
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

 1994 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD systems, licensed from UNIX Systems
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party
software, including font technology, in this product is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

This product or the products described herein may be protected by one or more U.S., foreign patents, or pending
applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun Logo, SunSoft, Sun Microsystems Computer Corporation and Solaris, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of
Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark.
OPEN LOOK is a registered trademark of Novell, Inc. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic,
SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions  AT&T 1983-1990 and reproduced with permission from AT&T.

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

ii

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

AVAILABILITY
This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, AVAILABILITY indicates which package contains
the command being described on the manual page. In order to use the
command, the specified package must have been installed with the operating
system. If the package was not installed, see pkgadd(1) for information on how
to upgrade.

MT-LEVEL
This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3) for more information.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

Preface iii

IOCTLS
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctls(2) system call is called ioctls and
generates its own heading. IOCTLS for a specific device are listed alphabetically
(on the man page for that specific device). IOCTLS are used for a particular class
of devices all which have an io ending, such as mtio(7).

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

iv

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

FILES
This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

Preface v

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

SunOS 5.4 DDI and DKI Kernel Functions ASSERT (9F)

NAME ASSERT, assert − expression verification

SYNOPSIS #include <sys/debug.h>

void ASSERT(EX);

ARGUMENTS EX boolean expression.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION ASSERT () is a macro which checks to see if the expression EX is true. If it is not then
ASSERT () causes an error message to be logged to the console and the system to panic.
ASSERT () works only if the preprocessor symbol DEBUG is defined.

CONTEXT ASSERT () can be used from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 9F-5

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME Intro, intro − introduction to DDI/DKI functions

DESCRIPTION Section 9F describes the kernel functions available for use by device drivers.

In this section, the information for each driver function is organized under the following
headings:

· NAME summarizes the function’s purpose.

· SYNOPSIS shows the syntax of the function’s entry point in the source code.
#include directives are shown for required headers.

· INTERFACE LEVEL describes any architecture dependencies.

· ARGUMENTS describes any arguments required to invoke the function.

· DESCRIPTION describes general information about the function.

· RETURN VALUES describes the return values and messages that can result
from invoking the function.

· CONTEXT indicates from which driver context (user, kernel, interrupt, or
high-level interrupt) the function can be called.

A driver function has user context if it was directly invoked because of a user
thread. The read(9E) entry point of the driver, invoked by a read(2) system call,
has user context.

A driver function has kernel context if was invoked by some other part of the ker-
nel. In a block device driver, the strategy(9E) entry point may be called by the
page daemon to write pages to the device. The page daemon has no relation to
the current user thread, so in this case strategy(9E) has kernel context.

Interrupt context is kernel context, but also has an interrupt level associated with
it. Driver interrupt routines have interrupt context.

High-level interrupt context is a more restricted form of interrupt context. If
ddi_intr_hilevel(9F) indicates that an interrupt is high-level, driver interrupt
routines added for that interrupt with ddi_add_intr(9F) run in high-level inter-
rupt context. These interrupt routines are only allowed to call
ddi_trigger_softintr(9F), mutex_enter(9F) and mutex_exit(9F). Furthermore,
mutex_enter(9F) and mutex_exit(9F) may only be called on mutexes initialized
with the ddi_iblock_cookie returned by ddi_add_intr(9F).

· SEE ALSO indicates functions that are related by usage and sources, and which
can be referred to for further information.

· EXAMPLES shows how the function can be used in driver code.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and as the
last files the driver includes.

9F-6 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

STREAMS Kernel
Function Summary

The following table summarizes the STREAMS functions described in this section.

Routine Type

adjmsg DDI/DKI
allocb DDI/DKI
backq DDI/DKI
bcanput DDI/DKI
bcanputnext DDI/DKI
bufcall DDI/DKI
canput DDI/DKI
canputnext DDI/DKI
clrbuf DDI/DKI
copyb DDI/DKI
copymsg DDI/DKI
datamsg DDI/DKI
dupb DDI/DKI
dupmsg DDI/DKI
enableok DDI/DKI
esballoc DDI/DKI
esbbcall DDI/DKI
flushband DDI/DKI
flushq DDI/DKI
freeb DDI/DKI
freemsg DDI/DKI
freezestr DDI/DKI
getq DDI/DKI
insq DDI/DKI
linkb DDI/DKI
msgdsize DDI/DKI
msgpullup DDI/DKI
mt-streams Solaris DDI
noenable DDI/DKI
OTHERQ DDI/DKI
pullupmsg DDI/DKI
put DDI/DKI
putbq DDI/DKI
putctl DDI/DKI
putctl1 DDI/DKI
putnext DDI/DKI
putnextctl DDI/DKI
putq DDI/DKI
qbufcall Solaris DDI
qenable DDI/DKI
qprocson DDI/DKI

modified 28 May 1994 9F-7

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

qprocsoff DDI/DKI
qreply DDI/DKI
qsize DDI/DKI
qtimeout Solaris DDI
qunbufcall Solaris DDI
quntimeout Solaris DDI
qwait Solaris DDI
qwait_sig Solaris DDI
qwriter Solaris DDI
RD DDI/DKI
rmvb DDI/DKI
rmvq DDI/DKI
SAMESTR DDI/DKI
strlog DDI/DKI
strqget DDI/DKI
strqset DDI/DKI
testb DDI/DKI
unbufcall DDI/DKI
unfreezestr DDI/DKI
unlinkb DDI/DKI
WR DDI/DKI

9F-8 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

The following table summarizes the functions not specific to STREAMS.

Routine Type

ASSERT DDI/DKI
bcmp DDI/DKI
bcopy DDI/DKI
biodone DDI/DKI
bioerror Solaris DDI
bioreset Solaris DDI
biowait DDI/DKI
bp_mapin DDI/DKI
bp_mapout DDI/DKI
brelse DDI/DKI
btop DDI/DKI
btopr DDI/DKI
bzero DDI/DKI
cmn_err DDI/DKI
copyin DDI/DKI
copyout DDI/DKI
cv_broadcast Solaris DDI
cv_destroy Solaris DDI
cv_init Solaris DDI
cv_signal Solaris DDI
cv_timedwait Solaris DDI
cv_wait Solaris DDI
cv_wait_sig Solaris DDI
ddi_add_intr Solaris DDI
ddi_add_softintr Solaris DDI
ddi_btop Solaris DDI
ddi_btopr Solaris DDI
ddi_copyin Solaris DDI
ddi_copyout Solaris DDI
ddi_create_minor_node Solaris DDI
ddi_dev_is_sid Solaris DDI
ddi_dev_nintrs Solaris DDI
ddi_dev_nregs Solaris DDI
ddi_dev_regsize Solaris DDI
ddi_dma_addr_setup Solaris DDI
ddi_dma_buf_setup Solaris DDI
ddi_dma_burstsizes Solaris DDI
ddi_dma_coff Solaris SPARC DDI
ddi_dma_curwin Solaris SPARC DDI
ddi_dma_devalign Solaris DDI
ddi_dma_free Solaris DDI
ddi_dma_htoc Solaris SPARC DDI

modified 28 May 1994 9F-9

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

ddi_dma_movwin Solaris SPARC DDI
ddi_dma_nextseg Solaris DDI
ddi_dma_nextwin Solaris DDI
ddi_dma_segtocookie Solaris DDI
ddi_dma_setup Solaris DDI
ddi_dma_sync Solaris DDI
ddi_dmae_alloc Solaris x86 DDI
ddi_dmae_release Solaris x86 DDI
ddi_dmae_prog Solaris x86 DDI
ddi_dmae_disable Solaris x86 DDI
ddi_dmae_enable Solaris x86 DDI
ddi_dmae_stop Solaris x86 DDI
ddi_dmae_getcnt Solaris x86 DDI
ddi_dmae_1stparty Solaris x86 DDI
ddi_dmae_getlim Solaris x86 DDI
ddi_enter_critical Solaris DDI
ddi_exit_critical Solaris DDI
ddi_ffs Solaris DDI
ddi_fls Solaris DDI
ddi_get_cred Solaris DDI
ddi_get_driver_private Solaris DDI
ddi_get_instance Solaris DDI
ddi_getlongprop Solaris DDI
ddi_getlongprop_buf Solaris DDI
ddi_get_name Solaris DDI
ddi_get_parent Solaris DDI
ddi_getprop Solaris DDI
ddi_getproplen Solaris DDI
ddi_get_soft_state Solaris DDI
ddi_intr_hilevel Solaris DDI
ddi_iomin Solaris DDI
ddi_iopb_alloc Solaris DDI
ddi_iopb_free Solaris DDI
ddi_map_regs Solaris DDI
ddi_mapdev Solaris DDI
ddi_mapdev_intercept Solaris DDI
ddi_mapdev_nointercept Solaris DDI
ddi_mem_alloc Solaris DDI
ddi_mem_free Solaris DDI
ddi_peekc Solaris DDI
ddi_peekd Solaris DDI
ddi_peekl Solaris DDI
ddi_peeks Solaris DDI
ddi_pokec Solaris DDI
ddi_poked Solaris DDI

9F-10 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

ddi_pokel Solaris DDI
ddi_pokes Solaris DDI
ddi_prop_create Solaris DDI
ddi_prop_modify Solaris DDI
ddi_prop_op Solaris DDI
ddi_prop_remove Solaris DDI
ddi_prop_remove_all Solaris DDI
ddi_prop_undefine Solaris DDI
ddi_ptob Solaris DDI
ddi_remove_intr Solaris DDI
ddi_remove_minor_node Solaris DDI
ddi_remove_softintr Solaris DDI
ddi_report_dev Solaris DDI
ddi_root_node Solaris DDI
ddi_segmap Solaris DDI
ddi_set_driver_private Solaris DDI
ddi_slaveonly Solaris DDI
ddi_soft_state Solaris DDI
ddi_soft_state_fini Solaris DDI
ddi_soft_state_free Solaris DDI
ddi_soft_state_init Solaris DDI
ddi_soft_state_zalloc Solaris DDI
ddi_trigger_softintr Solaris DDI
ddi_unmap_regs Solaris DDI
delay DDI/DKI
disksort Solaris DDI
drv_getparm DDI/DKI
drv_hztousec DDI/DKI
drv_priv DDI/DKI
drv_usectohz DDI/DKI
drv_usecwait DDI/DKI
free_pktiopb Solaris DDI
freerbuf DDI/DKI
geterror DDI/DKI
getmajor DDI/DKI
getminor DDI/DKI
get_pktiopb Solaris DDI
getrbuf DDI/DKI
hat_getkpfnum DKI only
inb Solaris x86 DDI
inl Solaris x86 DDI
inw Solaris x86 DDI
kmem_alloc DDI/DKI
kmem_free DDI/DKI
kmem_zalloc DDI/DKI

modified 28 May 1994 9F-11

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

kstat_create Solaris DDI
kstat_delete Solaris DDI
kstat_install Solaris DDI
kstat_named_init Solaris DDI
kstat_queue Solaris DDI
kstat_runq_enter Solaris DDI
kstat_runq_exit Solaris DDI
kstat_runq_back_to_waitq Solaris DDI
kstat_waitq_enter Solaris DDI
kstat_waitq_exit Solaris DDI
kstat_waitq_to_runq Solaris DDI
makecom_g0 Solaris DDI
makecom_g0_s Solaris DDI
makecom_g1 Solaris DDI
makecom_g5 Solaris DDI
makedevice DDI/DKI
max DDI/DKI
min DDI/DKI
minphys Solaris DDI
mod_info Solaris DDI
mod_install Solaris DDI
mod_remove Solaris DDI
mutex_destroy Solaris DDI
mutex_enter Solaris DDI
mutex_exit Solaris DDI
mutex_init Solaris DDI
mutex_owned Solaris DDI
mutex_tryenter Solaris DDI
nochpoll Solaris DDI
nodev DDI/DKI
nulldev DDI/DKI
numtos Solaris DDI
outb Solaris x86 DDI
outl Solaris x86 DDI
outw Solaris x86 DDI
physio Solaris DDI
pollwakeup DDI/DKI
proc_ref Solaris DDI
proc_signal Solaris DDI
proc_unref Solaris DDI
ptob DDI/DKI
repinsb Solaris x86 DDI
repinsd Solaris x86 DDI
repinsw Solaris x86 DDI
repoutsb Solaris x86 DDI

9F-12 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

repoutsd Solaris x86 DDI
repoutsw Solaris x86 DDI
rmalloc DDI/DKI
rmalloc_wait DDI/DKI
rmallocmap DDI/DKI
rmfree DDI/DKI
rmfreemap DDI/DKI
rw_destroy Solaris DDI
rw_downgrade Solaris DDI
rw_enter Solaris DDI
rw_exit Solaris DDI
rw_init Solaris DDI
rw_read_locked Solaris DDI
rw_tryenter Solaris DDI
rw_tryupgrade Solaris DDI
scsi_abort Solaris DDI
scsi_alloc_consistent_buf Solaris DDI
scsi_cname Solaris DDI
scsi_destroy_pkt Solaris DDI
scsi_dmafree Solaris DDI
scsi_dmaget Solaris DDI
scsi_dname Solaris DDI
scsi_errmsg Solaris DDI
scsi_free_consistent_buf Solaris DDI
scsi_hba_attach Solaris DDI
scsi_hba_detach Solaris DDI
scsi_hba_fini Solaris DDI
scsi_hba_init Solaris DDI
scsi_hba_lookup_capstr Solaris DDI
scsi_hba_pkt_alloc Solaris DDI
scsi_hba_pkt_free Solaris DDI
scsi_hba_probe Solaris DDI
scsi_hba_tran_alloc Solaris DDI
scsi_hba_tran_free Solaris DDI
scsi_ifgetcap Solaris DDI
scsi_ifsetcap Solaris DDI
scsi_init_pkt Solaris DDI
scsi_log Solaris DDI
scsi_mname Solaris DDI
scsi_pktalloc Solaris DDI
scsi_pktfree Solaris DDI
scsi_poll Solaris DDI
scsi_probe Solaris DDI
scsi_resalloc Solaris DDI
scsi_reset Solaris DDI

modified 28 May 1994 9F-13

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

scsi_resfree Solaris DDI
scsi_rname Solaris DDI
scsi_slave Solaris DDI
scsi_sname Solaris DDI
scsi_sync_pkt Solaris DDI
scsi_transport Solaris DDI
scsi_unprobe Solaris DDI
scsi_unslave Solaris DDI
sema_destroy Solaris DDI
sema_init Solaris DDI
sema_p Solaris DDI
sema_p_sig Solaris DDI
sema_tryp Solaris DDI
sema_v Solaris DDI
sprintf Solaris DDI
stoi Solaris DDI
strchr Solaris DDI
strcmp Solaris DDI
strcpy Solaris DDI
strlen Solaris DDI
strncmp Solaris DDI
strncpy Solaris DDI
swab DDI/DKI
timeout DDI/DKI
uiomove DDI/DKI
untimeout DDI/DKI
ureadc DDI/DKI
uwritec DDI/DKI
vcmn_err DDI/DKI
vsprintf Solaris DDI

Name Appears on Page Description

adjmsg adjmsg(9F) trim bytes from a
message

allocb allocb(9F) allocate a message
block

ASSERT ASSERT(9F) expression verification
assert ASSERT(9F) expression verification
backq backq(9F) get pointer to the

queue behind the
current queue

9F-14 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

bcanput bcanput(9F) test for flow control
in specified priority
band

bcanputnext canputnext(9F) test for room in next
module’s message queue

bcmp bcmp(9F) compare two byte arrays
bcopy bcopy(9F) copy data between

address locations in
the kernel

biodone biodone(9F) release buffer after
buffer I/O transfer and
notify blocked threads

bioerror bioerror(9F) indicate error in
buffer header

bioreset bioreset(9F) reuse a private buffer
header after I/O is
complete

biowait biowait(9F) suspend processes
pending completion of
block I/O

bp_mapin bp_mapin(9F) allocate virtual
address space

bp_mapout bp_mapout(9F) deallocate virtual
address space

brelse brelse(9F) return buffer to the
free list

btop btop(9F) convert size in bytes
to size in pages (round
down)

btopr btopr(9F) convert size in bytes
to size in pages (round
up)

bufcall bufcall(9F) call a function when a
buffer becomes
available

bzero bzero(9F) clear memory for a
given number of bytes

canput canput(9F) test for room in a
message queue

canputnext canputnext(9F) test for room in next
module’s message queue

clrbuf clrbuf(9F) erase the contents of a
buffer

modified 28 May 1994 9F-15

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

cmn_err cmn_err(9F) display an error
message or panic the
system

condvar condvar(9F) condition variable
routines

copyb copyb(9F) copy a message block
copyin copyin(9F) copy data from a user

program to a driver
buffer

copymsg copymsg(9F) copy a message
copyout copyout(9F) copy data from a driver

to a user program
cv_broadcast condvar(9F) condition variable

routines
cv_destroy condvar(9F) condition variable

routines
cv_init condvar(9F) condition variable

routines
cv_signal condvar(9F) condition variable

routines
cv_timedwait condvar(9F) condition variable

routines
cv_timedwait_sig condvar(9F) condition variable

routines
cv_wait condvar(9F) condition variable

routines
cv_wait_sig condvar(9F) condition variable

routines
datamsg datamsg(9F) test whether a message

is a data message
ddi_add_intr ddi_add_intr(9F) add and remove an

interrupt handler
ddi_add_softintr ddi_add_softintr(9F) add, remove or trigger

a soft interrupt
ddi_btop ddi_btop(9F) page size conversions
ddi_btopr ddi_btop(9F) page size conversions
ddi_copyin ddi_copyin(9F) copy data to a driver

buffer
ddi_copyout ddi_copyout(9F) copy data from a driver
ddi_create_minor_node ddi_create_minor_node(9F) create a minor node for

this device
ddi_dev_is_sid ddi_dev_is_sid(9F) tell whether a device

is self-identifying

9F-16 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

ddi_dev_nintrs ddi_dev_nintrs(9F) return the number of
interrupt
specifications a device
has

ddi_dev_nregs ddi_dev_nregs(9F) return the number of
register sets a device
has

ddi_dev_regsize ddi_dev_regsize(9F) return the size of a
device’s register

ddi_dma_addr_setup ddi_dma_addr_setup(9F) easier DMA setup for
use with virtual
addresses

ddi_dma_buf_setup ddi_dma_buf_setup(9F) easier DMA setup for
use with buffer
structures

ddi_dma_burstsizes ddi_dma_burstsizes(9F) find out the allowed
burst sizes for a DMA
mapping

ddi_dma_coff ddi_dma_coff(9F) convert a DMA cookie to
an offset within a DMA
handle

ddi_dma_curwin ddi_dma_curwin(9F) report current DMA
window offset and size

ddi_dma_devalign ddi_dma_devalign(9F) find DMA mapping
alignment and minimum
transfer size

ddi_dma_free ddi_dma_free(9F) release system DMA
resources

ddi_dma_htoc ddi_dma_htoc(9F) convert a DMA handle to
a DMA address cookie

ddi_dma_movwin ddi_dma_movwin(9F) shift current DMA
window

ddi_dma_nextseg ddi_dma_nextseg(9F) get next DMA segment
ddi_dma_nextwin ddi_dma_nextwin(9F) get next DMA window
ddi_dma_segtocookie ddi_dma_segtocookie(9F) convert a DMA segment

to a DMA address cookie
ddi_dma_setup ddi_dma_setup(9F) setup DMA resources
ddi_dma_sync ddi_dma_sync(9F) synchronize CPU and I/O

views of memory
ddi_dmae ddi_dmae(9F) system DMA engine

functions
ddi_dmae_1stparty ddi_dmae(9F) system DMA engine

functions

modified 28 May 1994 9F-17

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

ddi_dmae_alloc ddi_dmae(9F) system DMA engine
functions

ddi_dmae_disable ddi_dmae(9F) system DMA engine
functions

ddi_dmae_enable ddi_dmae(9F) system DMA engine
functions

ddi_dmae_getcnt ddi_dmae(9F) system DMA engine
functions

ddi_dmae_getlim ddi_dmae(9F) system DMA engine
functions

ddi_dmae_prog ddi_dmae(9F) system DMA engine
functions

ddi_dmae_release ddi_dmae(9F) system DMA engine
functions

ddi_dmae_stop ddi_dmae(9F) system DMA engine
functions

ddi_enter_critical ddi_enter_critical(9F) enter and exit a
critical region of
control

ddi_exit_critical ddi_enter_critical(9F) enter and exit a
critical region of
control

ddi_ffs ddi_ffs(9F) find first (last) bit
set in a long integer

ddi_fls ddi_ffs(9F) find first (last) bit
set in a long integer

ddi_get_cred ddi_get_cred(9F) returns a pointer to
the credential
structure of the
caller.

ddi_get_driver_private ddi_get_driver_private(9F) get or set the address
of the device’s private
data area

ddi_get_instance ddi_get_instance(9F) get device instance
number

ddi_get_name ddi_get_name(9F) return the devinfo node
name

ddi_get_parent ddi_get_parent(9F) find the parent of a
device information
structure

ddi_get_soft_state ddi_soft_state(9F) driver soft state
utility routines

9F-18 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

ddi_getlongprop ddi_prop_op(9F) get property
information for leaf
device drivers

ddi_getlongprop_buf ddi_prop_op(9F) get property
information for leaf
device drivers

ddi_getprop ddi_prop_op(9F) get property
information for leaf
device drivers

ddi_getproplen ddi_prop_op(9F) get property
information for leaf
device drivers

ddi_intr_hilevel ddi_intr_hilevel(9F) indicate interrupt
handler type

ddi_iomin ddi_iomin(9F) find minimum alignment
and transfer size for
DMA

ddi_iopb_alloc ddi_iopb_alloc(9F) allocate and free
non-sequentially
accessed memory

ddi_iopb_free ddi_iopb_alloc(9F) allocate and free
non-sequentially
accessed memory

ddi_map_regs ddi_map_regs(9F) map or unmap registers
ddi_mapdev ddi_mapdev(9F) create

driver-controlled
mapping of device

ddi_mapdev_intercept ddi_mapdev_intercept(9F) control driver
notification of user
accesses

ddi_mapdev_nointercept ddi_mapdev_intercept(9F) control driver
notification of user
accesses

ddi_mem_alloc ddi_mem_alloc(9F) allocate and free
sequentially accessed
memory

ddi_mem_free ddi_mem_alloc(9F) allocate and free
sequentially accessed
memory

ddi_peek ddi_peek(9F) read a value from a
location

ddi_peekc ddi_peek(9F) read a value from a
location

modified 28 May 1994 9F-19

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

ddi_peekd ddi_peek(9F) read a value from a
location

ddi_peekl ddi_peek(9F) read a value from a
location

ddi_peeks ddi_peek(9F) read a value from a
location

ddi_poke ddi_poke(9F) write a value to a
location

ddi_pokec ddi_poke(9F) write a value to a
location

ddi_poked ddi_poke(9F) write a value to a
location

ddi_pokel ddi_poke(9F) write a value to a
location

ddi_pokes ddi_poke(9F) write a value to a
location

ddi_prop_create ddi_prop_create(9F) create, remove, or
modify properties for
leaf device drivers

ddi_prop_modify ddi_prop_create(9F) create, remove, or
modify properties for
leaf device drivers

ddi_prop_op ddi_prop_op(9F) get property
information for leaf
device drivers

ddi_prop_remove ddi_prop_create(9F) create, remove, or
modify properties for
leaf device drivers

ddi_prop_remove_all ddi_prop_create(9F) create, remove, or
modify properties for
leaf device drivers

ddi_prop_undefine ddi_prop_create(9F) create, remove, or
modify properties for
leaf device drivers

ddi_ptob ddi_btop(9F) page size conversions
ddi_remove_intr ddi_add_intr(9F) add and remove an

interrupt handler
ddi_remove_minor_node ddi_remove_minor_node(9F) remove a minor node for

this dev_info
ddi_remove_softintr ddi_add_softintr(9F) add, remove or trigger

a soft interrupt
ddi_report_dev ddi_report_dev(9F) announce a device
ddi_root_node ddi_root_node(9F) get the root of the

dev_info tree
ddi_segmap ddi_segmap(9F) map a segment

9F-20 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

ddi_set_driver_private ddi_get_driver_private(9F) get or set the address
of the device’s private
data area

ddi_slaveonly ddi_slaveonly(9F) tell if a device is
installed in a slave
access only location

ddi_soft_state ddi_soft_state(9F) driver soft state
utility routines

ddi_soft_state_fini ddi_soft_state(9F) driver soft state
utility routines

ddi_soft_state_free ddi_soft_state(9F) driver soft state
utility routines

ddi_soft_state_init ddi_soft_state(9F) driver soft state
utility routines

ddi_soft_state_zalloc ddi_soft_state(9F) driver soft state
utility routines

ddi_trigger_softintr ddi_add_softintr(9F) add, remove or trigger
a soft interrupt

ddi_unmap_regs ddi_map_regs(9F) map or unmap registers
delay delay(9F) delay execution for a

specified number of
clock ticks

disksort disksort(9F) single direction
elevator seek sort for
buffers

drv_getparm drv_getparm(9F) retrieve kernel state
information

drv_hztousec drv_hztousec(9F) convert clock ticks to
microseconds

drv_priv drv_priv(9F) determine driver
privilege

drv_usectohz drv_usectohz(9F) convert microseconds to
clock ticks

drv_usecwait drv_usecwait(9F) busy-wait for specified
interval

dupb dupb(9F) duplicate a message
block descriptor

dupmsg dupmsg(9F) duplicate a message
enableok enableok(9F) reschedule a queue for

service
esballoc esballoc(9F) allocate a message

block using a
caller-supplied buffer

modified 28 May 1994 9F-21

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

esbbcall esbbcall(9F) call function when
buffer is available

flushband flushband(9F) flush messages for a
specified priority band

flushq flushq(9F) remove messages from a
queue

free_pktiopb get_pktiopb(9F) allocate/free a SCSI
packet in the iopb map

freeb freeb(9F) free a message block
freemsg freemsg(9F) free all message blocks

in a message
freerbuf freerbuf(9F) free a raw buffer

header
freezestr freezestr(9F) freeze, thaw the state

of a stream
get_pktiopb get_pktiopb(9F) allocate/free a SCSI

packet in the iopb map
geterror geterror(9F) return I/O error
getmajor getmajor(9F) get major device number
getminor getminor(9F) get minor device number
getq getq(9F) get the next message

from a queue
getrbuf getrbuf(9F) get a raw buffer header
hat_getkpfnum hat_getkpfnum(9F) get page frame number

for kernel address
inb inb(9F) read from an I/O port
inl inb(9F) read from an I/O port
insq insq(9F) insert a message into a

queue
inw inb(9F) read from an I/O port
kmem_alloc kmem_alloc(9F) allocate space from

kernel free memory
kmem_free kmem_free(9F) free previously

allocated kernel memory
kmem_zalloc kmem_zalloc(9F) allocate and clear

space from kernel free
memory

kstat_create kstat_create(9F) create and initialize a
new kstat

kstat_delete kstat_delete(9F) remove a kstat from the
system

kstat_install kstat_install(9F) add a fully initialized
kstat to the system

9F-22 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

kstat_named_init kstat_named_init(9F) initialize a named
kstat

kstat_queue kstat_queue(9F) update I/O kstat
statistics

kstat_runq_back_to_waitq kstat_queue(9F) update I/O kstat
statistics

kstat_runq_enter kstat_queue(9F) update I/O kstat
statistics

kstat_runq_exit kstat_queue(9F) update I/O kstat
statistics

kstat_waitq_enter kstat_queue(9F) update I/O kstat
statistics

kstat_waitq_exit kstat_queue(9F) update I/O kstat
statistics

kstat_waitq_to_runq kstat_queue(9F) update I/O kstat
statistics

linkb linkb(9F) concatenate two message
blocks

makecom makecom(9F) make a packet for SCSI
commands

makecom_g0 makecom(9F) make a packet for SCSI
commands

makecom_g0_s makecom(9F) make a packet for SCSI
commands

makecom_g1 makecom(9F) make a packet for SCSI
commands

makecom_g5 makecom(9F) make a packet for SCSI
commands

makedevice makedevice(9F) make device number from
major and minor numbers

max max(9F) return the larger of
two integers

min min(9F) return the lesser of
two integers

minphys physio(9F) perform physical I/O
mod_info mod_install(9F) add, remove or query a

loadable module
mod_install mod_install(9F) add, remove or query a

loadable module
mod_remove mod_install(9F) add, remove or query a

loadable module
msgdsize msgdsize(9F) return the number of

bytes in a message

modified 28 May 1994 9F-23

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

msgpullup msgpullup(9F) concatenate bytes in a
message

mt-streams mt-streams(9F) STREAMS multithreading
mutex mutex(9F) mutual exclusion lock

routines
mutex_destroy mutex(9F) mutual exclusion lock

routines
mutex_enter mutex(9F) mutual exclusion lock

routines
mutex_exit mutex(9F) mutual exclusion lock

routines
mutex_init mutex(9F) mutual exclusion lock

routines
mutex_owned mutex(9F) mutual exclusion lock

routines
mutex_tryenter mutex(9F) mutual exclusion lock

routines
nochpoll nochpoll(9F) error return function

for non-pollable
devices.

nodev nodev(9F) error return function
noenable noenable(9F) prevent a queue from

being scheduled
nulldev nulldev(9F) zero return function
numtos stoi(9F) convert between an

integer and a decimal
string

OTHERQ OTHERQ(9F) get pointer to queue’s
partner queue

otherq OTHERQ(9F) get pointer to queue’s
partner queue

outb outb(9F) write to an I/O port
outl outb(9F) write to an I/O port
outw outb(9F) write to an I/O port
physio physio(9F) perform physical I/O
pollwakeup pollwakeup(9F) inform a process that

an event has occurred
proc_ref proc_signal(9F) send a signal to a

process
proc_signal proc_signal(9F) send a signal to a

process
proc_unref proc_signal(9F) send a signal to a

process

9F-24 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

ptob ptob(9F) convert size in pages
to size in bytes

pullupmsg pullupmsg(9F) concatenate bytes in a
message

put put(9F) call a STREAMS put
procedure

putbq putbq(9F) place a message at the
head of a queue

putctl1 putctl1(9F) send a control message
with a one-byte
parameter to a queue

putctl putctl(9F) send a control message
to a queue

putnext putnext(9F) send a message to the
next queue

putnextctl1 putnextctl1(9F) send a control message
with a one-byte
parameter to a queue

putnextctl putnextctl(9F) send a control message
to a queue

putq putq(9F) put a message on a
queue

qbufcall qbufcall(9F) call a function when a
buffer becomes
available

qenable qenable(9F) enable a queue
qprocsoff qprocson(9F) enable, disable put and

service routines
qprocson qprocson(9F) enable, disable put and

service routines
qreply qreply(9F) send a message on a

stream in the reverse
direction

qsize qsize(9F) find the number of
messages on a queue

qtimeout qtimeout(9F) execute a function
after a specified
length of time

qunbufcall qunbufcall(9F) cancel a pending
qbufcall request

quntimeout quntimeout(9F) cancel previous
qtimeout function call

qwait qwait(9F) STREAMS wait routines
qwait_sig qwait(9F) STREAMS wait routines

modified 28 May 1994 9F-25

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

qwriter qwriter(9F) asynchronous STREAMS
perimeter upgrade

RD RD(9F) get pointer to the read
queue

rd RD(9F) get pointer to the read
queue

repinsb inb(9F) read from an I/O port
repinsd inb(9F) read from an I/O port
repinsw inb(9F) read from an I/O port
repoutsb outb(9F) write to an I/O port
repoutsd outb(9F) write to an I/O port
repoutsw outb(9F) write to an I/O port
rmalloc rmalloc(9F) allocate space from a

resource map
rmalloc_wait rmalloc_wait(9F) allocate space from a

resource map, wait if
necessary

rmallocmap rmallocmap(9F) allocate and free
(respectively) resource
maps

rmfree rmfree(9F) free space back into a
resource map

rmfreemap rmallocmap(9F) allocate and free
(respectively) resource
maps

rmvb rmvb(9F) remove a message block
from a message

rmvq rmvq(9F) remove a message from a
queue

rw_destroy rwlock(9F) readers/writer lock
functions

rw_downgrade rwlock(9F) readers/writer lock
functions

rw_enter rwlock(9F) readers/writer lock
functions

rw_exit rwlock(9F) readers/writer lock
functions

rw_init rwlock(9F) readers/writer lock
functions

rw_read_locked rwlock(9F) readers/writer lock
functions

rw_tryenter rwlock(9F) readers/writer lock
functions

9F-26 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

rw_tryupgrade rwlock(9F) readers/writer lock
functions

rwlock rwlock(9F) readers/writer lock
functions

SAMESTR SAMESTR(9F) test if next queue is
in the same stream

samestr SAMESTR(9F) test if next queue is
in the same stream

scsi_abort scsi_abort(9F) abort a SCSI command
scsi_alloc_consistent_buf scsi_alloc_consistent_buf(9F) allocate an I/O buffer

for SCSI DMA
scsi_cname scsi_cname(9F) decode a SCSI name
scsi_destroy_pkt scsi_destroy_pkt(9F) free an allocated SCSI

packet and its DMA
resource

scsi_dmafree scsi_dmaget(9F) SCSI dma utility
routines

scsi_dmaget scsi_dmaget(9F) SCSI dma utility
routines

scsi_dname scsi_cname(9F) decode a SCSI name
scsi_errmsg scsi_errmsg(9F) display a SCSI request

sense message
scsi_free_consistent_buf scsi_free_consistent_buf(9F) free a previously

allocated SCSI DMA I/O
buffer

scsi_hba_attach scsi_hba_attach(9F) SCSI HBA attach and
detach routines

scsi_hba_detach scsi_hba_attach(9F) SCSI HBA attach and
detach routines

scsi_hba_fini scsi_hba_init(9F) SCSI Host Bus Adapter
system initialization
and completion routines

scsi_hba_init scsi_hba_init(9F) SCSI Host Bus Adapter
system initialization
and completion routines

scsi_hba_lookup_capstr scsi_hba_lookup_capstr(9F) return index matching
capability string

scsi_hba_pkt_alloc scsi_hba_pkt_alloc(9F) allocate and free a
scsi_pkt structure

scsi_hba_pkt_free scsi_hba_pkt_alloc(9F) allocate and free a
scsi_pkt structure

scsi_hba_probe scsi_hba_probe(9F) default SCSI HBA probe
function

modified 28 May 1994 9F-27

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

scsi_hba_tran_alloc scsi_hba_tran_alloc(9F) allocate and free
transport structures

scsi_hba_tran_free scsi_hba_tran_alloc(9F) allocate and free
transport structures

scsi_ifgetcap scsi_ifgetcap(9F) get/set SCSI transport
capability

scsi_ifsetcap scsi_ifgetcap(9F) get/set SCSI transport
capability

scsi_init_pkt scsi_init_pkt(9F) prepare a complete SCSI
packet

scsi_log scsi_log(9F) display a
SCSI-device-related
message

scsi_mname scsi_cname(9F) decode a SCSI name
scsi_pktalloc scsi_pktalloc(9F) SCSI packet utility

routines
scsi_pktfree scsi_pktalloc(9F) SCSI packet utility

routines
scsi_poll scsi_poll(9F) run a polled SCSI

command on behalf of a
target driver

scsi_probe scsi_probe(9F) utility for probing a
scsi device

scsi_resalloc scsi_pktalloc(9F) SCSI packet utility
routines

scsi_reset scsi_reset(9F) reset a SCSI bus or
target

scsi_resfree scsi_pktalloc(9F) SCSI packet utility
routines

scsi_rname scsi_cname(9F) decode a SCSI name
scsi_slave scsi_slave(9F) utility for SCSI target

drivers to establish
the presence of a
target

scsi_sname scsi_cname(9F) decode a SCSI name
scsi_sync_pkt scsi_sync_pkt(9F) synchronize CPU and I/O

views of memory
scsi_transport scsi_transport(9F) request by a SCSI

target driver to start
a command

scsi_unprobe scsi_unprobe(9F) free resources
allocated during
initial probing

9F-28 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions Intro (9F)

scsi_unslave scsi_unprobe(9F) free resources
allocated during
initial probing

sema_destroy semaphore(9F) semaphore functions
sema_init semaphore(9F) semaphore functions
sema_p semaphore(9F) semaphore functions
sema_p_sig semaphore(9F) semaphore functions
sema_tryp semaphore(9F) semaphore functions
sema_v semaphore(9F) semaphore functions
semaphore semaphore(9F) semaphore functions
sprintf sprintf(9F) format characters in

memory
stoi stoi(9F) convert between an

integer and a decimal
string

strchr strchr(9F) find a character in a
string

strcmp strcmp(9F) compare two null
terminated strings.

strcpy strcpy(9F) copy a string from one
location to another.

strlen strlen(9F) determine the number of
non-null bytes in a
string.

strlog strlog(9F) submit messages to the
log driver

strncmp strcmp(9F) compare two null
terminated strings.

strncpy strcpy(9F) copy a string from one
location to another.

strqget strqget(9F) get information about a
queue or band of the
queue

strqset strqset(9F) change information
about a queue or band
of the queue

swab swab(9F) swap bytes in 16-bit
halfwords

testb testb(9F) check for an available
buffer

timeout timeout(9F) execute a function
after a specified
length of time

modified 28 May 1994 9F-29

Intro (9F) DDI and DKI Kernel Functions SunOS 5.4

uiomove uiomove(9F) copy kernel data using
uio structure

unbufcall unbufcall(9F) cancel a pending
bufcall request

unfreezestr freezestr(9F) freeze, thaw the state
of a stream

unlinkb unlinkb(9F) remove a message block
from the head of a
message

untimeout untimeout(9F) cancel previous timeout
function call

ureadc ureadc(9F) add character to a uio
structure

uwritec uwritec(9F) remove a character from
a uio structure

vcmn_err cmn_err(9F) display an error
message or panic the
system

vsprintf vsprintf(9F) format characters in
memory

WR WR(9F) get pointer to the
write queue for this
module or driver

wr WR(9F) get pointer to the
write queue for this
module or driver

9F-30 modified 28 May 1994

SunOS 5.4 DDI and DKI Kernel Functions OTHERQ (9F)

NAME OTHERQ, otherq − get pointer to queue’s partner queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

queue_t ∗OTHERQ(queue_t ∗q);

ARGUMENTS q Pointer to the queue.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The OTHERQ() function returns a pointer to the other of the two queue() structures that
make up a STREAMS module or driver. If q points to the read queue the write queue will
be returned, and vice versa.

RETURN VALUES OTHERQ returns a pointer to a queue’s partner.

CONTEXT OTHERQ() can be called from user or interrupt context.

EXAMPLES This routine sets the minimum packet size, the maximum packet size, the high water
mark, and the low water mark for the read and write queues of a given module or driver.
It is passed either one of the queues. This could be used if a module or driver wished to
update its queue parameters dynamically.

1 void
2 set_q_params(q, min, max, hi, lo)
3 queue_t ∗q;
4 short min;
5 short max;
6 ushort hi;
7 ushort lo;
8 {
9 q->q_minpsz = min;
10 q->q_maxpsz = max;
11 q->q_hiwat = hi;
12 q->q_lowat = lo;
13 OTHERQ(q)->q_minpsz = min;
14 OTHERQ(q)->q_maxpsz = max;
15 OTHERQ(q)->q_hiwat = hi;
16 OTHERQ(q)->q_lowat = lo;
17 }

SEE ALSO Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-31

RD (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME RD, rd − get pointer to the read queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

queue_t ∗RD(queue_t ∗q);

ARGUMENTS q Pointer to the write queue whose read queue is to be returned.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The RD() function accepts a write queue pointer as an argument and returns a pointer to
the read queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a write queue. RD()
will not check for queue type, and a system panic could result if it is not the right type.

RETURN VALUES The pointer to the read queue.

CONTEXT RD() can be called from user or interrupt context.

EXAMPLES See the qreply(9F) function page for an example of RD().

SEE ALSO WR(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-32 modified 15 Nov 1991

SunOS 5.4 DDI and DKI Kernel Functions SAMESTR (9F)

NAME SAMESTR, samestr − test if next queue is in the same stream

SYNOPSIS #include <sys/stream.h>

int SAMESTR(queue_t ∗q);

ARGUMENTS q Pointer to the queue.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The SAMESTR() function is used to see if the next queue in a stream (if it exists) is the
same type as the current queue (that is, both are read queues or both are write queues).
This function accounts for the twisted queue connections that occur in a STREAMS pipe
and should be used in preference to direct examination of the q_next field of queue(9S)
to see if the stream continues beyond q.

RETURN VALUES SAMESTR() returns 1 if the next queue is the same type as the current queue. It returns
0 if the next queue does not exist or if it is not the same type.

CONTEXT SAMESTR() can be called from user or interrupt context.

SEE ALSO OTHERQ(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-33

WR (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME WR, wr − get pointer to the write queue for this module or driver

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

queue_t ∗WR(queue_t ∗q);

ARGUMENTS q Pointer to the read queue whose write queue is to be returned.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The WR() function accepts a read queue pointer as an argument and returns a pointer to
the write queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a read queue. WR()
will not check for queue type, and a system panic could result if the pointer is not to a
read queue.

RETURN VALUES The pointer to the write queue.

CONTEXT WR() can be called from user or interrupt context.

EXAMPLES In a STREAMS close (9E) routine, the driver or module is passed a pointer to the read
queue. These usually are set to the address of the module-specific data structure for the
minor device.

1 xxxclose(q, flag)
2 queue_t ∗∗q;
3 int flag;
4 {
5 q->q_ptr = NULL;
6 WR(q)->q_ptr = NULL;

. . .
7 }

SEE ALSO OTHERQ(9F), RD(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-34 modified 15 Nov 1991

SunOS 5.4 DDI and DKI Kernel Functions adjmsg (9F)

NAME adjmsg − trim bytes from a message

SYNOPSIS #include <sys/stream.h>

int adjmsg(mblk_t ∗mp, int len);

ARGUMENTS mp Pointer to the message to be trimmed.

len The number of bytes to be removed.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION adjmsg() removes bytes from a message. |len| (the absolute value of len) specifies the
number of bytes to be removed. If len is greater than 0, adjmsg() removes bytes from the
head of the message. If len is less than 0, it removes bytes from the tail. adjmsg() fails if
|len| is greater than the number of bytes in the message.

RETURN VALUES adjmsg() returns:

1 on success.

0 on failure.

CONTEXT adjmsg() can be called from user or interrupt context.

SEE ALSO STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-35

allocb (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME allocb − allocate a message block

SYNOPSIS #include <sys/stream.h>

mblk_t ∗allocb(int size, uint pri);

ARGUMENTS size The number of bytes in the message block.

pri Priority of the request (no longer used).

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION allocb() tries to allocate a STREAMS message block. Buffer allocation fails only when the
system is out of memory. If no buffer is available, the bufcall(9F) function can help a
module recover from an allocation failure.

