` option if the Solaris CD is not mounted on the `/cdrom` directory.

   For example, the following command installs the JumpStart software on the system’s attached disk for a system with a sun4c kernel architecture, and it uses the Solaris CD mounted on the `/mnt` directory:

   ```bash
 example# /cdrom/export/exec/sparc.Solaris_2.4/sbin/install.d/re-preinstall
 −m /mnt −k sun4c c0t2d0s0
   ```

SEE ALSO `uname(1)`, `format(1M)`, `eeprom(1M)`, `mount(1M)`

*SPARC: Installing Solaris Software*
NAME         reboot – restart the operating system

SYNOPSIS     /usr/sbin/reboot [−dlnq ] [ boot arguments ]

AVAILABILITY SUNWcsr

DESCRIPTION reboot restarts the kernel. The kernel is loaded into memory by the PROM monitor, which transfers control to the loaded kernel. Although reboot can be run by the super-user at any time, shutdown(1M) is normally used first to warn all users logged in of the impending loss of service. See shutdown(1M) for details.

reboot performs a sync(1M) operation on the disks, and then a multi-user reboot is initiated. See init(1M) for details.

reboot normally logs the reboot to the system log daemon, syslogd(1M), and places a shutdown record in the login accounting file /var/adm/wtmp. These actions are inhibited if the −n or −q options are present.

Normally, the system will reboot itself at power-up or after crashes.

OPTIONS −d Dump system core before rebooting. This option is provided for compatibility, but is not supported by the underlying reboot(3B) call.

−l Suppress sending a message to the system log daemon, syslogd(1M) about who executed reboot.

−n Avoid the sync(1M) operation. This option can be used if a disk or the processor is on fire.

−q Quick. Reboot quickly and ungracefully, without shutting down running processes first.

boot arguments

These arguments are accepted for compatibility, and are passed unchanged to the uadmin(2) system call.

On x86 systems only, note that currently, boot arguments are not passed on to the boot program, so they have no effect. You must type in the arguments when responding to the boot prompt “>” to have the desired effect.

OPTIONS −d Dump system core before rebooting. This option is provided for compatibility, but is not supported by the underlying reboot(3B) call.

−l Suppress sending a message to the system log daemon, syslogd(1M) about who executed reboot.

−n Avoid the sync(1M) operation. This option can be used if a disk or the processor is on fire.

−q Quick. Reboot quickly and ungracefully, without shutting down running processes first.

EXAMPLES In the example below, the delimiter ‘−−’ (two hyphens) must be used to separate the options of reboot from the arguments of boot(1M).

example# reboot −dl −− −rv

FILES /var/adm/wtmp login accounting file

SEE ALSO boot(1M), crash(1M), fsck(1M), halt(1M), init(1M), shutdown(1M), sync(1M), syslogd(1M), uadmin(2), reboot(3B)
**NAME**
rem_drv – remove a device driver from the system

**SYNOPSIS**
rem_drv [-b basedir] driver_module

**AVAILABILITY**
SUNWcsu

**DESCRIPTION**
The `rem_drv` command is used to inform the system that the driver module `driver_module` is no longer a valid driver module.

**OPTIONS**
- `-b basedir` Sets the path to the root directory of the diskless client. Used on the server to do a rem_drv for a client. The client machine must be rebooted to unload the driver.

**EXAMPLES**
The following example removes the `sd` driver from use:
```
example% rem_drv sd
```
The next example removes the driver from the sun1 driver database. The driver will not be uninstalled nor unloaded until the client machine is rebooted.
```
example% rem_drv -b /export/root/sun1 sd
```

**SEE ALSO**
add_drv(1M), drvconfig(1M)
NAME
removef – remove a file from software database

SYNOPSIS
removef pkginst path1 [ path2 ...]
removef -f pkginst

AVAILABILITY
SUNWcsu

DESCRIPTION
removef informs the system that the user, or software, intends to remove a pathname. Output from removef is the list of input pathnames that may be safely removed (no other packages have a dependency on them).

OPTIONS
-f After all files have been processed, removef should be invoked with the -f option to indicate that the removal phase is complete.

EXAMPLES
The following shows the use of removef in an optional pre-install script:

echo "The following files are no longer part of this package and are being removed."
removef $PKGINST /dev/xt[0-9][0-9][0-9] | while read pathname
do
echo "$pathname"
rm -f $pathname
done
removef -f $PKGINST || exit 2

SEE ALSO
pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1M)
**NAME**
repquota – summarize quotas for a ufs file system

**SYNOPSIS**
repquota [-v] filesystem ...
repquota -a [-v]

**DESCRIPTION**
repquota prints a summary of the disk usage and quotas for the specified ufs file systems. The current number of files and amount of space (in kilobytes) is printed for each user along with any quotas created with edquota(1M). The filesystem must have the file quotas in its root directory. Only the super-user may view quotas which are not their own.

**OPTIONS**
- `-a` Report on all mounted ufs file systems that have rq in the mntopts field of the /etc/vfstab file.
- `-v` Report quotas for all users, even those who do not consume resources.

**SEE ALSO**
edquota(1M), quota(1M), quotacheck(1M), quotaon(1M), quotactl(7)
NAME
rmmount – removable media mounter that automatically mounts a file system on a CD-ROM and floppy.

SYNOPSIS
/usr/sbin/rmmount [ −D ]

DESCRIPTION
rmmount is a removable media mounter that is executed by Volume Management whenever a CD-ROM or floppy is inserted. The Volume Management daemon, vold(1M), manages CD-ROM and floppy devices.

Upon insertion, rmmount determines what type of file system (if any) is on the media. If a file system is present, rmmount mounts the file system in one of the following locations.

<table>
<thead>
<tr>
<th>Mount Location</th>
<th>State of Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>/floppy/floppy0</td>
<td>symbolic link to mounted floppy in local floppy drive</td>
</tr>
<tr>
<td>/floppy/floppy_name</td>
<td>mounted named floppy</td>
</tr>
<tr>
<td>/floppy/unnamed_floppy</td>
<td>mounted unnamed floppy</td>
</tr>
<tr>
<td>/cdrom/cdrom0</td>
<td>symbolic link to mounted CD-ROM in local CD-ROM drive</td>
</tr>
<tr>
<td>/cdrom/CD-ROM_name</td>
<td>mounted named CD-ROM</td>
</tr>
<tr>
<td>/cdrom/CD-ROM_name/partition</td>
<td>mounted named CD-ROM with partitioned file system</td>
</tr>
<tr>
<td>/cdrom/unnamed_cdrom</td>
<td>mounted unnamed CD-ROM</td>
</tr>
</tbody>
</table>

If the media is read-only (either CD-ROM or floppy with write-protect tab set), the file system is mounted read-only.

If a file system is not identified, rmmount does not mount a file system. See Peripherals Administration for more information on the location of CD-ROM and floppy media without file systems. Also see vols(7).

If a file system type has been determined, it is then checked to see that it is “clean”. If the file system is “dirty”, fsck -p (see fsck(1M)) is run in an attempt to clean it. If fsck fails, the file system is mounted read-only.

After the mount is complete, “actions” associated with the media type are executed. These actions allow for the notification to other programs that new media are available. These actions are shared objects and are described in the configuration file, /etc/rmmount.conf.

Actions are executed in the order in which they appear in the configuration file. The action function can return either 1 or 0. If it returns 0, no further actions will be executed. This allows the function to control which applications are executed.

In order to execute an action, rmmount performs a dlopen(3X) on the shared object and calls the action function defined within it. The definition of the interface to actions can be found in /usr/include/rmmount.h.

modified 23 Feb 1993
File systems mounted by `rmmount` are always mounted with the `nosuid` flag set, thereby disabling set-uid programs and access to block or character devices in that file system. Upon ejection, `rmmount` unmounts mounted file systems and executes actions associated with the media type. If a file system is “busy” (i.e., it contains the current working directory of a live process), the ejection will fail.

**OPTIONS**
- `-D` Turn on the debugging output from the `rmmount` `dprintf` calls.

**FILES**
- `/etc/rmmount.conf` removable media mounter configuration file.
- `/usr/lib/rmmount/*.so.1` shared objects used by `rmmount`.

**SEE ALSO**
- `volcancel(1)`, `volcheck(1)`, `volmissing(1)`, `fsck(1M)`, `vold(1M)`, `dlopen(3X)`, `rmmount.conf(4)`, `vold.conf(4)`, `volfs(7)`,
NAME  rmt – remote magtape protocol module

SYNOPSIS  /usr/sbin/rmt

AVAILABILITY  SUNWcsr

DESCRIPTION  rmt is a program used by the remote dump and restore programs in manipulating a magnetic tape drive through an interprocess communication connection. rmt is normally started up with an rexec(3N) or rcmd(3N) call. The rmt program accepts requests that are specific to the manipulation of magnetic tapes, performs the commands, then responds with a status indication. All responses are in ASCII and in one of two forms. Successful commands have responses of

A

where number is an ASCII representation of a decimal number. Unsuccessful commands are responded to with

Eerror-number\nerror-message

where error-number is one of the possible error numbers described in intro(2), and error-message is the corresponding error string as printed from a call to perror(3C). The protocol consists of the following commands:

S\nReturn the status of the open device, as obtained with a MTIOCGET ioctl call. If the operation was successful, an “ack” is sent with the size of the status buffer, then the status buffer is sent (in binary).

Cdevice\nClose the currently open device. The device specified is ignored.

Ioperation\ncount\nPerform a MTIOCOP ioctl(2) command using the specified parameters. The parameters are interpreted as the ASCII representations of the decimal values to place in the mt_op and mt_count fields of the structure used in the ioctl call. When the operation is successful the return value is the count parameter.

Lwhence\noffset\nPerform an lseek(2) operation using the specified parameters. The response value is returned from the lseek call.

Odevice\nmode\nOpen the specified device using the indicated mode. device is a full pathname, and mode is an ASCII representation of a decimal number suitable for passing to open(9E). If a device is already open, it is closed before a new open is performed.
**Rcount\n**  Read count bytes of data from the open device. **rmt** performs the requested **read**(9E) and responds with **Acount-read\n** if the read was successful; otherwise an error in standard format is returned. If the read was successful, the data read is sent.

**Wcount\n**  Write data onto the open device. **rmt** reads count bytes from the connection, aborting if a premature EOF is encountered. The response value is returned from the **write**(9E) call.

Any other command causes **rmt** to exit.

**SEE ALSO**  **ufsdump**(1M), **ufsrestore**(1M), **intro**(2), **ioctl**(2), **lseek**(2), **perror**(3C), **rcmd**(3N), **rexec**(3N), **mtio**(7), **open**(9E), **read**(9E), **write**(9E)

**DIAGNOSTICS**  All responses are of the form described above.

**BUGS**  Do not use this for a remote file access protocol.
NAME route – manually manipulate the routing tables


DESCRIPTION route manually manipulates the network routing tables normally maintained by the system routing daemon, routed(1M), or through default routes and redirect messages from routers. route allows the super-user to operate directly on the routing table for the specific host or network indicated by destination. default is available for gateways to use after all other routes have been attempted. The gateway argument, if present, indicates the network gateway to which packets should be addressed. The metric argument indicates the number of “hops” to the destination. The metric is required for add commands; it must be zero if the destination is on a directly-attached network, and nonzero if the route utilizes one or more gateways.

The add command instructs route to add a route to destination. delete deletes a route.

Routes to a particular host must be distinguished from those to a network. The optional keywords net and host force the destination to be interpreted as a network or a host, respectively. Otherwise, if the destination has a “local address part” of INADDR_ANY, then the route is assumed to be to a network; otherwise, it is presumed to be a route to a host. If the route is to a destination connected by a gateway, the metric parameter should be greater than 0. If adding a route with metric 0, the gateway given is the address of this host on the common network, indicating the interface to be used directly for transmission. All symbolic names specified for a destination (except default) or gateway are looked up in the hosts database using gethostbyname(3N). If this lookup fails, then the name is looked up in the networks database using getnetbyname(3N). default is also a valid destination, which is used for all routes if there is no specific host or network route.

OPTIONS −f Flush the routing tables of all gateway entries. If this is used in conjunction with one of the commands described above, route flushes the gateways before performing the command.

−n Prevent attempts to print host and network names symbolically when reporting actions. This is useful, for example, when all name servers are down on your local net, and you need a route before you can contact the name server.

FILES /etc/hosts
/etc/networks

SEE ALSO netstat(1M), routed(1M), ioctl(2), gethostbyname(3N), getnetbyname(3N), routing(4)
DIAGNOSTICS

**add [ host | net ] destination:gateway**
The specified route is being added to the tables. The values printed are from the routing table entry supplied in the `ioctl(2)` call.

**delete [ host | net ] destination:gateway**
The specified route is being deleted.

**destination done**
When the `-f` flag is specified, each routing table entry deleted is indicated with a message of this form.

**Network is unreachable**
An attempt to add a route failed because the gateway listed was not on a directly-connected network. Give the next-hop gateway instead.

**not in table**
A delete operation was attempted for an entry that is not in the table.

**routing table overflow**
An add operation was attempted, but the system was unable to allocate memory to create the new entry.
NAME
rpc.bootparamd, bootparamd – boot parameter server

SYNOPSIS
rpc.bootparamd [ −d ]

DESCRIPTION
rpc.bootparamd is a server process that provides information from a bootparams database to diskless clients at boot time. See bootparams(4)
The source for the bootparams database is determined by the nsswitch.conf(4) file (on the machine running the rpc.bootparamd process).
The rpc.bootparamd program can be invoked either by inetd(1M) or directly from the command line.

OPTIONS
−d Display debugging information.

NOTES
A diskless client requires service from at least one rpc.bootparamd process running on a server that is on the same IP subnetwork as the diskless client.

FILES
/etc/bootparams boot parameter data base
/etc/nsswitch.conf configuration file for the name-service switch

SEE ALSO
inetd(1M), bootparams(4), nsswitch.conf(4)
NAME  rpc.nisd, rpc.nisd_resolv, nisd, nisd_resolv – NIS+ service daemon

SYNOPSIS  

```
/usr/sbin/rpc.nisd [-ACDFhlv] [-Y [-B [-t netid]]] [-d dictionary] [-L load]
```

```
rpc.nisd_resolv
```

AVAILABILITY  SUNWnisu

DESCRIPTION  The `rpc.nisd` daemon is an RPC service that implements the NIS+ service. This daemon must be running on all machines which serve a portion of the NIS+ namespace. `rpc.nisd` is usually started from a system startup script.

`rpc.nisd_resolv` is an auxiliary process that is started by `rpc.nisd` when it is invoked with `-B` option. Note that `rpc.nisd_resolv` should not be started independently.

OPTIONS

- `-A` Authentication verbose mode. The daemon logs all the authentication related activities to `syslogd(1M)` with `LOG_INFO` priority.
- `-C` Open diagnostic channel on `/dev/console`.
- `-D` Debug mode (don’t fork).
- `-F` Force the server to do a checkpoint of the database when it starts up. Forced checkpoints may be required when the server is low on disk space. This option removes updates from the transaction log that have propagated to all of the replicas.
- `-h` Print list of options.
- `-v` Verbose. With this option, the daemon sends a running narration of what it is doing to the syslog daemon (see `syslogd(1M)`) at `LOG_INFO` priority. This option is most useful for debugging problems with the service (see also `-A` option).
- `-Y` Put the server into NIS (YP) compatibility mode. When operating in this mode, the NIS+ server will respond to NIS Version 2 requests using the version 2 protocol. Because the YP protocol is not authenticated, only those items that have read access to nobody (the unauthenticated request) will be visible through the V2 protocol. It supports only the standard Version 2 maps in this mode (see `-B` option and NOTES in `ypfiles(4)`).
- `-B` Provide ypserv compatible DNS forwarding for NIS host requests. The DNS resolving process, `rpc.nisd_resolv`, is started and controlled by `rpc.nisd`. This option requires that the `/etc/resolv.conf` file be setup for communication with a DNS nameserver. The `nslookup` utility can be used to verify communication with a DNS nameserver. See `resolv.conf(4)` and `nslookup(1M)`.
- `-t netid` Use `netid` as the transport for communication between `rpc.nisd` and `rpc.nisd_resolv`. The default transport is `ticots(7)` (`tcp` on SunOS 4.x systems).
−d **dictionary**
Specify an alternate dictionary for the NIS+ database. The primary use of this option is for testing. Note that the string is not interpreted, rather it is simply passed to the `db_initialize` function. See `nis_db(3N)`.

−L **number**
Specify the “load” the NIS+ service is allowed to place on the server. The load is specified in terms of the number of child processes that the server may spawn. This number must be at least 1 for the callback functions to work correctly. The default is 128.

−S **level**
Set the authorization security level of the service. The argument is a number between 0 and 2. By default, the daemon runs at security level 2.

0 Security level 0 is designed to be used for testing and initial setup of the NIS+ namespace. When running at level 0, the daemon does not enforce any access controls. Any client is allowed to perform any operation, including updates and deletions.

1 At security level 1, the daemon accepts both **AUTH_SYS** and **AUTH_DES** credentials for authenticating clients and authorizing them to perform NIS+ operations. This is not a secure mode of operation since **AUTH_SYS** credentials are easily forged. It should not be used on networks in which any untrusted users may potentially have access.

2 At security level 2, the daemon accepts only **AUTH_DES** credentials for authentication and authorization. This is the highest level of security currently provided by the NIS+ service. This is the default security level if the −S option is not used.

**EXAMPLES**
The following example sets up the NIS+ service.

```
example% rpc.nisd
```

The following example sets up the NIS+ service, emulating YP with DNS forwarding.

```
example% rpc.nisd −YB
```

**ENVIRONMENT**

**NETPATH**
The transports that the NIS+ service will use can be limited by setting this environment variable (see `netconfig(4)`).

**FILES**

`/var/nis/parent.object`
This file contains an XDR encoded NIS+ object that describes the namespace above a root server. This parent namespace may be another NIS+ namespace or a foreign namespace such as one served by the Domain Name Service. It is only present on servers that are serving the root of the namespace.

`/var/nis/root.object`
This file contains an XDR encoded NIS+ object that describes the root of the namespace. It is only present on servers that are serving the root of the namespace.

`/etc/init.d/rpc`
initialization script for NIS+

modified 6 Apr 1994
SEE ALSO

nis_cachemgr(1M), nisinit(1M), nissetup(1M), nslookup(1M), syslogd(1M), nis_db(3N),
netconfig(4), nisfiles(4), resolv.conf(4), ypfiles(4), ticots(7)
**NAME**
rpc.rexd – RPC-based remote execution server

**SYNOPSIS**
/usr/sbin/rpc.rexd [ −s ]

**AVAILABILITY**
SUNWnisu

**DESCRIPTION**
rpc.rexd is the Sun RPC server for remote program execution. This daemon is started by inetd(1M) whenever a remote execution request is made. For non-interactive programs, the standard file descriptors are connected directly to TCP connections. Interactive programs involve pseudo-terminals, in a fashion that is similar to the login sessions provided by rlogin(1). This daemon may use NFS to mount file systems specified in the remote execution request.

**OPTIONS**
−s Secure. When specified, requests must have valid DES credentials. If the request does not have a DES credential it is rejected. The default publickey credential is rejected. Only newer on(1) commands send DES credentials.

If access is denied with an authentication error, you may have to set your publickey with the chkey(1) command.

Specifying the −s option without presenting secure credentials will result in an error message: Unix too weak auth (DesOnly)!

**FILES**
/dev/pts
pseudo-terminals used for interactive mode
/etc/passwd authorized users
/tmp_rex/rexd????? temporary mount points for remote file systems.

**SEE ALSO**
chkey(1), on(1), rlogin(1), inetd(1M), rexd(1M), inetd.conf(4), publickey(4)

**DIAGNOSTICS**
Diagnostic messages are normally printed on the console, and returned to the requestor.

**NOTES**
Root cannot execute commands using rexd(1M) client programs such as on(1).
<table>
<thead>
<tr>
<th><strong>NAME</strong></th>
<th>rpc.rstatd, rstatd – kernel statistics server</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SYNOPSIS</strong></td>
<td><code>/usr/lib/netsvc/rstat/rpc.rstatd</code></td>
</tr>
<tr>
<td><strong>DESCRIPTION</strong></td>
<td><code>rpc.rstatd</code> is a server which returns performance statistics obtained from the kernel. <code>rup(1)</code> uses <code>rpc.rstatd</code> to collect the <em>uptime</em> information that it displays. <code>rpc.rstatd</code> is an RPC service.</td>
</tr>
<tr>
<td><strong>SEE ALSO</strong></td>
<td><code>rup(1), inetd(1M), services(4)</code></td>
</tr>
</tbody>
</table>
NAME  rpc.rusersd, rusersd – network username server

SYNOPSIS  /usr/lib/netsvc/rusers/rpc.rusersd

DESCRIPTION  rpc.rusersd is a server that returns a list of users on the host. The rpc.rusersd daemon may be started by inetd(1M) or listen(1M).

SEE ALSO  inetd(1M), listen(1M), pmadm(1M), sacadm(1M)

**NAME**	rpc.rwalld, rwalld – network rwall server
**SYNOPSIS**	/usr/lib/netsvc/rwall/rpc.rwalld
**DESCRIPTION**	rpc.rwalld is a server that handles rwall(1M) requests. It is implemented by calling wall(1M) on all the appropriate network machines. The rpc.rwalld daemon may be started by inetd(1M) or listen(1M).
**SEE ALSO**	inetd(1M), listen(1M), rwall(1M), wall(1M)
NAME  rpc.sprayd, sprayd – spray server

SYNOPSIS  /usr/lib/netsvc/spray/rpc.sprayd

DESCRIPTION  rpc.sprayd is a server that records the packets sent by spray(1M). The rpc.sprayd daemon may be started by inetd(1M) or listen(1M).

The service provided by rpc.sprayd is not useful as a networking benchmark as it uses unreliable connectionless transports, (udp for example). It can report a large number of packets dropped when the drops were caused by the program sending packets faster than they can be buffered locally (before the packets get to the network medium).

SEE ALSO  inetd(1M) listen(1M), pmadm(1M), sacadm(1M), spray(1M)
**NAME**
rpcbind – universal addresses to RPC program number mapper

**SYNOPSIS**
rpcbind [ −d ] [ −w ]

**AVAILABILITY**
SUNWcsu

**DESCRIPTION**
rpcbind is a server that converts RPC program numbers into universal addresses. It must be running on the host to be able to make RPC calls on a server on that machine. When an RPC service is started, it tells rpcbind the address at which it is listening, and the RPC program numbers it is prepared to serve. When a client wishes to make an RPC call to a given program number, it first contacts rpcbind on the server machine to determine the address where RPC requests should be sent.

rpcbind should be started before any other RPC service. Normally, standard RPC servers are started by port monitors, so rpcbind must be started before port monitors are invoked.

When rpcbind is started, it checks that certain name-to-address translation-calls function correctly. If they fail, the network configuration databases may be corrupt. Since RPC services cannot function correctly in this situation, rpcbind reports the condition and terminates.

rpcbind can only be started by the super-user.

**OPTIONS**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>−d</td>
<td>Run in debug mode. In this mode, rpcbind will not fork when it starts, will print additional information during operation, and will abort on certain errors. With this option, the name-to-address translation consistency checks are shown in detail.</td>
</tr>
<tr>
<td>−w</td>
<td>Do a warm start. If rpcbind aborts or terminates on SIGINT or SIGTERM, it will write the current list of registered services to /tmp/portmap.file and /tmp/rpcbind.file. Starting rpcbind with the −w option instructs it to look for these files and start operation with the registrations found in them. This allows rpcbind to resume operation without requiring all RPC services to be restarted.</td>
</tr>
</tbody>
</table>

**NOTES**
Terminating rpcbind with SIGKILL will prevent the warm-start files from being written. All RPC servers must be restarted if the following occurs: rpcbind crashes (or is killed with SIGKILL) and is unable to to write the warm-start files; rpcbind is started without the −w option after a graceful termination; or, the warm-start files are not found by rpcbind.

**SEE ALSO**
rpcinfo(1M), rpcbind(3N)

**FILES**
/tmp/portmap.file
/tmp/rpcbind.file

1M-502 modified 14 Sep 1992
NAME
rpcinfo – report RPC information

SYNOPSIS
rpcinfo [-m] [-s] [host]
rpcinfo -p [host]
.rpcinfo -T transport host prognum [versnum]
.rpcinfo -I [-T transport] host prognum [versnum]
.rpcinfo [-n portnum] -u host prognum [versnum]
.rpcinfo [-n portnum] -t host prognum [versnum]
.rpcinfo -a serv_address -T transport prognum versnum
.rpcinfo -b [-T transport] prognum versnum
.rpcinfo -d [-T transport] prognum versnum

DESCRIPTION
rpcinfo makes an RPC call to an RPC server and reports what it finds.
In the first synopsis, rpcinfo lists all the registered RPC services with rpcbind on host. If host is not specified, the local host is the default. If -s is used, the information is displayed in a concise format.
In the second synopsis, rpcinfo lists all the RPC services registered with rpcbind, version 2. Also note that the format of the information is different in the first and the second synopsis. This is because the second synopsis is an older protocol used to collect the information displayed (version 2 of the rpcbind protocol).
The third synopsis makes an RPC call to procedure 0 of prognum and versnum on the specified host and reports whether a response was received. transport is the transport which has to be used for contacting the given service. The remote address of the service is obtained by making a call to the remote rpcbind.
The prognum argument is a number that represents an RPC program number (see rpc(4)).
If a versnum is specified, rpcinfo attempts to call that version of the specified prognum. Otherwise, rpcinfo attempts to find all the registered version numbers for the specified prognum by calling version 0, which is presumed not to exist; if it does exist, rpcinfo attempts to obtain this information by calling an extremely high version number instead, and attempts to call each registered version. Note: the version number is required for -b and -d options.
The other ways of using rpcinfo are described in the EXAMPLES section.

OPTIONS
-T transport Specify the transport on which the service is required. If this option is not specified, rpcinfo uses the transport specified in the NETPATH environment variable, or if that is unset or null, the transport in the netconfig(4) database is used. This is a generic option, and can be used in conjunction with other options as shown in the SYNOPSIS.
-a serv_address Use serv_address as the (universal) address for the service on transport to ping procedure 0 of the specified prognum and report whether a response was received. The -T option is required with the -a option.
If `versnum` is not specified, `rpcinfo` tries to ping all available version numbers for that program number. This option avoids calls to remote `rpcbind` to find the address of the service. The `serv_address` is specified in universal address format of the given transport.

`-b` Make an RPC broadcast to procedure 0 of the specified `prognum` and `versnum` and report all hosts that respond. If `transport` is specified, it broadcasts its request only on the specified transport. If broadcasting is not supported by any transport, an error message is printed. Use of broadcasting should be limited because of the potential for adverse effect on other systems.

`-d` Delete registration for the RPC service of the specified `prognum` and `versnum`. If `transport` is specified, unregister the service on only that transport, otherwise unregister the service on all the transports on which it was registered. Only the owner of a service can delete a registration, except the super-user who can delete any service.

`-l` Display a list of entries with a given `prognum` and `versnum` on the specified `host`. Entries are returned for all transports in the same protocol family as that used to contact the remote `rpcbind`.

`-m` Display a table of statistics of `rpcbind` operations on the given `host`. The table shows statistics for each version of `rpcbind` (versions 2, 3 and 4), giving the number of times each procedure was requested and successfully serviced, the number and type of remote call requests that were made, and information about RPC address lookups that were handled. This is useful for monitoring RPC activities on `host`.

`-n portnum` Use `portnum` as the port number for the `-t` and `-u` options instead of the port number given by `rpcbind`. Use of this option avoids a call to the remote `rpcbind` to find out the address of the service. This option is made obsolete by the `-a` option.

`-p` Probe `rpcbind` on `host` using version 2 of the `rpcbind` protocol, and display a list of all registered RPC programs. If `host` is not specified, it defaults to the local host. Note: Version 2 of the `rpcbind` protocol was previously known as the portmapper protocol.

`-s` Display a concise list of all registered RPC programs on `host`. If `host` is not specified, it defaults to the local host.

`-t` Make an RPC call to procedure 0 of `prognum` on the specified `host` using TCP, and report whether a response was received. This option is made obsolete by the `-T` option as shown in the third synopsis.

`-u` Make an RPC call to procedure 0 of `prognum` on the specified `host` using UDP, and report whether a response was received. This option is made obsolete by the `-T` option as shown in the third synopsis.
EXAMPLES

To show all of the RPC services registered on the local machine use:

```
examle% rpcinfo
```

To show all of the RPC services registered with `rpcbind` on the machine named `klaxon` use:

```
examle% rpcinfo klaxon
```

The information displayed by the above commands can be quite lengthy. Use the `-s` option to display a more concise list:

```
examle% rpcinfo -s klaxon
```

```
<table>
<thead>
<tr>
<th>program</th>
<th>version(s)</th>
<th>netid(s)</th>
<th>service</th>
<th>owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>2,3,4</td>
<td>tcp,udp,ticlts,ticots,ticotsord</td>
<td>rpcbind</td>
<td>super-user</td>
</tr>
<tr>
<td>100008</td>
<td>1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>walld</td>
<td>super-user</td>
</tr>
<tr>
<td>100002</td>
<td>2,1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>rusersd</td>
<td>super-user</td>
</tr>
<tr>
<td>100001</td>
<td>2,3,4</td>
<td>ticotsord,ticots,tcp,ticlts,udp</td>
<td>rstatd</td>
<td>super-user</td>
</tr>
<tr>
<td>100012</td>
<td>1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>sprayd</td>
<td>super-user</td>
</tr>
<tr>
<td>100007</td>
<td>3</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>ypbind</td>
<td>super-user</td>
</tr>
<tr>
<td>100029</td>
<td>1</td>
<td>ticotsord,ticots,ticlts</td>
<td>keyserv</td>
<td>super-user</td>
</tr>
<tr>
<td>100078</td>
<td>4</td>
<td>ticotsord,ticots,ticlts</td>
<td>kerbd</td>
<td>super-user</td>
</tr>
<tr>
<td>100024</td>
<td>1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>status</td>
<td>super-user</td>
</tr>
<tr>
<td>100021</td>
<td>2,1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>nlockmgr</td>
<td>super-user</td>
</tr>
<tr>
<td>100020</td>
<td>1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>llockmgr</td>
<td>super-user</td>
</tr>
</tbody>
</table>
```

To show whether the RPC service with program number `prognum` and version `versnum` is registered on the machine named `klaxon` for the transport TCP use:

```
examle% rpcinfo -T tcp klaxon prognum versnum
```

To show all RPC services registered with version 2 of the `rpcbind` protocol on the local machine use:

```
examle% rpcinfo -p
```

To delete the registration for version 1 of the `walld` (program number `100008`) service for all transports use:

```
examle# rpcinfo -d 100008 1
```

or

```
examle# rpcinfo -d walld 1
```

SEE ALSO `rpcbind(1M), rpc(3N), netconfig(4), rpc(4)`
NAME
rpld – x86 Network Booting RPL (Remote Program Load) Server

SYNOPSIS
/usr/sbin/rpld [−fdDMblgz ] interface
/usr/sbin/rpld −a [−fdDMblgz ]

AVAILABILITY
x86
SUNWcsu

DESCRIPTION
The RPL server provides network booting functionality to x86 clients by listening to boot requests from them according to the RPL protocol specifications. Boot requests can be generated by clients using the boot floppy supplied in the x86 distribution. Once the request has been received, the server validates the client and adds it to its internal service list. Subsequent requests from the client to download bootfiles will result in the sending of data frames from the server to the client specifying where to load the boot program in memory. When all the bootfiles have been downloaded, the server specifies where to start execution to initiate the boot process.

In the first synopsis, the interface parameter names the network interface upon which rpld is to listen for requests. For example:
/usr/sbin/rpld /dev/le0
/usr/sbin/rpld /dev/smc0

In the second synopsis, rpld locates all of the network interfaces present on the system and starts a daemon process for each one.

The server starts by reading the default configuration file, or an alternate configuration file if one is specified. If no configuration file can be found, internal default values will be used. Alternatively, command line options are available to override any of the values in the configuration file. After the configuration options are set, it then opens the network interface as specified in the command line and starts listening to RPL boot requests.

Network boot x86 clients have to have information pre-configured on a server for the RPL server to validate and serve them. This involves putting configuration information in both the ethers(4) and the bootparams(4) databases. The ethers database contains a translation from the physical node address to the IP address of the clients and is normally used by the RARP server. The bootparams database stores all other information needed for booting off this client, such as the number of bootfiles and the file names of the various boot components. Both databases can be looked up by the RPL server through NIS. See the section on Client Configuration for information on how to set up these databases.

To assist in the administration and maintenance of the network boot activity, there are two run-time signals that the server will accept to change some run-time parameters and print out useful status information. See the section on Signals for details.

The RPL server is not limited to the ability to boot only x86 clients. If properly configured, the server should be able to download any bootfiles to the clients.
Client Configuration

The following configuration information is specific to booting x86 clients.

In order to allow clients to boot x86 from across the network, the client’s information has to be pre-configured in two databases: `ethers(4)` and `bootparams(4)`. Both databases can be accessed through NIS. Refer to `x86: Installing Solaris Software` for information on how to configure a diskless x86 client. The discussion contained in the rest of this section is provided for your information only and should not be performed manually.

The `ethers` database contains a translation table to convert the physical node address to the IP address of the client. Therefore, an IP address must be assigned to the client (if this has not been done already), the node address of the client must be obtained, and then this information needs to be entered in the `ethers` database.

The bulk of the configuration is done in the `bootparams` database. This is a free-format database that essentially contains a number of keyword-value string pairs. A number of keywords have been defined for specific purposes, like the `bootparams` RPC in `bootparamd(1M)`. Three more keywords have been defined for the RPL server. They are `numbootfiles`, `bootfile`, and `bootaddr`. All three keywords must be in lowercase letters with no spaces before or after the equals symbol following the keyword.

- **numbootfiles**
  Specifies the number of files to be downloaded to the network boot client. The format of this option is:
  
  `numbootfiles=n`
  
  Always use `numbootfiles=3` to boot x86 across the network.

- **bootfile**
  Specifies the path name of the bootfile to be downloaded and where in memory to start loading the bootfile. A complete path name should be used. For example, assuming the client’s IP address is 129.181.32.15:
  
  `bootfile=/rplboot/129.181.32.15.hw.com:45000`
  `bootfile=/rplboot/129.181.32.15.glue.com:35000`
  `bootfile=/rplboot/129.181.32.15.inetboot=8000`

  The path name following the equals symbol specifies the bootfile to be downloaded, and the hex address following the colon (:) is the absolute address of the memory location to start loading that bootfile. These addresses should be in the range of 7c00 to a0000 (i.e., the base 640K range excluding the interrupt vector and BIOS data areas). Address 45000 for this `hw.com` bootfile is also a suggested value and if possible should not be changed. The address of 35000 for `glue.com` is a suggested value that, if possible, should not be changed. The address of 8000 for `inetboot` is an absolute requirement and should never be changed.

  These files, when created following the procedures in the `x86: Installing Solaris Software`, are actually symbolic links to the real file to be downloaded to the client. `hw.com` is linked to a special driver that corresponds to the network interface card of the client. `glue.com` and `inetboot` are generic to all network boot clients.
The order of these bootfile lines is not significant, but because problems have been found with certain boot PROMs, it is highly recommended that the bootfile lines be ordered in descending order of the load addresses.

