SunOS Reference Manual

ll\J/Igﬂltain View, CA 94;043 . @ Sun SO ﬁ

O 1994 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIXO and Berkeley 4.3 BSD systems, licensed from UNIX Systems
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party
software, including font technology, in this product is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

This product or the products described herein may be protected by one or more U.S., foreign patents, or pending
applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun Logo, SunSoft, Sun Microsystems Computer Corporation and Solaris, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of
Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark.
OPEN LOOKTI is a registered trademark of Novell, Inc. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic,
SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOKO and Sunl] Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions 0 AT&T 1983-1990 and reproduced with permission from AT&T.

OVERVIEW

Preface

A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

e Section 1 describes, in alphabetical order, commands available with the
operating system.

e Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

e Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

e Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

NAME

SYNOPSIS

e Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

e Section 5 contains miscellaneous documentation such as character set tables,
etc.

e Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

e Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver—Kernel Interface (DKI).

e Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

e Section 9F describes the kernel functions available for use by device drivers.

e Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

PROTOCOL

AVAILABILITY

MT-LEVEL

DESCRIPTION

The following special characters are used in this section:

[T The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename ...".

| Separator. Only one of the arguments separated by this character can
be specified at time.

This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, AVAILABILITY indicates which package contains
the command being described on the manual page. In order to use the
command, the specified package must have been installed with the operating
system. If the package was not installed, see pkgadd(1) for information on how
to upgrade.

This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3) for more information.

This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

Preface iii

IOCTLS

OPTIONS

RETURN VALUES

ERRORS

USAGE

This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctls(2) system call is called ioctls and
generates its own heading. IOCTLS for a specific device are listed alphabetically
(on the man page for that specific device). IOCTLS are used for a particular class
of devices all which have an io ending, such as mtio(7).

This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or —1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands

Modifiers

Variables

Expressions

Input Grammar

EXAMPLES

ENVIRONMENT

FILES

SEE ALSO

DIAGNOSTICS

WARNINGS

This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%
or if the user must be super-user,
example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

This section lists references to other man pages, in-house documentation and
outside publications.

This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

Preface \Y;

NOTES

This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS

This section describes known bugs and wherever possible suggests
workarounds.

vi

Sun0S 5.4

NAME

DESCRIPTION

Overview of Driver
Entry-Point Routines
and Naming
Conventions

modified 28 Jan 1994

DDI and DKI Driver Entry Points Intro (9E)

Intro, intro — introduction to device driver entry points

Section 9E describes the entry-point routines a developer may include in a device driver.
These are called entry-point because they provide the calling and return syntax from the
kernel into the driver. Entry-points are called, for instance, in response to system calls,
when the driver is loaded, or in response to STREAMS events.

Kernel functions usable by the driver are described in section 9F.
In this section, reference pages contain the following headings:
¢ NAME describes the routine’s purpose.
e SYNOPSIS summarizes the routine’s calling and return syntax.

e INTERFACE LEVEL describes any architecture dependencies. It also indicates
whether the use of the entry point is required, optional, or discouraged.

¢ ARGUMENTS describes each of the routine’s arguments.

e DESCRIPTION provides general information about the routine.
e RETURN VALUES describes each of the routine’s return values.
e SEE ALSO gives sources for further information.

By convention, a prefix string is added to the driver routine names. For a driver with the
prefix prefix, the driver code may contain routines named prefixopen, prefixclose,
prefixread, prefixwrite, and so forth. also use the same prefix.

All routines and data should be declared as static.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and after all
other include files.

The following table summarizes the STREAMS driver entry points described in this sec-
tion.

Routine Type

put DDI/DKI
sV DDI/DKI
The following table summarizes the driver entry points described in this section.
Routine Type

_fini Solaris DDI
_info Solaris DDI
_init Solaris DDI
attach Solaris DDI
chpoll DDI/DKI
close DDI/DKI
detach Solaris DDI
dump Solaris DDI
getinfo Solaris DDI
identify Solaris DDI

9E-5

Intro (9E)

9E-6

ioctl
ks_update
mapdev_access
mapdev_dup
mapdev_free
mmap

open

print

probe

prop_op

read

segmap
strategy
tran_abort
tran_destroy_pkt
tran_dmafree
tran_getcap
tran_init_pkt
tran_reset
tran_setcap
tran_start
tran_sync_pkt
tran_tgt_free
tran_tgt_init
tran_tgt_probe
write

DDI and DKI Driver Entry Points

DDI/DKI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
DKI only
DDI/DKI
DDI/DKI
Solaris DDI
Solaris DDI
DDI/DKI
DKI only
DDI/DKI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
DDI/DKI

Sun0S 5.4

The table below lists the error codes that should be returned by a driver routine when an
error is encountered. It lists the error values in alphabetic order. All the error values are
defined in <sys/errno.h>. In the driver open(9E), close(9E), ioctl(9E), read(9E), and
write(9E) routines, errors are passed back to the user by returning the value. In the
driver strategy(9E) routine, errors are passed back to the user by setting the b_error
member of the buf(9S) structure to the error code. For STREAMS ioctl routines, errors
should be sent upstream in an M_IOCNAK message. For STREAMS read and write rou-
tines, errors should be sent upstream in an M_ERROR message. The driver print routine
should not return an error code, as the function that it calls, cmn_err(9F), is declared as
void (no error is returned).

modified 28 Jan 1994

Sun0S 5.4

modified 28 Jan 1994

DDI and DKI Driver Entry Points

Intro

(9E)

Error Use in these
Value Error Description Driver Routines (9E)
EAGAIN Kernel resources, such as the buf struc- open, ioctl, read, write,
ture or cache memory, are not available strategy
at this time (device may be busy, or the
system resource is not available).
EFAULT Aninvalid address has been passed as open, close, ioctl, read,
an argument; memory addressing error. write, strategy
EINTR Sleep interrupted by signal. open, close, ioctl, read,
write, strategy
EINVAL Aninvalid argument was passed to the open, ioctl, read, write,
routine. strategy
EIO A device error occurred; an error condi- open, close, ioctl, read,
tion was detected in a device status write, strategy
register (the 1/0 request was valid, but
an error occurred on the device).
ENXIO An attempt was made to access a device open, close, ioctl, read,
or subdevice that does not exist (one write, strategy
that is not configured); an attempt was
made to perform an invalid 1/0 opera-
tion; an incorrect minor number was
specified.
EPERM A process attempting an operation did open, ioctl, read, write,
not have required permission. close
EROFS An attempt was made to open for writ- open

ing a read-only device.

The table below cross references error values to the driver routines from which the error
values can be returned.

read, write,

open close ioctl and strategy
EAGAIN | EFAULT | EAGAIN | EAGAIN
EFAULT | EINTR EFAULT | EFAULT
EINTR EIO EINTR EINTR
EINVAL ENXIO EINVAL EINVAL
EIO EIO EIO
ENXIO ENXIO ENXIO
EPERM EPERM
EROFS

9E-7

Intro (9E)

9E-8

DDI and DKI Driver Entry Points

Name

_fini
_info
_init
attach
chpoll

close

detach

dump
getinfo
identify

ioctl
ks_update
mapdev_access
mapdev_dup
mapdev_free
mmap

open
print
probe

prop_op

put

read

segmap

srv

strategy
tran_abort
tran_destroy_pkt

tran_dmafree
tran_getcap
tran_init_pkt

tran_reset
tran_setcap
tran_start
tran_sync_pkt
tran_tgt_free

Appears on Page

_fini(9E)
_fini(9E)
_fini(9E)
attach(9E)
chpoll(9E)

close(9E)
detach(9E)
dump(9E)
getinfo(9E)
identify(9E)
ioctl(9E)
ks_update(9E)
mapdev_access(9E)
mapdev_dup(9E)
mapdev_free(9E)
mmap(9E)

open(9E)
print(9E)
probe(9E)

prop_op(9E)
put(9E)

read(9E)
segmap(9E)
srv(9E)
strategy(9E)
tran_abort(9E)
tran_init_pkt(9E)

tran_dmafree(9E)
tran_getcap(9E)
tran_init_pkt(9E)

tran_reset(9E)
tran_getcap(9E)
tran_start(9E)
tran_sync_pkt(9E)
tran_tgt_free(9E)

Sun0S 5.4

Description

loadable module configuration entry points
loadable module configuration entry points
loadable module configuration entry points
attach a device to the system

poll entry point for a non-STREAMS
character driver

relinquish access to a device

detach a device

dump memory to device during system failure
get device driver information

claim to drive a device

control a character device

dynamically update kstats

device mapping access entry point

device mapping duplication entry point
device mapping free entry point

check virtual mapping for memory mapped
device

gain access to a device

display a driver message on system console
determine if a non-self-identifying device

is present

report driver property information

receive messages from the preceding queue
read data from a device

map device memory into user space
service queued messages

perform block 170

abort a SCSI command

SCSI HBA packet preparation and
deallocation

SCSI HBA DMA deallocation entry point
get/set SCSI transport capability

SCSI HBA packet preparation and
deallocation

reset a SCSI bus or target

get/set SCSI transport capability

request to transport a SCSI command

SCSI HBA memory synchronization entry point
request to free HBA resources allocated on
behalf of a target

modified 28 Jan 1994

Sun0S 5.4 DDI and DKI Driver Entry Points Intro (9E)

tran_tgt_init tran_tgt_init(9E) request to initialize HBA resources on
behalf of a particular target

tran_tgt_probe tran_tgt_probe(9E) request to probe SCSI bus for a particular
target

write write(9E) write data to a device

modified 28 Jan 1994 9E-9

_fini (9E)

NAME

SYNOPSIS

ARGUMENTS
_info()

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

EXAMPLES

9E-10

DDI and DKI Driver Entry Points Sun0OS 5.4

_fini, _info, _init - loadable module configuration entry points

#include <sys/modctl.h>

int _fini(void);

int _info(struct modinfo Cmodinfop);
int _init(void);

modinfop A pointer to an opaque modinfo structure.

Solaris DDI specific (Solaris DDI). These entry points are required. You must write
them.

_init() initializes a loadable module. It is called before any other routine in a loadable
module. _init() returns the value returned by mod_install(9F). The module may option-
ally perform some other work before the mod_install(9F) call is performed. If the
module has done some setup before the mod_install(9F) function is called, then it should
be prepared to undo that setup if mod_install(9F) returns an error.

_info() returns information about a loadable module. _info() returns the value returned
by mod_info(9F).

_fini() prepares a loadable module for unloading. It is called when the system wants to
unload a module. If the module determines that it can be unloaded, then _fini() returns
the value returned by mod_remove(9F). Upon successful return from _fini() no other
routine in the module will be called before _init() is called.

_init() should return the appropriate error number if there is an error, else it should
return the return value from mod_install(9F).

_info() should return the return value from mod_info(9F)
_fini() should return the return value from mod_remove(9F).