The following figure identifies the data structure members that are affected when a mes-
sage block is allocated.

b_cont (0)
b_rptr
b_wptr
b_datap

message block
(mblk_t)

data block
(dblk_t)

data buffer

.

.

db_base
db_lim
db_type (M_DATA)

RETURN VALUES A pointer to the allocated message block of type M_DATA on success.

A NULL pointer on failure.

CONTEXT allocb() can be called from user or interrupt context.

EXAMPLE Given a pointer to a queue (q) and an error number (err), the send_error() routine sends
an M_ERROR type message to the stream head.

If a message cannot be allocated, NULL is returned, indicating an allocation failure (line
8). Otherwise, the message type is set to M_ERROR (line 10). Line 11 increments the
write pointer (bp->b_wptr) by the size (one byte) of the data in the message.

A message must be sent up the read side of the stream to arrive at the stream head. To
determine whether q points to a read queue or to a write queue, the q->q_flag member is
tested to see if QREADR is set (line 13). If it is not set, q points to a write queue, and in
line 14 the RD(9F) function is used to find the corresponding read queue. In line 15, the
putnext(9F) function is used to send the message upstream, returning 1 if successful.

9F-36 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions allocb (9F)

1 send_error(q,err)
2 queue_t ∗q;
3 unsigned char err;
4 {
5 mblk_t ∗bp;
6
7 if ((bp = allocb(1, BPRI_HI)) == NULL) /∗ allocate msg. block ∗/
8 return(0);
9
10 bp->b_datap->db_type = M_ERROR; /∗ set msg type to M_ERROR ∗/
11 ∗bp->b_wptr++ = err; /∗ increment write pointer ∗/
12
13 if (!(q->q_flag & QREADR)) /∗ if not read queue ∗/
14 q = RD(q); /∗ get read queue ∗/
15 putnext(q,bp); /∗ send message upstream ∗/
16 return(1);
17 }

SEE ALSO bufcall(9F), esballoc(9F), esbbcall(9F), testb(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES The pri argument is no longer used, but is retained for compatibility with existing drivers.

modified 11 Apr 1991 9F-37

backq (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME backq − get pointer to the queue behind the current queue

SYNOPSIS #include <sys/stream.h>

queue_t ∗backq(queue_t ∗cq);

ARGUMENTS cq The pointer to the current queue. queue_t is an alias for the queue(9S)
structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION backq() returns a pointer to the queue preceding cq (the current queue). If cq is a read
queue, backq() returns a pointer to the queue downstream from cq, unless it is the
stream end. If cq is a write queue, backq() returns a pointer to the next queue upstream
from cq, unless it is the stream head.

RETURN VALUES If successful, backq() returns a pointer to the queue preceding the current queue. Other-
wise, it returns NULL.

CONTEXT backq() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers
STREAMS Programmer’s Guide

9F-38 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions bcanput (9F)

NAME bcanput − test for flow control in specified priority band

SYNOPSIS #include <sys/stream.h>

int bcanput(queue_t ∗q, unsigned char pri);

ARGUMENTS q Pointer to the message queue.

pri Message priority.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bcanput() searches through the stream (starting at q) until it finds a queue containing a
service routine where the message can be enqueued, or until it reaches the end of the
stream. If found, the queue containing the service routine is tested to see if there is room
for a message of priority pri in the queue.

If pri is 0, bcanput() is equivalent to a call with canput(9F).

canputnext(q) and bcanputnext(q, pri) should always be used in preference to
canput(q→q_next) and bcanput(q→q_next, pri) respectively.

RETURN VALUES 1 If a message of priority pri can be placed on the queue.

0 If the priority band is full.

CONTEXT bcanput() can be called from user or interrupt context.

WARNINGS Drivers are responsible for both testing a queue with bcanput() and refraining from plac-
ing a message on the queue if bcanput() fails.

SEE ALSO bcanputnext(9F), canput(9F), canputnext(9F), putbq(9F), putnext(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-39

bcmp (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME bcmp − compare two byte arrays

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int bcmp(char ∗s1, char ∗ s2, size_t len);

ARGUMENTS s1 Pointer to the first character string.

s2 Pointer to the second character string.

len Number of bytes to be compared.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bcmp() compares two byte arrays of length len.

RETURN VALUES bcmp() returns 0 if the arrays are identical, or 1 if they are not.

CONTEXT bcmp() can be called from user or interrupt context.

SEE ALSO strcmp(9F)

Writing Device Drivers

NOTES Unlike strcmp(9F), bcmp() does not terminate when it encounters a null byte.

9F-40 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions bcopy (9F)

NAME bcopy − copy data between address locations in the kernel

SYNOPSIS #include <sys/types.h>

void bcopy(caddr_t from, caddr_t to , size_t bcount);

ARGUMENTS from Source address from which the copy is made.

to Destination address to which copy is made.

bcount The number of bytes moved.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bcopy() copies bcount bytes from one kernel address to another. If the input and output
addresses overlap, the command executes, but the results may not be as expected.

Note that bcopy() should never be used to move data in or out of a user buffer, because it
has no provision for handling page faults. The user address space can be swapped out at
any time, and bcopy() always assumes that there will be no paging faults. If bcopy()
attempts to access the user buffer when it is swapped out, the system will panic. It is safe
to use bcopy() to move data within kernel space, since kernel space is never swapped
out.

CONTEXT bcopy() can be called from user or interrupt context.

EXAMPLE An I/O request is made for data stored in a RAM disk. If the I/O operation is a read
request, the data is copied from the RAM disk to a buffer (line 8). If it is a write request,
the data is copied from a buffer to the RAM disk (line 15). bcopy() is used since both the
RAM disk and the buffer are part of the kernel address space.

1 #define RAMDNBLK 1000 /∗ blocks in the RAM disk ∗/
2 #define RAMDBSIZ 512 /∗ bytes per block ∗/
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /∗ blocks forming RAM ∗/

/∗ disk ∗/
...

4
5 if (bp->b_flags & B_READ) /∗ if read request, copy data ∗/
6 /∗ from RAM disk data block ∗/
7 /∗ to system buffer ∗/
8 bcopy(&ramdblks[bp->b_blkno][0], bp->b_un.b_addr,
9 bp->b_bcount);
10
11 else /∗ else write request, ∗/
12 /∗ copy data from a ∗/
13 /∗ system buffer to RAM disk ∗/
14 /∗ data block ∗/

modified 7 Jun 1993 9F-41

bcopy (9F) DDI and DKI Kernel Functions SunOS 5.4

15 bcopy(bp->b_un.b_addr, &ramdblks[bp->b_blkno][0],
16 bp->b_bcount);

WARNINGS The from and to addresses must be within the kernel space. No range checking is done. If
an address outside of the kernel space is selected, the driver may corrupt the system in an
unpredictable way.

SEE ALSO copyin(9F), copyout(9F)

Writing Device Drivers

9F-42 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions biodone (9F)

NAME biodone − release buffer after buffer I/O transfer and notify blocked threads

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void biodone(struct buf ∗bp);

ARGUMENTS bp Pointer to a buf(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION biodone() notifies blocked processes waiting for the I/O to complete, sets the B_DONE
flag in the b_flags field of the buf(9S) structure, and releases the buffer if the I/O is asyn-
chronous. biodone() is called by either the driver interrupt or strategy(9E) routines
when a buffer I/O request is complete.

biodone() provides the capability to call a completion routine if bp describes a kernel
buffer (the flag B_KERNBUF is set in the b_flags member). The address of the routine is
specified in the b_iodone field of the buf(9S) structure. If such a routine is specified,
biodone() calls it and returns without performing any other actions. Otherwise, it per-
forms the steps above.

CONTEXT biodone() can be called from user or interrupt context.

EXAMPLE Generally, the first validation test performed by any block device strategy(9E) routine is a
check for an end-of-file (EOF) condition. The strategy(9E) routine is responsible for
determining an EOF condition when the device is accessed directly. If a read(2) request
is made for one block beyond the limits of the device (line 10), it will report an EOF con-
dition. Otherwise, if the request is outside the limits of the device, the routine will report
an error condition. In either case, report the I/O operation as complete (line 27).

1 #define RAMDNBLK 1000 /∗ Number of blocks in RAM disk ∗/
2 #define RAMDBSIZ 512 /∗ Number of bytes per block ∗/
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /∗ Array containing RAM disk ∗/
4
5 static int
6 ramdstrategy(struct buf ∗bp)
7 {
8 daddr_t blkno = bp->b_blkno; /∗ get block number ∗/
9
10 if ((blkno < 0) || (blkno >= RAMDNBLK)) {
11 /∗
12 ∗ If requested block is outside RAM disk
13 ∗ limits, test for EOF which could result
14 ∗ from a direct (physio) request.
15 ∗/
16 if ((blkno == RAMDNBLK) && (bp->b_flags & B_READ)) {

modified 16 Feb 1993 9F-43

biodone (9F) DDI and DKI Kernel Functions SunOS 5.4

17 /∗
18 ∗ If read is for block beyond RAM disk
19 ∗ limits, mark EOF condition.
20 ∗/
21 bp->b_resid = bp->b_bcount;/∗ compute return value ∗/
22
23 } else { /∗ I/O attempt is beyond ∗/
24 bp->b_error = ENXIO; /∗ limits of RAM disk ∗/
25 bp->b_flags |= B_ERROR; /∗ return error ∗/
26 }
27 biodone(bp); /∗ mark I/O complete (B_DONE) ∗/
28 /∗
29 ∗ Wake any processes awaiting this I/O
30 ∗ or release buffer for asynchronous
31 ∗ (B_ASYNC) request.
32 ∗/
33 return (0);
34 }

...

SEE ALSO read(2), strategy(9E), biowait(9F), ddi_add_intr(9F), delay(9F), timeout(9F),
untimeout(9F), buf(9S)

Writing Device Drivers

NOTES Drivers that use the b_iodone field of the buf(9S) structure to specify a substitute com-
pletion routine should save the value of b_iodone before changing it, and then restore the
old value before calling biodone() to release the buffer.

9F-44 modified 16 Feb 1993

SunOS 5.4 DDI and DKI Kernel Functions bioerror (9F)

NAME bioerror − indicate error in buffer header

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void bioerror(struct buf ∗bp, int error);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS bp Pointer to the buf(9S) structure describing the transfer.

error Error number to be set, or zero to clear an error indication.

DESCRIPTION If error is non-zero, bioerror() indicates an error has occured in the buf(9S) structure. A
subsequent call to geterror(9F) will return error.

If error is 0, the error indication is cleared and a subsequent call to geterror(9F) will return
0.

CONTEXT bioerror() can be called from any context.

SEE ALSO strategy(9E), geterror(9F), getrbuf(9F), buf(9S)

modified 26 May 1994 9F-45

bioreset (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME bioreset − reuse a private buffer header after I/O is complete

SYNOPSIS #include <sys/buf.h>
#include <sys/ddi.h>

void bioreset(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS bp Pointer to the buf (9S) structure.

DESCRIPTION bioreset() is used by drivers that allocate private buffers with getrbuf(9F) and want to
reuse them in multiple transfers before freeing them with freerbuf(9F). bioreset() resets
the buffer header to the state it had when initially allocated.

CONTEXT bioreset() can be called from any context.

SEE ALSO strategy(9E), freerbuf(9F), getrbuf(9F), buf(9S)

NOTES bp must not describe a transfer in progress.

9F-46 modified 26 May 1994

SunOS 5.4 DDI and DKI Kernel Functions biowait (9F)

NAME biowait − suspend processes pending completion of block I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

int biowait(struct buf ∗bp);

ARGUMENTS bp Pointer to the buf structure describing the transfer.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION Drivers allocating their own buf structures with getrbuf(9F) can use the biowait() func-
tion to suspend the current thread and wait for completion of the transfer.

Drivers must call biodone(9F) when the transfer is complete to notify the thread blocked
by biowait(). biodone() is usually called in the interrupt routine.

RETURN VALUES 0 on success

non-0 on I/O failure. biowait() calls geterror(9F) to retrieve the error number which
it returns.

CONTEXT biowait() can be called from user context only.

SEE ALSO biodone(9F), geterror(9F), getrbuf(9F), buf(9S)

Writing Device Drivers

modified 11 Apr 1991 9F-47

bp_mapin (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME bp_mapin − allocate virtual address space

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void bp_mapin(struct buf ∗bp);

ARGUMENTS bp Pointer to the buffer header structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bp_mapin() is used to map virtual address space to a page list maintained by the buffer
header during a paged-I/O request. bp_mapin() allocates system virtual address space,
maps that space to the page list, and returns the starting address of the space in the bp-
>b_un.b_addr field of the buf(9S) structure. Virtual address space is then deallocated
using the bp_mapout(9F) function.

If a null page list is encountered, bp_mapin() returns without allocating space and no
mapping is performed.

CONTEXT bp_mapin() can be called from user context only.

SEE ALSO bp_mapout(9F), buf(9S)

Writing Device Drivers

9F-48 modified 13 Sep 1992

SunOS 5.4 DDI and DKI Kernel Functions bp_mapout (9F)

NAME bp_mapout − deallocate virtual address space

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void bp_mapout(struct buf ∗bp);

ARGUMENTS bp Pointer to the buffer header structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bp_mapout() deallocates system virtual address space allocated by a previous call to
bp_mapin(9F).

CONTEXT bp_mapout() can be called from user context only.

SEE ALSO bp_mapin(9F), buf(9S)

Writing Device Drivers

modified 11 Apr 1991 9F-49

brelse (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME brelse − return buffer to the free list

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void brelse(struct buf ∗bp);

ARGUMENTS bp Pointer to a buf(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION brelse() returns a previously allocated buffer to the free buffer list. If any processes are
waiting for this buffer to be released, or for any buffer to become available, they are
notified.

CONTEXT brelse() can be called from user or interrupt context.

SEE ALSO strategy(9E), biodone(9F), biowait(9F), clrbuf(9F), getrbuf(9F)

Writing Device Drivers

WARNINGS Do not call brelse() on buffers allocted by getrbuf(9F), or on buffers passed to the
strategy(9E) routine.

BUGS There is no sensible way for device drivers to use brelse().

9F-50 modified 16 Feb 1993

SunOS 5.4 DDI and DKI Kernel Functions btop (9F)

NAME btop − convert size in bytes to size in pages (round down)

SYNOPSIS #include <sys/ddi.h>

unsigned long btop(unsigned long numbytes);

ARGUMENTS numbytes Number of bytes.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION btop() returns the number of memory pages that are contained in the specified number
of bytes, with downward rounding in the case that the byte count is not a page multiple.
For example, if the page size is 2048, then btop(4096) returns 2, and btop(4097) returns 2
as well. btop(0) returns 0.

RETURN VALUES The return value is always the number of pages. There are no invalid input values, and
therefore no error return values.

CONTEXT btop() can be called from user or interrupt context.

SEE ALSO btopr(9F), ddi_btop(9F), ptob(9F)

Writing Device Drivers

modified 11 Apr 1991 9F-51

btopr (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME btopr − convert size in bytes to size in pages (round up)

SYNOPSIS #include <sys/ddi.h>

unsigned long btopr(unsigned long numbytes);

ARGUMENTS numbytes Number of bytes.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION btopr() returns the number of memory pages contained in the specified number of bytes
memory, rounded up to the next whole page. For example, if the page size is 2048, then
btopr(4096) returns 2, and btopr(4097) returns 3.

RETURN VALUES The return value is always the number of pages. There are no invalid input values, and
therefore no error return values.

CONTEXT btopr() can be called from user or interrupt context.

SEE ALSO btop(9F), ddi_btopr(9F), ptob(9F)

Writing Device Drivers

9F-52 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions bufcall (9F)

NAME bufcall − call a function when a buffer becomes available

SYNOPSIS #include <sys/types.h>
#include <sys/stream.h>

int bufcall(uint size, int pri, void (∗func)(long), long arg);

ARGUMENTS size Number of bytes required for the buffer.

pri Priority of the allocb(9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bufcall serves as a timeout(9F) call of indeterminate length. When a buffer allocation
request fails, bufcall() can be used to schedule the routine func, to be called with the
argument arg when a buffer becomes available. func may call allocb or it may do some-
thing else.

RETURN VALUES If successful, bufcall() returns a bufcall id that can be used in a call to unbufcall() to
cancel the request. If the bufcall() scheduling fails, func is never called and 0 is returned.

CONTEXT bufcall() can be called from user or interrupt context.

EXAMPLE The purpose of this srv(9E) service routine is to add a header to all M_DATA messages.
Service routines must process all messages on their queues before returning, or arrange
to be rescheduled.

While there are messages to be processed (line 13), check to see if it is a high priority mes-
sage or a normal priority message that can be sent on (line 14). Normal priority message
that cannot be sent are put back on the message queue (line 34). If the message was a
high priority one, or if it was normal priority and canputnext(9F) succeeded, then send
all but M_DATA messages to the next module with putnext(9F) (line 16).

For M_DATA messages, try to allocate a buffer large enough to hold the header (line 18).
If no such buffer is available, the service routine must be rescheduled for a time when a
buffer is available. The original message is put back on the queue (line 20) and bufcall
(line 21) is used to attempt the rescheduling. It will succeed if the rescheduling succeeds,
indicating that qenable will be called subsequently with the argument q once a buffer of
the specified size (sizeof (struct hdr)) becomes available. If it does, qenable(9F) will put
q on the list of queues to have their service routines called. If bufcall fails, timeout(9F)
(line 22) is used to try again in about a half second.

If the buffer allocation was successful, initialize the header (lines 25−28), make the mes-
sage type M_PROTO (line 29), link the M_DATA message to it (line 30), and pass it on
(line 31).

modified 12 Nov 1992 9F-53

bufcall (9F) DDI and DKI Kernel Functions SunOS 5.4

Note that this example ignores the bookkeeping needed to handle bufcall() and
timeout(9F) cancellation for ones that are still outstanding at close time.

1 struct hdr {
2 unsigned int h_size;
3 int h_version;
4 };
5
6 void xxxsrv(q)
7 queue_t ∗q;
8 {
9 mblk_t ∗bp;
10 mblk_t ∗mp;
11 struct hdr ∗hp;
12
13 while ((mp = getq(q)) != NULL) { /∗ get next message ∗/
14 if (mp->b_datap->db_type >= QPCTL || /∗ if high priority ∗/

canputnext(q)) { /∗ normal & can be passed ∗/
15 if (mp->b_datap->db_type != M_DATA)
16 putnext(q, mp); /∗ send all but M_DATA ∗/
17 else {
18 bp = allocb(sizeof(struct hdr), BPRI_LO);
19 if (bp == NULL) { /∗ if unsuccessful ∗/
20 putbq(q, mp); /∗ put it back ∗/
21 if (!bufcall(sizeof(struct hdr), BPRI_LO,

qenable, (long)q)) /∗ try to reschedule ∗/
22 timeout(qenable, (caddr_t)q, drv_usectohz(500000));
23 return (0);
24 }
25 hp = (struct hdr ∗)bp->b_wptr;
26 hp->h_size = msgdsize(mp); /∗ initialize header ∗/
27 hp->h_version = 1;
28 bp->b_wptr += sizeof(struct hdr);
29 bp->b_datap->db_type = M_PROTO; /∗ make M_PROTO ∗/
30 bp->b_cont = mp; /∗ link it ∗/
31 putnext(q, bp); /∗ pass it on ∗/
32 }
33 } else { /∗ normal priority, canputnext failed ∗/
34 putbq(q, mp); /∗ put back on the message queue ∗/
35 return (0);
36 }
37 }

return (0);
38 }

9F-54 modified 12 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions bufcall (9F)

WARNINGS Even when func is called by bufcall(), allocb(9F) can fail if another module or driver had
allocated the memory before func was able to call allocb(9F).

SEE ALSO allocb(9F), esballoc(9F), esbbcall(9F), testb(9F), timeout(9F), unbufcall(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 12 Nov 1992 9F-55

bzero (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME bzero − clear memory for a given number of bytes

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

void bzero(caddr_t addr , size_t bytes);

ARGUMENTS addr Starting virtual address of memory to be cleared.

bytes The number of bytes to clear starting at addr .

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION bzero() clears a contiguous portion of memory by filling it with zeros.

CONTEXT bzero() can be called from user or interrupt context.

SEE ALSO bcopy(9F), clrbuf(9F), kmem_zalloc(9F)

Writing Device Drivers

WARNINGS The address range specified must be within the kernel space. No range checking is done.
If an address outside of the kernel space is selected, the driver may corrupt the system in
an unpredictable way.

9F-56 modified 27 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions canput (9F)

NAME canput − test for room in a message queue

SYNOPSIS #include <sys/stream.h>

int canput(queue_t ∗q);

ARGUMENTS q Pointer to the message queue.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION canput() searches through the stream (starting at q) until it finds a queue containing a
service routine where the message can be enqueued, or until it reaches the end of the
stream. If found, the queue containing the service routine is tested to see if there is room
for a message in the queue.

canputnext(q) and bcanputnext(q, pri) should always be used in preference to
canput(q→q_next) and bcanput(q→q_next, pri) respectively.

RETURN VALUES 1 If the message queue is not full.

0 If the queue is full.

CONTEXT canput() can be called from user or interrupt context.

WARNINGS Drivers are responsible for both testing a queue with canput() and refraining from plac-
ing a message on the queue if canput() fails.

SEE ALSO bcanput(9F), bcanputnext(9F), canputnext(9F), putbq(9F), putnext(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-57

canputnext (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME canputnext, bcanputnext − test for room in next module’s message queue

SYNOPSIS #include <sys/stream.h>

int canputnext(queue_t ∗q);

int bcanputnext(queue_t ∗q, unsigned char pri);

ARGUMENTS q Pointer to a message queue belonging to the invoking module.

pri Minimum priority level.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The invocation canputnext(q); is an atomic equivalent of the canput(q→q_next); routine.
That is, the STREAMS framework provides whatever mutual exclusion is necessary to
insure that dereferencing q through its q_next field and then invoking canput(9F)
proceeds without interference from other threads.

bcanputnext(q, pri); is the equivalent of the bcanput(q→q_next, pri); routine.

canputnext(q); and bcanputnext(q, pri); should always be used in preference to
canput(q→q_next); and bcanput(q→q_next, pri); respectively.

See canput(9F) and bcanput(9F) for further details.

RETURN VALUES 1 If the message queue is not full.

0 If the queue is full.

CONTEXT canputnext() and bcanputnext() can be called from user or interrupt context.

WARNINGS Drivers are responsible for both testing a queue with canputnext() or bcanputnext() and
refraining from placing a message on the queue if the queue is full.

SEE ALSO bcanput(9F), canput(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-58 modified 31 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions clrbuf (9F)

NAME clrbuf − erase the contents of a buffer

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void clrbuf(struct buf ∗bp);

ARGUMENTS bp Pointer to the buf(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION clrbuf() zeros a buffer and sets the b_resid member of the buf(9S) structure to 0. Zeros
are placed in the buffer starting at bp->b_un.b_addr for a length of bp->b_bcount bytes.
b_un.b_addr and b_bcount are members of the buf(9S) data structure.

CONTEXT clrbuf() can be called from user or interrupt context.

SEE ALSO brelse(9F), buf(9S)

Writing Device Drivers

modified 27 Jan 1993 9F-59

cmn_err (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME cmn_err, vcmn_err − display an error message or panic the system

SYNOPSIS #include <sys/cmn_err.h>

void cmn_err(int level, char ∗format , ...);

void vcmn_err(int level, char ∗format , va_list ap);

ARGUMENTS
cmn_err() level A constant indicating the severity of the error condition. The four severity levels

are:

CE_CONT Used to continue another message or to display an informative
message not connected with an error.

CE_NOTE Used to display a message preceded with NOTICE. This mes-
sage is used to report system events that do not necessarily
require user action, but may interest the system administrator.
For example, a message saying that a sector on a disk needs to
be accessed repeatedly before it can be accessed correctly might
be noteworthy.

CE_WARN Used to display a message preceded with WARNING. This
message is used to report system events that require immediate
attention, such as those where if an action is not taken, the sys-
tem may panic. For example, when a peripheral device does not
initialize correctly, this level should be used.

CE_PANIC Used to display a message preceded with PANIC or DOUBLE
PANIC, and to panic the system. Drivers should specify this
level only under the most severe conditions or when debugging
a driver. A valid use of this level is when the system cannot
continue to function. If the error is recoverable, or not essential
to continued system operation, do not panic the system. This
level halts multiuser processing.

format The message to be displayed. By default, the message is sent both to the system
console and to the system buffer. If the first character in format is an ’! ’ (exclama-
tion point), the message goes only to the system buffer. If the first character in
format is a ’ˆ ’ (circumflex), the message goes only to the console. If the first char-
acter is a ’? ’ (question mark), and level is CE_CONT, the message is always sent
to the system buffer, but is only written to the console when the system has been
booted in verbose mode. See kernel(1M). If neither condition is met, the ’? ’
character has no effect and is simply ignored. Except for the first character, the
rules for format are the same as those for printf(3S) strings. To display the con-
tents of the system buffer, use the dmesg(1M) command.

cmn_err appends a \n to each format , except when level is CE_CONT.

Valid conversion specifications are %s, %u, %d, %b, %o, and %x.

The %b conversion specification allows bit values to be printed meaningfully.

9F-60 modified 16 Feb 1993

SunOS 5.4 DDI and DKI Kernel Functions cmn_err (9F)

Each %b takes an integer value and a format string from the argument list. The
first character of the format string should be the output base encoded as a control
character. This base is used to print the integer argument. The remaining groups
of characters in the format string consist of a bit number (between 1 and 32, also
encoded as a control character) and the next characters (up to the next control
character or ’\0’) give the name of the bit field. The string corresponding to the
bit fields set in the integer argument is printed after the numerical value. See the
examples below.

cmn_err() is otherwise similar to the printf(3S) library subroutine in displaying
messages.

vcmn_err() vcmn_err() takes level and format as described for cmn_err(), but its third argument is
different:

ap The var arg list passed to the function.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION
cmn_err() cmn_err() displays a specified message on the console. cmn_err() can also panic the sys-

tem.

At times, a driver may encounter error conditions requiring the attention of a primary or
secondary system console monitor. These conditions may mean halting multiuser pro-
cessing; however, this must be done with caution. Except during the debugging stage, a
driver should never stop the system.

cmn_err() with the CE_CONT argument can be used by driver developers as a driver
code debugging tool. However, using cmn_err() in this capacity can change system tim-
ing characteristics.

If CE_PANIC is set, cmn_err() stops the machine.

vcmn_err() vcmn_err() is identical to cmn_err() except that its last argument ap is a pointer to a list
of arguments.

RETURN VALUES None. However, if an unknown level is passed to cmn_err(), the following panic error
message is displayed:

PANIC: unknown level in cmn_err (level= level , msg= format)

CONTEXT cmn_err() can be called from user or interrupt context.

EXAMPLES This first example shows how cmn_err() can record tracing and debugging information
only in the system buffer (lines 15 and 16); display problems with a device only on the
system console (line 21); or stop the system if a required device malfunctions (line 27).

1 struct device {
2 int control;
3 int status;

modified 16 Feb 1993 9F-61

cmn_err (9F) DDI and DKI Kernel Functions SunOS 5.4

4 int error;
5 short recv_char;
6 short xmit_char;
7 };
8
9 extern struct device xx_addr[];
10 extern int xx_cnt;

. . .
11 register struct device ∗rp;
12 rp = xx_addr[(getminor(dev) >> 4) & 0xf]; /∗ get dev registers ∗/
13
14 #ifdef DEBUG /∗ in debugging mode, log function call ∗/
15 cmn_err(CE_NOTE, "!xx_open function call, dev = 0x%x", dev);
16 cmn_err(CE_CONT, "! flag = 0x%x", flag); /∗ continue msg ∗/
17 #endif /∗ end DEBUG ∗/
18
19 /∗ display device power failure on system console ∗/
20 if ((rp->status & POWER) == OFF)
21 cmn_err(CE_WARN, "xx_open: Power is OFF on device %d port %d",
22 ((getminor(dev) >> 4) & 0xf), (getminor(dev) & 0xf));
23
24 /∗ halt system if root device has bad VTOC ∗/
25 if (rp->error == BADVTOC && dev == rootdev)
26 cmn_err(CE_PANIC, "xx_open: Bad VTOC on root device");

The second example shows how to use the %b conversion specification. Because of the
leading ’? ’ character in the format string, this message will always be logged, but it will
only be displayed when the kernel is booted in verbose mode.

cmn_err(CE_CONT, "?reg=0x%b\n", regval, "\020\3Intr\2Err\1Enable");

When regval is set to (decimal) 13, the following message would be printed:

reg=0xd<Intr,,Enable>

SEE ALSO dmesg(1M), kernel(1M), printf(3S), print(9E), ddi_report_dev(9F)

Writing Device Drivers

NOTES cmn_err() does not accept length specifications in conversion specifications. For exam-
ple, %3d is ignored.

BUGS See chapter 12, "Debugging" in Writing Device Drivers.

9F-62 modified 16 Feb 1993

SunOS 5.4 DDI and DKI Kernel Functions condvar (9F)

NAME condvar, cv_init, cv_destroy, cv_wait, cv_signal, cv_broadcast, cv_wait_sig,
cv_timedwait, cv_timedwait_sig − condition variable routines

SYNOPSIS #include <sys/ksynch.h>

void cv_init(kcondvar_t ∗cvp, char ∗name, kcv_type_t type , void ∗arg);

void cv_destroy(kcondvar_t ∗cvp);

void cv_wait(kcondvar_t ∗cvp, kmutex_t ∗mp);

void cv_signal(kcondvar_t ∗cvp);

void cv_broadcast(kcondvar_t ∗cvp);

int cv_wait_sig(kcondvar_t ∗cvp, kmutex_t ∗mp);

int cv_timedwait(kcondvar_t ∗cvp, kmutex_t ∗mp, long timeout);

int cv_timedwait_sig(kcondvar_t ∗cvp, kmutex_t ∗mp, long timeout);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS cvp A pointer to an abstract data type kcondvar_t.

mp A pointer to a mutual exclusion lock (kmutex_t), initialized by mutex_init(9F)
and held by the caller.

name A name for the condition variable, used in statistics and debugging.

type The constant CV_DRIVER.

arg A type-specific argument, drivers should pass arg as NULL.

timeout A time, in absolute ticks since boot, when cv_timedwait() or
cv_timedwait_sig() should return.

DESCRIPTION Condition variables are a standard form of thread synchronization. They are designed to
be used with mutual exclusion locks (mutexes). The associated mutex is used to ensure
that a condition can be checked atomically and that the thread can block on the associated
condition variable without missing either a change to the condition or a signal that the
condition has changed. Condition variables must be initialized by calling cv_init(), and
must be deallocated by calling cv_destroy().

The usual use of condition variables is to check a condition (for example, device state,
data structure reference count, etc.) while holding a mutex which keeps other threads
from changing the condition. If the condition is such that the thread should block,
cv_wait() is called with a related condition variable and the mutex. At some later point
in time, another thread would aquire the mutex, set the condition such that the previous
thread can be unblocked, unblock the previous thread with cv_signal() or
cv_broadcast(), and then release the mutex.

cv_wait() suspends the calling thread and exits the mutex atomically so that another
thread which holds the mutex cannot signal on the condition variable until the blocking
thread is blocked. Before returning, the mutex is reacquired.

modified 31 Mar 1994 9F-63

condvar (9F) DDI and DKI Kernel Functions SunOS 5.4

cv_signal() signals the condition and wakes one blocked thread. All blocked threads can
be unblocked by calling cv_broadcast(). You must aquire the mutex passed into
cv_wait() before calling cv_signal() or cv_broadcast().

The function cv_wait_sig() is similar to cv_wait() but returns 0 if a signal (for example,
by kill(2)) is sent to the thread. In any case, the mutex is reacquired before returning.

The function cv_timedwait() is similar to cv_wait(), except that it returns −1 without the
condition being signaled after the timeout time has been reached.

The function cv_timedwait_sig() is similar to cv_timedwait(), and cv_wait_sig(), except
that it returns −1 without the condition being signaled after the timeout time has been
reached, or 0 if a signal (for example, by kill(2)) is sent to the thread.

For both cv_timedwait() and cv_timedwait_sig(), time is in absolute clock ticks since the
last system reboot. The current time may be found by calling drv_getparm(9F) with the
argument LBOLT.

RETURN VALUES 0 For cv_wait_sig() and cv_timedwait_sig() indicates that the condition
was not necessarily signaled and the function returned because a signal
(as in kill(2)) was pending.

-1 For cv_timedwait() and cv_timedwait_sig() indicates that the condition
was not necessarily signaled and the function returned because the
timeout time was reached.

> 0 For cv_wait_sig(), cv_timedwait() or cv_timedwait_sig() indicates that
the condition was met and the function returned due to a call to
cv_signal() or cv_broadcast().

CONTEXT These functions can be called from user, kernel or interrupt context. In most cases, how-
ever, cv_wait(), cv_timedwait(), cv_wait_sig(), and cv_timedwait_sig() should be
called from user context only.

EXAMPLES Here the condition being waited for is a flag value in a driver’s unit structure. The condi-
tion variable is also in the unit structure, and the flag word is protected by a mutex in the
unit structure.

mutex_enter(&un->un_lock);
while (un->un_flag & UNIT_BUSY)

cv_wait(&un->un_cv, &un->un_lock);
un->un_flag |= UNIT_BUSY;
mutex_exit(&un->un_lock);

At some later point in time, another thread would execute the following to unblock any
threads blocked by the above code.

mutex_enter(&un->un_lock);
un->un_flag &= ˜UNIT_BUSY;
cv_broadcast(&un->un_cv);
mutex_exit(&un->un_lock);

9F-64 modified 31 Mar 1994

SunOS 5.4 DDI and DKI Kernel Functions condvar (9F)

SEE ALSO kill(2), drv_getparm(9F), mutex(9F), mutex_init(9F)

Writing Device Drivers

modified 31 Mar 1994 9F-65

copyb (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME copyb − copy a message block

SYNOPSIS #include <sys/stream.h>

mblk_t ∗copyb(mblk_t ∗bp);

ARGUMENTS bp Pointer to the message block from which data is copied.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION copyb() allocates a new message block, and copies into it the data from the block that bp
denotes. The new block will be at least as large as the block being copied. copyb() uses
the b_rptr and b_wptr members of bp to determine how many bytes to copy.

RETURN VALUES If successful, copyb() returns a pointer to the newly allocated message block containing
the copied data. Otherwise, it returns a NULL pointer.

CONTEXT copyb() can be called from user or interrupt context.

EXAMPLES For each message in the list, test to see if the downstream queue is full with the
canputnext(9F) function (line 21). If it is not full, use copyb(9F) to copy a header message
block, and dupmsg(9F) to duplicate the data to be retransmitted. If either operation fails,
reschedule a timeout at the next valid interval.

Update the new header block with the correct destination address (line 34), link the mes-
sage to it (line 35), and send it downstream (line 36). At the end of the list, reschedule
this routine.

1 struct retrans {
2 mblk_t ∗r_mp;
3 long r_address;
4 queue_t ∗r_outq;
5 struct retrans ∗r_next;
6 };
7
8 struct protoheader {

. . .
9 long h_address;

. . .
10 };
11
12 mblk_t ∗header;
13
14 void
15 retransmit(struct retrans ∗ret)
16 {
17 mblk_t ∗bp, ∗mp;

9F-66 modified 27 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions copyb (9F)

18 struct protoheader ∗php;
19
20 while (ret) {
21 if (!canputnext(ret->r_outq)) { /∗ no room ∗/
22 ret = ret->r_next;
23 continue;
24 }
25 bp = copyb(header); /∗ copy header msg. block ∗/
26 if (bp == NULL)
27 break;
28 mp = dupmsg(ret->r_mp); /∗ duplicate data ∗/
29 if (mp == NULL) { /∗ if unsuccessful ∗/
30 freeb(bp); /∗ free the block ∗/
31 break;
32 }
33 php = (struct protoheader ∗)bp->b_rptr;
34 php->h_address = ret->r_address; /∗ new header ∗/
35 bp->bp_cont = mp; /∗ link the message ∗/
36 putnext(ret->r_outq, bp); /∗ send downstream ∗/
37 ret = ret->r_next;
38 }
39 /∗ reschedule ∗/
40 (void) timeout(retransmit, (caddr_t)ret, RETRANS_TIME);
41 }

SEE ALSO allocb(9F), canputnext(9F), dupmsg(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 27 Jan 1993 9F-67

copyin (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME copyin − copy data from a user program to a driver buffer

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int copyin(caddr_t userbuf, caddr_t driverbuf, size_t cn);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS userbuf User program source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

DESCRIPTION copyin() copies data from a user program source address to a driver buffer. The driver
developer must ensure that adequate space is allocated for the destination address.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds the
most efficient move according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned indicating a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

· paging fault; the driver tried to access a page of memory for which it did
not have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT copyin() can be called from user context only.

EXAMPLES A driver ioctl(9E) routine (line 9) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 17), the driver copies the current device register
values to a user data area (line 18). If the specified argument contains an invalid address,
an error code is returned.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short recv_char; /∗ receive character from device ∗/
5 short xmit_char; /∗ transmit character to device ∗/
6 }; /∗ end device ∗/
7
8 extern struct device xx_addr[]; /∗ phys. device regs. location ∗/

. . .

9F-68 modified 15 Dec 1993

SunOS 5.4 DDI and DKI Kernel Functions copyin (9F)

9 xx_ioctl(dev, cmd, arg, mode, cred_p, rval_p)
10 dev_t dev;
11 int cmd, arg;
12 ...
13 {
14 register struct device ∗rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_SETREGS: /∗ copy device regs. to user program ∗/
18 if (copyin((caddr_t)arg, (caddr_t)rp, sizeof(struct device)))
19 return(EFAULT);
21 break;

SEE ALSO bcopy(9F), copyout(9F), ddi_copyin(9F), ddi_copyout(9F), uiomove(9F).

Writing Device Drivers

NOTES Driver writers who intend to support layered ioctls in their ioctl(9E) routines should use
ddi_copyin(9F) instead.

Driver defined locks should not be held across calls to this function.

modified 15 Dec 1993 9F-69

copymsg (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME copymsg − copy a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗copymsg(mblk_t ∗mp);

ARGUMENTS mp Pointer to the message to be copied.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION copymsg() forms a new message by allocating new message blocks, and copying the con-
tents of the message referred to by mp (using the copyb(9F) function). It returns a pointer
to the new message.

RETURN VALUES If the copy is successful, copymsg() returns a pointer to the new message. Otherwise, it
returns a NULL pointer.

CONTEXT copymsg() can be called from user or interrupt context.

EXAMPLES The routine lctouc() converts all the lowercase ASCII characters in the message to upper-
case. If the reference count is greater than one (line 8), then the message is shared, and
must be copied before changing the contents of the data buffer. If the call to the
copymsg(9F) function fails (line 9), return NULL (line 10), otherwise, free the original
message (line 11). If the reference count was equal to 1, the message can be modified.
For each character (line 16) in each message block (line 15), if it is a lowercase letter, con-
vert it to an uppercase letter line 18). A pointer to the converted message is returned (line
21).

1 mblk_t ∗∗lctouc(mp)
2 mblk_t ∗∗mp;
3 {
4 mblk_t ∗∗cmp;
5 mblk_t ∗∗tmp;
6 unsigned char ∗∗cp;
7
8 if (mp->b_datap->db_ref > 1) {
9 if ((cmp = copymsg(mp)) == NULL)
10 return (NULL);
11 freemsg(mp);
12 } else {
13 cmp = mp;
14 }
15 for (tmp = cmp; tmp; tmp = tmp->b_next) {
16 for (cp = tmp->b_rptr; cp < tmp->b_wptr; cp++) {
17 if ((∗∗cp <= ’z’) && (∗∗cp >= ’a’))
18 ∗∗cp -= 0x20;

9F-70 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions copymsg (9F)

19 }
20 }
21 return(cmp);
22 }

SEE ALSO allocb(9F), copyb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-71

copyout (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME copyout − copy data from a driver to a user program

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int copyout(caddr_t driverbuf, caddr_t userbuf, size_t cn);

ARGUMENTS driverbuf Source address in the driver from which the data is transferred.

userbuf Destination address in the user program to which the data is transferred.

cn Number of bytes moved.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION copyout() copies data from driver buffers to user data space.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds the
most efficient move algorithm according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned to indicate a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

· paging fault; the driver tried to access a page of memory for which it did
not have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT copyout() can be called from user context only.

EXAMPLES A driver ioctl(9E) routine (line 9) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 17), the driver copies the current device register
values to a user data area (line 18). If the specified argument contains an invalid address,
an error code is returned.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short recv_char; /∗ receive character from device ∗/
5 short xmit_char; /∗ transmit character to device ∗/
6 }; /∗ end device ∗/
7
8 extern struct device xx_addr[]; /∗ phys. device regs. location ∗/

. . .
9 xx_ioctl(dev, cmd, arg, mode, cred_p, rval_p)
10 dev_t dev;

9F-72 modified 15 Dec 1993

SunOS 5.4 DDI and DKI Kernel Functions copyout (9F)

11 int cmd, arg;
12 ...
13 {
14 register struct device ∗rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_GETREGS: /∗ copy device regs. to user program ∗/
18 if (copyout((caddr_t)rp, (caddr_t)arg, sizeof(struct device)))
19 return(EFAULT);
21 break;

SEE ALSO bcopy(9F), copyin(9F), ddi_copyin(9F), ddi_copyout(9F), uiomove(9F).

Writing Device Drivers

NOTES Driver writers who intend to support layered ioctls in their ioctl(9E) routines should use
ddi_copyout(9F) instead.

Driver defined locks should not be held across calls to this function.

modified 15 Dec 1993 9F-73

datamsg (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME datamsg − test whether a message is a data message

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int datamsg(unsigned char type);

ARGUMENTS type The type of message to be tested. The db_type field of the datab(9S) structure
contains the message type. This field may be accessed through the message block
using mp->b_datap->db_type.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION datamsg() tests the type of message to determine if it is a data message type (M_DATA,
M_DELAY, M_PROTO, or M_PCPROTO).

RETURN VALUES datamsg returns 1 if the message is a data message; and 0 otherwise.

CONTEXT datamsg() can be called from user or interrupt context.

EXAMPLES The put(9E) routine enqueues all data messages for handling by the srv(9E) (service) rou-
tine. All non-data messages are handled in the put(9E) routine.