**bootaddr**

The absolute address in memory to start executing after all the bootfiles have been downloaded. This address should always correspond to the address where glue.com is being loaded. If possible, always use:

```
bootaddr=35000
```

**OPTIONS**

- `−f config_filename`.
  Use this to specify a configuration file name other than the system default
  `/etc/rpld.conf` file.

- `−d debug level`.
  Specify a level of 0 if you do not want any error or warning messages to be generated, or a level from 1 to 9 for increasing amounts of messages. This option corresponds to the `DebugLevel` setting in the configuration file. The default value is 0. Note that it is best to limit the level to 8 or below; use of level 9 may generate so many debug messages that the performance of the RPL server may be impacted.

- `−D debug destination`.
  Specify 0 to send error or warning messages to standard output, 1 to syslogd, and 2 to the log file. This option corresponds to the `DebugDest` setting in the configuration file. The default value is 2.

- `−M maximum clients`.
  Specify the maximum number of simultaneous network boot clients to be served. This option corresponds to the `MaxClients` setting in the configuration file. A value of -1 means unlimited, and the actual number will depend on available system resources. The default value is -1.

- `−b background mode`.
  Specify 1 to run the server in the background and relinquish the controlling terminal, or 0 to run in the foreground without relinquishing the controlling terminal. This option corresponds to the `BackGround` setting in the configuration file. If you have specified that the error or warning messages be sent to standard output in the configuration file or by using the `−D` option above, the server cannot be run in background mode. Doing so will cause the server to exit after announcing the error.

- `−l log_filename`.
  Specify an alternate log file name to hold the error or warning messages in connection with the `−D 2` option or the configuration file `DebugDest = 2` setting. This option corresponds to the `LogFile` setting in the configuration file. The default is `/var/spool/rpld.log`. 

1M-508 modified 15 Oct 1993
−s start delay count.
   This option corresponds to the StartDelay setting in the configuration file. Specify
   the number of delay units between outgoing data frames sent to clients to avoid
   retransmission requests from them. Using the LLC type 1 protocol, data transfer
   is a one-way, best-effort delivery mechanism. The server, without any type of
   delay mechanism, can overrun the client by sending data frames too quickly.
   Therefore, a variable delay is built into the server to limit the speed of sending
   data to the clients, thus avoiding the clients sending back retransmission
   requests. This value should be machine environment specific. If you have a fast
   server machine but slow client machines, you may want to set a large start delay
   count. If you have comparable server and client machines, the delay count may
   be set to 1. The delay is only approximate and should not be taken as an accurate
   measure of time. There is no specific correlation between the delay unit and the
   actual time of delay. The default value is 20.

−g delay granularity.
   This corresponds to the DelayGran setting in the configuration file. If retransmis-
   sion requests from clients do occur, the delay granularity factor will be used to
   adjust the delay count for this client upwards or downwards. If the retransmis-
   sion request is caused by data overrun, the delay count will be incremented by
   delay granularity units to increase the delay between data frames. If the
   retransmission request is caused by sending data too slowly, this will be used to
   adjust the delay count downwards to shorten the delay. Eventually the server
   will settle at the delay count value that works best with the speed of the client
   and no retransmission request will be needed. The default value is 2.

−z frame size.
   This option corresponds to the FrameSize setting in the configuration file. This
   specifies the size of the data frames used to send data to the clients. This is lim-
   ited by the underlying physical medium. For ethernet/802.3, the maximum phy-
   sical frame size is 1500 octets. The default value is 1500. Note that the protocol
   overhead of LLC1 and RPL is 32 octets, resulting in a maximum data length of
   1468 octets.

Signals

The RPL server accepts two signals to change run-time parameters and display status
information, respectively:

HANGUP
   This will cause the RPL server to reread the default configuration file
   /etc/rpld.conf or an alternate configuration file if one is specified when the server
   is started. New values of certain parameters can be used immediately, such as
   DebugLevel, DebugDest, LogFile, DelayGran, and FrameSize. For MaxClients, if the
   server is already serving more than the new value, the server will not accept
   additional boot requests until the number has fallen below the MaxClients
   parameter. For StartDelay, this will only affect new boot requests. All the exist-
   ing delay counts for the various clients in service will not be affected. Finally, the
   BackGround parameter will have no effect once the server has been running. You
cannot change the mode of service without first killing the server and then restarting it.

USR1 This signal will cause the server to dump all the parameter values and the status of each individual boot client to the destination specified by DebugDest.

FILES
/usr/sbin/rpld
/etc/rpld.conf
/var/spool/rpld.log
/etc/ethers
/etc/bootparams
/rplboot

SEE ALSO bootparamd(1M), in.rarpd(1M), bootparams(4), ethers(4), nsswitch.conf(4), rpld.conf(4)

x86: Installing Solaris Software
NAME
rquotad – remote quota server

SYNOPSIS
/usr/lib/nfs/rquotad

AVAILABILITY
SUNWcsu

DESCRIPTION
rquotad is an rpc(4) server which returns quotas for a user of a local file system which is mounted by a remote machine over the NFS. The results are used by quota(1M) to display user quotas for remote file systems. The rquotad daemon is normally invoked by inetd(1M).

FILES
quotas

quota file at the file system root

SEE ALSO
inetd(1M), quota(1M), rpc(4), services(4)
SPARC: Installing Solaris Software
x86: Installing Solaris Software
NAME
rsh, restricted_shell – restricted shell command interpreter

SYNOPSIS
/usr/lib/rsh [ −acefhiknprstuvx ] [ argument…]

AVAILABILITY
SUNWcsu

DESCRIPTION
rsh is a limiting version of the standard command interpreter sh, used to restrict logins to
execution environments whose capabilities are more controlled than those of sh (see
sh(1) for complete description and usage).

When the shell is invoked, it scans the environment for the value of the environmental
variable, SHELL. If it is found and rsh is the file name part of its value, the shell becomes
a restricted shell.

The actions of rsh are identical to those of sh, except that the following are disallowed:

changing directory (see cd(1)),
setting the value of PATH,
specifying path or command names containing /,
redirecting output (> and >>).

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways:

(1) rsh is the file name part of the last entry in the /etc/passwd file (see
    passwd(4));
(2) the environment variable SHELL exists and rsh is the file name part of its
    value; the environment variable SHELL needs to be set in the .login file;
(3) the shell is invoked and rsh is the file name part of argument 0;
(4) the shell is invoke with the −r option.

When a command to be executed is found to be a shell procedure, rsh invokes sh to ex-
cute it. Thus, it is possible to provide to the end-user shell procedures that have access to
the full power of the standard shell, while imposing a limited menu of commands; this
scheme assumes that the end-user does not have write and execute permissions in the
same directory.

The net effect of these rules is that the writer of the .profile (see profile(4)) has complete
control over user actions by performing guaranteed setup actions and leaving the user in
an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is, /usr/rbin) that
can be safely invoked by a restricted shell. Some systems also provide a restricted editor,
red.

EXIT CODES
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. If the shell is being used non-interactively execution of the shell file is aban-
doned. Otherwise, the shell returns the exit status of the last command executed.
SEE ALSO cd(1), intro(1), login(1), sh(1), exec(2), passwd(4), profile(4)

NOTES The restricted shell, /usr/lib/rsh, should not be confused with the remote shell, /usr/bin/rsh, which is documented in rsh(1).

modified 1 Nov 1993
NAME
rtc – provide all real-time clock and GMT-lag management

SYNOPSIS
rtc [ −c ] [ −z zone-name ]

AVAILABILITY
x86
SUNWcsu

DESCRIPTION
The /usr/sbin/rtc command is used to reconcile the difference in the way time is estab-
lished between UNIX systems, which utilize Greenwich Mean Time (GMT), and
MS-DOS systems, which utilize local time. When used with no arguments, rtc displays
the currently configured time zone string which was recorded when rtc −z zone-name was
last run.

The rtc command is not normally run from a shell prompt; it is generally invoked by the
system. Commands such as date(1) and rdate(1M), which are used to set the time on a
system, invoke /usr/sbin/rtc −c to ensure that daylight savings time (DST) is corrected for
properly.

OPTIONS
−c This option checks for DST and makes corrections if necessary. It is
normally run once a day by a cron job.

If there is no RTC time zone or /etc/rtc_config file, this option will do
nothing.

−z zone-name This option, which is normally run by the system at software installa-
tion time, is used to specify the time zone in which the RTC is to be
maintained. It updates the configuration file /etc/rtc_config with the
name of the specified zone and the current GMT lag for that zone. If
there is an existing rtc_config file, this command will update it. If not,
this command will create it.

FILES
/usr/sbin/rtc The command used to provide all real-time clock and GMT lag
management.

/etc/rtc_config The data file used to record the time zone and GMT lag. This file is
completely managed by /usr/sbin/rtc, and it is read by the kernel.

SEE ALSO
date(1), rdate(1M)
NAME
runacct – run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmd [state]]

DESCRIPTION
runacct is the main daily accounting shell procedure. It is normally initiated using cron.
runacct processes connect, fee, disk, and process accounting files. It also prepares summary
files for prdaily or billing purposes. runacct is distributed only to source code
licensees.

runacct takes care not to damage active accounting files or summary files in the event of
errors. It records its progress by writing descriptive diagnostic messages into active.
When an error is detected, a message is written to /dev/console, mail (see mail(1)) is sent
to root and adm, and runacct terminates. runacct uses a series of lock files to protect
against re-invocation. The files lock and lock1 are used to prevent simultaneous invoca-
tion, and lastdate is used to prevent more than one invocation per day.

runacct breaks its processing into separate, restartable states using statefile to remember
the last state completed. It accomplishes this by writing the state name into statefile.
runacct then looks in statefile to see what it has done and to determine what to process
next. states are executed in the following order:

SETUP Move active accounting files into working files.
WTMPFIX Verify integrity of wtmp file, correcting date changes if necessary.
CONNECT Produce connect session records in tacct.h format.
PROCESS Convert process accounting records into tacct.h format.
MERGE Merge the connect and process accounting records.
FEES Convert output of chargefee into tacct.h format, merge with connect, and
process accounting records.
DISK Merge disk accounting records with connect, process, and fee accounting
records.
MERGETACCT Merge the daily total accounting records in daytacct with the summary total
accounting records in /var/adm/acct/sum/tacct.
CMS Produce command summaries.
USEREXIT Any installation dependent accounting programs can be included here.
CLEANUP Clean up temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics, then fix any
corrupted data files, such as pacct or wtmp. The lock, lock1, and lastdate files must be
removed before runacct can be restarted. The argument mmd is necessary if runacct is
being restarted. mmd specifies the month and day for which runacct will rerun the
accounting. The entry point for processing is based on the contents of statefile; to over-
ride this, include the desired state on the command line to designate where processing
should begin.

modified 8 Apr 1994
EXAMPLES
To start runacct:
  example% nohup runacct 2> /var/adm/acct/nite/fd2log &
To restart runacct:
  example% nohup runacct 0601 2>> /var/adm/acct/nite/fd2log &
To restart runacct at a specific state:
  example% nohup runacct 0601 MERGE 2>> /var/adm/acct/nite/fd2log &

FILES
/var/adm/wtmp
/var/adm/pacctincr
/var/adm/acct/nite/active
/var/adm/acct/nite/dayacct
/var/adm/acct/nite/lock
/var/adm/acct/nite/lock1
/var/adm/acct/nite/lastdate
/var/adm/acct/nite/statefile

SEE ALSO
acctcom(1), mail(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), cron(1M), fwtmp(1M), acct(2), acct(4), utmp(4)

NOTES
It is not recommended to restart runacct in the SETUP state. Run SETUP manually and
restart using:
  runacct mmdd WTMPFIX
If runacct failed in the PROCESS state, remove the last ptacct file because it will not be
complete.

The runacct command can process a maximum of
  6000 distinct sessions
  1000 distinct terminal lines
  2000 distinct login names
during a single invocation of the command. If at some point the actual number of any
one of these items exceeds the maximum, the command will not succeed.
NAME
rwall – write to all users over a network

SYNOPSIS
/usr/sbin/rwall hostname ...
/usr/sbin/rwall -n netgroup ...
/usr/sbin/rwall -h hostname -n netgroup

AVAILABILITY
SUNWcsu

DESCRIPTION
rwall reads a message from standard input until EOF. It then sends this message, preceded by the line:

Broadcast Message ...

to all users logged in on the specified host machines. With the -n option, it sends to the specified network groups.

OPTIONS
- n netgroup Send the broadcast message to the specified network groups.
- h hostname Specify the hostname, the name of the host machine.

SEE ALSO
inetd(1M), listen(1M), pmadm(1M), sacadm(1M), wall(1M)

NOTES
The timeout is fairly short to allow transmission to a large group of machines (some of which may be down) in a reasonable amount of time. Thus the message may not get through to a heavily loaded machine.

modified 14 Sep 1992
NAME  
sac – service access controller

SYNOPSIS  
sac −t sanity_interval
/usr/lib/saf/sac

DESCRIPTION  
The Service Access Controller (SAC) is the overseer of the server machine. It is started when the server machine enters multiuser mode. The SAC performs several important functions as explained below.

Customizing the SAC environment. When sac is invoked, it first looks for the per-system configuration script /etc/saf/_sysconfig. sac interprets _sysconfig to customize its own environment. The modifications made to the SAC environment by _sysconfig are inherited by all the children of the SAC. This inherited environment may be modified by the children.

Starting port monitors. After it has interpreted the _sysconfig file, the sac reads its administrative file /etc/saf/_sactab. _sactab specifies which port monitors are to be started. For each port monitor to be started, sac forks a child (see fork(2)) and creates a utmp entry with the type field set to LOGIN_PROCESS. Each child then interprets its per-port monitor configuration script /etc/saf/pmtag/_config, if the file exists. These modifications to the environment affect the port monitor and will be inherited by all its children. Finally, the child process execs the port monitor, using the command found in the _sactab entry. (See sacadm; this is the command given with the −c option when the port monitor is added to the system.)

Polling port monitors to detect failure. The −t option sets the frequency with which sac polls the port monitors on the system. This time may also be thought of as half of the maximum latency required to detect that a port monitor has failed and that recovery action is necessary.

Administrative functions. The Service Access Controller represents the administrative point of control for port monitors. Its administrative tasks are explained below.

When queried (sacadm with either −l or −L), the Service Access Controller returns the status of the port monitors specified, which sacadm prints on the standard output. A port monitor may be in one of six states:

ENABLED  
The port monitor is currently running and is accepting connections. See sacadm(1M) with the −e option.

DISABLED  
The port monitor is currently running and is not accepting connections. See sacadm with the −d option, and see NOTRUNNING, below.

STARTING  
The port monitor is in the process of starting up. STARTING is an intermediate state on the way to ENABLED or DISABLED.

FAILED  
The port monitor was unable to start and remain running.

1M-518  
modified 17 Dec 1992
STOPPING  The port monitor has been manually terminated but has not completed its shutdown procedure. **STOPPING** is an intermediate state on the way to **NOTRUNNING**.

NOTRUNNING  The port monitor is not currently running. (See **sacadm** with −k.) This is the normal “not running” state. When a port monitor is killed, all ports it was monitoring are inaccessible. It is not possible for an external user to tell whether a port is not being monitored or the system is down. If the port monitor is not killed but is in the **DISABLED** state, it may be possible (depending on the port monitor being used) to write a message on the inaccessible port telling the user who is trying to access the port that it is disabled. This is the advantage of having a **DISABLED** state as well as the **NOTRUNNING** state.

When a port monitor terminates, the SAC removes the **utmp** entry for that port monitor. The SAC receives all requests to enable, disable, start, or stop port monitors and takes the appropriate action.

The SAC is responsible for restarting port monitors that terminate. Whether or not the SAC will restart a given port monitor depends on two things:

- The restart count specified for the port monitor when the port monitor was added by **sacadm**; this information is included in */etc/saf/pmtag/_sactab*.
- The number of times the port monitor has already been restarted.

**OPTIONS**

- **−t sanity_interval**  Sets the frequency (sanity_interval) with which **sac** polls the port monitors on the system.

**FILES**

*/etc/saf/sactab*  
*/etc/saf/sysconfig*  
*/var/adm/utmp*  
*/var/saf/log*

**SEE ALSO**  **pmadm(1M), sacadm(1M), fork(2)**
NAME  sacadm – service access controller administration

SYNOPSIS  sacadm -a -p pmtag -t type -c cmd -v ver [-f dx] [-n count] [-y comment] [-z script]
sacadm -r -p pmtag
sacadm -s -p pmtag
sacadm -k -p pmtag
sacadm -e -p pmtag
sacadm -d -p pmtag
sacadm -l [-p pmtag] [-t type]
sacadm -L [-p pmtag] [-t type]
sacadm -g -p pmtag [-z script]
sacadm -G [-z script]
sacadm -x [-p pmtag]

AVAILABILITY  SUNWcsu

DESCRIPTION  sacadm is the administrative command for the upper level of the Service Access Facility hierarchy (port monitor administration). sacadm performs the following functions:

- adds or removes a port monitor
- starts or stops a port monitor
- enables or disables a port monitor
- installs or replaces a per-system configuration script
- installs or replaces a per-port monitor configuration script
- prints requested port monitor information

Requests about the status of port monitors (-l and -L) and requests to print per-port monitor and per-system configuration scripts (-g and -G without the -z option) may be executed by any user on the system. Other sacadm commands may be executed only by the super-user.

OPTIONS  

- a  Add a port monitor. When adding a port monitor, sacadm creates the supporting directory structure in /etc/saf and /var/saf and adds an entry for the new port monitor to /etc/saf/_sactab. The file _sactab already exists on the delivered system. Initially, it is empty except for a single line, which contains the version number of the Service Access Controller.

Unless the command line that adds the new port monitor includes the -f option with the -x argument, the new port monitor will be started. Because of the complexity of the options and arguments that follow the -a option, it may be convenient to use a command script or the menu system to add port monitors.

- c cmd  Execute the command string cmd to start a port monitor. The -c option may be used only with a -a. A -a option requires a -c.

1M-520  modified 14 Sep 1992
−d Disable the port monitor pmtag.
−e Enable the port monitor pmtag.
−f dx The −f option specifies one or both of the following two flags which are then included in the flags field of the _sactab entry for the new port monitor. If the −f option is not included on the command line, no flags are set and the default conditions prevail. By default, a port monitor is started. A −f option with no following argument is illegal.
   d Do not enable the new port monitor.
   x Do not start the new port monitor.
−g The −g option is used to request output or to install or replace the per-port monitor configuration script /etc/saf/pmtag/_config. −g requires a −p option. The −g option with only a −p option prints the per-port monitor configuration script for port monitor pmtag. The −g option with a −p option and a −z option installs the file script as the per-port monitor configuration script for port monitor pmtag. Other combinations of options with −g are invalid.
−G The −G option is used to request output or to install or replace the per-system configuration script /etc/saf/_sysconfig. The −G option by itself prints the per-system configuration script. The −G option in combination with a −z option installs the file script as the per-system configuration script. Other combinations of options with a −G option are invalid.
−k Stop port monitor pmtag.
−l The −l option is used to request port monitor information. The −l by itself lists all port monitors on the system. The −l option in combination with the −p option lists only the port monitor specified by pmtag. A −l in combination with the −t option lists all port monitors of type type. Any other combination of options with the −l option is invalid.
−L The −L option is identical to the −l option except that the output appears in a condensed format.
−n count Set the restart count to count. If a restart count is not specified, count is set to 0. A count of 0 indicates that the port monitor is not to be restarted if it fails.
−p pmtag Specifies the tag associated with a port monitor.
−r  Remove port monitor *pmtag*. *sacadm* removes the port monitor entry from *etc/saf/_sactab*. If the removed port monitor is not running, then no further action is taken. If the removed port monitor is running, the Service Access Controller (SAC) sends it **SIGTERM** to indicate that it should shut down. Note that the port monitor’s directory structure remains intact.

−s  Start a port monitor. The SAC starts the port monitor *pmtag*.

−t *type*  Specifies the port monitor type.

−v *ver*  Specifies the version number of the port monitor. This version number may be given as

\[
\text{−}v \ `\text{pmspec \ −V}`
\]

where *pmspec* is the special administrative command for port monitor *pmtag*. This special command is **ttyadm** for **ttymon** and **nlsadmin** for **listen**. The version stamp of the port monitor is known by the command and is returned when *pmspec* is invoked with a **−V** option.

−x  The **−x** option by itself tells the SAC to read its database file (*_sactab*). The **−x** option with the **−p** option tells port monitor *pmtag* to read its administrative file.

−y *comment*  Include *comment* in the *_sactab* entry for port monitor *pmtag*.

−z *script*  Used with the **−g** and **−G** options to specify the name of a file that contains a configuration script. With the **−g** option, *script* is a per-port monitor configuration script; with **−G** it is a per-system configuration script. Modifying a configuration script is a three-step procedure. First a copy of the existing script is made (**−g** or **−G**). Then the copy is edited. Finally, the copy is put in place over the existing script (**−g** or **−G** with **−z**).

**OUTPUT**  If successful, *sacadm* will exit with a status of **0**. If *sacadm* fails for any reason, it will exit with a nonzero status. Options that request information will write the information on the standard output. In the condensed format (**−L**), port monitor information is printed as a sequence of colon-separated fields; empty fields are indicated by two successive colons. The standard format (**−l**1M-522 modified 14 Sep 1992

**EXAMPLES**  The following command line adds a port monitor. The port monitor tag is **npack**; its type is **listen**; if necessary, it will restart three times before failing; its administrative command is **nlsadmin**; and the configuration script to be read is in the file **script**:

```
sacadm −a −p npack −t listen −c /usr/lib/saf/listen npack
 −v `nlsadmin −V` −n 3 −z script
```
Remove a port monitor whose tag is **pmtag**:

```bash
sacadm -r -p pmtag
```

Start the port monitor whose tag is **pmtag**:

```bash
sacadm -s -p pmtag
```

Stop the port monitor whose tag is **pmtag**:

```bash
sacadm -k -p pmtag
```

Enable the port monitor whose tag is **pmtag**:

```bash
sacadm -e -p pmtag
```

Disable the port monitor whose tag is **pmtag**:

```bash
sacadm -d -p pmtag
```

List status information for all port monitors:

```bash
sacadm -l
```

List status information for the port monitor whose tag is **pmtag**:

```bash
sacadm -l -p pmtag
```

List the same information in condensed format:

```bash
sacadm -L -p pmtag
```

List status information for all port monitors whose type is **listen**:

```bash
sacadm -l -t listen
```

Replace the per-port monitor configuration script associated with the port monitor whose tag is **pmtag** with the contents of the file **file.config**:

```bash
sacadm -g -p pmtag -z file.config
```

**FILES**

/etc/saf/_sactab

/etc/saf/_sysconfig

/etc/saf/pmtag/_config

**SEE ALSO**

pmadm(1M), sac(1M), doconfig(3N)
NAME sar, sa1, sa2, sadc – system activity report package

SYNOPSIS /usr/lib/sa/sadc [ t n ] [ ofile ]
/usr/lib/sa/sa1 [ t n ]
/usr/lib/sa/sa2 [ –aAbcdgkmpqruvy ] [ –e time ] [ –f filename ]
[ –i sec ] [ –s time ]

AVAILABILITY SUNWaccu

DESCRIPTION System activity data can be accessed at the special request of a user (see sar(1)) and automatically, on a routine basis, as described here. The operating system contains several counters that are incremented as various system actions occur. These include counters for CPU utilization, buffer usage, disk and tape I/O activity, TTY device activity, switching and system-call activity, file-access, queue activity, inter-process communications, and paging. For more general system statistics, use iostat(1M), sar(1), or vmstat(1M).

See Peripherals Administration for device naming conventions for disks.

sadc and two shell procedures, sa1 and sa2, are used to sample, save, and process this data.

sadc, the data collector, samples system data n times, with an interval of t seconds between samples, and writes in binary format to ofile or to standard output. The sampling interval t should be greater than 5 seconds; otherwise, the activity of sadc itself may affect the sample. If t and n are omitted, a special record is written. This facility is used at system boot time, when booting to a multi-user state, to mark the time at which the counters restart from zero. For example, the /etc/init.d/perf file writes the restart mark to the daily data by the command entry:

```
su sys −c "/usr/lib/sa/sadc /var/adm/sa/sa `date +%d`"
```

The shell script sa1, a variant of sadc, is used to collect and store data in the binary file /var/adm/sa/sadd, where dd is the current day. The arguments t and n cause records to be written n times at an interval of t seconds, or once if omitted. The following entries in /var/spool/cron/crontabs/sys will produce records every 20 minutes during working hours and hourly otherwise:

```
0 0 0-6 /usr/lib/sa/sa1
20,40 8−17 * * 1−5 /usr/lib/sa/sa1
```

See crontab(1) for details.

The shell script sa2, a variant of sar, writes a daily report in the file /var/adm/sa/sar.dd. See the OPTIONS section in sar(1) for an explanation of the various options. The following entry in /var/spool/cron/crontabs/sys will report important activities hourly during the working day:

```
5 18 * * 1−5 /usr/lib/sa/sa2 −s 8:00 −e 18:01 −i 1200 −A
```
FILES
/etc/init.d/perf
/tmp/sa.adrfl address file
/var/adm/sa/sadd daily data file
/var/adm/sa/sar_dd daily report file
/var/spool/cron/crontabs/sys

SEE ALSO

`crontab(1)`, `sag(1)`, `sar(1)`, `timex(1)`, `iostat(1M)`, `vmstat(1M)`

Security, Performance, and Accounting Administration
Peripherals Administration

modified 27 May 1993
savecore – save a core dump of the operating system

**SYNOPSIS**

```
/usr/bin/savecore [−v] directory [system-name]
```

**DESCRIPTION**

`savecore` saves a core dump of the kernel (assuming that one was made) and writes a reboot message in the shutdown log. It is meant to be called near the end of the `/etc/init.d/sysetup` file after the system boots. However, it is not normally run by default; you must edit that file to enable it.

`savecore` checks the core dump to be certain it corresponds with the version of the operating system currently running. If it does, `savecore` saves the core image in the file `directory/vmcore.n` and the kernel’s namelist in `directory/unix.n`. The trailing `.n` in the pathnames is replaced by a number which grows every time `savecore` is run in that directory.

Before `savecore` writes out a core image, it reads a number from the file `directory/minfree`. This is the minimum number of kilobytes that must remain free on the file system containing `directory`. If there is less free space on the file system containing `directory` than the number of kilobytes specified in `minfree`, the core dump is not saved. If the `minfree` file does not exist, `savecore` always writes out the core file (assuming that a core dump was taken).

`savecore` also logs a reboot message using facility `LOG_AUTH` (see `syslog(3)`). If the system crashed as a result of a panic, `savecore` logs the panic string too.

If the core dump was from a system other than `/kernel/unix`, the name of that system must be supplied as `system-name`.

**OPTIONS**

`−v` Verbose. Enable verbose error messages from `savecore`.

**FILES**

- `directory/vmcore.n`
- `directory/unix.n`
- `directory/bounds`
- `directory/minfree`
- `/kernel/unix` the kernel
- `/etc/init.d/sysetup`
- `/var/crash/`uname −n` normal core image directory

**SEE ALSO**

`compress(1)`, `crash(1M)`, `syslog(3)`

**BUGS**

`savecore` can be fooled into thinking a core dump is the wrong size.

You must run `savecore` very soon after booting — before the swap space containing the crash dump is overwritten by programs currently running.

1M-526 modified 1 Jul 1990
NAME
sendmail – send mail over the internet

SYNOPSIS
/usr/lib/sendmail [ −ba ] [ −bd ] [ −bi ] [ −bm ] [ −bp ] [ −bs ] [ −bt ] [ −bv ]
[ −bz ] [ −C file ] [ −d X ] [ −F fullname ] [ −f name ] [ −h N ] [ −M id ] [ −n ]
[ −o xvalue ] [ −q | time ] [ −r name ] [ −t ] [ −v ] [ address . . . ]

DESCRIPTION
sendmail sends a message to one or more people, routing the message over whatever networks are necessary. sendmail does internetwork forwarding as necessary to deliver the message to the correct place.

sendmail is not intended as a user interface routine; other programs provide user-friendly front ends; sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an EOF, or a line with a single dot, and sends a copy of the letter found there to all of the addresses listed. It determines the network to use based on the syntax and contents of the addresses.

Local addresses are looked up in the local aliases(4) file, or by using the YP name service, and aliased appropriately. In addition, if there is a .forward file in a recipient’s home directory, sendmail forwards a copy of each message to the list of recipients that file contains.Aliasing can be prevented by preceding the address with a backslash. Normally the sender is not included in alias expansions, for example, if ‘john’ sends to ‘group’, and ‘group’ includes ‘john’ in the expansion, then the letter will not be delivered to ‘john’.

sendmail will also route mail directly to other known hosts in a local network. The list of hosts to which mail is directly sent is maintained in the file /usr/lib/mailhosts.

If a letter is found to be undeliverable, it is returned to the sender with diagnostics that indicate the location and nature of the failure; or, the letter is placed in a dead.letter file in the sender’s home directory.

OPTIONS
−ba Go into ARPANET mode. All input lines must end with a CR-LF, and all messages will be generated with a CR-LF at the end. Also, the “From:” and “Sender:” fields are examined for the name of the sender.
−bd Run as a daemon, waiting for incoming SMTP connections.
−bi Initialize the alias database.
−bm Deliver mail in the usual way (default).
−bp Print a summary of the mail queue.
−bs Use the SMTP protocol as described in RFC 821. This flag implies all the operations of the −ba flag that are compatible with SMTP.
−bt Run in address test mode. This mode reads addresses and shows the steps in parsing; it is used for debugging configuration tables.
−bv Verify names only — do not try to collect or deliver a message. Verify mode is normally used for validating users or mailing lists.
−bz Create the configuration freeze file.
−C file Use alternate configuration file.

modified 16 Feb 1994
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-d X</code></td>
<td>Set debugging value to <code>X</code>.</td>
</tr>
<tr>
<td><code>-F fullname</code></td>
<td>Set the full name of the sender.</td>
</tr>
<tr>
<td><code>-f name</code></td>
<td>Sets the name of the “from” person (that is, the sender of the mail). <code>-f</code> can only be used by “trusted” users (who are listed in the configuration file).</td>
</tr>
<tr>
<td><code>-h N</code></td>
<td>Set the hop count to <code>N</code>. The hop count is incremented every time the mail is processed. When it reaches a limit, the mail is returned with an error message, the victim of an aliasing loop.</td>
</tr>
<tr>
<td><code>-M id</code></td>
<td>Attempt to deliver the queued message with message-id <code>id</code>.</td>
</tr>
<tr>
<td><code>-n</code></td>
<td>Do not do aliasing.</td>
</tr>
<tr>
<td><code>-o x value</code></td>
<td>Set option <code>x</code> to the specified <code>value</code>. PROCESSING OPTIONS are described below.</td>
</tr>
<tr>
<td><code>-q [time]</code></td>
<td>Process saved messages in the queue at given intervals. If <code>time</code> is omitted, process the queue once. <code>time</code> is given as a tagged number, with <code>s</code> being seconds, <code>m</code> being minutes, <code>h</code> being hours, <code>d</code> being days, and <code>w</code> being weeks. For example, <code>-q1h30m</code> or <code>-q90m</code> would both set the timeout to one hour thirty minutes.</td>
</tr>
<tr>
<td><code>-r name</code></td>
<td>An alternate and obsolete form of the <code>-f</code> flag.</td>
</tr>
<tr>
<td><code>-R string</code></td>
<td>Go through the queue of pending mail and attempt to deliver any message with a recipient containing the specified string. This is useful for clearing out mail directed to a machine which has been down for awhile.</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Read message for recipients. “To:”, “Cc:”, and “Bcc:” lines will be scanned for people to send to. The “Bcc:” line will be deleted before transmission. Any addresses in the argument list will be suppressed.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Go into verbose mode. Alias expansions will be announced, etc.</td>
</tr>
</tbody>
</table>

### PROCESSING OPTIONS

There are also a number of processing options that may be set. Normally these will only be used by a system administrator. Options may be set either on the command line using the `-o` flag or in the configuration file. The options are:

- **A file**
  - Use alternate alias file.
- **c**
  - On mailers that are considered “expensive” to connect to, do not initiate immediate connection. This requires queueing.
- **d x**
  - Set the delivery mode to `x`. Delivery modes are `i` for interactive (synchronous) delivery, `b` for background (asynchronous) delivery, and `q` for queue only (actual delivery is done the next time the queue is run).
- **D**
  - Run `newaliases(1)` to automatically rebuild the alias database, if necessary.
- **e x**
  - Set error processing to mode `x`. Valid modes are `m` to mail back the error message, `w` to “write” back the error message (or mail it back if the sender is not logged in), `p` to print the errors on the terminal (default), `q` to throw away error messages (only exit status is returned),
and e to do special processing for the BerkNet. If the text of the message is not mailed back by modes m or w, and if the sender is local to this machine, a copy of the message is appended to the file dead.letter in the sender’s home directory.

F mode
The mode to use when creating temporary files.

f
Save UNIX-system-style “From” lines at the front of messages.

g N
The default group ID to use when calling mailers.

H file
The SMTP help file.

i
Do not take dots on a line by themselves as a message terminator.

L n
The log level.

m
Send to “me” (the sender). Send message to “me” if the sender is in an alias expansion.

o
If set, this message may have old style headers. If not set, this message is guaranteed to have new style headers (that is, commas instead of spaces between addresses). If set, an adaptive algorithm is used that will correctly determine the header format in most cases.

Q queuedir
Select the directory in which to queue messages.

r timeout
The timeout on reads; if none is set, sendmail will wait forever for a mailer.

S file
Save statistics in the named file.

s
Always instantiate the queue file, even under circumstances where it is not strictly necessary.

T [ time ] [ n=time [, u | l=time ] . . . ]
Set the timeout on messages in the queue to the specified time. After sitting in the queue for time amount of time, messages will be returned to the sender. The default is three days.

time is given as a tagged number, with s being seconds, m being minutes, h being hours, d being days, and w being weeks; for example, 3d would represent three days.

n is required in the second format and is used for normal time-out; unless u (urgent) or l (non-urgent) is specified, the value will be set as the normal time-out. If you repeat u (or l), only the last u (or l) value will be used.

Please note that the T flag is intended to be used in the /etc/mail/sendmail.cf file and not as a command line option. The T flag can be used on the command line if sendmail is executed in the daemon mode with the −bd option.

t stz, dtz
Set the name of the time zone.

u N
Set the default user ID for mailers.
If the first character of the user name is a vertical bar, the rest of the user name is used as the name of a program to pipe the mail to. It may be necessary to quote the name of the user to keep `sendmail` from suppressing the blanks from between arguments.

`sendmail` returns an exit status describing what it did. The codes are defined in `/usr/ucbinclude/sysexits.h`.

- **EX_OK**: Successful completion on all addresses.
- **EX_NOUSER**: User name not recognized.
- **EX_UNAVAILABLE**: Catchall. Necessary resources were not available.
- **EX_SYNTAX**: Syntax error in address.
- **EX_SOFTWARE**: Internal software error, including bad arguments.
- **X_OSERR**: Temporary operating system error, such as “cannot fork”.
- **EX_NOHOST**: Host name not recognized.
- **EX_TEMPFAIL**: Message could not be sent immediately, but was queued.

If invoked as `newaliases`, `sendmail` rebuilds the alias database. If invoked as `mailq`, `sendmail` prints the contents of the mail queue.