#include <sys/modctl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static struct dev_ops drv_ops;

/0
OModule linkage information for the kernel.
a
static struct modldrv modldrv = {
&mod_driverops, /OType of module. This one is adriver 0
"Sample Driver",
&drv_ops /Odriver ops [

modified 27 Jan 1993

Sun0S 5.4

SEE ALSO

WARNINGS

NOTES

BUGS

modified 27 Jan 1993

DDI and DKI Driver Entry Points _fini (9E)

I3
static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL
I3
int
_init(void)
{
return (mod_install(&modlinkage));
}
int
_info(struct modinfo Cmodinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
return (mod_remove(&modlinkage));
}

add_drv(1M), mod_info(9F), mod_install(9F), mod_remove(9F), modIldrv(9S),
modlinkage(9S), modlstrmod(9S)

Writing Device Drivers

Do not change the structures referred to by the modlinkage structure after the call to
mod_install(), as the system may copy or change them.

Even though the identifiers _fini(), _info(), and _init() appear to be declared as globals,
their scope is restricted by the kernel to the module that they are defined in.

On some implementations _info() may be called before _init().

9E-11

attach (9E)

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL
DESCRIPTION

RETURN VALUES

SEE ALSO

BUGS

9E-12

DDI and DKI Driver Entry Points Sun0OS 5.4

attach — attach a device to the system

#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixattach(dev_info_t [ip, ddi_attach_cmd_t cmd)

dip A pointer to the device’s dev_info structure.

cmd Attach type. Should be set to DDI_ATTACH. Other values are reserved. The
driver should return DDI_FAILURE if reserved values are passed to it.

Solaris DDI specific (Solaris DDI). This entry point is required and must be written.

attach() is the device-specific initialization entry point. When attach() is called with cmd
set to DDI_ATTACH, all normal kernel services (such as kmem_alloc (9F)) are available
for use by the driver. Device interrupts are not blocked when attaching a device to the
system. See BUGS section below.

attach() will be called once for each instance of the device on the system. Until attach()
succeeds, the only driver entry points which may be called are open(9E) and getinfo(9E).
See the "Autoconfiguration” chapter in Writing Device Drivers. The instance number may
be obtained using ddi_get_instance(9F).

Successful returns from identify(9E) and probe(9E) are required before a call to the
driver’s attach() entry point will be made.

attach() should return:
DDI_SUCCESS 0N success.
DDI_FAILURE on failure.

identify(9E), probe(9E), ddi_add_intr(9F), ddi_create_minor_node(9F),
ddi_get_instance(9F), ddi_map_regs(9F), kmem_alloc(9F), timeout(9F)

Writing Device Drivers

Drivers which are initialized at boot time (i.e., drivers that are attached before the root
filesystem is mounted) must complete initialization without assuming that device inter-
rupts can occur. This includes the system clock; therefore, system timer services as
described in timeout(9F) cannot be assumed to be functioning correctly when this entry
point is called.

modified 3 Dec 1993

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

modified 11 Apr 1991

DDI and DKI Driver Entry Points chpoll (9E)

chpoll - poll entry point for a non-STREAMS character driver

#include <sys/types.h>
#include <sys/poll.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixchpoll(dev_t dev, short events, int anyyet, short Creventsp,

struct pollhead [ITphpp);

dev
events

anyyet

reventsp
phpp

The device number for the device to be polled.
The events that may occur. Valid events are:

POLLIN

POLLOUT
POLLPRI
POLLHUP
POLLERR
POLLRDNORM

POLLRDBAND

POLLWRNORM
POLLWRBAND

Data other than high priority data may be read without
blocking.

Normal data may be written without blocking.

High priority data may be received without blocking.
A device hangup has occurred.

An error has occurred on the device.

Normal data (priority band = 0) may be read without
blocking.

Data from a non-zero priority band may be read
without blocking

The same as POLLOUT.

Priority data (priority band > 0) may be written.

A flag that is non-zero if any other file descriptors in the pollfd array have
events pending. The poll(2) system call takes a pointer to an array of pollfd
structures as one of its arguments. See the poll(2) reference page for more

details.

A pointer to a bitmask of the returned events satisfied.
A pointer to a pointer to a pollhead structure.

This entry point is optional .
Architecture independent level 1 (DDI/DKI).

9E-13

chpoll (9E)

DESCRIPTION

RETURN VALUES

9E-14

SEE ALSO

NOTES

DDI and DKI Driver Entry Points Sun0OS 5.4

The chpoll entry point routine is used by non-STREAMS character device drivers that
wish to support polling. The driver must implement the polling discipline itself. The fol-
lowing rules must be followed when implementing the polling discipline:

1. Implement the following algorithm when the chpoll entry point is called:

if (events_are_satisfied_now) {
[reventsp = mask_of satisfied_events;

}else {
[reventsp = 0;
if (lfanyyet)
Cphpp = &my_local_pollhead_structure;
}
return (0);
2. Allocate an instance of the pollhead structure. This instance may be tied to the

per-minor data structure defined by the driver. The pollhead structure should
be treated as a “‘black box’’ by the driver. None of its fields should be referenced.
However, the size of this structure is guaranteed to remain the same across
releases.

3. Call the pollwakeup() function whenever an event of type events listed above
occur. This function should only be called with one event at a time.

chpoll() should return 0 for success, or the appropriate error number.

poll(2), pollwakeup(9F)
Writing Device Drivers

Driver defined locks should not be held across calls to this function.

modified 11 Apr 1991

Sun0S 5.4

NAME

SYNOPSIS
Block and Character

STREAMS

INTERFACE
LEVEL

ARGUMENTS
Block and Character

modified 15 Sep 1992

DDI and DKI Driver Entry Points close (9E)

close - relinquish access to a device

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixclose(dev_t dev, int flag, int otyp, cred_t Ctred_p);

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixclose(queue_t 4, int flag, cred_t Ctred_p);

Architecture independent level 1 (DDI/DKI). This entry point is required for block dev-
ices.

dev Device number.

flag File status flag, as set by the open(2) or modified by the fcntl(2) system calls.
The flag is for information only—the file should always be closed completely.
Possible values are: FEXCL, FNDELAY, FREAD, FKLYR, and FWRITE. Refer to
open(9E) for more information.

otyp Parameter supplied so that the driver can determine how many times a device
was opened and for what reasons. The flags assume the open() routine may
be called many times, but the close() routine should only be called on the last
close of a device.

OTYP_BLK close was through block interface for the device
OTYP_CHR close was through the raw/character interface for the device
OTYP_LYR close a layered process (a higher-level driver called the

close() routine of the device)
Ctred p Pointer to the user credential structure.

9E-15

close (9E)

STREAMS

DESCRIPTION

9E-16

DDI and DKI Driver Entry Points Sun0OS 5.4

Y Pointer to queue(9S) structure used to reference the read side of the driver. (A
gueue is the central node of a collection of structures and routines pointed to by a
gueue.)

flag File status flag.
Ctred_p Pointer to the user credential structure.

For STREAMS drivers, the close() routine is called by the kernel through the cb_ops(9S)
table entry for the device. (Modules use the fmodsw table.) A non-null value in the d_str
field of the cb_ops entry points to a streamtab structure, which points to a qinit(9S) con-
taining a pointer to the close routine. Non-STREAMS close routines are called directly
from the cb_ops table.

close() ends the connection between the user process and the device, and prepares the
device (hardware and software) so that it is ready to be opened again.

A device may be opened simultaneously by multiple processes and the open() driver
routine is called for each open, but the kernel will only call the close routine when the last
process using the device issues a close(2) or umount(2) system call or exits. (An excep-
tion is a close occurring with the otyp argument set to OTYP_LYR, for which a close (also
having otyp = OTYP_LYR) occurs for each open.)

In general, a close() routine should always check the validity of the minor number com-
ponent of the dev parameter. The routine should also check permissions as necessary, by
using the user credential structure (if pertinent), and the appropriateness of the flag and
otyp parameter values.

close() could perform any of the following general functions:

disable interrupts

hang up phone lines

rewind a tape

deallocate buffers from a private buffering scheme

unlock an unsharable device (that was locked in the open routine)
flush buffers

notify a device of the close

deallocate any resources allocated on open

The close() routines of STREAMS drivers and modules are called when a stream is dis-
mantled or a module popped. The steps for dismantling a stream are performed in the
following order. First, any multiplexor links present are unlinked and the lower streams
are closed. Next, the following steps are performed for each module or driver on the
stream, starting at the head and working toward the tail:

1. The write queue is given a chance to drain.
2. The close() routine is called.
3. The module or driver is removed from the stream.

modified 15 Sep 1992

Sun0S 5.4

RETURN VALUES

SEE ALSO

modified 15 Sep 1992

DDI and DKI Driver Entry Points close (9E)

close() should return 0 for success, or the appropriate error number. Return errors rarely
occur, but if a failure is detected, the driver should decide whether the severity of the
problem warrants either displaying a message on the console or, in worst cases, trigger-
ing a system panic. Generally, a failure in a close() routine occurs because a problem
occurred in the associated device.

close(2), detach(9E), open(9E)
Writing Device Drivers
STREAMS Programmer’s Guide

9E-17

detach (9E)

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

9E-18

DDI and DKI Driver Entry Points Sun0OS 5.4

detach — detach a device

#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixdetach(dev_info_t [dip, ddi_detach_cmd_t cmd)

dip A pointer to the device’s dev_info structure.

cmd Type of detach; the driver should return DDI_FAILURE if any value
other than DDI_DETACH is passed to it.

Solaris DDI specific (Solaris DDI). This entry point is required. It can be nodev.

detach() is the complement of the attach(9E) routine. It is used to remove all the states
associated with a given instance of a device node prior to the removal of that instance
from the system. The dev_info nodes that belong to a driver are removed as part of the
process of unloading a device driver from the system.

Depending on what was created in the drivers’ attach(9E) routine, this might mean cal-
ling ddi_unmap_regs() (see ddi_map_regs(9F)) to remove mappings, calling
ddi_remove_intr() (see ddi_add_intr(9F)) to unregister interrupt handlers, calling
kmem_free(9F) to free any heap allocations, and so forth. This should also include put-
ting the underlying device into a quiescent state so that it will not generate interrupts.

If detach() determines that the particular instance of the device cannot be removed when
requested, for example, because of some exceptional condition, detach() returns
DDI_FAILURE, which prevents the particular device instance from being removed. This
will also prevent the driver from being unloaded.

Drivers that set up timeout(9F) routines should ensure that they are cancelled before
returning DDI_SUCCESS from detach().

The system guarantees that the function will only be called for a particular dev_info node
after (and not concurrently with) a successful attach(9E) of that device. The system also
guarantees that detach() will only be called when there are no outstanding open(9E) calls
on the device.

DDI_SUCCESS The state associated with the given device was successfully removed.

DDI_FAILURE The operation failed or the request was not understood. The associated
state is unchanged.

This function is called from user context only.

attach(9E), ddi_add_intr(9F), ddi_map_regs(9F), kmem_free(9F), timeout(9F)
Writing Device Drivers

modified 11 Mar 1992

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

SEE ALSO

modified 1 May 1992

DDI and DKI Driver Entry Points dump (9E)

dump - dump memory to device during system failure

#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)

dev Device number.

addr address for the beginning of the area to be dumped.
blkno Block offset to dump memory to.

nblk Number of blocks to dump.

Solaris specific (Solaris DDI). This entry point is required. For drivers that do not imple-
ment dump routines, nodev should be used.

dump() is used to dump a portion of virtual address space directly to a device in the case
of system failure. The memory area to be dumped is specified by addr (base address) and
nblk (length). It is dumped to the device specified by dev starting at offset blkno. Upon
completion dump() returns the status of the transfer.

dump() is called at interrupt priority.
dump() should return 0 on success, or the appropriate error number.