1 xxxput(q, mp)
2 queue_t ∗∗q;
3 mblk_t ∗∗mp;
4 {
5 if (datamsg(mp->b_datap->db_type)) {
6 putq(q, mp);
7 return;
8 }
9 switch (mp->b_datap->db_type) {
10 case M_FLUSH:

. . .
11 }
12 }

SEE ALSO put(9E), srv(9E), allocb(9F), datab(9S), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-74 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_add_intr (9F)

NAME ddi_add_intr, ddi_remove_intr − add and remove an interrupt handler

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_add_intr(dev_info_t ∗dip, u_int inumber, ddi_iblock_cookie_t ∗iblock_cookiep ,
ddi_idevice_cookie_t ∗idevice_cookiep, u_int (∗int_handler)(caddr_t),
caddr_t int_handler_arg);

void ddi_remove_intr(dev_info_t ∗dip, u_int inumber, ddi_iblock_cookie_t
iblock_cookie);

ARGUMENTS
ddi_add_intr() dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Pointer to an interrupt block cookie.

idevice_cookiep Pointer to an interrupt device cookie.

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

ddi_remove_intr() dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookie Block cookie which identifies the interrupt handler to be removed.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_add_intr() adds an interrupt handler to the system. The interrupt number inumber
determines which interrupt the handler will be associated with. The parameter inumber is
associated with information provided either by the device (see sbus(4)) or the hardware
configuration file (see vme(4) and driver.conf(4)). If only one interrupt is associated with
the device, inumber should be 0.

On a successful return, iblock_cookiep contains information needed for initializing mutexes
associated with this interrupt specification (see mutex_init(9F)). If iblock_cookiep is set to
NULL, no value will be returned.

On a successful return, idevice_cookiep contains a pointer to a structure containing infor-
mation useful for some devices that have programmable interrupts. The idev_priority
field of the returned structure contains the bus interrupt priority level and the
idev_vector field contains the vector number for vectored bus architectures such as
VMEbus. If idevice_cookiep is set to NULL, no value is returned.

The routine intr_handler, with its argument int_handler_arg, is called upon receipt of the
appropriate interrupt. The interrupt handler should return DDI_INTR_CLAIMED if the
interrupt was claimed, DDI_INTR_UNCLAIMED otherwise.

modified 12 Nov 1992 9F-75

ddi_add_intr (9F) DDI and DKI Kernel Functions SunOS 5.4

If successful, ddi_add_intr() will return DDI_SUCCESS; if the interrupt information can-
not be found, it will return DDI_INTR_NOTFOUND.

ddi_remove_intr() removes an interrupt handler from the system. Unloadable drivers
should call this routine during their detach(9E) routine to remove their interrupt handler
from the system.

The device interrupt routine for this instance of the device will not execute after
ddi_remove_intr() returns. ddi_remove_intr() may need to wait for the device interrupt
routine to complete before returning. Therefore, locks acquired by the interrupt handler
should not be held across the call to ddi_remove_intr() or deadlock may result.

RETURN VALUES ddi_add_intr() returns:

DDI_SUCCESS on success.

DDI_INTR_NOTFOUND on failure to find the interrupt.

CONTEXT ddi_add_intr() and ddi_remove_intr() can be called from user or interrupt context.

SEE ALSO driver.conf(4), sbus(4), vme(4), attach(9E), detach(9E), ddi_intr_hilevel(9F),
mutex_init(9F)

Writing Device Drivers

BUGS The idevice_cookiep should really point to a data structure that is specific to the bus archi-
tecture that the device operates on. Currently only VMEbus and SBus are supported and
a single data structure is used to describe both.

It is possible that a driver’s interrupt handler will be called immediately after the driver
has called ddi_add_intr() but before the driver has had an opportunity to initialize its
mutexes. This can happen when an interrupt for a different device occurs on the same
interrupt level. If the interrupt routine acquires the mutex before it has been initialized,
undefined behavior may result.

The solution to this problem is to add a temporary interrupt handler using
ddi_add_intr(). The temporary interrupt routine must be a function that performs no
action, such as nulldev(9F). This allows the driver to obtain the interrupt block cookie
for the interrupt, which it can then use to initialize any mutexes. After the mutexes are
initialized, the temporary interrupt handler can be removed, and the real one installed.
nulldev(9F) can be used as the temporary interrupt handler, though it needs to be cast
properly.

9F-76 modified 12 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_add_softintr (9F)

NAME ddi_add_softintr, ddi_remove_softintr, ddi_trigger_softintr − add, remove or trigger a
soft interrupt

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_add_softintr(dev_info_t ∗dip, int preference, ddi_softintr_t ∗idp,
ddi_iblock_cookie_t ∗ibcp, ddi_idevice_cookie_t ∗idcp,
u_int(∗int_handler)(caddr_t int_handler_arg), caddr_t int_handler_arg)

void ddi_remove_softintr(ddi_softintr_t id)
void ddi_trigger_softintr(ddi_softintr_t id)

ARGUMENTS
ddi_add_softintr() dip Pointer to dev_info structure.

preference A hint value describing the type of soft interrupt to generate.

idp Pointer to a soft interrupt identifier where a returned soft interrupt
identifier is stored.

ibcp Optional pointer to an interrupt block cookie where a returned interrupt
block cookie is stored.

idcp Optional pointer to an interrupt device cookie where a returned inter-
rupt device cookie is stored.

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

ddi_remove_softintr() id The identifier specifying which soft interrupt handler to remove.

ddi_trigger_softintr() id The identifier specifying which soft interrupt to trigger and which soft
interrupt handler will be called.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_add_softintr() adds a soft interrupt to the system. The user specified hint preference
identifies three suggested levels for the system to attempt to allocate the soft interrupt
priority at. The possible values for preference are:

DDI_SOFTINT_LOW Low priority soft interrupt
DDI_SOFTINT_MED Medium priority soft interrupt
DDI_SOFTINT_HIGH High priority soft interrupt

The value returned in location pointed at by idp is the soft interrupt identifier. This value
is used in later calls to ddi_remove_softintr() and ddi_trigger_softintr() to identify the
soft interrupt and the soft interrupt handler.

modified 4 Mar 1994 9F-77

ddi_add_softintr (9F) DDI and DKI Kernel Functions SunOS 5.4

The value returned in the location pointed at by ibcp is an interrupt block cookie which
contains information needed for initializing mutexes associated with this soft interrupt
(see mutex_init(9F). If the interrupt cookie pointer is set to NULL no value will be
returned.

The value returned in the location pointed at by idcp is an interrupt device cookie which
contains the machine specific bits used by the system to program a soft interrupt. This
value is currently not useful to device drivers and is available only for future extensions
to the DDI/DKI. If the device cookie pointer is set to NULL no value will be returned.

The routine intr_handler, with its argument int_handler_arg, is called upon receipt of
appropriate soft interrupt. The interrupt handler should return DDI_INTR_CLAIMED if
the interrupt was claimed, DDI_INTR_UNCLAIMED otherwise.

If successful, ddi_add_softintr() will return DDI_SUCCESS; if the interrupt information
cannot be found, it will return DDI_FAILURE.

ddi_remove_softintr() removes a soft interrupt from the system. The soft interrupt
identifier id, which was returned from a call to ddi_add_softintr(), is used to determine
which soft interrupt and which soft interrupt handler to remove. Unloadable drivers
should call this routine to detach themselves from the system.

ddi_trigger_softintr() triggers a soft interrupt. The soft interrupt identifier id, which was
returned from a call to ddi_add_softintr(), is used to determine which soft interrupt to
trigger and subsequently which soft interrupt handler to call. This function is used by
device drivers when they wish to trigger a soft interrupt which they had set up using
ddi_add_softintr().

RETURN VALUES ddi_add_softintr() returns:

DDI_SUCCESS on success

DDI_FAILURE on failure

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO ddi_add_intr(9F), ddi_remove_intr(9F), mutex_init(9F)

Writing Device Drivers

9F-78 modified 4 Mar 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_btop (9F)

NAME ddi_btop, ddi_btopr, ddi_ptob − page size conversions

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

unsigned long ddi_btop(dev_info_t ∗dip, unsigned long bytes);

unsigned long ddi_btopr(dev_info_t ∗dip, unsigned long bytes);

unsigned long ddi_ptob(dev_info_t ∗dip, unsigned long pages);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION This set of routines use the parent nexus driver to perform conversions in page size units.

ddi_btop() converts the given number of bytes to the number of memory pages that it
corresponds to, rounding down in the case that the byte count is not a page multiple.

ddi_btopr() converts the given number of bytes to the number of memory pages that it
corresponds to, rounding up in the case that the byte count is not a page multiple.

ddi_ptob() converts the given number of pages to the number of bytes that it
corresponds to.

Because bus nexus may possess their own hardware address translation facilities, these
routines should be used in preference to the corresponding DDI/DKI routines btop(9F),
btopr(9F), and ptob(9F), which only deal in terms of the pagesize of the main system
MMU.

RETURN VALUES ddi_btop() and ddi_btopr() return the number of corresponding pages. ddi_ptob()
returns the corresponding number of bytes. There are no error return values.

CONTEXT This function can be called from user or interrupt context.

EXAMPLE This example finds the size (in bytes) of one page:

pagesize = ddi_ptob(dip, 1L);

SEE ALSO btop(9F), btopr(9F), ptob(9F)

Writing Device Drivers

modified 11 Sep 1991 9F-79

ddi_copyin (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_copyin − copy data to a driver buffer

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_copyin(caddr_t buf, caddr_t driverbuf, size_t cn, int flags);

ARGUMENTS buf Source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

flags Set of flag bits that provide address space information about buf.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION This routine is designed for use in driver ioctl(9E) routines for drivers that support lay-
ered ioctls. ddi_copyin() copies data from a source address to a driver buffer. The
driver developer must ensure that adequate space is allocated for the destination address.

The flags argument is used to determine the address space information about buf. If the
FKIOCTL flag is set, this indicates that buf is a kernel address, and ddi_copyin() behaves
like bcopy(9F). Otherwise buf is interpreted as a user buffer address, and ddi_copyin()
behaves like copyin(9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds the most
efficient move according to address alignment.

RETURN VALUES ddi_copyin() returns 0, indicating a successful copy. It returns −1 if one of the following
occurs:

· paging fault; the driver tried to access a page of memory for which it did not
have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a −1 is returned to the caller, driver entry point routines should return EFAULT.

EXAMPLES A driver ioctl(9E) routine (line 11) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 24), the driver copies the current device register
values to another data area (line 25). If the specified argument contains an invalid
address, an error code is returned.

9F-80 modified 15 Dec 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_copyin (9F)

1 struct device { /∗∗ layout of physical device registers ∗∗/
2 int control; /∗∗ physical device control word ∗∗/
3 int status; /∗∗ physical device status word ∗∗/
4 short recv_char;/∗∗ receive character from device ∗∗/
5 short xmit_char;/∗∗ transmit character to device ∗∗/
6 };

7 struct device_state {
8 volatile struct device ∗∗regsp; /∗∗ pointer to device registers ∗∗/

. . .
9 };

10 static void ∗∗statep; /∗∗ for soft state routines ∗∗/

11 xxioctl(dev_t dev, int cmd, int arg, int mode,
12 cred_t ∗∗cred_p, int ∗∗rval_p)
13 {
14 struct device_state ∗∗sp;
15 volatile struct device ∗∗rp;
16 int instance;

17 instance = getminor(dev) >> 4;
18 sp = ddi_get_soft_state(statep, instance);
19 if (sp == NULL)
20 return (ENXIO);
21 rp = sp->regsp;

. . .
22 switch (cmd) {

24 case XX_SETREGS: /∗∗ copy device regs. to caller ∗∗/
25 if (ddi_copyin((caddr_t)rp, (caddr_t)arg,
26 sizeof (struct device), mode) != 0) {
27 return (EFAULT);
28 }

CONTEXT ddi_copyin() can be called from user context only.

SEE ALSO ioctl(9E), bcopy(9F), copyin(9F), copyout(9F), ddi_copyout(9F), uiomove(9F)

Writing Device Drivers

NOTES The value of the flags argument to ddi_copyin() should be passed through directly from
the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

modified 15 Dec 1993 9F-81

ddi_copyout (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_copyout − copy data from a driver

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_copyout(caddr_t driverbuf, caddr_t buf, size_t cn, int flags);

ARGUMENTS driverbuf Source address in the driver from which the data is transferred.

buf Destination address to which the data is transferred.

cn Number of bytes to copy.

flags Set of flag bits that provide address space information about buf.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION This routine is designed for use in driver ioctl(9E) routines for drivers that support lay-
ered ioctls. ddi_copyout() copies data from driver buffers to a destination address, buf.

The flags argument is used to determine the address space information about buf. If the
FKIOCTL flag is set, this indicates that buf is a kernel address, and ddi_copyout() behaves
like bcopy(9F). Otherwise buf is interpreted as a user buffer address, and ddi_copyout()
behaves like copyout(9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds the most
efficient move algorithm according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned to indicate a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

· paging fault; the driver tried to access a page of memory for which it did
not have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT ddi_copyout() can be called from user context only.

EXAMPLES A driver ioctl(9E) routine (line 11) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 24), the driver copies the current device register
values to another data area (line 25). If the specified argument contains an invalid
address, an error code is returned.

1 struct device { /∗∗ layout of physical device registers ∗∗/
2 int control; /∗∗ physical device control word ∗∗/
3 int status; /∗∗ physical device status word ∗∗/

9F-82 modified 15 Dec 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_copyout (9F)

4 short recv_char;/∗∗ receive character from device ∗∗/
5 short xmit_char;/∗∗ transmit character to device ∗∗/
6 };

7 struct device_state {
8 volatile struct device ∗∗regsp; /∗∗ pointer to device registers ∗∗/

. . .
9 };

10 static void ∗∗statep; /∗∗ for soft state routines ∗∗/

11 xxioctl(dev_t dev, int cmd, int arg, int mode,
12 cred_t ∗∗cred_p, int ∗∗rval_p)
13 {
14 struct device_state ∗∗sp;
15 volatile struct device ∗∗rp;
16 int instance;

17 instance = getminor(dev) >> 4;
18 sp = ddi_get_soft_state(statep, instance);
19 if (sp == NULL)
20 return (ENXIO);
21 rp = sp->regsp;

. . .
22 switch (cmd) {

24 case XX_GETREGS: /∗∗ copy device regs. to caller ∗∗/
25 if (ddi_copyout((caddr_t)rp, (caddr_t)arg,
26 sizeof (struct device), mode) != 0) {
27 return (EFAULT);
28 }

SEE ALSO bcopy(9F), copyin(9F), copyout(9F), ddi_copyin(9F), uiomove(9F)

Writing Device Drivers

NOTES The value of the flags argument to ddi_copyout() should be passed through directly from
the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

modified 15 Dec 1993 9F-83

ddi_create_minor_node (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_create_minor_node − create a minor node for this device

SYNOPSIS #include <sys/stat.h>
#include <sys/sunddi.h>

int ddi_create_minor_node(dev_info_t ∗dip, char ∗name,
int spec_type, int minor_num, char ∗node_type,
int is_clone);

ARGUMENTS dip A pointer to the device’s dev_info structure.

name The name of this particular minor device.

spec_type S_IFCHR or S_IFBLK for character or block minor devices respectively.

minor_num The minor number for this particular minor device.

node_type Any string that uniquely identifies the type of node. The following
predefined node types are provided with this release:

DDI_NT_SERIAL For serial ports

DDI_NT_SERIAL_MB For on board serial ports

DDI_NT_SERIAL_DO For dial out ports

DDI_NT_SERIAL_MB_DO For on board dial out ports

DDI_NT_BLOCK For hard disks

DDI_NT_BLOCK_CHAN For hard disks with channel or target
numbers

DDI_NT_CD For CDROM drives

DDI_NT_CD_CHAN For CDROM drives with channel or target
numbers

DDI_NT_FD For floppy disks

DDI_NT_TAPE For tape drives

DDI_NT_NET For network devices

DDI_NT_DISPLAY For display devices

DDI_PSEUDO For pseudo devices

is_clone If the device is a clone device then this flag is set to CLONE_DEV else it is
set to 0.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_create_minor_node() provides the necessary information to enable the system to
create the /dev and /devices hierarchies. The name is used to create the minor name of
the block or character special file under the /devices hierarchy. At sign (@), slash (/), and
space are not allowed. The spec_type specifies whether this is a block or character device.
The minor_num is the minor number for the device.

9F-84 modified 13 Apr 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_create_minor_node (9F)

The node_type is used to create the names in the /dev hierarchy that refers to the names in
the /devices hierarchy. See disks(1M), ports(1M), tapes(1M), devlinks(1M). Finally
is_clone determines if this is a clone device or not.

RETURN VALUES ddi_create_minor_node() returns:

DDI_SUCCESS if it was able to allocate memory, create the minor data structure, and
place it into the linked list of minor devices for this driver.

DDI_FAILURE if minor node creation failed.

EXAMPLES The following example creates a data structure describing a minor device called foo
which has a minor number of 0. It is of type DDI_NT_BLOCK (a block device) and it is
not a clone device.

ddi_create_minor_node(dip, "foo", S_IFBLK, 0, DDI_NT_BLOCK, 0);

SEE ALSO add_drv(1M), devlinks(1M), disks(1M), drvconfig(1M), ports(1M), tapes(1M),
attach(9E), ddi_remove_minor_node(9F)

Writing Device Drivers

modified 13 Apr 1993 9F-85

ddi_dev_is_sid (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dev_is_sid − tell whether a device is self-identifying

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_is_sid(dev_info_t ∗dip)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dev_is_sid() tells the caller whether the device described by dip is self-identifying,
that is, a device that can unequivocally tell the system that it exists. This is useful for
drivers that support both a self-identifying as well as a non-self-identifying variants of a
device (and therefore must be probed).

ARGUMENTS dip A pointer to the device’s dev_info structure.

RETURN VALUES DDI_SUCCESS Device is self-identifying.

DDI_FAILURE Device is not self-identifying.

CONTEXT ddi_dev_is_sid() can be called from user or interrupt context.

EXAMPLE 1 ...
2 int
3 bz_probe(dev_info_t ∗∗dip)
4 {
5 ...
6 if (ddi_dev_is_sid(dip) == DDI_SUCCESS) {
7 /∗∗
8 ∗∗ This is the self-identifying version (OpenBoot).
9 ∗∗ No need to probe for it because we know it is there.
10 ∗∗ The existence of dip && ddi_dev_is_sid() proves this.
11 ∗∗/
12 return (DDI_PROBE_DONTCARE);
13 }
14 /∗∗
15 ∗∗ Not a self-identifying variant of the device. Now we have to
16 ∗∗ do some work to see whether it is really attached to the
17 ∗∗ system.
18 ∗∗/
19 ...

9F-86 modified 24 Oct 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_dev_is_sid (9F)

SEE ALSO probe(9E)

Writing Device Drivers

modified 24 Oct 1991 9F-87

ddi_dev_nintrs (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dev_nintrs − return the number of interrupt specifications a device has

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_nintrs(dev_info_t ∗dip, int ∗resultp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dev_nintrs() returns the number of interrupt specifications a device has in ∗resultp.

RETURN VALUES ddi_dev_nintrs() returns:

DDI_SUCCESS A successful return. The number of interrupt specifications that
the device has is set in resultp.

DDI_FAILURE The device has no interrupt specifications.

CONTEXT ddi_dev_nintrs() can be called from user or interrupt context.

SEE ALSO sbus(4), vme(4), isa(4), ddi_add_intr(9F), ddi_dev_nregs(9F), ddi_dev_regsize(9F)

Writing Device Drivers

9F-88 modified 2 Dec 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_dev_nregs (9F)

NAME ddi_dev_nregs − return the number of register sets a device has

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_nregs(dev_info_t ∗dip, int ∗resultp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The function ddi_dev_nregs() returns the number of sets of registers the device has.

ARGUMENTS dip A pointer to the device’s dev_info structure.

resultp Pointer to an integer that holds the number of register sets on return.

RETURN VALUES ddi_dev_nregs() returns:

DDI_SUCCESS A successful return. The number of register sets is returned in
resultp.

DDI_FAILURE The device has no registers.

CONTEXT ddi_dev_nregs() can be called from user or interrupt context.

SEE ALSO ddi_dev_nintrs(9F), ddi_dev_regsize(9F)

Writing Device Drivers

modified 24 Oct 1991 9F-89

ddi_dev_regsize (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dev_regsize − return the size of a device’s register

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_regsize(dev_info_t ∗dip, u_int rnumber, off_t ∗resultp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dev_regsize() returns the size, in bytes, of the device register specified by dip and
rnumber. This is useful when, for example, one of the registers is a frame buffer with a
varying size known only to its proms.

ARGUMENTS dip A pointer to the device’s dev_info structure.

rnumber The ordinal register number. Device registers are associated with a dev_info
and are enumerated in arbitrary sets from 0 on up. The number of registers a
device has can be determined from a call to ddi_dev_nregs(9F).

resultp Pointer to an integer that holds the size, in bytes, of the described register (if it
exists).

RETURN VALUES ddi_dev_regsize() returns:

DDI_SUCCESS A successful return. The size, in bytes, of the specified register,
is set in resultp.

DDI_FAILURE An invalid (nonexistent) register number was specified.

CONTEXT ddi_dev_regsize() can be called from user or interrupt context.

SEE ALSO ddi_dev_nintrs(9F), ddi_dev_nregs(9F)

Writing Device Drivers

9F-90 modified 24 Oct 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_addr_setup (9F)

NAME ddi_dma_addr_setup − easier DMA setup for use with virtual addresses

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_addr_setup(dev_info_t ∗dip, struct as ∗as,
caddr_t addr , u_int len, u_int flags,
int (∗waitfp)(caddr_t), caddr_t arg,
ddi_dma_lim_t ∗lim, ddi_dma_handle_t ∗handlep);

ARGUMENTS dip A pointer to the device’s dev_info structure.

as A pointer to an address space structure. Should be set to NULL, which implies
kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Flags that would go into the ddi_dma_req structure (see ddi_dma_req(9S)).

waitfp The address of a function to call back later if resources aren’t available now.
The special function addresses DDI_DMA_SLEEP and DDI_DMA_DONTWAIT
(see ddi_dma_req(9S)) are taken to mean, respectively, wait until resources
are available or, do not wait at all and do not schedule a callback.

arg Argument to be passed to a callback function, if such a function is specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is NULL, a
default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup(9F) for a discussion of handle.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_addr_setup() is an interface to ddi_dma_setup(9F). It uses its arguments to
construct an appropriate ddi_dma_req structure and calls ddi_dma_setup() with it.

RETURN VALUES See ddi_dma_setup(9F) for the possible return values for this function.

CONTEXT ddi_dma_addr_setup() can be called from user or interrupt context, except when waitfp
is set to DDI_DMA_SLEEP, in which case it can be called from user context only.

SEE ALSO ddi_dma_buf_setup(9F), ddi_dma_free(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), ddi_iopb_alloc(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

modified 1 Feb 1994 9F-91

ddi_dma_buf_setup (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_buf_setup − easier DMA setup for use with buffer structures

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_buf_setup(dev_info_t ∗dip, struct buf ∗bp,
u_int flags , int (∗waitfp)(caddr_t), caddr_t arg,
ddi_dma_lim_t ∗lim, ddi_dma_handle_t ∗handlep);

ARGUMENTS dip A pointer to the device’s dev_info structure.

bp A pointer to a system buffer structure (see buf(9S)).

flags Flags that go into a ddi_dma_req structure (see ddi_dma_req(9S)).

waitfp The address of a function to call back later if resources aren’t available now.
The special function addresses DDI_DMA_SLEEP and DDI_DMA_DONTWAIT
(see ddi_dma_req(9S)) are taken to mean, respectively, wait until resources
are available, or do not wait at all and do not schedule a callback.

arg Argument to be passed to a callback function, if such a function is specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is NULL, a
default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup(9F) for a discussion of handle.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_buf_setup() is an interface to ddi_dma_setup(9F). It uses its arguments to
construct an appropriate ddi_dma_req structure and calls ddi_dma_setup() with it.

RETURN VALUES See ddi_dma_setup(9F) for the possible return values for this function.

CONTEXT ddi_dma_buf_setup() can be called from user or interrupt context, except when waitfp is
set to DDI_DMA_SLEEP, in which case it can be called from user context only.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_free(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), physio(9F), buf(9S), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

9F-92 modified 1 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_burstsizes (9F)

NAME ddi_dma_burstsizes − find out the allowed burst sizes for a DMA mapping

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_burstsizes(ddi_dma_handle_t handle)

ARGUMENTS handle A DMA handle that was filled in by a successful call to
ddi_dma_setup(9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_burstsizes() returns the allowed burst sizes for a DMA mapping. This value is
derived from the dlim_burstsizes member of the ddi_dma_lim_sparc(9S) structure, but
it shows the allowable burstsizes after imposing on it the limitations of other device layers
in addition to device’s own limitations.

RETURN VALUES ddi_dma_burstsizes() returns a binary encoded value of the allowable DMA burst sizes.
See ddi_dma_lim_sparc(9S) for a discussion of DMA burst sizes.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO ddi_dma_devalign(9F), ddi_dma_setup(9F), ddi_dma_lim_sparc(9S), ddi_dma_req(9S)

Writing Device Drivers

modified 1 Feb 1994 9F-93

ddi_dma_coff (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_coff − convert a DMA cookie to an offset within a DMA handle

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t ∗cookiep , off_t ∗offp)

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)) that contains the
appropriate address, length and bus type to be used in programming
the DMA engine.

offp A pointer to an offset to be filled in.

INTERFACE
LEVEL

Solaris SPARC DDI (Solaris SPARC DDI).

DESCRIPTION ddi_dma_coff() converts the values in DMA cookie pointed to by cookiep to an offset (in
bytes) from the beginning of the object that the DMA handle has mapped.

ddi_dma_coff() allows a driver to update a DMA cookie with values it reads from its
device’s DMA engine after a transfer completes and convert that value into an offset into
the object that is mapped for DMA.

RETURN VALUES ddi_dma_coff() returns:

DDI_SUCCESS Successfully filled in offp.

DDI_FAILURE Failed to successfully fill in offp.

CONTEXT ddi_dma_coff() can be called from user or interrupt context.

SEE ALSO ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

9F-94 modified 4 Nov 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_curwin (9F)

NAME ddi_dma_curwin − report current DMA window offset and size

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_curwin(ddi_dma_handle_t handle, off_t ∗offp,u_int ∗lenp);

ARGUMENTS handle The DMA handle filled in by a call to ddi_dma_setup(9F).

offp A pointer to a value which will be filled in with the current offset from
the beginning of the object that is mapped for DMA.

lenp A pointer to a value which will be filled in with the size, in bytes, of the
current window onto the object that is mapped for DMA.

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

DESCRIPTION ddi_dma_curwin() reports the current DMA window offset and size. If a DMA mapping
allows partial mapping, that is if the DDI_DMA_PARTIAL flag in the ddi_dma_req(9S)
structure is set, its current (effective) DMA window offset and size can be obtained by a
call to ddi_dma_curwin().

RETURN VALUES ddi_dma_curwin() returns:

DDI_SUCCESS The current length and offset can be established.

DDI_FAILURE Otherwise.

CONTEXT ddi_dma_curwin() can be called from user or interrupt context.

SEE ALSO ddi_dma_movwin(9F), ddi_dma_setup(9F), ddi_dma_req(9S)

Writing Device Drivers

modified 7 Nov 1991 9F-95

ddi_dma_devalign (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_devalign − find DMA mapping alignment and minimum transfer size

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_devalign(ddi_dma_handle_t handle, u_int ∗alignment, u_int ∗minxfr);

ARGUMENTS handle The DMA handle filled in by a successful call to ddi_dma_setup(9F).

alignment A pointer to an unsigned integer to be filled in with the minimum
required alignment for DMA. The alignment is guaranteed to be a power
of two.

minxfr A pointer to an unsigned integer to be filled in with the minimum effec-
tive transfer size (see ddi_iomin(9F), ddi_dma_lim_sparc(9S) and
ddi_dma_lim_x86(9S)). This also is guaranteed to be a power of two.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_devalign() determines (after a successful DMA mapping (see
ddi_dma_setup(9F)) the minimum required data alignment and minimum DMA transfer
size.

RETURN VALUES ddi_dma_devalign() returns:

DDI_SUCCESS The alignment and minxfr values have been filled.

DDI_FAILURE The handle was illegal.

CONTEXT ddi_dma_devalign() can be called from user or interrupt context.

SEE ALSO ddi_dma_setup(9F), ddi_iomin(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

9F-96 modified 1 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_free (9F)

NAME ddi_dma_free − release system DMA resources

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_free(ddi_dma_handle_t handle);

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_free() releases system DMA resources set up by ddi_dma_setup(9F). When a
DMA transfer completes, the driver should free up system DMA resources established by
a call to ddi_dma_setup(9F). This is done by a call to ddi_dma_free(). ddi_dma_free()
does an implicit ddi_dma_sync(9F) for you so any further synchronization steps are not
necessary.

RETURN VALUES ddi_dma_free() returns:

DDI_SUCCESS Successfully released resources

DDI_FAILURE Failed to free resources

CONTEXT ddi_dma_free() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_htoc(9F),
ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

modified 13 Sep 1992 9F-97

ddi_dma_htoc (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_htoc − convert a DMA handle to a DMA address cookie

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t ∗cookiep);

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

off An offset into the object that handle maps.

cookiep A pointer to a ddi_dma_cookie(9S) structure.

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

DESCRIPTION ddi_dma_htoc() takes a DMA handle (established by ddi_dma_setup(9F)), and fills in the
cookie pointed to by cookiep with the appropriate address, length, and bus type to be used
to program the DMA engine.

RETURN VALUES ddi_dma_htoc() returns:

DDI_SUCCESS Successfully filled in the cookie pointed to by cookiep .

DDI_FAILURE Failed to successfully fill in the cookie.

CONTEXT ddi_dma_htoc() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

9F-98 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_movwin (9F)

NAME ddi_dma_movwin − shift current DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_movwin(ddi_dma_handle_t handle, off_t ∗offp, u_int ∗lenp,
ddi_dma_cookie_t ∗cookiep);

ARGUMENTS handle The DMA handle filled in by a call to ddi_dma_setup(9F).

offp A pointer to an offset to set the DMA window to. Upon a successful
return, it will be filled in with the new offset from the beginning of the
object resources are allocated for.

lenp A pointer to a value which must either be the current size of the DMA
window (as known from a call to ddi_dma_curwin(9F) or from a previ-
ous call to ddi_dma_movwin()). Upon a successful return, it will be
filled in with the size, in bytes, of the current window.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)). Upon a success-
ful return, cookiep is filled in just as if an implicit ddi_dma_htoc(9F) had
been made.

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

DESCRIPTION ddi_dma_movwin() shifts the current DMA window. If a DMA request allows the sytem
to allocate resources for less than the entire object by setting the DDI_DMA_PARTIAL flag
in the ddi_dma_req(9S) structure, the current DMA window can be shifted by a call to
ddi_dma_movwin().

The caller must first determine the current DMA window size by a call to
ddi_dma_curwin(9F). Using the current offset and size of the window thus retrieved, the
caller of ddi_dma_movwin() may change the window onto the object by changing the
offset by a value which is some multiple of the size of the DMA window.

ddi_dma_movwin() takes care of underlying resource synchronizations required to shift
the window. However if you want to access the data prior or after moving the window,
further synchronizations using ddi_dma_sync(9F) are required,

This function is normally called from an interrupt routine. The first invocation of the
DMA engine is done from the driver. All subsequent invocations of the DMA engine are
done from the interrupt routine. The interrupt routine checks to see if the request has
been completed. If it has, it returns without invoking another DMA transfer. Otherwise it
calls ddi_dma_movwin() to shift the current window and starts another DMA transfer.

RETURN VALUES ddi_dma_movwin() returns:

DDI_SUCCESS The current length and offset are legal and have been set.

DDI_FAILURE Otherwise.

modified 13 Sep 1992 9F-99

ddi_dma_movwin (9F) DDI and DKI Kernel Functions SunOS 5.4

CONTEXT ddi_dma_movwin() can be called from user or interrupt context.

SEE ALSO ddi_dma_curwin(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_dma_cookie(9S), ddi_dma_req(9S)

Writing Device Drivers

WARNINGS The caller must guarantee that the resources used by the object are inactive prior to cal-
ling this function.

9F-100 modified 13 Sep 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_nextseg (9F)

NAME ddi_dma_nextseg − get next DMA segment

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t ∗nseg);

ARGUMENTS win A DMA window .

seg The current DMA segment or NULL.

nseg A pointer to the next DMA segment to be filled in. If seg is NULL, a
pointer to the first segment within the specified window is returned.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_nextseg() gets the next DMA segment within the specified window win. If the
current segment is NULL, the first DMA segment within the window is returned.

A DMA segment is always required for a DMA window. A DMA segment is a contiguous
portion of a DMA window (see ddi_dma_nextwin(9F)) which is entirely addressable by
the device for a data transfer operation.

An example where multiple DMA segments are allocated is where the system does not
contain DVMA capabilities and the object may be non-contiguous. In this example the
object will be broken into smaller contiguous DMA segments. Another example is where
the device has an upper limit on its transfer size (for example an 8-bit address register)
and has expressed this in the DMA limit structure (see ddi_dma_lim_sparc(9S) or
ddi_dma_lim_x86(9S)). In this example the object will be broken into smaller address-
able DMA segments.

RETURN VALUES ddi_dma_nextseg() returns:

DDI_SUCCESS Successfully filled in the next segment pointer.

DDI_DMA_DONE There is no next segment. The current segment is the final segment
within the specified window.

DDI_DMA_STALE win does not refer to the currently active window.

CONTEXT ddi_dma_nextseg() can be called from user or interrupt context.

EXAMPLE For an example see ddi_dma_segtocookie(9F).

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_nextwin(9F),
ddi_dma_req(9S), ddi_dma_segtocookie(9F), ddi_dma_sync(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S)

Writing Device Drivers

modified 1 Feb 1994 9F-101

ddi_dma_nextwin (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_nextwin − get next DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_nextwin(ddi_dma_handle_t handle, ddi_dma_win_t win,
ddi_dma_win_t ∗nwin);

ARGUMENTS handle A DMA handle.

win The current DMA window or NULL.

nwin A pointer to the next DMA window to be filled in. If win is NULL, a
pointer to the first window within the object is returned.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_nextwin() shifts the current DMA window win within the object referred to by
handle to the next DMA window nwin. If the current window is NULL, the first window
within the object is returned. A DMA window is a portion of a DMA object or might be the
entire object. A DMA window has system resources allocated to it and is prepared to
accept data transfers. Examples of system resources are DVMA mapping resources and
intermediate transfer buffer resources.

All DMA objects require a window. If the DMA window represents the whole DMA object
it has system resources allocated for the entire data transfer. However, if the system is
unable to setup the entire DMA object due to system resource limitations, the driver
writer may allow the system to allocate system resources for less than the entire DMA
object. This can be accomplished by specifying the DDI_DMA_PARTIAL flag as a parame-
ter to ddi_dma_buf_setup(9F) or ddi_dma_addr_setup(9F) or as part of a
ddi_dma_req(9S) structure in a call to ddi_dma_setup(9F).

Only the window that has resources allocated is valid per object at any one time. The
currently valid window is the one that was most recently returned from
ddi_dma_nextwin(). Furthermore, because a call to ddi_dma_nextwin() will reallocate
system resources to the new window, the previous window will become invalid. Note: It
is a severe error to call ddi_dma_nextwin() before any transfers into the current window
are complete.

ddi_dma_nextwin() takes care of underlying memory synchronizations required to shift
the window. However, if you want to access the data before or after moving the window,
further synchronizations using ddi_dma_sync(9F) are required.

RETURN VALUES ddi_dma_nextwin() returns:

DDI_SUCCESS Successfully filled in the next window pointer.

DDI_DMA_DONE There is no next window. The current window is the final window
within the specified object.

DDI_DMA_STALE win does not refer to the currently active window.

9F-102 modified 12 Oct 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_nextwin (9F)

CONTEXT ddi_dma_nextwin() can be called from user or interrupt context.

EXAMPLE For an example see ddi_dma_segtocookie(9F).

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_nextseg(9F),
ddi_dma_segtocookie(9F), ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

modified 12 Oct 1992 9F-103

ddi_dma_segtocookie (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_segtocookie − convert a DMA segment to a DMA address cookie

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t ∗offp, off_t ∗lenp,
ddi_dma_cookie_t ∗cookiep);

ARGUMENTS seg A DMA segment.

offp A pointer to an off_t . Upon a successful return, it is filled in with the
offset. This segment is addressing within the object.

lenp The byte length. This segment is addressing within the object.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_segtocookie() takes a DMA segment and fills in the cookie pointed to by cookiep
with the appropriate address, length, and bus type to be used to program the DMA
engine. ddi_dma_segtocookie() also fills in ∗offp and ∗lenp, which specify the range
within the object.

RETURN VALUES ddi_dma_segtocookie() returns:

DDI_SUCCESS Successfully filled in all values.

DDI_FAILURE Failed to successfully fill in all values.

CONTEXT ddi_dma_segtocookie() can be called from user or interrupt context.

EXAMPLE for (win = NULL; (retw = ddi_dma_nextwin(handle, win, &nwin)) !=
DDI_DMA_DONE; win = nwin) {

if (retw != DDI_SUCCESS) {

/∗ do error handling ∗/
} else {

for (seg = NULL; (rets = ddi_dma_nextseg(nwin, seg, &nseg)) !=
DDI_DMA_DONE; seg = nseg) {

if (rets != DDI_SUCCESS) {

/∗ do error handling ∗/
} else {

ddi_dma_segtocookie(nseg, &off, &len, &cookie);

/∗ program DMA engine ∗/
}

}

9F-104 modified 12 Oct 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_segtocookie (9F)

}
}

SEE ALSO ddi_dma_nextseg(9F), ddi_dma_nextwin(9F), ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

modified 12 Oct 1992 9F-105

ddi_dma_setup (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_setup − setup DMA resources

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_setup(dev_info_t ∗dip, ddi_dma_req_t ∗dmareqp,
ddi_dma_handle_t ∗handlep);

ARGUMENTS dip A pointer to the device’s dev_info structure.

dmareqp A pointer to a DMA request structure (see ddi_dma_req(9S)).

handlep A pointer to a DMA handle to be filled in. See below for a discussion of a
handle. If handlep is NULL, the call to ddi_dma_setup() is considered an
advisory call, in which case no resources are allocated, but a value indi-
cating the legality and the feasibility of the request is returned.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_setup() allocates resources for a memory object such that a device can perform
DMA to or from that object.

A call to ddi_dma_setup() informs the system that device referred to by dip wishes to
perform DMA to or from a memory object. The memory object, the device’s DMA capabil-
ities, the device driver’s policy on whether to wait for resources, are all specified in the
ddi_dma_req structure pointed to by dmareqp.

A successful call to ddi_dma_setup() fills in the value pointed to by handlep. This is an
opaque object called a DMA handle. This handle is then used in subsequent DMA calls,
until ddi_dma_free(9F) is called.

Again a DMA handle is opaque—drivers may not attempt to interpret its value. When a
driver wants to enable its DMA engine, it must retrieve the appropriate address to supply
to its DMA engine using a call to ddi_dma_htoc(9F), which takes a pointer to a DMA han-
dle and returns the appropriate DMA address.

When DMA transfer completes, the driver should free up the the allocated DMA resources
by calling ddi_dma_free().

RETURN VALUES ddi_dma_setup() returns:

DDI_DMA_MAPPED Successfully allocated resources for the object.
In the case of an advisory call, this indicates that
the request is legal.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of
the object. This is acceptable when partial
transfers are allowed using a flag setting in the
ddi_dma_req structure (see ddi_dma_req(9S)
and ddi_dma_movwin(9F)).

DDI_DMA_NORESOURCES When no resources are available.

9F-106 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_setup (9F)

DDI_DMA_NOMAPPING The object cannot be reached by the device
requesting the resources.

DDI_DMA_TOOBIG The object is too big and exceeds the available
resources. The maximum size varies depend-
ing on machine and configuration.

CONTEXT ddi_dma_setup() can be called from user or interrupt context, except when the dmar_fp
member of the ddi_dma_req structure pointed to by dmareqp is set to DDI_DMA_SLEEP,
in which case it can be called from user context only.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_free(9F),
ddi_dma_htoc(9F), ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

NOTES The construction of the ddi_dma_req structure is complicated. Use of the provided inter-
face functions such as ddi_dma_buf_setup(9F) simplifies this task.

modified 7 Jun 1993 9F-107

ddi_dma_sync (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dma_sync − synchronize CPU and I/O views of memory

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, u_int length, u_int type);

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

offset The offset into the object described by the handle.

length The length, in bytes, of the area to synchronize. When length is zero, the
entire range starting from offset to the end of the object has the
requested operation applied to it.

type Indicates the caller’s desire about what view of the memory object to
synchronize. The possible values are DDI_DMA_SYNC_FORDEV,
DDI_DMA_SYNC_FORCPU and DDI_DMA_SYNC_FORKERNEL.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_sync() is used to selectively synchronize either a DMA device’s or a CPU’s view
of a memory object that has been mapped for I/O. This may involve operations such as
flushes of CPU or I/O caches, as well as other more complex operations such as stalling
until hardware write buffers have drained.

This function need only be called under certain circumstances. When a memory object is
mapped for DMA , you may assume that an implicit ddi_dma_sync() is done for you
when you call ddi_dma_setup(). When a memory object is unmapped via a call to
ddi_dma_free(9F), you may assume that an implicit ddi_dma_sync() is done for you.
However, at any time between mapping a memory object for DMA and unmapping it
after DMA completes, if the memory object has been modified by either the DMA device
or a CPU and you wish to ensure that the change is noticed by the party that didn’t do the
modifying, a call to ddi_dma_sync() is required. This is true independent of any attributes
of the memory object including, but not limited to, whether or not the memory was allo-
cated for non-streaming mode I/O (see ddi_iopb_alloc(9F)) or whether or not the
memory was mapped for DMA in non-streaming mode (see ddi_dma_req(9S)).

This cannot be stated too strongly. If a consistent view of the memory object must be
ensured between the time you map the object for DMA and the time you free such a map-
ping, you must call ddi_dma_sync() to ensure that either a CPU or a DMA device has
such a consistent view.

What to set type to depends on the view you are trying to ensure consistency for. If the
memory object is modified by a CPU , and the object is going to be read by the DMA
engine of your device, you use DDI_DMA_SYNC_FORDEV. This ensures that your
device’s DMA engine sees any changes that a CPU has made to the memory object. If the
DMA engine for your device has written to the memory object, and you are going to read
(with a CPU) the object (using an extant virtual address mapping that you have to the

9F-108 modified 15 Mar 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_dma_sync (9F)

memory object), you use DDI_DMA_SYNC_FORCPU. This ensures that a CPU’s view of
the memory object includes any changes made to the object by your device’s DMA engine.
If you are only interested in the kernel’s view (kernel-space part of the CPU’s view) you
may use DDI_DMA_SYNC_FORKERNEL. This gives a hint to the system—that is, if it is
more economical to synchronize the kernel’s view only, then do so; otherwise, synchron-
ize for CPU.