**FILES**

- **dead.letter**: unmailable text
- `/etc/mail/sendmail.cf` defines environment for `sendmail`
- `/var/spool/mqueue/*`: temp files and queued mail
- `~/.forward`: list of recipients for forwarding messages

**SEE ALSO**

`biff(1B)`, `mail(1)`, `mailx(1)`, `newaliases(1)`, `aliases(4)`


NAME  setmnt – establish mount table

SYNOPSIS  /usr/sbin/setmnt

AVAILABILITY  SUNWcsr

DESCRIPTION  setmnt creates the /etc/mnttab table which is needed for both the mount and umount commands. setmnt reads standard input and creates a mnttab entry for each line. Input lines have the format:

    filesys node

where filesys is the name of the file system’s “special file” (such as /dev/dsk/c?d?s?) and node is the root name of that file system. Thus filesys and node become the first two strings in the mount table entry.

FILES  /etc/mnttab

SEE ALSO  mount(1M)

BUGS  Problems may occur if filesys or node are longer than 32 characters. setmnt silently enforces an upper limit on the maximum number of mnttab entries.
NAME  setuname – changes machine information

SYNOPSIS  setuname [−t][−n node][−s name]

DESCRIPTION  setuname changes the parameter value for the system name and node name. Each parameter can be changed using setuname and the appropriate option.
Either or both the −s and −n options must be given when invoking setuname.
The system architecture may place requirements on the size of the system and network node name. The command will issue a fatal warning message and an error message if the name entered is incompatible with the system requirements.

OPTIONS  
−t  Temporary change. No attempt will be made to create a permanent change.
−n node  Changes the node name. node specifies the new network node name and can consist of alphanumeric characters and the special characters dash, underbar, and dollar sign.
−s name  Changes the system name. name specifies new system name and can consist of alphanumeric characters and the special characters dash, underbar, and dollar sign.

NOTES  setuname attempts to change the parameter values in two places: the running kernel and, as necessary per implementation, to cross system reboots. A temporary change changes only the running kernel.
NAME
share – make local resource available for mounting by remote systems

SYNOPSIS
share [ -F FSType ] [ -o specific_options ] [ -d description ] [ pathname ]

AVAILABILITY
SUNWcsu

DESCRIPTION
The share command exports, or makes a resource available for mounting, through a remote file system of type FSType. If the option –F FSType is omitted, the first file system type listed in /etc/dfs/fstypes is used as default. For a description of NFS specific options, see share_nfs(1M). pathname is the pathname of the directory to be shared. When invoked with no arguments, share displays all shared file systems.

OPTIONS

- F FSType
  Specify the filesystem type.

- o specific_options
  The specific_options are used to control access of the shared resource. (See share_nfs(1M) for the NFS specific options.) They may be any of the following:

  rw
  pathname is shared read/write to all clients. This is also the default behavior.

  rw=client[:client]...
  pathname is shared read/write only to the listed clients. No other systems can access pathname.

  ro
  pathname is shared read-only to all clients.

  ro=client[:client]...
  pathname is shared read-only only to the listed clients. No other systems can access pathname.

- d description
  The –d flag may be used to provide a description of the resource being shared.

EXAMPLES
This line in /etc/dfs/dfstab will share the /disk file system read-only at boot time.

  share –F nfs –o ro /disk

Note that if a machine is not sharing any file systems, running share has no effect until you either run /etc/init.d/nfs.server start or reboot the system, both of which start up nfssd(1M) server processes.

FILES
/etc/dfs/dfstab     list of share commands to be executed at boot time
/etc/dfs/fstypes   list of file system types, NFS by default
/etc/dfs/sharetab  system record of shared file systems

SEE ALSO
share_nfs(1M), shareall(1M), unshare(1M)

NOTES
Export (old terminology): file system sharing used to be called exporting on SunOS 4.x, so the share command used to be invoked as exportfs(1B) or /usr/sbin/exportfs.

If share commands are invoked multiple times on the same filesystem, the last share invocation supersedes the previous—the options set by the last share command replace the old options. For example, if read-write permission was given to usera on /somefs,
then to give read-write permission also to userb on /somefs:

```
example% share -F nfs -o rw=usera:userb /somefs
```

This behavior is not limited to sharing the root filesystem, but applies to all filesystems.
NAME
share_nfs – make local NFS filesystems available for mounting by remote systems

SYNOPSIS
share [ −F nfs ] [ −o specific_options ] [ −d description ] pathname

DESCRIPTION
The share command makes local filesystems available for mounting by remote systems. If no argument is specified, then share displays all filesystems currently shared, including NFS filesystems and filesystems shared through other distributed file system packages.

OPTIONS
−o specific_options
Specify options in a comma-separated list of keywords and attribute-value-assertions for interpretation by the file-system-type-specific command.

If specific_options is not specified, then by default sharing will be read-write to all clients.

specific_options can be any combination of the following:

rw Sharing will be read-write to all clients.

rw=client[;client]…
Sharing will be read-write to the listed clients; overrides the ro suboption for the clients specified. Netgroup names may be used in place of client names unless the list is used to override an ro option.

ro Sharing will be read-only to all clients.

ro=client[;client]…
Sharing will be read-only to the listed clients; overrides the rw suboption for the clients specified. Netgroup names may be used in place of client names unless the list is used to override an rw option.

anon=uid
Set uid to be the effective user ID of unauthenticated users (AUTH_DES or AUTH_KERB authentication), or to be root if AUTH_UNIX authentication is used. By default, unknown users are given the effective user ID UID_NOBODY. If uid is set to −1, access is denied.

root=host[;host]…
Only root users from the specified hosts will have root access. By default, no host has root access.

secure Clients must use the AUTH_DES authentication of RPC to be authenticated. AUTH_UNIX authentication is the default. See the anon=uid option (above) for information about how unauthenticated requests are handled.

nosuid By default, clients are allowed to create files on the shared file system with the setuid or setgid mode enabled. Specifying nosuid causes the server file system to silently ignore any attempt to enable the setuid or setgid mode bits.
kerberos
Clients must use the AUTH_KERB authentication of RPC to be authenticated. AUTH_UNIX authentication is the default. See the anon=uid option (above) for information about how unauthenticated requests are handled.

−d description Provide a comment that describes the filesystem to be shared.

pathname Specify the pathname of the filesystem to be shared.

FILES
/etc/dfs/fstypes list of system types, NFS by default
/etc/dfs/sharetab system record of shared file systems

SEE ALSO unshare(1M), share(1M)

NOTES
The command will fail if both ro and rw are specified. If the same client name exists in both the ro= and rw= lists, the rw will override the ro, giving read/write access to the client specified.

ro=, rw=, and root= are guaranteed to work over UDP but may not work over other transport providers.

If a filesystem is shared with an ro= list and a root= list, any host that is on the root= list will be given only read-only access, regardless of whether that host is specified in the ro= list, unless rw is declared as the default, or the host is mentioned in an rw= list. The same is true if the filesystem is shared with ro as the default. For example, the following share commands will give read-only permissions to hostb:

share −F nfs −o ro=hosta,root=hostb /var
share −F nfs −o ro,root=hostb /var

The following will give read/write permissions to hostb:

share −F nfs −o ro=hosta,rw=hostb,root=hostb /var
share −F nfs −o root=hostb /var

If the filesystem being shared is a symbolic link to a valid pathname, the canonical path (the path which the symbolic link follows) will be shared.

For example, if /export/foo is a symbolic link to /export/bar (/export/foo -> /export/bar), the following share command will result in /export/bar as the shared pathname (and not /export/foo).

example# share -F nfs /export/bar

Note that an NFS mount of server:/export/foo will result in server:/export/bar really being mounted.
NAME        shareall, unshareall – share, unshare multiple resources

SYNOPSIS   shareall [−F FSType[,FSType...]] [− | file]
unshareall [−F FSType[,FSType...]]

AVAILABILITY SUNWcsu

DESCRIPTION When used with no arguments, shareall shares all resources from file, which contains a list of share command lines. If the operand is a hyphen (−), then the share command lines are obtained from the standard input. Otherwise, if neither a file nor a hyphen is specified, then the file /etc/dfs/dfstab is used as the default.

Resources may be shared to specific file systems by specifying the file systems in a comma-separated list as an argument to −F.

unshareall unshares all currently shared resources. Without a −F flag, it unshares resources for all distributed file system types.

OPTIONS −F FSType Specify file system type. Defaults to the first entry in /etc/dfs/fstypes.

FILES /etc/dfs/dfstab

SEE ALSO share(1M), unshare(1M)
NAME     showmount – show all remote mounts

SYNOPSIS  /usr/sbin/showmount [ −ade ] [ hostname ]

AVAILABILITY  SUNWcsu

DESCRIPTION  showmount lists all the clients that have remotely mounted a filesystem from host. This information is maintained by the mountd(1M) server on host, and is saved across crashes in the file /etc/rmtab. The default value for host is the value returned by hostname(1B).

OPTIONS
−a     Print all remote mounts in the format:

    hostname : directory

    where hostname is the name of the client, and directory is the root of the file system that has been mounted.

−d     List directories that have been remotely mounted by clients.

−e     Print the list of exported file systems.

FILES     /etc/rmtab

SEE ALSO  hostname(1B), mountd(1M)

SPARC: Installing Solaris Software
x86: Installing Solaris Software

BUGS     If a client crashes, its entry will not be removed from the list of remote mounts on the server.
### NAME

showrev – show machine and software revision information

### SYNOPSIS

/usr/bin/showrev [ -a ] [ -p ] [ -w ] [ -c command ] [ -s system ]

### DESCRIPTION

showrev displays revision information for the current hardware and software. With no arguments, showrev shows the system revision information including hostname, hostid, release, kernel architecture, application architecture, hardware provider, domain, and kernel version.

If a command is supplied with the –c option, showrev shows the PATH and LD_LIBRARY_PATH and finds out all the directories within the PATH that contain it. For each file found, its file type, revision, permissions, library information, and checksum are printed as well.

### OPTIONS

- **-a**  
  Print all system revision information available. Window system and patch information are added.

- **-p**  
  Print only the revision information about patches.

- **-w**  
  Print only the OpenWindows revision information.

- **-c command**  
  Print the revision information about command.

- **-s system**  
  Perform this operation on the specified system.

### FILES

/kernel/unix

### SEE ALSO

arch(1B), ldd(1), mcs(1), sum(1)

---

modified 13 Oct 1991
shutdown (1M) Maintenance Commands SunOS 5.4

NAME shutdown – shut down system, change system state

SYNOPSIS /usr/sbin/shutdown [ −y ] [ −g grace-period ] [ −i init-state ]

AVAILABILITY SUNWcsr

DESCRIPTION This command is executed by the super-user to change the state of the machine. In most cases, it is used to change from the multi-user state (state 2) to another state (see below).

By default, it brings the system to a state where only the console has access to the operating system. This state is called single-user (see below).

The command sends a warning message and a final message before it starts shutdown activities. By default, the command asks for confirmation before it starts shutting down daemons and killing processes.

System state definitions are:

state 0 Stop the operating system.

state 1 State 1 is referred to as the administrative state. In state 1 file systems required for multi-user operations are mounted, and logins requiring access to multi-user file systems can be used. When the system comes up from firmware mode into state 1, only the console is active and other multi-user (state 2) services are unavailable. Note that not all user processes are stopped when transitioning from multi-user state to state 1.

state s, S State s (or S) is referred to as the single-user state. All user processes are stopped on transitions to this state. In the single-user state, file systems required for multi-user logins are unmounted and the system can only be accessed through the console. Logins requiring access to multi-user file systems cannot be used.

state 5 Shut the machine down so that it is safe to remove the power. Have the machine remove power, if possible. The rc0 procedure is called to perform this task.

state 6 Stop the operating system and reboot to the state defined by the init-default entry in /etc/inittab. The rc6 procedure is called to perform this task.

OPTIONS −y Pre-answer the confirmation question so the command can be run without user intervention. A default of 60 seconds is allowed between the warning message and the final message. Another 60 seconds is allowed between the final message and the confirmation.
−g grace-period  Allow the super-user to change the number of seconds from the 60-second default.
−i init-state  If there are warnings, init-state specifies the state init is to be in. By default, system state “s” is used.

SEE ALSO  boot(1M), halt(1M), init(1M), killall(1M), reboot(1M), ufsdump(1M), init.d(4), initab(4)
NAME
snoop – capture and inspect network packets

SYNOPSIS
snoop [ -aPDSvVNC ] [ -d device ] [ -s snaplen ] [ -c maxcount ] [ -i filename ]
[ -o filename ] [ -n filename ] [ -t [ r | a | d ] ] [ -p first [ , last ] ]
[ -x offset [ , length ] ] [ expression ]

AVAILABILITY
SUNWcsu

DESCRIPTION
snoop captures packets from the network and displays their contents. snoop uses both
the network packet filter and streams buffer modules to provide efficient capture of pack-
ets from the network. Captured packets can be displayed as they are received, or saved
to a file for later inspection.
snoop can display packets in a single-line summary form or in verbose multi-line forms.
In summary form, only the data pertaining to the highest level protocol is displayed. For
example, an NFS packet will have only NFS information displayed. The underlying RPC,
UDP, IP, and ethernet frame information is suppressed but can be displayed if either of
the verbose options are chosen.

OPTIONS
- a
  Listen to packets on /dev/audio (warning: can be noisy).

- P
  Capture packets in non-promiscuous mode. Only broadcast, multicast,
or packets addressed to the host machine will be seen.

- d device
  Receive packets from the network using the interface specified by device.
  Usually le0 or ie0. The program netstat(1M), when invoked with the –i
  flag, lists all the interfaces that a machine has. Normally, snoop will
  automatically choose the first non-loopback interface it finds.

- s snaplen
  Truncate each packet after snaplen bytes. Usually the whole packet is
  captured. This option is useful if only certain packet header information
  is required. The packet truncation is done within the kernel giving better
  utilization of the streams packet buffer. This means less chance of
  dropped packets due to buffer overflow during periods of high traffic.
  It also saves disk space when capturing large traces to a capture file. To
  capture only IP headers (no options) use a snaplen of 34. For UDP use 42,
  and for TCP use 54. You can capture RPC headers with a snaplen of 80
  bytes. NFS headers can be captured in 120 bytes.

- c maxcount
  Quit after capturing maxcount packets. Otherwise keep capturing until
  there is no disk left or until interrupted with CTRL-C.

- i filename
  Display packets previously captured in filename. Without this option,
snoop reads packets from the network interface. If a filename.names file
  is present, it is automatically loaded into snoop’s IP address-to-name
  mapping table (See –N flag below).
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-o filename</code></td>
<td>Save captured packets in <code>filename</code> as they are captured. During packet capture, a count of the number of packets saved in the file is displayed. If you wish just to count packets without saving to a file, name the file <code>/dev/null</code>.</td>
</tr>
<tr>
<td><code>-n filename</code></td>
<td>Use <code>filename</code> as an IP address-to-name mapping table. This file must have the same format as the <code>/etc/hosts</code> file (IP address followed by the hostname).</td>
</tr>
<tr>
<td><code>-D</code></td>
<td>Display number of packets dropped during capture on the summary line.</td>
</tr>
<tr>
<td><code>-S</code></td>
<td>Display size of the entire ethernet frame in bytes on the summary line.</td>
</tr>
<tr>
<td>`-t [r</td>
<td>a</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Verbose mode. Print packet headers in lots of detail. This display consumes many lines per packet and should be used only on selected packets.</td>
</tr>
<tr>
<td><code>-V</code></td>
<td>Verbose summary mode. This is halfway between summary mode and verbose mode in degree of verbosity. Instead of displaying just the summary line for the highest level protocol in a packet, it displays a summary line for each protocol layer in the packet. For instance, for an NFS packet it will display a line each for the ETHER, IP, UDP, RPC and NFS layers. Verbose summary mode output may be easily piped through <code>grep</code> to extract packets of interest. For example to view only RPC summary lines: `example# snoop -i rpc.cap -V</td>
</tr>
<tr>
<td><code>-p first [, last]</code></td>
<td>Select one or more packets to be displayed from a capture file. The <code>first</code> packet in the file is packet #1.</td>
</tr>
<tr>
<td><code>-x offset [, length]</code></td>
<td>Display packet data in hexadecimal and ASCII format. The <code>offset</code> and <code>length</code> values select a portion of the packet to be displayed. To display the whole packet, use an <code>offset</code> of 0. If a <code>length</code> value is not provided, the rest of the packet is displayed.</td>
</tr>
<tr>
<td><code>-N</code></td>
<td>Create an IP address-to-name file from a capture file. This must be set together with the <code>-i</code> option that names a capture file. The address-to-name file has the same name as the capture file with <code>.names</code> appended. This file records the IP address to hostname mapping at the capture site.</td>
</tr>
</tbody>
</table>
and increases the portability of the capture file. Generate a .names file if the capture file is to be analyzed elsewhere. Packets are not displayed when this flag is used.

−C

List the code generated from the filter expression for either the kernel packet filter, or snoop’s own filter.

expression

Select packets either from the network or from a capture file. Only packets for which the expression is true will be selected. If no expression is provided it is assumed to be true.

Given a filter expression, snoop generates code for either the kernel packet filter or for its own internal filter. If capturing packets with the network interface, code for the kernel packet filter is generated. This filter is implemented as a streams module, upstream of the buffer module. The buffer module accumulates packets until it becomes full and passes the packets on to snoop. The kernel packet filter is very efficient, since it rejects unwanted packets in the kernel before they reach the packet buffer or snoop. The kernel packet filter has some limitations in its implementation — it is possible to construct filter expressions that it cannot handle. In this event, snoop generates code for its own filter.

The −C flag can be used to view generated code for either the kernel’s or snoop’s own packet filter. If packets are read from a capture file using the −i option, only snoop’s packet filter is used.

A filter expression consists of a series of one or more boolean primitives that may be combined with boolean operators (AND, OR, and NOT). Normal precedence rules for boolean operators apply. Order of evaluation of these operators may be controlled with parentheses. Since parentheses and other filter expression characters are known to the shell, it is often necessary to enclose the the filter expression in quotes. The primitives are:

host hostname

True if the source or destination address is that of hostname. The keyword host may be omitted if the name does not conflict with the name of another expression primitive e.g. "pinky" selects packets transmitted to or received from the host pinky whereas "pinky and dinky" selects packets exchanged between hosts pinky AND dinky. Normally the IP address is used. With the ether qualifier the ethernet address is used, for instance, "ether pinky".

ipaddr or etheraddr

Literal addresses, both IP dotted and ethernet colon are recognized. For example, "129.144.40.13" matches all packets with that IP address as source or destination, and similarly, "8:0:20:f:b1:51" matches all packets with the ethernet address as source or destination. An ethernet address beginning with a letter is interpreted as a hostname. To avoid this, prepend a zero
when specifying the address. For example, if the ethernet address is "aa:04:52:35:24", then specify it by add a leading zero to make it "0aa:04:52:35:24".

from or src
A qualifier that modifies the following host, net, ipaddr, etheraddr, port or rpc primitive to match just the source address, port, or RPC reply.

to or dst
A qualifier that modifies the following host, net, ipaddr, etheraddr, port or rpc primitive to match just the destination address, port, or RPC call.

ether
A qualifier that modifies the following host primitive to resolve a name to an ethernet address. Normally, IP address matching is performed.

ethertype number
True if the ethernet type field has value number. Equivalent to "ether[12:2] = number".

ip, arp, rarp
True if the packet is of the appropriate ethertype.

broadcast
True if the packet is a broadcast packet. Equivalent to "ether[2:4] = 0xffffffff".

multicast
True if the packet is a multicast packet. Equivalent to "ether[0] & 1 = 1".

apple
True if the packet is an Apple Ethertalk packet. Equivalent to "ethertype $0x809b or ethertype 0x803f".

decnet
True if the packet is a DECNET packet.

greater length
True if the packet is longer than length.

less length
True if the packet is shorter than length.

udp, tcp, icmp
True if the IP protocol is of the appropriate type.

net net
True if either the IP source or destination address has a network number of net. The from or to qualifier may be used to select packets for which the network number occurs only in the source or destination address.

port port
True if either the source or destination port is port. The port may be either a port number or name from /etc/services. The tcp or
udp primitives may be used to select TCP or UDP ports only. The from or to qualifier may be used to select packets for which the port occurs only as the source or destination.

rpc prog [ , vers [ , proc ] ]
True if the packet is an RPC call or reply packet for the protocol identified by prog. The prog may be either the name of an RPC protocol from /etc/rpc or a program number. The vers and proc may be used to further qualify the program version and procedure number, for example, "rpc nfs,2,0" selects all calls and replies for the NFS null procedure. The to or from qualifier may be used to select either call or reply packets only.

gateway host
True if the packet used host as a gateway, that is, the ethernet source or destination address was for host but not the IP address.
Equivalent to "ether host host and not host host".

nofrag True if the packet is unfragmented or is the first in a series of IP fragments.
Equivalent to "ip[6:2] & 0x1fff = 0".

expr relop expr
True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr is an arithmetic expression composed of numbers, packet field selectors, the length primitive, and arithmetic operators +, -, *, &, |, ^, and %. The arithmetic operators within expr are evaluated before the relational operator and normal precedence rules apply between the arithmetic operators, such as multiplication before addition. Parentheses may be used to control the order of evaluation. To use the value of a field in the packet use the following syntax:

base[expr [ ; size ] ]
where expr evaluates the value of an offset into the packet from a base offset which may be ether, ip, udp, tcp, or icmp. The size value specifies the size of the field. If not given, 1 is assumed. Other legal values are 2 and 4.

Examples:
"ether[0] & 1 = 1" is equivalent to multicast.
"ether[2:4] = 0xffffffff" is equivalent to broadcast.
"ip[ip[0] & 0xf * 4 : 2] = 2049" is equivalent to "udp[0:2] = 2049".
"ip[0] & 0xf > 5" selects IP packets with options.
"ip[6:2] & 0x1fff = 0" eliminates IP fragments.
"udp and ip[6:2]&0x1fff = 0 and udp[6:2] != 0" finds all packets with UDP checksums.
The length primitive may be used to obtain the length of the packet. For instance "length > 60" is equivalent to "greater 60", and "ether[length - 1]" obtains the value of the last byte in a packet.

**and** Perform a logical AND operation between two boolean values. The AND operation is implied by the juxtaposition of two boolean expressions, for example "dinky pinky" is the same as "dinky AND pinky".

**or** Perform a logical OR operation between two boolean values. A comma may be used instead, for example, "dinky, pinky" is the same as "dinky OR pinky".

**not** Perform a logical NOT operation on the following boolean value. This operator is evaluated before AND or OR.

**EXAMPLES**

Capture all packets and display them as they are received:

example# snoop

Capture packets with host funky as either the source or destination and display them as they are received:

example# snoop funky

Capture packets between funky and pinky and save them to a file. Then inspect the packets using times relative to the first captured packet:

example# snoop -o cap funky pinky

eexample$ snoop -i cap -t r | more

Look at selected packets in another capture file:

example$ snoop -i pkts -p 99,108

```
99 0.0027 boutique -> sunroof NFS C GETATTR FH=8E6C
100 0.0046 sunroof -> boutique NFS R GETATTR OK
101 0.0080 boutique -> sunroof NFS C RENAME FH=8E6C MTral00192 to .nfs08
102 0.0102 marmot -> viper NFS C LOOKUP FH=561E screen.r.13.386
103 0.0072 viper -> marmot NFS R LOOKUP No such file or directory
104 0.0085 bugbomb -> sunroof RLOGIN C PORT=1023 h
105 0.0005 kandinsky -> sparky RSTAT C Get Statistics
106 0.0004 beeblebrox -> sparky NFS C GETATTR FH=0307
107 0.0021 sparky -> kandinsky RSTAT R
108 0.0073 office -> jeremiah NFS C READ FH=2584 at 40960 for 8192
```

modified 19 Mar 1994
Packet 101 Looks interesting. Take a look in more detail:

```bash
example$ snoop -i pkts -v -p101
```

```
ETHER: ----- Ether Header -----
ETHER: Packet 101 arrived at 16:09:53.59
ETHER: Packet size = 210 bytes
ETHER: Destination = 8:0:20:1:3d:94, Sun
ETHER: Source = 8:0:69:1:5f:e, Silicon Graphics
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP: Version = 4, header length = 20 bytes
IP: Type of service = 00
IP: .0.... = routine
IP: ...0.... = normal delay
IP:0... = normal throughput
IP:0.. = normal reliability
IP: Total length = 196 bytes
IP: Identification 19846
IP: Flags = 0X
IP: .0..... = may fragment
IP: ..0..... = more fragments
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = 18DC
IP: Source address = 129.144.40.222, boutique
IP: Destination address = 129.144.40.200, sunroof
IP:
UDP: ----- UDP Header -----
UDP: Source port = 1023
UDP: Destination port = 2049 (Sun RPC)
UDP: Length = 176
UDP: Checksum = 0
UDP:
RPC: ----- SUN RPC Header -----
RPC: Transaction id = 665905
RPC: Type = 0 (Call)
RPC: RPC version = 2
RPC: Program = 100003 (NFS), version = 2, procedure = 1
RPC: Credentials: Flavor = 1 (Unix), len = 32 bytes
RPC: Time = 06-Mar-90 07:26:58
RPC: Hostname = boutique
RPC: Uid = 0, Gid = 1
RPC: Groups = 1
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
NFS: ----- SUN NFS -----
NFS:
NFS: Proc = 11 (Rename)
NFS: File handle = 000016430000000100080000305A1C47
NFS: 597A0000000800002046314AFC450000
NFS: File name = MTra00192
NFS: File handle = 000016430000000100080000305A1C47
```
View just the NFS packets between `sunroof` and `boutique`:

```bash
example$ snoop -i pkts rpc nfs and sunroof and boutique
```

```
1 0.0000 boutique -> sunroof NFS C GETATTR FH=8E6C
2 0.0046 sunroof -> boutique NFS R GETATTR OK
3 0.0080 boutique -> sunroof NFS C RENAME FH=8E6C MTra00192 to .nfs08
```

Save these packets to a new capture file:

```bash
$ snoop -i pkts -o pkts.nfs rpc nfs sunroof boutique
```

**SEE ALSO**  `netstat(1M)`, `bufmod(7)`, `dlpi(7)`, `ie(7)`, `le(7)`, `pfmod(7)`

**WARNINGS**  The processing overhead is much higher for realtime packet interpretation. Consequently, the packet drop count may be higher. For more reliable capture, output raw packets to a file using the `-o` option and analyze the packets off-line.

`snoop` does not reassemble IP fragments. Interpretation of higher level protocol halts at the end of the first IP fragment.

`snoop` may generate extra packets as a side-effect of its use. For example it may use a network name service (NIS or NIS+) to convert IP addresses to host names for display. Capturing into a file for later display can be used to postpone the address-to-name mapping until after the capture session is complete. Capturing into an NFS-mounted file may also generate extra packets.

Setting the `snaplen` (-s option) to small values may remove header information required for packet interpretation for higher level protocols. For complete NFS interpretation do not set `snaplen` less than 120 bytes.

`snoop` requires information from an RPC request to fully interpret an RPC reply. If an RPC reply in a capture file or packet range does not have a request preceding it, then only the RPC reply header will be displayed.

**NOTES**  `snoop` requires an interactive interface.
NAME    spray – spray packets

SYNOPSIS /usr/sbin/spray [ −c count ] [ −d delay ] [ −l length ] [ −t nettype ] host

AVAILABILITY SUNWcsu

DESCRIPTION spray sends a one-way stream of packets to host using RPC, and reports how many were received, as well as the transfer rate. The host argument can be either a name or an Internet address.

spray is not useful as a networking benchmark as it uses unreliable connectionless transports, (upd for example). spray can report a large number of packets dropped when the drops were caused by spray sending packets faster than they can be buffered locally (before the packets get to the network medium).

OPTIONS

−c count Specify how many packets to send. The default value of count is the number of packets required to make the total stream size 100000 bytes.

−d delay Specify how many microseconds to pause between sending each packet. The default is 0.

−l length The length parameter is the numbers of bytes in the Ethernet packet that holds the RPC call message. Since the data is encoded using XDR, and XDR only deals with 32 bit quantities, not all values of length are possible, and spray rounds up to the nearest possible value. When length is greater than 1514, then the RPC call can no longer be encapsulated in one Ethernet packet, so the length field no longer has a simple correspondence to Ethernet packet size. The default value of length is 86 bytes (the size of the RPC and UDP headers).

−t nettype Specify class of transports. Defaults to netpath. See rpc(3N) for a description of supported classes.

SEE ALSO rpc(3N)

1M-550 modified 14 Sep 1992
NAME  statd – network status monitor

SYNOPSIS  /usr/lib/nfs/statd

DESCRIPTION  statd is an intermediate version of the status monitor. It interacts with lockd(1M) to provide the crash and recovery functions for the locking services on NFS.

FILES  /var/statmon/sm
       /var/statmon/sm.bak
       /var/statmon/state
       /usr/include/rpcsvc/sm_inter.x

SEE ALSO  lockd(1M)

NOTES  The crash of a site is only detected upon its recovery.
       The rpcsvc/sm_inter.x file listed above contains the rpcgen source code for the interface services provided for the statd daemon.

modified 5 Jul 1990
NAME  strace – print STREAMS trace messages

SYNOPSIS  strace [ mid sid level ] ...

AVAILABILITY  SUNWcsu

DESCRIPTION  strace without arguments writes all STREAMS event trace messages from all drivers and modules to its standard output. These messages are obtained from the STREAMS log driver (see log(7)). If arguments are provided, they must be in triplets of the form mid, sid, level, where mid is a STREAMS module ID number, sid is a sub-ID number, and level is a tracing priority level. Each triplet indicates that tracing messages are to be received from the given module/driver, sub-ID (usually indicating minor device), and priority level equal to, or less than the given level. The token all may be used for any member to indicate no restriction for that attribute.

The format of each trace message output is:

<trace sequence number>
<trace time in hh:mm:ss>
<time in machine ticks since boot>
<tracing priority level>
<flags> E : message is also in the error log
F : indicates a fatal error
N : mail was sent to the system administrator (hardcoded as root)

<module ID number of source>
<sub-ID number of source>
<formatted text of the trace message>

Once initiated, strace will continue to execute until terminated by the user.

EXAMPLES  Output all trace messages from the module or driver whose module ID is 41:

strace 41 all

Output those trace messages from driver/module ID 41 with sub-IDs 0, 1, or 2:

strace 41 0 1 41 1 1 41 2 0

Messages from sub-IDs 0 and 1 must have a tracing level less than or equal to 1. Those from sub-ID 2 must have a tracing level of 0.

SEE ALSO  log(7)
STREAMS Programmer’s Guide

1M-552 modified 14 Sep 1992
**NOTES**

Due to performance considerations, only one `strace` process is permitted to open the STREAMS log driver at a time. The log-driver records the list of the triplets specified in the command invocation, and compares each potential trace message against this list to decide if it should be formatted and sent up to the `strace` process. Hence, long lists of triplets will have a greater impact on overall STREAMS performance. Running `strace` will have the most impact on the timing of the modules and drivers generating the trace messages that are sent to the `strace` process. If trace messages are generated faster than the `strace` process can handle them, some of the messages will be lost. This last case can be determined by examining the sequence numbers on the trace messages output.
NAME  strclean – STREAMS error logger cleanup program

SYNOPSIS  strclean [-a age] [-d logdir]

AVAILABILITY  SUNWcsu

DESCRIPTION  strclean is used to clean up the STREAMS error logger directory on a regular basis (for example, by using cron). By default, all files with names matching error.* in /var/adm/streams that have not been modified in the last three days are removed.

OPTIONS  
  -a  age  The maximum age in days for a log file can be changed using the -a option.
  -d  logdir  A directory other than /var/adm/streams can be specified using the -d option.

EXAMPLES  This example has the same result as running strclean with no arguments:

  example% strclean -d /var/adm/streams -a 3

FILES  /var/adm/streams/error.*

SEE ALSO  cron(1M), strerr(1M)

STREAMS Programmer’s Guide

NOTES  strclean is typically run from cron on a daily or weekly basis.
NAME  strerr – STREAMS error logger daemon

SYNOPSIS  strerr

AVAILABILITY  SUNWcsu

DESCRIPTION  strerr receives error log messages from the STREAMS log driver (see log(7)) and appends them to a log file. The resultant error log files reside in the directory /var/adm/streams, and are named error.mm-dd, where mm is the month and dd is the day of the messages contained in each log file.

The format of an error log message is:

<seq> <time> <ticks> <flags> <mid> <sid> <text>

<seq>  error sequence number
<time>  time of message in hh:mm:ss
<ticks>  time of message in machine ticks since boot priority level
<flags>  T: the message was also sent to a tracing process
         F: indicates a fatal error
         N: send mail to the system administrator (hardcoded as root)
<mid>   module ID number of source
<sid>   sub-ID number of source
<text>  formatted text of the error message

Messages that appear in the error log are intended to report exceptional conditions that require the attention of the system administrator. Those messages which indicate the total failure of a STREAMS driver or module should have the F flag set. Those messages requiring the immediate attention of the administrator will have the N flag set, which causes the error logger to send the message to the system administrator using mail. The priority level usually has no meaning in the error log but will have meaning if the message is also sent to a tracer process.

Once initiated, strerr continues to execute until terminated by the user. It is commonly executed asynchronously.

FILES  /var/adm/streams/error.mm-dd

SEE ALSO  log(7)

STREAMS Programmer’s Guide
NOTES

Only one `strerr` process at a time is permitted to open the STREAMS log driver.

If a module or driver is generating a large number of error messages, running the error logger will cause a degradation in STREAMS performance. If a large burst of messages are generated in a short time, the log driver may not be able to deliver some of the messages. This situation is indicated by gaps in the sequence numbering of the messages in the log files.
NAME

sttydefs – maintain line settings and hunt sequences for TTY ports

SYNOPSIS

/usr/sbin/sttydefs −a ttylabel [ −b ] [ −f final-flags ] [ −i initial-flags ] [ −n nextlabel ]
/usr/sbin/sttydefs −l [ ttylabel ]
/usr/sbin/sttydefs −r ttylabel

AVAILABILITY

SUNWcsu

DESCRIPTION

sttydefs is an administrative command that maintains the line settings and hunt
sequences for the system’s TTY ports by making entries in, and deleting entries from the
/etc/ttydefs file.

sttydefs with a −a or −r option may be invoked only by the super-user. sttydefs with −l
may be invoked by any user on the system.

OPTIONS

−a ttylabel Add a record to the ttydefs file, using ttylabel as its label. The following
describes the effect of the −b, −n, −i, or −f options when used in con-
junction with the −a option:

−b Enable autobaud. Autobaud allows the system to set the line speed of a
given TTY port to the line speed of the device connected to the port
without the user’s intervention.

−f final-flags Specify the value to be used in the final-flags field in /etc/ttydefs. final-
flags must be in a format recognized by the stty command. final-flags are the
termio(7) settings used by ttymon after receiving a successful con-
nection request and immediately before invoking the service on the port.
If this option is not specified, sttydefs will set final-flags equal to the termio(7) flags 9600 and sane.

−i initial-flags Specify the value to be used in the initial-flags field in /etc/ttydefs.
initial-flags must be in a format recognized by the stty command. These
flags are used by ttymon when searching for the correct baud rate. They
are set prior to writing the prompt.

If this option is not specified, sttydefs will set initial-flags equal to the termio(7) flag 9600.

−n nextlabel Specify the value to be used in the nextlabel field in /etc/ttydefs. If this
option is not specified, sttydefs will set nextlabel equal to ttylabel.

−l If a ttylabel is specified, sttydefs displays the record from /etc/ttydefs
whose TTY label matches the specified ttylabel. If no ttylabel is specified,
sttydefs displays the entire contents of /etc/ttydefs. sttydefs verifies
that each entry it displays is correct and that the entry’s nextlabel field
references an existing

−r ttylabel Remove any record in the ttydefs file that has ttylabel as its label.
If successful, `sttydefs` will exit with a status of 0. `sttydefs --l` will generate the requested information and send it to standard output.