Writing Device Drivers

9E-19

getinfo (9E) DDI and DKI Driver Entry Points Sun0OS 5.4

NAME getinfo — get device driver information

SYNOPSIS | #include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixgetinfo(dev_info_t [ip, ddi_info_cmd_t cmd,
void [arg, void [Tresultp);

ARGUMENTS dip Do not use.

cmd Command argument — valid command values are DDI_INFO_DEVT2DEVINFO
and DDI_INFO_DEVT2INSTANCE.

arg Command specific argument.
resultp Pointer to where the requested information is stored.

INTERFACE Solaris DDI specific (Solaris DDI). This entry point is required. You must write it.
LEVEL
DESCRIPTION getinfo() should return the pointer associated with arg when cmd is set to
DDI_INFO_DEVT2DEVINFO, or it should return the instance number associated with arg
when cmd is set to DDI_INFO_DEVT2INSTANCE. Note that the instance number is often
encoded as bits in the minor number.

RETURN VALUES | getinfo() should return:
DDI_SUCCESS o0n success.
DDI_FAILURE on failure.

EXAMPLES /CARGSUSED
static int
rd_getinfo(dev_info_t [dip, ddi_info_cmd_t infocmd, void [arg, void [(Ttesult)
{
/ONote that in this simple example

Othe minor number is the instance

Onumber.

O

devstate_t [5p;
int error = DDI_FAILURE;

switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
if ((sp =ddi_get_soft_state(statep,
getminor((dev_t) arg))) '= NULL) {
Cresultp = sp->devi;
error = DDI_SUCCESS;
}else

9E-20 modified 1 May 1992

Sun0S 5.4 DDI and DKI Driver Entry Points getinfo (9E)

Cresult = NULL;
break;

case DDI_INFO_DEVT2INSTANCE:
Cresultp = (void [) getminor((dev_t) arg);
error = DDI_SUCCESS;
break;

}

return (error);

}
SEE ALSO | Wkiting Device Drivers

modified 1 May 1992 9E-21

identify (9E)

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

EXAMPLES

SEE ALSO

WARNINGS

9E-22

DDI and DKI Driver Entry Points Sun0OS 5.4

identify — claim to drive a device

#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixidentify(dev_info_t [dip);
dip A pointer to a dev_info structure.

Solaris DDI specific (Solaris DDI). This entry point is Required. You must write it.

identify() determines whether this driver drives the device pointed to by dip.

identify() should return:
DDI_IDENTIFIED if it claims to drive this device.

DDI_NOT_IDENTIFIED
if it does not claim to drive this device.

#define XX_NAME "xx"
static int xxidentify(dev_info_t [dip)

{
if (strcemp(ddi_get_name(dip), XX_NAME) ==0) {
/Chame matches device namelJ
return(DDI_IDENTIFIED);
} else
return(DDI_NOT _IDENTIFIED);
}

attach(9E), ddi_get_name(9F), strcmp(9F)
Writing Device Drivers
This routine may be called multiple times. It may also be called at any time. The driver

should not infer anything from the the sequence or the number of times this entry point
has been called.

modified 11 Apr 1991

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE

LEVEL
DESCRIPTION

modified 29 Sep 1992

DDI and DKI Driver Entry Points ioctl (9E)

ioctl — control a character device

#include <sys/cred.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixioctl(dev_t dev, int cmd, int arg, int mode, cred_t Ctred_p, int Chval_p);

dev Device number.

cmd Command argument the driver ioctl routine interprets as the operation to be
performed.

arg Passes parameters between a user program and the driver. When used with

terminals, the argument is the address of a user program structure containing
driver or hardware settings. Alternatively, the argument may be an integer
that has meaning only to the driver. The interpretation of the argument is
driver dependent and usually depends on the command type; the kernel does
not interpret the argument.

mode Contains values set when the device was opened. Use of this mode is
optional. However, the driver may use it to determine if the device was
opened for reading or writing. The driver can make this determination by
checking the FREAD or FWRITE flags. See the flag argument description of
the open() routine for further values for the ioctl routine’s mode argument.

In some circumstances, mode is used to provide address space information
about the arg argument. See below.

cred_p Pointer to the user credential structure.

rval_p Pointer to return value for calling process. The driver may elect to set the
value which is valid only if the ioctl(9E) succeeds.

Architecture independent level 1 (DDI/DKI). This entry point is Optional.

ioctl() provides character-access drivers with an alternate entry point that can be used
for almost any operation other than a simple transfer of characters in and out of buffers.
Most often, ioctl() is used to control device hardware parameters and establish the proto-
col used by the driver in processing data.

The kernel determines that this is a character device, and looks up the entry point rou-
tines in cb_ops (9S). The kernel then packages the user request and arguments as
integers and passes them to the driver’s ioctl() routine. The kernel itself does no process-
ing of the passed command, so it is up to the user program and the driver to agree on
what the arguments mean.

9E-23

ioctl (9E)

RETURN VALUES

9E-24

SEE ALSO

NOTES

DDI and DKI Driver Entry Points Sun0OS 5.4

170 control commands are used to implement the terminal settings passed from
ttymon(1M) and stty(1), to format disk devices, to implement a trace driver for debug-
ging, and to clean up character queues. Since the kernel does not interpret the command
type that defines the operation, a driver is free to define its own commands.

Drivers that use an ioctl() routine typically have a command to “‘read’ the current ioctl()
settings, and at least one other that sets new settings. Drivers can use the mode argument
to determine if the device unit was opened for reading or writing, if necessary, by check-
ing the FREAD or FWRITE setting.

If the third argument, arg, is a pointer to a user buffer, the driver can call the copyin(9F)
and copyout(9F) functions to transfer data between kernel and user space.

Other kernel subsystems may need to call into the drivers ioctl(9E) routine. Drivers that
intend to allow their ioctl() routine to be used in this way should publish the ddi-
kernel-ioctl property on the associated devinfo node(s).

When the ddi-kernel-ioctl property is present, the mode argument is used to pass address
space information about arg through to the driver. If the driver expects arg to contain a
buffer address, and the FKIOCTL flag is set in mode, then the driver should assume that
it is being handed a kernel buffer address. Otherwise, arg may be the address of a buffer
from a user program. The driver can use ddi_copyin(9F) and ddi_copyout(9F) perform
the correct type of copy operation for either kernel or user address spaces. See the exam-
ple on ddi_copyout(9F).

To implement I/0 control commands for a driver the following two steps are required:

1. Define the 170 control command names and the associated value in the
driver’s header and comment the commands.

2. Code the ioctl routine in the driver that defines the functionality for each 170
control command name that is in the header.

The ioctl routine is coded with instructions on the proper action to take for each com-
mand. Itis commonly a switch statement, with each case definition corresponding to an
ioctl name to identify the action that should be taken. However, the command passed to
the driver by the user process is an integer value associated with the command name in
the header.

ioctl() should return 0 on success, or the appropriate error number. The driver may also
set the value returned to the calling process through rval_p.

dkio(7), fbio(7), termio(7), copyin(9F), copyout(9F), ddi_copyin(9F), ddi_copyout(9F)
Writing Device Drivers

STREAMS drivers do not have ioctl routines. The stream head converts 1/0 control
commands to M_IOCTL messages, which are handled by the driver’s put(9E) or srv(9E)
routine.

modified 29 Sep 1992

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE

LEVEL
ARGUMENTS

DESCRIPTION

RETURN VALUES

modified 27 May 1994

DDI and DKI Driver Entry Points ks _update (9E)

ks_update — dynamically update kstats

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefix_ks_update(kstat_t [ksp , int rw);
Solaris DDI specific (Solaris DDI)

ksp Pointer to a kstat(9S) structure.

rw Read/Write flag. Possible values are
KSTAT READ Update kstat structure statistics from the driver.
KSTAT_WRITE Update driver statistics from the kstat structure.

The kstat mechanism allows for an optional ks_update() function to update kstat data.
This is useful for drivers where the underlying device keeps cheap hardware statistics,
but extraction is expensive. Instead of constantly keeping the kstat data section up to
date, the driver can supply a ks_update() function which updates the kstat’s data section
on demand. To take advantage of this feature, set the ks_update field before calling
kstat_install(9F).

The ks_update() function must have the following structure:

static int
xx_kstat_update(kstat_t [Cksp, int rw)
{
if (rw == KSTAT_WRITE) {
/Oupdate the native stats from ksp->ks_data (1
/Oreturn EACCES if you don’t support this
}else {
/Oupdate ksp->ks_data from the native stats [J
}

return (0);
}

In general, the ks_update() routine may need to refer to provider-private data; for exam-
ple, it may need a pointer to the provider’s raw statistics. The ks_private field is avail-
able for this purpose. Its use is entirely at the provider’s discretion.

No kstat locking should be done inside the ks_update() routine. The caller will already
be holding the kstat’s ks_lock (to ensure consistent data) and will prevent the kstat from
being removed.

ks_update() should return
0 for success

9E-25

ks _update (9E)

9E-26

SEE ALSO

DDI and DKI Driver Entry Points

EACCES if KSTAT_WRITE is not allowed,
EIO for any other error.

kstat_create(9F), kstat_install(9F), kstat(9S)
Writing Device Drivers

Sun0S 5.4

modified 27 May 1994

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

RETURN VALUES

EXAMPLE

modified 15 Feb 1994

DDI and DKI Driver Entry Points mapdev_access (9E)

mapdev_access — device mapping access entry point

#include <sys/sunddi.h>
int prefixmapdev_access(ddi_mapdev_handle_t handle, void Ctevprivate, off _t offset);

Solaris DDI specific (Solaris DDI).

handle An opague pointer to a device mapping.
devprivate Driver private mapping data from ddi_mapdev(9F).
offset The offset within device memory at which the access occurred.

mapdev_access() is called when an access is made to a mapping that has either been
newly created with ddi_mapdev(9F) or that has been enabled with a call to
ddi_mapdev_intercept(9F).

mapdev_access() is passed the handle of the mapped object on which an access has
occurred. This handle uniquely identifies the mapping and is used as an argument to
ddi_mapdev_intercept(9F) or ddi_mapdev_nointercept(9F) to control whether or not
future accesses to the mapping will cause mapdev_access() to be called. In general,
mapdev_access() should call ddi_mapdev_intercept() on the mapping that is currently
in use and then call ddi_mapdev_nointercept() on the mapping that generated this call
to mapdev_access(). This will ensure that a call to mapdev_access() will be generated for
the current mapping next time it is accessed.

mapdev_access() must at least call ddi_mapdev_nointercept() with offset passed in in
order for the access to succeed. A request to allow accesses affects the entire page con-
taining the offset.

Accesses to portions of mappings that have been disabled by a call to
ddi_mapdev_nointercept() will not generate a call to mapdev_access(). A subsequent
call to ddi_mapdev_intercept() will enable mapdev_access() to be called again.

A non-zero return value from mapdev_access() will cause the corresponding operation
to fail. The failure may result in a SIGSEGV or SIGBUS signal being delivered to the pro-
cess.

mapdev_access() should return 0 on success, -1 if there was a hardware error, or the
return value from ddi_mapdev_intercept() or ddi_mapdev_nointercept().