RETURN VALUES ddi_dma_sync() returns:

DDI_SUCCESS Caches are successfully flushed.

DDI_FAILURE The address range to be flushed is out of the address range esta-
blished by ddi_dma_setup(9F).

CONTEXT ddi_dma_sync() can be called from user or interrupt context.

SEE ALSO ddi_dma_free(9F), ddi_dma_setup(9F), ddi_iopb_alloc(9F)

Writing Device Drivers

modified 15 Mar 1992 9F-109

ddi_dmae (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_dmae, ddi_dmae_alloc, ddi_dmae_release, ddi_dmae_prog, ddi_dmae_disable,
ddi_dmae_enable, ddi_dmae_stop, ddi_dmae_getcnt, ddi_dmae_1stparty,
ddi_dmae_getlim − system DMA engine functions

SYNOPSIS int ddi_dmae_alloc(dev_info_t ∗dip, int chnl, int (∗dmae_waitfp)(), caddr_t arg);

int ddi_dmae_release(dev_info_t ∗dip, int chnl);

int ddi_dmae_prog(dev_info_t ∗dip, struct ddi_dmae_req ∗dmaereqp,
ddi_dma_cookie_t ∗cookiep, int chnl);

int ddi_dmae_disable(dev_info_t ∗dip, int chnl);

int ddi_dmae_enable(dev_info_t ∗dip, int chnl);

int ddi_dmae_stop(dev_info_t ∗dip, int chnl);

int ddi_dmae_getcnt(dev_info_t ∗dip, int chnl, int ∗countp);

int ddi_dmae_1stparty(dev_info_t ∗dip, int chnl);

int ddi_dmae_getlim(dev_info_t ∗dip, ddi_dma_lim_t ∗limitsp);

AVAILABILITY x86

INTERFACE
LEVEL

Solaris x86 DDI specific (Solaris x86 DDI).

ARGUMENTS dip A dev_info pointer, which identifies the device.

chnl A DMA channel number, or an MCA bus arbitration level. On ISA or
EISA buses this number must be 0, 1, 2, 3, 5, 6, or 7. On MCA buses this
number must be in the range 0 to 14.

dmae_waitfp A wait/callback function address.

arg The argument to be passed to the callback function.

dmaereqp A pointer to a DMA engine request (ddi_dmae_req(9S)) structure.

cookiep A pointer to a ddi_dma_cookie(9S) object, obtained from
ddi_dma_segtocookie(9F), which contains the address and count.

countp A pointer to an integer that will receive the count of the number of bytes
not yet transferred upon completion of a DMA operation.

limitsp A pointer to a DMA limit structure. See ddi_dma_lim_x86(9S).

DESCRIPTION There are three possible ways that a device can perform DMA engine functions.

Bus master DMA If the device is capable of acting as a true bus master, then the
driver should program the device’s DMA registers directly and
not make use of the DMA engine functions described here. The
driver should obtain the DMA address and count from
ddi_dma_segtocookie(). See ddi_dma_cookie(9S) for a descrip-
tion of a DMA cookie.

9F-110 modified 1 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_dmae (9F)

Third-party DMA This method uses the system DMA engine that is resident on the
main system board. In this model, the device cooperates with the
system’s DMA engine to effect the data transfers between the dev-
ice and memory. The driver uses the functions documented here,
except ddi_dmae_1stparty(), to initialize and program the DMA
engine. For each DMA data transfer, the driver programs the
DMA engine and then gives the device a command to initiate the
transfer in cooperation with that engine.

First-party DMA Using this method, the device uses its own DMA bus cycles, but
requires a channel from the system’s DMA engine. After allocating
the DMA channel, the ddi_dmae_1stparty() function may be used
to perform whatever configuration is necessary to enable this
mode.

ddi_dmae_alloc() The ddi_dmae_alloc() function is used to acquire a DMA channel of the system DMA
engine. ddi_dmae_alloc() allows only one device at a time to have a particular DMA
channel allocated. It must be called prior to any other system DMA engine function on a
channel. If the device allows the channel to be shared with other devices, it must be freed
using ddi_dmae_release() after completion of the DMA operation. In any case the chan-
nel must be released before the driver successfully detaches. See detach(9E). No other
driver may acquire the DMA channel until it is released.

If the requested channel is not immediately available, the value of dmae_waitfp determines
what action will be taken. If the value of dmae_waitfp is DDI_DMA_DONTWAIT,
ddi_dmae_alloc() will return immediately. The value DDI_DMA_SLEEP will cause the
thread to sleep and not return until the channel has been acquired. Any other value is
assumed to be a callback function address. In that case, ddi_dmae_alloc() returns
immediately, and when resources might have become available, the callback function is
called (with the argument arg) from interrupt context.

When the callback function (∗dmae_waitfp)() is called, it should attempt to allocate the
DMA channel again. If it succeeds or does not need the channel any more, it must return
the value 0. If it tries to allocate the channel, but fails to do so, it must return the value 0.

ddi_dmae_prog() The ddi_dmae_prog() function programs the DMA channel for a DMA transfer. The
ddi_dmae_req structure contains all the information necessary to set up the channel,
except for the memory address and count. Once the channel has been programmed, sub-
sequent calls to ddi_dmae_prog() may specify a value of NULL for dmaereqp if no
changes to the programming are required other than the address and count values. It
disables the channel prior to setup, and enables the channel before returning. The DMA
address and count are specified by passing ddi_dmae_prog() a cookie obtained from
ddi_dma_segtocookie(). Other DMA engine parameters are specified by the DMA
engine request structure passed in through dmaereqp. The fields of that structure are
documented in ddi_dmae_req(9S).

modified 1 Feb 1994 9F-111

ddi_dmae (9F) DDI and DKI Kernel Functions SunOS 5.4

Before using ddi_dmae_prog(), you must allocate system DMA resources using DMA
setup functions such as ddi_dma_buf_setup(9F). ddi_dma_segtocookie() can then be
used to retrieve a cookie which contains the address and count. Then this cookie is
passed to ddi_dmae_prog().

ddi_dmae_disable() The ddi_dmae_disable() function disables the DMA channel so that it no longer
responds to a device’s DMA service requests.

ddi_dmae_enable() The ddi_dmae_enable() function enables the DMA channel for operation. This may be
used to re-enable the channel after a call to ddi_dmae_disable(). The channel is
automatically enabled after successful programming by ddi_dmae_prog().

ddi_dmae_stop() The ddi_dmae_stop() function disables the channel and terminates any active operation.

ddi_dmae_getcnt() The ddi_dmae_getcnt() function examines the count register of the DMA channel and
sets ∗countp to the number of bytes remaining to be transferred. The channel is assumed
to be stopped.

ddi_dmae_1stparty() In the case of ISA and EISA buses, ddi_dmae_1stparty() configures a channel in the
system’s DMA engine to operate in a ‘‘slave’’ (‘‘cascade’’) mode.

In the case of the MCA bus, a call to ddi_dmae_1stparty() should still be made, regard-
less of whether the channel number specifies one of the DMA arbitration levels or a non-
DMA arbitration level.

When operating in ddi_dmae_1stparty() mode, the DMA channel must first be allocated
using ddi_dmae_alloc() and then configured using ddi_dmae_1stparty(). The driver
then programs the device to perform the I/O, including the necessary DMA address and
count values obtained from ddi_dma_segtocookie().

ddi_dmae_getlim() The ddi_dmae_getlim() function fills in the DMA limit structure, pointed to by limitsp,
with the DMA limits of the system DMA engine. Drivers for devices that perform their
own bus mastering or use first-party DMA must create and initialize their own DMA
limit structures; they should not use ddi_dmae_getlim(). The DMA limit structure must
be passed to the DMA setup routines so that they will know how to break the DMA
request into windows and segments (see ddi_dma_nextseg(9F) and
ddi_dma_nextwin(9F)). If the device has any particular restrictions on transfer size or
granularity (such as the size of disk sector), the driver should further restrict the values in
the structure members before passing them to the DMA setup routines. The driver must
not relax any of the restrictions embodied in the structure after it is filled in by
ddi_dmae_getlim(). After calling ddi_dmae_getlim(), a driver must examine, and pos-
sibly set, the size of the DMA engine’s scatter/gather list to determine whether DMA
chaining will be used. See ddi_dma_lim_x86(9S) and ddi_dmae_req(9S) for additional
information on scatter/gather DMA.

9F-112 modified 1 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_dmae (9F)

RETURN VALUES DDI_SUCCESS Upon success, for all of these routines.

DDI_FAILURE May be returned due to invalid arguments.

DDI_DMA_NORESOURCES
may be returned by ddi_dmae_alloc() if the requested resources are not
available and the value of dmae_waitfp is not DDI_DMA_SLEEP.

CONTEXT If ddi_dmae_alloc() is called from interrupt context, then its dmae_waitfp argument and
the callback function must not have the value DDI_DMA_SLEEP. Otherwise, all these rou-
tines may be called from user or interrupt context.

SEE ALSO eisa(4), isa(4), mca(4), ddi_dma_buf_setup(9F), ddi_dma_nextseg(9F),
ddi_dma_nextwin(9F), ddi_dma_req(9S), ddi_dma_segtocookie(9F),
ddi_dma_setup(9F), ddi_dma_cookie(9S), ddi_dma_lim_x86(9S), ddi_dmae_req(9S)

modified 1 Feb 1994 9F-113

ddi_enter_critical (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_enter_critical, ddi_exit_critical − enter and exit a critical region of control

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

unsigned int ddi_enter_critical(void)
void ddi_exit_critical(unsigned int ddic)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ddic The returned value from the call to ddi_enter_critical() must be passed to
dd_exit_critical().

DESCRIPTION Nearly all driver operations can be done without any special synchronization and protec-
tion mechanisms beyond those provided by, e.g., mutexes (see mutex(9F)). However, for
certain devices there can exist a very short critical region of code which must be allowed
to run uninterrupted. The function ddi_enter_critical() provides a mechanism by which
a driver can ask the system to guarantee to the best of its ability that the current thread of
execution will neither be preempted nor interrupted. This stays in effect until a bracket-
ing call to ddi_exit_critical() is made (with an argument which was the returned value
from ddi_enter_critical()).

The driver may not call any functions external to itself in between the time it calls
ddi_enter_critical() and the time it calls ddi_exit_critical().

RETURN VALUES ddi_enter_critical() returns an opaque unsigned integer which must be used in the sub-
sequent call to ddi_exit_critical().

CONTEXT This function can be called from user or interrupt context.

WARNINGS Driver writers should note that in a multiple processor system this function does not tem-
porarily suspend other processors from executing. This function also cannot guarantee to
actually block the hardware from doing such things as interrupt acknowledge cycles.
What it can do is guarantee that the currently executing thread will not be preempted.

Do not write code bracketed by ddi_enter_critical() and ddi_exit_critical() that can get
caught in an infinite loop, as the machine may crash if you do.

SEE ALSO mutex(9F)

Writing Device Drivers

9F-114 modified 4 Nov 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_ffs (9F)

NAME ddi_ffs, ddi_fls − find first (last) bit set in a long integer

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_ffs(long mask)
int ddi_fls(long mask)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS mask A 32 bit argument value to search through.

DESCRIPTION The function ddi_ffs() takes its argument and returns the shift count that the first (least
significant) bit set in the argument corresponds to. The function ddi_fls() does the same,
only it returns the shift count for the last (most significant) bit set in the argument.

RETURN VALUES N Returns a number from 1 to 31 which corresponds to the bit position of either
the least significant (first) or most significant (last) bit set in the argument.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 24 Oct 1991 9F-115

ddi_get_cred (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_get_cred − returns a pointer to the credential structure of the caller.

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

cred_t ∗ddi_get_cred();

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_cred() returns a pointer to the user credential structure of the caller.

RETURN VALUES ddi_get_cred() returns a pointer to the caller’s credential structure.

CONTEXT ddi_get_cred() can be called from user context only.

SEE ALSO Writing Device Drivers

9F-116 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_get_driver_private (9F)

NAME ddi_get_driver_private, ddi_set_driver_private − get or set the address of the device’s
private data area

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_set_driver_private(dev_info_t ∗dip, caddr_t data)
caddr_t ddi_get_driver_private(dev_info_t ∗dip)

ARGUMENTS
ddi_get_driver_private() dip Pointer to device information structure to get from.

ddi_set_driver_private() dip Pointer to device information structure to set.

data Data area address to set.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_driver_private() returns the address of the device’s private data area from the
device information structure pointed to by dip.

ddi_set_driver_private() sets the address of the device’s private data area in the device
information structure pointed to by dip with the value of data .

RETURN VALUES ddi_get_driver_private() returns the address of the private data area. If
ddi_set_driver_private() has not been previously called with dip, an unpredictable value
is returned.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 9F-117

ddi_get_instance (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_get_instance − get device instance number

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_get_instance(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to dev_info structure.

DESCRIPTION ddi_get_instance() returns the instance number of the device corresponding to dip.
Instance number ranges from zero to the number of devices attached to the driver minus
one.

RETURN VALUES ddi_get_instance() returns an integer between 0 and the number of instances of this dev-
ice.

CONTEXT ddi_get_instance() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-118 modified 5 Oct 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_get_name (9F)

NAME ddi_get_name − return the devinfo node name

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char ∗ddi_get_name(dev_info_t ∗dip);

ARGUMENTS dip A pointer the device’s dev_info structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_name() returns the name contained in the dev_info node pointed to by dip.

RETURN VALUES ddi_get_name() returns the name contained in the dev_info structure.

CONTEXT ddi_get_name() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 9F-119

ddi_get_parent (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_get_parent − find the parent of a device information structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

dev_info_t ∗ddi_get_parent(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to a device information structure.

DESCRIPTION ddi_get_parent() returns a pointer to the device information structure which is the
parent of the one pointed to by dip.

RETURN VALUES ddi_get_parent() returns a pointer to a device information structure.

CONTEXT ddi_get_parent() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-120 modified 5 Oct 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_intr_hilevel (9F)

NAME ddi_intr_hilevel − indicate interrupt handler type

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_intr_hilevel(dev_info_t ∗dip, u_int inumber)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to dev_info structure.

inumber Interrupt number.

DESCRIPTION ddi_intr_hilevel() returns non-zero if the specified interrupt is a "high level" interrupt.

High level interrupts must be handled without using system services that manipulate
thread or process states, because these interrupts are not blocked by the scheduler.

In addition, high level interrupt handlers must take care to do a minimum of work
because they are not preemptable.

A typical high level interrupt handler would put data into a circular buffer and schedule
a soft interrupt by calling ddi_trigger_softintr(). The circular buffer could be protected
by using a mutex that was properly initialized for the interrupt handler.

ddi_intr_hilevel() can be used before calling ddi_add_intr() to decide which type of
interrupt handler should be used. Most device drivers are designed with the knowledge
that the devices they support will always generate low level interrupts, however some
devices, for example those using S-bus or VME bus level 6 or 7 interrupts must use this
test because on some machines those interrupts are high level (above the scheduler level)
and on other machines they are not.

RETURN VALUES non-zero indicates a high-level interrupt.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO ddi_add_intr(9F), mutex(9F)

Writing Device Drivers

modified 7 Jan 1992 9F-121

ddi_iomin (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_iomin − find minimum alignment and transfer size for DMA

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_iomin(dev_info_t ∗dip, int initial, int streaming)

ARGUMENTS dip A pointer to the device’s dev_info structure.

initial The initial minimum DMA transfer size in bytes. This may be zero or an
appropriate dlim_minxfer value for device’s ddi_dma_lim structure
(see ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). This value
must be a power of two.

streaming This argument, if non-zero, indicates that the returned value should be
modified to account for streaming mode accesses (see ddi_dma_req(9S)
for a discussion of streaming versus non-streaming access mode).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_iomin(), finds out the minimum DMA transfer size for the device pointed to by dip.
This provides a mechanism by which a driver can determine the effects of underlying
caches as well as intervening bus adapters on the granularity of a DMA transfer.

RETURN VALUES ddi_iomin() returns the minimum DMA transfer size for the calling device, or it returns
zero, which means that you cannot get there from here.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO ddi_dma_devalign(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

9F-122 modified 1 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_iopb_alloc (9F)

NAME ddi_iopb_alloc, ddi_iopb_free − allocate and free non-sequentially accessed memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_iopb_alloc(dev_info_t ∗dip, ddi_dma_lim_t ∗limits, u_int length,
caddr_t ∗iopbp);

void ddi_iopb_free(caddr_t iopb);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_iopb_alloc() dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is
NULL, a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

iopbp A pointer to a caddr_t. On a successful return, ∗iopbp points to the allo-
cated storage.

ddi_iopb_free() iopb The iopb returned from a successful call to ddi_iopb_alloc().

DESCRIPTION ddi_iopb_alloc() allocates memory for DMA transfers and should be used if the device
accesses memory in a non-sequential fashion, or if synchronization steps using
ddi_dma_sync(9F) should be as lightweight as possible, due to frequent use on small
objects. This type of access is commonly known as consistent access. The allocation will
obey the alignment and padding constraints as specified in the limits argument and other
limits imposed by the system.

Note that you still must use DMA resource allocation functions (see ddi_dma_setup(9F))
to establish DMA resources for the memory allocated using ddi_iopb_alloc().

In order to make the view of a memory object shared between a CPU and a DMA device
consistent, explicit synchronization steps using ddi_dma_sync(9F) or ddi_dma_free(9F)
are still required. The DMA resources will be allocated so that these synchronization steps
are as efficient as possible.

ddi_iopb_free() frees up memory allocated by ddi_iopb_alloc().

RETURN VALUES ddi_iopb_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

CONTEXT These functions can be called from user or interrupt context.

modified 17 May 1994 9F-123

ddi_iopb_alloc (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO ddi_dma_free(9F), ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_iopb_free(9F),
ddi_mem_alloc(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

NOTES This function uses scarce system resources. Use it selectively.

9F-124 modified 17 May 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_map_regs (9F)

NAME ddi_map_regs, ddi_unmap_regs − map or unmap registers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_map_regs(dev_info_t ∗dip, u_int rnumber, caddr_t ∗kaddrp,
off_t offset , off_t len);

void ddi_unmap_regs(dev_info_t ∗dip, u_int rnumber, caddr_t ∗kaddrp,
off_t offset , off_t len);

ARGUMENTS
ddi_map_regs() dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the mapped region (set on return).

offset Offset into register space.

len Length to be mapped.

ddi_unmap_regs() dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the region to be unmapped.

offset Offset into register space.

len Length to be unmapped.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_map_regs() maps in the register set given by rnumber. The register number deter-
mines which register set will be mapped if more than one exists. The base kernel virtual
address of the mapped register set is returned in kaddrp . offset specifies an offset into the
register space to start from and len indicates the size of the area to be mapped. If len is
non-zero, it overrides the length given in the register set description. See the discussion of
the reg property in sbus(4) and vme(4) for more information on register set descriptions.
If len and offset are 0, the entire space is mapped.

ddi_unmap_regs() undoes mappings set up by ddi_map_regs(). This is provided for
drivers preparing to detach themselves from the system, allowing them to release allo-
cated mappings. Mappings must be released in the same way they were mapped (a call
to ddi_unmap_regs() must correspond to a previous call to ddi_map_regs()). Releasing
portions of previous mappings is not allowed. rnumber determines which register set will
be unmapped if more than one exists. The kaddrp , offset and len specify the area to be
unmapped. kaddrp is a pointer to the address returned from ddi_map_regs(); offset and
len should match what ddi_map_regs() was called with.

modified 27 Jan 1993 9F-125

ddi_map_regs (9F) DDI and DKI Kernel Functions SunOS 5.4

RETURN VALUES ddi_map_regs() returns:

DDI_SUCCESS on success.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO sbus(4), vme(4)

Writing Device Drivers

9F-126 modified 27 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_mapdev (9F)

NAME ddi_mapdev − create driver-controlled mapping of device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mapdev(dev_t dev, off_t offset, struct as ∗as, caddr_t ∗addrp, off_t len,
u_int prot, u_int maxprot, u_int flags, cred_t ∗cred, struct ddi_mapdev_ctl ∗ctl,
ddi_mapdev_handle_t ∗handlep, void ∗devprivate);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping begins.

as An opaque pointer to the user address space into which the device
memory should be mapped.

addrp Pointer to the starting address within the user address space to which
the device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some combinations of possible
settings are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being done
as a result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot Maximum protection flag possible for attempted mapping (the
PROT_WRITE bit may be masked out if the user opened the special file
read-only). If (maxprot & prot) != prot then there is an access violation.

flags Flags indicating type of mapping. Possible values are (other bits may be
set):

MAP_PRIVATE Changes are private.

cred Pointer to the user credentials structure.

ctl A pointer to a ddi_mapdev_ctl(9S) structure. The structure contains
pointers to device driver-supplied functions that manage events on the
device mapping.

handlep An opaque pointer to a device mapping handle. A handle to the new
device mapping is generated and placed into the location pointed to by
∗handlep. If the call fails, the value of ∗handlep is undefined.

devprivate Driver private mapping data. This value is passed into each mapping

modified 15 Feb 1994 9F-127

ddi_mapdev (9F) DDI and DKI Kernel Functions SunOS 5.4

call back routine.

DESCRIPTION ddi_mapdev() sets up user mappings to device space in the same manner as
ddi_segmap(9F). However, unlike mappings created with ddi_segmap(), mappings
created with ddi_mapdev() have a set of driver entry points and a mapping handle asso-
ciated with them. The driver is notified via these entry points in response to user events
on the mappings. The events defined on these mappings are:

access User has accessed an address in the mapping that has no trans-
lations.

duplication User has duplicated the mapping. Mappings are duplicated
when the process calls fork(2).

unmapping User has called munmap(2) on the mapping or is exiting.

See mapdev_access(9E), mapdev_dup(9E), and mapdev_free(9E) for details on these
entry points.

With the handle, device drivers can use ddi_mapdev_intercept(9F) and
ddi_mapdev_nointercept(9F) to inform the system of whether or not they are interested
in being notified when the user process accesses the mapping. By default, user accesses to
newly created mappings will generate a call to the mapdev_access() entry point. The
driver is always notified of duplications and unmaps.

The device driver can use these interfaces to implement a device context and control user
accesses to the device space. Only mappings of type MAP_PRIVATE should be used with
ddi_mapdev().

RETURN VALUES ddi_mapdev() returns zero on success and non-zero on failure. The return value from
ddi_mapdev() should be used as the return value for the drivers segmap() entry point.

CONTEXT This routine can be called from user or kernel context only.

SEE ALSO mmap(2), munmap(2), fork(2), segmap(9E), mapdev_access(9E), mapdev_dup(9E),
mapdev_free(9E), ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F),
ddi_mapdev_ctl(9S),

Writing Device Drivers

9F-128 modified 15 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_mapdev_intercept (9F)

NAME ddi_mapdev_intercept, ddi_mapdev_nointercept − control driver notification of user
accesses

SYNOPSIS #include <sys/sunddi.h>

int ddi_mapdev_intercept(ddi_mapdev_handle_t handle, off_t offset, off_t len);

int ddi_mapdev_nointercept(ddi_mapdev_handle_t handle, off_t offset, off_t len);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle An opaque pointer to a device mapping handle.

offset An offset in bytes within device memory.

len Length in bytes.

DESCRIPTION ddi_mapdev_intercept() and ddi_mapdev_nointercept() control whether or not user
accesses to device mappings created by ddi_mapdev(9F) in the specified range will gen-
erate calls to the mapdev_access(9E) entry point. ddi_mapdev_intercept() tells the sys-
tem to intercept the user access and notify the driver to invalidate the mapping transla-
tions. ddi_mapdev_nointercept() tells the system to not intercept the user access and
allow it to proceed by validating the mapping translations.

For both routines, the range to be affected is defined by the offset and len arguments.
Requests affect the entire page containing the offset and all pages up to and including the
page containing the last byte as indicated by offset + len.

Supplying a value of 0 for the len argument affects all addresses from the offset to the end
of the mapping. Supplying a value of 0 for the offset argument and a value of 0 for len
argument affect all addresses in the mapping.

To manage a device context, a device driver would call ddi_mapdev_intercept() on the
context about to be switched out, switch contexts, and then call
ddi_mapdev_nointercept() on the context switched in.

RETURN VALUES ddi_mapdev_intercept() and ddi_mapdev_nointercept() return zero on success and
non-zero on failure.

EXAMPLE The following shows an example of managing a device context that is one page in length.

ddi_mapdev_handle_t cur_hdl;

static int
xxmapdev_access(ddi_mapdev_handle_t handle, void ∗devprivate,

off_t offset)
{

int err;

/∗ enable access callbacks for the current mapping ∗/
if (cur_hdl != NULL) {

if ((err = ddi_mapdev_intercept(cur_hdl, offset, 0)) != 0)

modified 15 Feb 1994 9F-129

ddi_mapdev_intercept (9F) DDI and DKI Kernel Functions SunOS 5.4

return (err);
}

/∗ Switch device context - device dependent∗/
...

/∗ Make handle the new current mapping ∗/
cur_hdl = handle;

/∗
∗ Disable callbacks and complete the access for the
∗ mapping that generated this callback.
∗/

return (ddi_mapdev_nointercept(handle, offset, 0));
}

CONTEXT These routines can be called from user or kernel context only.

SEE ALSO mapdev_access(9E), ddi_mapdev(9F)

Writing Device Drivers

9F-130 modified 15 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_mem_alloc (9F)

NAME ddi_mem_alloc, ddi_mem_free − allocate and free sequentially accessed memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mem_alloc(dev_info_t ∗dip, ddi_dma_lim_t ∗limits, u_int length, u_int flags ,
caddr_t ∗kaddrp , u_int ∗real_length);

void ddi_mem_free(caddr_t kaddr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_mem_alloc() dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is
NULL, a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

flags The possible flags 1 and 0 are taken to mean, respectively, wait until
memory is available, or do not wait.

kaddrp On a successful return, ∗kaddrp points to the allocated memory.

real_length The length in bytes that was allocated. Alignment and padding require-
ments may cause ddi_mem_alloc() to allocate more memory than
requested in length.

ddi_mem_free() kaddr The memory returned from a successful call to ddi_mem_alloc().

DESCRIPTION ddi_mem_alloc() allocates memory for DMA transfers and should be used if the device is
performing sequential, unidirectional, block-sized and block-aligned transfers to or from
memory. This type of access is commonly known as steaming access. The allocation will
obey the alignment and padding constraints as specified by the limits argument and other
limits imposed by the system.

Note that you must still use DMA resource allocation functions (see ddi_dma_setup(9F))
to establish DMA resources for the memory allocated using ddi_mem_alloc().
ddi_mem_alloc() returns the actual size of the allocated memory object. Because of pad-
ding and alignment requirements, the actual size might be larger than the requested size.
ddi_dma_setup(9F) requires the actual length.

In order to make the view of a memory object shared between a CPU and a DMA device
consistent, explicit synchronization steps using ddi_dma_sync(9F) or ddi_dma_free(9F)
are required.

ddi_mem_free() frees up memory allocated by ddi_mem_alloc().

modified 17 May 1994 9F-131

ddi_mem_alloc (9F) DDI and DKI Kernel Functions SunOS 5.4

RETURN VALUES ddi_mem_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

CONTEXT ddi_mem_alloc() can be called from user or interrupt context, except when flags is set to
1, in which case it can be called from user context only.

SEE ALSO ddi_dma_free(9F), ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_iopb_alloc(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

9F-132 modified 17 May 1994

SunOS 5.4 DDI and DKI Kernel Functions ddi_peek (9F)

NAME ddi_peek, ddi_peekc, ddi_peeks, ddi_peekl, ddi_peekd − read a value from a location

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_peekc(dev_info_t ∗dip, char ∗addr , char ∗valuep);
int ddi_peeks(dev_info_t ∗dip, short ∗addr , short ∗valuep);
int ddi_peekl(dev_info_t ∗dip, long ∗addr , long ∗valuep);
int ddi_peekd(dev_info_t ∗dip, longlong_t ∗addr, longlong_t ∗valuep);

ARGUMENTS dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be examined.

valuep Pointer to a location to hold the result. If a null pointer is specified, then the
value read from the location will simply be discarded.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION These routines cautiously attempt to read a value from a specified virtual address, and
return the value to the caller, using the parent nexus driver to assist in the process where
necessary.

If the address is not valid, or the value cannot be read without an error occurring, an
error code is returned.

The routines are most useful when first trying to establish the prescence of a device on
the system in a drivers probe(9E) or attach(9E) routines.

RETURN VALUES DDI_SUCCESS The value at the given virtual address was successfully read, and if
valuep is non-null, ∗valuep will have been updated.

DDI_FAILURE An error occurred whilst trying to read the location, ∗valuep is
unchanged.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLES Check to see that the status register of a device is mapped into the kernel address space:

if (ddi_peekc(dip, csr, (char ∗)0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "Status register not mapped");
return (DDI_FAILURE);

}

modified 11 Sep 1991 9F-133

ddi_peek (9F) DDI and DKI Kernel Functions SunOS 5.4

Read and log the device type of a particular device:

int
xx_attach(dev_info_t ∗dip, ddi_attach_cmd_t cmd)
{

...
/∗ map device registers ∗/
...

if (ddi_peekl(dip, id_addr, &id_value) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: cannot read device identifier",

ddi_get_name(dip), ddi_get_instance(dip));
goto failure;

} else
cmn_err(CE_CONT, "!%s%d: device type 0x%x\n",

ddi_get_name(dip), ddi_get_instance(dip), id_value);
...
...

ddi_report_dev(dip);
return (DDI_SUCCESS);

failure:
/∗ free any resources allocated ∗/
...
return (DDI_FAILURE);

}

SEE ALSO attach(9E), probe(9E), ddi_poke(9F)

Writing Device Drivers

9F-134 modified 11 Sep 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_poke (9F)

NAME ddi_poke, ddi_pokec, ddi_pokes, ddi_pokel, ddi_poked − write a value to a location

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_pokec(dev_info_t ∗dip, char ∗addr , char value);
int ddi_pokes(dev_info_t ∗dip, short ∗addr , short value);
int ddi_pokel(dev_info_t ∗dip, long ∗addr , long value);
int ddi_poked(dev_info_t ∗dip, longlong_t ∗addr, longlong_t value);

ARGUMENTS dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be written to.

value Value to be written to the location.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION These routines cautiously attempt to write a value to a specified virtual address, using
the parent nexus driver to assist in the process where necessary.

If the address is not valid, or the value cannot be written without an error occurring, an
error code is returned.

These routines are most useful when first trying to establish the presence of a given dev-
ice on the system in a driver’s probe(9E) or attach(9E) routines.

On multiprocessing machines these routines can be extremely heavy-weight, so use the
ddi_peek(9F) routines instead if possible.

RETURN VALUES DDI_SUCCESS The value was successfully written to the given virtual address.

DDI_FAILURE An error occurred while trying to write to the location.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO attach(9E), probe(9E), ddi_peek(9F)

Writing Device Drivers

modified 26 Jul 1993 9F-135

ddi_prop_create (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_prop_create, ddi_prop_modify, ddi_prop_remove, ddi_prop_remove_all,
ddi_prop_undefine − create, remove, or modify properties for leaf device drivers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_create(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name, caddr_t valuep, int length);

int ddi_prop_undefine(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name);

int ddi_prop_modify(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name, caddr_t valuep, int length);

int ddi_prop_remove(dev_t dev, dev_info_t ∗dip, char ∗name);

void ddi_prop_remove_all(dev_info_t ∗dip);

ARGUMENTS
ddi_prop_create() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

ddi_prop_undefine() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

ddi_prop_modify() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

9F-136 modified 18 Sep 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_prop_create (9F)

ddi_prop_remove() dev dev_t of the device.

dip dev_info_t pointer of the device.

name name of property.

ddi_prop_remove_all() dip dev_info_t pointer of the device.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION Device drivers have the ability to create and manage their own properties as well as gain
access to properties that the system creates on behalf of the driver. A driver uses
ddi_getproplen(9F) to query whether or not a specific property exists.

Property creation is done by creating a new property definition in the driver’s property
list associated with dip.

Property definitions are stacked; they are added to the beginning of the driver’s property
list when created. Thus, when searched for, the most recent matching property definition
will be found and its value will be return to the caller.

ddi_prop_create() ddi_prop_create() adds a property to the device’s property list. If the property is not
associated with any particular dev but is associated with the physical device itself, then
the argument dev should be the special device DDI_DEV_T_NONE. If you do not have a
dev for your device (for example during attach(9E) time), you can create one using
makedevice(9F) with a major number of DDI_MAJOR_T_UNKNOWN.
ddi_prop_create() will then make the correct dev for your device.

For boolean properties, you must set length to 0. For all other properties, the length argu-
ment must be set to the number of bytes used by the data structure representing the pro-
perty being created.

Note that creating a property involves allocating memory for the property list, the pro-
perty name and the property value. If flags does not contain DDI_PROP_CANSLEEP,
ddi_prop_create() returns DDI_PROP_NO_MEMORY on memory allocation failure or
DDI_SUCCESS if the allocation succeeded. If DDI_PROP_CANSLEEP was set, the caller
may sleep until memory becomes available.

ddi_prop_undefine() ddi_prop_undefine() is a special case of property creation where the value of the pro-
perty is set to undefined. This property has the effect of terminating a property search at
the current devinfo node, rather than allowing the search to proceed up to ancestor
devinfo nodes. See ddi_prop_op(9F).

Note that undefining properties does involve memory allocation, and therefore, is subject
to the same memory allocation constraints as ddi_prop_create().

ddi_prop_modify() ddi_prop_modify() modifies the length and the value of a property. If
ddi_prop_modify() finds the property in the driver’s property list, allocates memory for
the property value and returns DDI_PROP_SUCCESS. If the property was not found, the
function returns DDI_PROP_NOT_FOUND.

modified 18 Sep 1992 9F-137

ddi_prop_create (9F) DDI and DKI Kernel Functions SunOS 5.4

Note that modifying properties does involve memory allocation, and therefore, is subject
to the same memory allocation constraints as ddi_prop_create().

ddi_prop_remove() ddi_prop_remove() unlinks a property from the device’s property list. If
ddi_prop_remove() finds the property (an exact match of both nameand dev), it unlinks
the property, frees its memory, and returns DDI_PROP_SUCCESS, otherwise, it returns
DDI_PROP_NOT_FOUND.

ddi_prop_remove_all() ddi_prop_remove_all() removes the properties of all the dev_t’s associated with the dip.
It is called before unloading a driver.

RETURN VALUES
ddi_prop_create () DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
equal to DDI_DEV_T_ANY or if name is NULL or name
is the NULL string.

ddi_prop_undefine() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
DDI_DEV_T_ANY or if name is NULL or name is the
NULL string.

ddi_prop_modify() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
equal to DDI_DEV_T_ANY or if name is NULL or name
is the NULL string.

DDI_PROP_NOT_FOUND on property search failure.

ddi_prop_remove() DDI_PROP_SUCCESS on success.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
equal to DDI_DEV_T_ANY or if name is NULL or name
is the NULL string.

DDI_PROP_NOT_FOUND on property search failure.

CONTEXT If DDI_PROP_CANSLEEP is set, these functions can only be called from user context; oth-
erwise, they can be called from interrupt or user context.

9F-138 modified 18 Sep 1992

SunOS 5.4 DDI and DKI Kernel Functions ddi_prop_create (9F)

EXAMPLES Create a property called nblocks for each partition on a disk.

for (minor = 0; minor < 8; minor ++) {
(void) ddi_prop_create(makedevice(DDI_MAJOR_T_UNKNOWN, minor),

dev, DDI_PROP_CANSLEEP, "nblocks", 8192, sizeof (int));
...

}

SEE ALSO attach(9E), ddi_prop_op(9F), makedevice(9F), driver.conf(4)

Writing Device Drivers

modified 18 Sep 1992 9F-139

ddi_prop_op (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_prop_op, ddi_getprop, ddi_getlongprop, ddi_getlongprop_buf, ddi_getproplen − get
property information for leaf device drivers

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_op(dev_t dev, dev_info_t ∗dip, ddi_prop_op_t prop_op,
int flags , char ∗name, caddr_t valuep, int ∗lengthp);

int ddi_getprop(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name, int defvalue);

int ddi_getlongprop(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name, caddr_t valuep, int ∗lengthp);

int ddi_getlongprop_buf(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name, caddr_t valuep, int ∗lengthp);

int ddi_getproplen(dev_t dev, dev_info_t ∗dip, int flags,
char ∗name, int ∗lengthp);

ARGUMENTS dev Device number associated with property or DDI_DEV_T_ANY as the
wildcard device number.

dip Pointer to a device info node.

prop_op Property operator.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
do not pass request to parent device information node if pro-
perty not found

DDI_PROP_CANSLEEP
the routine may sleep while allocating memory

DDI_PROP_NOTPROM
do not look at PROM properties (ignored on architectures
that do not support PROM properties).

name String containing the name of the property.

valuep If prop_op is PROP_LEN_AND_VAL_BUF, this should be a pointer to
the users buffer. If prop_op is PROP_LEN_AND_VAL_ALLOC, this
should be the address of a pointer.

lengthp On exit, ∗lengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUF then before calling ddi_prop_op(),
lengthp should point to an int that contains the length of callers buffer.

defvalue The value that ddi_getprop() returns if the property is not found.

9F-140 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_prop_op (9F)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_prop_op() gets arbitrary-size properties for leaf devices. The routine searches the
device’s property list. If it does not find the property at the device level, it examines the
flags argument, and if DDI_PROP_DONTPASS is set, then ddi_prop_op() returns
DDI_PROP_NOT_FOUND. Otherwise, it passes the request to the next level of the dev-
ice info tree. If it does find the property, but the property has been explicitly undefined, it
returns DDI_PROP_UNDEFINED. Otherwise it returns either the property length, or
both the length and value of the property to the caller via the valuep and lengthp pointers,
depending on the value of prop_op , as described below, and returns
DDI_PROP_SUCCESS. If a property cannot be found at all, DDI_PROP_NOT_FOUND
is returned.

Usually, the dev argument should be set to the actual device number that this property
applies to. However, if the dev argument is DDI_DEV_T_ANY, the wildcard dev, then
ddi_prop_op() will match the request based on name only (regardless of the actual dev
the property was created with). This property/dev match is done according to the pro-
perty search order which is to first search software properties created by the driver in
last-in, first-out (LIFO) order, next search software properties created by the system in
LIFO order, then search PROM properties if they exist in the system architecture.

Property operations are specified by the prop_op argument. If prop_op is PROP_LEN, then
ddi_prop_op() just sets the callers length, ∗lengthp, to the property length and returns the
value DDI_PROP_SUCCESS to the caller. The valuep argument is not used in this case.
Property lengths are 0 for boolean properties, sizeof (int) for integer properties, and size
in bytes for long (variable size) properties.

If prop_op is PROP_LEN_AND_VAL_BUF, then valuep should be a pointer to a user-
supplied buffer whose length should be given in ∗lengthp by the caller. If the requested
property exists, ddi_prop_op() first sets ∗lengthp to the property length. It then examines
the size of the buffer supplied by the caller, and if it is large enough, copies the property
value into that buffer, and returns DDI_PROP_SUCCESS. If the named property exists
but the buffer supplied is too small to hold it, it returns DDI_PROP_BUF_TOO_SMALL.

If prop_op is PROP_LEN_AND_VAL_ALLOC, and the property is found, ddi_prop_op()
sets ∗lengthp to the property length. It then attempts to allocate a buffer to return to the
caller using the kmem_alloc(9F) routine, so that memory can be later recycled using
kmem_free(9F). The driver is expected to call kmem_free() with the returned address
and size when it is done using the allocated buffer. If the allocation is successful, it sets
∗valuep to point to the allocated buffer, copies the property value into the buffer and
returns DDI_PROP_SUCCESS. Otherwise, it returns DDI_PROP_NO_MEMORY. Note
that the flags argument may affect the behavior of memory allocation in ddi_prop_op().
In particular, if DDI_PROP_CANSLEEP is set, then the routine will wait until memory is
available to copy the requested property.

ddi_getprop() returns boolean and integer-size properties. It is a convenience wrapper
for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF, and the buffer is
provided by the wrapper. By convention, this function returns a 1 for boolean (zero-
length) properties.

modified 7 Jun 1993 9F-141

ddi_prop_op (9F) DDI and DKI Kernel Functions SunOS 5.4

ddi_getlongprop() returns arbitrary-size properties. It is a convenience wrapper for
ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_ALLOC, so that the routine
will allocate space to hold the buffer that will be returned to the caller via ∗valuep.

ddi_getlongprop_buf() returns arbitrary-size properties. It is a convenience wrapper for
ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF so the user must sup-
ply a buffer.

ddi_getproplen() returns the length of a given property. It is a convenience wrapper for
ddi_prop_op() with prop_op set to PROP_LEN.

RETURN VALUES ddi_prop_op()
ddi_getlongprop()
ddi_getlongprop_buf()
ddi_getproplen() return:

DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property already explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate memory.
lengthp points to the correct property length.

DDI_PROP_BUF_TOO_SMALL
Property found, but the supplied buffer is too
small. lengthp points to the correct property
length.

ddi_getprop() returns:

The value of the property or the value passed into the routine as defvalue if the
property is not found. By convention, the value of zero length properties
(boolean properties) are returned as the integer value 1.

CONTEXT These functions can be called from user or interrupt context, provided
DDI_PROP_CANSLEEP is not set; if it is set, they can be called from user context only.

SEE ALSO ddi_prop_create(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

9F-142 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_remove_minor_node (9F)

NAME ddi_remove_minor_node − remove a minor node for this dev_info

SYNOPSIS void ddi_remove_minor_node(dev_info_t ∗dip, char ∗name)

ARGUMENTS dip A pointer to the device’s dev_info structure.

name The name of this minor device. If name is NULL then remove all minor data
structures from this dev_info.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_remove_minor_node() removes a data structure from the linked list of minor data
structures that is pointed to by the dev_info structure for this driver.

EXAMPLES This will remove a data structure describing a minor device called foo which is linked
into the dev_info structure pointed to by dip.

ddi_remove_minor_node(dip, "foo");

SEE ALSO attach(9E), detach(9E), ddi_create_minor_node(9F)

Writing Device Drivers

modified 10 Mar 1992 9F-143

ddi_report_dev (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_report_dev − announce a device

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_report_dev(dev_info_t ∗dip);

ARGUMENTS dip a pointer the device’s dev_info structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_report_dev() prints a banner at boot time, announcing the device pointed to by dip.
The banner is always placed in the system logfile (displayed by dmesg(1M)), but is only
displayed on the console if the system was booted with the verbose (−v) argument.

CONTEXT ddi_report_dev() can be called from user or interrupt context.