The following command lists all the entries in the `ttydefs` file and prints an error message for each invalid entry that is detected.

```
example# sttydefs --l
```

The following shows a command that requests information for a single label and its output:

```
example# sttydefs --l 9600
```

```
9600:9600 hupcl erase `h:9600 sane ixany tab3 hupcl erase `h::4800
```

```
ttylabel: 9600
initial flags: 9600 hupcl erase `h
final flags: 9600 sane ixany tab3 hupcl erase `h
autobaud: no
nextlabel: 4800
```

The following sequence of commands will add the labels 1200, 2400, 4800, and 9600 and put them in a circular list:

```
sttydefs --a 1200 --n 2400 --i 1200 --f "1200 sane"
sttydefs --a 2400 --n 4800 --i 2400 --f "2400 sane"
sttydefs --a 4800 --n 9600 --i 4800 --f "4800 sane"
sttydefs --a 9600 --n 1200 --i 9600 --f "9600 sane"
```

```
FILES
/etc/ttydefs
```

```
SEE ALSO
termio(7)
```

modified 14 Sep 1992
**NAME**
su – become super-user or another user

**SYNOPSIS**
su [−] [ username [ arg . . . ] ]

**AVAILABILITY**
SUNWcsr

**DESCRIPTION**
su allows one to become another user without logging off. The default user name is root (super-user).

To use su, the appropriate password must be supplied (unless the invoker is already root). If the password is correct, su creates a new shell process that has the real and effective user ID, group IDs, and supplementary group list set to those of the specified username. The new shell will be the shell specified in the shell field of username's password file entry (see passwd(4)). If no shell is specified, /usr/bin/sh is used (see sh(1)). To return to normal user ID privileges, type an EOF character (CTRL-D) to exit the new shell.

Any additional arguments given on the command line are passed to the new shell. When using programs such as sh, an arg of the form −c string executes string using the shell and an arg of −r gives the user a restricted shell.

If the first argument to su is `−' (dash), the environment will be changed to what would be expected if the user actually logged in as the specified user. This is accomplished by invoking the program used as the shell with a first argument value whose initial character is `−' (dash), thus simulating a login. If the first argument to su is not `−' (dash), the environment is passed along unchanged, with the exception of $PATH, which is controlled by PATH and SUPATH in /etc/default/su.

All attempts to become another user using su are logged in the log file /var/adm/sulog.

**EXAMPLES**
To become user bin while retaining your previously exported environment, execute:
  example% su bin

To become user bin but change the environment to what would be expected if bin had originally logged in, execute:
  example% su −− bin

To execute command with the temporary environment and permissions of user bin, type:
  example% su −− bin −− c "command args"

**ENVIRONMENT**
If any of the LC_* variables ( LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY ) (see environ(5)) are not set in the environment, the operational behavior of su for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables are set in the environment, the "C" (U.S. style) locale determines how su behaves.

**LC_CTYPE**
Determines how su handles characters. When LC_CTYPE is set to a valid value, su can display and handle text and filenames containing valid characters for that locale. su can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3
bytes wide. su can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

**LC_MESSAGES**

Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

**FILES**

- **$HOME/.profile**  
  user’s login commands for sh and ksh
- **/etc/passwd**  
  system’s password file
- **/etc/profile**  
  system-wide sh and ksh login commands
- **/var/adm/sulog**  
  log file
- **/etc/default/su**  
  the default parameters that reside here are:

  - **SULOG**: If defined, all attempts to su to another user are logged in the indicated file.
  - **CONSOLE**: If defined, all attempts to su to root are logged on the console.
  - **PATH**: Default path. (/usr/bin:)
  - **SUPATH**: Default path for a user invoking su to root. (/usr/sbin:/usr/bin)
  - **SYSLOG**: Determines whether the syslog(3) LOG_AUTH facility should be used to log all su attempts. LOG_NOTICE messages are generated for su’s to root, LOG_INFO messages are generated for su’s to other users, and LOG_CRIT messages are generated for failed su attempts.

**SEE ALSO**
csh(1), env(1), ksh(1), login(1), sh(1), syslogd(1M), syslog(3), passwd(4), profile(4), environ(5)
NAME  
sulogin – access single-user mode

SYNOPSIS  
sulogin

AVAILABILITY  
SUNWcsr

DESCRIPTION  
sulogin is automatically invoked by init when the system is first started. It prompts the user to type the root password to enter system maintenance mode (single-user mode) or to type EOF (typically CTRL-d) for normal startup (multi-user mode). sulogin should never be directly invoked by the user.

FILES  
/etc/sulogin

SEE ALSO  
init(1M)
NAME
sundiag – SunOS hardware diagnostic program

SYNOPSIS
sundiag [ −Cpqtw ] [ −i number ] [ −o option_file ] [ −b batch_file ] [ −k kernel_name ]
[ −o saved_options_file ]
sundiag testname testname-specific_arguments [ cpqvudt ] [ h hostname ]
sundiag

AVAILABILITY
SPARC
SUNWdiag
SunDiag is an optional software category, so unless you specify another location, it will
be installed in the /opt directory by the operating system. See the SunDiag User’s Guide
for information about installing this optional software.

DESCRIPTION
sundiag is a diagnostic utility that runs “stress” tests on hardware devices.
Only the superuser can use sundiag.
The SunDiag program consists of the sundiag window-based user interface, along with
several binary modules and executable files containing the actual test code.
There are three ways to run SunDiag tests. The SunDiag OpenWindows interface is the
most popular, but a tty interface is also supplied. Tests can be run on individual
hardware devices from the command lines of a C-shell or Bourne shell. The OpenWin-
dows interface allows you to change global or individual test options using the mouse.
SunDiag testing can be “scaled” up in order to thoroughly test the more powerful single
and multiprocessor systems. Individual SunDiag tests have been modified so that multi-
ple “instances,” or copies, of a single test can be run simultaneously on selected proces-
sors. The Processor Affinity mask (PAM) is a tool that enables you to specify which pro-
cessors a test will run on. Any instances of a scalable test can be set to one of the proces-
sors available using the PAM. See the SunDiag User’s Guide for more details on which
tests are scalable, and how to run them.

OPTIONS
For Starting SunDiag in OpenWindows or tty Mode

At start-up in either of these modes, sundiag probes for the hardware installed on the
system under test and displays the devices it has found. If a hardware device connected
to the system under test is not detected by sundiag, then it is not connected properly.
The following options are available when SunDiag is run from the OpenWindows win-
dow environment, or a tty interface.

−C Redirect the console output from any existing console window to the sundiag
console sub-window. If you are using the tty interface, the console message is
displayed in the message line of the status screen.

−p Skip the SunDiag kernel probe for devices. If this argument is specified, SunDiag
only runs the user-defined tests it finds in .usertest.

−q Automatically quit the SunDiag program when testing stops. This option is
designed for use in sh(1) or csh(1) shell scripts, and can only be issued from a

1M-562
modified 6 Oct 1992
command line.

- **t** Run **sundiag** in tty mode.

- **w** Write the system hardware configuration to the
  /var/adm/sundiaglog/sundiag.conf file.

- **i number**
  Multiprocessing systems only. Specify the number of instances (copies) of scalable tests. the default setting is two times the number of processors on the system under test.

- **o options_file**
  Use the options_file to restore options. The default option file is .sundiag. .sundiag is used if the –o option is not used and if the default file exists.

- **b batch_file**
  Run SunDiag in batch mode. See the SunDiag User’s Guide for details on using this option.

- **k kernel_name**
  Specify the customized kernel name used to boot the system. The default kernel name is /kernel/unix. The performance monitor is disabled when this option is specified.

### For Running SunDiag Tests from a Command Line

#### Standard Arguments:

- **c** Create a core dump file if the system under test crashes.

- **p** Skip any test loops.

- **r** Continue testing after an error has occurred. The test continues with the next test sequence instead of exiting.

- **q** Run a faster, abbreviated version of the individual tests. Most tests have a quick version; those that do not will run normally.

- **u** Display information on how to run the test. It shows three parts: command line usage, standard arguments and routine specific arguments.

- **v** Display verbose messages regarding the test. These messages tell you more about the testing process that is going on. This mode is more valuable for some tests than others; graphics tests only return start and stop messages/failures.

- **d** Display debug messages from the test. These messages provide more sophisticated information (mainly useful for test programmers).

- **t** Display messages which allow you to trace down function calls and the sequences being used by the test code for some of the tests.

- **h hostname**
  Specify hostname to receive system messages regarding this test.
When `sundiag` is started from the OpenWindows environment, it displays its own window interface with four subwindows:

- A test system status panel on the upper left of the screen that shows the test results.
- A performance monitor in the upper middle of the screen that tracks system activity levels.
- A control panel on the upper right of the screen that displays the hardware available for testing, and provides tools to control testing. Select the hardware to be tested by clicking SELECT on the buttons displaying the hardware device names. The selected tests will appear grey on monochrome monitors, and "pushed-in" on color monitors. Most hardware items have option menus for changing test parameters. The option menus can be opened by clicking SELECT on the `Options...` button to the right of each hardware device name.
- A console window on the lower left of the screen that displays system and error messages.

`sundiag` can be run from a terminal, by specifying the `-t` option (tty mode) when `sundiag` is started. In tty mode, `sundiag` emulates the window interface on a terminal screen. The tests and test options available in the window system are also available in tty mode. Commands and options are shown in brackets at the top of the tty screen, and are typed in at the command line on the bottom of the screen. For every command there is a single-letter abbreviation that is shown in parenthesis. When finished with a screen, the command `d` for done will return you to the previous screen. See the SunDiag User's Guide for details on how to run SunDiag in tty mode.

SunDiag tests can be run individually from shell command lines using the syntax explained above in the SYNOPSIS section. See the SunDiag User's Guide to identify `test-name` and `test-specific_arguments` for each test.

**FILES**

- `/var/adm/sundiaglog/options/.sundiag` start-up option file
- `/var/adm/sundiaglog/sundiag.info` SunDiag status log file
- `/dev/MAKEDEV` SunOS system log

**SEE ALSO**

csh(1), sh(1)

SunDiag User’s Guide

SPARC: Installing Solaris Software

x86: Installing Solaris Software

modified 6 Oct 1992
NAME    suninstall – install the Solaris environment

SYNOPSIS suninstall

DESCRIPTION suninstall is a forms-based subsystem for installing the operating system.
Note: suninstall only exists on the Solaris CD-ROM and should only be invoked from there. Refer to the installation manual for more details.
suninstall allows installation of the operating system onto any standalone system.
suninstall loads the software available on the CD-ROM. Refer to the installation manual for disk space requirements.
To abort the installation procedure, use the interrupt character (typically CTRL-C).

USAGE Refer to the installation manual for more information on the various menus and selections.

FILES /usr/etc/install directory containing installation programs and scripts
/etc/install directory containing suninstall data files

SEE ALSO pkginfo(1), pkgadd(1M)
SPARC: Installing Solaris Software
x86: Installing Solaris Software

NOTES It is advisable to exit suninstall through the exit options from the suninstall menus.
### NAME

swap – swap administrative interface

### SYNOPSIS

```
/usr/sbin/swap -a swapname [swaplow] [swaplen]
/usr/sbin/swap -d swapname [swaplow]
/usr/sbin/swap -l
/usr/sbin/swap -s
```

### AVAILABILITY

SUNWcsr

### DESCRIPTION

The swap command provides a method of adding, deleting, and monitoring the system swap areas used by the memory manager.

### OPTIONS

- `-a swapname`
  
  Add the specified swap area. This option can only be used by the super-user. `swapname` is the name of the swap file: for example, `/dev/dsk/c0t0d0s1` or a regular file. `swaplow` is the offset in 512-byte blocks into the file where the swap area should begin. `swaplen` is the desired length of the swap area in 512-byte blocks. The value of `swaplen` can not be less than 16. For example, if `n` blocks are specified, then `(n-1)` blocks would be the actual swap length. `swaplen` must be at least one page in length. One page of memory is equivalent to eight 512-byte blocks. The size of a page of memory can be determined by using the `pagesize` command. See `pagesize(1B)`. Since the first page of a swap file is automatically skipped, and a swap file needs to be at least one page in length, the minimum size should be a factor of 2 `pagesize` bytes. The size of a page of memory is machine dependent.

- `swaplow + swaplen` must be less than or equal to the size of the swap file. If `swaplen` is not specified, an area will be added starting at `swaplow` and extending to the end of the designated file. If neither `swaplow` nor `swaplen` are specified, the whole file will be used except for the first page.

Swap areas are normally added automatically during system startup by the `/sbin/swapadd` script. This script adds all swap areas which have been specified in the `/etc/vfstab` file; for the syntax of these specifications, see `vfstab(4)`.

To use an NFS or local file-system `swapname`, you should first create a file using `mkfile(1M)`. A local file-system swap file can now be added to the running system by just running the `swap -a` command. For NFS mounted swap files, the server needs to export the file. Do this by performing the following steps:

1. Add the following line to `/etc/dfs/dfstab`:
   ```
 share -F nfs -o rw=clientname,root=clientname path-to-swap-file
   ```
2. Run `shareall`.

---

1M-566  modified 1 Mar 1994
3. Have the client add the following lines to `/etc/vfstab`:
   
   ```
 server: path-to-swap-file - local-path-to-swap-file nfs - -
 local-path-to-swap-file - swap - -
   ```

4. Have the client run `mount`:
   
   ```
 # mount local-path-to-swap-file
   ```

5. The client can then run `swap -a` to add the swap space:
   
   ```
 # swap -a local-path-to-swap-file
   ```

   `-d` `swapname`
   Delete the specified swap area. This option can only be used by the super-user. `swapname` is the name of the swap file: for example, `/dev/dsk/c0t0d0s1` or a regular file. `swaplow` is the offset in 512-byte blocks into the swap area to be deleted. If `swaplow` is not specified, the area will be deleted starting at the second page. When the command completes, swap blocks can no longer be allocated from this area and all swap blocks previously in use in this swap area have been moved to other swap areas.

   `-l`
   List the status of all the swap areas. The output has five columns:
   
<table>
<thead>
<tr>
<th>path</th>
<th>The path name for the swap area.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dev</td>
<td>The major/minor device number in decimal if it is a block special device; zeroes otherwise.</td>
</tr>
<tr>
<td>swaplo</td>
<td>The <code>swaplow</code> value for the area in 512-byte blocks.</td>
</tr>
<tr>
<td>blocks</td>
<td>The <code>swaplen</code> value for the area in 512-byte blocks.</td>
</tr>
<tr>
<td>free</td>
<td>The number of 512-byte blocks in this area that are not currently allocated.</td>
</tr>
</tbody>
</table>

   The list does not include swap space in the form of physical memory because this space is not associated with a particular swap area.

   If `swap -l` is run while `swapname` is in the process of being deleted (by `swap -d`), the string INDEL will appear in a sixth column of the swap stats.

   `-s`
   Print summary information about total swap space usage and availability:
   
allocated	The total amount of swap space (in 1024-byte blocks) currently allocated for use as backing store.
reserved	The total amount of swap space (in 1024-bytes blocks) not currently allocated, but claimed by memory mappings for possible future use.
used	The total amount of swap space (in 1024-byte blocks) that is either allocated or reserved.
available	The total swap space (in 1024-byte blocks) that is currently available for future reservation and allocation.
These numbers include swap space from all configured swap areas as listed by the −1 option, as well swap space in the form of physical memory.

**SEE ALSO**  pagesize(1B), getpagesize(3B), mkfile(1M), vfstab(4)

**WARNINGS**  No check is done to see if a swap area being added overlaps with an existing file system.
NAME swmtool – install, upgrade, and remove software packages

SYNOPSIS swmtool [ −d directory ] [ config-file ]

AVAILABILITY SUNWinst

DESCRIPTION The Software Manager, swmtool, is an OPEN LOOK(R) application that installs, upgrades, and removes packages on a local or remote system.

Once you are logged in, you may run swmtool to examine the packages on your local system.

To install, upgrade, or remove packages, you must have super-user privileges for the target system.

For more information on how to use the Software Manager, see the Common Administration Tasks.

OPTIONS −d directory Specify the directory containing the software to be installed.

EXAMPLES The following example starts the Software Manager and tells it to look for software packages in the local directory /cdrom/cdware_5:

example% /usr/sbin/swmtool −d /cdrom/cdware_5

FILES ~/.swmrc configuration file, stores the property values of the Software Manager

SEE ALSO Common Administration Tasks

modified 30 Nov 1992
NAME
sxconfig – configure contiguous memory for the SX video subsystem

SYNOPSIS
/usr/kvm/sxconfig -c
/usr/kvm/sxconfig -d
/usr/kvm/sxconfig [ -f | -n ] [ -l limit ] [ -s size ]

AVAILABILITY
SUNWkvm

DESCRIPTION
sxconfig command configures contiguous memory parameters for exclusive use by the SX video system on the Desktop SPARCsystems with graphics option. After configuring the physically contiguous memory, using the various options described below, the system must be rebooted for the changes to take effect. If this command is being used to configure physically contiguous memory for the first time after the system software has been installed, then the system must be rebooted using the reconfiguration option (−r) of boot(1M).

The amount of memory to be reserved depends upon the type of application. Applications that benefit from the availability of contiguous memory are those that are written to the XGL and XIL graphics and imaging foundation library APIs.

The Platform Notes: SPARCstation 10SX System Configuration Guide provides more detailed information regarding how much memory to reserve for various types of graphics and imaging applications.

sxconfig is supported only on Desktop SPARCsystems with SX graphics option.

The interface, output, and command location are uncommitted and subject to change in future releases.

OPTIONS
−c Display the current configuration parameters in the driver configuration file. If the system was not rebooted after previously changing the configuration parameters, then the displayed values do not reflect the actual system setup.

−d Restore all configuration parameters to the default values. By default 0 megabytes of physically contiguous memory is reserved, fragmentation is not allowed and 32 megabytes of memory is reserved for system use.

−f Allow fragmentation. If no single chunk of memory of at least the requested size is found, allow the request to span multiple chunks. This flag also specifies that less than size megabytes of data may be reserved if there are not enough contiguous chunks available. If this flag is not specified, then the memory reserved must be exactly one chunk of the requested size for the request to succeed.

−n Fragmentation not allowed.

−l limit Specify that at least limit megabytes of total memory must remain for system use after the contiguous memory has been reserved.

−s size Reserve size megabytes of contiguous memory for exclusive use by the SX video subsystem.
**EXAMPLES**

The following example reserves 16 megabytes of contiguous memory without fragmentation and indicates 32 megabytes of memory should remain for system use after reserving the contiguous memory:

```
example# sxconfig -s 16 -l 32
```

The following example is identical to the one described above except that fragmentation is allowed:

```
example# sxconfig -s 16 -f -l 32
```

The following example reports current configuration parameters in the driver configuration file:

```
example# sxconfig -c
```

This example restores all configuration parameters to the default values:

```
example# sxconfig -d
```

The following example disables fragmentation:

```
example# sxconfig -n
```

**EXIT CODES**

`sxconfig` returns 0 on success, and a positive integer on failure.

1. Permission denied. Only root can run this command.
2. Configuration file `/kernel/drv/sx_cmem.conf` does not exist.
3. Illegal option.
4. Illegal combination of options.
5. Illegal argument for `-s` option. Should be an integer.
6. Illegal argument for `-l` option. Should be an integer.

**FILES**

`/kernel/drv/sx_cmem` Contiguous memory device driver

`/kernel/drv/sx_cmem.conf` Configuration file for contiguous memory driver

`/etc/init.d/sxcmem` Contiguous memory startup script

**SEE ALSO**

`boot(1M), init(1M)`

*Platform Notes: SPARCstation 105X System Configuration Guide*
NAME  sync – update the super block

SYNOPSIS  sync

AVAILABILITY  SUNWcsr

DESCRIPTION  sync executes the sync system primitive. If the system is to be stopped, sync must be
called to insure file system integrity. It will flush all previously unwritten system buffers
out to disk, thus assuring that all file modifications up to that point will be saved. See
sync(2) for details.

SEE ALSO  sync(2)

NOTES  If you have done a write to a file on a remote machine in a Remote File Sharing environ-
ment, you cannot use sync to force buffers to be written out to disk on the remote
machine. sync will only write local buffers to local disks.
NAME  
syncinit – set serial line interface operating parameters.

SYNOPSIS  
/usr/sbin/syncinit device [[ baud_rate ] | [ keyword=value,.. ] | [ single-word option ]]  

DESCRIPTION  
The syncinit utility allows the user to modify some of the hardware operating modes common to synchronous serial lines. This can be useful in troubleshooting a link, or necessary to the operation of a communications package.

If run without options, syncinit reports the options as presently set on the port. If options are specified, the new settings are reported after they have been made.

OPTIONS  
Options to syncinit normally take the form of a keyword, followed by an equal sign and a value. The exception is that a baud rate may be specified as a decimal integer by itself. Keywords must begin with the value shown in the options table, but may contain additional letters up to the equal sign. For example, loop= and loopback= are equivalent.

Recognized options are listed in the table below.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td>yes</td>
<td>Set the port to operate in internal loopback mode. The receiver is electrically disconnected from the DCE receive data input and tied to the outgoing transmit data line. Transmit data is available to the DCE. The Digital Phase-Locked Loop (DPLL) may not be used as a clock source in this mode. If no other clocking options have been specified, perform the equivalent of txc=baud and rxc=baud.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Disable internal loopback mode. If no other clocking options have been specified, perform the equivalent of txc=txc and rxc=rxc.</td>
</tr>
<tr>
<td>echo</td>
<td>yes</td>
<td>Set the port to operate in auto-echo mode. The transmit data output is electrically disconnected from the transmitter and tied to the receive data input. Incoming receive data is still visible. Use of this mode in combination with local loopback mode has no value, and should be rejected by the device driver. The auto-echo mode is useful to make a system become the endpoint of a remote loopback test.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Disable auto-echo mode.</td>
</tr>
<tr>
<td>nrzi</td>
<td>yes</td>
<td>Set the port to operate with NRZI data encoding.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Set the port to operate with NRZ data encoding.</td>
</tr>
<tr>
<td>txc</td>
<td>txc</td>
<td>Transmit clock source will be the TxC signal (pin 15).</td>
</tr>
<tr>
<td>rxc</td>
<td>rxc</td>
<td>Transmit clock source will be the RxC signal (pin 17).</td>
</tr>
<tr>
<td>baud</td>
<td>baud</td>
<td>Transmit clock source will be the internal baud rate generator.</td>
</tr>
<tr>
<td>pll</td>
<td>pll</td>
<td>Transmit clock source will be the output of the DPLL circuit.</td>
</tr>
</tbody>
</table>

modified 9 Mar 1993
rxr  rxc  Receive clock source will be the RxC signal (pin 17).
txc  txc  Receive clock source will be the TxC signal (pin 15).
baud  baud  Receive clock source will be the internal baud rate generator.
pll  pll  Receive clock source will be the output of the DPLL circuit.
speed  integer  Set the baud rate to integer bits per second.

There are also several single-word options that set one or more parameters at a time:

Keyword  Equivalent to Options:
exernal  txc=txc rxc=rxc loop=no
sender  txc=baud rxc=rxc loop=no
internal  txc=pll rxc=pll loop=no
stop  speed=0

EXAMPLES
The following command sets the first CPU port to loop internally, use internal clocking
and operate at 38400 baud:

example# syncinit zsh0 38400 loop=yes
device: /dev/zsh ppa: 0
speed=38400, loopback=yes, echo=no, nrzi=no, txc=baud, rxc=baud

The following command sets the same port’s clocking, local loopback and baud rate set-
tings to their default values:

example# syncinit zsh0 stop loop=no
device: /dev/zsh ppa: 0
speed=0, loopback=no, echo=no, nrzi=no, txc=txc, rxc=rxc

SEE ALSO  syncloop(1M), syncstat(1M), intro(2), ioctl(2), zsh(7)

DIAGNOSTICS  device  missing minor device number
The name device does not end in a decimal number that can be used as a minor
device number.

bad speed: arg
The string arg that accompanied the speed= option could not be interpreted as a
decimal integer.

Bad arg: arg
The string arg did not make sense as an option.

ioctl failure code = errno
An ioctl(2) system call failed. The meaning of the value of errno may be found
in intro(2).

WARNINGS  syncinit should not be used on an active serial link, unless needed to resolve an error
condition. It should not be run casually, or if the user is unsure of the consequences of its
use.
NAME
syncloop – synchronous serial loopback test program

SYNOPSIS
/usr/sbin/syncloop [−cdlstv] device

AVAILABILITY
SUNWcsu

DESCRIPTION
The syncloop command performs several loopback tests that are useful in exercising the various components of a serial communications link.

Before running a test, syncloop opens the designated port and configures it according to command line options and the specified test type. It announces the names of the devices being used to control the hardware channel, the channel number (ppa) corresponding to the device argument, and the parameters it has set for that channel. It then runs the loopback test in three phases.

The first phase is to listen on the port for any activity. If no activity is seen for at least four seconds, syncloop proceeds to the next phase. Otherwise, the user is informed that the line is active and that the test cannot proceed, and the program exits.

In the second phase, called the "first-packet" phase, syncloop attempts to send and receive one packet. The program will wait for up to four seconds for the returned packet. If no packets are seen after five attempts, the test fails with an excoriating message. If a packet is returned, the result is compared with the original. If the length and content do not match exactly, the test fails.

The final phase, known as the "multiple-packet" phase, attempts to send many packets through the loop. Because the program has verified the integrity of the link in the first-packet phase, the test will not fail after a particular number of timeouts. If a packet is not seen after four seconds, a message is displayed. Otherwise, a count of the number of packets received is updated on the display once per second. If it becomes obvious that the test is not receiving packets during this phase, the user may wish to stop the program manually. The number and size of the packets sent during this phase is determined by default values, or by command line options. Each returned packet is compared with its original for length and content. If a mismatch is detected, the test fails. The test completes when the required number of packets have been sent, regardless of errors.

After the multiple-packet phase has completed, the program displays a summary of the hardware event statistics for the channel that was tested. The display takes the following form:

<table>
<thead>
<tr>
<th>CRC errors</th>
<th>Aborts</th>
<th>Overruns</th>
<th>Underruns</th>
<th>In &lt;-Drops-&gt; Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This is followed by an estimated line speed, which is an approximation of the bit rate of the line, based on the number of bytes sent and the actual time that it took to send them.

modified 9 Mar 1993
OPTIONS

The options for `syncloop` are described in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>−c</code></td>
<td><code>packet_count</code></td>
<td>100</td>
<td>Specifies the number of packets to be sent in the multiple-packet phase.</td>
</tr>
<tr>
<td><code>−d</code></td>
<td><code>hex_data_byte</code></td>
<td><code>random</code></td>
<td>Specifies that each packet will be filled with bytes with the value of <code>hex_data_byte</code>.</td>
</tr>
<tr>
<td><code>−l</code></td>
<td><code>packet_length</code></td>
<td>100</td>
<td>Specifies the length of each packet in bytes.</td>
</tr>
<tr>
<td><code>−s</code></td>
<td><code>line_speed</code></td>
<td>9600</td>
<td>Bit rate in bits per second.</td>
</tr>
<tr>
<td><code>−v</code></td>
<td></td>
<td></td>
<td>Sets verbose mode. If data errors occur, the expected and received data is displayed.</td>
</tr>
<tr>
<td><code>−t</code></td>
<td><code>test_type</code></td>
<td><code>none</code></td>
<td>A number, from 1 to 4, that specifies which test to perform. The values for <code>test_type</code> are as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Internal loopback test. Port loopback is on. Transmit and receive clock sources are internal (baud rate generator).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 External loopback test. Port loopback is off. Transmit and receive clock sources are internal. Requires a loopback plug suitable to the port under test.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 External loopback test. Port loopback is off. Transmit and receive clock sources are external (modem). Requires that one of the local modem, the remote modem, or the remote system be set in a loopback configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Test using predefined parameters. User defines hardware configuration and may select port parameters using the <code>syncinit(1M)</code> command.</td>
</tr>
</tbody>
</table>

All numeric options except `−d` are entered as decimal numbers (for example, `−s 19200`). If you do not provide the `−t test_type` option, `syncloop` prompts for it.

EXAMPLES

In the following command `syncloop` uses a packet length of 512 bytes over the first CPU port:

```
example# syncloop −l 512 zsh0
```

In response to the above command, `syncloop` prompts you for the test option you want. The following command performs an internal loopback test on the first CPU port, using 5000 packets and a bit rate of 56Kbps:

```
example# syncloop −t 1 −s 56000 −c 5000 zsh0
```
SEE ALSO  syncinit(1M), syncstat(1M), zsh(7)

DIAGNOSTICS  

Device missing minor device number
   The name device does not end in a decimal number that can be used as a minor device number.

Invalid packet length: nnn
   The packet length was specified to be less than zero or greater than 4096.

Poll: nothing to read

Poll: nothing to read or write.
   The poll(2) system call indicates that there is no input pending and/or that output would be blocked if attempted.

Len xxx should be yyy
   The packet that was sent had a length of yyy, but was received with a length of xxx.

nnn packets lost in outbound queueing

nnn packets lost in inbound queueing
   A discrepancy has been found between the number of packets sent by syncooip and the number of packets the driver counted as transmitted, or between the number counted as received and the number read by the program.

WARNINGS  

To allow its tests to run properly, as well as prevent disturbance of normal operations,  
syncooip should only be run on a port that is not being used for any other purpose at that time.

modified 9 Mar 1993  1M-577
syncstat – report driver statistics from a synchronous serial link.

/sbin/syncstat [-c] device [ interval ]

The syncstat command reports the event statistics maintained by a synchronous serial device driver. The report may be a single snapshot of the accumulated totals, or a series of samples showing incremental changes. Prior to these it prints the device name being used to query a particular device driver, along with a number indicating the channel number (ppa) under control of that driver.

Event statistics are maintained by a driver for each physical channel that it supports. They are initialized to zero at the time the driver module is loaded into the system, which may be either at boot time or when one of the driver’s entry points is first called.

The device argument is the name of the serial device as it appears in the /dev directory. For example, zsh0 specifies the first on-board serial device.

The following is a breakdown of syncstat output:

speed The line speed the device has been set to operate at. It is the user’s responsibility to make this value correspond to the modem clocking speed when clocking is provided by the modem.

ipkts The total number of input packets.

opkts The total number of output packets.

undrun The number of transmitter underrun errors.

ovrrun The number of receiver overrun errors.

abort The number of aborted received frames.

crc The number of received frames with CRC errors.

isize The average size (in bytes) of input packets.

osize The average size (in bytes) of output packets.

Options:

-c Clear the accumulated statistics for the device specified. This may be useful when it is not desirable to unload a particular driver, or when the driver is not capable of being unloaded.

interval syncstat samples the statistics every interval seconds and reports incremental changes. The output reports line utilization for input and output in place of average packet sizes. These are the relationships between bytes transferred and the baud rate, expressed as percentages. The loop repeats indefinitely, with a column heading printed every twenty lines for convenience.
EXAMPLES

example# syncstat zsh0

speed  ipkts  opkts  undrun  ovrrun  abort  crc  isize  osize
9600  15716  17121   0      0   1   3   98   89

example# syncstat –c zsh0

speed  ipkts  opkts  undrun  ovrrun  abort  crc  isize  osize
9600   0      0      0      0     0    0    0     0

example# syncstat zsh0 5

ipkts  opkts  undrun  ovrrun  abort  crc  iutil  outil
12     10     0       0      0    0   5%    4%
22     60     0       0      0    0   3%   90%
36     14     0       0      0    1  51%    2%

In this final example a new line of output is generated every five seconds.

SEE ALSO

syncinit(1M), synloop(1M), zsh(7)

DIAGNOSTICS

bad interval: arg
The argument arg is expected to be an interval and could not be understood.

device missing minor device number
The name device does not end in a decimal number that can be used as a minor device number.

baud rate not set
The interval option is being used and the baud rate on the device is zero. This would cause a divide-by-zero error when computing the line utilization statistics.

WARNINGS

Underrun, overrun, frame-abort, and CRC errors have a variety of causes. Communication protocols are typically able to handle such errors and initiate recovery of the transmission in which the error occurred. Small numbers of such errors are not a significant problem for most protocols. However, because the overhead involved in recovering from a link error can be much greater than that of normal operation, high error rates can greatly degrade overall link throughput. High error rates are often caused by problems in the link hardware, such as cables, connectors, interface electronics or telephone lines. They may also be related to excessive load on the link or the supporting system.

The percentages for input and output line utilization reported when using the interval option may occasionally be reported as slightly greater than 100% because of inexact sampling times and differences in the accuracy between the system clock and the modem clock. If the percentage of use greatly exceeds 100%, or never exceeds 50%, then the baud rate set for the device probably does not reflect the speed of the modem.

modified 9 Mar 1993
NAME  
sys-unconfig – undo a system’s configuration

SYNOPSIS  
/usr/sbin/sys-unconfig

AVAILABILITY  
SUNWinst

DESCRIPTION  
sys-unconfig packs up a machine to make it ready to be configured again. It restores a system’s configuration to an “as-manufactured” state. A system’s configuration consists of hostname, Network Information Service (NIS) domain name, timezone, IP address, IP subnet mask, and root password. This operation is the inverse of those performed by the sysidnet, sysidnis, and sysidsys programs run at boot. (See sysidtool(1M)).

sys-unconfig does the following:

• Saves current /etc/inet/hosts file information in /etc/inet/hosts.saved.
• Restores the default /etc/inet/hosts file.
• Removes the default hostname in /etc/hostname.[0-9] and /etc/nodename.
• Removes the default domainname in /etc/defaultdomain.
• Restores the timezone to PST8PDT in /etc/TIMEZONE.
• Disables the Network Information Service (NIS) and Network Information Service Plus (NIS+) if either NIS or NIS+ was configured.
• Removes the entries for this host in /etc/net/*/hosts.
• Removes the file /etc/inet/netmasks.
• Removes the password set for root in /etc/shadow.
• Execute all system configuration applications. These applications are defined by prior executions of a sysidconfig –a application. (See sysidconfig(1M)). When sys-unconfig is run, all system configuration applications are passed one argument, –u.

When sys-unconfig is finished, it performs a system shutdown.

sys-unconfig is a potentially dangerous utility and can only be run by the super-user.