The following shows an example of managing a device context that is one page in length.
ddi_mapdev_handle_t cur_hdl,
static int

xxmapdev_access(ddi_mapdev_handle_t handle, void [Hevprivate,
off_t offset)

{

int err;

9E-27

mapdev_access (9E) DDI and DKI Driver Entry Points Sun0OS 5.4

/Oenable calls to mapdev_access for the current mapping O
if (cur_hdl '=NULL) {
if ((err = ddi_mapdev_intercept(cur_hdl, off, 0)) = 0)
return (err);

}

/O0Switch device context - device dependentld

/O0Make handle the new current mapping O
cur_hdl = handle;

/0

ODisable callbacks and complete the access for the

Omapping that generated this callback.
a

return (ddi_mapdev_nointercept(handle, off, 0));
}

CONTEXT | This function is called from user context only.

SEE ALSO mmap(2), mapdev_dup(9E), mapdev_free(9E), segmap(9E), ddi_mapdev(9F),
ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F), ddi_mapdev_ctl(9S),
Writing Device Drivers

9E-28 modified 15 Feb 1994

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

RETURN VALUES

EXAMPLE

CONTEXT

SEE ALSO

modified 28 Feb 1994

DDI and DKI Driver Entry Points mapdev_dup (9E)

mapdev_dup — device mapping duplication entry point

#include <sys/sunddi.h>

int prefixmapdev_dup(ddi_mapdev_handle_t handle, void [tevprivate,
ddi_mapdev_handle_t new_handle, void [Thew_devprivatep);

Solaris DDI specific (Solaris DDI).

handle The handle of the mapping that is being duplicated.
devprivate Driver private mapping data from the mapping that is being duplicated.
new_handle An opague pointer to the duplicated device mapping.

new_devprivatep A pointer to be filled in by the driver with the driver private mapping
data for the duplicated device mapping.

mapdev_dup() is called when a device mapping is duplicated such as through fork(2).
mapdev_dup() is expected to generate new driver private data for the new mapping, and
set new_devprivatep to point to it. new_handle is the handle of the new mapped object.

A non-zero return value from mapdev_dup() will cause the corresponding operation,
such as fork() to fail.

mapdev_dup() returns 0 for success or the appropriate error number on failure.

static int
xxmapdev_dup(ddi_mapdev_handle_t handle, void [(devprivate,
ddi_mapdev_handle_t new_handle, void [(Thew_devprivate)

{
struct xxpvtdata Cpvtdata;

/OAllocate a new private data structure [J
pvtdata = kmem_alloc(sizeof (struct xxpvtdata), KM_SLEEP);

/OCopy the old data to the new - device dependent¥

/OReturn the new data [J
Chew_pvtdata = pvtdata;

return (0);

}

This function is called from user context only.
fork(2), mmap(2), mapdev_access(9E), mapdev_free(9E), segmap(9E), ddi_mapdev(9F),

ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F), ddi_mapdev_ctl(9S),
Wrkiting Device Drivers

9E-29

mapdev_free (9E)

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

EXAMPLE

CONTEXT

SEE ALSO

9E-30

DDI and DKI Driver Entry Points Sun0OS 5.4

mapdev_free — device mapping free entry point

#include <sys/sunddi.h>
void prefixmapdev_free(ddi_mapdev_handle_t handle, void Cdevprivate);

Solaris DDI specific (Solaris DDI).

handle An opague pointer to a device mapping.
devprivate Driver private mapping data from ddi_mapdev(9F).

mapdev_free() is called when a mapping created by ddi_mapdeVv(9F) is being destroyed.
mapdev_free() receives the handle of the mapping being destroyed and a pointer to the
driver private data for this mapping in devprivate.

The mapdev_free() routine is expected to free any resources that were allocated by the
driver for this mapping.

static void
xxmapdev_free(ddi_mapdev_handle_t hdl, void [pvtdata)

{
/O0Destroy the driver private data - Device dependent [1

kmem_free(pvtdata, sizeof (struct xxpvtdata));

}

This function is called from user context only.

mmap(2), munmap(2), exit(2), mapdev_access(9E), mapdev_dup(9E), segmap(9E),
ddi_mapdev(9F), ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F),
ddi_mapdev_ctl(9S)

Writing Device Drivers

modified 15 Feb 1994

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE

LEVEL
DESCRIPTION

RETURN VALUES

modified 7 Jun 1993

DDI and DKI Driver Entry Points mmap (9E)

mmap - check virtual mapping for memory mapped device

#include <sys/types.h>
#include <sys/cred.h>
#include <sys/mman.h>
#include <sys/vm.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixmmap(dev_t dev, off_t off, int prot);

dev Device whose memory is to be mapped.
off Offset within device memory at which mapping begins.

prot A bit field that specifies the protections this page of memory will receive. Possible
settings are:

PROT_READ Read access will be granted.
PROT_WRITE Write access will be granted.
PROT _EXEC Execute access will be granted.
PROT_USER User-level access will be granted.
PROT_ALL All access will be granted.

Architecture independent level 1 (DDI/DKI).

The mmap() entry point is a required entry point for character drivers supporting
memory-mapped devices. A memory mapped device has memory that can be mapped
into a process’s address space. The mmap(2) system call, when applied to a character
special file, allows this device memory to be mapped into user space for direct access by
the user application.

An mmap() routine checks if the offset is within the range of pages supported by the
device. For example, a device that has 512 bytes of memory that can be mapped into user
space should not support offsets greater than 512. If the offset does not exist, then -1 is
returned. If the offset does exist, mmap() returns the value returned by
hat_getkpfnum(9F) for the page at offset off in the device’s memory.

mmap() should only be supported for memory-mapped devices. See the segmap(9E)
reference page for further information on memory-mapped device drivers.

If the protection and offset are valid for the device, the driver should return the value
returned by hat_getkpfnum(9F), for the page at offset off in the device’s memory. If not,
-1 should be returned.

9E-31

mmap (9E) DDI and DKI Driver Entry Points Sun0OS 5.4

SEE ALSO mmap(2), hat_getkpfnum(9F), segmap(9E)
Writing Device Drivers

9E-32 modified 7 Jun 1993

Sun0S 5.4

NAME

SYNOPSIS
Block and Character

STREAMS

ARGUMENTS
Block and Character

modified 13 Jan 1993

DDI and DKI Driver Entry Points open(9E)

open — gain access to a device

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixopen(dev_t [devp, int flag, int otyp, cred_t Ctred_p);

#include <sys/file.h>
#include <sys/stream.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixopen(queue_t [fy, dev_t [devp, int oflag, int sflag, cred_t Ctred_p);

devp
flag

otyp

Pointer to a device number.

A bit field passed from the user program open(2) system call that instructs the
driver on how to open the file. Valid settings are:

FEXCL Open the device with exclusive access; fail all other attempts to open
the device.

FNDELAY
Open the device and return immediately (do not block the open even
if something is wrong).

FREAD
Open the device with read-only permission (if ORed with FWRITE,
then allow both read and write access)

FWRITE
Open a device with write-only permission (if ORed with FREAD, then
allow both read and write access)

Parameter supplied so that the driver can determine how many times a device
was opened and for what reasons.

For OTYP_BLK and OTYP_CHR, the open() routine may be called many times,
but the close(9E) routine is called only when the last reference to a device is
removed. If the device is accessed through file descriptors, this is by a call to
close(2) or exit(2). If the device is accessed through memory mapping, this is by
a call to munmap(2) or exit(2).

For OTYP_LYR, there is exactly one close(9E) for each open() called. This per-
mits software drivers to exist above hardware drivers and removes any ambi-
guity from the hardware driver regarding how a device is used.

9E-33

open (9E)

STREAMS

INTERFACE
LEVEL

DESCRIPTION

9E-34

DDI and DKI Driver Entry Points Sun0OS 5.4

OTYP_BLK
Open occurred through block interface for the device

OTYP_CHR
Open occurred through the raw/character interface for the device

OTYP_LYR
Open a layered process. This flag is used when one driver calls
another driver’s open (9E) or close (9E) routine. The calling driver
will make sure that there is one layered close for each layered open.
This flag applies to both block and character devices.

cred_p Pointer to the user credential structure.

q A pointer to the read queue.

devp Pointer to a device number. For STREAMS modules, devp always points to the
device number associated with the driver at the end (tail) of the stream.

oflag Valid oflag values are FEXCL, FNDELAY, FREAD, and FWRITE, the same as
those listed above for flag. For STREAMS modules, oflag is always set to 0.

sflag Valid values are as follows:

CLONEOPEN
Indicates that the open routine is called through the clone driver. The
driver should return a unique device number.

MODOPEN
Modules should be called with sflag set to this value. Modules should
return an error if they are called with sflag set to a different value.
Drivers should return an error if they are called with sflag set to this
value.

0 Indicates a driver is opened directly, without calling the clone driver.
cred_p Pointer to the user credential structure.

Architecture independent level 1 (DDI/DKI). This entry point is Required, but it can be
nulldev(9F).

The driver’s open() routine is called by the kernel during an open(2) or a mount(2) on
the special file for the device. The routine should verify that the minor number com-
ponent of Cdevp is valid, that the type of access requested by otyp and flag is appropriate
for the device, and, if required, check permissions using the user credentials pointed to
by cred_p.

The open() routine is passed a pointer to a device number so that the driver can change
the minor number. This allows drivers to dynamically create minor instances of the dev-
ice. An example of this might be a pseudo-terminal driver that creates a new pseudo-
terminal whenever it is opened. A driver that chooses the minor number dynamically,
normally creates only one minor device node in attach(9E) with
ddi_create_minor_node(9F), then changes the minor number component of Chevp using

modified 13 Jan 1993

Sun0S 5.4 DDI and DKI Driver Entry Points open(9E)

makedevice(9F) and getmajor(9F). The driver needs to keep track of available minor
numbers internally.

Cdevp = makedevice(getmajor(Cdevp), new_minor);
RETURN VALUES | The open() routine should return 0 for success, or the appropriate error number.

SEE ALSO exit(2), mmap(2), mount(2), munmap(2), open(2), attach(9E), close(9E), Intro(9E),
ddi_create_minor_node(9F), getmajor(9F), getminor(9F), makedevice(9F)
Wrkiting Device Drivers

STREAMS Programmer’s Guide

WARNINGS Do not attempt to change the major number.

modified 13 Jan 1993 9E-35

print(9E)

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

SEE ALSO

9E-36

DDI and DKI Driver Entry Points Sun0OS 5.4

print — display a driver message on system console

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixprint(dev_t dev, char [&tr);

dev Device number.
str Pointer to a character string describing the problem.

Architecture independent level 1 (DDI/DKI). This entry point is Required for block dev-
ices.

The print() routine is called by the kernel when it has detected an exceptional condition
(such as out of space) in the device. To display the message on the console, the driver
should use the cmn_err(9F) kernel function. The driver should print the message along
with any driver specific information.