SEE ALSO dmesg(1M), kernel(1M)

Writing Device Drivers

9F-144 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_root_node (9F)

NAME ddi_root_node − get the root of the dev_info tree

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

dev_info_t ∗ddi_root_node(void)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_root_node() returns a pointer to the root node of the device information tree.

RETURN VALUES ddi_root_node() returns a pointer to a device information structure.

CONTEXT ddi_root_node() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 19 Nov 1992 9F-145

ddi_segmap (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_segmap − map a segment

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_segmap(dev_t dev, off_t offset , struct as ∗asp, caddr_t ∗addrp, off_t len, u_int prot ,
u_int maxprot, u_int flags, cred_t ∗credp);

ARGUMENTS dev Device number.

offset Offset into device.

asp Pointer to as (address space) structure.

addrp Pointer to virtual address.

len Length in bytes.

prot Protection.

maxprot Protection.

flags. Flags.

credp Pointer to user credential structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_segmap() provides the default segment driver. It calls the driver’s mmap(9E) routine
to validate the range to be mapped.

It is typically used as the segmap(9E) entry in the cb_ops structure for those devices that
do not need to provide their own segment driver, and is not usually called directly by
drivers. However, some drivers may have their own segmap(9E) entry to do some initial
processing on the parameters (such as picking a virtual address, if the user did not pro-
vide one), and then call ddi_segmap() to establish the default memory segment.

RETURN VALUES ddi_segmap() returns:

0 on success.

non-zero on failure. In particular, it returns ENXIO if the range to be mapped is invalid.

CONTEXT ddi_segmap() can be called from user or interrupt context.

SEE ALSO mmap(9E), segmap(9E)

Writing Device Drivers

9F-146 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions ddi_slaveonly (9F)

NAME ddi_slaveonly − tell if a device is installed in a slave access only location

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_slaveonly(dev_info_t ∗dip)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_slaveonly tells the caller if the bus, or part of the bus that the device is installed on,
does not permit the device to become a DMA master, that is, whether the device has been
installed in a slave access only slot.

RETURN VALUES DDI_SUCCESS
The device has been installed in a slave access only location.

DDI_FAILURE
The device has not been installed in a slave access only location.

CONTEXT ddi_slaveonly can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 24 Oct 1991 9F-147

ddi_soft_state (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ddi_soft_state, ddi_get_soft_state, ddi_soft_state_fini, ddi_soft_state_free,
ddi_soft_state_init, ddi_soft_state_zalloc − driver soft state utility routines

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ∗ddi_get_soft_state(void ∗state , int item);

void ddi_soft_state_fini(void ∗∗state_p);

void ddi_soft_state_free(void ∗state , int item);

int ddi_soft_state_init(void ∗∗state_p , size_t size,
size_t n_items);

int ddi_soft_state_zalloc(void ∗state , int item);

ARGUMENTS state_p Address of the opaque state pointer which will be initialized by
ddi_soft_state_init() to point to implementation dependent data.

size Size of the item which will be allocated by subsequent calls to
ddi_soft_state_zalloc().

n_items A hint of the number of items which will be preallocated; zero is
allowed.

state An opaque pointer to implementation-dependent data that describes the
soft state.

item The item number for the state structure; usually the instance number of
the associated devinfo node.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION Most device drivers maintain state information with each instance of the device they con-
trol; for example, a soft copy of a device control register, a mutex that must be held while
accessing a piece of hardware, a partition table, or a unit structure. These utility routines
are intended to help device drivers manage the space used by the driver to hold such
state information.

For example, if the driver holds the state of each instance in a single state structure, these
routines can be used to dynamically allocate and deallocate a separate structure for each
instance of the driver as the instance is attached and detached.

To use the routines, the driver writer needs to declare a state pointer, state_p , which the
implementation uses as a place to hang a set of per-driver structures; everything else is
managed by these routines.

The routine ddi_soft_state_init() is usually called in the drivers _init(9E) routine to ini-
tialize the state pointer, set the size of the soft state structure, and to allow the driver to
pre-allocate a given number of such structures if required.

9F-148 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_soft_state (9F)

The routine ddi_soft_state_zalloc() is usually called in the drivers attach(9E) routine.
The routine is passed an item number which is used to refer to the structure in subse-
quent calls to ddi_get_soft_state() and ddi_soft_state_free(). The item number is usually
just the instance number of the devinfo node, obtained with ddi_get_instance(9F). The
routine attempts to allocate space for the new structure, and if the space allocation was
successful, DDI_SUCCESS is returned to the caller.

A pointer to the space previously allocated for a soft state structure can be obtained by
calling ddi_get_soft_state() with the appropriate item number.

The space used by a given soft state structure can be returned to the system using
ddi_soft_state_free(). This routine is usually called from the drivers detach(9E) entry
point.

The space used by all the soft state structures allocated on a given state pointer, together
with the housekeeping information used by the implementation can be returned to the
system using ddi_soft_state_fini(). This routine can be called from the drivers _fini(9E)
routine.

The ddi_soft_state_zalloc(), ddi_soft_state_free() and ddi_get_soft_state() routines
coordinate access to the underlying data structures in an MT-safe fashion, thus no addi-
tional locks should be necessary.

RETURN VALUES ddi_get_soft_state():

NULL The requested state structure was not allocated at the time of the call.

pointer The pointer to the state structure.

ddi_soft_state_init():

0 The allocation was successful.

EINVAL Either the size parameter was zero, or the state_p parameter was invalid.

ddi_soft_state_zalloc():

DDI_SUCCESS The allocation was successful.

DDI_FAILURE The routine failed to allocate the storage required; either the state param-
eter was invalid, the item number was negative, or an attempt was made
to allocate an item number that was already allocated.

CONTEXT ddi_soft_state_init(), and ddi_soft_state_alloc() can be called from user context only,
since they may internally call kmem_zalloc(9F) with the KM_SLEEP flag.

The ddi_soft_state_fini(), ddi_soft_state_free() and ddi_get_soft_state() routines can be
called from any driver context.

EXAMPLE The following example shows how the routines described above can be used in terms of
the driver entry points of a character-only driver. The example concentrates on the por-
tions of the code that deal with creating and removing the drivers data structures.

typedef struct {
volatile caddr_t ∗csr; /∗ device registers ∗/
kmutex_t csr_mutex; /∗ protects ’csr’ field ∗/

modified 7 Jun 1993 9F-149

ddi_soft_state (9F) DDI and DKI Kernel Functions SunOS 5.4

unsigned int state;
dev_info_t ∗dip; /∗ back pointer to devinfo ∗/

} devstate_t;

static void ∗statep;

int
_init(void)
{

int error;

error = ddi_soft_state_init(&statep, sizeof (devstate_t), 0);
if (error != 0)

return (error);
if ((error = mod_install(&modlinkage)) != 0)

ddi_soft_state_fini(&statep);
return (error);

}

int
_fini(void)
{

int error;

if ((error = mod_remove(&modlinkage)) != 0)
return (error);

ddi_soft_state_fini(&statep);
return (0);

}

static int
xxattach(dev_info_t ∗dip, ddi_attach_cmd_t cmd)
{

int instance;
devstate_t ∗softc;

switch (cmd) {
case DDI_ATTACH:

instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(statep, instance) != DDI_SUCCESS)

return (DDI_FAILURE);
softc = ddi_get_soft_state(statep, instance);
softc->dip = dip;
...
return (DDI_SUCCESS);

9F-150 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions ddi_soft_state (9F)

default:
return (DDI_FAILURE);

}
}

static int
xxdetach(dev_info_t ∗dip, ddi_detach_cmd_t cmd)
{

int instance;

switch (cmd) {

case DDI_DETACH:
instance = ddi_get_instance(dip);
...
ddi_soft_state_free(statep, instance);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

static int
xxopen(dev_t ∗devp, int flag, int otyp, cred_t ∗cred_p)
{

devstate_t ∗softc;
int instance;

instance = getminor(∗devp);
if ((softc = ddi_get_soft_state(statep, instance)) == NULL)

return (ENXIO);
...
softc->state |= XX_IN_USE;
...
return (0);

}

SEE ALSO _fini(9E), _init(9E), attach(9E), detach(9E), ddi_get_instance(9F), getminor(9F),
kmem_zalloc(9F)

Writing Device Drivers

WARNINGS There is no attempt to validate the item parameter given to ddi_soft_state_zalloc(); other
than it must be a positive signed integer. Therefore very large item numbers may cause
the driver to hang forever waiting for virtual memory resources that can never be

modified 7 Jun 1993 9F-151

ddi_soft_state (9F) DDI and DKI Kernel Functions SunOS 5.4

satisfied.

NOTES If necessary, a hierarchy of state structures can be constructed by embedding state
pointers in higher order state structures.

DIAGNOSTICS All of the messages described below usually indicate bugs in the driver and should not
appear in normal operation of the system.

WARNING: ddi_soft_state_zalloc: bad handle
WARNING: ddi_soft_state_free: bad handle
WARNING: ddi_soft_state_fini: bad handle

The implementation-dependent information kept in the state variable is corrupt.

WARNING: ddi_soft_state_free: null handle
WARNING: ddi_soft_state_fini: null handle

The routine has been passed a null or corrupt state pointer. Check that
ddi_soft_state_init() has been called.

WARNING: ddi_soft_state_free: item %d not in range [0..%d]

The routine has been asked to free an item which was never allocated. The message
prints out the invalid item number and the acceptable range.

9F-152 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions delay (9F)

NAME delay − delay execution for a specified number of clock ticks

SYNOPSIS #include <sys/ddi.h>

void delay(long ticks);

ARGUMENTS ticks The number of clock cycles to delay.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION delay() provides a mechanism for a driver to delay its execution for a given period of
time. Since the speed of the clock varies among systems, drivers should base their time
values on microseconds and use drv_usectohz(9F) to convert microseconds into clock
ticks.

delay() uses timeout(9F) to schedule an internal function to be called after the specified
amount of time has elapsed. delay() then waits until the function is called.

delay() does not busy-wait. If busy-waiting is required, use drv_usecwait(9F).

CONTEXT delay() can be called from user context only.

EXAMPLE Before a driver I/O routine allocates buffers and stores any user data in them, it checks
the status of the device (line 12). If the device needs manual intervention (such as, need-
ing to be refilled with paper), a message is displayed on the system console (line 14). The
driver waits an allotted time (line 17) before repeating the procedure.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short xmit_char; /∗ transmit character to device ∗/
5 };
6
7

. . .
9 /∗ get device registers ∗/
10 register struct device ∗rp = ...
11
12 while (rp->status & NOPAPER) { /∗ while printer is out of paper ∗/
13 /∗ display message and ring bell ∗/

/∗ on system console ∗/
14 cmn_err(CE_WARN, "ˆxx_write: NO PAPER in printer %d\007",
15 (getminor(dev) & 0xf));
16 /∗ wait one minute and try again ∗/
17 delay(60 ∗ drv_usectohz(1000000));
18 }

modified 12 Nov 1992 9F-153

delay (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO biodone(9F), biowait(9F), drv_hztousec(9F), drv_usectohz(9F), drv_usecwait(9F),
timeout(9F), untimeout(9F)

Writing Device Drivers

9F-154 modified 12 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions disksort (9F)

NAME disksort − single direction elevator seek sort for buffers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void disksort(struct diskhd ∗dp, struct buf ∗bp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The function disksort() sorts a pointer to a buffer into a single forward linked list headed
by the av_forw element of the argument ∗dp.

It uses a one-way elevator algorithm that sorts buffers into the queue in ascending order
based upon a key value held in the argument buffer structure element b_resid.

This value can either be the driver calculated cylinder number for the I/O request
described by the buffer argument, or simply the absolute logical block for the I/O
request, depending on how fine grained the sort is desired to be or how applicable either
quantity is to the device in question.

The head of the linked list is found by use of the av_forw structure element of the argu-
ment ∗dp. The tail of the linked list is found by use of the av_back structure element of
the argument ∗dp. The av_forw element of the ∗bp argument is used by disksort() to
maintain the forward linkage. The value at the head of the list presumably indicates the
currently active disk area.

ARGUMENTS dp A pointer to a diskhd structure. A diskhd structure is essentially identi-
cal to head of a buffer structure (see buf(9S)). The only defined items of
interest for this structure are the av_forw and av_back structure ele-
ments which are used to maintain the front and tail pointers of the for-
ward linked I/O request queue.

bp A pointer to a buffer structure. Typically this is the I/O request that the
driver receives in its strategy routine (see strategy(9E)). The driver is
responsible for initializes the b_resid structure element to a meaningful
sort key value prior to calling disksort().

WARNING disksort() does no locking. Therefore, any locking is completely the responsibility of the
caller.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO strategy(9E), buf(9S)

Writing Device Drivers

modified 30 Jul 1993 9F-155

drv_getparm (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME drv_getparm − retrieve kernel state information

SYNOPSIS #include <sys/ddi.h>

int drv_getparm(unsigned long parm , unsigned long ∗value_p);

ARGUMENTS parm The kernel parameter to be obtained. Possible values are:

LBOLT Read the value of lbolt. (lbolt is an integer that represents the
number of clock ticks since the last system reboot. This value is
used as a counter or timer inside the system kernel.)

PPGRP Read the process group identification number. This number
determines which processes should receive a HANGUP or BREAK
signal when detected by a driver.

UPROCP Read the process table token value.

PPID Read process identification number.

PSID Read process session identification number.

TIME Read time in seconds.

UCRED Return a pointer to the caller’s credential structure.

value_p A pointer to the data space in which the value of the parameter is to be copied.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION drv_getparm() function verifies that parm corresponds to a kernel parameter that may be
read. If the value of parm does not correspond to a parameter or corresponds to a param-
eter that may not be read, -1 is returned. Otherwise, the value of the parameter is stored
in the data space pointed to by value_p.

drv_getparm() does not explicitly check to see whether the device has the appropriate
context when the function is called and the function does not check for correct alignment
in the data space pointed to by value_p. It is the responsibility of the driver writer to use
this function only when it is appropriate to do so and to correctly declare the data space
needed by the driver.

RETURN VALUES drv_getparm() returns 0 to indicate success, −1 to indicate failure. The value stored in
the space pointed to by value_p is the value of the parameter if 0 is returned, or undefined
if −1 is returned. −1 is returned if you specify a value other than LBOLT, PPGRP, PPID,
PSID, TIME, UCRED, or UPROCP. Always check the return code when using this func-
tion.

9F-156 modified 3 Mar 1994

SunOS 5.4 DDI and DKI Kernel Functions drv_getparm (9F)

CONTEXT drv_getparm() can be called from user context only when using PPGRP, PPID, PSID,
UCRED, or UPROCP. It can be called from user or interrupt context when using the
LBOLT or TIME argument.

SEE ALSO buf(9S)

Writing Device Drivers

modified 3 Mar 1994 9F-157

drv_hztousec (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME drv_hztousec − convert clock ticks to microseconds

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_hztousec(clock_t hertz);

ARGUMENTS hertz The number of clock ticks to convert.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION drv_hztousec() converts into microseconds the time expressed by hertz , which is in sys-
tem clock ticks.

The kernel variable lbolt, which is (only) readable through drv_getparm(9F), is the length
of time the system has been up since boot and is expressed in clock ticks. Drivers often
use the value of lbolt before and after an I/O request to measure the amount of time it
took the device to process the request. drv_hztousec() can be used by the driver to con-
vert the reading from clock ticks to a known unit of time.

RETURN VALUES The number of microseconds equivalent to the hertz argument.
No error value is returned. If the microsecond equivalent to hertz is too large to be
represented as a clock_t , then the maximum clock_t value will be returned.

CONTEXT drv_hztousec() can be called from user or interrupt context.

SEE ALSO drv_getparm(9F), drv_usectohz(9F), drv_usecwait(9F)

Writing Device Drivers

9F-158 modified 12 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions drv_priv (9F)

NAME drv_priv − determine driver privilege

SYNOPSIS #include <sys/types.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int drv_priv(cred_t ∗cr);

ARGUMENTS cr Pointer to the user credential structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION drv_priv() provides a general interface to the system privilege policy. It determines
whether the credentials supplied by the user credential structure pointed to by cr identify
a privileged process. This function should only be used when file access modes and spe-
cial minor device numbers are insufficient to provide protection for the requested driver
function. It is intended to replace all calls to suser() and any explicit checks for effective
user ID = 0 in driver code.

RETURN VALUES This routine returns 0 if it succeeds, EPERM if it fails.

CONTEXT drv_priv() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 9F-159

drv_usectohz (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME drv_usectohz − convert microseconds to clock ticks

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_usectohz(clock_t microsecs);

ARGUMENTS microsecs The number of microseconds to convert.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION drv_usectohz() converts a length of time expressed in microseconds to a number of sys-
tem clock ticks. The time arguments to timeout(9F) and delay(9F) are expressed in clock
ticks.

drv_usectohz() is a portable interface for drivers to make calls to timeout(9F) and
delay(9F) and remain binary compatible should the driver object file be used on a system
with a different clock speed (a different number of ticks in a second).

RETURN VALUES The value returned is the number of system clock ticks equivalent to the microsecs argu-
ment. No error value is returned. If the clock tick equivalent to microsecs is too large to be
represented as a clock_t, then the maximum clock_t value will be returned.

CONTEXT drv_usectohz() can be called from user or interrupt context.

SEE ALSO delay(9F), drv_hztousec(9F), timeout(9F)

Writing Device Drivers

9F-160 modified 12 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions drv_usecwait (9F)

NAME drv_usecwait − busy-wait for specified interval

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

void drv_usecwait(clock_t microsecs);

ARGUMENTS microsecs The number of microseconds to busy-wait.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION drv_usecwait() gives drivers a means of busy-waiting for a specified microsecond count.
The amount of time spent busy-waiting may be greater than the microsecond count but
will minimally be the number of microseconds specified.

delay(9F) can be used by a driver to delay for a specified number of system ticks, but it
has two limitations. First, the granularity of the wait time is limited to one clock tick,
which may be more time than is needed for the delay. Second, delay(9F) may only be
invoked from user context and hence cannot be used at interrupt time or system initiali-
zation.

Often, drivers need to delay for only a few microseconds, waiting for a write to a device
register to be picked up by the device. In this case, even in user context, delay(9F) pro-
duces too long a wait period.

CONTEXT drv_usecwait() can be called from user or interrupt context.

SEE ALSO delay(9F), timeout(9F), untimeout(9F)

Writing Device Drivers

NOTES The driver wastes processor time by making this call since drv_usecwait() does not block
but simply busy-waits. The driver should only make calls to drv_usecwait() as needed,
and only for as much time as needed. drv_usecwait() does not mask out interrupts.

modified 12 Nov 1992 9F-161

dupb (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME dupb − duplicate a message block descriptor

SYNOPSIS #include <sys/stream.h>

mblk_t ∗dupb(mblk_t ∗bp);

ARGUMENTS bp Pointer to the message block to be duplicated. mblk_t is an instance of the
msgb(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION dupb() creates a new mblk_t structure to reference the message block pointed to by bp.
Unlike copyb(9F), dupb does not copy the information in the data block, but creates a
new structure to point to it.

The following figure shows how the db_ref field of the dblk_t structure has been
changed from 1 to 2, reflecting the increase in the number of references to the data block.
The new mblk_t contains the same information as the first. Note that b_rptr and b_wptr
are copied from bp, and that db_ref is incremented.

.

.

.

.

nbp=dupb(bp);

Before After

db_base
db_ref (2)

db_base
db_ref (1)

bp

b_datap

b_rptr
b_wptr

b_datap

b_rptr
b_wptr

b_datap

b_rptr
b_wptr

nbpbp

RETURN VALUES If successful, dupb returns a pointer to the new message block. Otherwise, it returns a
NULL pointer.

CONTEXT dupb() can be called from user or interrupt context.

EXAMPLE This srv(9E) (service) routine adds a header to all M_DATA messages before passing
them along. The message block for the header was allocated elsewhere. For each mes-
sage on the queue, if it is a priority message, pass it along immediately (lines 9−10).

9F-162 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions dupb (9F)

Otherwise, if it is anything other than an M_DATA message (line 11), and if it can be sent
along (line 12), then do so (line 13). Otherwise, put the message back on the queue and
return (lines 15−16). For all M_DATA messages, first check to see if the stream is flow-
controlled (line 19). If it is, put the message back on the queue and return (line 22); if it is
not, the header block is duplicated (line 20). If dupb fails, the service routine is
rescheduled in one tenth of a second with timeout and then we return (lines 23−24). If
dupb succeeds, link the M_DATA message to it (line 26) and pass it along (line 27).
dupb can be used here instead of copyb(9F) because the contents of the header block are
not changed.

Note that this example ignores issues related to cancelling outstanding timeouts at close
time.

1 xxxsrv(q)
2 queue_t ∗q;
3 {
4 mblk_t ∗mp;
5 mblk_t ∗bp;
6 extern mblk_t ∗hdr;
7
8 while ((mp = getq(q)) != NULL) {
9 if (mp->b_datap->db_type >= QPCTL) {
10 putnext(q, mp);
11 } else if (mp->b_datap->db_type != M_DATA) {
12 if (canputnext(q))
13 putnext(q, mp);
14 else {
15 putbq(q, mp);
16 return;
17 }
18 } else { /∗ M_DATA ∗/
19 if (canputnext(q)) {
20 bp = dupb(hdr);
21 if (bp == NULL) {
22 putbq(q, mp);
23 timeout(qenable, (long)q, drv_usectohz(100000));
24 return;
25 }
26 linkb(bp, mp);
27 putnext(q, bp);
28 } else {
29 putbq(q, mp);
30 return;
31 }
32 }
33 }
34 }

modified 11 Apr 1991 9F-163

dupb (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO copyb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-164 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions dupmsg (9F)

NAME dupmsg − duplicate a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗dupmsg(mblk_t ∗mp);

ARGUMENTS mp Pointer to the message.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION dupmsg() forms a new message by copying the message block descriptors pointed to by
mp and linking them. dupb(9F) is called for each message block. The data blocks them-
selves are not duplicated.

RETURN VALUES If successful, dupmsg() returns a pointer to the new message block. Otherwise, it returns
a NULL pointer.

CONTEXT dupmsg() can be called from user or interrupt context.

EXAMPLE See copyb(9F) for an example using dupmsg().

SEE ALSO copyb(9F), copymsg(9F), dupb(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-165

enableok (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME enableok − reschedule a queue for service

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void enableok(queue_t ∗q);

ARGUMENTS q A pointer to the queue to be rescheduled.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION enableok() enables queue q to be rescheduled for service. It reverses the effect of a previ-
ous call to noenable(9F) on q by turning off the QNOENB flag in the queue.

CONTEXT enableok() can be called from user or interrupt context.

EXAMPLE The qrestart() routine uses two STREAMS functions to restart a queue that has been dis-
abled. The enableok() function turns off the QNOENB flag, allowing the qenable(9F) to
schedule the queue for immediate processing.

1 void
2 qrestart(rdwr_q)
3 register queue_t ∗rdwr_q;
4 {
5 enableok(rdwr_q);
6 /∗ re-enable a queue that has been disabled ∗/
7 (void) qenable(rdwr_q);
8 }

SEE ALSO noenable(9F), qenable(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-166 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions esballoc (9F)

NAME esballoc − allocate a message block using a caller-supplied buffer

SYNOPSIS #include <sys/stream.h>

mblk_t ∗esballoc(unsigned char ∗base, int size, int pri, frtn_t ∗fr_rtnp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS base Address of user supplied data buffer.

size Number of bytes in data buffer.

pri Priority of allocation request (to be used by allocb(9F) function, called
by esballoc()).

fr_rtnp Free routine data structure.

DESCRIPTION esballoc() creates a STREAMS message and attaches a user-supplied data buffer in place
of a STREAMS data buffer. It calls allocb(9F) to get a message and data block header
only. The user-supplied data buffer, pointed to by base , is used as the data buffer for the
message.

When freeb(9F) is called to free the message, the driver’s message freeing routine (refer-
enced through the free_rtn structure) is called, with appropriate arguments, to free the
data buffer.

The free_rtn structure includes the following members:

void (∗free_func)(); /∗ user’s freeing routine ∗/
char ∗free_arg; /∗ arguments to free_func() ∗/

Instead of requiring a specific number of arguments, the free_arg field is defined of type
char ∗. This way, the driver can pass a pointer to a structure if more than one argument
is needed.

The method by which free_func is called is implementation-specific. The module writer
must not assume that free_func will or will not be called directly from STREAMS utility
routines like freeb(9F) which free a message block.

free_func must not call another modules put procedure nor attempt to acquire a private
module lock which may be held by another thread across a call to a STREAMS utility
routine which could free a message block. Otherwise, the possibility for lock recursion
and/or deadlock exists.

free_func must not access any dynamically allocated data structure that might no longer
exist when it runs.

RETURN VALUES On success, a pointer to the newly allocated message block is returned. On failure, NULL
is returned.

CONTEXT esballoc() can be called from user or interrupt context.

modified 11 Apr 1991 9F-167

esballoc (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO allocb(9F), freeb(9F), datab(9S), free_rtn(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

WARNINGS The free_func() must be defined in kernel space, should be declared void and accept one
argument. It has no user context and must not sleep.

9F-168 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions esbbcall (9F)

NAME esbbcall − call function when buffer is available

SYNOPSIS #include <sys/stream.h>

int esbbcall(int pri, void (∗func)(long arg),long arg);

ARGUMENTS pri Priority of allocation request (to be used by allocb(9F) function, called by esbb-
call())

func Function to be called when buffer becomes available.

arg Argument to func.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION esbbcall(), like bufcall(9F), serves as a timeout(9F) call of indeterminate length. If
esballoc(9F) is unable to allocate a message and data block header to go with its exter-
nally supplied data buffer, esbbcall() can be used to schedule the routine func, to be
called with the argument arg when a buffer becomes available. func may be a routine that
calls esballoc (9F) or it may be another kernel function.

RETURN VALUES On success, a non-zero integer is returned. On failure, 0 is returned.
The value returned from a successful call should be saved for possible future use with
unbufcall() should it become necessary to cancel the esbbcall() request (as at driver
close time).

CONTEXT esbbcall() can be called from user or interrupt context.

SEE ALSO allocb(9F), bufcall(9F), esballoc(9F), timeout(9F), datab(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-169

flushband (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME flushband − flush messages for a specified priority band

SYNOPSIS #include <sys/stream.h>

void flushband(queue_t ∗q, unsigned char pri, int flag);

ARGUMENTS q Pointer to the queue.

pri Priority of messages to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION flushband() flushes messages associated with the priority band specified by pri. If pri is
0, only normal and high priority messages are flushed. Otherwise, messages are flushed
from the band pri according to the value of flag .

CONTEXT flushband() can be called from user or interrupt context.

SEE ALSO flushq(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-170 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions flushq (9F)

NAME flushq − remove messages from a queue

SYNOPSIS #include <sys/stream.h>

void flushq(queue_t ∗q, int flag);

ARGUMENTS q Pointer to the queue to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA,
M_DELAY, M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION flushq() frees messages and their associated data structures by calling freemsg(9F). If
the queue’s count falls below the low water mark and the queue was blocking an
upstream service procedure, the nearest upstream service procedure is enabled.

CONTEXT flushq() can be called from user or interrupt context.

EXAMPLE This example depicts the canonical flushing code for STREAMS modules. The module
has a write service procedure and potentially has messages on the queue. If it receives an
M_FLUSH message, and if the FLUSHR bit is on in the first byte of the message (line 10),
then the read queue is flushed (line 11). If the FLUSHW bit is on (line 12), then the write
queue is flushed (line 13). Then the message is passed along to the next entity in the
stream (line 14). See the example for qreply(9F) for the canonical flushing code for
drivers.

1 /∗
2 ∗ Module write-side put procedure.
3 ∗/
4 xxxwput(q, mp)
5 queue_t ∗q;
6 mblk_t ∗mp;
7 {
8 switch(mp->b_datap->db_type) {
9 case M_FLUSH:

modified 11 Apr 1991 9F-171

flushq (9F) DDI and DKI Kernel Functions SunOS 5.4

10 if (∗mp->b_rptr & FLUSHR)
11 flushq(RD(q), FLUSHALL);
12 if (∗mp->b_rptr & FLUSHW)
13 flushq(q, FLUSHALL);
14 putnext(q, mp);
15 break;

. . .
16 }
17 }

SEE ALSO flushband(9F), freemsg(9F), putq(9F), qreply(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-172 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions freeb (9F)

NAME freeb − free a message block

SYNOPSIS #include <sys/stream.h>

void freeb(mblk_t ∗bp);

ARGUMENTS bp Pointer to the message block to be deallocated. mblk_t is an instance of the
msgb(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION freeb() deallocates a message block. If the reference count of the db_ref member of the
datab(9S) structure is greater than 1, freeb() decrements the count. If db_ref equals 1, it
deallocates the message block and the corresponding data block and buffer.

If the data buffer to be freed was allocated with the esballoc(9F), the buffer may be a
non-STREAMS resource. In that case, the driver must be notified that the attached data
buffer needs to be freed, and run its own freeing routine. To make this process indepen-
dent of the driver used in the stream, freeb() finds the free_rtn(9S) structure associated
with the buffer. The free_rtn structure contains a pointer to the driver-dependent rou-
tine, which releases the buffer. Once this is accomplished, freeb() releases the STREAMS
resources associated with the buffer.

CONTEXT freeb() can be called from user or interrupt context.

EXAMPLE See copyb(9F) for an example of using freeb().

SEE ALSO allocb(9F), dupb(9F), esballoc(9F), free_rtn(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-173

freemsg (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME freemsg − free all message blocks in a message

SYNOPSIS #include <sys/stream.h>

void freemsg(mblk_t ∗mp);

ARGUMENTS mp Pointer to the message blocks to be deallocated. mblk_t is an instance of the
msgb(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION freemsg() calls freeb(9F) to free all message and data blocks associated with the message
pointed to by mp.

CONTEXT freemsg() can be called from user or interrupt context.

EXAMPLE See copymsg(9F).

SEE ALSO freeb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-174 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions freerbuf (9F)

NAME freerbuf − free a raw buffer header

SYNOPSIS #include <sys/buf.h>
#include <sys/ddi.h>

void freerbuf(struct buf ∗bp);

ARGUMENTS bp Pointer to a previously allocated buffer header structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION freerbuf() frees a raw buffer header previously allocated by getrbuf(9F). This function
does not sleep and so may be called from an interrupt routine.

CONTEXT freerbuf() can be called from user or interrupt context.

SEE ALSO getrbuf(9F), kmem_alloc(9F), kmem_free(9F), kmem_zalloc(9F)

modified 11 Apr 1991 9F-175

freezestr (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME freezestr, unfreezestr − freeze, thaw the state of a stream

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void freezestr(queue_t ∗q);

void unfreezestr(queue_t ∗q);

ARGUMENTS q Pointer to the message queue to freeze/unfreeze.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION freezestr() freezes the state of the entire stream containing the queue pair q. A frozen
stream blocks any thread attempting to enter any open, close, put or service routine
belonging to any queue instance in the stream, and blocks any thread currently within the
stream if it attempts to put messages onto or take messages off of any queue within the
stream (with the sole exception of the caller). Threads blocked by this mechanism remain
so until the stream is thawed by a call to unfreezestr().

Drivers and modules must freeze the stream before manipulating the queues directly (as
opposed to manipulating them through programmatic interfaces such as getq(9F),
putq(9F), putbq(9F), etc.) They further must freeze the stream before accessing any
queues through calls to insq(9F), rmvq(9F), strqset(9F) and strqget(9F).

CONTEXT These routines may be called from any stream open, close, put or service routine as well
as interrupt handlers, callouts and call-backs.

SEE ALSO getq(9F), insq(9F), putbq(9F), putq(9F), rmvq(9F), strqget(9F), strqset(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES Calling freezestr() to freeze a stream that is already frozen by the caller will result in a
single-party deadlock.

The caller of unfreezestr() must be the thread who called freezestr().

Global kernel locks and locks local to drivers and modules may be held across calls to
these two routines. Beware of hierarchy violations with respect to local locks (locking
policies established by the driver or module writer).

There are usually better ways to accomplish things than by freezing the stream.

STREAMS utility functions such as getq(9F), putq(9F), putbq(9F), etc. may not be called
by the caller of freezestr() while the stream is still frozen, as they indirectly freeze the
stream to ensure atomicity of queue manipulation.

9F-176 modified 28 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions get_pktiopb (9F)

NAME get_pktiopb, free_pktiopb − allocate/free a SCSI packet in the iopb map

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗get_pktiopb(struct scsi_address ∗ap , caddr_t ∗datap , int cdblen,
int statuslen, int datalen , int readflag , int (∗callback)(void));

void free_pktiopb(struct scsi_pkt ∗pkt , caddr_t datap , int datalen);

ARGUMENTS ap Pointer to the target’s scsi_address structure.

datap Pointer to the address of the packet, set by this function.

cdblen Number of bytes required for the SCSI command descriptor block (CDB).

statuslen Number of bytes required for the SCSI status area.

datalen Number of bytes required for the data area of the SCSI command.

readflag If non-zero, data will be transferred from the SCSI target.

callback Pointer to a callback function, or NULL_FUNC or SLEEP_FUNC

pkt Pointer to a scsi_pkt(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION get_pktiopb() allocates a scsi_pkt structure that has a small data area allocated. It is used
by some SCSI commands such as REQUEST_SENSE, which involve a small amount of data
and require cache-consistent memory for proper operation. It uses ddi_iopb_alloc(9F)
for allocating the data area and scsi_resalloc(9F) to allocate the packet and DMA
resources.

callback indicates what get_pktiopb() should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but failed to do so again), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

free_pktiopb() is used for freeing the packet and its associated resources.

RETURN VALUES get_pktiopb() returns a pointer to the newly allocated scsi_pkt or a NULL pointer.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function may
not block or call routines that block.

modified 21 Dec 1992 9F-177

get_pktiopb (9F) DDI and DKI Kernel Functions SunOS 5.4

free_pktiopb() can be called from user or interrupt context.

SEE ALSO ddi_iopb_alloc(9F), scsi_alloc_consistent_buf(9F) scsi_pktalloc(9F), scsi_resalloc(9F),
scsi_pkt(9S)

Writing Device Drivers

NOTES get_pktiopb() and free_pktiopb() are old functions and should be replaced with
scsi_alloc_consistent_buf(9F) and scsi_free_consistent_buf(9F). get_pktiopb() uses
scarce resources. Use it selectively.

9F-178 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions geterror (9F)

NAME geterror − return I/O error

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

int geterror(struct buf ∗bp);

ARGUMENTS bp Pointer to a buf(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION geterror() returns the error number from the error field of the buffer header structure.

RETURN VALUES An error number indicating the error condition of the I/O request is returned. If the I/O
request completes successfully, 0 is returned.

CONTEXT geterror() can be called from user or interrupt context.

SEE ALSO buf(9S)

Writing Device Drivers

modified 11 Apr 1991 9F-179

getmajor (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME getmajor − get major device number

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

major_t getmajor(dev_t dev);

ARGUMENTS dev Device number.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION getmajor() extracts the major number from a device number.

RETURN VALUES The major number.

CONTEXT getmajor() can be called from user or interrupt context.

EXAMPLE The following example shows both the getmajor() and getminor(9F) functions used in a
debug cmn_err(9F) statement to return the major and minor numbers for the device sup-
ported by the driver.

dev_t dev;

#ifdef DEBUG
cmn_err(CE_NOTE,"Driver Started. Major# = %d,

Minor# = %d", getmajor(dev), getminor(dev));
#endif

SEE ALSO cmn_err(9F), getminor(9F), makedevice(9F)

Writing Device Drivers

WARNINGS No validity checking is performed. If dev is invalid, an invalid number is returned.

9F-180 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions getminor (9F)

NAME getminor − get minor device number

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

minor_t getminor(dev_t dev);

ARGUMENTS dev Device number.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION getminor() extracts the minor number from a device number.

RETURN VALUES The minor number.

CONTEXT getminor() can be called from user or interrupt context.

EXAMPLE See the getmajor(9F) manual page for an example of how to use getminor(9F).

SEE ALSO getmajor(9F), makedevice(9F)

Writing Device Drivers

WARNINGS No validity checking is performed. If dev is invalid, an invalid number is returned.

modified 11 Apr 1991 9F-181

getq (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME getq − get the next message from a queue

SYNOPSIS #include <sys/stream.h>

mblk_t ∗getq(queue_t ∗q);

ARGUMENTS q Pointer to the queue from which the message is to be retrieved.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION getq() is used by a service (srv(9E)) routine to retrieve its enqueued messages.

A module or driver may include a service routine to process enqueued messages. Once
the STREAMS scheduler calls srv() it must process all enqueued messages, unless
prevented by flow control. getq() obtains the next available message from the top of the
queue pointed to by q. It should be called in a while loop that is exited only when there
are no more messages or flow control prevents further processing.

If an attempt was made to write to the queue while it was blocked by flow control, getq()
back-enables (restarts) the service routine once it falls below the low water mark.

RETURN VALUES If there is a message to retrieve, getq() returns a pointer to it. If no message is queued,
getq() returns a NULL pointer.

CONTEXT getq() can be called from user or interrupt context.

EXAMPLE See dupb(9F).

SEE ALSO srv(9E), bcanput(9F), canput(9F), putbq(9F), putq(9F), qenable(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-182 modified 12 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions getrbuf (9F)

NAME getrbuf − get a raw buffer header

SYNOPSIS #include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

struct buf ∗getrbuf(long sleepflag);

ARGUMENTS sleepflag Indicates whether driver should sleep for free space.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION getrbuf() allocates the space for a buffer header to the caller. It is used in cases where a
block driver is performing raw (character interface) I/O and needs to set up a buffer
header that is not associated with the buffer cache.

getrbuf() calls kmem_alloc(9F) to perform the memory allocation. kmem_alloc()
requires the information included in the sleepflag argument. If sleepflag is set to
KM_SLEEP, the driver may sleep until the space is freed up. If sleepflag is set to
KM_NOSLEEP, the driver will not sleep. In either case, a pointer to the allocated space
is returned or NULL to indicate that no space was available.

RETURN VALUES getrbuf() returns a pointer to the allocated buffer header, or NULL if no space is avail-
able.

CONTEXT getrbuf() can be called from user or interrupt context. (Drivers must not allow getrbuf()
to sleep if called from an interrupt routine.)

SEE ALSO freerbuf(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

modified 11 Apr 1991 9F-183

hat_getkpfnum (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME hat_getkpfnum − get page frame number for kernel address

SYNOPSIS #include <sys/vm.h>
#include <sys/types.h>
#include <sys/ddi.h>

u_int hat_getkpfnum(caddr_t addr);

ARGUMENTS addr The kernel virtual address for which the page frame number is to be returned.

INTERFACE
LEVEL

Architecture independent level 2 (DKI only).

DESCRIPTION Drivers implementing the mmap(9E) entry point must return the page frame number
corresponding to the virtual address of the device memory address addr , or −1 for error.
This frame number can be obtained by a call to hat_getkpfnum().

RETURN VALUES The page frame number corresponding to virtual address addr , or −1 for invalid map-
pings.

CONTEXT hat_getkpfnum() can be called from user or interrupt context. Although there is no rea-
son why hat_getkpfnum() cannot be called from interrupt context, there is no need, since
it only needs to be called from within mmap(9E).

SEE ALSO mmap(9E)

Writing Device Drivers

9F-184 modified 30 Mar 1992

SunOS 5.4 DDI and DKI Kernel Functions inb (9F)

NAME inb, inw, inl, repinsb, repinsw, repinsd − read from an I/O port

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

unsigned char inb(int port);

unsigned short inw(int port);

unsigned long inl(int port);

void repinsb(int port , unsigned char ∗addr , int count);

void repinsw(int port , unsigned short ∗addr , int count);

void repinsd(int port , unsigned long ∗addr , int count);

ARGUMENTS port A valid I/O port address.

addr The address of a buffer where the values will be stored.

count The number of values to be read from the I/O port.

INTERFACE
LEVEL

Solaris x86 DDI specific (Solaris x86 DDI).

AVAILABILITY x86

DESCRIPTION These routines read data of various sizes from the I/O port with the address specified by
port .

The inb(), inw(), and inl() functions read 8 bits, 16 bits, and 32 bits of data respectively,
returning the resulting values.

The repinsb(), repinsw(), and repinsd() functions read multiple 8-bit, 16-bit, and 32-bit
values, respectively. count specifies the number of values to be read. A a pointer to a
buffer will receive the input data; the buffer must be long enough to hold count values of
the requested size.

RETURN VALUES inb(), inw(), and inl() return the value that was read from the I/O port.

CONTEXT These functions may be called from user or interrupt context.

SEE ALSO eisa(4), isa(4), mca(4), outb(9F)

Writing Device Drivers

modified 15 Feb 1994 9F-185

insq (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME insq − insert a message into a queue

SYNOPSIS #include <sys/stream.h>

int insq(queue_t ∗q, mblk_t ∗emp, mblk_t ∗nmp);

ARGUMENTS q Pointer to the queue containing message emp.

emp Enqueued message before which the new message is to be inserted. mblk_t is an
instance of the msgb(9S) structure.

nmp Message to be inserted.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION insq() inserts a message into a queue. The message to be inserted, nmp, is placed in q
immediately before the message emp. If emp is NULL, the new message is placed at the
end of the queue. The queue class of the new message is ignored. All flow control
parameters are updated. The service procedure is enabled unless QNOENB is set.

RETURN VALUES insq() returns 1 on success, and 0 on failure.

CONTEXT insq() can be called from user or interrupt context.

EXAMPLE This routine illustrates the steps a transport provider may take to place expedited data
ahead of normal data on a queue (assume all M_DATA messages are converted into
M_PROTO T_DATA_REQ messages). Normal T_DATA_REQ messages are just placed
on the end of the queue (line 16). However, expedited T_EXDATA_REQ messages are
inserted before any normal messages already on the queue (line 25). If there are no nor-
mal messages on the queue, bp will be NULL and we fall out of the for loop (line 21).
insq acts like putq(9F) in this case.

1 #include <sys/tihdr.h>
2 #include <sys/stream.h>
3
4 static int
5 xxxwput(queue_t ∗q, mblk_t ∗mp)
6 {
7 union T_primitives ∗tp;
8 mblk_t ∗bp;
9 union T_primitives ∗ntp;
10
11 switch (mp->b_datap->db_type) {
12 case M_PROTO:
13 tp = (union T_primitives ∗)mp->b_rptr;
14 switch (tp->type) {
15 case T_DATA_REQ:
16 putq(q, mp);

9F-186 modified 28 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions insq (9F)

17 break;
18
19 case T_EXDATA_REQ:
20 freezestr(q);
21 for (bp = q->q_first; bp; bp = bp->b_next) {
22 if (bp->b_datap->db_type == M_PROTO) {
23 ntp = (union T_primitives ∗)bp->b_rptr;
24 if (ntp->type != T_EXDATA_REQ)
25 break;
26 }
27 }
28 (void) insq(q, bp, mp);
29 unfreezestr(q);
30 break;

. . .
31 }
32 }
33 }

SEE ALSO freezestr(9F), msgb(9S), putq(9F), unfreezestr(9F), rmvq(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

WARNINGS If emp is non-NULL, it must point to a message on q or a system panic could result.