FILES  
/etc/default/init
/etc/defaultdomain
/etc/hostname.[0-9]
/etc/inet/hosts
/etc/inet/netmasks
/etc/net/*/hosts
/etc/nodename
/etc/shadow
/var/nis/NIS_COLD_START
/var/yp/binding/*/ypservers
SEE ALSO
sysidconfig(1M), sysidtool(1M)

BUGS
sys-unconfig is not available on diskless or dataless systems.
<table>
<thead>
<tr>
<th>NAME</th>
<th>sysdef – output system definition</th>
</tr>
</thead>
</table>
| SYNOPSIS | /usr/sbin/sysdef [ −n namelist ]  
/usr/sbin/sysdef [ −h ] [ −d ] |
| AVAILABILITY | SUNWcsr |
| DESCRIPTION | sysdef outputs the current system definition in tabular form. It lists all hardware devices, as well as pseudo devices, system devices, loadable modules, and the values of selected kernel tunable parameters.  
It generates the output by analyzing the named bootable operating system file (namelist) and extracting the configuration information from it.  
sysdef uses the in-core image as the default for namelist. |
| OPTIONS |  
−n namelist Specifies a namelist other than the default. The namelist specified must be a valid bootable operating system.  
−h Prints the identifier of the current host in hexadecimal. This numeric value is unique across all Sun hosts.  
−d The output includes the configuration of system peripherals formatted as a device tree. |
| EXAMPLES | The following example displays the format of the sysdef −d output:  
example% sysdef −d  
Node ‘Sun 4/60’, unit #0 (no driver)  
Node ‘options’, unit #0 (no driver)  
Node ‘zs’, unit #0  
Node ‘zs’, unit #1  
Node ‘fd’, unit #0  
Node ‘audio’, unit #0  
Node ‘sbus’, unit #0  
Node ‘dma’, unit #0  
Node ‘esp’, unit #0  
Node ‘st’, unit #1 (no driver)  
Node ‘st’, unit #0  
Node ‘sd’, unit #2  
Node ‘sd’, unit #1  
Node ‘sd’, unit #0  
Node ‘le’, unit #0  
Node ‘bwtwo’, unit #0  
Node ‘auxiliary-io’, unit #0  
Node ‘interrupt-enable’, unit #0  
Node ‘memory-error’, unit #0  
Node ‘counter-timer’, unit #0  
Node ‘eeprom’, unit #0 |

1M-582 modified 2 May 1994
FILES
/kernel/*

default directories containing loadable objects

SEE ALSO
hostid(1B), prtconf(1M), nlist(3E)
**NAME**

`sysidconfig` – execute system configuration applications, or define set of system configuration applications

**SYNOPSIS**

`sysidconfig [−b basedir] [−l] [−a application] [−r application] [−v]`

**AVAILABILITY**

SUNWadmap

**DESCRIPTION**

Invoked without any options, the `sysidconfig` program executes a list of applications. An application on this list is referred to as a "system configuration application." Every application on this list will be passed one command-line argument, `−c`. This flag will cause the system configuration application to perform its configuration function. Without options, `sysidconfig` should only be invoked by startup scripts, which occurs during the initial installation and during a reconfigure reboot.

All applications on the list will be executed, if possible. All activity taken by the `sysidconfig` program is logged in the `sysidconfig` log file, `/var/log/sysidconfig.log`. If one or more of the applications on the list are either not present at execution time, are not executable, or execute but return a failure code upon completion, then that information will be logged as well. Successful completion of the program can be assumed if no error message is present in the log file. Programs are executed sequentially, with only one configuration application active at a time.

Executed with the `−l`, `−a`, or `−r` options, the `sysidconfig` program allows the superuser to list the defined configuration applications, and to add items to or remove items from that list. Running `sysidconfig` with options is the only way to view or manipulate the list. Only the superuser can execute the `sysidconfig` program with options.

The `−b` and `−v` options change the behavior of `sysidconfig`, and can be used with or without the list manipulation options discussed above. The `−b basedir` option is used to specify a reference directory other than the default, `/`. The `−v` option duplicates the log file output on `stdout`.

By default, no SPARC applications exist on this list. However, the x86 system is delivered with one application, `kdmconfig(1M)`, on the list. `kdmconfig` is an x86-specific program that is not delivered on SPARC systems.

This application is an extension of the `sysidtool(1M)` suite of programs. It is executed during initial installation and during a reconfigure reboot, before the window system has been started. Graphical User Interface (GUI) applications will not execute successfully if they are added to the list of configuration applications via `sysidconfig` `-a`.

This program is referenced, but not fully described, in the `sysidtool(1M)` manual page.

**OPTIONS**

The valid options are:

- `−b basedir` Specify an alternate base directory (`/` is defined as the default base directory if no other is specified). The specified directory is used as the root directory when adding, listing, removing, or executing configuration applications. The log file where information is recorded is in `/var/log`, relative to the specified `basedir`. In the log file, the `basedir` is not noted.

1M-584 modified 8 December 1993
This means, for example, that if the superuser on a diskless client’s server executes:

```
sysidconfig -b /export/root/client -a /sbin/someapp
```

then the diskless client client would have /sbin/someapp executed upon reconfigure reboot. The diskless client’s log file would note that /sbin/someapp was added, not /export/root/client/sbin/someapp.

```
-l
```

List defined configuration applications. Applications will be executed one at a time, in the order shown in the list.

```
-a application
```

Add the named application to the list of defined applications. When next invoked without arguments, sysidconfig will run this newly added application after all previously defined applications. application must be a fully qualified path name that is not currently on the list of applications to execute.

```
-r application
```

Remove the named application from the list of defined applications. application must be a fully qualified path name and it must be on the existing list of applications to execute.

```
-v
```

Verbose mode. This option echoes all information sent to the log file to stdout. Such information includes timestamp information about when the program was executed, the names of applications being executed, and results of those executions.

**RETURN VALUES**

The sysidconfig program will return 0 if it completes successfully.

When executed with the -r or -a options, error conditions or warnings will be reported on stderr. If the requested action completes successfully, an exit code of 0 will be returned.

**ERRORS**

- EPERM The program was executed by a user other than the superuser.
- EINVAL Option -l, -a, or -r was passed and the action could not be completed successfully.

**FILES**

/var/log/sysidconfig.log

**SEE ALSO**

sys-unconfig(1M), sysidtool(1M)

**x86 Only**

kdmconfig(1M)

**DIAGNOSTICS**

When run without options, a log of the sysidconfig program’s activity can be found in /var/log/sysidconfig.log. This file contains a timestamp log of each program executed, its resulting stderr output, and its exit code. If an application in the list was not found or is not executable, that will also be noted.
### NAME
sysidtool, sysidnet, sysidnis, sysidsys, sysidroot – system configuration

### SYNOPSIS
- /usr/sbin/sysidnet
- /usr/sbin/sysidnis
- /usr/sbin/sysidsys
- /usr/sbin/sysidroot

### AVAILABILITY
SUNWadmap

### DESCRIPTION
(sysidtool) is a suite of four programs that configure a new system, or one that has been unconfigured with sys-unconfig(1M). The sysidtool programs run automatically at system installation, or during the first boot after a machine has been successfully unconfigured. These programs have no effect except at such times, and should never be run manually.

The sysidtool programs set up the appropriate information in the machine’s configuration files, in the kernel, and on the machine’s network interface. They may prompt for the following information:

- **sysidnet**: network configuration
  - Machine’s default locale
  - Machine’s console type
  - Machine’s hostname
  - Machine’s IP address

- **sysidnis**: NIS/NIS+ client configuration
  - Name service choice: NIS+, NIS, or none
  - Machine’s IP subnet mask (if no NIS/NIS+ server can automatically be located on the machine’s sub-network)
  - NIS/NIS+ domain name
  - Hostname and IP address of an NIS/NIS+ server in the domain

- **sysidsys**: miscellaneous system configuration
  - Machine’s IP subnet mask (if an NIS/NIS+ server was automatically located on the machine’s sub-network)
  - Machine’s timezone
  - Date and time

- **sysidroot**: control superuser information
  - Machine’s root password

- **sysidconfig**: host or architecture-specific configuration
  - This command controls specification and execution of custom configuration applications which may be specified for a particular host or a particular architecture. (See sysidconfig(1M)).
The `sysidtool` programs attempt to obtain configuration information from various network services and databases, as set up by the Host Manager function of `admintool`(1M). Only when information is missing from these services and databases, do the `sysidtool` programs prompt the user for the information. However, the user is always prompted for the system’s root password.

When a machine is configured as a client of an NIS+ server, the user may elect to have the `sysidtool` programs store the configuration information into the appropriate NIS+ databases. In order to store information in the NIS+ databases, the databases must be set up with the appropriate permissions. In all cases, however, the machine’s configuration information is set up in its `/etc` and `/var` files.

**FILES**

`/etc/.UNCONFIGURED`
`/etc/nodename`
`/etc/hostname.??[0-9]`
`/etc/default/init`
`/etc/defaultdomain`
`/etc/passwd`
`/etc/shadow`
`/etc/inet`
`/hosts`
`/etc/nis/NIS_COLD_START`
`/var/yp/aliases`
`/var/yp/binding/*/ypservers`
`/etc/sysIDtool.state`

**SEE ALSO**

`admintool`(1M), `sysidconfig`(1M), `sys-unconfig`(1M)

**NOTES**

If a system has more than one network interface, you can use `sysidtool` to configure only the primary interface on the system. All other interfaces on the system must be configured manually.
NAME syslogd – log system messages

SYNOPSIS /usr/sbin/syslogd [−d] [−f configfile] [−m markinterval] [−p path]

AVAILABILITY SUNWcsu

DESCRIPTION syslogd reads and forwards system messages to the appropriate log files and/or users, depending upon the priority of a message and the system facility from which it originates. The configuration file /etc/syslog.conf (see syslog.conf(4)) controls where messages are forwarded. syslogd logs a mark (timestamp) message every markinterval minutes (default 20) at priority LOG_INFO to the facility whose name is given as mark in the syslog.conf file.

A system message consists of a single line of text, which may be prefixed with a priority code number enclosed in angle-brackets (<>); priorities are defined in <sys/syslog.h>. syslogd reads from the STREAMS log driver, /dev/log, and from any transport provider specified in /etc/netconfig, /etc/net/transport/hosts, and /etc/net/transport/services.

syslogd reads the configuration file when it starts up, and again whenever it receives a HUP signal, at which time it also closes all files it has open, re-reads its configuration file, and then opens only the log files that are listed in that file. syslogd exits when it receives a TERM signal.

As it starts up, syslogd creates the file /etc/syslog.pid, if possible, containing its process identifier (PID).

OPTIONS
−d Turn on debugging.
−f configfile Specify an alternate configuration file.
−m markinterval Specify an interval, in minutes, between mark messages.
−p path Specify an alternative log device name. The default is /dev/log.

FILES /etc/syslog.conf configuration file
/etc/syslog.pid process ID
/dev/log STREAMS log driver
/etc/netconfig specifies the transport providers available on the system
/etc/net/transport/hosts network hosts for each transport
/etc/net/transport/services network services for each transport

SEE ALSO logger(1), syslog(3), syslog.conf(4), log(7)
NAME

`tapes` – adds /dev entries for tape drives attached to the system

SYNOPSIS

```
/usr/sbin/tapes [−r rootdir]
```

AVAILABILITY

SUNWcsu

DESCRIPTION

`tapes` creates symbolic links from the /dev/rmt directory to the actual tape device special files under the /devices directory tree. `tapes` searches the kernel device tree to see what tape devices are attached to the system. For each equipped tape drive, the following steps are performed:

1. The /dev/rmt directory is searched for a /dev/rmt/n entry that is a symbolic link to the /device special node of the current tape drive. If one is found, this determines the logical controller number of the tape drive.

2. The rest of the special devices associated with the drive are then checked, and incorrect symbolic links are removed and necessary ones added.

3. If none are found, a new logical controller number is assigned (the lowest-unused number), and new symbolic links are created for all the special devices associated with the drive.

`tapes` does not remove unneeded tape drive links; these must be removed by hand.

`tapes` is called each time the system is reconfiguration-booted. `tapes` can only be run after `drvconfig(1M)` is run, since `drvconfig` builds the kernel data structures and the /devices tree.

Of interest to device driver writers are the devices that `tapes` considers tape devices. Device nodes of type DDI_NT_TAPE are considered tape devices (see `ddi_create_minor_node(9F)` for more information on node types.)

OPTIONS

```
−r rootdir
```

`tapes` presumes that the /dev/rmt and /devices directories are found under rootdir, not directly under /.

ERRORS

If `tapes` finds entries of a particular logical controller linked to different physical controllers, it prints an error message and exits without making any changes to the /dev directory, since it cannot determine which of the two alternative logical to physical mappings is correct. The links should be manually corrected or removed before another reconfiguration boot is performed.

FILES

```
/dev/rmt/*
/devices/*
```

entries for the tape drive for general use

device nodes

SEE ALSO

devlinks(1M), disks(1M), drvconfig(1M), ports(1M), ddi_create_minor_node(9F)

modified 27 Jan 1993
NAME    taskstat – prints ASET tasks status

SYNOPSIS /usr/aset/util/taskstat [ −d aset_dir ]

DESCRIPTION  taskstat is located in the /usr/aset/util directory. /usr/aset is the default operating directory of the Automated Security Enhancement Tool (ASET). An alternative working directory can be specified by the administrators through the aset −d command or the ASETDIR environment variable. See aset(1M). Because aset dispatches its tasks to run in the background, when it returns, these tasks may or may not have completed. taskstat prints the status of the tasks, listing those that are completed and those that are still executing.

The ASET reports, which are located in the /usr/aset/reports directory (see the −d option), are not complete until all the tasks finish executing.

OPTIONS  

−d aset_dir  Specify the working directory for ASET. By default, this directory is /usr/aset. With this option, the reports directory will be located under aset_dir.

SEE ALSO  aset(1M)

Security, Performance, and Accounting Administration
NAME  test_eisa – dump the EISA NVRAM

SYNOPSIS  test_eisa [ mask key1 [. . . keyn ]]

AVAILABILITY  x86
SUNWcsu

DESCRIPTION  test_eisa is a diagnostic provided to examine the contents of EISA Non-Volatile RAM (NVRAM) on EISA machines. It stages the arguments for a call to the envm(7) driver.

In its simplest form, test_eisa takes no arguments and dumps the entire contents of the NVRAM in slot and function order in human readable form. It follows this by doing a hex dump of the same data in the same order.

test_eisa can be directed to search the NVRAM for particular slot or function information and dump only matching records. The mask argument is a bit field which tells the program the meaning of the subsequent arguments. The mask is made up from the following bits:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLOT</td>
<td>int</td>
</tr>
<tr>
<td>2</td>
<td>FUNCTION</td>
<td>int</td>
</tr>
<tr>
<td>4</td>
<td>BOARD ID</td>
<td>int, int</td>
</tr>
<tr>
<td>8</td>
<td>REVISION</td>
<td>int</td>
</tr>
<tr>
<td>16</td>
<td>CHECKSUM</td>
<td>int</td>
</tr>
<tr>
<td>32</td>
<td>TYPE</td>
<td>string</td>
</tr>
<tr>
<td>64</td>
<td>SUBTYPE</td>
<td>string</td>
</tr>
</tbody>
</table>

If a mask specifies several bits, the subsequent arguments must be in the order specified above. For example:

    test_eisa 1 5

would dump all the information for slot 5.

    test_eisa 33 5 my_function_type

would dump the information for slot 5 that has a type field of my_function_type.

Note that two arguments are required for the board ID. The first is a board ID; the second is a mask to accept or ignore certain bits during the pattern-matching process.

FILES  /dev/eisarom

SEE ALSO  envm(7)
NAME    tic – terminfo compiler

SYNOPSIS tic [−v[n]] [−c] file

DESCRIPTION The command tic translates a terminfo file from the source format into the compiled format. The results are placed in the directory /usr/share/lib/terminfo. The compiled format is necessary for use with the library routines in curses(3X).

If the environment variable TERMINFO is set, the compiled results are placed there instead of /usr/share/lib/terminfo.

Total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 128 bytes. Terminal names exceeding 14 characters will be truncated to 14 characters and a warning message will be printed.

OPTIONS −vn Specify that (verbose) output be written to standard error trace information showing tic’s progress. The optional integer n is a number from 1 to 10, indicating the desired level of detail of information. If n is omitted, the default level is 1. If n is specified and greater than 1, the level of detail is increased.

−c file Contains one or more terminfo terminal descriptions in source format [see terminfo(4)]. Each description in the file describes the capabilities of a particular terminal. When a use=entry-name field is discovered in a terminal entry currently being compiled, tic reads in the binary from /usr/share/lib/terminfo to complete the entry. (Entries created from file will be used first. If the environment variable TERMININFO is set, that directory is searched instead of /usr/share/lib/terminfo.) tic duplicates the capabilities in entry-name for the current entry, with the exception of those capabilities that are explicitly defined in the current entry.

FILES /usr/share/lib/terminfo/* Compiled terminal description database.

SEE ALSO captoinfo(1M), infocmp(1M), curses(3X), terminfo(4)

NOTES When an entry, for example, entry_name_1, contains a use=entry_name_2 field, any canceled capabilities in entry_name_2 must also appear in entry_name_1 before use= for these capabilities to be canceled in entry_name_1.
NAME  
ttyadm – format and output port monitor-specific information

SYNOPSIS  
/usr/sbin/ttyadm [ -b ] [ -c ] [ -h ] [ -I ] [ -r count ] [ -i msg ] [ -m modules ] [ -p prompt ]  
[ -t timeout ] [ -S y|n ] [ -T termtype ] [ -d device ] [ -l ttylabel ] [ -s service ]  
/usr/sbin/ttyadm −V

AVAILABILITY  
SUNWcsu

DESCRIPTION  
The ttyadm command is an administrative command that formats ttymon-specific information and writes it to standard output. The Service Access Facility (SAF) requires each port monitor to provide such a command. Note that the port monitor administrative file is updated by the Service Access Controller’s administrative commands, sacadm and pmadm. ttyadm provides a means of presenting formatted port monitor-specific (ttymon-specific) data to these commands.

OPTIONS  

−b  Set the “bi-directional port” flag. When this flag is set, the line can be used in both directions. ttymon will allow users to connect to the service associated with the port, but if the port is free, uucico, cu, or ct can use it for dialing out.

−c  Set the connect-on-carrier flag for the port. If the −c flag is set, ttymon will invoke the port’s associated service immediately when a connect indication is received (that is, no prompt is printed and no baud-rate searching is done).

−h  Set the hangup flag for the port. If the −h flag is not set, ttymon will force a hangup on the line by setting the speed to zero before setting the speed to the default or specified value.

−I  Initialize only. If the −I option is used, ttymon will invoke the service only once. This can be used to configure a particular device without actually monitoring it, as with software carrier.

−d device  device is the full pathname of the device file for the TTY port.

−i message  Specify the inactive (disabled) response message. This message will be sent to the TTY port if the port is disabled or the ttymon monitoring the port is disabled.

−l ttylabel  Specify which ttylabel in the /etc/ttydefs file to use as the starting point when searching for the proper baud rate.

−m modules  Specify a list of pushable STREAMS modules. The modules will be pushed in the order in which they are specified before the service is invoked. modules must be a comma-separated list of modules, with no white space included. Any modules currently on the stream will be popped before these modules are pushed.

−p prompt  Specify the prompt message, for example, “login:”. 
When the −r option is invoked, ttymon will wait until it receives data from the port before it displays a prompt. If count is zero, ttymon will wait until it receives any character. If count is greater than zero, ttymon will wait until count newlines have been received.

−s service  service is the full pathname of the service to be invoked when a connection request is received. If arguments are required, the command and its arguments must be enclosed in double quotes (" ").

−t timeout  Specify that ttymon should close a port if the open on the port succeeds, and no input data is received in timeout seconds.

−S y | n  Set the software carrier value. y will turn software carrier on. n will turn software carrier off.

−T termtype  Set the terminal type. The TERM environment variable will be set to termtype.

−V  Display the version number of the current /usr/lib/saf/ttymon command.

OUTPUT  If successful, ttyadm will generate the requested information, write it to standard output, and exit with a status of 0. If ttyadm is invoked with an invalid number of arguments or invalid arguments, or if an incomplete option is specified, an error message will be written to standard error and ttymon will exit with a non-zero status.

FILES  /etc/ttydefs

SEE ALSO  pmadm(1M), sacadm(1M), ttymon(1M)

File System Administration
NAME
ttyhstmgr – administer hosts on a network

SYNOPSIS
/usr/bin/ttyhstmgr

DESCRIPTION

ttyhstmgr offers a curses-based interface that supports the definition of client machines on the server machine. Membership in the sysadmin group (gid 14) is used to restrict access to this tool. Members of the sysadmin group can add a client to a server, or delete a client from a server. Non-members have read-only permissions, and can use ttyhstmgr to get information about a host on the network.

Three types of clients are supported:

- **diskless**: Clients that depend on the server for all disk needs.
- **standalone**: Clients that may use the server as an optional file server.
- **dataless**: Clients that have a local disk but use it only for root and swap.

The supported naming services are:

- **NIS+**: Network Information Service Plus, the replacement for NIS.
- **NIS**: Network Information Service, formerly known as YP.
- **None**: Text files in the /etc directory.

SEE ALSO

nis+(1), admintool(1M)

SPARC: Installing Solaris Software
x86: Installing Solaris Software
**NAME**

ttymon – port monitor for terminal ports

**SYNOPSIS**

```
/usr/lib/saf/ttymon
```

```
−g [−d device] [−h] [−t timeout] [−l ttylabel] [−p prompt]
[−m modules] [−T termtype]
```

**DESCRIPTION**

**ttymon** is a STREAMS-based TTY port monitor. Its function is to monitor ports, to set terminal modes, baud rates, and line disciplines for the ports, and to connect users or applications to services associated with the ports. Normally, **ttymon** is configured to run under the Service Access Controller, *sac*, as part of the Service Access Facility (SAF). It is configured using the *sacadm* command. Each instance of **ttymon** can monitor multiple ports. The ports monitored by an instance of **ttymon** are specified in the port monitor’s administrative file. The administrative file is configured using the *pmadm* and *ttyadm* commands. When an instance of **ttymon** is invoked by the *sac* command, it starts to monitor its ports. For each port, **ttymon** first initializes the line disciplines, if they are specified, and the speed and terminal settings. For ports with entries in /etc/logindevperm, device owner, group and permissions are set. (See **logindevperm**(4).) The values used for initialization are taken from the appropriate entry in the TTY settings file. This file is maintained by the *sttydefs* command. Default line disciplines on ports are usually set up by the *autopush* command of the Autopush Facility.

**ttymon** then writes the prompt and waits for user input. If the user indicates that the speed is inappropriate by pressing the BREAK key, **ttymon** tries the next speed and writes the prompt again. When valid input is received, **ttymon** interprets the per-service configuration file for the port, if one exists, creates a utmp entry if required, establishes the service environment, and then invokes the service associated with the port. Valid input consists of a string of at least one non-newline character, terminated by a carriage return. After the service terminates, **ttymon** cleans up the utmp entry, if one exists, and returns the port to its initial state.

If *autobaud* is enabled for a port, **ttymon** will try to determine the baud rate on the port automatically. Users must enter a carriage return before **ttymon** can recognize the baud rate and print the prompt. Currently, the baud rates that can be determined by *autobaud* are 110, 1200, 2400, 4800, and 9600.

If a port is configured as a bidirectional port, **ttymon** will allow users to connect to a service, and, if the port is free, will allow *uucico*, *cu* or *ct* to use it for dialing out. If a port is bidirectional, **ttymon** will wait to read a character before it prints a prompt.

If the *connect-on-carrier* flag is set for a port, **ttymon** will immediately invoke the port’s associated service when a connection request is received. The prompt message will not be sent.

If a port is disabled, **ttymon** will not start any service on that port. If a disabled message is specified, **ttymon** will send out the disabled message when a connection request is received. If **ttymon** is disabled, all ports under that instance of **ttymon** will also be disabled.
The service **ttymon** invokes for a port is specified in the **ttymon** administrative file. **ttymon** will scan the character string giving the service to be invoked for this port, looking for a `%d` or a `%%` two-character sequence. If `%d` is found, **ttymon** will modify the service command to be executed by replacing those two characters by the full path name of this port (the device name). If `%%` is found, they will be replaced by a single `%`.

When the service is invoked, file descriptor 0, 1, and 2 are opened to the port device for reading and writing. The service is invoked with the user ID, group ID and current home directory set to that of the user name under which the service was registered with **ttymon**. Two environment variables, HOME and TYPROMPT, are added to the service’s environment by **ttymon**. HOME is set to the HOME directory of the user name under which the service is invoked. TYPROMPT is set to the prompt string configured for the service on the port. This is provided so that a service invoked by **ttymon** has a means of determining if a prompt was actually issued by **ttymon** and, if so, what that prompt actually was.

See **ttyadm**(1M) for options that can be set for ports monitored by **ttymon** under the Service Access Controller.

### OPTIONS

- **−g**
  
  A special invocation of **ttymon** is provided with the `−g` option. This form of the command should only be called by applications that need to set the correct baud rate and terminal settings on a port and then connect to **login** service, but that cannot be pre-configured under the SAC. The following combinations of options can be used with `−g`:

  - **−d device**
    
    *device* is the full path name of the port to which **ttymon** is to attach. If this option is not specified, file descriptor 0 must be set up by the invoking process to a TTY port.

  - **−h**
    
    If the `-h` flag is not set, **ttymon** will force a hangup on the line by setting the speed to zero before setting the speed to the default or specified speed.

  - **−l ttylabel**
    
    *ttylabel* is a link to a speed and TTY definition in the **ttydefs** file. This definition tells **ttymon** at what speed to run initially, what the initial TTY settings are, and what speed to try next if the user indicates that the speed is inappropriate by pressing the BREAK key. The default speed is 9600 baud.

  - **−m modules**
    
    When initializing the port, **ttymon** will pop all modules on the port, and then push modules in the order specified. modules is a comma-separated list of pushable modules. Default modules on the ports are usually set up by the Autopush Facility.

  - **−p prompt**
    
    Allows the user to specify a prompt string. The default prompt is "Login: ".

  - **−t timeout**
    
    Specifies that **ttymon** should exit if no one types anything in *timeout* seconds after the prompt is sent.

  - **−T termtype**
    
    Sets the TERM environment variable to *termtype*. modified 5 Jul 1990

1M-597
ENVIRONMENT

If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC.MONETARY) (see environ(5)) are not set in the environment, the operational behavior of ttymon for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how ttymon behaves.

LC_CTYPE

Determines how ttymon handles characters. When LC_CTYPE is set to a valid value, ttymon can display and handle text and filenames containing valid characters for that locale. ttymon can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. ttymon can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

SEE ALSO

pmadm(1M), sac(1M), sacadm(1M), ttyadm(1M), logindevperm(4), environ(5)

File System Administration

NOTES

If a port is monitored by more than one ttymon, it is possible for the ttymons to send out prompt messages in such a way that they compete for input.
NAME
tunefs – tune up an existing file system

SYNOPSIS
tunefs [ −a maxcontig ] [ −d rotdelay ] [ −e maxbpg ] [ −m minfree ]
   [ −o [ space | time ] ] special | filesystem

DESCRIPTION
tunefs is designed to change the dynamic parameters of a file system which affect the
layout policies. The file system must be unmounted before using tunefs. When using
tunefs with filesystem, filesystem must be in /etc/vfstab. The parameters which are to
be changed are indicated by the options given below.

Generally one should optimize for time unless the file system is over 90% full.

OPTIONS
−a maxcontig Specify the maximum number of contiguous blocks that will be laid out
before forcing a rotational delay (see −d below). The default value is 1,
since most device drivers require an interrupt per disk transfer. Device
drivers that can chain several buffers together in a single transfer should
set this to the maximum chain length.

−d rotdelay Specify the expected time (in milliseconds) to service a transfer comple-
tion interrupt and initiate a new transfer on the same disk. It is used to
decide how much rotational spacing to place between successive blocks
in a file.

−e maxbpg Indicate the maximum number of blocks any single file can allocate out
of a cylinder group before it is forced to begin allocating blocks from
another cylinder group. Typically this value is set to approximately one
quarter of the total blocks in a cylinder group. The intent is to prevent
any single file from using up all the blocks in a single cylinder group,
thus degrading access times for all files subsequently allocated in that
cylinder group. The effect of this limit is to cause big files to do long
seeks more frequently than if they were allowed to allocate all the blocks
in a cylinder group before seeking elsewhere. For file systems with
exclusively large files, this parameter should be set higher.

−m minfree Specify the percentage of space held back from normal users; the
minimum free space threshold. The default value used is 10%. This
value can be set to 0, however up to a factor of three in throughput will
be lost over the performance obtained at a 10% threshold. Note: If the
value is raised above the current usage level, users will be unable to allo-
cate files until enough files have been deleted to get under the higher
threshold.

−o [ space | time ]
Change optimization strategy for the file system.

space: conserve space
time: attempt to organize file layout to minimize access time
SEE ALSO  mkfs(1M), fork(2), terminfo(4)
NAME       uadmin – administrative control

SYNOPSIS   /sbin/uadmin cmd fcn

AVAILABILITY SUNWcsr

DESCRIPTION The uadmin command provides control for basic administrative functions. This command is tightly coupled to the System Administration procedures and is not intended for general use. It may be invoked only by the super-user. Both cmd (command) and fcn (function) are converted to integers and passed to the uadmin system call.

SEE ALSO uadmin(2)
NAME
ufsdump – incremental file system dump

SYNOPSIS
/usr/sbin/ufsdump [options] [arguments] files_to_dump

DESCRIPTION
ufsdump backs up all files specified by files_to_dump (normally either a whole file system or files within a file system changed after a certain date) to magnetic tape, diskette, or disk file. When running ufsdump, the file system must be inactive; otherwise, the output of ufsdump may be inconsistent and restoring files correctly may be impossible. A file system is inactive when it is unmounted or the system is in single user mode. A file system is not considered inactive if one tree of the file system is quiescent while another tree has files or directories being modified.

options is a single string of one-letter ufsdump options.

arguments may be multiple strings whose association with the options is determined by order. That is, the first argument goes with the first option that takes an argument; the second argument goes with the second option that takes an argument, and so on.

files_to_dump is required and must be the last argument on the command line. It specifies the files to dump. Usually it identifies a whole file system by its raw device name (for example, /dev/rdsk/c0t3d0s6). Incremental dumps (levels 1 to 9) of files changed after a certain date only apply to a whole file system. Alternatively, files_to_dump can identify individual files or directories. All files or directories are dumped, which is equivalent to a level 0 dump; however, /etc/dumpdates is not updated, even with the u option specified. In all cases, the files must be contained in the same file system, and the file system must be local to the system where ufsdump is being run.

If no options are given, the default is 9uf /dev/rmt/0 files_to_dump.

With most devices ufsdump can automatically detect the end-of-media. Consequently, the d, s, and t options are not necessary for multi-volume dumps, unless ufsdump does not understand the way the device detects the end-of-media, or the files are to be restored on a system with an older version of the restore command.

OPTIONS
0–9 The “dump level.” All files specified by files_to_dump that have been modified since the last ufsdump at a lower dump level are copied to the dump_file destination (normally a magnetic tape device). For instance, if a “level 2” dump was done on Monday, followed by a “level 4” dump on Tuesday, a subsequent “level 3” dump on Wednesday would contain all files modified or added since the “level 2” (Monday) backup. A “level 0” dump copies the entire file system to the dump_file.

a archive_file
Archive file. Archive a dump table-of-contents in the specified archive_file to be used by ufsrestore(1M) to determine whether a file is in the dump file that is being restored.

b factor Blocking factor. Specify the blocking factor for tape writes. The default is 20 blocks per write for tapes of density less than 6250BPI (bytes-per-inch). The default blocking factor for tapes of density 6250BPI and greater is 64. The default
blocking factor for cartridge tapes (c option) is 126. The highest blocking factor available with most tape drives is 126. Note: the blocking factor is specified in terms of 512-byte blocks, for compatibility with tar(1).

c Cartridge. Set the defaults for cartridge instead of the standard half-inch reel. This sets the density to 1000BPI and the blocking factor to 126. Since ufsdump can automatically detect the end-of-media, only the blocking parameter normally has an effect. This option can also be used for 8mm tape. However, since the size (length) and density of 8mm tape differs from 1/4-inch cartridge, if ufsdump has difficulty detecting the end-of-media on a 8mm drive, these parameters should be specified (with the s and d options) directly. This option is incompatible with the d option, unless you specify a density of 1000BPI with that option. When cartridge tapes are used, and this option is not specified, ufsdump will slightly miscompute the size of the tape. If the b, d, s or t options are specified with this option, their values will override the defaults set by this option.

d bpi Tape density. Not normally required, as ufsdump can detect end-of-media. This parameter can be used to keep a running tab on the amount of tape used per reel. The default density is 6250BPI except when the c option is used for cartridge tape, in which case it is assumed to be 1000BPI per track. Typical values for tape devices are:

- 1/2" tape 6250 BPI
- 1/4" cartridge 1000 BPI
- 2.3-Gbyte 8mm tape 54,000 BPI
- 5.0-Gbyte 8mm tape 54,000 BPI

The tape densities and other options are documented in the st(7) man page.

D Diskette. Dump to diskette.

dump_file Dump file. Use dump_file as the file to dump to, instead of /dev/rmt/0. If dump_file is specified as −, dump to standard output.

If the name of the file is of the form machine:device, the dump is done from the specified machine over the network using rmt(1M). Since ufsdump is normally run by root, the name of the local machine must appear in the /.rhosts file of the remote machine. If the file is specified as user@machine:device, ufsdump will attempt to execute as the specified user on the remote machine. The specified user must have a .rhosts file on the remote machine that allows the user invoking the command from the local machine to access the remote machine.

l Autoload. When the end-of-tape is reached before the dump is complete, take the drive offline and wait up to two minutes for the tape drive to be ready again. This gives autoloading (stackloader) tape drives a chance to load a new tape. If the drive is ready within two minutes, continue. If it is not, prompt for another tape and wait.

n Notify all operators in the sys group that ufsdump requires attention by sending messages to their terminals, in a manner similar to that used by the wall(1M) command. Otherwise, such messages are sent only to the terminals (such as the

modified 9 May 1994
console) on which the user running **ufsdump** is logged in.

- **o** Offline. Take the drive offline when the dump is complete or the end-of-media is reached and rewind the tape, or eject the diskette. In the case of some auto-loading 8mm drives, the tape is removed from the drive automatically. This prevents another process which rushes in to use the drive, from inadvertently overwriting the media.

- **s size** Specify the size of the volume being dumped to. Not normally required, as **ufsdump** can detect end-of-media. When the specified size is reached, **ufsdump** waits for you to change the volume. **ufsdump** interprets the specified size as the length in feet for tapes and cartridges, and as the number of 1024-byte blocks for diskettes. The values should be a little smaller than the actual physical size of the media (for example, 425 for a 450-foot cartridge). Typical values for tape devices depend on the **c** option, for cartridge devices, and the **D** option for diskettes:
  - 1/2" tape
  - 60-Mbyte 1/4" cartridge
  - 150-Mbyte 1/4" cartridge
  - 2.3-Gbyte 8mm
  - 5.0-Gbyte 8mm
  - diskette

    - 2300 feet
    - 425 feet
    - 700 feet
    - 6000 feet
    - 13000 feet
    - 1422 blocks (Corresponds to a 1.44-Mbyte diskette, with one cylinder reserved for bad block information.)

- **S** Size estimate. Determine the amount of space that is needed to perform the dump without actually doing it, and display the estimated number of bytes it will take. This is useful with incremental dumps to determine how many volumes of media will be needed.

- **t tracks** Specify the number of tracks for a cartridge tape. Not normally required, as **ufsdump** can detect end-of-media. The default is 9 tracks. The **t** option is not compatible with the **D** option. Values for Sun-supported tape devices are:
  - 60-Mbyte 1/4" cartridge
  - 150-Mbyte 1/4" cartridge

    - 9 tracks
    - 18 tracks

- **u** Update the dump record. Add an entry to the file **/etc/dumpdates**, for each file system successfully dumped that includes the file system name, date, and dump level.

- **v** Verify. After each tape or diskette is written, verify the contents of the media against the source file system. If any discrepancies occur, prompt for new media, then repeat the dump/verification process. The file system must be unmounted. This option cannot be used to verify a dump to standard output.