The print() routine should return 0 for success, or the appropriate error number. The
print routine can fail if the driver implemented a non-standard print() routine that
attempted to perform error logging, but was unable to complete the logging for whatever
reason.

cmn_err(9F)
Writing Device Drivers

modified 15 Sep 1992

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

SEE ALSO

modified 18 Nov 1992

DDI and DKI Driver Entry Points probe (9E)

probe - determine if a non-self-identifying device is present

#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static int prefixprobe(dev_info_t [Hip);
dip Pointer to the device’s dev_info structure.

Solaris DDI specific (Solaris DDI). This entry point is Required for non-self-identifying
devices. You must write it for such devices. For self-identifying devices, nulldev(9F)
should be specified in the dev_ops(9S) structure if a probe routine is not necessary.

probe() determines whether the device corresponding to dip actually exists and is a valid
device for this driver. probe() is called after identify(9E) and before attach(9E) for a
given dip. For example, the probe() routine can map the device registers using
ddi_map_regs(9F) then attempt to access the hardware using ddi_peek(9F) and/or
ddi_poke(9F) and determine if the device exists. Then the device registers should be
unmapped using ddi_unmap_regs(9F).

probe() should only probe the device — it should not create or change any software state.
Device initialization should be done in attach(9E).

For a self-identifying device, this entry point is not necessary. However, if a device exists
in both self-identifying and non-self-identifying forms, a probe() routine can be provided
to simplify the driver. ddi_dev_is_sid(9F) can then be used to determine whether
probe() needs to do any work. See ddi_dev_is_sid(9F) for an example.

DDI_PROBE_SUCCESS if the probe was successful.

DDI_PROBE_FAILURE if the probe failed.

DDI_PROBE_DONTCARE if the probe was unsuccessful, yet attach(9E) should still be
called.

DDI_PROBE_PARTIAL if the instance is not present now, but may be present in the
future.

attach(9E), identify(9E), ddi_dev_is_sid(9F), ddi_map_regs(9F), ddi_peek(9F),
ddi_poke(9F), nulldev(9F), dev_ops(9S)

Writing Device Drivers

9E-37

prop_op (9E)

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

9E-38

DDI and DKI Driver Entry Points Sun0OS 5.4

prop_op - report driver property information

#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixprop_op(dev_t dev, dev_info_t [Hip, ddi_prop_op_t prop_op, int flags, char
Chame, caddr_t valuep, int Clengthp)

dev Device number associated with this device.
dip A pointer to the device information structure for this device.
prop_op Property operator. Valid operators are:

PROP_LEN:

Get property length only. (valuep unaffected)
PROP_LEN_AND_VAL_BUF:

Get length and value into caller’s buffer. (valuep used as input)
PROP_LEN_AND_VAL_ALLOC:

Get length and value into allocated buffer. (valuep returned as

pointer to pointer to allocated buffer)

flags The only possible flag value is:
DDI_PROP_DONTPASS: Don’t pass request to parent if property not found.

name Pointer to name of property to be interrogated.

valuep If prop_op is PROP_LEN_AND_VAL_BUF, this should be a pointer to the users
buffer. If prop_op is PROP_LEN_AND_VAL_ALLOC, this should be the address
of a pointer.

lengthp On exit, Oengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUF then before calling prop_op(), lengthp should
point to an int that contains the length of callers buffer.

Solaris DDI specific (Solaris DDI). This entry point is Required, but it can be
ddi_prop_op(9F).

prop_op() is an entry point which reports the values of certain "properties” of the driver
or device to the system. Each driver must have an xxprop_op entry point, but most
drivers which do not need to create or manage their own properties can use
ddi_prop_op() for this entry point. Then the driver can use ddi_prop_create(9F) to
create properties for its device.

modified 15 Dec 1993

Sun0S 5.4

RETURN VALUES

EXAMPLE

SEE ALSO

modified 15 Dec 1993

DDI and DKI Driver Entry Points prop_op (9E)

prop_op() should return;

DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Prop explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate memory. lengthp

has the correct property length.

DDI_PROP_BUF_TOO_SMALL Property found, but the supplied buffer is too small.

lengthp has the correct property length.

static int
xxprop_op(dev_t dev, dev_info_t [dip, ddi_prop_op_t prop_op,

{

}

int flags, char Chame, caddr_t valuep, int (lengthp)

int instance;
struct xxstate [Xsp;

if (dev == DDI_DEV_T_ANY)
goto skip;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_PROP_NOTFOUND);

if (Istrcmp(name, "nblocks™)) {
ddi_prop_modify(dev, dip, "nblocks", flags,
&xsp->nblocks, sizeof(int));

/0 other cases... O
skip:

return (ddi_prop_op(dev, dip, prop_op, flags, name,
valuep, lengthp));

ddi_prop_create(9F), ddi_prop_op(9F)
Writing Device Drivers

9E-39

put (9E)

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

9E-40

DDI and DKI Driver Entry Points Sun0OS 5.4

put — receive messages from the preceding queue

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixrput(queue_t [, mblk_t Cmp); /Oread side [
int prefixwput(queue_t Ctj, mblk_t Cimp); /Owrite side OO

q Pointer to the queue(9S) structure.
mp Pointer to the message block.

Architecture independent level 1 (DDI/DKI). This entry point is Required for
STREAMS.

The primary task of the put() routine is to coordinate the passing of messages from one
gueue to the next in a stream. The put() routine is called by the preceding stream com-

ponent (stream module, driver, or stream head). put() routines are designated “‘write”
or “‘read” depending on the direction of message flow.

With few exceptions, a streams module or driver must have a put() routine. One excep-
tion is the read side of a driver, which does not need a put() routine because there is no
component downstream to call it. The put() routine is always called before the
component’s corresponding srv(9E) (service) routine, and so put() should be used for the
immediate processing of messages.

A put() routine must do at least one of the following when it receives a message:

° pass the message to the next component on the stream by calling the putnext(9F)
function

° process the message, if immediate processing is required (for example, to handle
high priority messages)

° enqueue the message (with the putq(9F) function) for deferred processing by the

service srv(9E) routine

Typically, a put() routine will switch on message type, which is contained in the db_type
member of the datab structure pointed to by mp. The action taken by the put() routine
depends on the message type. For example, a put() routine might process high priority
messages, enqueue normal messages, and handle an unrecognized M_IOCTL message
by changing its type to M_IOCNAK (negative acknowledgement) and sending it back to
the stream head using the greply(9F) function.

modified 12 Nov 1992

Sun0S 5.4 DDI and DKI Driver Entry Points put(9E)

The putq(9F) function can be used as a module’s put() routine when no special process-
ing is required and all messages are to be enqueued for the srv (9E) routine.

put routines do not have user context.
RETURN VALUES Ignored.

SEE ALSO | srv(9E), putctl(9F), putctl1(9F), putnext(9F), putnextctl(9F), putnextctl1(9F), putq(9F),
qreply(9F), streamtab(9S)

Wrkiting Device Drivers

STREAMS Programmer’s Guide

modified 12 Nov 1992 9E-41

read (9E) DDI and DKI Driver Entry Points Sun0OS 5.4

NAME read — read data from a device

SYNOPSIS | #include <sys/types.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixread(dev_t dev, struct uio Clio_p, cred_t Ctred_p);

ARGUMENTS dev Device number.

uio_p Pointer to the uio(9S) structure that describes where the data is to be stored in
user space.

cred_p Pointer to the user credential structure for the 1/0 transaction.

INTERFACE | Architecture independent level 1 (DDI/DKI). This entry point is Optional.
LEVEL
DESCRIPTION The driver read() routine is called indirectly through cb_ops(9S) by the read(2) system
call. The read() routine should check the validity of the minor number component of dev
and the user credential structure pointed to by cred_p (if pertinent). The read() routine
should supervise the data transfer into the user space described by the uio(9S) structure.

RETURN VALUES | The read() routine should return 0 for success, or the appropriate error number.

SEE ALSO read(2), write(9E), cb_ops(9S), uio(9S)
Writing Device Drivers

9E-42 modified 19 Nov 1992

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

modified 7 Jun 1993

DDI and DKI Driver Entry Points segmap (9E)

segmap — map device memory into user space

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/vm.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixsegmap(dev_t dev, off_t off, struct as Casp, caddr_t [addrp, off _t len,
unsigned int prot, unsigned int maxprot, unsigned int flags, cred_t Ctred_p);

dev
off
asp

addrp

len
prot

maxprot

flags

cred_p

Device whose memory is to be mapped.
Offset within device memory at which mapping begins.

Pointer to the address space into which the device memory should be
mapped.

Pointer to the address in the address space to which the device memory
should be mapped.

Length (in bytes) of the memory to be mapped.

A bit field that specifies the protections. Possible settings are:
PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being done as a
result of a mmap(2) system call).
PROT_ALL All access is desired.
Maximum protection flag possible for attempted mapping (the
PROT_WRITE bit may be masked out if the user opened the special file
read-only). If (maxprot & prot) != prot then there is an access violation.
Flags indicating type of mapping. Possible values re:
MAP_SHARED
Changes should be shared.
MAP_PRIVATE
Changes are private.
MAP_FIXED The user specified an address in Caddrp rather than letting
the system pick an address.

Pointer to the user credentials structure.

Architecture independent level 2 (DKI only).

9E-43

segmap (9E) DDI and DKI Driver Entry Points Sun0OS 5.4

DESCRIPTION The segmap() entry point is an optional routine for character drivers that support
memory mapping. The mmap(2) system call, when applied to a character special file,
allows device memory to be mapped into user space for direct access by the user applica-
tion (no kernel buffering overhead is required).

Typically, a character driver that needs to support the mmap(2) system call supplies
either a single mmap(9E) entry point, or both an mmap (9E) and a segmap() entry point
routine (see the mmap(9E) reference page). If no segmap() entry point is provided for the
driver, the default kernel segmap() routine is called to perform the mapping.

A driver for a memory-mapped device would provide a segmap() entry point if it:

° requires the mapping to be done through a virtual memory (VM) segment driver
other than the default seg_dev driver provided by the kernel
. needs to control the selection of the user address at which the mapping occurs in

the case where the user did not specify an address in the mmap(2) system call
Among the responsibilities of a segmap() entry point are:

° Select a segment driver and check the memory map flags for appropriateness to
the segment driver. For example, the seg_dev segment driver does not support
memory maps that are marked MAP_PRIVATE (copy-on-write).

° Verify that the range to be mapped makes sense in the context of the device (do
the offset and length make sense for the device memory that is to be mapped).
Typically, this task is performed by calling the mmap(9E) entry point.

° If MAP_FIXED is not set in flags, obtain a user address at which to map. Other-
wise, unmap any existing mappings at the user address specified.
° Perform the mapping and return the error status if it fails.

RETURN VALUES | The segmap() routine should return 0 if the driver is successful in performing the
memory map of its device address space into the specified address space. An error
number should be returned on failure. For example, valid error numbers would be
ENXIO if the offset/length pair specified exceeds the limits of the device memory, or
EINVAL if the driver detects an invalid type of mapping attempted.

SEE ALSO mmap(2), mmap(9E)
Writing Device Drivers

9E-44 modified 7 Jun 1993

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

modified 12 Nov 1992

DDI and DKI Driver Entry Points srv(9E)

srv — service queued messages

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixrsrv(queue_t [4); /Oread side [

int prefixwsrv(queue_t [fy); /Owrite side [
q Pointer to the queue(9S) structure.