NOTES The stream must be frozen using freezestr(9F) before calling insq().

modified 28 Jan 1993 9F-187

kmem_alloc (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME kmem_alloc − allocate space from kernel free memory

SYNOPSIS #include <sys/types.h>
#include <sys/kmem.h>

void ∗kmem_alloc(size_t size, int flag);

ARGUMENTS size Number of bytes to allocate.

flag Determines if caller will sleep to wait for free space. Possible flags are
KM_SLEEP to sleep while waiting for free space, and KM_NOSLEEP to return
NULL if space is not available.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION kmem_alloc() allocates a specified amount of kernel memory in bytes and returns a
pointer to the allocated memory. The flag argument determines whether the function will
sleep while waiting for free space to be released. If flag has KM_SLEEP set, the caller
may sleep until free space is available. If flag has KM_NOSLEEP set and space is not
available, NULL will be returned.

RETURN VALUES If successful, kmem_alloc() returns a pointer to the allocated space. NULL is returned if
KM_NOSLEEP is set and memory cannot be allocated.

CONTEXT kmem_alloc() can be called from interrupt context only if the KM_NOSLEEP flag is set.
It can be called from user context with any valid flag .

SEE ALSO freerbuf(9F), getrbuf(9F), kmem_free(9F), kmem_zalloc(9F)

Writing Device Drivers

WARNINGS Memory allocated by kmem_alloc() is not paged. Available memory is therefore limited.
Excessive use of this memory is likely to affect overall system performance.

9F-188 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions kmem_free (9F)

NAME kmem_free − free previously allocated kernel memory

SYNOPSIS #include <sys/types.h>
#include <sys/kmem.h>

void kmem_free(void ∗cp, size_t size);

ARGUMENTS cp Address of the allocated storage from which to return size of allocated memory.

size Number of bytes to free (same number of bytes as allocated by kmem_alloc(9F)
or kmem_zalloc(9F).

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION kmem_free() returns size bytes of storage to kernel free space previously allocated by
kmem_alloc(9F) or kmem_zalloc(9F). The cp and size values must specify exactly one
complete area of allocated memory. One kmem_free() call must correspond to one allo-
cation.

CONTEXT kmem_free() can be called from user or interrupt context.

SEE ALSO freerbuf(9F), getrbuf(9F), kmem_alloc(9F), kmem_zalloc(9F)

Writing Device Drivers

modified 11 Apr 1991 9F-189

kmem_zalloc (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME kmem_zalloc − allocate and clear space from kernel free memory

SYNOPSIS #include <sys/types.h>
#include <sys/kmem.h>

void ∗kmem_zalloc(size_t size, int flags);

ARGUMENTS size Number of bytes to allocate.

flags Determines if caller may sleep to wait for free space. Possible flags are
KM_SLEEP to sleep while waiting for free space, and KM_NOSLEEP to return
NULL if space is not available.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION This function allocates size bytes of storage from kernel free space, clears it, and returns a
pointer to the allocated memory. If flags has KM_SLEEP set, the caller may sleep until
free space is available. If flags has KM_NOSLEEP set and space is not available, NULL
will be returned.

RETURN VALUES kmem_zalloc() returns NULL if memory cannot be allocated. Otherwise, it returns a
pointer to the allocated space.

CONTEXT kmem_zalloc() can be called from interrupt context only if the KM_NOSLEEP flag is set.
It can be called from user context with any valid flags .

SEE ALSO freerbuf(9F), getrbuf(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

WARNINGS Memory allocated by kmem_zalloc() is not paged. Available memory is therefore lim-
ited. Excessive use of this memory is likely to affect overall system performance.

9F-190 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions kstat_create (9F)

NAME kstat_create − create and initialize a new kstat

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

kstat_t ∗kstat_create(char ∗module, int instance, char ∗name, char ∗class , uchar_t type ,
ulong_t ndata , uchar_t ks_flag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS module The name of the provider’s module (such as "sd", "esp", ...). The "core" kernel
(/kernel/unix) uses the name "unix".

instance The provider’s instance number, as from ddi_get_instance(9F). Modules
which don’t have a meaningful instance number should use 0.

name A pointer to a string that uniquely identifies this structure. Only
KSTAT_STRLEN - 1 characters are significant.

class The general class that this kstat belongs to. The following classes are currently
in use: disk, tape, net, controller, vm, kvm, hat, streams, kstat, and misc.

type The type of kstat to allocate. Valid types are:

KSTAT_TYPE_NAMED named - allows more than one data record per
kstat

KSTAT_TYPE_INTR interrupt - only one data record per kstat

KSTAT_TYPE_IO I/O - only one data record per kstat

ndata The number of type-specific data records to allocate.

flag A bit-field of various flags for this kstat. flag is some combination of:

KSTAT_FLAG_VIRTUAL Tells kstat_create() not to allocate memory for
the kstat data section; instead, the driver will set
the ks_data field to point to the data it wishes to
export. This provides a convenient way to export
existing data structures.

KSTAT_FLAG_WRITABLE Makes the kstat’s data section writable by root.

KSTAT_FLAG_PERSISTENT
Indicates that this kstat is to be persistent over
time. For persistent kstats, kstat_delete(9F) sim-
ply marks the kstat as dormant; a subsequent
kstat_create() reactivates the kstat. This feature
is provided so that statistics are not lost across
driver close/open (such as raw disk I/O on a
disk with no mounted partitions.)

Note: Persistent kstats cannot be virtual, since
ks_data points to garbage as soon as the driver
goes away.

modified 4 Apr 1994 9F-191

kstat_create (9F) DDI and DKI Kernel Functions SunOS 5.4

DESCRIPTION kstat_create() is used in conjunction with kstat_install(9F) to allocate and initialize a
kstat(9S) structure. The method is generally as follows:

kstat_t ∗ksp;

ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/∗ ... provider initialization, if necessary ∗/
kstat_install(ksp);

}

kstat_create() allocates and performs necessary system initialization of a kstat(9S) struc-
ture. kstat_create() allocates memory for the entire kstat (header plus data), initializes all
header fields, initializes the data section to all zeroes, assigns a unique kstat ID (KID), and
puts the kstat onto the system’s kstat chain. The returned kstat is marked invalid because
the provider (caller) has not yet had a chance to initialize the data section.

After a successful call to kstat_create() the driver must perform any necessary initializa-
tion of the data section (such as setting the name fields in a kstat of type
KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field set at this time. The
provider may also set the ks_update, ks_private, and ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install(9F) is used to make the kstat acces-
sible to the outside world.

RETURN VALUES If successful, kstat_create() returns a pointer to the allocated kstat. NULL is returned on
failure.

CONTEXT kstat_create() can be called from user or kernel context.

SEE ALSO kstat(3K), kstat_delete(9F), kstat_install(9F), kstat_named_init(9F), kstat(9S),
kstat_named(9S)

Writing Device Drivers

9F-192 modified 4 Apr 1994

SunOS 5.4 DDI and DKI Kernel Functions kstat_delete (9F)

NAME kstat_delete − remove a kstat from the system

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_delete(kstat_t ∗ksp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS ksp Pointer to a currently installed kstat(9S) structure.

DESCRIPTION kstat_delete() removes ksp from the kstat chain and frees all associated system
resources.

RETURN VALUES None.

CONTEXT kstat_delete() can be called from any context.

SEE ALSO kstat_create(9F), kstat_install(9F), kstat_named_init(9F), kstat(9S)

Writing Device Drivers

NOTES When calling kstat_delete(), the driver must not be holding that kstat’s ks_lock. Other-
wise, it may deadlock with a kstat reader.

modified 4 Apr 1994 9F-193

kstat_install (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME kstat_install − add a fully initialized kstat to the system

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_install(kstat_t ∗ksp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS ksp Pointer to a fully initialized kstat(9S) structure.

DESCRIPTION kstat_install() is used in conjunction with kstat_create(9F) to allocate and initialize a
kstat(9S) structure. The method is generally as follows:

kstat_t ∗ksp;

ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/∗ ... provider initialization, if necessary ∗/
kstat_install(ksp);

}

After a successful call to kstat_create() the driver must perform any necessary initializa-
tion of the data section (such as setting the name fields in a kstat of type
KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field set at this time. The
provider may also set the ks_update, ks_private, and ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install(9F) is used to make the kstat acces-
sible to the outside world.

RETURN VALUES None.

CONTEXT kstat_install() can be called from user or kernel context.

SEE ALSO kstat_create(9F), kstat_delete(9F), kstat_named_init(9F), kstat(9S)

Writing Device Drivers

9F-194 modified 26 May 1994

SunOS 5.4 DDI and DKI Kernel Functions kstat_named_init (9F)

NAME kstat_named_init − initialize a named kstat

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_named_init(kstat_named_t ∗knp, char ∗name, uchar_t data_type);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS knp Pointer to a kstat_named(9S) structure.

name The name of the statistic.

data_type The type of value. This indicates which field of the kstat_named(9S)
structure should be used. Valid values are:

KSTAT_DATA_CHAR the "char" field.

KSTAT_DATA_LONG the "long" field.

KSTAT_DATA_ULONG the "unsigned long" field.

KSTAT_DATA_LONGLONG the "long long" field.

KSTAT_DATA_ULONGLONG the "unsigned long long" field.

DESCRIPTION kstat_named_init() associates a name and a type with a kstat_named(9S) structure.

RETURN VALUES None.

CONTEXT kstat_named_init() can be called from user or kernel context.

SEE ALSO kstat_create(9F), kstat_install(9F), kstat(9S), kstat_named(9S)

Writing Device Drivers

modified 4 Apr 1994 9F-195

kstat_queue (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME kstat_queue, kstat_waitq_enter, kstat_waitq_exit, kstat_runq_enter, kstat_runq_exit,
kstat_waitq_to_runq, kstat_runq_back_to_waitq − update I/O kstat statistics

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_waitq_enter(kstat_io_t ∗kiop);

void kstat_waitq_exit(kstat_io_t ∗kiop);

void kstat_runq_enter(kstat_io_t ∗kiop);

void kstat_runq_exit(kstat_io_t ∗kiop);

void kstat_waitq_to_runq(kstat_io_t ∗kiop);

void kstat_runq_back_to_waitq(kstat_io_t ∗kiop);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS kiop Pointer to a kstat_io(9S) structure.

DESCRIPTION A large number of I/O subsystems have at least two basic "lists" (or queues) of transac-
tions they manage: one for transactions that have been accepted for processing but for
which processing has yet to begin, and one for transactions which are actively being pro-
cessed (but not done). For this reason, two cumulative time statistics are kept: wait (pre-
service) time, and run (service) time.

The kstat_queue() family of functions manage these times based on the transitions
between the driver wait queue and run queue.

kstat_waitq_enter() kstat_waitq_enter() should be called when a request arrives and is placed into a pre-
service state (such as just prior to calling disksort(9F)).

kstat_waitq_exit() kstat_waitq_exit() should be used when a request is removed from its pre-service state.
(such as just prior to calling the driver’s start routine).

kstat_runq_enter() kstat_runq_enter() is also called when a request is placed in its service state (just prior to
calling the driver’s start routine, but after kstat_waitq_exit()).

kstat_runq_exit() kstat_runq_exit() is used when a request is removed from its service state (just prior to
calling biodone(9F)).

kstat_waitq_to_runq() kstat_waitq_to_runq() transitions a request from the wait queue to the run queue. This
is useful wherever the driver would have normally done a kstat_waitq_exit() followed
by a call to kstat_runq_enter().

kstat_runq_back_to_waitq() kstat_runq_back_to_waitq() transitions a request from the run queue back to the wait
queue. This may be necessary in some cases (write throttling is an example).

9F-196 modified 4 Apr 1994

SunOS 5.4 DDI and DKI Kernel Functions kstat_queue (9F)

RETURN VALUES None.

CONTEXT kstat_create() can be called from user or kernel context.

WARNINGS These transitions must be protected by holding the kstat’s ks_lock, and must be com-
pletely accurate (all transitions are recorded). Forgetting a transition may, for example,
make an idle disk appear 100% busy.

SEE ALSO kstat_create(9F), kstat_delete(9F), kstat_named_init(9F), kstat(9S), kstat_io(9S)

Writing Device Drivers

modified 4 Apr 1994 9F-197

linkb (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME linkb − concatenate two message blocks

SYNOPSIS #include <sys/stream.h>

void linkb(mblk_t ∗mp1, mblk_t ∗mp2);

ARGUMENTS mp1 The message to which mp2 is to be added. mblk_t is an instance of the msgb(9S)
structure.

mp2 The message to be added.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION linkb() creates a new message by adding mp2 to the tail of mp1. The continuation
pointer, b_cont, of the first message is set to point to the second message:

mp1

linkb(mp1, mp2);

mp2

data
buffer

data
bufferdb_base

db_baseb_datap

b_cont

b_datap

b_cont (0)

CONTEXT linkb() can be called from user or interrupt context.

EXAMPLE See dupb(9F) for an example of using linkb().

SEE ALSO unlinkb(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-198 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions makecom (9F)

NAME makecom, makecom_g0, makecom_g0_s, makecom_g1, makecom_g5 − make a packet for
SCSI commands

SYNOPSIS #include <sys/scsi/scsi.h>

void makecom_g0(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int addr, int cnt);

void makecom_g0_s(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int cnt, int fixbit);

void makecom_g1(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int addr, int cnt);

void makecom_g5(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int addr, int cnt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pkt Pointer to an allocated scsi_pkt(9S) structure.

devp Pointer to the target’s scsi_device(9S) structure.

flag Flags for the pkt_flags variable.

cmd The SCSI Group 0 or 1 or 5 command.

addr Pointer to the location of the data.

cnt Number of bytes to transfer.

fixbit Fixed bit in sequential access device commands.

DESCRIPTION makecom functions initialize a packet with the specified command descriptor block, devp
and transport flags. The pkt_address, pkt_flags, and the command descriptor block pointed
to by pkt_cdbp are initialized using the remaining arguments. Target drivers may use
makecom_g0() for Group 0 commands (except for sequential access devices), or
makecom_g0_s() for Group 0 commands for sequential access devices, or makecom_g1()
for Group 1 commands, or makecom_g5() for Group 5 commands. fixbit is used by
sequential access devices for accessing fixed block sizes and sets the the tag portion of the
SCSI CDB.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLE if (blkno >= (1<<20)) {
makecom_g1(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE_G1,

(int) blkno, nblk);
} else {

makecom_g0(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE,
(int) blkno, nblk);

}

modified 21 Dec 1991 9F-199

makecom (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO scsi_pkt(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

9F-200 modified 21 Dec 1991

SunOS 5.4 DDI and DKI Kernel Functions makedevice (9F)

NAME makedevice − make device number from major and minor numbers

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

dev_t makedevice(major_t majnum, minor_t minnum);

ARGUMENTS majnum Major device number.

minnum Minor device number.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION makedevice() creates a device number from a major and minor device number. mak-
edevice() should be used to create device numbers so the driver will port easily to
releases that treat device numbers differently.

RETURN VALUES The device number, containing both the major number and the minor number, is
returned. No validation of the major or minor numbers is performed.

CONTEXT makedevice() can be called from user or interrupt context.

SEE ALSO getmajor(9F), getminor(9F)

modified 11 Apr 1991 9F-201

max (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME max − return the larger of two integers

SYNOPSIS #include <sys/ddi.h>

int max(int int1, int int2);

ARGUMENTS int1 The first integer.

int2 The second integer.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION max() compares two signed integers and returns the larger of the two.

RETURN VALUES The larger of the two numbers.

CONTEXT max() can be called from user or interrupt context.

SEE ALSO min(9F)

Writing Device Drivers

9F-202 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions min (9F)

NAME min − return the lesser of two integers

SYNOPSIS #include <sys/ddi.h>

int min(int int1, int int2);

ARGUMENTS int1 The first integer.

int2 The second integer.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION min() compares two signed integers and returns the lesser of the two.

RETURN VALUES The lesser of the two integers.

CONTEXT min() can be called from user or interrupt context.

SEE ALSO max(9F)

Writing Device Drivers

modified 11 Apr 1991 9F-203

mod_install (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME mod_install, mod_remove, mod_info − add, remove or query a loadable module

SYNOPSIS #include <sys/modctl.h>

int mod_install(struct modlinkage ∗modlinkage);

int mod_remove(struct modlinkage ∗modlinkage);

int mod_info(struct modlinkage ∗modlinkage , struct modinfo ∗modinfo);

ARGUMENTS modlinkage Pointer to the loadable module’s modlinkage structure which describes
what type(s) of module elements are included in this loadable module.

modinfo Pointer to the modinfo structure passed to _info(9E).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION mod_install() must be called from a module’s _init(9E) routine.

mod_remove() must be called from a module’s _fini(9E) routine.

mod_info() must be called from a module’s _info(9E) routine.

RETURN VALUES These functions all return zero on success and non-zero on failure.

EXAMPLES For an example of using these functions see _init(9E).

SEE ALSO _fini(9E), _info(9E), _init(9E), modldrv(9S), modlinkage(9S), modlstrmod(9S)

Writing Device Drivers

9F-204 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions msgdsize (9F)

NAME msgdsize − return the number of bytes in a message

SYNOPSIS #include <sys/stream.h>

int msgdsize(mblk_t ∗mp);

ARGUMENTS mp Message to be evaluated.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION msgdsize() counts the number of bytes in a data message. Only bytes included in the
data blocks of type M_DATA are included in the count.

RETURN VALUES The number of data bytes in a message, expressed as an integer.

CONTEXT msgdsize() can be called from user or interrupt context.

EXAMPLE See bufcall(9F) for an example of using msgdsize().

SEE ALSO bufcall(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-205

msgpullup (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME msgpullup − concatenate bytes in a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗msgpullup(mblk_t ∗mp, int len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message whose blocks are to be concatenated.

len Number of bytes to concatenate.

DESCRIPTION msgpullup() concatenates and aligns the first len data bytes of the message pointed to by
mp, copying the data into a new message. Any remaining bytes in the remaining mes-
sage blocks will be copied and linked onto the new message. The original message is
unaltered. If len equals −1, all data are concatenated. If len bytes of the same message
type cannot be found, msgpullup() fails and returns NULL.

RETURN VALUES On success, a pointer to the new message is returned; on failure, NULL is returned.

CONTEXT msgpullup() can be called from user or interrupt context.

SEE ALSO srv(9E), allocb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES msgpullup() is a DKI-complaint replacement for the older pullupmsg(9F) routine. Users
are strongly encouraged to use msgpullup() instead of of pullupmsg(9F).

9F-206 modified 8 Oct 1992

SunOS 5.4 DDI and DKI Kernel Functions mt-streams (9F)

NAME mt-streams − STREAMS multithreading

SYNOPSIS #include <sys/conf.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION STREAMS drivers configures the degree of concurrency using the cb_flag field in the
cb_ops structure (see cb_ops(9S)). The corresponding field for STREAMS modules is the
f_flag in the fmodsw structure.

For the purpose of restricting and controlling the concurrency in drivers/modules, we
define the concepts of inner and outer perimeters. A driver/module can be configured
either to have no perimeters, to have only an inner or an outer perimeter, or to have both
an inner and an outer perimeter. Each perimeter acts as a readers-writers lock, that is,
there can be multiple concurrent readers or a single writer. Thus, each perimeter can be
entered in two modes: shared (reader) or exclusive (writer). The mode depends on the
perimeter configuration and can be different for the different STREAMS entry points (
open(9E), close(9E), put(9E), or srv(9E)).

The concurrency for the different entry points is (unless specified otherwise) to enter with
exclusive access at the inner perimeter (if present) and shared access at the outer perime-
ter (if present).

The perimeter configuration consists of flags that define the presence and scope of the
inner perimeter, the presence of the outer perimeter (which can only have one scope),
and flags that modify the default concurrency for the different entry points.

All MT safe modules/drivers specify the D_MP flag.

Inner Perimeter Flags The inner perimeter presence and scope are controlled by the mutually exclusive flags:

D_MTPERQ The module/driver has an inner perimeter around each queue.

D_MTQPAIR The module/driver has an inner perimeter around each
read/write pair of queues.

D_MTPERMOD The module/driver has an inner perimeter that encloses all the
module’s/driver’s queues.

None of the above The module/driver has no inner perimeter.

Outer Perimeter Flags The outer perimeter presence is configured using:

D_MTOUTPERIM In addition to any inner perimeter, the module/driver has an outer
perimeter that encloses all the module’s/driver’s queues. This can
be combined with all the inner perimeter options except
D_MTPERMOD.

The default concurrency can be modified using:

D_MTPUTSHARED This flag modifies the default behavior when put(9E) procedure
are invoked so that the inner perimeter is entered shared instead of
exclusively.

modified 2 Mar 1993 9F-207

mt-streams (9F) DDI and DKI Kernel Functions SunOS 5.4

D_MTOCEXCL This flag modifies the default behavior when open(9E) and
close(9E) procedures are invoked so the the outer perimeter is
entered exclusively instead of shared.

The module/driver can use qwait(9F) or qwait_sig() in the open(9E) and close(9E) pro-
cedures if it needs to wait "outside" the perimeters.

The module/driver can use qwriter(9F) to upgrade the access at the inner or outer perim-
eter from shared to exclusive.

The use and semantics of qprocson() and qprocsoff(9F) is independent of the inner and
outer perimeters.

SEE ALSO cb_ops(9S), qwait(9F), qwriter(9F), qprocson(9F)

STREAMS Programmer’s Guide

Writing Device Drivers

9F-208 modified 2 Mar 1993

SunOS 5.4 DDI and DKI Kernel Functions mutex (9F)

NAME mutex, mutex_enter, mutex_exit, mutex_init, mutex_destroy, mutex_owned,
mutex_tryenter − mutual exclusion lock routines

SYNOPSIS #include <sys/ksynch.h>

void mutex_init(kmutex_t ∗mp, char ∗name, kmutex_type_t type , void ∗arg)

void mutex_destroy(kmutex_t ∗mp)

void mutex_enter(kmutex_t ∗mp)

void mutex_exit(kmutex_t ∗mp)

int mutex_owned(kmutex_t ∗mp)

int mutex_tryenter(kmutex_t ∗mp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS mp Pointer to a kernel mutex lock (kmutex_t).

name Character string describing lock for statistics and debugging.

type Type of mutex lock.

arg Type-specific argument for initialization routine.

DESCRIPTION A mutex enforces a policy of mutual exclusion. Only one thread at a time may hold a
particular mutex. Threads trying to lock a held mutex will block until the mutex is
unlocked.

Mutexes are strictly bracketing and may not be recursively locked. That is to say,
mutexes should be exited in the opposite order they were entered, and cannot be reen-
tered before exiting.

mutex_init() is used to initialize a mutex so that it is unlocked and has a particular vari-
ant type. The only DDI-compliant types provided are MUTEX_DRIVER,
MUTEX_DRIVER_NOSTAT, and MUTEX_DRIVER_STAT. Most of the time, the type
MUTEX_DRIVER should be used.

If the call is compiled with _LOCKTEST or _MPSTATS defined, statistics will be kept
for MUTEX_DRIVER mutexes. Statistics are always maintained for type
MUTEX_DRIVER_STAT, and never maintained for MUTEX_DRIVER_NOSTAT. Note
that statistics may incur a performance penalty. In addition, the system may need to allo-
cate memory associated with the mutex, depending on the type.

arg provides type-specific information for a given variant type of mutex. When
mutex_init() is called for driver mutexes, the arg should be the ddi_iblock_cookie
returned from ddi_add_intr(9F) if the mutex is used by the interrupt handler. If the
mutex is never used inside an interrupt handler, the argument should be NULL.

mutex_enter() is used to acquire a mutex. If the mutex is already held, then the caller
blocks. After returning, the calling thread is the owner of the mutex. If the mutex is
already held by the calling thread, a panic will ensue.

modified 15 Oct 1991 9F-209

mutex (9F) DDI and DKI Kernel Functions SunOS 5.4

mutex_owned() should only be used in ASSERTs, and may be enforced by not being
defined unless the preprocessor symbol DEBUG is defined. Its return value is non-zero if
the current thread (or, if that cannot be determined, at least some thread) holds the mutex
pointed to by mp.

mutex_tryenter() is very similar to mutex_enter() except that it doesn’t block when the
mutex is already held. mutex_tryenter() returns non-zero when it acquired the mutex
and 0 when the mutex is already held.

mutex_exit() releases a mutex and will unblock another thread if any are blocked on the
mutex.

mutex_destroy() frees any storage associated with the mutex, which may have been allo-
cated when mutex_init() was called. This should be called before deallocating storage
containing the mutex. The caller must somehow be sure that no other thread will attempt
to use the mutex.

RETURN VALUES mutex_tryenter() returns non-zero on success and zero of failure.

mutex_owned() returns non-zero if the calling thread currently holds the mutex pointed
to by mp, or when that cannot be determined, if any thread holds the mutex.
mutex_owned() returns zero otherwise.

CONTEXT These functions can be called from user or interrupt context, except for mutex_init() and
mutex_destroy(), which can be called from user context only.

EXAMPLES
Initialization A driver might do this to initialize a mutex that is part of its unit structure and used in its

interrupt routine:

ddi_add_intr(dip, 0, &iblock, &dev_cookie, xxintr,
(caddr_t)un);

mutex_init(&un->un_lock, "xx unit lock", MUTEX_DRIVER,
(void ∗)iblock);

Also, a routine that expects to be called with a certain lock held might have the following
ASSERT:

xxstart(struct xxunit ∗un)
{

ASSERT(mutex_owned(&un->un_lock));
...

SEE ALSO ddi_add_intr(9F), condvar(9F), rwlock(9F), semaphore(9F)

Writing Device Drivers

BUGS There is currently no product support for looking at lock statistics.

9F-210 modified 15 Oct 1991

SunOS 5.4 DDI and DKI Kernel Functions nochpoll (9F)

NAME nochpoll − error return function for non-pollable devices.

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int nochpoll(dev_t dev, short events, int anyyet, short ∗reventsp,
struct pollhead ∗∗pollhdrp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev Device number.

events Event flags.

anyyet Check current events only.

reventsp Event flag pointer.

pollhdrp Poll head pointer.

DESCRIPTION nochpoll() is a routine that simply returns the value ENXIO. It is intended to be used in
the cb_ops(9S) structure of a device driver for devices that do not support the poll(2) sys-
tem call.

RETURN VALUE nochpoll() returns ENXIO.

CONTEXT nochpoll() can be called from user or interrupt context.

SEE ALSO poll(2), cb_ops(9S)

Writing Device Drivers

modified 11 Apr 1991 9F-211

nodev (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME nodev − error return function

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>

int nodev();

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION nodev() returns ENXIO. It is intended to be used in the cb_ops(9S) data structure of a
device driver for device entry points which are not supported by the driver. That is, it is
an error to attempt to call such an entry point.

RETURN VALUES nodev() returns ENXIO.

CONTEXT nodev() can be only called from user context.

SEE ALSO nulldev(9F), cb_ops(9S)

Writing Device Drivers

9F-212 modified 27 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions noenable (9F)

NAME noenable − prevent a queue from being scheduled

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void noenable(queue_t ∗q);

ARGUMENTS q Pointer to the queue.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION noenable() prevents the queue q from being scheduled for service by insq(9F), putq(9F)
or putbq(9F) when enqueuing an ordinary priority message. The queue can be re-
enabled with the enableok(9F) function.

CONTEXT noenable() can be called from user or interrupt context.

SEE ALSO enableok(9F), insq(9F), putbq(9F), putq(9F), qenable(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-213

nulldev (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME nulldev − zero return function

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>

int nulldev();

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION nulldev() returns 0. It is intended to be used in the cb_ops(9S) data structure of a device
driver for device entry points that do nothing.

RETURN VALUES nulldev() returns a 0.

CONTEXT nulldev() can be called from any context.

SEE ALSO nodev(9F), cb_ops(9S)

Writing Device Drivers

9F-214 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions outb (9F)

NAME outb, outw, outl, repoutsb, repoutsw, repoutsd − write to an I/O port

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

void outb(int port , unsigned char value);

void outw(int port , unsigned short value);

void outl(int port , unsigned long value);

void repoutsb(int port , unsigned char ∗addr , int count);

void repoutsw(int port , unsigned short ∗addr , int count);

void repoutsd(int port , unsigned long ∗addr , int count);

ARGUMENTS port A valid I/O port address.

value The data to be written to the I/O port.

addr The address of a buffer from which the values will be fetched.

count The number of values to be written to the I/O port.

INTERFACE
LEVEL

Solaris x86 DDI specific (Solaris x86 DDI).

AVAILABILITY x86

DESCRIPTION These routines write data of various sizes to the I/O port with the address specified by
port .

The outb(), outw(), and outl() functions write 8 bits, 16 bits, and 32 bits of data respec-
tively, writing the data specified by value.

The repoutsb(), repoutsw(), and repoutsd() functions write multiple 8-bit, 16-bit, and
32-bit values, respectively. count specifies the number of values to be written. addr is a
pointer to a buffer from which the output values are fetched.

CONTEXT These functions may be called from user or interrupt context.

SEE ALSO eisa(4), isa(4), mca(4), inb(9F)

Writing Device Drivers

modified 15 Feb 1994 9F-215

physio (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME physio, minphys − perform physical I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>

int physio(int (∗strat)(struct buf ∗), struct buf ∗bp, dev_t dev,
int rw , void (∗mincnt)(struct buf ∗), struct uio ∗uio);

void minphys(struct buf ∗bp);

ARGUMENTS
physio() strat Pointer to device strategy routine.

bp Pointer to a buf(9S) structure describing the transfer. If bp is set to NULL then
physio() allocates one which is automatically released upon completion.

dev The device number.

rw Read/write flag. This is either B_READ when reading from the device, or
B_WRITE when writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

uio Pointer to the uio structure which describes the user I/O request.

minphys() bp Pointer to a buf structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION physio() performs unbuffered I/O operations between the device dev and the address
space described in the uio structure.

Prior to the start of the transfer physio() verifies the requested operation is valid by
checking the protection of the address space specified in the uio structure. It then locks
the pages involved in the I/O transfer so they can not be paged out. The device strategy
routine, strat(), is then called one or more times to perform the physical I/O operations.
physio() uses biowait(9F) to block until strat() has completed each transfer. Upon com-
pletion, or detection of an error, physio() unlocks the pages and returns the error status.

physio() uses mincnt() to bound the maximum transfer unit size to the system, or dev-
ice, maximum length. minphys() is the system mincnt() routine for use with physio()
operations. Drivers which do not provide their own local mincnt() routines should call
physio() with minphys().

minphys() limits the value of bp->b_bcount to a sensible default for the capabilities of
the system. Drivers that provide their own mincnt() routine should also call minphys()
to make sure they do not exceed the system limit.

9F-216 modified 2 Apr 1993

SunOS 5.4 DDI and DKI Kernel Functions physio (9F)

RETURN VALUES physio() returns:

0 on success.

non-zero on failure.

CONTEXT physio() can be called from user context only.

SEE ALSO strategy(9E), biodone(9F), biowait(9F), buf(9S), uio(9S)

Writing Device Drivers

WARNINGS Since physio() calls biowait() to block until each buf transfer is complete, it is the drivers
responsibility to call biodone(9F) when the transfer is complete, or physio() will block
forever.

modified 2 Apr 1993 9F-217

pollwakeup (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME pollwakeup − inform a process that an event has occurred

SYNOPSIS #include <sys/poll.h>

void pollwakeup(struct pollhead ∗php, short event);

ARGUMENTS php Pointer to a pollhead structure.

event Event to notify the process about.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION pollwakeup() wakes a process waiting on the occurrence of an event. It should be called
from a driver for each occurrence of an event. The pollhead structure will usually be
associated with the driver’s private data structure associated with the particular minor
device where the event has occurred. See chpoll(9E) and poll(2) for more detail.

CONTEXT pollwakeup() can be called from user or interrupt context.

SEE ALSO poll(2), chpoll(9E)

Writing Device Drivers

NOTES Driver defined locks should not be held across calls to this function.

9F-218 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions proc_signal (9F)

NAME proc_signal, proc_ref, proc_unref − send a signal to a process

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/signal.h>

void ∗proc_ref(void);

void proc_unref(void ∗pref);

int proc_signal(void ∗pref, int sig);

ARGUMENTS pref A handle for the process to be signalled.

sig Signal number to be sent to the process.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION This set of routines allows a driver to send a signal to a process. The routine proc_ref() is
used to retrieve an unambiguous reference to the process for signalling purposes. The
return value can be used as a unique handle on the process, even if the process dies.
Because system resources are committed to a process reference, proc_unref() should be
used to remove it as soon as it is no longer needed.

proc_signal() is used to send signal sig to the referenced process. The following set of
signals may be sent to a process from a driver:

SIGHUP The device has been disconnected

SIGINT The interrupt character has been received

SIGQUIT The quit character has been received

SIGPOLL A pollable event has occurred.

SIGKILL Kill the process (cannot be caught or ignored)

SIGWINCH Window size change.

SIGURG Urgent data are available.

See signal(5) for more details on the meaning of these signals.

If the process has exited at the time the signal was sent, proc_signal() returns an error
code; the caller should remove the reference on the process by calling proc_unref().

RETURN VALUES proc_ref()

pref An opaque handle used to refer to the current process.

proc_signal()

0 The process existed before the signal was sent.

−1 The process no longer exists; no signal was sent.

modified 7 Feb 1994 9F-219

proc_signal (9F) DDI and DKI Kernel Functions SunOS 5.4

CONTEXT proc_unref() and proc_signal() can be called from user or interrupt context. proc_ref()
should only be called from user context.

SEE ALSO signal(5), putnextctl1(9F)

Writing Device Drivers

9F-220 modified 7 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions ptob (9F)

NAME ptob − convert size in pages to size in bytes

SYNOPSIS #include <sys/ddi.h>

unsigned long ptob(unsigned long numpages);

ARGUMENTS numpages Size in number of pages to convert to size in bytes.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION This function returns the number of bytes that are contained in the specified number of
pages. For example, if the page size is 2048, then ptob(2) returns 4096. ptob(0) returns 0.

RETURN VALUES The return value is always the number of bytes in the specified number of pages. There
are no invalid input values, and no checking will be performed for overflow in the case of
a page count whose corresponding byte count cannot be represented by an unsigned
long. Rather, the higher order bits will be ignored.

CONTEXT ptob() can be called from user or interrupt context.

SEE ALSO btop(9F), btopr(9F), ddi_ptob(9F)

Writing Device Drivers

modified 11 Apr 1991 9F-221

pullupmsg (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME pullupmsg − concatenate bytes in a message

SYNOPSIS #include <sys/stream.h>

int pullupmsg(mblk_t ∗mp, int len);

ARGUMENTS mp Pointer to the message whose blocks are to be concatenated. mblk_t is an
instance of the msgb(9S) structure.

len Number of bytes to concatenate.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION pullupmsg() tries to combine multiple data blocks into a single block. pullupmsg() con-
catenates and aligns the first len data bytes of the message pointed to by mp. If len equals
-1, all data are concatenated. If len bytes of the same message type cannot be found, pul-
lupmsg() fails and returns 0.

RETURN VALUES On success, 1 is returned; on failure, 0 is returned.

CONTEXT pullupmsg() can be called from user or interrupt context.

EXAMPLE This is a driver write srv(9E) (service) routine for a device that does not support
scatter/gather DMA. For all M_DATA messages, the data will be transferred to the dev-
ice with DMA.

First, try to pull up the message into one message block with the pullupmsg() function
(line 12). If successful, the transfer can be accomplished in one DMA job. Otherwise, it
must be done one message block at a time (lines 19−22). After the data has been
transferred to the device, free the message and continue processing messages on the
queue.

1 xxxwsrv(q)
2 queue_t ∗q;
3 {
4 mblk_t ∗mp;
5 mblk_t ∗tmp;
6 caddr_t dma_addr;
7 int dma_len;
8
9 while ((mp = getq(q)) != NULL) {
10 switch (mp->b_datap->db_type) {
11 case M_DATA:
12 if (pullupmsg(mp, -1)) {
13 dma_addr = vtop(mp->b_rptr);
14 dma_len = mp->b_wptr - mp->b_rptr;
15 xxx_do_dma(dma_addr, dma_len);
16 freemsg(mp);

9F-222 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions pullupmsg (9F)

17 break;
18 }
19 for (tmp = mp; tmp; tmp = tmp->b_cont) {
20 dma_addr = vtop(tmp->b_rptr);
21 dma_len = tmp->b_wptr - tmp->b_rptr;
22 xxx_do_dma(dma_addr, dma_len);
23 }
24 freemsg(mp);
25 break;

. . .
26 }
27 }
28 }

SEE ALSO srv(9E), allocb(9F), msgpullup(9F), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES pullupmsg() is not included in the DKI and will be removed from the system in a future
release. Device driver writers are strongly encouraged to use msgpullup(9F) instead of
pullupmsg().

modified 11 Apr 1991 9F-223

put (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME put − call a STREAMS put procedure

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void put(queue_t ∗q, mblk_t ∗mp);

ARGUMENTS q Pointer to a STREAMS queue.

mp Pointer to message block being passed into queue.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION put calls the put procedure (put(9E) entry point) for the STREAMS queue specified by q,
passing it the message block referred to by mp. It is typically used by a driver or module
to call its own put procedure.

CONTEXT put can be called from a STREAMS module or driver put or service routine, or from an
associated interrupt handler, timeout, bufcall, or esballoc call-back. In the latter cases the
calling code must guarantee the validity of the q argument.

Since put may cause re-entry of the module (as it is intended to do), mutexes or other
locks should not be held across calls to it, due to the risk of single-party deadlock.

NOTES The caller cannot have the stream frozen (see freezestr(9F)) when calling this function.

DDI/DKI conforming modules and drivers are no longer permitted to call put pro-
cedures directly, but must call through the appropriate STREAMS utility function (e.g.
put(9E), putnext(9F), putctl(9F), qreply(9F), etc). This function is provided as a DDI/DKI
conforming replacement for a direct call to a put procedure.

SEE ALSO put(9E), putctl(9F), putctl1(9F), putnext(9F), putnextctl(9F), putnextctl1(9F), qreply(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-224 modified 28 Apr 1992

SunOS 5.4 DDI and DKI Kernel Functions putbq (9F)

NAME putbq − place a message at the head of a queue

SYNOPSIS #include <sys/stream.h>

int putbq(queue_t ∗q, mblk_t ∗bp);

ARGUMENTS q Pointer to the queue.

bp Pointer to the message block.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putbq() places a message at the beginning of the appropriate section of the message
queue. There are always sections for high priority and ordinary messages. If other prior-
ity bands are used, each will have its own section of the queue, in priority band order,
after high priority messages and before ordinary messages. putbq() can be used for
ordinary, priority band, and high priority messages. However, unless precautions are
taken, using putbq() with a high priority message is likely to lead to an infinite loop of
putting the message back on the queue, being rescheduled, pulling it off, and putting it
back on.

This function is usually called when bcanput(9F) or canput(9F) determines that the mes-
sage cannot be passed on to the next stream component. The flow control parameters are
updated to reflect the change in the queue’s status. If QNOENB is not set, the service
routine is enabled.

RETURN VALUES putbq() returns 1 on success and 0 on failure.

CONTEXT putbq() can be called from user or interrupt context.

EXAMPLE See the bufcall(9F) function page for an example of putbq().

SEE ALSO bcanput(9F), bufcall(9F), canput(9F), getq(9F), putq(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-225

putctl (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME putctl − send a control message to a queue

SYNOPSIS #include <sys/stream.h>

int putctl(queue_t ∗q, int type);

ARGUMENTS q Queue to which the message is to be sent.

type Message type (must be control, not data type).

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putctl() tests the type argument to make sure a data type has not been specified, and then
attempts to allocate a message block. putctl fails if type is M_DATA, M_PROTO, or
M_PCPROTO, or if a message block cannot be allocated. If successful, putctl() calls the
put(9E) routine of the queue pointed to by q with the newly allocated and initialized mes-
sages.

RETURN VALUES On success, 1 is returned. If type is a data type, or if a message block cannot be allocated,
0 is returned.

CONTEXT putctl() can be called from user or interrupt context.

EXAMPLE The send_ctl routine is used to pass control messages downstream. M_BREAK mes-
sages are handled with putctl() (line 11). putctl1(9F) (line 16) is used for M_DELAY
messages, so that parm can be used to specify the length of the delay. In either case, if a
message block cannot be allocated a variable recording the number of allocation failures
is incremented (lines 12, 17). If an invalid message type is detected, cmn_err(9F) panics
the system (line 21).

1 void
2 send_ctl(wrq, type, parm)
3 queue_t ∗wrq;
4 unchar type;
5 unchar parm;
6 {
7 extern int num_alloc_fail;
8
9 switch (type) {
10 case M_BREAK:
11 if (!putctl(wrq->q_next, M_BREAK))
12 num_alloc_fail++;
13 break;
14
15 case M_DELAY:
16 if (!putctl1(wrq->q_next, M_DELAY, parm))
17 num_alloc_fail++;

9F-226 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions putctl (9F)

18 break;
19
20 default:
21 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
22 break;
23 }
24 }

SEE ALSO put(9E), cmn_err(9F), datamsg(9F), putctl1(9F), putnextctl(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-227

putctl1 (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME putctl1 − send a control message with a one-byte parameter to a queue

SYNOPSIS #include <sys/stream.h>

int putctl1(queue_t ∗q, int type , int p);

ARGUMENTS q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putctl1(), like putctl(9F), tests the type argument to make sure a data type has not been
specified, and attempts to allocate a message block. The p parameter can be used, for
example, to specify how long the delay will be when an M_DELAY message is being
sent. putctl1() fails if type is M_DATA, M_PROTO, or M_PCPROTO, or if a mesage
block cannot be allocated. If successful, putctl1() calls the put(9E) routine of the queue
pointed to by with the newly allocated and initialized message.

RETURN VALUES On success, 1 is returned. 0 is returned if type is a data type, or if a message block cannot
be allocated.

CONTEXT putctl1() can be called from user or interrupt context.

EXAMPLE See the putctl(9F) function page for an example of putctl1().