- **w** Warning. List the file systems that have not been backed up within a day. This information is gleaned from the files **/etc/dumpdates** and **/etc/vfstab**. When the **w** option is used, all other options are ignored. After reporting, **ufsdump** exits immediately.
Warning with highlight. Similar to the \texttt{w} option, except that the \texttt{W} option includes all file systems that appear in \texttt{/etc/dumpdates}, along with information about their most recent dump dates and levels. File systems that have not been backed up within a day are highlighted.

**EXAMPLES**

To make a full dump of a root file system on \texttt{c0t3d0}, on a 150-MByte cartridge tape unit 0, use:

```
example# ufsdump 0cfu /dev/rmt/0 /dev/rdsk/c0t3d0s0
```

To make and verify an incremental dump at level 5 of the \texttt{usr} partition of \texttt{c0t3d0}, on a 1/2" reel tape unit 1, use:

```
example# ufsdump 5fuv /dev/rmt/1 /dev/rdsk/c0t3d0s6
```

**FILES**

- \texttt{/dev/rmt/0} default unit to dump to
- \texttt{/etc/dumpdates} dump date record
- \texttt{/etc/group} to find group \texttt{sys}
- \texttt{/etc/hosts} to gain access to remote system with drive
- \texttt{/etc/vfstab} list of file systems

**SEE ALSO**

- \texttt{cpio(1), tar(1), dd(1M), devmn(1M), prtvtoc(1M), rmt(1M), shutdown(1M), ufsrestore(1M), volcopy(1M), wall(1M), wall(1M) st(7)}

**DIAGNOSTICS**

While running, \texttt{ufsdump} emits many verbose messages. exit codes:

- 0 Normal exit.
- 1 Startup errors encountered.
- 3 Abort – no checkpoint attempted.

**NOTES**

**Read Errors**

Fewer than 32 read errors on the file system are ignored.

**Process Per Reel**

Because each reel requires a new process, parent processes for reels that are already written hang around until the entire tape is written.

**Operator Intervention**

\texttt{ufsdump} requires operator intervention on these conditions: end of volume, end of dump, volume write error, volume open error or disk read error (if there are more than a threshold of 32). In addition to alerting all operators implied by the \texttt{n} option, \texttt{ufsdump} interacts with the operator on \texttt{ufsdump}'s control terminal at times when \texttt{ufsdump} can no longer proceed, or if something is grossly wrong. All questions \texttt{ufsdump} poses must be answered by typing \texttt{yes} or \texttt{no}, as appropriate.

Since backing up a disk can involve a lot of time and effort, \texttt{ufsdump} checkpoints at the start of each volume. If writing that volume fails for some reason, \texttt{ufsdump} will, with operator permission, restart itself from the checkpoint after a defective volume has been replaced.

modified 9 May 1994
It is vital to perform full, “level 0”, dumps at regular intervals. When performing a full dump, bring the machine down to single-user mode using `shutdown(1M)`. While preparing for a full dump, it is a good idea to clean the tape drive and heads. Incremental dumps should be performed with the system running in single-user mode.

Incremental dumps allow for convenient backup and recovery of active files on a more frequent basis, with a minimum of media and time. However, there are some tradeoffs. First, the interval between backups should be kept to a minimum (once a day at least). To guard against data loss as a result of a media failure (a rare, but possible occurrence), capture active files on (at least) two sets of dump volumes. Another consideration is the desire to keep unnecessary duplication of files to a minimum to save both operator time and media storage. A third consideration is the ease with which a particular backed-up version of a file can be located and restored. The following four-week schedule offers a reasonable tradeoff between these goals.

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1:</td>
<td>Full</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Week 2:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Week 3:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Week 4:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Although the Tuesday through Friday incrementals contain “extra copies” of files from Monday, this scheme assures that any file modified during the week can be recovered from the previous day’s incremental dump.

**ufsdump** uses multiple processes to allow it to read from the disk and write to the media concurrently. Due to the way it synchronizes between these processes, any attempt to run dump with a `nice` (process priority) of ‘5’ or better will likely make **ufsdump** run slower instead of faster.

Most disks contain one or more overlapping slices because slice 2 covers the entire disk. The other slices are of various sizes and usually do not overlap. For example, a common configuration places **root** on slice 0, **swap** on slice 1, **/opt** on slice 5 and **/usr** on slice 6.

It should be emphasized that **ufsdump** dumps one **ufs** file system at a time. Given the above scenario where slice 0 and slice 2 have the same starting offset, executing **ufsdump** on slice 2 with the intent of dumping the entire disk would instead dump only the **root** file system on slice 0. To dump the entire disk, the user must dump the file systems on each slice separately.

The `/etc/vfstab` file does not allow the desired frequency of backup for file systems to be specified (as `/etc/fstab` did). Consequently, the `w` and `W` options assume file systems should be backed up daily, which limits the usefulness of these options.
NAME
ufsrestore – incremental file system restore

SYNOPSIS
/usr/lib/fs/ufs/ufsrestore options [ arguments ] [ filename ... ]

DESCRIPTION
ufsrestore restores files from backup media created with the ufsdump command. options
is a single string of one-letter options. One (and only one) of the following options must
be included: i, r, R, t, or x. arguments is one or more strings following options. The associ-
ation of arguments with options is determined by order. That is, the first argument goes
with the first option that takes an argument; the second argument goes with the second
option that takes an argument, and so on. However, the filename arguments, which go
with either the x or t options, must come last. They specify the names of files (or direc-
tories whose files) are to be restored to disk. Unless the h modifier is also used, a directory
name refers to the files it contains, and (recursively) its subdirectories and the files
they contain.

OPTIONS
Choose One
One of the following options is required:

i  Interactive. After reading in the directory information from the media, ufsre-
store invokes an interactive interface that allows you to browse through the
dump file’s directory hierarchy and select individual files to be extracted. See
Interactive Commands, below, for a description of available commands.

r  Recursive. Restore the entire contents of the media into the current directory
(which should be the top-level of the file system). To completely restore a file sys-
tem, use this option to restore the level 0 dump, and again for each incremental
dump. Although, this option is intended for a complete restore onto a clear file
system, if the file system contains files not on the media, they are preserved.

R  Resume restoring. ufsrestore requests a particular volume of a multi-volume set
from which to resume a full restore (see the r option above). This allows ufsre-
store to start from a checkpoint when it is interrupted in the middle of a full
restore.

t  Table of contents. List each filename that appears on the media. If no filename
argument is given, the root directory is listed. This results in a list of all files on
the media, unless the h modifier is in effect. The table of contents is taken from
the media or from the specified archive file, when the a option is used. This
option is mutually exclusive with the x and r options.

x  Extract the named files from the media. If a named file matches a directory
whose contents were written onto the media, and the h modifier is not in effect,
the directory is recursively extracted. The owner, modification time, and mode
are restored (if possible). Existing files are overwritten and a warning is given. If
no filename argument is given, the root directory is extracted. This results in the
entire tape being extracted unless the h modifier is in effect.

modified 10 Feb 1994
Choose Any

In addition to one of the above options, any of the following options may be used:

a archive_file
   Read the table of contents from archive_file instead of the media. This option can be
   used in combination with the t, i, or x options, making it possible to check
   whether files are on the media without having to mount the media. When used
   with the x and interactive (i) options, it prompts for the volume containing the
   file(s) before extracting them.

b factor
   Blocking factor. Specify the blocking factor for tape reads. For variable length
   SCSI tape devices, unless the data was written with the default blocking factor, a
   blocking factor at least as great as that used to write the tape must be used; other-
   wise, an error will be generated. Note that a tape block is 512 bytes. Refer to the
   man page for your specific tape driver for the maximum blocking factor.

c Convert the contents of the media in 4.1BSD format to the new ufs file system
   format.

d Debug. Turn on debugging output.

f dump_file
   Use dump_file instead of /dev/rmt/0 as the file to restore from. Typically dump_file
   specifies a tape or diskette drive. If dump_file is specified as ‘−’, ufsrestore reads
   from the standard input. This allows, ufsdump(1M) and ufsrestore to be used in
   a pipeline to copy a file system:

   example# ufsdump 0f − /dev/rdsk/c0t0d0s7 | (cd /home;ufsrestore xf −)

   If the name of the file is of the form machine:device, the restore is done from the
   specified machine over the network using rmt(1M). Since ufsrestore is normally
   run by root, the name of the local machine must appear in the /.rhosts file of the
   remote machine. If the file is specified as user@machine:device, ufsrestore will
   attempt to execute as the specified user on the remote machine. The specified
   user must have a .rhosts file on the remote machine that allows the user invoking
   the command from the local machine to access the remote machine.

h Extract or list the actual directory, rather than the files that it references. This
   prevents hierarchical restoration of complete subtrees from the tape.

m Extract by inode numbers rather than by filename to avoid regenerating complete
   pathnames. Regardless of where the files are located in the dump hierarchy, they
   are restored into the current directory and renamed with their inode number.
   This is useful if only a few files are being extracted.

s n Skip to the n’th file when there are multiple dump files on the same tape. For
   example, the command:

   example# ufsrestore xfs /dev/rmt/0hn 5

   would position you at the fifth file on the tape.

v Verbose. ufsrestore displays the name and inode number of each file it restores,
   preceded by its file type.
Interactive Commands

ufsrestore enters interactive mode when invoked with the i option. Interactive commands are reminiscent of the shell. For those commands that accept an argument, the default is the current directory. The interactive options are:

- **add [filename]**
  Add the named file or directory to the list of files to extract. If a directory is specified, add that directory and its files (recursively) to the extraction list (unless the h modifier is in effect).

- **cd directory**
  Change to directory (within the dump file).

- **delete [filename]**
  Delete the current directory, or the named file or directory from the list of files to extract. If a directory is specified, delete that directory and all its descendents from the extraction list (unless the h modifier is in effect). The most expedient way to extract a majority of files from a directory is to add that directory to the extraction list, and then delete specific files to omit.

- **extract**
  Extract all files on the extraction list from the dump media. ufsrestore asks which volume the user wishes to mount. The fastest way to extract a small number of files is to start with the last volume and work toward the first.

- **help**
  Display a summary of the available commands.

- **ls [directory]**
  List files in directory or the current directory, represented by a ‘.’ (period). Directories are appended with a ‘/’ (slash). Entries marked for extraction are prefixed with a ‘*’ (asterisk). If the verbose option is in effect, inode numbers are also listed.

- **pwd**
  Print the full pathname of the current working directory.

- **quit**
  ufsrestore exits immediately, even if the extraction list is not empty.

- **setmodes**
  Prompts: set owner/mode for ‘.’ (period). Type y for yes to set the mode (permissions, owner, times) of the current directory ‘.’ (period) into which files are being restored equal to the mode of the root directory of the file system from which they were dumped. Normally, this is what you want when restoring a whole file system, or restoring individual files into the same locations from which they were dumped. Type n for no, to leave the mode of the current directory unchanged. Normally, this is what you want when restoring part of a dump to a directory other than the one from which the files were dumped.

- **verbose**
  Toggle the status of the v modifier. While v is in effect, the ls command lists the inode numbers of all entries, and ufsrestore displays information about each file as it is extracted.
what  Display the dump header on the media.

FILES
/dev/rmt/0  the default tape drive
/tmp/rstdir*  file containing directories on the tape
/tmp/rstmode*  owner, mode, and timestamps for directories
./restoresymtable  information passed between incremental restores

SEE ALSO  mkfs(1M), mount(1M), rmt(1M), ufsdump(1M)

DIAGNOSTICS  ufsrestore  complains about bad option characters.

Read errors result in complaints. If y has been specified, or the user responds y, ufsrestore will attempt to continue.

If the dump extends over more than one tape, ufsrestore asks the user to change tapes. If the x or i option has been specified, ufsrestore also asks which volume the user wishes to mount.

There are numerous consistency checks that can be listed by ufsrestore. Most checks are self-explanatory or can “never happen”. Common errors are given below.

Converting to new file system format
A dump tape created from the old file system has been loaded. It is automatically converted to the new file system format.

filename: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape. This is caused by tape read errors while looking for the file, or from using a dump tape created on an active file system.

expected next file inumber, got inumber
A file that was not listed in the directory showed up. This can occur when using a dump tape created on an active file system.

Incremental tape too low
When doing an incremental restore, a tape that was written before the previous incremental tape, or that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous incremental tape left off, or one that has too high an incremental level has been loaded.

media read error: invalid argument
Blocking factor specified for read is smaller than the blocking factor used to write data.

Tape read error while restoring filename
Tape read error while skipping over inode  inumber
Tape read error while trying to resynchronize
A tape read error has occurred
If a file name is specified, then its contents are probably partially wrong. If an inode is being skipped or the tape is trying to resynchronize, then no extracted
files have been corrupted, though files may not be found on the tape.

resync ufsrestore, skipped \textit{num}

After a tape read error, \texttt{ufsrestore} may have to resynchronize itself. This message lists the number of blocks that were skipped over.

\section*{NOTES}

\texttt{ufsrestore} can get confused when doing incremental restores from dump tapes that were made on active file systems.

A “level 0” dump must be done after a full restore. Because \texttt{ufsrestore} runs in user mode, it has no control over inode allocation. This means that \texttt{ufsrestore} repositions the files, although it does not change their contents. Thus, a full dump must be done to get a new set of directories reflecting the new file positions, so that later incremental dumps will be correct.
### NAME
unshare – make local resource unavailable for mounting by remote systems

### SYNOPSIS
```bash
unshare [-F FSType] [-o specific_options] [pathname | resourcename]
```

### AVAILABILITY
SUNWcsu

### DESCRIPTION
The `unshare` command makes a shared local resource unavailable to file system type `FSType`. If the option `-F FSType` is omitted, then the first file system type listed in file `/etc/dfs/fstypes` will be used as the default. `Specific_options`, as well as the semantics of `resourcename`, are specific to particular distributed file systems.

### OPTIONS
- `-F FSType` Specify the file system type.
- `-o specific_options` Specify options specific to the file system provided by the `-F` option.

### FILES
- `/etc/dfs/fstypes`
- `/etc/dfs/sharetab`

### SEE ALSO
share(1M), shareall(1M)

### NOTES
If `pathname` or `resourcename` is not found in the shared information, an error message will be sent to standard error.
NAME  
unshare_nfs – make local NFS filesystems unavailable for mounting by remote systems

SYNOPSIS  
unshare [ −F nfs ] pathname

DESCRIPTION  
The unshare command makes local filesystems unavailable for mounting by remote systems. The shared filesystem must correspond to a line with NFS as the FSType in the file /etc/dfs/sharetab.

OPTIONS  
−F  This option may be omitted if NFS is the first file system type listed in the file /etc/dfs/fstypes.

FILES  
/etc/dfs/fstypes
/etc/dfs/sharetab

SEE ALSO  
share(1M)

NOTES  
If the filesystem being unshared is a symbolic link to a valid pathname, the canonical path (the path which the symbolic link follows) will be unshared.

For example, if /export/foo is a symbolic link to /export/bar (/export/foo -> /export/bar), the following unshare command will result in /export/bar as the unshared pathname (and not /export/foo).

  example# unshare -F nfs /export/foo
NAME  
useradd – administer a new user login on the system

SYNOPSIS  
useradd  [ −c comment ]  [ −d dir ]  [ −e expire ]  [ −f inactive ]  [ −g group ]
         [ −G group [, group ... ] ]  [ −m [ −k skel_dir ] ]  [ −u uid [ −o ] ]  [ −s shell ]  login
useradd −D  [ −b base_dir ]  [ −e expire ]  [ −f inactive ]  [ −g group ]

AVAILABILITY  
SUNWs

DESCRIPTION  
useradd adds a new user entry to the /etc/passwd and /etc/shadow files. It also creates supplementary group memberships for the user (−G option) and creates the home directory (−m option) for the user if requested. The new login remains locked until the passwd(1) command is executed.

Specifying useradd −D with the −g, −b, −f, or −e options (or any combination of these) sets the default values for the respective fields. See the −D option below. Subsequent useradd commands without the −D option use these arguments.

The system file entries created with this command have a limit of 512 characters per line. Specifying long arguments to several options may exceed this limit.

login is a string of printable characters that specifies the new login name of the user, up to a maximum number of eight characters. It may not contain a colon (:) or a newline (\n).

OPTIONS  
−c comment  Any text string. It is generally a short description of the login, and is currently used as the field for the user’s full name. This information is stored in the user’s /etc/passwd entry.

−d dir  The home directory of the new user. It defaults to base_dir/login, where base_dir is the base directory for new login home directories and login is the new login name.

−e expire  Specify the expiration date for a login. After this date, no user will be able to access this login. expire is a date entered in any format you like (except a Julian date). If the date format that you choose includes spaces, it must be quoted. For example, you may enter 10/6/90 or "October 6, 1990". A null value (""") defeats the status of the expired date. This option is useful for creating temporary logins.

−f inactive  The maximum number of days allowed between uses of a login ID before that login ID is declared invalid. Normal values are positive integers. A value of 0 defeats the status.

−g group  An existing group’s integer ID or character-string name. Without the −D option, it defines the new user’s primary group membership and defaults to the default group. You can reset this default value by invoking useradd −D −g group.

−G group  An existing group’s integer ID or character-string name. It defines the new user’s supplementary group membership. Duplicates between group with the −g and −G options are ignored. No more than NGROUPS_MAX groups.
may be specified.

\texttt{–k skel\_dir} A directory that contains skeleton information (such as \texttt{.profile}) that can be copied into a new user’s home directory. This directory must already exist. The system provides the \texttt{/etc/skel} directory that can be used for this purpose.

\texttt{–m} Create the new user’s home directory if it does not already exist. If the directory already exists, it must have read, write, and execute permissions by \texttt{group}, where \texttt{group} is the user’s primary group.

\texttt{–s shell} Full pathname of the program used as the user’s shell on login. It defaults to an empty field causing the system to use \texttt{/sbin/sh} as the default. The value of \texttt{shell} must be a valid executable file.

\texttt{–u uid} The UID of the new user. This UID must be a non-negative decimal integer below \texttt{MAXUID} as defined in \texttt{<sys/param.h>}. The UID defaults to the next available (unique) number above the highest number currently assigned. For example, if UIDs 100, 105, and 200 are assigned, the next default UID number will be 201. (UIDs from 0-99 are reserved by SunOS for future applications.)

\texttt{–o} This option allows a UID to be duplicated (non-unique).

\texttt{–D} Display the default values for \texttt{group}, \texttt{base\_dir}, \texttt{skel\_dir}, \texttt{shell}, \texttt{inactive}, and \texttt{expire}. When used with the \texttt{–g, –b, –f, or –e options}, the \texttt{–D} option sets the default values for the specified fields. The default values are:

\begin{verbatim}
  group          other (GID of 1)
  base\_dir      /home
  skel\_dir      /etc/skel
  shell          /sbin/sh
  inactive       0
  expire         Null (unset).
\end{verbatim}

\texttt{–b base\_dir} The default base directory for the system if \texttt{–d dir} is not specified. \texttt{base\_dir} is concatenated with the user’s login to define the home directory. If the \texttt{–m} option is not used, \texttt{base\_dir} must exist.

\textbf{FILES} 
\texttt{/etc/passwd}
\texttt{/etc/shadow}
\texttt{/etc/group}
\texttt{/etc/skel}

\textbf{SEE ALSO} passwd(1), users(1B), groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), userdel(1M), usermod(1M), passwd(4)

modified 4 Feb 1994
DIAGNOSTICS

In case of an error, `useradd` prints an error message and exits with a non-zero status.

UX: `useradd: ERROR: login is already in use. Choose another.`

   The `login` specified is already in use.

UX: `useradd: ERROR: uid uid is already in use. Choose another.`

   The `uid` specified with the `-u` option is not unique.

UX: `useradd: ERROR: group group does not exist. Choose another.`

   The `group` specified with the `-g` option is already in use.

UX: `useradd: WARNING: uid uid is reserved.`

   The `uid` specified with the `-u` option is in the range of reserved UIDs (from 0-99).

UX: `useradd: ERROR: uid uid is too big. Choose another.`

   The `uid` specified with the `-u` option exceeds `MAXUID` as defined in `<sys/param.h>`.

UX: `useradd: ERROR: Cannot update system files - login cannot be created.`

   The `/etc/passwd` or `/etc/shadow` files do not exist.

NOTES

`useradd` only adds a user definition to the local system. If a network nameservice such as NIS or NIS+ is being used to supplement the local `/etc/passwd` file with additional entries, `useradd` cannot change information supplied by the network nameservice. However `useradd` will verify the uniqueness of the user name and user id and the existence of any group names specified against the external nameservice.
NAME  
userdel – delete a user’s login from the system

SYNOPSIS  
userdel [ −r ] login

AVAILABILITY  
SUNWcsu

DESCRIPTION  
The **userdel** command deletes a user’s login from the system and makes the appropriate login-related changes to the system file and file system.

OPTIONS  
−r  Remove the user’s home directory from the system. This directory must exist. The files and directories under the home directory will no longer be accessible following successful execution of the command.

login  A string of printable characters that specify an existing login on the system. It may not contain a colon (:) or a newline (\n).

FILES  
/etc/passwd
/etc/shadow
/etc/group

SEE ALSO  
passwd(1), users(1B), groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), useradd(1M), usermod(1M), passwd(4)

DIAGNOSTICS  
The **userdel** command exits with one of the following values:

0  Success.
2  Invalid command syntax. A usage message for the **userdel** command is displayed.
6  The login to be removed does not exist.
8  The login to be removed is in use.
10  Cannot update the /etc/group file but the login is removed from the /etc/passwd file.
12  Cannot remove or otherwise modify the home directory.

NOTES  
**userdel** only deletes a user definition that is in the local /etc/passwd file. If a network name service such as NIS or NIS+ is being used to supplement the local /etc/passwd file with additional entries, **userdel** cannot change information supplied by the network name service.
**NAME**  
usermod – modify a user’s login information on the system

**SYNOPSIS**  
usermod [-u uid] [-o] [ -g group ] [ -G group [ , group . . . ] ] [-d dir] [-m]  
[ -s shell ] [ -c comment ] [ -I new_logname ] [ -f inactive ] [ -e expire ] login

**AVAILABILITY**  
SUNWcsu

**DESCRIPTION**  
usermod modifies a user’s login definition on the system. It changes the definition of the  
specified login and makes the appropriate login-related system file and file system  
changes.

The system file entries created with this command have a limit of 512 characters per line.  
Specifying long arguments to several options may exceed this limit.

login is a string of printable characters that specifies the existing login name of the user. It  
must exist and may not contain a colon (:) or a newline (\n).

**OPTIONS**  

--- **-u uid**  
Specify a new UID for the user. It must be a non-negative decimal integer less than MAXUID as defined in <param.h>. Note that the UID associated with the user’s home directory is not modified with this option; a user will not have access to their home directory until the UID is manually reassigned using chown(1M).

--- **-o**  
This option allows the specified UID to be duplicated (non-unique).

--- **-g group**  
Specify an existing group’s integer ID or character-string name. It redefines the user’s primary group membership.

--- **-G group**  
Specify an existing group’s integer “ID” “,” or character string name. It redefines the user’s supplementary group membership. Duplicates between group with the -g and -G options are ignored. No more than NGROUPS_UMAX groups may be specified as defined in <param.h>.

--- **-d dir**  
Specify the new home directory of the user. It defaults to base_dir/login, where base_dir is the base directory for new login home directories, and login is the new login.

--- **-m**  
Move the user’s home directory to the new directory specified with the -d option. If the directory already exists, it must have permissions read/write/execute by group, where group is the user’s primary group.

--- **-s shell**  
Specify the full pathname of the program that is used as the user’s shell on login. The value of shell must be a valid executable file.

--- **-c comment**  
Specify a comment string. comment can be any text string. It is generally a short description of the login, and is currently used as the field for the user’s full name. This information is stored in the user’s /etc/passwd entry.

--- **-l new_logname**  
Specify a string of printable characters that specifies the new login name for the user. It may not contain a colon (:) or a newline (\n).

--- **-e expire**  
Specify the future date on which a login can no longer be used; after this
date, no user will be able to access this login. This option is useful for creating temporary logins. You may type the value of the argument expire (which is a date) in any format you like (except a Julian date). For example, you may enter 10/6/90 or October 6, 1990. A value of "" defeats the status of the expired date.

- f inactive Specify the maximum number of days allowed between uses of a login ID before that login ID is declared valid. Normal values are positive integers. A value of 0 defeats the status.

EXIT CODES
In case of an error, usermod prints an error message and exits with one of the following values:

2 The command syntax was invalid. A usage message for the usermod command is displayed.
3 An invalid argument was provided to an option.
4 The uid given with the -u option is already in use.
5 The password files contain an error. pwconv(1M) can be used to correct possible errors. See passwd(4).
6 The login to be modified does not exist, the group does not exist, or the login shell does not exist.
8 The login to be modified is in use.
9 The new_logname is already in use.
10 Cannot update the /etc/group file. Other update requests will be implemented.
11 Insufficient space to move the home directory (-m option). Other update requests will be implemented.
12 Unable to complete the move of the home directory to the new home directory.

FILES
/etc/passwd system password file
/etc/shadow system file containing users' encrypted passwords and related information
/etc/group system file containing group definitions

SEE ALSO
passwd(1), users(1B), chown(1M), groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), pwconv(1M), useradd(1M), userdel(1M), passwd(4)

NOTES
usermod only modifies passwd definitions in the local /etc/passwd and /etc/shadow files. If a network nameservice such as NIS or NIS+ is being used to supplement the local files with additional entries, usermod cannot change information supplied by the network nameservice. However usermod will verify the uniqueness of user name and user ID against the external nameservice.

modified 1 Dec 1993
### NAME

`uucheck` – check the uucp directories and permissions file

### SYNOPSIS

```
/usr/lib/uucp/uucheck [-v] [-xdebug-level]
```

### DESCRIPTION

`uucheck` checks for the presence of the `uucp` system required files and directories. `uucheck` also does error checking of the `Permissions` file (`/etc/uucp/Permissions`). `uucheck` is executed during package installation. Note: `uucheck` can only be used by the super-user or `uucp`.

### OPTIONS

- `-v`
  
  Give a detailed (verbose) explanation of how the `uucp` programs will interpret the `Permissions` file.

- `-xdebug-level`
  
  Produce debugging output on the standard output. `debug-level` is a number from 0 to 9. Higher numbers give more detailed debugging information.

### FILES

- `/etc/uucp/Devices`
- `/etc/uucp/Limits`
- `/etc/uucp/Permissions`
- `/etc/uucp/Systems`
- `/var/spool/locks/*`
- `/var/spool/uucp/*`
- `/var/spool/uucppublic/*`

### SEE ALSO

`uucp(1C)`, `uustat(1C)`, `ux(1C)`, `uucico(1M)`, `uusched(1M)`

### BUGS

The program does not check file/directory modes or some errors in the `Permissions` file such as duplicate login or machine name.

---

1M-620 modified 18 May 1993
NAME  uucico – file transport program for the uucp system

SYNOPSIS  /usr/lib/uucp/uucico [ −f ] [ −ctype ] [ −dspool-directory ] [ −interface ] [ −role-number ] [ −ssystem-name ] [ −xdebug-level ]

DESCRIPTION  uucico is the file transport program for uucp work file transfers.

OPTIONS

−f  This option is used to "force execution" of uucico by ignoring the limit on the maximum number of uucicos defined in the /etc/uucp/Limits file.

−ctype  The first field in the Devices file is the "Type" field. The −c option forces uucico to only use entries in the "Type" field that match the user specified type. The specified type is usually the name of a local area network.

−dspool-directory  This option specifies the directory spool-directory that contains the uucp work files to be transferred. The default spool directory is /var/spool/uucp.

−interface  This option defines the interface used with uucico. The interface only affects slave mode. Known interfaces are UNIX (default), TLI (basic Transport Layer Interface), and TLIS (Transport Layer Interface with Streams modules, read/write).

−role-number  The role-number 1 is used for master mode. role-number 0 is used for slave mode (default). When uucico is started by a program or cron, role-number 1 should be used for master mode.

−ssystem-name  The −s option defines the remote system (system-name) that uucico will try to contact. It is required when the role is master; system-name must be defined in the Systems file.

−xdebug-level  Both uux and uucp queue jobs that will be transferred by uucico. These jobs are normally started by the uusched scheduler, for debugging purposes, and can be started manually. For example, the shell Uutry starts uucico with debugging turned on. The debug-level is a number between 0 and 9. Higher numbers give more detailed debugging information.

FILES  /etc/uucp/Devconfig
       /etc/uucp/Devices
       /etc/uucp/Limits
       /etc/uucp/Permissions
       /etc/uucp/Sysfiles
       /etc/uucp/Systems
       /var/spool/locks/*
       /var/spool/uucp/*
       /var/spool/uucppublic/*

modified 19 May 1993

1M-621
SEE ALSO  uucp(1C), uustat(1C), uux(1C), Uutry(1M), cron(1M), uuschled(1M)
NAME

uucleanup – uucp spool directory clean-up

SYNOPSIS

/usr/lib/uucp/uucleanup [ −Ctime ] [ −Dtime ] [ −mstring ] [ −otime ] [ −ssystem ]
[ −Wtime ] [ −xdebug-level ] [ −Xtime ]

DESCRIPTION

uucleanup will scan the spool directories for old files and take appropriate action to remove them in a useful way:

- Inform the requester of send/receive requests for systems that can not be reached.
- Return undeliverable mail to the sender.
- Deliver rnews files addressed to the local system.
- Remove all other files.

In addition, there is a provision to warn users of requests that have been waiting for a given number of days (default 1 day). Note: uucleanup will process as if all option times were specified to the default values unless time is specifically set.

This program is typically started by the shell uudemon.cleanup, which should be started by cron(1M).

OPTIONS

−Ctime Remove any C. files greater or equal to time days old and send appropriate information to the requester (default 7 days).

−Dtime Remove any D. files greater or equal to time days old, make an attempt to deliver mail messages, and execute rnews when appropriate (default 7 days).

−mstring Include string in the warning message generated by the −W option. The default line is "See your local administrator to locate the problem".

−otime Delete other files whose age is more than time days (default 2 days).

−ssystem Execute for system spool directory only.

−Wtime Any C. files equal to time days old will cause a mail message to be sent to the requester warning about the delay in contacting the remote. The message includes the JOBID, and in the case of mail, the mail message. The administrator may include a message line telling whom to call to check the problem (−m option) (default 1 day).

−xdebug-level Produce debugging output on standard output. debug-level is a single digit between 0 and 9; higher numbers give more detailed debugging information. (This option may not be available on all systems.)

−Xtime Any X. files greater or equal to time days old will be removed. The D. files are probably not present (if they were, the X. could get executed). But if there are D. files, they will be taken care of by D. processing (default 2 days).

modified 19 May 1993
| FILES | /usr/lib/uucp | directory with commands used by `uucleanup` internally |
|       | /var/spool/uucp | spool directory |

**SEE ALSO** uucp(1C), uux(1C), cron(1M)
### NAME
uusched – the scheduler for the uucp file transport program

### SYNOPSIS
```
/usr/lib/uucp/uusched [-u debug-level] [-x debug-level]
```

### DESCRIPTION
**uusched** is the **uucp**(1C) file transport scheduler. It is usually started by the daemon **uudemon.hour** that is started by **cron**(1M) from an entry in user **uucp**’s crontab file:
```
11,41 ***/** etc/uucp/uucp/uudemon.hour
```

### OPTIONS
The options are for debugging purposes only. **debug-level** is a number between 0 and 9. Higher numbers give more detailed debugging information:
- `−u debug-level` The `−u debug-level` option is passed to **uucico**(1M) as `−x debug-level`.
- `−x debug-level` Outputs debugging messages from **uusched**(1M).

### FILES
```
/etc/uucp/Devices
/etc/uucp/Permissions
/etc/uucp/Systems
/var/spool/locks/*
/var/spool/uucp/*
/var/spool/uucppublic/*
```

### SEE ALSO
**uucp**(1C), **uustat**(1C), **uux**(1C), **cron**(1M), **uucico**(1M)

---

modified 19 May 1993

1M-625
NAME uuxqt – execute remote command requests

SYNOPSIS /usr/lib/uucp/uuxqt [ −ssystem ] [ −xdebug-level ]

DESCRIPTION uuxqt is the program that executes remote job requests from remote systems generated by the use of the uux command. (mail uses uux for remote mail requests). uuxqt searches the spool directories looking for execution requests. For each request, uuxqt checks to see if all the required data files are available, accessible, and the requested commands are permitted for the requesting system. The Permissions file is used to validate file accessibility and command execution permission.

There are two environment variables that are set before the uuxqt command is executed:

- UU_MACHINE is the machine that sent the job (the previous one).
- UU_USER is the user that sent the job.

These can be used in writing commands that remote systems can execute to provide information, auditing, or restrictions.

OPTIONS
- −ssystem Specifies the remote system name.
- −xdebug-level debug-level is a number from 0 to 9. Higher numbers give more detailed debugging information.

FILES /etc/uucp/Limits
/etc/uucp/Permissions
/var/spool/locks/*
/var/spool/uucp/*

SEE ALSO mail(1), uucp(1C), uustat(1C), uux(1C), uucico(1M)
NAME vmstat – report virtual memory statistics

SYNOPSIS vmstat [ −cS ] [ disks ] [ interval [ count ] ]

DESCRIPTION vmstat delves into the system and reports certain statistics kept about process, virtual memory, disk, trap and CPU activity. Note: vmstat statistics are only supported for certain devices.

Without options, vmstat displays a one-line summary of the virtual memory activity since the system was booted. If interval is specified, vmstat summarizes activity over the last interval seconds, repeating forever. If a count is given, the statistics are repeated count times. Note: interval and count do not apply to the −i and −s options. If disks are specified, they are given priority when vmstat chooses which disks to display (only four fit on a line). Common disk names are id, sd, xd, or xy, followed by a number, for example, sd2, xd0, and so forth. For more general system statistics, use sar(1), iostat(1M), or sar(1M).

See Peripherals Administration for device naming conventions for disks.

OPTIONS −c Report cache flushing statistics. By default, report the total number of each kind of cache flushed since boot time. The types are: user, context, region, segment, page, and partial-page.

−i Report the number of interrupts per device.

−s Display the total number of various system events since boot.

−S Report on swapping rather than paging activity. This option will change two fields in vmstat’s “paging” display: rather than the “re” and “mf” fields, vmstat will report “si” (swap-ins) and “so” (swap-outs).