Architecture independent level 1 (DDI/DKI). This entry point is Required for
STREAMS.

The optional service (srv()) routine may be included in a STREAMS module or driver for
many possible reasons, including:

° to provide greater control over the flow of messages in a stream

° to make it possible to defer the processing of some messages to avoid depleting
system resources

° to combine small messages into larger ones, or break large messages into smaller
ones

° to recover from resource allocation failure. A module’s or driver’s put(9E) rou-

tine can test for the availability of a resource, and if it is not available, enqueue
the message for later processing by the srv routine.

A message is first passed to a module’s or driver’s put(9E) routine, which may or may
not do some processing. It must then either;

° Pass the message to the next stream component with putnext(9F).
° If a srv routine has been included, it may call putq(9F) to place the message on
the queue

Once a message has been enqueued, the STREAMS scheduler controls the service
routine’s invocation. The scheduler calls the service routines in FIFO order. The
scheduler cannot guarantee a maximum delay srv routine to be called except that it will
happen before any user level process are run.

Every stream component (stream head, module or driver) has limit values it uses to
implement flow control. Each component should check the tunable high and low water
marks to stop and restart the flow of message processing. Flow control limits apply only
between two adjacent components with srv routines.

STREAMS messages can be defined to have up to 256 different priorities to support
requirements for multiple bands of data flow. Ata minimum, a stream must distinguish
between normal (priority zero) messages and high priority messages (such as

9E-45

srv (9E)

RETURN VALUES

SEE ALSO

WARNINGS

9E-46

DDI and DKI Driver Entry Points Sun0OS 5.4

M_IOCACK). High priority messages are always placed at the head of the srv routine’s
gueue, after any other enqueued high priority messages. Next are messages from all
included priority bands, which are enqueued in decreasing order of priority. Each prior-
ity band has its own flow control limits. If a flow controlled band is stopped, all lower
priority bands are also stopped.

Once the STREAMS scheduler calls a srv routine, it must process all messages on its
gueue. The following steps are general guidelines for processing messages. Keep in
mind that many of the details of how a srv routine should be written depend of the
implementation, the direction of flow (upstream or downstream), and whether it is for a
module or a driver.

1. Use getq(9F) to get the next enqueued message.

2. If the message is high priority, process (if appropriate) and pass to the next
stream component with putnext(9F).

3. If it is not a high priority message (and therefore subject to flow control),

attempt to send it to the next stream component with a srv routine. Use
bcanputnext(9F) to determine if this can be done.

4. If the message cannot be passed, put it back on the queue with putbq(9F). If it
can be passed, process (if appropriate) and pass with putnext().

Ignored.

put(9E), bcanput(9F), bcanputnext(9F), canput(9F), canputnext(9F), getq(9F), putbq(9F),
putnext(9F), putq(9F), queue(9S)

Writing Device Drivers

STREAMS Programmer’s Guide

Each stream module must specify a read and a write service (srv()) routine. If a service
routine is not needed (because the put() routine processes all messages), a NULL pointer
should be placed in module’s qinit(9S) structure. Do not use nulldev(9F) instead of the
NULL pointer. Use of nulldev(9F) for a srv() routine may result in flow control errors.

modified 12 Nov 1992

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

SEE ALSO

modified 15 Oct 1993

DDI and DKI Driver Entry Points strategy (9E)

strategy — perform block 1/0

#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixstrategy(struct buf [hp);
bp Pointer to the buf(9S) structure.

Architecture independent level 1 (DDI/DKI). This entry point is required for block dev-
ices.

The strategy() routine is called indirectly (through cb_ops(9S)) by the kernel to read and
write blocks of data on the block device. strategy() may also be called directly or
indirectly to support the raw character interface of a block device (read(9E), write(9E)
and ioctl(9E)). The strategy() routine’s responsibility is to set up and initiate the transfer.

The strategy() routine should always return 0. On an error condition, it should OR the
b_flags member of the buf(9S) structure with B_ERROR, set the b_error member to the
appropriate error value, and call biodone(9F). Note that a partial transfer is not con-
sidered to be an error.

ioctl(9E), read(9E), write(9E), biodone(9F), buf(9S), cb_ops(9S)
Writing Device Drivers

9E-47

tran_abort (9E)

NAME

SYNOPSIS

INTERFACE

LEVEL
ARGUMENTS

DESCRIPTION

RETURN VALUES

SEE ALSO

NOTES

9E-48

DDI and DKI Driver Entry Points Sun0OS 5.4

tran_abort — abort a SCSI command

#include <sys/scsi/scsi.h>
int prefixtran_abort(struct scsi_address [ap, struct scsi_pkt [pkt);

Solaris architecture specific (Solaris DDI).

ap Pointer to a scsi_address(9S) structure.
pkt Pointer to a scsi_pkt(9S) structure.

The tran_abort() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver’s attach(9E) to point to an HBA entry point to be called when a target driver
calls scsi_abort(9F).

tran_abort() should attempt to abort the command pkt that has been transported to the
HBA. If pktis NULL, the HBA driver should attempt to abort all outstanding packets for
the target/logical unit addressed by ap.

Depending on the state of a particular command in the transport layer, the HBA driver
may not be able to abort the command.

While the abort is taking place, packets transported into the transported layer may or
may not be aborted.

For each packet successfully aborted, tran_abort() must set the pkt_reason to
CMD_ABORTED, and pkt_statistics must be ORed with STAT_ABORTED.

tran_abort() must return:
1 on success or partial success.
0 on failure.

attach(9E), scsi_abort(9F), scsi_hba_attach(9F), scsi_address(9S), scsi_hba_tran(9S),
scsi_pkt(9S)

Writing Device Drivers

If pkt_reason already indicates that an earlier error had occurred, tran_abort() should not
overwrite pkt_reason with CMD_ABORTED.

modified 1 Nov 1993

Sun0S 5.4 DDI and DKI Driver Entry Points tran_dmafree (9E)

NAME | tran_dmafree — SCSI HBA DMA deallocation entry point

SYNOPSIS | #include <sys/scsi/scsi.h>
void prefixtran_dmafree(struct scsi_address [ap, struct scsi_pkt [pkt);

INTERFACE Solaris architecture specific (Solaris DDI).
LEVEL
ARGUMENTS | ap A pointer to a scsi_address(9S) structure.

pkt A pointer to a scsi_pkt(9S) structure.

DESCRIPTION The tran_dmafree() vector in the scsi_hba_tran(9S) structure must be initialized during
the HBA driver’s attach(9E) to point to an HBA entry point to be called when a target
driver calls scsi_dmafree(9F).

tran_dmafree() must deallocate any DMA resources previously allocated to this pkt in a
call to tran_init_pkt(). tran_dmafree() should not free the structure pointed to by pkt
itself.

SEE ALSO | tran_destroy_ pkt(9E), tran_init_pkt(9E), scsi_dmaget(9F), scsi_dmafree(9F),
scsi_init_pkt(9F), scsi_hba_attach(9F), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

NOTES | Atargetdriver may call tran_dmafree() on packets for which no DMA resources were
allocated.

modified 1 Nov 1993 9E-49

tran_getcap (9E)

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

RETURN VALUES

SEE ALSO

9E-50

DDI and DKI Driver Entry Points Sun0OS 5.4

tran_getcap, tran_setcap — get/set SCSI transport capability

#include <sys/scsi/scsi.h>
int prefixtran_getcap(struct scsi_address [ap, char Ctap, int whom);
int prefixtran_setcap(struct scsi_address [ap, char Ctap, int value, int whom);

Solaris architecture specific (Solaris DDI).

ap Pointer to the scsi_address(9S) structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Specifies whether all targets or only the specified target is affected.

The tran_getcap() and tran_setcap() vectors in the scsi_hba_tran(9S) structure must be
initialized during the HBA driver’s attach(9E) to point to HBA entry points to be called
when a target driver calls scsi_ifgetcap(9F) and scsi_ifsetcap(9F).

tran_getcap() is called to get the current value of a capability specific to features pro-
vided by the HBA hardware or driver. The name of the capability cap is the NULL ter-
minated capability string.

If whom is non-zero, the request is for the current value of the capability defined for the
target specified by the scsi_address(9S) structure pointed to by ap; otherwise, the request
is for the current value of the capability defined for the HBA driver or hardware itself

tran_setcap() is called to set the value of the capability cap to the value of value. If whom
is non-zero, the capability should be set for the target specified by the scsi_address(9S)
structure pointed to by ap; otherwise, the capability should be set for the HBA driver or
hardware itself.

A device may support only a subset of the defined capabilities.
Refer to scsi_ifsetcap(9F) and scsi_ifgetcap(9F) for the list of defined capabilities.

HBA drivers should use scsi_hba_lookup_capstr(9F) to match cap against the canonical
capability strings.

tran_setcap() must return 1 if the capability was successfully set to the new value, 0 if the
HBA driver does not support changing the capability, and -1 if the capability was not
defined.

tran_getcap() must return the current value of a capability or -1 if the capability was not
defined.

attach(9E), scsi_hba_attach(9F), scsi_hba_lookup_capstr(9F), scsi_ifgetcap(9F),

scsi_ifsetcap(9F), scsi_hba_tran(9S)
Writing Device Drivers

modified 1 Nov 1993

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

tran_init_pkt()

modified 27 May 1994

DDI and DKI Driver Entry Points tran_init_pkt(9E)

tran_init_pkt, tran_destroy pkt — SCSI HBA packet preparation and deallocation

#include <sys/scsi/scsi.h>

struct scsi_pkt [prefixtran_init_pkt(struct scsi_address [Cap, struct scsi_pkt [pkt,
struct buf [bp, int cmdlen, int statuslen, int tgtlen, int flags, int (Ctallback)(caddr _t),
caddr_t arg);

void prefixtran_destroy_ pkt(struct scsi_address [ap, struct scsi_pkt [pkt);

Solaris architecture specific (Solaris DDI).

ap Pointer to a scsi_address(9S) structure.

pkt Pointer to a scsi_pkt(9S) structure allocated in an earlier call, or NULL.

bp Pointer to a buf(9S) structure if DMA resources are to be allocated for the pkt,
or NULL.

cmdlen The required length for the SCSI command descriptor block (CDB) in bytes.
statuslen The required length for the SCSI status completion block (SCB) in bytes.

tgtlen The length of the packet private area within the scsi_pkt to be allocated on
behalf of the SCSI target driver.

flags flags for creating the packet.

callback Pointer to either NULL_FUNC or SLEEP_FUNC.

arg always NULL.

The tran_init_pkt() and tran_destroy_ pkt() vectors in the scsi_hba_tran structure must
be initialized during the HBA driver’s attach(9E) to point to HBA entry points to be
called when a target driver calls scsi_init_pkt(9F) and scsi_destroy_ pkt(9F).

tran_init_pkt() is the entry point into the HBA which is used to allocate and initialize a
scsi_pkt structure on behalf of a SCSI target driver. If pkt is NULL, the HBA driver must
use scsi_hba_pkt_alloc(9F) to allocate a new scsi_pkt structure.

If bp is non-NULL, the HBA driver must allocate appropriate DMA resources for the pkt,
for example, via ddi_dma_buf_setup(9F).