SEE ALSO put(9E), allocb(9F), datamsg(9F), putctl(9F), putnextctl1(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-228 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions putnext (9F)

NAME putnext − send a message to the next queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int putnext(queue_t ∗q, mblk_t ∗mp);

ARGUMENTS q Pointer to the queue from which the message mp will be sent.

mp Message to be passed.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putnext() is used to pass a message to the put(9E) routine of the next queue in the
stream.

RETURN VALUES None.

CONTEXT putnext() can be called from user or interrupt context.

EXAMPLE See allocb(9F) for an example of using putnext().

SEE ALSO allocb(9F), put(9E)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-229

putnextctl (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME putnextctl − send a control message to a queue

SYNOPSIS #include <sys/stream.h>

int putnextctl(queue_t ∗q, int type);

ARGUMENTS q Queue to which the message is to be sent.

type Message type (must be control, not data type).

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putnextctl() tests the type argument to make sure a data type has not been specified, and
then attempts to allocate a message block. putnextctl() fails if type is M_DATA,
M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If successful,
putnextctl() calls the put(9E) routine of the queue pointed to by q with the newly allo-
cated and initialized messages.

A call to putnextctl(q,type) is an atomic equivalent of putctl(q->q_next,type) . The
STREAMS framework provides whatever mutual exclusion is necessary to insure that
dereferencing q through its q_next field and then invoking putctl(9F) proceeds without
interference from other threads.

putnextctl() should always be used in preference to putctl(9F).

RETURN VALUES On success, 1 is returned. If type is a data type, or if a message block cannot be allocated,
0 is returned.

CONTEXT putnextctl() can be called from user or interrupt context.

EXAMPLE The send_ctl routine is used to pass control messages downstream. M_BREAK mes-
sages are handled with putnextctl() (line 8). putnextctl1(9F) (line 13) is used for
M_DELAY messages, so that parm can be used to specify the length of the delay. In
either case, if a message block cannot be allocated a variable recording the number of
allocation failures is incremented (lines 9, 14). If an invalid message type is detected,
cmn_err(9F) panics the system (line 18).

1 void
2 send_ctl(queue_t ∗wrq, u_char type, u_char parm)
3 {
4 extern int num_alloc_fail;
5
6 switch (type) {
7 case M_BREAK:
8 if (!putnextctl(wrq, M_BREAK))
9 num_alloc_fail++;
10 break;
11
12 case M_DELAY:

9F-230 modified 29 Mar 1993

SunOS 5.4 DDI and DKI Kernel Functions putnextctl (9F)

13 if (!putnextctl1(wrq, M_DELAY, parm))
14 num_alloc_fail++;
15 break;
16
17 default:
18 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
19 break;
20 }
21 }

SEE ALSO put(9E), cmn_err(9F), datamsg(9F), putctl(9F), putnextctl1(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 29 Mar 1993 9F-231

putnextctl1 (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME putnextctl1 − send a control message with a one-byte parameter to a queue

SYNOPSIS #include <sys/stream.h>

int putnextctl1(queue_t ∗q, int type , int p);

ARGUMENTS q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putnextctl1(), like putctl1(9F), tests the type argument to make sure a data type has not
been specified, and attempts to allocate a message block. The p parameter can be used,
for example, to specify how long the delay will be when an M_DELAY message is being
sent. putnextctl1() fails if type is M_DATA, M_PROTO, or M_PCPROTO, or if a mes-
sage block cannot be allocated. If successful, putnextctl1() calls the put(9E) routine of the
queue pointed to by q with the newly allocated and initialized message.

A call to putnextctl1(q,type,p) is an atomic equivalent of putctl1(q->q_next,type,p). The
STREAMS framework provides whatever mutual exclusion is necessary to insure that
dereferencing q through its q_next field and then invoking putctl1(9F) proceeds without
interference from other threads.

putnextctl1() should always be used in preference to putctl1(9F).

RETURN VALUES On success, 1 is returned. 0 is returned if type is a data type, or if a message block cannot
be allocated.

CONTEXT putnextctl1() can be called from user or interrupt context.

EXAMPLE See the putnextctl(9F) function page for an example of putnextctl1().

SEE ALSO put(9E), allocb(9F), datamsg(9F), putctl1(9F), putnextctl(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-232 modified 29 Mar 1993

SunOS 5.4 DDI and DKI Kernel Functions putq (9F)

NAME putq − put a message on a queue

SYNOPSIS #include <sys/stream.h>

int putq(queue_t ∗q, mblk_t ∗bp);

ARGUMENTS q Pointer to the queue to which the message is to be added.

bp Message to be put on the queue.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION putq() is used to put messages on a driver’s queue after the module’s put routine has
finished processing the message. The message is placed after any other messages of the
same priority, and flow control parameters are updated. If QNOENB is not set, the ser-
vice routine is enabled. If no other processing is done, putq can be used as the module’s
put routine.

RETURN VALUES putq() returns 1 on success and 0 on failure.

CONTEXT putq() can be called from user or interrupt context.

EXAMPLE See the datamsg(9F) function page for an example of putq().

SEE ALSO datamsg(9F), putbq(9F), qenable(9F), rmvq(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-233

qbufcall (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME qbufcall − call a function when a buffer becomes available

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int qbufcall(queue_t ∗q, uint size, int pri, void (∗func)(long arg), long arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to STREAMS queue structure.

size Number of bytes required for the buffer.

pri Priority of the allocb(9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION qbufcall serves as a qtimeout(9F) call of indeterminate length. When a buffer allocation
request fails, qbufcall() can be used to schedule the routine func to be called with the
argument arg when a buffer becomes available. func may call allocb() or it may do some-
thing else.

The qbufcall() function is tailored to be used with the enhanced STREAMS framework
interface, which is based on the concept of perimeters. (See mt-streams(9F) man page.)
qbufcall() schedules the specified function to execute after entering the perimeters asso-
ciated with the queue passed in as the first parameter to qbufcall(). All outstanding buf-
calls should be cancelled before the close of a driver or module returns.

qprocson(9F) must be called before calling either qbufcall() or qtimeout(9F).

RETURN VALUES If successful, qbufcall() returns a qbufcall id that can be used in a call to qunbufcall(9F)
to cancel the request. If the qbufcall() scheduling fails, func is never called and 0 is
returned.

CONTEXT qbufcall() can be called from user or interrupt context.

WARNINGS Even when func is called by qbufcall(), allocb(9F) can fail if another module or driver
had allocated the memory before func was able to call allocb(9F).

SEE ALSO mt-streams(9F), qprocson(9F), qtimeout(9F), qunbufcall(9F), quntimeout(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-234 modified 10 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions qenable (9F)

NAME qenable − enable a queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qenable(queue_t ∗q);

ARGUMENTS q Pointer to the queue to be enabled.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION qenable() adds the queue pointed to by q to the list of queues whose service routines are
ready to be called by the STREAMS scheduler.

CONTEXT qenable() can be called from user or interrupt context.

EXAMPLE See the dupb(9F) function page for an example of the qenable().

SEE ALSO dupb(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-235

qprocson (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME qprocson, qprocsoff − enable, disable put and service routines

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qprocson(queue_t ∗q);

void qprocsoff(queue_t ∗q);

ARGUMENTS q Pointer to the RD side of a STREAMS queue pair.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION qprocson() enables the put and service routines of the driver or module whose read
queue is pointed to by q. Threads cannot enter the module instance through the put and
service routines while they are disabled.

qprocson() must be called by the open routine of a driver or module before returning,
and after any initialization necessary for the proper functioning of the put and service
routines.

qprocson() must be called before calling qbufcall(9F), qtimeout(9F), qwait(9F), or
qwait_sig(9F),

qprocsoff() must be called by the close routine of a driver or module before returning,
and before deallocating any resources necessary for the proper functioning of the put and
service routines. It also removes the queue’s service routines from the service queue, and
blocks until any pending service processing completes.

The module or driver instance is guaranteed to be single-threaded before qprocson() is
called and after qprocsoff() is called, except for threads executing asynchronous events
such as interrupt handlers and callbacks, which must be handled separately.

CONTEXT These routines can be called from user or interrupt context.

NOTES The caller may not have the STREAM frozen during either of these calls.

SEE ALSO close(9E), open(9E), put(9E), srv(9E), qbufcall(9F), qtimeout(9F), qwait(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-236 modified 11 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions qreply (9F)

NAME qreply − send a message on a stream in the reverse direction

SYNOPSIS #include <sys/stream.h>

void qreply(queue_t ∗q, mblk_t ∗mp);

ARGUMENTS q Pointer to the queue.

mp Pointer to the message to be sent in the opposite direction.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION qreply() sends messages in the reverse direction of normal flow. That is, qreply(q,mp) is
equivalent to putnext(OTHERQ(q),mp).

CONTEXT qreply() can be called from user or interrupt context.

EXAMPLE This example depicts the canonical flushing code for STREAMS drivers. Assume that the
driver has service procedures (see srv(9E)), so that there may be messages on its queues.
Its write-side put procedure (see put(9E)) handles M_FLUSH messages by first checking
the FLUSHW bit in the first byte of the message, then the write queue is flushed (line 8)
and the FLUSHW bit is turned off (line 9). If the FLUSHR bit is on, then the read queue
is flushed (line 12) and the message is sent back up the read side of the stream with the
qreply(9F) function (line 13). If the FLUSHR bit is off, then the message is freed (line 15).
See the example for flushq(9F) for the canonical flushing code for modules.

1 xxxwput(q, mp)
2 queue_t ∗q;
3 mblk_t ∗mp;
4 {
5 switch(mp->b_datap->db_type) {
6 case M_FLUSH:
7 if (∗mp->b_rptr & FLUSHW) {
8 flushq(q, FLUSHALL);
9 ∗mp->b_rptr &= ˜FLUSHW;
10 }
11 if (∗mp->b_rptr & FLUSHR) {
12 flushq(RD(q), FLUSHALL);
13 qreply(q, mp);
14 } else {
15 freemsg(mp);
16 }
17 break;

. . .
18 }
19 }

modified 11 Apr 1991 9F-237

qreply (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO put(9E), srv(9E), flushq(9F), OTHERQ(9F), putnext(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-238 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions qsize (9F)

NAME qsize − find the number of messages on a queue

SYNOPSIS #include <sys/stream.h>

int qsize(queue_t ∗q);

ARGUMENTS q Queue to be evaluated.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION qsize() evaluates the queue q and returns the number of messages it contains.

RETURN VALUES If there are no message on the queue, qsize() returns 0. Otherwise, it returns the integer
representing the number of messages on the queue.

CONTEXT qsize() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-239

qtimeout (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME qtimeout − execute a function after a specified length of time

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int qtimeout(queue_t ∗q, void (∗ftn)(), caddr_t arg, long ticks);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to STREAMS queue structure.

ftn Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called.

DESCRIPTION The qtimeout() function schedules the specified function ftn to be called after a specified
time interval. ftn is called with arg as a parameter. Control is immediately returned to the
caller. This is useful when an event is known to occur within a specific time frame, or
when you want to wait for I/O processes when an interrupt is not available or might
cause problems. The exact time interval over which the timeout takes effect cannot be
guaranteed, but the value given is a close approximation.

The qtimeout() function is tailored to be used with the enhanced STREAMS framework
interface which is based on the concept of perimeters. (See mt-streams(9F) man page.)
qtimeout() schedules the specified function to execute after entering the perimeters asso-
ciated with the queue passed in as the first parameter to qtimeout(). All outstanding
timeouts should be cancelled before a driver closes or module returns.

qprocson(9F) must be called before calling qtimeout().

RETURN VALUES Under normal conditions, an integer timeout identifier is returned.

The qtimeout() function returns an identifier that may be passed to the quntimeout(9F)
function to cancel a pending request. Note: No value is returned from the called func-
tion.

CONTEXT qtimeout() can be called from user or interrupt context.

SEE ALSO mt-streams(9F), qbufcall(9F), qprocson(9F), qunbufcall(9F), quntimeout(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-240 modified 10 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions qunbufcall (9F)

NAME qunbufcall − cancel a pending qbufcall request

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qunbufcall(queue_t ∗q, int id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to STREAMS queue_t structure.

id Identifier returned from qbufcall(9F)

DESCRIPTION qunbufcall cancels a pending qbufcall() request. The argument id is a non-zero identifier
of the request to be cancelled. id is returned from the qbufcall() function used to issue
the cancel request.

The qunbufcall() function is tailored to be used with the enhanced STREAMS frame-
work interface which is based on the concept of perimeters. (See mt-streams(9F) man
page.) qunbufcall() returns when the bufcall has been cancelled or finished executing.
The bufcall will be cancelled even if it is blocked at the perimeters associated with the
queue. All outstanding bufcalls should be cancelled before the driver closes or module
returns.

CONTEXT qunbufcall() can be called from user or interrupt context.

SEE ALSO mt-streams(9F), qbufcall(9F), qtimeout(9F), quntimeout(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 10 Jan 1993 9F-241

quntimeout (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME quntimeout − cancel previous qtimeout function call

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int quntimeout(queue_t ∗q, int id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to a STREAMS queue structure.

id Identification value generated by a previous qtimeout(9F) function call.

DESCRIPTION quntimeout() cancels a pending qtimeout(9F) request. The quntimeout() function is
tailored to be used with the enhanced STREAMS framework interface, which is based on
the concept of perimeters. (See mt-streams(9F) man page.) quntimeout() returns when
the timeout has been cancelled or finished executing. The timeout will be cancelled even
if it is blocked at the perimeters associated with the queue. quntimeout() should be exe-
cuted for all outstanding timeouts before a driver or module close returns.

RETURN VALUES quntimeout() returns -1 if the id is not found. Otherwise, quntimeout() returns a zero or
positive value.

CONTEXT quntimeout() can be called from user or interrupt context.

SEE ALSO mt-streams(9F), qbufcall(9F), qtimeout(9F), qunbufcall(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-242 modified 10 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions qwait (9F)

NAME qwait, qwait_sig − STREAMS wait routines

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qwait(queue_t ∗q);

int qwait_sig(queue_t ∗q);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS qp Pointer to the queue that is being opened or closed.

DESCRIPTION qwait() and qwait_sig() are used to wait for a message to arrive to the put(9E) or srv(9E)
procedures. They can be used in the open(9E) and close(9E) procedures in a STREAMS
driver or module. qwait() and qwait_sig() atomically exit the inner and outer perime-
ters associated with the queue, and wait for a thread to leave modules put(9E) or srv(9E)
procedures. Upon return they re-enter the inner and outer perimeters.

qprocson(9F) must be called before calling qwait() or qwait_sig().

qwait() is not interrupted by a signal, whereas qwait_sig() is interrupted by a signal.
qwait_sig() normally returns non-zero, and returns zero when the waiting was inter-
rupted by a signal.

qwait() and qwait_sig() are similar to cv_wait() and cv_wait_sig() (see condvar(9F)),
except that the mutex is replaced by the inner and outer perimeters and the signalling is
implicit when a thread leaves the inner perimeter.

RETURN VALUES 0 For qwait_sig(), indicates that the condition was not necessarily signaled and the
function returned because a signal was pending.

CONTEXT These functions can only be called from an open(9E) or close(9E) routine.

EXAMPLES The open routine sends down a T_INFO_REQ message and waits for the T_INFO_ACK.
The arrival of the T_INFO_ACK is recorded by resetting a flag in the unit structure
(WAIT_INFO_ACK).

The example assumes that the module is D_MTQPAIR or D_MTPERMOD.

xxopen(qp, . . .)
queue_t ∗qp;

{
struct xxdata ∗xx;

/∗ Allocate xxdata structure ∗/
qprocson(qp);
/∗ Format T_INFO_ACK in mp ∗/
putnext(qp, mp);
xx->xx_flags |= WAIT_INFO_ACK;

modified 1 Mar 1993 9F-243

qwait (9F) DDI and DKI Kernel Functions SunOS 5.4

while (xx->xx_flags & WAIT_INFO_ACK)
qwait(qp);

return (0);
}

xxrput(qp, mp)
queue_t ∗qp;
mblk_t ∗mp;

{
struct xxdata ∗xx = (struct xxdata ∗)q->q_ptr;

...

case T_INFO_ACK:
if (xx->xx_flags & WAIT_INFO_ACK) {

/∗ Record information from info ack ∗/
xx->xx_flags &= ˜WAIT_INFO_ACK;
freemsg(mp);
return;

}

...
}

SEE ALSO close(9E), open(9E), put(9E), srv(9E) condvar(9F), mt-streams(9F), qprocson(9F)

STREAMS Programmer’s Guide

Writing Device Drivers

9F-244 modified 1 Mar 1993

SunOS 5.4 DDI and DKI Kernel Functions qwriter (9F)

NAME qwriter − asynchronous STREAMS perimeter upgrade

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qwriter(queue_t ∗qp, mblk_t ∗mp, void (∗func)(), int perimeter);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS qp Pointer to the queue.

mp Pointer to a message that will be passed in to the callback function.

func A function that will be called when exclusive (writer) access has been
acquired at the specified perimeter.

perimeter Either PERIM_INNER or PERIM_OUTER.

DESCRIPTION qwriter() is used to upgrade the access at either the inner or the outer perimeter from
shared to exclusive (see mt-streams(9F) man page), and call the specified callback func-
tion when the upgrade has succeeded. The callback function is called as:

(∗func)(queue_t ∗qp, mblk_t ∗mp);

qwriter() will acquire exclusive access immediately if possible, in which case the
specified callback function will be executed before qwriter() returns. If this is not possi-
ble, qwriter() will defer the upgrade until later and return before the callback function
has been executed. Modules should not assume that the callback function has been exe-
cuted when qwriter() returns. One way to avoid dependencies on the execution of the
callback function is to immediately return after calling qwriter() and let the callback
function finish the processing of the message.

When qwriter() defers calling the callback function, the STREAMS framework will
prevent other messages from entering the inner perimeter associated with the queue until
the upgrade has completed and the callback function has finished executing.

CONTEXT qwriter() can only be called from an put(9E) or srv(9E) routine, or from a qwriter(),
qtimeout(9F), or qbufcall(9F) callback function.

SEE ALSO put(9E), srv(9E), mt-streams(9F), qbufcall(9F), qtimeout(9F)

STREAMS Programmer’s Guide
Writing Device Drivers

modified 1 Mar 1993 9F-245

rmalloc (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME rmalloc − allocate space from a resource map

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

unsigned long rmalloc(struct map ∗mp, size_t size);

ARGUMENTS mp Resource map from where the resource is drawn.

size Number of units of the resource.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION rmalloc() is used by a driver to allocate space from a previously defined and initialized
resource map. The map itself is allocated by calling the function rmallocmap(9F). rmal-
loc() is one of five functions used for resource map management. The other functions
include:

rmalloc_wait(9F) Allocate space from a resource map, wait if necessary.
rmfree(9F) Return previously allocated space to a map.
rmallocmap(9F) Allocate a resource map initialize it.
rmfreemap(9F) Deallocate a resource map.

rmalloc() allocates space from a resource map in terms of arbitrary units. The system
maintains the resource map by size and index, computed in units appropriate for the
resource. For example, units may be byte addresses, pages of memory, or blocks. The
normal return value is an unsigned long set to the value of the index where sufficient
free space in the resource was found.

RETURN VALUES Under normal conditions, rmalloc() returns the base index of the allocated space. Other-
wise, rmalloc() returns a 0 if all resource map entries are already allocated.

CONTEXT rmalloc() can be called from user or interrupt context.

EXAMPLE The following example is a simple memory map, but it illustrates the principles of map
management. A driver allocates and initializes the map by calling both the
rmallocmap(9F) and rmfree(9F) functions. rmallocmap(9F) is called to establish the
number of slots or entries in the map, and rmfree(9F) to initialize the resource area the
map is to manage. The following example is a fragment from a hypothetical start routine
and illustrates the following procedures:

Panics the system if the required amount of memory can not be allocated (lines
11−15).

Uses rmallocmap(9F) to configure the total number of entries in the map, and
rmfree(9F) to initialize the total resource area.

9F-246 modified 19 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions rmalloc (9F)

1 #define XX_MAPSIZE 12
2 #define XX_BUFSIZE 2560
3 static struct map ∗xx_mp; /∗ Private buffer space map ∗/

. . .
4 xxstart()
5 /∗
6 ∗ Allocate private buffer. If insufficient memory,
7 ∗ display message and halt system.
8 ∗/
9 {
10 register caddr_t bp;

. . .
11 if ((bp = kmem_alloc(XX_BUFSIZE, KM_NOSLEEP) == 0) {
12
13 cmn_err(CE_PANIC, "xxstart: kmem_alloc failed before %d buffer"
14 "allocation", XX_BUFSIZE);
15 }
16
17 /∗
18 ∗ Initialize the resource map with number
19 ∗ of slots in map.
20 ∗/
21 xx_mp = rmallocmap(XX_MAPSIZE);
22
24 /∗
25 ∗ Initialize space management map with total
26 ∗ buffer area it is to manage.
27 ∗/
28 rmfree(xx_mp, XX_BUFSIZE, bp);

. . .

The rmalloc() function is then used by the driver’s read or write routine to allocate
buffers for specific data transfers. The uiomove(9F) function is used to move the data
between user space and local driver memory. The device then moves data between itself
and local driver memory through DMA.

The next example illustrates the following procedures:

The size of the I/O request is calculated and stored in the size variable (line 10).

Buffers are allocated through the rmalloc(9F) function using the size value (line
15). If the allocation fails the system will panic.

The uiomove(9F) function is used to move data to the allocated buffer (line 23).

If the address passed to uiomove(9F) is invalid, rmfree(9F) is called to release the
previously allocated buffer, and an EFAULT error is returned.

modified 19 Nov 1992 9F-247

rmalloc (9F) DDI and DKI Kernel Functions SunOS 5.4

1 #define XX_BUFSIZE 2560
2 #define XX_MAXSIZE (XX_BUFSIZE / 4)
3
4 static struct map ∗xx_mp; /∗ Private buffer space map ∗/

...
5 xxread(dev_t dev, uio_t ∗uiop, cred_t ∗credp)
6 {
7
8 register caddr_t addr;
9 register int size;
10 size = min(COUNT, XX_MAXSIZE); /∗ Break large I/O request ∗/
11 /∗ into small ones ∗/
12 /∗
13 ∗ Get buffer.
14 ∗/
15 if ((addr = (caddr_t)rmalloc(xx_mp, size)) == 0)
16 cmn_err(CE_PANIC, "read: rmalloc failed allocation of size %d",
17 size);
18
19 /∗
20 ∗ Move data to buffer. If invalid address is found,
21 ∗ return buffer to map and return error code.
22 ∗/
23 if (uiomove(addr, size, UIO_READ, uiop) == −1) {
24 rmfree(xx_mp, size, addr);
25 return(EFAULT);
26 }
27 }

SEE ALSO kmem_alloc(9F), rmalloc_wait(9F), rmallocmap(9F), rmfree(9F), rmfreemap(9F),
uiomove(9F)

Writing Device Drivers

9F-248 modified 19 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions rmalloc_wait (9F)

NAME rmalloc_wait − allocate space from a resource map, wait if necessary

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

unsigned long rmalloc_wait(struct map ∗mp, size_t size);

ARGUMENTS mp Pointer to the resource map from which space is to be allocated.

size Number of units of space to allocate.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION rmalloc_wait() requests an allocation of space from a resource map. rmalloc_wait() is
similar to the rmalloc(9F) function with the exception that it will wait for space to become
available if necessary.

RETURN VALUES rmalloc_wait() returns the base of the allocated space.

CONTEXT This functions can be called from user or interrupt context. However in most cases
rmalloc_wait() should be called from user context only.

SEE ALSO rmalloc(9F), rmallocmap(9F), rmfree(9F), rmfreemap(9F)

Writing Device Drivers

modified 28 Apr 1992 9F-249

rmallocmap (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME rmallocmap, rmfreemap − allocate and free (respectively) resource maps

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

struct map ∗rmallocmap(unsigned long mapsize);

void rmfreemap(struct map ∗mp);

ARGUMENTS mapsize Number of entries for the map.

mp A pointer to the map structure to be deallocated.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION rmallocmap() dynamically allocates a resource map structure. The argument mapsize
defines the total number of entries in the map. In particular it is the total number alloca-
tions that can be outstanding at any one time.

rmallocmap() initializes the map but does not associate it with the actual resource. In
order to associate the map with the actual resource a call to rmfree(9F) is used to make
the entirety of the actual resource available for allocation starting from the first index into
the resource. Typically the call to rmallocmap() is followed by a call to rmfree(9F), pass-
ing the address of the map returned from rmallocmap(), the total size of the resource,
and the first index into actual resource.

The resource map allocated by rmallocmap() can be used to describe an arbitrary
resource in whatever allocation units are appropriate such blocks, pages, or data struc-
tures. This resource can then be managed by the system by subsequent calls to
rmalloc(9F), rmalloc_wait(9F), and rmfree(9F).

rmfreemap() deallocates a resource map structure previously allocated by rmalloc-
map(). The argument mp is a pointer to the map structure to be deallocated.

RETURN VALUES Upon successful completion, rmallocmap() returns a pointer to the newly allocated map
structure. Upon failure, rmallocmap() returns a NULL pointer.

CONTEXT rmallocmap() can be called from user or interrupt context.

SEE ALSO rmalloc(9F), rmalloc_wait(9F), rmfree(9F)

Writing Device Drivers

9F-250 modified 28 Apr 1992

SunOS 5.4 DDI and DKI Kernel Functions rmfree (9F)

NAME rmfree − free space back into a resource map

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

void rmfree(struct map ∗mp, size_t size, ulong_t index);

ARGUMENTS mp Pointer to the map structure.

size Number of units being freed.

index Index of the first unit of the allocated resource.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION rmfree() releases space back into a resource map. It is the opposite of rmalloc(9F), which
allocates space that is controlled by a resource map structure.

Drivers may define resource maps for resource allocation, in terms of arbitrary units,
using the rmallocmap(9F), function. The system maintains the resource map structure by
size and index, computed in units appropriate for the resource. For example, units may
be byte addresses, pages of memory, or blocks. rmfree() frees up unallocated space for
re-use.

CONTEXT rmfree() can be called from user or interrupt context.

SEE ALSO rmalloc(9F), rmalloc_wait(9F), rmallocmap(9F), rmfreemap(9F)

Writing Device Drivers

modified 19 Nov 1992 9F-251

rmvb (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME rmvb − remove a message block from a message

SYNOPSIS #include <sys/stream.h>
mblk_t ∗rmvb(mblk_t ∗mp, mblk_t ∗bp);

ARGUMENTS mp Message from which a block is to be removed. mblk_t is an instance of the
msgb(9S) structure.

bp Message block to be removed.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION rmvb() removes a message block (bp) from a message (mp), and returns a pointer to the
altered message. The message block is not freed, merely removed from the message. It is
the module or driver’s responsibility to free the message block.

RETURN VALUES If successful, a pointer to the message (minus the removed block) is returned. The
pointer is NULL if bp was the only block of the message before rmvb() was called. If the
designated message block (bp) does not exist, -1 is returned.

CONTEXT rmvb() can be called from user or interrupt context.

EXAMPLE This routine removes all zero-length M_DATA message blocks from the given message.
For each message block in the message, save the next message block (line 10). If the
current message block is of type M_DATA and has no data in its buffer (line 11), then
remove it from the message (line 12) and free it (line 13). In either case, continue with the
next message block in the message (line 16).
1 void
2 xxclean(mp)
3 mblk_t ∗mp;
4 {
5 mblk_t ∗tmp;
6 mblk_t ∗nmp;
7
8 tmp = mp;
9 while (tmp) {
10 nmp = tmp->b_cont;
11 if ((tmp->b_datap->db_type == M_DATA) &&

(tmp->b_rptr == tmp->b_wptr)) {
12 (void) rmvb(mp, tmp);
13 freeb(tmp);
14 }
15 tmp = nmp;
16 }
17 }

9F-252 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions rmvb (9F)

SEE ALSO freeb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-253

rmvq (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME rmvq − remove a message from a queue

SYNOPSIS #include <sys/stream.h>

void rmvq(queue_t ∗q, mblk_t ∗mp);

ARGUMENTS q Queue containing the message to be removed.

mp Message to remove.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION rmvq() removes a message from a queue. A message can be removed from anywhere on
a queue. To prevent modules and drivers from having to deal with the internals of mes-
sage linkage on a queue, either rmvq() or getq(9F) should be used to remove a message
from a queue.

CONTEXT rmvq() can be called from user or interrupt context.

EXAMPLE This code fragment illustrates how one may flush one type of message from a queue. In
this case, only M_PROTO T_DATA_IND messages are flushed. For each message on
the queue, if it is an M_PROTO message (line 8) of type T_DATA_IND (line 10), save a
pointer to the next message (line 11), remove the T_DATA_IND message (line 12) and
free it (line 13). Continue with the next message in the list (line 19).

1 mblk_t ∗mp, ∗nmp;
2 queue_t ∗q;
3 union T_primitives ∗tp;
4
5 freezestr(q);
6 mp = q->q_first;
7 while (mp) {
8 if (mp->b_datap->db_type == M_PROTO) {
9 tp = (union T_primitives ∗)mp->b_rptr;
10 if (tp->type == T_DATA_IND) {
11 nmp = mp->b_next;
12 rmvq(q, mp);
13 freemsg(mp);
14 mp = nmp;
15 } else {
16 mp = mp->b_next;
17 }
18 } else {
19 mp = mp->b_next;
20 }
21 }
22 unfreezestr(q);

9F-254 modified 28 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions rmvq (9F)

SEE ALSO freemsg(9F), freezestr(9F), getq(9F), insq(9F), unfreezestr(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

WARNINGS Make sure that the message mp is linked onto q to avoid a possible system panic.

NOTES The stream must be frozen using freezestr(9F) before calling rmvq().

modified 28 Jan 1993 9F-255

rwlock (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME rwlock, rw_init, rw_destroy, rw_enter, rw_exit, rw_tryenter, rw_downgrade,
rw_tryupgrade, rw_read_locked − readers/writer lock functions

SYNOPSIS #include <sys/ksynch.h>

void rw_init(krwlock_t ∗rwlp, char ∗name, krw_type_t type, void ∗arg);

void rw_destroy(krwlock_t ∗rwlp);

void rw_enter(krwlock_t ∗rwlp, krw_t enter_type);

void rw_exit(krwlock_t ∗rwlp);

int rw_tryenter(krwlock_t ∗rwlp, krw_t enter_type);

void rw_downgrade(krwlock_t ∗rwlp);

int rw_tryupgrade(krwlock_t ∗rwlp);

int rw_read_locked(krwlock_t ∗rwlp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS rwlp Pointer to a krwlock_t readers/writer lock.

name Character string describing lock for statistics and debugging.

type Type of readers/writer lock.

arg Type-specific argument for initialization function.

enter_type Indication of whether the lock is to be acquired non-exclusively or
exclusively RW_READER or RW_WRITER.

DESCRIPTION A multiple-readers, single-writer lock is represented by the krwlock_t data type. This
type of lock will allow many threads to have simultaneous read-only access to an object.
Only one thread may have write access at any one time. An object which is searched
more frequently than it is changed is a good candidate for a readers/writer lock.

Readers/writer locks can be more than twice as expensive as a mutex lock, and the
advantage of multiple read access may not occur if the lock will only be held for a short
time.

rw_init initializes a readers/writer lock. It is an error to initialize a lock more than once.
The type argument should be set to RW_DRIVER. The type-specific argument, arg,
should be the ddi_iblock_cookie returned from ddi_add_intr(9F) if the lock is used by
the interrupt handler. If the lock is not used by any interrupt handler, the argument
should be NULL.

If the call to rw_init is compiled with _LOCKTEST or _MPSTATS defined, statistics will be
kept for the lock. This may have a performance penalty.

rw_destroy releases any storage that might have been allocated by rw_init. It should be
called before deallocating the storage containing the lock.

9F-256 modified 16 Feb 1992

SunOS 5.4 DDI and DKI Kernel Functions rwlock (9F)

rw_enter acquires the lock, and blocks if necessary. If enter_type is RW_READER, the
caller blocks if there is a writer or a thread attempting to enter for writing. If enter_type is
RW_WRITER, the caller blocks if any thread holds the lock.

rw_exit releases the lock and may wake up one or more threads waiting on the lock.

rw_tryenter attempts to enter the lock, like rw_enter, but never blocks. It returns a non-
zero value if the lock was successfully entered, and zero otherwise.

A thread which holds the lock exclusively (entered with RW_WRITER), may call
rw_downgrade to convert to holding the lock non-exclusively (as if entered with
RW_READER). Other waiting readers will be unblocked unless there is a waiting
writer.

rw_tryupgrade can be called by a thread which holds the lock for reading to attempt to
convert to holding it for writing. This upgrade can only succeed if no other thread is
holding the lock and no other thread is blocked waiting to acquire the lock for writing.

rw_read_locked returns non-zero if the calling thread holds the lock for read, and zero if
the caller holds the lock for write. The caller must hold the lock. The system may panic if
rw_read_locked is called for a lock that isn’t held by the caller.

RETURN VALUES 0 rw_tryenter could not obtain the lock without blocking.

0 rw_tryupgrade was unable to perform the upgrade because of other
threads holding or waiting to hold the lock.

0 rw_read_locked returns 0 if the lock is held by the caller for write.

non-zero from rw_read_locked if the lock is held by the caller for read. non-zero
successful return from rw_tryenter or rw_tryupgrade.

CONTEXT These functions can be called from user or interrupt context, except for rw_init and
rw_destroy, which can be called from user context only.

SEE ALSO condvar(9F), ddi_add_intr(9F), mutex(9F), semaphore(9F)

Writing Device Drivers

modified 16 Feb 1992 9F-257

scsi_abort (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_abort − abort a SCSI command

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_abort(struct scsi_address ∗ap, struct scsi_pkt ∗pkt);

ARGUMENTS ap Pointer to a scsi_address structure.

pkt Pointer to a scsi_pkt(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_abort() terminates a command that has been transported to the host adapter driver.
A NULL pkt causes all outstanding packets to be aborted. On a successful abort, the
pkt_reason is set to CMD_ABORTED and pkt_statistics is updated.

RETURN VALUES scsi_abort() returns:

1 on success.

0 on failure.

CONTEXT scsi_abort() can be called from user or interrupt context.

EXAMPLE if (scsi_abort(&devp->sd_address, pkt) == 0) {
(void) scsi_reset(&devp->sd_address, RESET_ALL);

}

SEE ALSO scsi_reset(9F), scsi_pkt(9S)

Writing Device Drivers

9F-258 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions scsi_alloc_consistent_buf (9F)

NAME scsi_alloc_consistent_buf − allocate an I/O buffer for SCSI DMA

SYNOPSIS #include <sys/scsi/scsi.h>

struct buf ∗scsi_alloc_consistent_buf(struct scsi_address ∗ap, struct buf ∗bp,
int datalen , ulong bflags , int (∗waitfunc)(caddr_t), caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address(9S) structure.

bp Pointer to the buf(9S) structure.

datalen Number of bytes for the data buffer.

bflags Flags setting for the allocated buffer header.

waitfunc Pointer to either NULL_FUNC or SLEEP_FUNC.

arg waitfunc function argument, must be NULL.

DESCRIPTION scsi_alloc_consistent_buf() allocates a buffer header and the associated data buffer for
direct memory access (DMA) transfer. This buffer is allocated from the iobp space, which
is considered consistent memory. For more details, see ddi_iopb_alloc(9F) and
ddi_dma_sync(9F).

For buffers allocated via scsi_alloc_consistent_buf(), and marked with the
PKT_CONSISTENT flag via scsi_init_pkt(9F), the HBA driver must ensure that the data
transfer for the command is correctly synchronized before the target driver’s command
completion callback is performed.

If bp is NULL, a new buffer header will be allocated using getrbuf(9F). In addition, if
datalen is non-zero, a new buffer will be allocated using ddi_iopb_alloc(9F).

waitfunc indicates what the allocator routines should do when direct memory access
(DMA) resources are not available; the valid values are:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

RETURN VALUES scsi_alloc_consistent_buf() returns a pointer to a buf(9S) structure on success. It returns
NULL if resources are not available and waitfunc was not SLEEP_FUNC.

CONTEXT If waitfunc is SLEEP_FUNC, then this routine may be called only from user-level code.
Otherwise, it may be called from either user or interrupt level. The waitfunc function may
not block or call routines that block.

EXAMPLE bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

rqpkt = scsi_init_pkt(&devp->sd_address,
NULL, bp, CDB_GROUP0, 1, 0,
PKT_CONSISTENT, SLEEP_FUNC, NULL);

modified 21 Dec 1992 9F-259

scsi_alloc_consistent_buf (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO ddi_dma_sync(9F), ddi_iopb_alloc(9F), getrbuf(9F), scsi_init_pkt(9F),
scsi_destroy_pkt(9F), scsi_free_consistent_buf(9F), buf(9S)

Writing Device Drivers

9F-260 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions scsi_cname (9F)

NAME scsi_cname, scsi_dname, scsi_mname, scsi_rname, scsi_sname − decode a SCSI name

SYNOPSIS #include <sys/scsi/scsi.h>

char ∗scsi_cname(u_char cmd, char ∗∗cmdvec);

char ∗scsi_dname(int dtype);

char ∗scsi_mname(u_char msg);

char ∗scsi_rname(u_char reason);

char ∗scsi_sname(u_char sense_key);

ARGUMENTS cmd A SCSI command value.

cmdvec Pointer to an array of command strings.

dtype Device type.

msg A message value.

reason A packet reason value.

sense_key A SCSI sense key value.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_cname() decodes SCSI commands. cmdvec is a pointer to an array of strings. The first
byte of the string is the command value, and the remainder is the name of the command.

scsi_dname() decodes the peripheral device type (for example, direct access or sequen-
tial access) in the inquiry data.

scsi_mname() decodes SCSI messages.

scsi_rname() decodes packet completion reasons.

scsi_sname() decodes SCSI sense keys.

RETURN VALUES These functions return a pointer to a string. If an argument is invalid, they return a string
to that effect.

CONTEXT These functions can be called from user or interrupt context.

modified 21 Dec 1992 9F-261

scsi_cname (9F) DDI and DKI Kernel Functions SunOS 5.4

EXAMPLE scsi_cname() decodes SCSI commands as follows:

static char ∗st_cmds[] = {
"\000test unit ready",
"\001rewind",
"\003request sense",
"\010read",
"\012write",
"\020write file mark",
"\021space",
"\022inquiry",
"\025mode select",
"\031erase tape",
"\032mode sense",
"\033load tape",
NULL

};
..
cmn_err(CE_CONT, "st: cmd=%s", scsi_cname(cmd, st_cmds));
..

SEE ALSO Writing Device Drivers

9F-262 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions scsi_destroy_pkt (9F)

NAME scsi_destroy_pkt − free an allocated SCSI packet and its DMA resource

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_destroy_pkt(struct scsi_pkt ∗pktp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pktp Pointer to a scsi_pkt(9S) structure.

DESCRIPTION scsi_destroy_pkt() releases all necessary resources, typically at the end of an I/O
transfer. The data is synchronized to memory, then the DMA resources are deallocated
and pktp is freed.

CONTEXT scsi_destroy_pkt() may be called from user or interrupt context.

EXAMPLE scsi_destroy_pkt(un->un_rqs);

SEE ALSO scsi_init_pkt(9F), scsi_pkt(9S)

Writing Device Drivers

modified 11 Feb 1994 9F-263

scsi_dmaget (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_dmaget, scsi_dmafree − SCSI dma utility routines

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_dmaget(struct scsi_pkt ∗pkt , opaque_tdmatoken ,
int (∗callback)(void));

void scsi_dmafree(struct scsi_pkt ∗pkt);

ARGUMENTS pkt A pointer to a scsi_pkt(9S) structure.

dmatoken Pointer to an implementation dependent object

callback Pointer to a callback function, or NULL_FUNC or SLEEP_FUNC.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_dmaget() allocates DMA resources for an already allocated SCSI packet. pkt is a
pointer to the previously allocated SCSI packet (see scsi_pktalloc(9F)).

dmatoken is a pointer to an implementation dependent object which defines the length,
direction, and address of the data transfer associated with this SCSI packet (command).
The dmatoken must be a pointer to a buf(9S) structure. If dmatoken is NULL, no resources
are allocated.

callback indicates what scsi_dmaget() should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resouces but failed to do so again), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

scsi_dmafree() frees the DMA resources associated with the SCSI packet. The packet itself
remains allocated.

RETURN VALUES scsi_dmaget() returns a pointer to a scsi_pkt on success. It returns NULL if resources are
not available.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function may
not block or call routines that block.

scsi_dmafree() can be called from user or interrupt context.

9F-264 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions scsi_dmaget (9F)

SEE ALSO scsi_pktalloc(9F), scsi_pktfree(9F), scsi_resalloc(9F), scsi_resfree(9F), buf(9S),
scsi_pkt(9S)

Writing Device Drivers

modified 21 Dec 1992 9F-265

scsi_errmsg (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_errmsg − display a SCSI request sense message

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_errmsg(struct scsi_device ∗devp, struct scsi_pkt ∗pktp , char ∗drv_name,
int severity, int blkno , int err_blkno, struct scsi_key_strings ∗cmdlist,
struct scsi_extended_sense ∗sensep);

ARGUMENTS devp Pointer to the scsi_device(9S) structure.

pktp Pointer to a scsi_pkt(9S) structure.

drv_name String used by scsi_log(9F).

severity Error severity level, maps to severity strings below.

blkno Requested block number.

err_blkno Error block number.

cmdlist An array of SCSI command description strings.

sensep A pointer to a scsi_extended_sense(9S)
structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_errmsg() interprets the request sense information in the sensep pointer and generates
a standard message that is displayed using scsi_log(9F). The first line of the message is
always a CE_WARN, with the continuation lines being CE_CONT. sensep may be NULL
in which case no sense key or vendor information is displayed.

The driver should make the determination as to when to call this function based on the
severity of the failure and the severity level that the driver wants to report.

The scsi_device(9S) structure denoted by devp supplies the identification of the device
that requested the display. severity selects which string is used in the "Error Level:"
reporting, according to the table below:

Severity Value: String:
SCSI_ERR_ALL All
SCSI_ERR_UNKNOWN Unknown
SCSI_ERR_INFO Information
SCSI_ERR_RECOVERED Recovered
SCSI_ERR_RETRYABLE Retryable
SCSI_ERR_FATAL Fatal

blkno is the block number of the original request that generated the error. err_blkno is the
block number where the error occurred. cmdlist is a mapping table for translating the
SCSI command code in pktp to the actual command string.