EXAMPLES The following command displays a summary of what the system is doing every five seconds.

eexample% vmstat 5
proc memory page disk faults cpu
   r  b  w  swap  free  re  mf  pi  po  fr  de  sr  s0  s1  s2  s3  in  sy  cs  us  sy  id
0  0  0  11456  4120  1  41  19  1  3  0  2  0  4  0  0  48  112  130  4  14  82
0  0  1  10132  4280  0  44  0  0  0  0  0  23  0  0  211  230  144  3  35  62
0  0  1  10132  4616  0  20  0  0  0  0  0  19  0  0  150  172  146  3  33  64
0  0  1  10132  5292  0  9  0  0  0  0  0  21  0  0  165  105  130  1  21  78
1  1  1  10132  5496  0  5  0  0  0  0  0  23  0  0  183  92  134  1  20  79
1  0  1  10132  5564  0  25  0  0  0  0  0  18  0  0  131  231  116  4  34  62
1  0  1  10124  5412  0  37  0  0  0  0  0  22  0  0  166  179  118  1  33  67
1  0  1  10124  5236  0  24  0  0  0  0  0  14  0  0  109  243  113  4  56  39
"C
eexample%

modified 7 Mar 1994
The fields of `vmstat`'s display are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procs</td>
<td>Report the number of processes in each of the three following states:</td>
</tr>
<tr>
<td>r</td>
<td>in run queue</td>
</tr>
<tr>
<td>b</td>
<td>blocked for resources (I/O, paging, and so forth)</td>
</tr>
<tr>
<td>w</td>
<td>runnable but swapped</td>
</tr>
<tr>
<td>memory</td>
<td>Report on usage of virtual and real memory.</td>
</tr>
<tr>
<td>swap</td>
<td>amount of swap space currently available (Kbytes)</td>
</tr>
<tr>
<td>free</td>
<td>size of the free list (Kbytes)</td>
</tr>
<tr>
<td>page</td>
<td>Report information about page faults and paging activity. The information on each of the following activities is given in units per second.</td>
</tr>
<tr>
<td>re</td>
<td>page reclaims — but see the <code>-S</code> option for how this field is modified.</td>
</tr>
<tr>
<td>mf</td>
<td>minor faults — but see the <code>-S</code> option for how this field is modified.</td>
</tr>
<tr>
<td>pi</td>
<td>kilobytes paged in</td>
</tr>
<tr>
<td>po</td>
<td>kilobytes paged out</td>
</tr>
<tr>
<td>fr</td>
<td>kilobytes freed</td>
</tr>
<tr>
<td>de</td>
<td>anticipated short-term memory shortfall (Kbytes)</td>
</tr>
<tr>
<td>sr</td>
<td>pages scanned by clock algorithm</td>
</tr>
<tr>
<td>disk</td>
<td>Report the number of disk operations per second. There are slots for up to four disks, labeled with a single letter and number. The letter indicates the type of disk (s = SCSI, i = IPI, and so forth); the number is the logical unit number.</td>
</tr>
<tr>
<td>faults</td>
<td>Report the trap/interrupt rates (per second).</td>
</tr>
<tr>
<td>in</td>
<td>(non clock) device interrupts</td>
</tr>
<tr>
<td>sy</td>
<td>system calls</td>
</tr>
<tr>
<td>cs</td>
<td>CPU context switches</td>
</tr>
<tr>
<td>cpu</td>
<td>Give a breakdown of percentage usage of CPU time. On MP systems, this is an average across all processors.</td>
</tr>
<tr>
<td>us</td>
<td>user time</td>
</tr>
<tr>
<td>sy</td>
<td>system time</td>
</tr>
<tr>
<td>id</td>
<td>idle time</td>
</tr>
</tbody>
</table>

**FILES**
- `/dev/kmem`
- `/dev/ksyms`
- `/kernel/unix`

**SEE ALSO**
- `sar(1)`, `iostat(1M)`, `sar(1M)`

*Peripherals Administration*
NAME
volcopy – make an image copy of file system

SYNOPSIS
volcopy [-F FSType] [-V] [generic_options] [-o FSType-specific_options] operands

AVAILABILITY
SUNWcsr

DESCRIPTION
volcopy makes a literal copy of the file system.

operands generally include the device and volume names and are file system specific. A
detailed description of the operands can be found on the FSType-specific man pages of
volcopy.

The program requests length and density information if this is not given on the command
line or if it is not recorded on a label on the input media. If the file system is too large to
fit on one reel, volcopy prompts for additional reels. Labels of all reels are checked.
Tapes may be mounted alternatively on two or more drives. If volcopy is interrupted, it
asks if the user wants to quit or wants to escape to a shell. In the latter case, the user can
perform other operations (for example, labelit(1M)) and return to volcopy by exiting the
shell.

OPTIONS

-F Specify the FSType on which to operate. The FSType should either be
specified here or be determinable from /etc/vfstab by matching the
operands with an entry in the table. Otherwise, the default file system
type specified in /etc/default/fs will be used.

-V Echo the complete command line, but do not execute the command. The
command line is generated by using the options and arguments pro-
vided by the user and adding to them information derived from
/etc/vfstab. This option should be used to verify and validate the com-
mand line.

generic_options Options that are commonly supported by most FSType-specific com-
mand modules. The following options are available:

- a Require the operator to respond “yes” or “no” instead of
simply waiting ten seconds before the copy is made.

- s (default) invoke the DEL if wrong verification sequence.

Other options are used only with 9-track magnetic tapes:

- bpi density bits per inch
- feet size size of reel in feet
- reel num beginning reel number for a restarted copy
- buf use double-buffered I/O.

-o Specify FSType-specific options in a comma separated (without spaces)
list of suboptions and keyword-attribute pairs for interpretation by the
FSType-specific module of the command.
FILES
/etc/vfstab list of default parameters for each file system
/etc/default/fs default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs.

LOCAL: The default partition for a command if no FSType is specified.

SEE ALSO labelit(1M), vfstab(4) Manual pages for the FSType-specific modules of volcopy.

NOTES This command may not be supported for all FSTypes.
NAME
volcopy_ufs – make an image copy of a ufs file system

SYNOPSIS
volcopy [−F ufs] [generic_options] fsname srcdevice volname1 destdevice volname2

DESCRIPTION
volcopy makes a literal copy of the ufs file system using a blocksize matched to the device.
generic_options are options supported by the generic volcopy command. See volcopy(1M).
The fsname argument represents the mount point (for example, root, u1, etc.) of the file system being copied. srcdevice or destdevice is the disk partition or tape, specified using the raw device (for example, /dev/rdsk/cld0s8, /dev/rdsk/cld1s8, etc.).
The volname is the physical volume name. volname may be ‘−’ to use the existing volume name.
srcdevice and volname1 are the device and volume from which the copy of the file system is being extracted. destdevice and volname2 are the target device and volume.
fsname and volname are limited to six or fewer characters and recorded in the superblock.

FILES
/var/adm/filesave.log a record of file systems/volumes copied

SEE ALSO
cpio(1), dd(1M), labelit(1M), volcopy(1M), fs_ufs(4)

NOTES
volcopy does not support tape-to-tape copying. Use dd(1M) for tape-to-tape copying.
NAME
vold – Volume Management daemon to manage CD-ROM and floppy devices

SYNOPSIS
/usr/sbin/vold [ −n ] [ −t ] [ −v ] [ −f config-file ] [ −l log-file ]
[ −L debug-level ]

AVAILABILITY
SUNWvolu

DESCRIPTION
The Volume Management daemon, vold(), creates and maintains a file system image rooted at root-dir that contains symbolic names for floppies and CD-ROM. The default file system name is /vol.

vold reads the /etc/vold.conf configuration file upon startup. If the configuration file is modified later, vold must be told to reread the /etc/vold.conf file. Do this by entering example# kill -HUP vold_pid

OPTIONS
−n Never writeback. Volume Management updates media labels with unique information if labels are not unique. This flag keeps Volume Management from changing your media. The default setting is FALSE.
−t Dump NFS trace information to the log file. The default setting is FALSE.
−v Provide lots of status information to the log file. The default setting is FALSE (do not provide status info to log file).
−f config-file Specify an alternate configuration file. The default file is /etc/vold.conf.
−l log-file Specify an alternate log file. The default log file is /var/adm/vold.log.
−L debug-level Change the level (verbosity) of debug messages sent to the log file. The range is 0 to 99 where 0 is nothing and 99 is everything. The default level is 0.

ENVIRONMENT
vold() sets the following environment variables to aid programs which are called when events such as insert, notify, and eject occur:

VOLUME_ACTION Event that caused this program to be executed.
VOLUME_PATH Pathname of the matched regex from the vold.conf file.
VOLUME_DEVICE Device (in /vol/dev) that applies to the media.
VOLUME_NAME Name of the volume in question.
VOLUME_USER User ID of the user causing the event to occur.
VOLUME_SYMNAME Symbolic name of a device containing the volume.
VOLUME_MEDIATYPE Name of the type of media (CD-ROM or floppy)

1M-632 modified 22 Mar 1994
FILES
/etc/vold.conf  Volume Management daemon configuration file. Directs the Volume Management daemon to control certain devices, and causes events to occur when specific criteria are met.
/usr/lib/vold/*.so.1  Shared objects called by Volume Management daemon when certain actions occur.

SEE ALSO  volcanc(1), volcheck(1), volmissing(1), rmmount(1M), rmmount.conf(4), vold.conf(4), volfs(7),
NAME

wall – write to all users

SYNOPSIS

/usr/sbin/wall [-a] [filename]

AVAILABILITY

SUNWcsr

DESCRIPTION

wall reads its standard input until an end-of-file. It then sends this message to all currently logged-in users preceded by:

Broadcast Message from . . .

If filename is given, then the message is read in from that file. Normally, pseudo-terminals that do not correspond to rlogin sessions are ignored. Thus, when using a window system, the message appears only on the console window. However, -a will send the message even to such pseudo-terminals.

It is used to warn all users, typically prior to shutting down the system. The sender must be super-user to override any protections the users may have invoked (see mesg(1)).

wall runs setgid() (see setuid(2)) to the group ID tty, in order to have write permissions on other user’s terminals.

wall will detect non-printable characters before sending them to the user’s terminal. Control characters will appear as a "\"" followed by the appropriate ASCII character; characters with the high-order bit set will appear in “meta” notation. For example, \003 is displayed as ‘C’ and \372 as ‘M–z’.

ENVIRONMENT

If the LC_* variables ( LC_CTYPE, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY ) (see environ(5)) are not set in the environment, the operational behavior of wall for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables are set in the environment, the "C" (U.S. style) locale determines how wall behaves.

FILES

/dev/tty*

SEE ALSO

mesg(1), write(1), environ(5)

NOTES

"Cannot send to ..." when the open on a user’s tty file fails.
NAME
whodo – who is doing what

SYNOPSIS
/usr/sbin/whodo [ −h ] [ −l ] [ user ]

AVAILABILITY
SUNWcsr

DESCRIPTION
whodo produces formatted and dated output from information in the /var/adm/utmp,
/tmp/ps_data, and /proc/pid files.
The display is headed by the date, time, and machine name. For each user logged in, dev-
vice name, user-ID and login time is shown, followed by a list of active processes associ-
ated with the user-ID. The list includes the device name, process-ID, CPU minutes and
seconds used, and process name.

If user is specified, output is restricted to all sessions pertaining to that user.

OPTIONS
−h      Suppress the heading.
−l      Produce a long form of output. The fields displayed are: the user’s login
name, the name of the tty the user is on, the time of day the user logged in (in
hours:minutes), the idle time — that is, the time since the user last typed any-
thing (in hours:minutes), the CPU time used by all processes and their children
on that terminal (in minutes:seconds), the CPU time used by the currently active
processes (in minutes:seconds), and the name and arguments of the current
process.

EXAMPLES
The command:
ex% whodo
produces a display like this:
Tue Mar 12 15:48:03 1985
bailey

tty09 mcn 8:51
tty09 28158 0:29 sh

tty52 bdr 15:23
tty52 21688 0:05 sh
tty52 22788 0:01 whodo
tty52 22017 0:03 vi
tty52 22549 0:01 sh

xt162 lee 10:20
tty08 6748 0:01 layers
xt162 6751 0:01 sh
xt163 6761 0:05 sh
tty08 6536 0:05 sh

modified 17 Nov 1993
ENVIRONMENT

If any of the LC_ variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the operational behavior of tar(1) for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how tar behaves.

LC_CTYPE

Determines how tar handles characters. When LC_CTYPE is set to a valid value, tar can display and handle text and filenames containing valid characters for that locale. tar can display and handle Extended Unix code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. tar can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

LC_MESSAGES

Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

LC_TIME

Determines how tar handles date and time formats. In the "C" locale, date and time handling follow the U.S. rules.

FILES

/etc/passwd
/tmp/ps_data
/var/adm/utmp
/proc/pid

SEE ALSO

ps(1), tar(1), who(1), environ(5)

DIAGNOSTICS

If the PROC driver is not installed or configured or if /proc is not mounted, a message to that effect is issued and whodo will fail.

The exit status is zero on success, non-zero on failure.
NAME

ypbind – NIS binder process

SYNOPSIS

/usr/lib/netsvc/yp/ypbind [−broadcast | −ypset | −ypsetme ]

DESCRIPTION

NIS provides a simple network lookup service consisting of databases and processes. The databases are stored at the machine that runs an NIS server process. The programmatic interface to NIS is described in ypclnt(3N). Administrative tools are described in ypinit(1M), ypwhich(1), and ypset(1M). Tools to see the contents of NIS maps are described in ypcat(1), and ypmatch(1).

ypbind is a daemon process that is activated at system startup time from the startup script /etc/init.d/rpc. By default, it is invoked as ypbind −broadcast. ypbind runs on all client machines that are set up to use NIS, see sysidtool(1M).

The function of ypbind is to remember information that lets all NIS client processes on a node communicate with some NIS server process. ypbind must run on every machine which has NIS client processes. The NIS server may or may not be running on the same node, but must be running somewhere on the network. The NIS server is not supported in SunOS releases anymore, but ypbind can communicate with an NIS server, ypserv, on an earlier SunOS release or an NIS+ server in ”YP-compatibility mode”, see rpc.nisd(1M). Refer to the NOTES section in ypfiles(4) for implications of being served by such an NIS+ server.

The information ypbind remembers is called a binding — the association of a domain name with a NIS server.

The process of binding is driven by client requests. As a request for an unbound domain comes in, if started with the −broadcast option, the ypbind process broadcasts on the net trying to find an NIS server, either a ypserv process serving the domain or an rpc.nisd process in ”YP-compatibility mode” serving NIS+ directory with name the same as (case sensitive) the domain in the client request. Since the binding is established by broadcasting, there must be at least one NIS server on the net.

If started without the −broadcast option, ypbind process steps through the list of NIS servers that was created by ypinit -c (1M) for the requested domain. There must be an NIS server process on at least one of the hosts in the NIS servers file. All the hosts in the NIS servers file must be listed in /etc/hosts along with their IP addresses. Once a domain is bound by ypbind, that same binding is given to every client process on the node. The ypbind process on the local node or a remote node may be queried for the binding of a particular domain by using the ypwhich(1) command.

If ypbind is unable to speak to the NIS server process it is bound to, it marks the domain as unbound, tells the client process that the domain is unbound, and tries to bind the domain once again. Requests received for an unbound domain will wait until the requested domain is bound. In general, a bound domain is marked as unbound when the node running the NIS server crashes or gets overloaded. In such a case, ypbind will try to bind to another NIS server using the process described above.
ypbind also accepts requests to set its binding for a particular domain. The request is usually generated by the ypset(1M) command. In order for ypset to work, ypbind must have been invoked with flags −ypset or −ypsetme.

OPTIONS

−broadcast Send a broadcast datagram using UDP/IP that requests the information needed to bind to a specific NIS server. This option is analogous to ypbind with no options in earlier Sun releases and is recommended for ease of use.

−ypset Allow users from any remote machine to change the binding via the ypset command. By default, no one can change the binding. This option is really insecure.

−ypsetme Only allow root on the local machine to change the binding to a desired server via the ypset command. ypbind can verify the caller is indeed a root user by accepting such requests only on the loopback transport. By default, no external process can change the binding.

FILES

/var/yp/binding/ypdomain/ypservers
/etc/hosts

SEE ALSO

ypcat(1), ypmatch(1), ypwhich(1), ifconfig(1M), rpc.nisd(1M), ypinit(1M), ypset(1M), ypclnt(3N), hosts(4), ypfiles(4)

NOTES

ypbind supports multiple domains. The ypbind process can maintain bindings to several domains and their servers.

The −broadcast option works only on the UDP transport. It is insecure since it trusts "any" machine on the net that responds to the broadcast request and poses itself as an NIS server.
NAME
ypinit – set up NIS client

SYNOPSIS
/usr/sbin/ypinit -c

AVAILABILITY
SUNWnisu

DESCRIPTION
ypinit can be used to set up an NIS client system. You must be the super-user to run this command. This script need not be used at all if ypbind(1M) is started with the -broadcast option (it is invoked with this option from the start up script /etc/init.d/rpc).

Normally, ypinit is run only once after installing the system. It may be run whenever a new NIS server is added to the network or an existing one is decommissioned.

ypinit prompts for a list of NIS servers to bind the client to; this list should be ordered from the closest to the furthest server. Each of these NIS servers must be listed in /etc/hosts along with its IP address. ypinit stores the list in file /var/yp/binding/domain/ypservers. This file is used by ypbind when run without the -broadcast option.

OPTIONS
-c Set up a client system.

FILES
/var/yp/binding/domain/ypservers

SEE ALSO
ypbind(1M), sysinfo(2), hosts(4)

BUGS
ypinit sets up the list of NIS servers only for the current domain on the system when it is run, that is, the domain returned by the SI_SRPC_DOMAIN command to sysinfo(2). Care should be taken to ensure that this is the same as the desired domain for NIS client processes.
NAME  ypmake – rebuild NIS database

DESCRIPTION  The server for NIS version 2, formerly known as YP, is **not supported** in SunOS anymore. It has been replaced by NIS+, the new version of the Network Information Service, see nis+(1). This release only supports the client functionality of NIS, see ypclnt(3N). The client functions are either supported by the ypserv process running on a machine with an earlier version of SunOS or by the NIS+ server in "YP-compatibility" mode, see rpc.nisd(1M). See ypfiles(4) for more details.

SEE ALSO  nis+(1), rpc.nisd(1M), ypbind(1M), ypclnt(3N), ypfiles(4)
### NAME

`yppoll` – return current version of a NIS map at a NIS server host

### SYNOPSIS

```
/usr/sbin/yppoll [-d ypdomain] [-h host] mapname
```

### AVAILABILITY

SUNWnisu

### DESCRIPTION

The `yppoll` command asks a `ypserv()` process what the order number is, and which host is the master NIS server for the named map.

### OPTIONS

- `-d ypdomain` Use `ypdomain` instead of the default domain.
- `-h host` Ask the `ypserv` process at `host` about the map parameters. If `host` is not specified, the NIS server for the local host is used. That is, the default host is the one returned by `ypwhich(1)`.

### SEE ALSO

`ypwhich(1)`, `ypfiles(4)`
NAME
ypset – point ypbind at a particular server

SYNOPSIS
/usr/sbin/ypset [ −d ypdomain ] [ −h host ] server

AVAILABILITY
SUNWnisu

DESCRIPTION
In order to run ypset, ypbind must be initiated with the −ypset or −ypsetme options. See ypbind(1M). ypset tells ypbind to get NIS services for the specified ypdomain from the ypserv process running on server. If server is down, or is not running ypserv, this may not be discovered until an NIS client process tries to get a binding for the domain. At this point, the binding set by ypset will be tested by ypbind. If the binding is invalid, ypbind will attempt to rebind for the same domain.

ypset is useful for binding a client node which is not on a broadcast net, or is on a broadcast net which is not running a NIS server host. It also is useful for debugging NIS client applications, for instance where a NIS map only exists at a single NIS server host.

In cases where several hosts on the local net are supplying NIS services, it is possible for ypbind to rebind to another host even while you attempt to find out if the ypset operation succeeded. For example, you can type:

example% ypset host1
example% ypwhich
host2

which can be confusing. This is a function of the NIS subsystem’s attempt to load-balance among the available NIS servers, and occurs when host1 does not respond to ypbind because it is not running ypserv (or is overloaded), and host2, running ypserv, gets the binding.

server indicates the NIS server to bind to, and must be specified as a name or an IP address. This will work only if the node has a current valid binding for the domain in question, and ypbind has been set to allow use of ypset. In most cases, server should be specified as an IP address.

ypset tries to bind over a connectionless transport. The NIS library call, yp_all(), uses connection-oriented transport and derives the NIS server’s address based on the connectionless address supplied by ypset.

Refer to ypfies(4) for an overview of the NIS name service.

OPTIONS
−d ypdomain Use ypdomain, instead of the default domain.
−h host Set ypbind’s binding on host, instead of locally. host must be specified as a name.

SEE ALSO
ypwhich(1), ypfies(4)
**NAME**
ypxfr – transfer NIS map from a NIS server to host

**SYNOPSIS**
```
/usr/lib/netsvc/yp/ypxfr [−c] [−f] [−C tid prog server] [−d ypdomain] [−h host]
[−s ypdomain] mapname
```

**DESCRIPTION**
The **ypxfr** command moves a NIS map in the default domain for the local host to the local host by making use of normal NIS services. It creates a temporary map in the directory `/var/yp/ypdomain` (this directory must already exist; *ypdomain* is the default domain for the local host), fills it by enumerating the map’s entries, fetches the map parameters (master and order number), and loads them. It then deletes any old versions of the map and moves the temporary map to the real *mapname*.

If run interactively, **ypxfr** writes its output to the terminal. However, if it is started without a controlling terminal, and if the log file `/var/yp/ypxfr.log` exists, it appends all its output to that file. Since **ypxfr** is most often run from the privileged user’s `crontab` file, or by *ypserv*, the log file can be used to retain a record of what was attempted, and what the results were.

For consistency between servers, **ypxfr** should be run periodically for every map in the NIS database. Different maps change at different rates: a map may not change for months at a time, for instance, and may therefore be checked only once a day. Some maps may change several times per day. In such a case, you may want to check hourly for updates. A `crontab(1)` entry can be used to perform periodic updates automatically. Rather than having a separate `crontab` entry for each map, you can group commands to update several maps in a shell script. Examples (mnemonically named) are in `/usr/sbin/yp: ypxfr_1perday`, and `ypxfr_1perhour`. They can serve as reasonable first cuts.

Refer to **ypfiles(4)** for an overview of the NIS name service.

**OPTIONS**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>−c</td>
<td>Do not send a “Clear current map” request to the local <em>ypserv</em> process. Use this flag if <strong>ypserv</strong> is not running locally at the time you are running <strong>ypxfr</strong>. Otherwise, <strong>ypxfr</strong> complains that it cannot talk to the local <em>ypserv</em>, and the transfer fails.</td>
</tr>
<tr>
<td>−f</td>
<td>Force the transfer to occur even if the version at the master is not more recent than the local version.</td>
</tr>
<tr>
<td>−C tid prog server</td>
<td>This option is only for use by <strong>ypserv</strong>. When <strong>ypserv</strong> starts <strong>ypxfr</strong>, it specifies that <strong>ypxfr</strong> should call back a <strong>yppush</strong> process at the host <em>server</em>, registered as program number <em>prog</em>, and waiting for a response to transaction <em>tid</em>.</td>
</tr>
<tr>
<td>−d ypdomain</td>
<td>Specify a domain other than the default domain.</td>
</tr>
<tr>
<td>−h host</td>
<td>Get the map from <em>host</em>, regardless of what the map says the master is. If <em>host</em> is not specified, <strong>ypxfr</strong> asks the NIS service for the name of the master, and try to get the map from there. <em>host</em> must be a name.</td>
</tr>
</tbody>
</table>
−s ypdomain  Specify a source domain from which to transfer a map that should be the same across domains.

**FILES**

/var/yp/ypxfr.log  log file
/usr/sbin/yp/ypxfr_1perday  script to run one transfer per day, for use with **cron**(1M)
/usr/sbin/yp/ypxfr_1perhour  script for hourly transfers of volatile maps
/var/yp/ypdomain  NIS domain
/usr/spool/cron/crontabs/root  privileged user’s **crontab** file

**SEE ALSO**  **crontab**(1), **cron**(1M), **ypfiles**(4)
**NAME**
zdump – time zone dumper

**SYNOPSIS**
zdump [ −v ] [ −c cutoffyear ] [ zonename ... ]

**AVAILABILITY**
SUNWcsu

**DESCRIPTION**
The *zdump* command prints the current time in each *zonename* named on the command line.

**OPTIONS**
−v For each *zonename* on the command line, print the current time, the time at the lowest possible time value, the time one day after the lowest possible time value, the times both one second before and exactly at each time at which the rules for computing local time change, the time at the highest possible time value, and the time at one day less than the highest possible time value. Each line ends with `isdst=1` if the given time is Daylight Saving Time or `isdst=0` otherwise.

−c cutoffyear Cut off the verbose output near the start of the year *cutoffyear*.

**FILES**
/usr/share/lib/zoneinfo standard zone information directory

**SEE ALSO**
zic(1M), ctime(3C)
NAME  zic – time zone compiler

SYNOPSIS  zic [ −v ] [ −d directory ] [ −l localtime ] [ filename ... ]

AVAILABILITY  SUNWcsu

DESCRIPTION  zic reads text from the file(s) named on the command line and creates the time conversion information files specified in this input. If a filename is ‘−’, the standard input is read. Input lines are made up of fields. Fields are separated by any number of white space characters. Leading and trailing white space on input lines is ignored. A hash (#) indicates a comment and extends to the end of the line. White space characters and hash marks may be enclosed in double quotes (“”) if they are to be used as part of a field. Any line that is blank (after comment stripping) is ignored. Non-blank lines are expected to be of one of three types: rule lines, zone lines, or link lines.

Rule  A rule line has the form:

Rule  NAME FROM TO TYPE IN ON AT SAVE LETTER/S

For example:

Rule  USA  1969  1973  −  Apr  lastSun  2:00  1:00  D

The fields that make up a rule line are:

NAME  Gives the (arbitrary) name of the set of rules this rule is part of.

FROM  Gives the first year in which the rule applies. The word minimum (or an abbreviation) means the minimum year with a representable time value. The word maximum (or an abbreviation) means the maximum year with a representable time value.

TO  Gives the final year in which the rule applies. In addition to minimum and maximum (as above), the word only (or an abbreviation) may be used to repeat the value of the FROM field.

TYPE  Gives the type of year in which the rule applies. If TYPE is ‘−’ then the rule applies in all years between FROM and TO inclusive; if TYPE is uspres, the rule applies in U.S. Presidential election years; if TYPE is nonpres, the rule applies in years other than U.S. Presidential election years. If TYPE is something else, then zic executes the command yearistype year type to check the type of a year: an exit status of 0 means that the year is of the given type; an exit status of 1 means that the year is not of the given type.
IN  Names the month in which the rule takes effect. Month names may be abbreviated.

ON  Gives the day on which the rule takes effect. Recognized forms include:

5    the fifth of the month
lastSun  the last Sunday in the month
lastMon  the last Monday in the month
Sun>=8  first Sunday on or after the eighth
Sun<=25  last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full.
Note: There can not be spaces within the ON field.

AT  Gives the time of day at which the rule takes effect. Recognized forms include:

2 time in hours
2:00  time in hours and minutes
15:00  24-hour format time (for times after noon)
1:28:14  time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is local “wall clock” time or s if the given time is local “standard” time; in the absence of w or s, wall clock time is assumed.

SAVE  Gives the amount of time to be added to local standard time when the rule is in effect. This field has the same format as the AT field (without the w and s suffixes).

LETTER/S  Gives the “variable part” (for example, the “S” or “D” in “EST” or “EDT”) of time zone abbreviations to be used when this rule is in effect. If this field is ‘−’, the variable part is null.

Zone  A zone line has the form:

Zone  NAME  GMTOFF  RULES/SAVE  FORMAT [UNTIL]

For example:

Zone  Australia/South–west  9:30  CST  1992 Mar 15 12:00
The fields that make up a zone line are:

**NAME**
- The name of the time zone. This is the name used in creating the time conversion information file for the zone.

**GMTOFF**
- The amount of time to add to GMT to get standard time in this zone. This field has the same format as the **AT** and **SAVE** fields of rule lines; begin the field with a minus sign if time must be subtracted from GMT.

**RULES/SAVE**
- The name of the rule(s) that apply in the time zone or, alternately, an amount of time to add to local standard time. If this field is `−` then standard time always applies in the time zone.

**FORMAT**
- The format for time zone abbreviations in this time zone. The pair of characters `%s` is used to show where the “variable part” of the time zone abbreviation goes.

**UNTIL**
- The time at which the GMT offset or the rule(s) change for a location. It is specified as a year, a month, a day, and a time of day. If this is specified, the time zone information is generated from the given GMT offset and rule change until the time specified. The next line must be a “continuation” line; this has the same form as a zone line except that the string “Zone” and the name are omitted, as the continuation line will place information starting at the time specified as the **UNTIL** field in the previous line in the file used by the previous line. Continuation lines may contain an **UNTIL** field, just as zone lines do, indicating that the next line is a further continuation.

**Link**
- A link line has the form:

  Link LINK-FROM LINK-TO

For example:

  Link US/Eastern EST5EDT

The **LINK-FROM** field should appear as the **NAME** field in some zone line; the **LINK-TO** field is used as an alternate name for that zone.

Except for continuation lines, lines may appear in any order in the input.
OPTIONS

-v Complain if a year that appears in a data file is outside the range of years representable by system time values (0:00:00 AM GMT, January 1, 1970, to 3:14:07 AM GMT, January 19, 2038).

-d directory Create time conversion information files in the directory directory rather than in the standard directory /usr/share/lib/zoneinfo.

-l timezone Use the time zone timezone as local time. zic will act as if the file contained a link line of the form:

| Link | timezone | localtime |

FILES
/usr/share/lib/zoneinfo standard directory used for created files

SEE ALSO time(1), ctime(3C)

NOTES
For areas with more than two types of local time, you may need to use local standard time in the AT field of the earliest transition time’s rule to ensure that the earliest transition time recorded in the compiled file is correct.

modified 22 Jan 1993


Index

Special Characters
/devices directory
   configure — drvconfig, 1M-161

A
accept — accept print requests, 1M-20
accounting
   run daily — runacct, 1M-515
accounting commands
   — acctcms, 1M-24
   — acctcon, 1M-26
   — acctdisk, 1M-21
   — acctdusg, 1M-21
   — acctmerg, 1M-28
   — accton, 1M-21
   — acctprc, 1M-29
   — acctwtmp, 1M-21
   — closewtmp, 1M-21
   — fwtmp, 1M-199
   — utmp2wtmp, 1M-21
   — wtmpfix, 1M-199
accounting shell procedures
   — chargefee, 1M-31
   — ckpacct, 1M-31
   — dodisk, 1M-31
   — lastlogin, 1M-31
   — monacct, 1M-31
   — nulladm, 1M-31

accounting shell procedures, continued
   — prctmp, 1M-31
   — prdaily, 1M-31
   — prtacct, 1M-31
   — runacct, 1M-31
   — shutacct, 1M-31
   — startup, 1M-31
   — turnacct, 1M-31
acct — miscellaneous accounting commands,
       1M-21
acctcms — command summary from process
          accounting records, 1M-24
acctcon — create summary of connect records,
          1M-26
acctcon1 — create summary of connect records,
           1M-26
acctcon2 — create summary of connect records,
           1M-26
acctdisk — create disk usage records, 1M-21
acctdusg — compute disk usage by login, 1M-21
acctmerg — merge or add total disk accounting
            files, 1M-28
accton — turn on process accounting, 1M-21
acctprc — summary of process accounting, 1M-29
acctprc1 — summary of process accounting,
            1M-29
acctprc2 — summary of process accounting,
acctsh — shell procedures for accounting, 1M-31
acctwtmp — create connect accounting record in /var/adm/wtmp, 1M-21
adb scripts  
generate — adbgen, 1M-34
adbgen — generate adb script, 1M-34
add a new device driver to the system — add_drv, 1M-36
add_drv — add a new device driver to the system, 1M-36
add_install_client — scripts used to install the Solaris software, 1M-267
addbadsec — map out defective disk blocks, 1M-38
address resolution display and control — arp, 1M-47
admind — Distributed system administration daemon, 1M-39
administer disk space used for caching file systems with the Cache File-System (CacheFS) — cfsadmin, 1M-101
administer NIS+ aliases — aliasadm, 1M-45
admintool — system administration tool with a graphical interface, 1M-43
Database Manager, 1M-43
Host Manager, 1M-43
Printer Manager, 1M-44
Serial Port Manager, 1M-44
User Account Manager, 1M-44
aliasadm — administer NIS+ aliases, 1M-45
allocate — allocate devices, 1M-46
analyze the SunOS 4.1 client support after converting to Solaris 2.1 — discover4x, 1M-151
arp — address resolution display and control, 1M-47
ASET  
monitors or restricts accesses to system files and directories — aset, 1M-48
prints tasks status — taskstat, 1M-590
aset.restore — restore files and directories to the state before ASET was installed, 1M-53
aspppd — Asynchronous PPP Link Manager, 1M-54
aspppls — Asynchronous PPP Link Manager, 1M-54
Asynchronous PPP Link Manager — aspppd, 1M-54
audit — maintain audit trail, 1M-60
audit records  
select or merge from audit trail files — auditreduce, 1M-69
audit statistics report — auditstat, 1M-75
audit trail file  
select records from — auditreduce, 1M-69
audit_startup shell script, 1M-61
audit_warn — audit daemon warning script, 1M-62
auditconfig — get and set kernel audit parameters, 1M-64
auditd — audit daemon, 1M-67
auditreduce — select or merge audit records from audit trail files, 1M-69
auditstat — display kernel audit statistics, 1M-75
autoboot procedures — boot, 1M-270
Autofs  
automatically mount file systems — automount, 1M-77
mount/unmount request server — automountd, 1M-83
Automated Security Enhancement Tool, See ASET
automount — automatically mount file systems, 1M-77
automountd — Autofs mount/unmount request server, 1M-83
autopush — configures lists of automatically pushed STREAMS modules, 1M-84

B

Basic Security Module  
enable — bsmconv, bsmunconv, 1M-97
Basic Security Module commands  
— audit, 1M-60
Basic Security Module commands, continued
— audit_startup, 1M-61
— audit_warn, 1M-62
— auditconfig, 1M-64
— auditd, 1M-67
— auditreduce, 1M-69
— auditstat, 1M-75
bdconfig — configures the bd (buttons and dials) stream, 1M-86
boot — bootstrap procedures, 1M-88
boot — system startup procedures, 1M-270
boot parameter server — rpc.bootparamd, 1M-493
bootstrap procedures — boot, 1M-270
bootstrap PROM monitor program — monitor, 1M-342
Bourne shell
— rsh, 1M-512
broadcast message
network wall server — rpc.rwalld, 1M-500
write to all users — wall, 1M-634
write to all users over a network — rwall, 1M-517
bsmconv — enable Solaris system to use Basic Security Module, 1M-97
bsmunconv — enable Solaris system to use Basic Security Module, 1M-97

C
C compiler
create a front-end to cc command — gencc, 1M-200

character classiﬁcation generate table — chrtbl, 1M-108
character conversion generate character conversion tables — wchrtbl, 1M-108
cf
fsck_cachefs — check integrity of data cached with CacheFS, 1M-187
mount_cachefs — mount CacheFS file systems, 1M-362
cfsadmin — administer disk space used for caching file systems with the Cache File-System (CacheFS), 1M-101
cg14config — configure the cgfourteen device, 1M-104
cg14config — configure the cgfourteen device, 1M-104
clear inode — clear inode, 1M-113
closewtmp — puts a false DEAD_PROCESS record in /var/adm/wtmp file, 1M-21
cm — clear inode, 1M-113
colltbl — create collation database, 1M-114
configuration applications execute or define — sysidconfig, 1M-584

Index-3
configure, continued

- cgfourteen device — cg14config, 1M-104
- contiguous memory for sx video — sxconfig, 1M-570
- undo system configuration — sys_unconfig, 1M-580

configure device attributes — devconfig, 1M-134

configures the bd (buttons and dials) stream —

bdconfig, 1M-86

connect accounting
- acctcon, 1M-26
- fwtmp, 1M-199
- utmp2wtmp, 1M-21
- wtmpfix, 1M-199

convert4x — converts SunOS 4.x clients to work from Solaris 2.x servers, 1M-118

CPU PROM monitor
- program — monitor, 1M-342

crash — examine system memory image

cron — clock daemon, 1M-128

D

daemon, distributed system administration —

admind, 1M-39

daemons

- clock daemon — cron, 1M-128
- Internet Trivial File Transfer Protocol —

in.tftpd, 1M-252
- kernel statistics — rpc.rstatd, 1M-498
- network router discovery daemon —

in.rdisc, 1M-237
- network status monitor — statd, 1M-551
- network username server — rpc.rusersd,