If the PKT_CONSISTENT bit is set in flags, the buffer was allocated by
scsi_alloc_consistent_buf(9F). For packets marked with PKT_CONSISTENT the HBA
driver must synchronize any cached data transfers before calling the target driver’s com-
mand completion callback.

If the PKT_DMA_PARTIAL bit is set in flags, the HBA driver should set up partial data
transfers, such as setting the DDI_DMA_PARTIAL bit in the flags argument if interfaces
such as ddi_dma_buf _setup(9F) are used.

9E-51

tran_init_pkt(9E)

tran_destroy_pkt()

RETURN VALUES

NOTES

SEE ALSO

9E-52

DDI and DKI Driver Entry Points Sun0OS 5.4

The contents of scsi_address(9S) pointed to by ap are copied into the pkt_address field of
the scsi_pkt(9S) by scsi_hba_pkt_alloc(9F).

tgtlen is the length of the packet private area in the scsi_pkt structure to be allocated on
behalf of the SCSI target driver.

statuslen is the required length for the SCSI status completion block. If the requested
status length is greater than or equal to sizeof(struct scsi_arq_status) and the
auto_rgsense capability has been set, automatic request sense is enabled for this packet.
If the status length is less than sizeof(struct scsi_arg_status), automatic request sense
must be disabled for this pkt.

cmdlen is the required length for the SCSI command descriptor block.

Note: tgtlen, statuslen, and cmdlen are used only when the HBA driver allocates the
scsi_pkt(9S); in other words, when pkt is NULL.

callback indicates what the allocator routines should do when resources are not available:
NULL_FUNC Do not wait for resources. Return a NULL pointer.
SLEEP_FUNC Wait indefinitely for resources.

tran_destroy_pkt() is the entry point into the HBA that must free all of the resources that
were allocated to the scsi_pkt(9S) structure during tran_init_pkt().

tran_init_pkt() must return a pointer to a scsi_pkt(9S) structure on success, or NULL on
failure.

If pkt is NULL on entry, and tran_init_pkt() allocated a pkt via scsi_hba_pkt_alloc(9F)
but was unable to allocate DMA resources, tran_init_pkt() must free the pkt via
scsi_hba_pkt_free(9F) before returning NULL.

If a DMA allocation request fails with DDI_DMA_NOMAPPING, the B_ERROR flag should
be set in bp, and the b_error field should be set to EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, the B_ERROR flag should be
set in bp, and the b_error field should be set to EINVAL.

attach(9E), tran_sync_pkt(9E), scsi_destroy_pkt(9F), scsi_hba_attach(9F),
scsi_hba_pkt_alloc(9F), scsi_hba_pkt_free(9F), scsi_init_pkt(9F), buf(9S),
scsi_address(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Wrkiting Device Drivers

modified 27 May 1994

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

RETURN VALUES

SEE ALSO

NOTES

modified 1 Nov 1993

DDI and DKI Driver Entry Points tran_reset (9E)

tran_reset — reset a SCSI bus or target

#include <sys/scsi/scsi.h>
int prefixtran_reset(struct scsi_address [ap, int level);

Solaris architecture specific (Solaris DDI).

ap Pointer to the scsi_address(9S) structure.
level The level of reset required.

The tran_reset() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver’s attach(9E) to point to an HBA entry point to be called when a target driver
calls scsi_reset(9F).

tran_reset() must reset the SCSI bus or a SCSI target as specified by level.
level must be one of the following:

RESET_ALL reset the SCSI bus.

RESET_TARGET reset the target specified by ap.

tran_reset should set the pkt_reason field of all outstanding packets in the transport layer
associated with each target that was successfully reset to CMD_RESET and the
pkt_statistics field must be ORed with either STAT_BUS_RESET or STAT_DEV_RESET.

The HBA driver should use a SCSI Bus Device Reset Messsage to reset a target device.

Packets that are in the transport layer but not yet active on the bus should be returned
with pkt_reason set to CMD_RESET, and pkt_statistics OR’ed with STAT_ABORTED.

tran_reset() should return:
1 on success.
0 on failure.

attach(9E), ddi_dma_buf_setup(9F), scsi_reset(9F), scsi_hba_attach(9F),
scsi_address(9S), scsi_hba_tran(9S)

Writing Device Drivers

If pkt_reason already indicates that an earlier error had occurred for a particular pkt,
tran_reset() should not overwrite pkt_reason with CMD_RESET.

9E-53

tran_start (9E)

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

9E-54

DDI and DKI Driver Entry Points Sun0OS 5.4

tran_start — request to transport a SCSI command

#include <sys/scsi/scsi.h>
int prefixtran_start(struct scsi_address [ap, struct scsi_pkt [pkt);

Solaris architecture specific (Solaris DDI).

pkt Pointer to the scsi_pkt(9S) structure that is about to be transferred.
ap Pointer to a scsi_address(9S) structure.

The tran_start() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver’s attach(9E) to point to an HBA entry point to be called when a target driver
calls scsi_transport(9F).

tran_start() must perform the necessary operations on the HBA hardware to transport
the SCSI command in the pkt structure to the target/logical unit device specified in the
pkt structure.

If the flag FLAG_NOINTR is set in pkt_flags in pkt, tran_start() must run the command
without interrupts, and should not return until the command has been completed. The
command completion callback pkt_comp in pkt must not be called for commands with
FLAG_NOINTR set, since the return is made directly to the function invoking
scsi_transport(9F).

When the flag FLAG_NOINTR is not set, tran_start() must queue the command for execu-
tion on the hardware and return immediately. The member pkt_comp in pkt indicates a
callback routine to be called upon command completion.

Refer to scsi_pkt(9S) for other bits in pkt_flags for which the HBA driver may need to
adjust how the command is managed.

If the auto_rgsense capability has been set, and the status length allocated in
tran_init_pkt(9E) is greater than or equal to sizeof(struct scsi_arg_status), automatic
request sense is enabled for this pkt. If the command terminates in a Check Condition,
the HBA driver must arrange for a Request Sense command to be transported to that
target/logical unit, and the members of the scsi_arq_status structure pointed to by
pkt_scbp updated with the results of this Request Sense command before the HBA driver
completes the command pointed by by pkt.

The member pkt_time in pkt is the maximum number of seconds in which the command
should complete. A pkt_time of zero means no timeout should be performed.

For a command which has timed out, the HBA driver must perform some recovery
operation to clear the command in the target, typically an Abort Msg, or a Device or Bus
Reset. The pkt_reason member of the timed-out command should be set to
CMD_TIMEOUT, and pkt_statistics OR’ed with STAT_TIMEOUT. If the HBA driver can
successfully recover from the timeout, pkt_statistics must also be OR’ed with one of
STAT_ABORTED, STAT_BUS_RESET or STAT_DEV_RESET, as appropriate. This informs
the target driver that timeout recovery has already been successfully accomplished for

modified 27 May 1994

Sun0S 5.4

modified 27 May 1994

DDI and DKI Driver Entry Points tran_start (9E)

the timed-out command. The pkt_comp completion callback, if not NULL, must also be
called at the conclusion of the timeout recovery.

If the timeout recovery was accomplished with an Abort Tag message, only the timed-out
command is affected, and the command must be returned with pkt_statistics OR’ed with
STAT_ABORTED and STAT_TIMEOUT.

If the timeout recovery was accomplished with an Abort message, all commands active in
that target are affected. All such active commands must be returned with pkt_reason
CMD_TIMEOUT, and pkt_statistics OR’ed with STAT_TIMEOUT and STAT_ABORTED.

If the timeout recovery was accomplished with a Device Reset, all commands in the tran-
sport layer for this target are affected. Commands active in the target must be returned
with pkt_reason set to CMD_TIMEOUT, and pkt_statistics OR’ed with STAT DEV_RESET
and STAT_TIMEOUT. Commands queued for the device but not yet active should be
returned with pkt_reason set to CMD_RESET and pkt_statistics OR’ed with
STAT_ABORTED.

If the timeout recovery was accomplished with a Bus Reset. all commands in the tran-
sport layer are affected. Commands active on the target on which the timeout occurred
must be returned with pkt_reason set to CMD_TIMEOUT and pkt_statistics OR’ed with
STAT_TIMEOUT and STAT_BUS_RESET. All queued commands for other targets on this
bus must be returned with pkt_reason set to CMD_RESET and pkt_statistics OR’ed with
STAT_ABORTED.

Note that, after either a Device Reset or a Bus Reset, the HBA driver must enforce a reset
delay time of commands should be sent to that device, or any device on the bus, respec-
tively.

tran_start() should initialize the following members in pkt to 0. Upon command comple-
tion, the HBA driver should ensure that the values in these members are updated to accu-
rately reflect the states through which the command transitioned while in the transport
layer.

pkt_resid For commands with data transfer, this member must be
updated to indicate the residual of the data transferred.
pkt_reason The reason for the command completion. Should be set to

CMD_CMPLT at the beginning of tran_start(), then updated
if the command ever transitions to an abnormal termination
state. To avoid losing information, do not set pkt_reason to
any other error state unless it still has its original
CMD_CMPLT value.

pkt_statistics Bit field of transport-related statistics

pkt_state Bit field with the major states through which a SCSI com-
mand can transition.

Note: the members listed above, and pkt_hba_private
member, are the only fields in the scsi_pkt(9S) structure
which may be modified by the transport layer.

9E-55

tran_start (9E)

RETURN VALUES

9E-56

SEE ALSO

DDI and DKI Driver Entry Points Sun0OS 5.4

tran_start() must return:

TRAN_ACCEPT
TRAN_BUSY

TRAN_BADPKT

TRAN_FATAL_ERROR

The packet was accepted by the transport layer.

The packet could not be accepted because there was already
a packet in progress for this target/logical unit, the HBA
gueue was full, or the target device queue was full.

The DMA count in the packet exceeded the DMA engine’s
maximum DMA size, or the packet could not be accepted for
other reasons.

A fatal error has occurred in the HBA.

attach(9E), scsi_hba_attach(9F), scsi_transport(9F), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

modified 27 May 1994

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE

LEVEL
ARGUMENTS

DESCRIPTION

SEE ALSO

NOTES

modified 1 Nov 1993

DDI and DKI Driver Entry Points tran_sync_pkt(9E)

tran_sync_pkt — SCSI HBA memory synchronization entry point

#include <sys/scsi/scsi.h>
void prefixtran_sync_pkt(struct scsi_address [ap, struct scsi_pkt [pkt);

Solaris architecture specific (Solaris DDI).

ap A pointer to a scsi_address(9S) structure.
pkt A pointer to a scsi_pkt(9S) structure.

The tran_sync_pkt() vector in the scsi_hba_tran(9S) structure must be initialized during
the HBA driver’s attach(9E) to point to an HBA driver entry point to be called when a
target driver calls scsi_sync_pkt(9F).

tran_sync_pkt() must synchronize a CPU’s or device’s view of the data associated with
the pkt, typically by calling ddi_dma_sync(9F). The operation may also involve HBA
hardware-specific details, such as flushing 1/0 caches, or stalling until hardware buffers
have been drained.

tran_init_pkt(9E), ddi_dma_sync(9F), scsi_hba_attach(9F), scsi_init_pkt(9F),
scsi_sync_pkt(9F), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

A target driver may call tran_sync_pkt() on packets for which no DMA resources were
allocated.