1M-499
- network wall server — rpc.rwall, 1M-500
- NFS — nfsd, 1M-390
- NIS+ service — rpc.nisd, 1M-494
- remote quota — rquotad, 1M-511
- remote shell server — in.rshd, 1M-246
- RPC-based remote execution — rpc.rexd,

1M-497

daemons, continued

- server which records packets sent by spray —

rpc.sprayd, 1M-501

date

- set system date from a remote host — rdate,

1M-480

dd — convert and copy a file, 1M-130
deallocate — deallocate devices, 1M-132
debug tools

- generate adb script — adbgen, 1M-34
devattr — displays the values for a device’s attributes, 1M-133
devconfig — configure device attributes, 1M-134
device access

- verifies accessibility — getvol, 1M-209
device_maps

- display entries — dminfo, 1M-158
devices

- add, modify remove device entry from table —

putdev, 1M-469
- add, remove and change device group table —

putdgrp, 1M-472
- adds /dev entries for miscellaneous devices and pseudo-devices —

devlinks, 1M-138
- adds /dev entries for tape drives attached to the system —

tapes, 1M-589
- allocation — allocate, 1M-46
cgfourteen — configure the cgfourteen device, 1M-104
deallocation — deallocate, 1M-132
device access

- display control entries from device_maps, 1M-158
- display attributes — devattr, 1M-133
- group list — getdgrp, 1M-203
- list — getdev, 1M-201
- list_devices — list_devices, 1M-292
- lists members of a group — listdgrp,

1M-293
- name — devnm, 1M-141
- print information about disk devices —

devinfo, 1M-137
- print VTOC of a block device —

prtvtoc,
disk usage, continued
  summary — du, 1M-162

diskettes
  packages on — pkgadd, 1M-446

disks — adds /dev entries for hard disks attached
to the system, 1M-152
  access profiler — fusage, 1M-197
  partitioning and maintenance utility — format, 1M-182

diskscan — perform surface analysis, 1M-154

display
  system configuration information — prtconf, 1M-459
  system diagnostic information — prtdiag, 1M-462

Distributed File System, See DFS
dmesg — create error log from system diagnostic
  messages, 1M-157
dminfo — display device_maps entries, 1M-158

DoD Internet
  host table — gettable, 1M-206
  DoD Internet format host table, convert — htable, 1M-218

dodisk — accounting shell procedure, 1M-31

domainname — display name of current domain, 1M-160

driver statistics from a synchronous serial link,
  report — syncstat, 1M-578

drvconfig — configure /devices, 1M-161

du — summarize disk usage, 1M-162

dump the EISA NVRAM — test_eisa, 1M-591

E
edquota — edit user quotas for ufs file system, 1M-163

EEPROM display and load program — eeprom, 1M-165

encryption keys
  server for storing private keys — keyserv, 1M-284

environment variables
  convert termcap description into terminfo
description — captoinfo, 1M-98
error log
create from system diagnostic messages — dmesg, 1M-157

F
ddetach — detach a name from STREAMS-based file descriptor, 1M-170
fdisk — create or modify fixed disk partition table, 1M-171
Menu Options, 1M-171
FIFO
make FIFO special file — mkfifo, 1M-332
FIFO, make — mknod, 1M-338
file system
administer disk space used for caching file systems with the Cache File-System (CacheFS) — cfsadmin, 1M-101
change the dynamic parameters — tunefs, 1M-599
check and repair — fsck, 1M-184
check and repair ufs — fsck_ufs, 1M-190
construct — mkfs, 1M-334
construct ufs — mkfs_ufs, 1M-335
create new — newfs, 1M-384
debugger — fsdb, 1M-193, 1M-194
disk access profiler — fusage, 1M-197
display amount of used disk space occupied by ufs — df_ufs, 1M-146
display amount of used and available disk space — df, 1M-144
link and unlink files and directories — link, 1M-291
list file names and statistics — ff, 1M-176
list file names and statistics for ufs — ff_ufs, 1M-178
loopback — mount, 1M-359
make literal copy — volcopy, 1M-629
mount — mount, 1M-359, 1M-374
mount ufs — mount_ufs, 1M-372
move directory — mvdir, 1M-377
provide labels — labelit, 1M-286
provide labels for ufs — labelit_ufs, 1M-288
report processes using file or file structure — fuser, 1M-198

Index—6

file system, continued
share multiple resources — shareall, 1M-537
ufs, make image copy — volcopy_ufs, 1M-631
unmount — umount, 1M-359, 1M-374
unshare multiple resources — unshareall, 1M-537
file system consistency check and interactive repair — fsck_s5fs, 1M-188
file system type, determine — fstyp, 1M-196
File Transfer Protocol
server — in.ftpd, 1M-226
files
change ownership — chown, 1M-106
convert and copy — dd, 1M-130
firmware — bootable firmware programs and firmware commands, 1M-179
floppy, managing
— rmmount, 1M-487
floppy, mounting
— rmmount, 1M-487
flush disk activity — sync, 1M-572
fmthard — populate Volume Table of Contents on hard disks, 1M-180
format — disk partitioning and maintenance utility, 1M-182
fsck — check and repair file systems, 1M-184
fsck_cachefs — check integrity of data cached with CacheFS, 1M-187
fsck_s5fs — file system consistency check and interactive repair, 1M-188
fsck_ufs — check and repair ufs, 1M-190
fsdb — file system debugger, 1M-193
fsdb_ufs — ufs debugger, 1M-194
fsirand — install random inode generation numbers, 1M-195
fstyp — determine file system type, 1M-196
FTP
daemon on remote host — in.ftpd, 1M-226
fusage — disk access profiler, 1M-197
fuser — identify processes using file or file structure, 1M-198
fwtmp — convert connect accounting records to
ASCII, 1M-199

G

gencc — create a front-end to cc command, 1M-200
getdev — lists devices that match given criteria, 1M-201
getdgrp — lists device groups which contain devices that match given criteria, 1M-203
getent — gets a list of entries from administrative databases, 1M-205
gettable — get DoD Internet host table, 1M-206
getty — set terminal type, modes, speed, and line discipline, 1M-207
getvol — verifies device accessibility, 1M-209
GP, initialize graphics processor — gsconfig, 1M-213

G

group file
check for inconsistencies — grpck, 1M-474
group IDs
change real and effective — newgrp, 1M-387
display user and group IDs — id, 1M-219

groupadd — add a new group definition on the system, 1M-210
groupdel — delete a group definition on the system, 1M-211
groupmod — modify a group definition on the system, 1M-212

GS, initialize graphics accelerator — gsconfig, 1M-213
gsconfig — initialize cgtwelve accelerator/frame buffer, 1M-213

GT, initialize graphics accelerator — gtconfig, 1M-214
gtconfig — initialize gt Graphics Accelerator, 1M-214

H

halt — stop the processor, 1M-216

hard disks
populate Volume Table of Contents — fmt hard, 1M-180

hostconfig — configure a system’s host parameters, 1M-217

hsfs file systems
mount — mount hsfs, 1M-364

htable — convert DoD Internet format host table, 1M-218

I

I/O statistics report — iostat, 1M-274

ICMP
router discovery daemon — in.rdisc, 1M-237

id — display user and group IDs, 1M-219

ifconfig — configure network interface parameters, 1M-220

in.comsat — biff server, 1M-224

in.fingerd — remote user information server, 1M-225

in.ftpd — File Transfer Protocol daemon on remote host, 1M-226

in.named — Internet domain name server, 1M-233

in.rarpd — Reverse Address Resolution Protocol server, 1M-236

in.risc — ICMP router discovery daemon, 1M-237

in.rexed — remote execution server, 1M-239

in.rlogind — remote login server, 1M-241

in.routed — network routing daemon, 1M-243

in.rwhod — system status server, 1M-248

in.talkd — talk server, 1M-250

in.tftpd — DARPA TELNET virtual terminal protocol server, 1M-251

in.tftpd — Internet Trivial File Transfer Protocol server, 1M-252

in.tnamed — DARPA trivial name server, 1M-253

in.uucpd — UUCP server, 1M-254

incremental file system dump — ufsdump, 1M-602

inetd — Internet services daemon, 1M-255

init — process control initialization, 1M-260

initialize the Leo (ZX) Graphics Accelerator and download microcode — leoconfig, 1M-289

inode
inode, continued  
clear — ciri, 1M-113  
install — install commands, 1M-118, 1M-151,  
1M-264, 1M-266
SunOS/SVR4 — suninstall, 1M-565
install_scripts — scripts used to install the  
Solaris software, 1M-267
installboot procedures — boot, 1M-270
installf — add a file to software installation  
database, 1M-271
Internet  
biff server — in.comsat, 1M-224
DARPA TELNET virtual terminal protocol  
server — in.telnetd, 1M-251
DARPA trivial name server — in.tnamed,  
1M-253
domain name server — in.named, 1M-233
File Transfer Protocol daemon on remote host  
— in.ftpd, 1M-226
ICMP router discovery daemon — in.rdisc,  
1M-237
network routing daemon — in.routed,  
1M-243
query domain name servers — nslookup,  
1M-430, 1M-435
RARP server — in.rarpd, 1M-236
remote user information server —  
in.fingerd, 1M-225
send ICMP ECHO_REQUEST packets to net-
work hosts — ping, 1M-444
server for talk program — in.talkd, 1M-250
services daemon — inetd, 1M-255
system status server — in.rwhod, 1M-248
Trivial File Transfer Protocol server —  
in.tftp, 1M-252
Internet Control Message Protocol, See ICMP
Internet Protocol  
to Ethernet addresses — arp
Interprocess Communication  
make FIFO special file — mknod, 1M-332
iostat — report I/O statistics, 1M-274

K
kadbd — a kernel debugger, 1M-276
kdmconfig — configure or unconfigure keyboard,  
display, and mouse options, 1M-279
Kerberos authentication tickets  
generate and validate for kernel RPC —  
kerbd, 1M-281
kernel — UNIX system executable file containing  
basic operating system services, 1M-282
debugger — kadbd, 1M-276
display status of loaded modules — modload,  
1M-339
load a module — modload, 1M-340
SPARC Only, 1M-282, 1M-283
unload a module — modunload, 1M-341
kernel debugger — kadbd, 1M-276
keyserv — server for storing private encryption  
keys, 1M-284
killall — kill all active processes, 1M-285

L
labelit — provide labels for file systems, 1M-286
labelit_hsfs — provide and print labels for hsfs  
file systems, 1M-287
labelit_ufs — provide labels for ufs, 1M-288
labels for hsfs file systems, provide and print —  
labelit_hsfs, 1M-287
lastlogin — accounting shell procedure, 1M-31
leoconfig — initialize the Leo (ZX) Graphics
Accelerator and download microcode, 1M-289
link — link and unlink files and directories,  
1M-291
listDevices — list_devices, 1M-292
listdgrp — lists members of a device group,  
1M-293
listen — network listener daemon, 1M-294
lockd — network lock daemon, 1M-296
lockfs — lock file system, 1M-297
log files and system log daemon — syslogd,  
1M-588
login  
display user and group IDs — id, 1M-219
logins — list user and system login information, 1M-299
loopback file system
    mount — mount, 1M-359
lpadmin — configure LP print service, 1M-300
lpfilter — administer filters used with LP print service, 1M-311
lpforms — administer forms used with LP print service, 1M-315
lpmove — moves print requests that are queued, 1M-322
lpadmin — configure LP print service, 1M-300
lpfilter — administer filters used with LP print service, 1M-311
lpforms — administer forms used with LP print service, 1M-315
lpmove — moves print requests that are queued, 1M-322
lp sched — start LP print service, 1M-322
lp system — register remote systems with LP print service, 1M-323
lp users — set printing queue priorities, 1M-326

mail delivery server — sendmail, 1M-527
mail utilities
    biff server — in.comsat, 1M-224
make
    FIFO — mk nod, 1M-338
    FIFO special file — mfifo, 1M-332
    named pipe — mkfifo, 1M-332, 1M-338
    special file — mknod, 1M-338
makedbm — make NIS ndbm file, 1M-328
manual pages
    create cat files for — catman, 1M-99
    map out defective disk blocks — addbadsec, 1M-38
mk — remake the binary system and commands
    from source code, 1M-329
mkfifo — make FIFO special file, 1M-332
mkfile — create a file, 1M-333
mkfs — make file system, 1M-334
mkfs_ufs — construct ufs, 1M-335
mknod — make special file, 1M-338
mod info — display status of loaded kernel modules, 1M-339
mod load — load a kernel module, 1M-340
mod unload — unload a kernel module, 1M-341
monacct — accounting shell procedure, 1M-31
monetary database
    create — mon tbl, 1M-357
    monitor program — monitor, 1M-342
montbl — create monetary database, 1M-357
mount
    establish table — setmnt, 1M-531
    show all remote mounts — showmount, 1M-538
mount — mount filesystems and remote resources, 1M-359
mount hsfs file systems — mount hsfs, 1M-364
mount pcfs file systems — mount pcfs, 1M-369
mount s5 file systems — mount s5fs, 1M-370
mount_cache fs — mount CacheFS file systems, 1M-362
mount hsfs — mount hsfs file systems, 1M-364
mount nfs — mount remote NFS resources, 1M-366
mount pcfs — mount pcfs file systems, 1M-369
mount s5fs — mount s5 file systems, 1M-370
mount tmpfs — mount tmpfs, 1M-371
mount ufs — mount ufs, 1M-372
mountall — mount multiple filesystems, 1M-374
mountd — NFS mount request server, 1M-375
mouse, keyboard, display
    configure or unconfigure — kdm config, 1M-279
mp stat — report per-processor statistics, 1M-376
mv dir — move a directory, 1M-377

N
named pipe, make — mkfifo, 1M-332, 1M-338
ncheck — generate a list of path names vs i-numbers of all files on special, 1M-378
ncheck_ufs — generate a list of pathnames vs i-numbers for ufs, 1M-379
ndd — get and set driver configuration parameters, 1M-380
netstat — display network status
    network
    listener daemon — listen, 1M-294

Index—9
network, continued
lock daemon — lockd, 1M-296
test connections to hosts using ICMP — ping, 1M-444
Network File System, See NFS, See NFS
Network Information Service, see NIS
network interface parameters
configure — ifconfig, 1M-220
network listener service
administration — nlsadmin
network packets capture and inspection — snoop, 1M-542
network routing daemon — in.routed, 1M-243
network status, display — netstat
newfs — make new file system, 1M-384
newgrp — changes a user's group ID, 1M-387
newkey — create a new key in publickey database, 1M-389
NFS
  crash and recovery functions for locking services — statd, 1M-551
  create files for use as NFS mounted swap areas
    — mkfile, 1M-333
daemon — nfsd, 1M-390
display information on resources shared —
  dfmounts_nfs, 1M-148
display statistics — nfsstat, 1M-391
list available resources from remote systems —
  dfshares_nfs, 1M-150
make local filesystem available for mounting by remote systems —
  share_nfs, 1M-535
make local NFS filesystem unavailable for mounting by remote systems —
  unshare_nfs, 1M-613
mount — mount_nfs, 1M-366
mount request server — mountd, 1M-375
NFS security
  server for storing private encryption keys —
    keyserv, 1M-284
NFS, secure
  create a new key in publickey database —
    newkey, 1M-389
nfsstat — display NFS statistics, 1M-391

NIS
  binder process — ypbind, 1M-637
  make ndbm file — makedbm, 1M-328
  point binder process ypbind at a particular server —
    ypset, 1M-642
  return current version of a NIS map at a NIS server host —
    yppoll, 1M-641
  transfer NIS map from a NIS server to host —
    ypxfr, 1M-643
NIS database
  rebuild — yppmake, 1M-640
NIS+
  add /etc files and NIS maps into their corresponding NIS+ tables —
    nisaddent, 1M-399
  client and root server initialization utility —
    nisinit, 1M-407
  credential creation tool — nisaddcred, 1M-395
  display the contents of the NIS+ transaction log —
    nislog, 1M-410
  initialize a domain to store system administration information —
    nissetup, 1M-419
  nisping — ping NIS+ servers, 1M-411
  nissetup — initialize a NIS+ domain to serve clients, 1M-419
  nisstat — report NIS+ server statistics, 1M-421
  service daemon — rpc.nisd, 1M-494
  update public keys in NIS+ directory object —
    nisupdkey, 1M-423
utility to cache location information about NIS+ servers —
  nis_cachemgr, 1M-393
utility to print out the contents of the shared cache file —
  nisshowcache, 1M-420
NIS+ credentials for NIS+ principals
  initialize — nisclient, 1M-403
NIS+ servers
  set up — nisservers, 1M-417
  nisaddcred — create NIS+ credentials, 1M-395
  nisaddent — add /etc files and NIS maps into their corresponding NIS+ tables, 1M-399
  nisclient — initialize NIS+ credentials for NIS+ principals, 1M-403

Index—10
nisping — ping NIS+ servers, 1M-411
nispopulate — populate the NIS+ tables in a NIS+ domain., 1M-413
nissetup — initialize a domain to serve clients, 1M-419
nisshowcache — NIS+ utility to print out the contents of the shared cache file, 1M-420
nislookup — report NIS+ server statistics, 1M-421
nslookup — query Internet domain name servers, 1M-430
nštést — query Internet domain name servers, 1M-435
nulladm — accounting shell procedure, 1M-31

O
operating system
install SunOS/SVR4 — suninstall, 1M-565
remake the binary system and commands from source code — mk, 1M-329
save core dump — savecore, 1M-526
output system definition
load and execute — boot, 1M-88
owner of file
change — chown, 1M-106

P
packages
install, upgrade, and remove software — swmtool, 1M-569
passmgmt — password files management, 1M-438
password file
check for inconsistencies — pwck, 1M-474
passwords
installs and updates /etc/shadow with information from /etc/passwd — pwconv, 1M-475
management — passmgmt, 1M-438
pbind — control process bindings to processors, 1M-440
pcfs, continued
mount — mount_pcfs, 1M-369
per-processor statistics report — mpstat, 1M-376
perform surface analysis — diskscan, 1M-154
pfinstall — tests installation profiles, 1M-442
pkgadd — transfer software package to the system, 1M-446
pkgask — stores answers to an interactive software package, 1M-448
pkgchk — check accuracy of installation of a software package, 1M-449
pkgrm — check accuracy of installation of a software package, 1M-449
populate the NIS+ tables in a NIS+ domain — nispopulate, 1M-413
ports
add or remove a service — pmadm, 1M-453
create /dev entries and inittab entries for serial lines — ports, 1M-457
enable or disable a service — pmadm, 1M-453
install or replace a service configuration script — pmadm, 1M-453
print requested service information — pmadm, 1M-453
print requests
accept or reject requests — accept, reject, 1M-20
print service, LP
— lpmove, 1M-322
— lpsched, 1M-322
— lpshut, 1M-322
register remote systems — lpsystem, 1M-323
printer filters
add and change — lpfILTER, 1M-311
list attributes — lpfILTER, 1M-311
remove — lpfILTER, 1M-311

Index—11
printer forms
  add or change — lpforms, 1M-315
  delete — lpforms, 1M-315
  list attributes — lpforms, 1M-315
  listing the current alert — lpforms, 1M-315
  provide access — lpforms, 1M-315
  removing an alert definition — lpforms, 1M-315
  setting an alert to mount a form — lpforms, 1M-315
  terminating an active alert — lpforms, 1M-315

printer queue
  setting priorities — lpusers, 1M-326

printers
  add and change printers — lpadmin, 1M-300
  define alerts for printer faults — lpadmin, 1M-300
  mount printer wheels — lpadmin, 1M-300
  remove printers — lpadmin, 1M-300
  set or change system default destination — lpadmin, 1M-300

process accounting
  — acctcms, 1M-24
  — accton, 1M-21
  — acctprc, 1M-29

process scheduler
  administration — dispadmin, 1M-155

processes
  initialization — init
  kill all active processes — killall, 1M-285
  using file or file structure — fuser, 1M-198

program, standalone
  load and execute — boot, 1M-88

programming tools
  install — install commands, 1M-118,
  1M-151, 1M-264, 1M-266

PROM monitor program — monitor, 1M-342
  display and load program — eeprom, 1M-165

prtacct — accounting shell procedure, 1M-31

prtconf — print system configuration information, 1M-459

prtdiag — print system diagnostic information, 1M-462

prtvtoc — print the VTOC of a block device, 1M-465

psradm — set processors online or offline, 1M-467

psrinfo — print processor information, 1M-468

putdev — add, modify remove device entry from table, 1M-469

putdgrep — add, remove and change device group table, 1M-472

Q
  quick halt
    — halt, 1M-216

quota
  remote quota daemon — rquotad, 1M-511

quotas
  check file system quota for inconsistencies —
    quotacheck, 1M-478
  display a user’s disk quota and usage —
    quota, 1M-477
  displays number of blocks in filesystem currently owned by each user —
    quot, 1M-476
  summarize quotas for a file system —
    repquota, 1M-486
  turn off file system quotas — quotoff, 1M-479
  turn on file system quotas — quotaon, 1M-479

quotas, user
  edit — edquota, 1M-163

R

RARP
  server — in.rarpd, 1M-236

re-preinstall — restore a system to its original factory condition, 1M-481

real-time clock and GMT-lag management, provide
  — rtc, 1M-514

reboot — restart the operating system, 1M-483

reject — reject print requests, 1M-20

remote execution server — in.rexecd, 1M-239

remote login server — in.rlogind, 1M-241

rlogind, 1M-241

Index—12
remote magtape protocol server — rmt, 1M-489
Remote Program Load Server, See rpld
remote resources
  mount NFS — mount_nfs, 1M-366
  mount or unmount — mount, 1M-359
remote system
  make local resource unavailable for mounting — unshare, 1M-612
  set system date — rdate, 1M-480
  user information server — in.fingerd, 1M-225
remote system with debugging on, try to contact —
  Uutry, 1M-19
  uutry, 1M-19
remote systems
  execute remote command requests — uuxqt, 1M-626
  register with LP print service — lpsystem, 1M-323
  shell server — in.rshd, 1M-246
removable media mounter that automatically
  mounts a file system on a CD-ROM and floppy.
  — rmmount, 1M-487
removef — remove a file from software database, 1M-485
restore
  incremental file system restore — ufsrestore, 1M-607
Reverse Address Resolution Protocol, See RARP
RFS
  disk access profiler — fusage, 1M-197
rlogind — remote login server, 1M-241
rm_drv — remove a device driver from the system, 1M-484
rm_install_client — scripts used to install the
  Solaris software, 1M-267
rmmount — removable media mounter that
  automatically mounts a file system on a CD-
  ROM and floppy., 1M-487
rmt — remote magtape protocol server, 1M-489
root directory
  change for a command — chroot, 1M-107
route — manually manipulate routing tables,
  1M-491
RPC
  kernel statistics server — rpc.rstatd, 1M-498
  network username server — rpc.rusersd, 1M-499
  network wall server — rpc.rwall, 1M-500
  NIS+ service daemon — rpc.nisd, 1M-494
  program number to universal addresses mapping — rpcbind, 1M-502
  remote execution server — rpc.rexd, 1M-497
  remote quota daemon — rquotad, 1M-511
  report information — rpcinfo, 1M-503
  sends one-way stream of packets to host —
    spray, 1M-550
  server which records packets sent by spray —
    rpc.sprayd, 1M-501
  server, Autofs mount/unmount requests —
    automountd, 1M-83
  server, NFS mount/unmount requests —
    mountd, 1M-375
RPC, secure
  create a new key in publickey database —
    newkey, 1M-389
rpc.bootparamd — boot parameter server, 1M-493
rpc.nisd — NIS+ service daemon, 1M-494
  rpc.nisd_resolv, 1M-494
rpc.rexd — remote execution daemon, 1M-497
rpc.rstatd — kernel statistics server, 1M-498
rpc.ruserd — network username server, 1M-499
rpc.rwalld — network wall server, 1M-500
rpc.sprayd — records packets sent by spray, 1M-501
rpcbind — converts RPC program numbers to
  universal addresses, 1M-502
rpcinfo — report RPC information, 1M-503
rpld — x86 Network Booting RPL (Remote Program Load) Server, 1M-506
rquotad — remote quota server, 1M-511
rsh — the restricted shell command interpreter
rtc — provide all real-time clock and GMT-lag management, 1M-514
runacct — accounting shell procedure, 1M-31,
1M-515
rwall — write to all users over a network, 1M-517
rwall daemon
   network wall server — rpc.rwalld, 1M-500

S
s5fs
   mount — mount_s5fs, 1M-370
sac — Service Access Controller (SAC), 1M-518
sacadm — Service Access Controller administration
   SAF
      format and output port monitor-specific information — ttyadm, 1M-593
      port monitor for terminal ports — ttymon, 1M-596
savecore — save OS core dump, 1M-526
scheduler, process
   administration — dispadmin, 1M-155
scripts used to install the Solaris software —
   install_scripts, 1M-267
   add_install_client, 1M-267
   check, 1M-267
   rm_install_client, 1M-267
   setup_install_server, 1M-267
sendmail — mail delivery system, 1M-527
set serial line interface
   set operating parameters — syncinit, 1M-573
servers
   automountd — moun/unmount request server, 1M-83
   biff server — in.comsat1, 1M-224
   DARPA TELNET virtual terminal protocol server — in.telnetd, 1M-251
   DARPA trivial name server — in.tnamed, 1M-253
   in.rexed — remote execution server, 1M-239
   in.uucpd — UUCP server, 1M-254
   inetd — Internet services daemon, 1M-255
   Internet domain name server — in.named, 1M-233
   mountd — mount request server, 1M-375
   RARP server — in.rarpd, 1M-236
   servers, continued
      system status server — in.rwhod, 1M-248
      talk program server — in.talkd, 1M-250
      servers, NIS+
         location information — nis_cachemgr, 1M-393
Service Access Controller, See SAC, See SAC
Service Access Facility, See SAF
setuname — changes machine information, 1M-532
setup_install_server — scripts used to install
   the Solaris software, 1M-267
share — make local resource available for mounting by remote systems, 1M-533
share_nfs — make local NFS filesystem available
   for mounting by remote systems, 1M-535
share — multiple resources, 1M-537
shell
   remote shell server — in.rshd, 1M-246
   SHELL variable — rsh, 1M-512
shells
   the restricted shell command interpreter —
      rsh, 1M-512
showmount — display remote mounts, 1M-538
showrev — displays revision information for
   current hardware and software, 1M-539
shutacct — accounting shell procedure, 1M-31
shutdown — shutdown system, change system
   state, 1M-540
snoop — capture and inspect network packets,
   1M-542
software package
   add a file to the software installation database —
      installf, 1M-271
   check accuracy of installation — pkgchk, 1M-449
   remove a file from software database — removef, 1M-485
   removes package from the system — pkgrm, 1M-451
   stores answers to an interactive package —
      pkgask, 1M-448
spray — sends one-way stream of packets to host,
   1M-550

Index—14
startup — accounting shell procedure, 1M-31
startup procedures — boot, 1M-270
statd — network status monitor, 1M-551

statistics
audit — auditstat, 1M-75
for file system — ff, 1M-176
for ufs file system — ff, 1M-178
I/O — iostat, 1M-274
NFS, display — nfsstat, 1M-391
per-processor — mpstat, 1M-376
stop the processor — halt, 1M-216
poweroff, 1M-216

STREAMS
automatically pushed modules — autopush, 1M-84
detach a name from file descriptor — fdetach, 1M-170
error logger cleanup program — strclean, 1M-554
error logger daemon — strerr, 1M-555
port monitor for terminal ports — ttymon, 1M-596
print trace messages — strace, 1M-552
su — become super-user or another user, 1M-559
sulogin — single-user mode automatically invoked when system is first started, 1M-561
sundiag — SunOS hardware diagnostic program
suninstall — install SunOS/SVR4, 1M-565
super-user command — su, 1M-559
sulogin — single-user mode automatically invoked when system is first started, 1M-561
swap — administer the system swap areas, 1M-566
swmtool — install, upgrade and remove software packages, 1M-569
sxconfig — configure contiguous memory for sx video, 1M-570
sync — update super block, 1M-572
synchronous serial link
report driver statistics — syncstat, 1M-578
synchronous serial loopback test program — syncloop, 1M-575
syncinit — set serial line interface operating parameters., 1M-573

syncloop — synchronous serial loopback test program, 1M-575
syncstat — report driver statistics from a synchronous serial link., 1M-578
sys-unconfig — undo system configuration, 1M-580
sysdef — displays current system definition, 1M-582
sysidconfig — execute or define configuration applications, 1M-584
sysidnet — system configuration, 1M-586
sysidnis — system configuration, 1M-586
sysidroot — system configuration, 1M-586
sysidsys — system configuration, 1M-586
sysidtool — system configuration, 1M-586
syslogd — system log message daemon, 1M-588

system
hardware diagnostic program — sundiag
system activity reports — sar, 1M-524

system administration
access control lists — admintool, 1M-43
add a file to the software installation database — installf, 1M-271
administer hosts on a network — ttyhstmgr, 1M-595
control for basic administrative functions — uadmin, 1M-601
converts SunOS 4.x clients to work from Solaris 2.x servers — convert4x, 1M-118
create cat files for manual pages — catman, 1M-99
discover4x — analyze the SunOS 4.1 client support after converting to Solaris 2.1, 1M-151
get entries from administrative database — getent, 1M-205
install — install commands, 1M-264
install — install commands, 1M-266
NIS+ aliases — aliasadm, 1M-45
system databases — admintool, 1M-43
ttyhstmgr, 1M-595

system configuration — sysidtool, 1M-586
print information — prtconf, 1M-459
sysidnet, 1M-586

Index—15
system configuration — sysidtool, continued
  sysidnis, 1M-586
  sysidroot, 1M-586
  sysidsys, 1M-586
undo — sys_unconfig, 1M-580
system databases
  auto_home, 1M-43
  bootparams, 1M-43
  ethers, 1M-43
  group, 1M-43
  hosts, 1M-43
  netgroup, 1M-43
  netmasks, 1M-43
  networks, 1M-43
  passwd, 1M-43
  protocols, 1M-43
  rpc, 1M-43
  services, 1M-43
  timezone, 1M-43
system definition
  display current — sysdef, 1M-582
system diagnostic
  print information — prtdiag, 1M-462
system diagnostic messages
  error log — dmesg, 1M-157
system information
  displays revision information for current
  hardware and software — showrev, 1M-539
system log daemon — syslog, 1M-588
system memory
  examine images — crash, 1M-119
system parameters
  change value — setuname, 1M-532
System Performance Analysis Utilities Tools
  system activity report package — sar, 1M-524
  system PROM monitor program — monitor, 1M-342
system shutdown
  — halt, 1M-216
system status server — in.rwhod, 1M-248

T
tapes — adds /dev entries for tape drives attached
to the system, 1M-589
TCP/IP
  File Transfer Protocol daemon on remote host
    — in.ftpd, 1M-226
terminal
  compare or print terminfo descriptions —
    infocmp
  set type, modes, speed, and line discipline —
    getty, 1M-207
terminfo
  compiler — tic, 1M-592
test installation profiles — pfinstall, 1M-442
test_eisa — dump the EISA NVRAM, 1M-591
time zone
  compiler — zic, 1M-646
  print current time in each named on command
  line — zdump, 1M-645
timed events — cron, 1M-128
tmpfs
  mount — mount_tmpfs, 1M-371
trace messages
  STREAMS — strace, 1M-552
transfer software package to the system — pkgadd,
  1M-446
TTY ports
  maintain line settings and hunt sequences —
    sttydefs, 1M-557
ttyadm — format and output port monitor-specific
  information, 1M-593
ttyhstmgr — administer hosts on a network,
  1M-595
ttymon — port monitor for terminal ports, 1M-596
tuneefs — tuneup an existing file system, 1M-599
turnacct — accounting shell procedure, 1M-31

U
ufs
  check and repair — fsck_ufs, 1M-190
  construct file system — mkfs_ufs, 1M-335
debugger — fsdb_ufs, 1M-194
display amount of disk space — df_ufs,
efs, continued

generate a list of pathnames vs i-numbers —
   ncheck_ufs, 1M-379
incremental file system restore — ufsre-
   store, 1M-607
make image copy of file system—
   volcopy_ufs, 1M-631
mount — mount_ufs, 1M-372
provide labels for ufs — labelit_ufs,
   1M-288
ufsdump — incremental file system dump, 1M-602
umount — umount file systems and remote
   resources, 1M-359, 1M-374
unconfigure
   undo system configuration — sys_unconfig,
   1M-580
UNIX system executable file containing basic
   operating system services — kernel, 1M-282
unmount
   establish table — setmnt, 1M-531
unshare — make local resource unavailable for
   mounting by remote systems, 1M-612
unshare_nfs — make local NFS filesystem una-
   vailable for mounting by remote systems,
   1M-613
unshare — multiple resources, 1M-537
update super block — sync, 1M-572
user IDs
   administer a new user login on the system —
      useradd, 1M-614
   become super-user or another user — su,
      1M-559
   display user and group IDs — id, 1M-219
user information
   server, remote — in.fingerd, 1M-225
user quotas
   remote quota daemon — rquotad, 1M-511
useradd — administer a new user login on the sys-
   tem, 1M-614
userdel — delete a user’s login from the system,
   1M-617
usermod — modify a user’s login information on
   the system, 1M-618
users
   list login information — logins, 1M-299
   who is doing what — whodo, 1M-635
utmp2wtmp — create an entry for each user logged
   on in file /var/adm/wtmp, 1M-21
uuchec — check the uucp directories and permis-
   sions file, 1M-620
uucico — file transport program for uucp system,
   1M-621
uucleanup — uucp spool directory clean-up,
   1M-623
uucp
   check directories and permissions file —
      uuchec, 1M-620
   clean-up of spool directory — uucleanup,
      1M-623
   file transport program — uucico, 1M-621
   scheduler for file transport program —
      uusched, 1M-625
UUCP
   server — in.uucpd, 1M-254
uusched — scheduler for uucp transport program,
   1M-625
Uutry — try to contact remote system with debug-
   ging on, 1M-19
uuuqt — execute remote command requests,
   1M-626

V
virtual memory
   display statistics — vmstat, 1M-627
vmstat — display virtual memory statistics,
   1M-627
vold — Volume Management daemon to manage
   CD-ROM and floppy devices, 1M-632
Volume Management
   floppy and CD-ROM management daemon —
      vold, 1M-632
   — rmmount, 1M-487
Volume Management daemon to manage CD-ROM
   and floppy devices — vold, 1M-632
vtoc
vtoc, continued
    print VTOC of a block device — prtvtoc,
    1M-465

W
wall — write to all users, 1M-634
wchrtbl — generate wide character classification
    tables, 1M-108
whodo — who is doing what, 1M-635
wtmpfix — correct connect accounting records
    date/time stamp, 1M-199

X
x86 Network Booting RPL (Remote Program Load)
    Server — rpld, 1M-506

Y
YP
    make ndbm file — makedbm, 1M-328
    ypbind — NIS binder process, 1M-637
    ypinit — set up NIS client, 1M-639
    yppmake — rebuild NIS database, 1M-640
    yppoll — return current version of a NIS map at a
    NIS server host, 1M-641
    ypset — point NIS binder process ypbind at a
    particular server, 1M-642
    ypfxfr — transfer NIS map from a NIS server to
    host, 1M-643

Z
zdump — prints the current time in each zonename
    named on command line, 1M-645
zic — time zone compiler, 1M-646