9E-57

tran_tgt_free (9E)

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

SEE ALSO

9E-58

DDI and DKI Driver Entry Points Sun0OS 5.4

tran_tgt_free — request to free HBA resources allocated on behalf of a target

#include <sys/scsi/scsi.h>

void prefixtran_tgt_free(dev_info_t Chba_dip, dev_info_t [igt_dip,
scsi_hba_tran_t Chba_tran, struct scsi_device [3d);

Solaris architecture specific (Solaris DDI).

hba_dip Pointer to a dev_info_t structure, referring to the HBA device instance.

tgt_dip Pointer to a dev_info_t structure, referring to the target device instance.

hba_tran Pointer to a scsi_hba_tran(9S) structure, consisting of the HBA’s tran-
sport vectors.

sd Pointer to a scsi_device(9S) structure, describing the target.

The tran_tgt_free() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver’s attach(9E) to point to an HBA driver function to be called by the system
when an instance of a target device is being detached. The tran_tgt_free() vector, if not
NULL, is called after the target device instance has returned successfully from its
detach(9E) entry point, but before the dev_info node structure is removed from the sys-
tem. The HBA driver should release any resources allocated during its tran_tgt_init() or
tran_tgt_probe() initialization performed for this target device instance.

attach(9E), detach(9E), tran_tgt_init(9E), tran_tgt_probe(9E), scsi_device(9S),
scsi_hba_tran(9S)

Writing Device Drivers

modified 1 Nov 1993

Sun0S 5.4

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

RETURN VALUES

SEE ALSO

modified 1 Nov 1993

DDI and DKI Driver Entry Points tran_tgt_init(9E)

tran_tgt_init — request to initialize HBA resources on behalf of a particular target

#include <sys/scsi/scsi.h>

void prefixtran_tgt_init(dev_info_t Chba_dip, dev_info_t [igt_dip,
scsi_hba_tran_t Chba_tran, struct scsi_device [3d);

Solaris architecture specific (Solaris DDI).

hba_dip Pointer to a dev_info_t structure, referring to the HBA device instance.

tgt_dip Pointer to a dev_info_t structure, referring to the target device instance.

hba_tran Pointer to a scsi_hba_tran(9S) structure, consisting of the HBA’s tran-
sport vectors.

sd Pointer to a scsi_device(9S) structure, describing the target.

The tran_tgt_init() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver’s attach(9E) to point to an HBA driver function to be called by the system
when an instance of a target device is being created. The tran_tgt_init() vector, if not
NULL, is called after the dev_info node structure is created for this target device instance,
but before probe(9E) for this instance is called. Before receiving transport requests from
the target driver instance, the HBA may perform any initialization required for this par-
ticular target during the call of the tran_tgt_init() vector.

Note that hba_tran will point to a cloned copy of the scsi_hba_tran_t structure allocated
by the HBA driver if the SCSI_HBA_TRAN_CLONE flag was specified in the call to
scsi_hba_attach(9F). In this case, the HBA driver may choose to initialize the
tran_tgt_private field in the structure pointed to by hba_tran, to point to the data specific
to the particular target device instance.

tran_tgt_init() must return:

DDI_SUCCESS the HBA driver can support the addressed target, and was able to
initialize per-target resources.
DDI_FAILURE the HBA driver cannot support the addressed target, or was

unable to initialize per-target resources. In this event, the initiali-
zation of this instance of the target device will not be continued,
the target driver’s probe(9E) will not be called, and the tgt_dip
structure destroyed.

attach(9E), probe(9E), tran_tgt_free(9E), tran_tgt_probe(9E), scsi_device(9S),
scsi_hba_tran(9S)

Wkiting Device Drivers

9E-59

tran_tgt_probe (9E)

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

SEE ALSO

9E-60

DDI and DKI Driver Entry Points Sun0OS 5.4

tran_tgt_probe - request to probe SCSI bus for a particular target

#include <sys/scsi/scsi.h>
int prefixtran_tgt_probe(struct scsi_device [3d, int (Cwvaitfunc)(void));

Solaris architecture specific (Solaris DDI).

sd Pointer to a scsi_device(9S) structure.
waitfunc Pointer to either NULL_FUNC or SLEEP_FUNC.

The tran_tgt_probe() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver’s attach(9E) to point to a function to be called by scsi_probe(9F) when
called by a target driver during probe(9E) and attach(9E) to probe for a particular SCSI
target on the bus. In the absence of an HBA-specific tran_tgt_probe() function, the
default scsi_probe(9F) behavior is supplied by the function scsi_hba_probe(9F).

The possible choices the HBA driver may make are:

e toinitialize the tran_tgt_probe vector to point to scsi_hba_probe(9F), which
results in the same behavior.

o toinitialize the tran_tgt_probe vector to point to a private function in the HBA,
which may call scsi_hba_probe(9F) before or after any necessary processing,
as long as all the defined scsi_probe(9F) semantics are preserved.

waitfunc indicates what tran_tgt_probe() should do when resources are not available:

NULL_FUNC do not wait for resources. See scsi_probe(9F) for defined return
values if no resources are available.
SLEEP_FUNC wait indefinitely for resources.

attach(9E), tran_tgt_free(9E), tran_tgt_init(9E), scsi_hba_probe(9F), scsi_probe(9F),
scsi_device(9S), scsi_hba_tran(9S)

Wrkiting Device Drivers

modified 1 Nov 1993

Sun0S 5.4

NAME

SYNOPSIS

ARGUMENTS

INTERFACE
LEVEL
DESCRIPTION

RETURN VALUES

SEE ALSO

modified 11 Apr 1991

DDI and DKI Driver Entry Points write (9E)

write — write data to a device

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixwrite(dev_t dev, struct uio Cuio_p, cred_t Ctred p);

dev Device number.

uio_p Pointer to the uio(9S) structure that describes where the data is to be stored in
user space.

cred_p Pointer to the user credential structure for the 1/0 transaction.
Architecture independent level 1 (DDI/DKI). This entry point is Optional.

Used for character or raw data 1/0, the driver write() routine is called indirectly through
cb_ops(9S) by the write(2) system call. The write() routine supervises the data transfer
from user space to a device described by the uio(9S) structure.

The write routine should check the validity of the minor number component of dev and
the user credentials pointed to by cred_p (if pertinent).

The write() routine should return 0 for success, or the appropriate error number.

read(2), read(9E), cb_ops(9S), uio(9S)
Writing Device Drivers

9E-61

Index

C
character-oriented drivers
— ioctl,9E-23

D

DDI device mapping
mapdev_access — device mapping access
entry point, 9e-27
mapdev_dup — device mapping duplication
entry point, 9E-29
mapdev_f r ee — device mapping free entry
point, 9E-30
dev_info structure
convert device number to — get i nf o, 9E-20
device access
— cl ose, 9E-16
— open, 9E-34
device mapping access entry point —
mapdev_access, 9E-27
device mapping duplication entry point —
mapdev_dup, 9E-29
device mapping free entry point — mapdev_fr ee,
9E-30
device number
convert to dev_info structure — get i nf o,
9E-20
devices
attach to system — at t ach, 9E-12

devices, continued

claim to drive a device — i denti fy, 9E-22

detach from system — det ach, 9E-18

read data — read, 9E-42

write data to a device — write, 9E-61
devices, memory mapped

check virtual mapping — nmap, 9E-31
devices, memory mapping

map device memory into user space — seg-

mep, 9E-44

devices, non-self-identifying

determine if present — pr obe, 9E-37
Driver entry point routines

— fini, 9E-10

— _info, 9E-10

— _init,9E-10

— attach, 9e-12

— chpol | , 9E-14

— cl ose, 9E-16

— det ach, 9E-18

— dunp, 9E-19

— getinfo, 9E-20

— identify, 9E-22

— ioctl, 9E-23

— mmap, 9E-31

— open, 9E-34

— print, 9E-36

— probe, 9E-37

— prop_op, 9E-38

Index-1

Driver entry point routines, continued
— put, 9E-40
— read, 9E-42
— segnmap, 9E-44
— srv, 9E-45
— strategy, 9E-47
— write, 9E-61
driver messages
display on system console — pri nt, 9E-36
driver property information
report —pr op_op, 9E-38
drivers, character-oriented
— ioctl,9E-23
dunp — dump memory to disk during system
failure, 9E-19
dynamically update kstats — ks_updat e, 9E-25

G
get/set SCSI transport capability — t ran_get cap,
9E-50
tran_setcap, 9E-50

H
HBA resources

request to free HBA resources allocated on
behalf of a target —
tran_tgt_free, 9E-58

request to initialize HBA resources on behalf of
a particular target —
tran_tgt_init, 9E-59

i denti fy — claim to drive a device, 9E-22

K
kernel modules, dynamic loading
— _fini, 9E-10
— _info, 9E-10
— _init,9E-10
ks_updat e — dynamically update kstats, 9E-25

Index—-2

M

mapdev_access — device mapping access entry
point, 9E-27

mapdev_dup — device mapping duplication entry
point, 9E-29

mapdev_f r ee — device mapping free entry point,
9E-30

memory mapping for devices
check virtual mapping — nmap, 9E-31
map device memory into user space — seg-

map, 9E-44

N
non-self-identifying devices
determine if present — pr obe, 9E-37
non-STREAMS character device driver
poll entry point — chpol | , 9E-14

P

put — receive messages from the preceding queue,
9E-40

R

reset a SCSI bus or target — tran_reset, 9E-53

S
SCSI bus
request to probe SCSI bus for a particular target
— tran_tgt_probe, 9E-60
SCSI command
abort — tran_abort, 9E-48
request to transport — tran_start, 9e-54
SCSI HBA DMA deallocation entry point —
tran_dnmafr ee, 9E-49
SCSI HBA memory synchronization entry point —
tran_sync_pkt, 9E-57
SCSI HBA packet preparation and deallocation —
tran_init_pkt, 9E-51
tran_destroy_pkt, 9E-51
strat egy — perform block 170, 9E-47
STREAMS message queues
receive messages from the preceding queue —
put, 9E-40

STREAMS message queues, continued
service queued messages — srv, 9E-45

T

tran_abort — abort a SCSI command, 9E-48

tran_destroy_pkt — SCSI HBA packet prepara-
tion and deallocation, 9E-51

t ran_dnmaf r ee — SCSI HBA DMA deallocation
entry point, 9E-49

tran_get cap — get/set SCSI transport capability,
9E-50

tran_ini t _pkt — SCSI HBA packet preparation
and deallocation, 9E-51

tran_reset — reset a SCSI bus or target, 9E-53

tran_set cap — get/set SCSI transport capability,
9E-50

tran_start — request to transport a SCSI com-
mand, 9E-54

tran_sync_pkt — SCSI HBA memory synchroni-
zation entry point, 9E-57

tran_t gt_free — request to free HBA resources
allocated on behalf of a target, 9E-58

tran_tgt _init — request to initialize HBA
resources on behalf of a particular target, 9E-59

tran_tgt probe — request to probe SCSI bus for
a particular target, 9E-60

V

virtual address space
dump portion of to disk in case of system
failure — dunp, 9E-19

w

wr i t e — write data to a device, 9E-61

Index-3