9F-266 modified 19 Feb 1993

SunOS 5.4 DDI and DKI Kernel Functions scsi_errmsg (9F)

The cmdlist is described in the structure below:

struct scsi_key_strings {
int key;
char ∗message;

};

For a basic SCSI disk the following list is appropriate:

static struct scsi_key_strings sd_cmds[] = {
0x00, "test unit ready",
0x01, "rezero",
0x03, "request sense",
0x04, "format",
0x07, "reassign",
0x08, "read",
0x0a, "write",
0x0b, "seek",
0x12, "inquiry",
0x15, "mode select",
0x16, "reserve",
0x17, "release",
0x18, "copy",
0x1a, "mode sense",
0x1b, "start/stop",
0x1e, "door lock",
0x28, "read(10)",
0x2a, "write(10)",
0x2f, "verify",
0x37, "read defect data",
−1, NULL

};

CONTEXT scsi_errmsg() may be called from user or interrupt context.

EXAMPLE scsi_errmsg(devp, pkt, "sd", SCSI_ERR_INFO, bp->b_blkno,
err_blkno, sd_cmds, rqsense);

Generates:
WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):

Error for command ’read’ Error Level: Informational
Requested Block 23936, Error Block: 23936
Sense Key: Unit Attention
Vendor ’QUANTUM’: ASC = 0x29 (reset), ASCQ = 0x0, FRU = 0x0

modified 19 Feb 1993 9F-267

scsi_errmsg (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO cmn_err(9F), scsi_log(9F), scsi_device(9S), scsi_extended_sense(9S), scsi_pkt(9S)

Writing Device Drivers

9F-268 modified 19 Feb 1993

SunOS 5.4 DDI and DKI Kernel Functions scsi_free_consistent_buf (9F)

NAME scsi_free_consistent_buf − free a previously allocated SCSI DMA I/O buffer

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_free_consistent_buf(struct buf ∗bp);

ARGUMENTS bp Pointer to the buf(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_free_consistent_buf() frees a buffer header and consistent data buffer that was pre-
viously allocated using scsi_alloc_consistent_buf(9F).

CONTEXT scsi_free_consistent_buf() may be called from either the user or the interrupt levels.

SEE ALSO freerbuf(9F), scsi_alloc_consistent_buf(9F), buf(9S)

Writing Device Drivers

WARNING scsi_free_consistent_buf() will call freerbuf(9F) to free the buf(9S) that was allocated
before or during the call to scsi_alloc_consistent_buf(9F).

modified 21 Dec 1992 9F-269

scsi_hba_attach (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_hba_attach, scsi_hba_detach − SCSI HBA attach and detach routines

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_attach(dev_info_t ∗dip, ddi_dma_lim_t ∗hba_lim,
scsi_hba_tran_t ∗hba_tran, int hba_flags, void ∗hba_options);

int scsi_hba_detach(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS dip A pointer to the dev_info_t structure, referring to the instance of the
HBA device.

hba_lim A pointer to a ddi_dma_lim(9S) structure.

hba_tran A pointer to a scsi_hba_tran(9S) structure

hba_flags flag modifiers. The only defined flag value is SCSI_HBA_TRAN_CLONE.

hba_options optional features provided by the HBA driver for future extensions;
must be NULL.

DESCRIPTION
scsi_hba_attach() scsi_hba_attach() registers the DMA limits hba_lim and the transport vectors hba_tran of

each instance of the HBA device defined by dip. The HBA driver can pass different DMA
limits and transport vectors for each instance of the device, as necessary, to support any
constraints imposed by the HBA itself.

scsi_hba_attach() uses the dev_bus_ops field in the dev_ops structure. The HBA driver
should initialize this field to NULL before calling scsi_hba_attach().

If SCSI_HBA_TRAN_CLONE is requested in hba_flags, the hba_tran structure will be cloned
once for each target attached to the HBA. The cloning of the structure will occur before
the tran_tgt_init(9E) entry point is called to initialize a target. At all subsequent HBA
entry points, including tran_tgt_init(9E), the scsi_hba_tran_t structure passed as an
argument or found in a scsi_address structure will be the ’cloned’ scsi_hba_tran_t struc-
ture, thus allowing the HBA to use the tran_tgt_private field in the scsi_hba_tran_t struc-
ture to point to per-target data. The HBA must take care to free only the same
scsi_hba_tran_t structure it allocated when detaching; all ’cloned’ scsi_hba_tran_t struc-
tures allocated by the system will be freed by the system.

scsi_hba_attach() attaches a number of integer-valued properties to dip, via
ddi_prop_create(9F), unless properties of the same name are already attached to the
node. An HBA driver should retrieve these configuration parameters via
ddi_prop_op(9F), and respect any settings for features provided the HBA.

scsi-options optional SCSI configuration bits

SCSI_OPTIONS_DR if not set, the HBA should not grant Disconnect
privileges to target devices.

9F-270 modified 1 Nov 1993

SunOS 5.4 DDI and DKI Kernel Functions scsi_hba_attach (9F)

SCSI_OPTIONS_LINK if not set, the HBA should not enable Linked
Commands.

SCSI_OPTIONS_TAG if not set, the HBA should not operate in Com-
mand Tagged Queueing mode.

SCSI_OPTIONS_FAST if not set, the HBA should not operate the bus
in FAST SCSI mode.

SCSI_OPTIONS_WIDE if not set, the HBA should not operate the bus
in WIDE SCSI mode.

scsi-reset-delay SCSI bus or device reset recovery time, in milliseconds.

scsi_hba_detach() scsi_hba_detach() removes the DMA limits structure and the transport vector for the
given instance of an HBA driver.

RETURN VALUES scsi_hba_attach() and scsi_hba_detach() return DDI_SUCCESS if the function call
succeeds, and returns DDI_FAILURE on failure.

CONTEXT scsi_hba_attach() and scsi_hba_detach() should be called from attach(9E) or detach(9E),
respectively.

NOTES It is the HBAs responsibility to ensure that no more transport requests will be taken on
behalf of any SCSI target device driver after scsi_hba_detach() is called.

SEE ALSO attach(9E), detach(9E), tran_tgt_init(9E), ddi_prop_create(9F), scsi_address(9S),
scsi_hba_tran(9S)

Writing Device Drivers

modified 1 Nov 1993 9F-271

scsi_hba_init (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_hba_init, scsi_hba_fini − SCSI Host Bus Adapter system initialization and completion
routines

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_init(struct modlinkage ∗modlp);

void scsi_hba_fini(struct modlinkage ∗modlp);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS modlp Pointer to the Host Bus Adapters module linkage structure.

DESCRIPTION
scsi_hba_init() scsi_hba_init() is the system-provided initialization routine for SCSI HBA drivers. The

scsi_hba_init() function registers the HBA in the system and allows the driver to accept
configuration requests on behalf of SCSI target drivers. The scsi_hba_init() routine must
be called in the HBA’s _init(9E) routine before mod_install(9F) is called. If
mod_install(9F) fails, the HBA’s _init(9E) should call scsi_hba_fini(9F) before returning
failure.

scsi_hba_fini() scsi_hba_fini() is the system provided completion routine for SCSI HBA drivers.
scsi_hba_fini() removes all of the system references for the HBA that were created in
scsi_hba_init(). The scsi_hba_fini() routine should be called in the HBA’s _fini(9E) rou-
tine if mod_remove(9F) is successful.

RETURN VALUES scsi_hba_init() returns 0 if successful, and a non-zero value otherwise. If
scsi_hba_init() fails, the HBA’s _init() entry point should return the value returned by
scsi_hba_init().

CONTEXT scsi_hba_init() and scsi_hba_fini() should be called from _init(9E) or _fini(9E), respec-
tively.

SEE ALSO _init(9E), _fini(9E), mod_install(9F), mod_remove(9F), scsi_pktfree(9F),
scsi_pktalloc(9F), scsi_hba_tran(9S)

Writing Device Drivers

NOTES The HBA is responsible for ensuring that no DDI request routines are called on behalf of
its SCSI target drivers once scsi_hba_fini() is called.

9F-272 modified 1 Nov 1993

SunOS 5.4 DDI and DKI Kernel Functions scsi_hba_lookup_capstr (9F)

NAME scsi_hba_lookup_capstr − return index matching capability string

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_lookup_capstr(char ∗capstr);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS capstr Pointer to a string.

DESCRIPTION scsi_hba_lookup_capstr() attempts to match capstr against a known set of capability
strings, and returns the defined index for the matched capability, if found.

The set of indices and capability strings is:

SCSI_CAP_DMA_MAX "dma-max" or "dma_max"

SCSI_CAP_MSG_OUT "msg-out" or "msg_out"

SCSI_CAP_DISCONNECT "disconnect"

SCSI_CAP_SYNCHRONOUS "synchronous"

SCSI_CAP_WIDE_XFER "wide-xfer" or "wide_xfer"

SCSI_CAP_PARITY "parity"

SCSI_CAP_INITIATOR_ID "initiator-id"

SCSI_CAP_UNTAGGED_QING "untagged-qing"

SCSI_CAP_TAGGED_QING "tagged-qing"

SCSI_CAP_ARQ "auto-rqsense"

SCSI_CAP_LINKED_CMDS "linked-cmds"

SCSI_CAP_SECTOR_SIZE "sector-size"

SCSI_CAP_TOTAL_SECTORS "total-sectors"

SCSI_CAP_GEOMETRY "geometry"

RETURN VALUES scsi_hba_lookup_capstr() returns a non-negative index value corresponding to the capa-
bility string, or −1 if the string does not match any known capability.

CONTEXT scsi_hba_lookup_capstr() can be called from user or interrupt context.

SEE ALSO tran_getcap(9E), tran_setcap(9E), scsi_ifgetcap(9F), scsi_ifsetcap(9F)
Writing Device Drivers

modified 1 Nov 1993 9F-273

scsi_hba_pkt_alloc (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_hba_pkt_alloc, scsi_hba_pkt_free − allocate and free a scsi_pkt structure

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_hba_pkt_alloc(dev_info_t ∗dip, struct scsi_address ∗ap,
int cmdlen, int statuslen, int tgtlen, int hbalen, int (∗callback)(caddr_t arg),
caddr_t arg);

void scsi_hba_pkt_free(struct scsi_address ∗ap, struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS dip Pointer to a dev_info_t structure, defining the HBA driver instance.

ap Pointer to a scsi_address(9S) structure, defining the target instance.

cmdlen Length in bytes to be allocated for the SCSI command descriptor block
(CDB).

statuslen Length in bytes to be allocated for the SCSI status completion block
(SCB).

tgtlen Length in bytes to be allocated for a private data area for the target
driver’s exclusive use.

hbalen Length in bytes to be allocated for a private data area for the HBA
driver’s exclusive use.

callback indicates what scsi_hba_pkt_alloc() should do when resources are not
available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

arg Must be NULL.

pkt A pointer to a scsi_pkt(9S) structure.

DESCRIPTION
scsi_hba_pkt_alloc() scsi_hba_pkt_alloc() allocates space for a scsi_pkt structure. HBA drivers should use

this interface when allocating a scsi_pkt from their tran_init_pkt(9E) entry point.

If callback is NULL_FUNC, scsi_hba_pkt_alloc() may not sleep when allocating resources,
and callers should be prepared to deal with allocation failures.

scsi_hba_pkt_alloc() copies the scsi_address(9S) structure pointed to by ap to the
pkt_address field in the scsi_pkt(9S).

scsi_hba_pkt_alloc() also allocates memory for these scsi_pkt(9S) data areas, and sets
these fields to point to the allocated memory:

pkt_ha_private HBA private data area

pkt_private target driver private data area

pkt_scbp SCSI status completion block

9F-274 modified 1 Nov 1993

SunOS 5.4 DDI and DKI Kernel Functions scsi_hba_pkt_alloc (9F)

pkt_cdbp SCSI command descriptor block

scsi_hba_pkt_free() scsi_hba_pkt_free() frees the space allocated for the scsi_pkt(9S) structure.

RETURN VALUES scsi_hba_pkt_alloc() returns a pointer to the scsi_pkt structure, or NULL if no space is
available.

CONTEXT scsi_hba_pkt_alloc() can be called from user or interrupt context. Drivers must not
allow scsi_hba_pkt_alloc() to sleep if called from an interrupt routine.

scsi_hba_pkt_free() can be called from user or interrupt context.

SEE ALSO tran_init_pkt(9E), scsi_pkt(9S)

Writing Device Drivers

modified 1 Nov 1993 9F-275

scsi_hba_probe (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_hba_probe − default SCSI HBA probe function

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_probe(struct scsi_device ∗sd, int (∗waitfunc)(void));

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS sd Pointer to a scsi_device(9S) structure describing the target.

waitfunc NULL_FUNC or SLEEP_FUNC.

DESCRIPTION scsi_hba_probe() is a function providing the semantics of scsi_probe(9F). An HBA
driver may call scsi_hba_probe() from its tran_tgt_probe(9E) entry point, to probe for
the existence of a target on the SCSI bus, or the HBA may set tran_tgt_probe(9E) to point
to scsi_hba_probe(9F) directly.

RETURN VALUES See scsi_probe(9F) for the return values from scsi_hba_probe().

CONTEXT scsi_hba_probe() should be only be called from the HBA’s tran_tgt_probe(9E) entry
point.

SEE ALSO tran_tgt_probe(9E), scsi_probe(9F)

Writing Device Drivers

9F-276 modified 31 May 1994

SunOS 5.4 DDI and DKI Kernel Functions scsi_hba_tran_alloc (9F)

NAME scsi_hba_tran_alloc, scsi_hba_tran_free − allocate and free transport structures

SYNOPSIS #include <sys/scsi/scsi.h>

scsi_hba_tran_t ∗scsi_hba_tran_alloc(dev_info_t ∗dip, int flags);

void scsi_hba_tran_free(scsi_hba_tran_t ∗hba_tran);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS dip Pointer to a dev_info structure, defining the HBA driver instance.

flag flag modifiers. The only possible flag value is SCSI_HBA_CANSLEEP
(memory allocation may sleep).

hba_tran Pointer to a scsi_hba_tran(9S) structure.

DESCRIPTION
scsi_hba_tran_alloc() scsi_hba_tran_alloc() allocates a scsi_hba_tran(9S) structure for a HBA driver. The

HBA must use this structure to register its transport vectors with the system by using
scsi_hba_attach(9F).

If the flag SCSI_HBA_CANSLEEP is set in flags, scsi_hba_tran_alloc() may sleep when
allocating resources; otherwise it may not sleep, and callers should be prepared to deal
with allocation failures.

scsi_hba_tran_free() scsi_hba_tran_free() is used to free the scsi_hba_tran(9S) structure allocated by
scsi_hba_tran_alloc().

RETURN VALUES scsi_hba_tran_alloc() returns a pointer to the allocated transport structure, or NULL if no
space is available.

CONTEXT scsi_hba_tran_alloc() can be called from user or interrupt context. Drivers must not
allow scsi_hba_tran_alloc() to sleep if called from an interrupt routine.

scsi_hba_tran_free() can be called from user or interrupt context.

SEE ALSO scsi_hba_attach(9F), scsi_hba_tran(9S)

Writing Device Drivers

modified 1 Nov 1993 9F-277

scsi_ifgetcap (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_ifgetcap, scsi_ifsetcap − get/set SCSI transport capability

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_ifgetcap(struct scsi_address ∗ap, char ∗cap, int whom);

int scsi_ifsetcap(struct scsi_address ∗ap, char ∗cap, int value, int whom);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Determines if all targets or only the specified target is affected.

DESCRIPTION The target drivers use scsi_ifsetcap() to set the capabilities of the host adapter driver. A
cap is a name-value pair whose name is a null terminated character string and whose
value is an integer. The current value of a capability can be retrieved using
scsi_ifgetcap(). If whom is 0 all targets are affected, else the target specified by the
scsi_address structure pointed to by ap is affected.

A device may support only a subset of the capabilities listed below. It is the responsibility
of the driver to make sure that these functions are called with a cap supported by the dev-
ice.

The following capabilities have been defined:

“dma-max” Maximum dma transfer size supported by host adapter.

“msg-out” Message out capability supported by host adapter: 0 disables, 1
enables.

“disconnect” Disconnect capability supported by host adapter: 0 disables, 1
enables.

“synchronous” Synchronous data transfer capability supported by host adapter: 0
disables, 1 enables.

“wide-xfer” Wide transfer capability supported by host adapter: 0 disables, 1
enables.

“parity” Parity checking by host adapter: 0 disables, 1 enables.

“initiator-id” The host’s bus address is returned.

“untagged-qing” The host adapter’s capability to support internal queueing of com-
mands without tagged queueing: 0 disables, 1 enables.

“tagged-qing” The host adapter’s capability to support tagged queuing: 0 dis-
ables, 1 enables.

“auto-rqsense” The host adapter’s capability to support auto request sense on
check conditions: 0 disables, 1 enables.

“sector-size” The target driver sets this capability to inform the HBA of the

9F-278 modified 1 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions scsi_ifgetcap (9F)

granularity, in bytes, of DMA breakup; the HBA’s DMA limit
structure will be set to reflect this limit (See
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). It should be
set to the physical disk sector size. This capability defaults to 512.

“total-sectors” The target driver sets this capability to inform the HBA of the total
number of sectors on the device, as returned from the SCSI get
capacity command. This capability must be set before the target
driver ‘‘gets’’ the geometry capability.

“geometry” This capability returns the HBA geometry of a target disk. The tar-
get driver must set the total-sectors capability before ‘‘getting’’ the
geometry capability. The geometry is returned as a 32-bit value:
the upper 16 bits represent the number of heads per cylinder; the
lower 16 bits represent the number of sectors per track. The
geometry capability cannot be ‘‘set.’’

RETURN VALUES scsi_ifsetcap() returns 1 if the capability was successfully set to the new value, 0 if the
capability is not variable, and −1 if the capability was not defined.

scsi_ifgetcap() returns the current value of a capability, or −1 if the capability was not
defined.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLE un->un_arq_enabled =
((scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 1, 1) == 1)? 1: 0);

if (scsi_ifsetcap(&devp->sd_address, "tagged-qing", 1, 1) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = MAX_THROTTLE;

} else if (scsi_ifgetcap(&devp->sd_address, "untagged-qing", 0) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = 3;

} else {
un->un_dp->options &= ˜SD_QUEUEING;
un->un_throttle = 1;

}

SEE ALSO ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), scsi_arq_status(9S)

Writing Device Drivers

modified 1 Feb 1994 9F-279

scsi_init_pkt (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_init_pkt − prepare a complete SCSI packet

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_init_pkt(struct scsi_address ∗ap , struct scsi_pkt ∗pktp ,
struct buf ∗bp, int cmdlen, int statuslen, int privatelen, int flags ,
int (∗callback)(caddr_t), caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to a scsi_address(9S) structure.

pktp A pointer to a scsi_pkt(9S) structure.

bp Pointer to a buf(9S) structure.

cmdlen The required length for the SCSI command descriptor block (CDB) in
bytes.

statuslen The required length for the SCSI status completion block (SCB) in bytes.

privatelen The required length for the pkt_private area.

flags The flag for creating the packet.

callback A pointer to a callback function, NULL_FUNC, or SLEEP_FUNC.

arg The callback function argument.

DESCRIPTION Target drivers use scsi_init_pkt() to request the transport layer to allocate and initialize a
packet for a SCSI command which possibly includes a data transfer. If pktp is NULL, a
new scsi_pkt(9S) is allocated using the HBA driver’s packet allocator. The bp is a pointer
to a buf(9S) structure. If bp is non-NULL and contains a valid byte count, the buf(9S)
structure is also set up for DMA transfer using the HBA driver DMA resources allocator.
When bp is allocated by scsi_alloc_consistent_buf(9F), the PKT_CONSISTENT bit must
be set in the flags argument to ensure proper operation. If privatelen is non-zero then addi-
tional space is allocated for the pkt_private area of the scsi_pkt(9S). On return pkt_private
points to this additional space. Otherwise pkt_private is a pointer that is typically used to
store the bp during execution of the command. In this case pkt_private is NULL on return.

The flags argument is a set of bit flags. Possible bits include:

PKT_CONSISTENT This must be set if the DMA buffer was allocated using
scsi_alloc_consistent_buf(9F). In this case, the HBA driver will
guarantee that the data transfer is properly synchronized before
performing the target driver’s command completion callback.

PKT_DMA_PARTIAL This may be set if the driver can accept a partial DMA mapping. If
set, scsi_init_pkt() will allocate DMA resources with the
DDI_DMA_PARTIAL bit set in the dmar_flag element of the
ddi_dma_req(9S) structure. The pkt_resid field of the
scsi_pkt(9S) structure may be returned with a non-zero value,
which indicates the number of bytes for which scsi_init_pkt() was

9F-280 modified 6 Jun 1994

SunOS 5.4 DDI and DKI Kernel Functions scsi_init_pkt (9F)

unable to allocate DMA resources.

The last argument arg is supplied to the callback function when it is invoked.

callback indicates what the allocator routines should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but again failed to do so), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

When allocating DMA resources, scsi_init_pkt() returns the scsi_pkt field pkt_resid as
the number of residual bytes for which the system was unable to allocate DMA resources.
A pkt_resid of 0 means that all necessary DMA resources were allocated.

RETURN VALUES scsi_init_pkt() returns NULL if the packet or dma resources could not be allocated. Oth-
erwise, it returns a pointer to an initialized scsi_pkt(9S). If pktp was not NULL the return
value will be pktp on successful initialization of the packet.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

EXAMPLES To allocate a packet without DMA resources attached, use:

pkt = scsi_init_pkt(&devp->sd_address, NULL, NULL, CDB_GROUP1,
STATUS_LEN, sizeof (struct my_pkt_private ∗), 0,
sd_runout, sd_unit);

To allocate a packet with DMA resources attached use:

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP1,
STATUS_LEN, 0, 0, NULL_FUNC, NULL);

To attach DMA resources to a preallocated packet, use:

pkt = scsi_init_pkt(&devp->sd_address, old_pkt, bp, 0,
0, 0, 0, sd_runout, (caddr_t) sd_unit);

Since the packet is already allocated the cmdlen, statuslen and privatelen are 0.

To allocate a packet with consistent DMA resources attached, use:

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
STATUS_LEN, sizeof (struct my_pkt_private ∗), PKT_CONSISTENT,
SLEEP_FUNC, NULL);

modified 6 Jun 1994 9F-281

scsi_init_pkt (9F) DDI and DKI Kernel Functions SunOS 5.4

To allocate a packet with partial DMA resources attached, use:

my_pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
STATUS_LEN, sizeof (struct buf ∗), PKT_DMA_PARTIAL,
SLEEP_FUNC, NULL);

NOTES If a DMA allocation request fails with DDI_DMA_NOMAPPING, the B_ERROR flag will be
set in bp, and the b_error field will be set to EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, the B_ERROR flag will be set
in bp, and the b_error field will be set to EINVAL.

SEE ALSO scsi_alloc_consistent_buf(9F), scsi_destroy_pkt(9F), scsi_dmaget(9F), scsi_pktalloc(9F),
buf(9S), scsi_pkt(9S)

Writing Device Drivers

9F-282 modified 6 Jun 1994

SunOS 5.4 DDI and DKI Kernel Functions scsi_log (9F)

NAME scsi_log − display a SCSI-device-related message

SYNOPSIS #include <sys/scsi/scsi.h>
#include <sys/cmn_err.h>

void scsi_log(dev_info_t ∗dip, char ∗drv_name, u_int level, const char ∗fmt, . . .);

ARGUMENTS dip Pointer to the dev_info structure.

drv_name String naming the device.

level Error level.

fmt Display format.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_log() is a utility function that displays a message via the cmn_err(9F) routine. The
error levels that can be passed in to this function are CE_PANIC, CE_WARN, CE_NOTE,
CE_CONT, and SCSI_DEBUG. The last level is used to assist in displaying debug messages
to the console only. drv_name is the short name by which this device is known; example
disk driver names are sd and cmdk. If the dev_info_t pointer is NULL, then the drv_name
will be used with no unit or long name.

EXAMPLE scsi_log(dev, "Disk Unit ", CE_PANIC, "Bad Value %d\n", foo);
Generates:

PANIC: /eisa/aha@330,0/cmdk@0,0 (Disk Unit 0): Bad Value 5
Followed by a PANIC.

scsi_log(dev, "sd", CE_WARN, "Label Bad\n");
Generates:

WARNING: /sbus@1,f8000000/esp@0,8000000/sd@1,0 (sd1): Label Bad

scsi_log((dev_info_t ∗) NULL, "Disk Unit ", CE_NOTE, "Disk Ejected\n");
Generates:

Disk Unit : Disk Ejected

scsi_log(cmdk_unit, "Disk Unit ", CE_CONT, "Disk Inserted\n");
Generates:

Disk Inserted

scsi_log(sd_unit, "sd", SCSI_DEBUG, "We really got here\n");
Generates (only to the console):

DEBUG: sd1: We really got here

modified 7 Jun 1993 9F-283

scsi_log (9F) DDI and DKI Kernel Functions SunOS 5.4

CONTEXT scsi_log() may be called from user or interrupt context.

SEE ALSO cmn_err(9F), scsi_errmsg(9F)

Writing Device Drivers

9F-284 modified 7 Jun 1993

SunOS 5.4 DDI and DKI Kernel Functions scsi_pktalloc (9F)

NAME scsi_pktalloc, scsi_resalloc, scsi_pktfree, scsi_resfree − SCSI packet utility routines

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_pktalloc(struct scsi_address ∗ap , int cmdlen, int statuslen,
int (∗callback)(void));

struct scsi_pkt ∗scsi_resalloc(struct scsi_address ∗ap , int cmdlen, int statuslen,
opaque_t dmatoken , int (∗callback)(void));

void scsi_pktfree(struct scsi_pkt ∗pkt);

void scsi_resfree(struct scsi_pkt ∗pkt);

ARGUMENTS ap Pointer to a scsi_address structure.

cmdlen The required length for the SCSI command descriptor block (CDB) in bytes.

statuslen The required length for the SCSI status completion block (SCB) in bytes.

dmatoken Pointer to an implementation-dependent object.

callback A pointer to a callback function, or NULL_FUNC or SLEEP_FUNC.

pkt Pointer to a scsi_pkt(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_pktalloc() requests the host adapter driver to allocate a command packet. For com-
mands that have a data transfer associated with them, scsi_resalloc() should be used.

ap is a pointer to a scsi_address structure. Allocator routines use it to determine the asso-
ciated host adapter.

cmdlen is the required length for the SCSI command descriptor block. This block is allo-
cated such that a kernel virtual address is established in the pkt_cdbp field of the allo-
cated scsi_pkt structure.

statuslen is the required length for the SCSI status completion block. The address of the
allocated block is placed into the pkt_scbp field of the scsi_pkt structure.

dmatoken is a pointer to an implementation dependent object which defines the length,
direction, and address of the data transfer associated with this SCSI packet (command).
The dmatoken must be a pointer to a buf(9S) structure. If dmatoken is NULL, no DMA
resources are required by this SCSI command, so none are allocated. Only one transfer
direction is allowed per command. If there is an unexpected data transfer phase (either
no data transfer phase expected, or the wrong direction encountered), the command is
terminated with the pkt_reason set to CMD_DMA_DERR. dmatoken provides the informa-
tion to determine if the transfer count is correct.

modified 21 Dec 1992 9F-285

scsi_pktalloc (9F) DDI and DKI Kernel Functions SunOS 5.4

callback indicates what the allocator routines should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but again failed to do so), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

scsi_pktfree() frees the packet.

scsi_resfree() free all resources held by the packet and the packet itself.

RETURN VALUES Both allocation routines return a pointer to a scsi_pkt structure on success, or NULL on
failure.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block. Both deallocation routines can be called from user or
interrupt context.

SEE ALSO scsi_dmafree(9F), scsi_dmaget(9F), buf(9S), scsi_pkt(9S)

Writing Device Drivers

9F-286 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions scsi_poll (9F)

NAME scsi_poll − run a polled SCSI command on behalf of a target driver

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_poll(struct scsi_pkt ∗pkt);

ARGUMENTS pkt Pointer to the scsi_pkt(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_poll() requests the host adapter driver to run a polled command. Unlike
scsi_transport(9F) which runs commands asynchronously, scsi_poll() runs commands to
completion before returning. If the pkt_time member of pkt is zero it is defaulted to
SCSI_POLL_TIMEOUT to prevent an indefinite hang of the system.

RETURN VALUES scsi_poll() returns:

0 command completed successfully.

-1 command failed.

CONTEXT scsi_poll () can be called from user or interrupt level.

SEE ALSO makecom(9F), scsi_transport(9F), scsi_pkt(9S)

Writing Device Drivers

WARNING scsi_poll() might loop indefinitely waiting for a SCSI command to complete; hence it is
not normally recommended to call it from interrupt context.

modified 21 Dec 1991 9F-287

scsi_probe (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_probe − utility for probing a scsi device

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_probe(struct scsi_device ∗devp, int (∗waitfunc)());

ARGUMENTS devp Pointer to a scsi_device(9S) structure

waitfunc NULL_FUNC or SLEEP_FUNC

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_probe() determines whether a target/lun is present and sets up the scsi_device struc-
ture with inquiry data.

scsi_probe() uses the SCSI Inquiry command to test if the device exists. It may retry the
Inquiry command as appropriate. If scsi_probe() is successful, it will allocate space for
the scsi_inquiry structure and assign the address to the sd_inq member of the
scsi_device(9S) structure. scsi_probe() will then fill in this scsi_inquiry structure and
return SCSIPROBE_EXISTS.

scsi_unprobe(9F) is used to undo the effect of scsi_probe().

If the target is a non-CCS device, SCSIPROBE_NONCCS will be returned.

waitfunc indicates what the allocator routines should do when resources are not available;
the valid values are:

NULL_FUNC Do not wait for resources. Return SCSIPROBE_NOMEM or
SCSIPROBE_FAILURE

SLEEP_FUNC Wait indefinitely for resources.

RETURN VALUES scsi_probe() returns:

SCSIPROBE_BUSY Device exists but is currently busy.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_NORESP Device does not respond to an INQUIRY.

CONTEXT scsi_probe() is normally called from the target driver’s probe(9E) or attach(9E) routine.
If waitfunc is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level.

9F-288 modified 24 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions scsi_probe (9F)

EXAMPLE switch (scsi_probe(devp, NULL_FUNC)) {
default:
case SCSIPROBE_NORESP:
case SCSIPROBE_NONCCS:
case SCSIPROBE_NOMEM:
case SCSIPROBE_FAILURE:
case SCSIPROBE_BUSY:

break;

case SCSIPROBE_EXISTS:
switch (devp->sd_inq->inq_dtype) {
case DTYPE_DIRECT:

rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_RODIRECT:
rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_NOTPRESENT:
default:

break;
}

}
scsi_unprobe(devp);

SEE ALSO attach(9E), probe(9E), scsi_slave(9F), scsi_unprobe(9F), scsi_unslave(9F),
scsi_device(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

NOTES A waitfunc function other than NULL_FUNC or SLEEP_FUNC is not supported and may
have unexpected results.

modified 24 Feb 1994 9F-289

scsi_reset (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_reset − reset a SCSI bus or target

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_reset(struct scsi_address ∗ap , int level);

ARGUMENTS ap Pointer to the scsi_address structure.

level The level of reset required.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_reset() asks the host adapter driver to reset the SCSI bus or a SCSI target as specified
by level. If level equals RESET_ALL, the SCSI bus is reset. If it equals RESET_TARGET, ap is
used to determine the target to be reset.

RETURN VALUES scsi_reset() returns:

1 on success.

0 on failure.

CONTEXT scsi_reset () can be called from user or interrupt context.

SEE ALSO scsi_abort(9F)

Writing Device Drivers

9F-290 modified 21 Dec 1991

SunOS 5.4 DDI and DKI Kernel Functions scsi_slave (9F)

NAME scsi_slave − utility for SCSI target drivers to establish the presence of a target

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_slave(struct scsi_device ∗devp, int (∗callback)(void));

ARGUMENTS devp Pointer to a scsi_device(9S) structure.

callback Pointer to a callback function, NULL_FUNC or SLEEP_FUNC.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_slave() checks for the presence of a SCSI device. Target drivers may use this func-
tion in their probe(9E) routines. scsi_slave() determines if the device is present by using
a Test Unit Ready command followed by an Inquiry command. If scsi_slave() is success-
ful, it will fill in the scsi_inquiry structure, which is the sd_inq member of the
scsi_device(9S) structure, and return SCSI_PROBE_EXISTS. This information can be used
to determine if the target driver has probed the correct SCSI device type. callback indi-
cates what the allocator routines should do when DMA resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but again failed to do so), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

RETURN VALUES scsi_slave() returns:

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NORESP No response to TEST UNIT READY.

CONTEXT scsi_slave() is normally called from the target driver’s probe(9E) or attach(9E) routine. If
callback is SLEEP_FUNC, then this routine may only be called from user-level code. Other-
wise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

SEE ALSO attach(9E), probe(9E), ddi_iopb_alloc(9F), makecom(9F), scsi_dmaget(9F),
scsi_ifgetcap(9F), scsi_pktalloc(9F), scsi_poll(9F), scsi_probe(9F), scsi_device(9S)
ANSI Small Computer System Interface-2 (SCSI-2)
Writing Device Drivers

modified 21 Dec 1992 9F-291

scsi_sync_pkt (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_sync_pkt − synchronize CPU and I/O views of memory

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_sync_pkt(struct scsi_pkt ∗pktp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pktp pointer to a scsi_pkt(9S) structure.

DESCRIPTION scsi_sync_pkt() is used to selectively synchronize a CPU’s or device’s view of the data
associated with the SCSI packet that has been mapped for I/O. This may involve opera-
tions such as flushes of CPU or I/O caches, as well as other more complex operations
such as stalling until hardware write buffers have drained.

This function need only be called under certain circumstances. When a SCSI packet is
mapped for I/O using scsi_init_pkt(9F) and destroyed using scsi_destroy_pkt(9F), then
an implicit scsi_sync_pkt() will be performed. However, if the memory object has been
modified by either the device or a CPU after the mapping by scsi_init_pkt(9F), then a call
to scsi_sync_pkt() is required.

EXAMPLES If the same scsi_pkt is reused for a data transfer from memory to a device, then
scsi_sync_pkt() must be called before calling scsi_transport(9F). If the same packet is
reused for a data transfer from a device to memory scsi_sync_pkt() must be called after
the completion of the packet but before accessing the data in memory.

CONTEXT scsi_sync_pkt() may be called from user or interrupt context.

SEE ALSO tran_sync_pkt(9E), ddi_dma_sync(9F), scsi_init_pkt(9F), scsi_destroy_pkt(9F),
scsi_pkt(9S)

Writing Device Drivers

9F-292 modified 25 Feb 1994

SunOS 5.4 DDI and DKI Kernel Functions scsi_transport (9F)

NAME scsi_transport − request by a SCSI target driver to start a command

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_transport(struct scsi_pkt ∗pkt);

ARGUMENTS pkt Pointer to a scsi_pkt(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION Target drivers use scsi_transport() to request the host adapter driver to transport a com-
mand to the SCSI target device specified by pkt . The target driver must obtain resources
for the packet using scsi_init_pkt(9F) prior to calling this function. The packet may be
initialized using one of the makecom(9F) functions. scsi_transport () does not wait for
the SCSI command to complete. See scsi_poll(9F) for a description of polled SCSI com-
mands. Upon completion of the SCSI command the host adapter calls the completion
routine provided by the target driver in the pkt_comp member of the scsi_pkt pointed to
by pkt.

RETURN VALUES scsi_transport() returns:

TRAN_ACCEPT The packet was accepted by the transport layer.

TRAN_BUSY The packet could not be accepted because there was already
a packet in progress for this target/lun, the host adapter
queue was full, or the target device queue was full.

TRAN_BADPKT The DMA count in the packet exceeded the DMA engine’s
maximum DMA size.

TRAN_FATAL_ERROR A fatal error has occurred in the transport layer.

CONTEXT scsi_transport() can be called from user or interrupt context.

EXAMPLE if ((status = scsi_transport(rqpkt)) != TRAN_ACCEPT) {
scsi_log(devp, sd_label, CE_WARN,

"transport of request sense pkt fails (0x%x)\n", status);
}

SEE ALSO makecom(9F), scsi_init_pkt(9F), scsi_pktalloc(9F), scsi_poll(9F), scsi_pkt(9S)

Writing Device Drivers

modified 21 Dec 1992 9F-293

scsi_unprobe (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME scsi_unprobe, scsi_unslave − free resources allocated during initial probing

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_unslave(struct scsi_device ∗devp);

void scsi_unprobe(struct scsi_device ∗devp);

ARGUMENTS devp Pointer to a scsi_device(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION scsi_unprobe() and scsi_unslave() are used to free any resources that were allocated on
the driver’s behalf during scsi_slave(9F) and scsi_probe(9F) activity.

CONTEXT scsi_unprobe () and scsi_unslave () may be called from either the user or the interrupt
levels.

SEE ALSO scsi_probe(9F), scsi_slave(9F), scsi_device(9S)

Writing Device Drivers

9F-294 modified 21 Dec 1992

SunOS 5.4 DDI and DKI Kernel Functions semaphore (9F)

NAME semaphore, sema_init, sema_destroy, sema_p, sema_p_sig, sema_v, sema_tryp − sema-
phore functions

SYNOPSIS #include <sys/ksynch.h>

void sema_init(ksema_t ∗sp, u_int val , char ∗name, ksema_type_t type , void ∗arg);

void sema_destroy(ksema_t ∗sp);

void sema_p(ksema_t ∗sp);

void sema_v(ksema_t ∗sp);

int sema_p_sig(ksema_t ∗sp);

int sema_tryp(ksema_t ∗sp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS sp A pointer to a semaphore, type ksema_t.

val Initial value for semaphore.

name A string describing the semaphore for statistics and debugging.

type Variant type of the semaphore. Currently only SEMA_DRIVER is sup-
ported.

arg Type-specific argument, should be NULL.

DESCRIPTION These functions implement counting semaphores as described by Dijkstra. A semaphore
has a value which is atomicly decremented by sema_p() and atomicly incremented by
sema_v(). The value must always be greater than or equal to zero. If sema_p() is called
and the value is zero, the calling thread is blocked until another thread performs a
sema_v() operation on the semaphore.

Semaphores are initialized by calling sema_init(). The argument, val , gives the initial
value for the semaphore. The semaphore storage is provided by the caller but more may
be dynamicly allocated, if necessary, by sema_init(). For this reason, sema_destroy()
should be called before deallocating the storage containing the semaphore.

sema_p_sig() decrements the semaphore, as does sema_p(), however, if the semaphore
value is zero, sema_p_sig() will return without decrementing the value if a signal (e.g.
from kill(2)) is pending for the thread.

sema_tryp() will decrement the semaphore value only if it is greater than zero, and will
not block.

RETURN VALUES 0 sema_tryp() could not decrement the semaphore value because it was zero.

1 sema_p_sig() was not able to decrement the semaphore value and detected a
pending signal.

modified 17 Oct 1991 9F-295

semaphore (9F) DDI and DKI Kernel Functions SunOS 5.4

CONTEXT These function can be called from user or interrupt context, except for sema_init() and
sema_destroy(), which can be called from user context only.

SEE ALSO kill(2), condvar(9F), mutex(9F)

Writing Device Drivers

9F-296 modified 17 Oct 1991

SunOS 5.4 DDI and DKI Kernel Functions sprintf (9F)

NAME sprintf − format characters in memory

SYNOPSIS #include <sys/ddi.h>

char ∗sprintf(char ∗buf, const char ∗fmt, . . .);

ARGUMENTS buf Pointer to a character string.

fmt Pointer to a character string.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION sprintf() builds a string in buf under the control of the format fmt. The format is a char-
acter string with either plain characters, which are simply copied into buf, or conversion
specifications, each of which converts zero or more arguments, again copied into buf.
The results are unpredictable if there are insufficient arguments for the format; excess
arguments are simply ignored. It is the user’s responsibility to ensure that enough
storage is available for buf.

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conver-
sion. The converted value will be right-justified and padded with leading zeroes
if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned
octal (o, O), unsigned hexadecimal (x, X) or unsigned decimal (u),
respectively, and copied. The letters abcdef are used for x and X conver-
sion.

c The character value of argument is copied.

b This conversion uses two additional arguments. The first is an integer,
and is converted according to the base specified in the second argument.
The second argument is a character string in the form <base>[<arg> . . .].
The base supplies the conversion base for the first argument as a binary
value; \10 gives octal, \20 gives hexadecimal. Each subsequent <arg> is
a sequence of characters, the first of which is the bit number to be tested,
and subsequent characters, up to the next bit number or terminating null,
supply the name of the bit.

modified 27 Sep 1991 9F-297

sprintf (9F) DDI and DKI Kernel Functions SunOS 5.4

A bit number is a binary-valued character in the range 1-32. For each bit
set in the first argument, and named in the second argument, the bit
names are copied, separated by commas, and bracketed by < and >.
Thus, the following function call would generate
reg=3<BitTwo,BitOne>\n in buf.

sprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s The argument is taken to be a string (character pointer), and characters
from the string are copied until a null character is encountered. If the
character pointer is NULL, the string <null string> is used in its place.

% Copy a %; no argument is converted.

RETURN VALUES sprintf() returns its first argument, buf.

CONTEXT sprintf() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-298 modified 27 Sep 1991

SunOS 5.4 DDI and DKI Kernel Functions stoi (9F)

NAME stoi, numtos − convert between an integer and a decimal string

SYNOPSIS #include <sys/ddi.h>

int stoi(char ∗∗str);
void numtos(unsigned long num, char ∗s);

ARGUMENTS str Pointer to a character string to be converted.

num Decimal number to be converted to a character string.

s Character buffer to hold converted decimal number.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION
stoi() stoi() returns the integer value of a string of decimal numeric characters beginning at

∗∗str . No overflow checking is done. ∗str is updated to point at the last character exam-
ined.

numtos () numtos() converts a long into a null-terminated character string. No bounds checking is
done. The caller must ensure there is enough space to hold the result.

RETURN VALUES stoi() returns the integer value of the string str.

CONTEXT stoi() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

NOTES stoi() handles only positive integers; it does not handle leading minus signs.

modified 3 Mar 1994 9F-299

strchr (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME strchr − find a character in a string

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char ∗strchr(const char ∗str , int chr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS str Pointer to a string to be searched.

chr The character to search for.

DESCRIPTION strchr() returns a pointer to the first occurrence of chr in the string pointed to by str .

RETURN VALUES strchr() returns a pointer to a character, or NULL, if the search fails.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO strcmp(9F)

Writing Device Drivers

9F-300 modified 27 Mar 1992

SunOS 5.4 DDI and DKI Kernel Functions strcmp (9F)

NAME strcmp, strncmp − compare two null terminated strings.

SYNOPSIS #include <sys/ddi.h>

int strcmp(const char ∗s1, const char ∗s2);
int strncmp(const char ∗s1, const char ∗s2, size_t n);

ARGUMENTS s1, s2 Pointers to character strings.

n Count of characters to be compared.

INTERFACE
LEVEL Solaris DDI specific (Solaris DDI).

DESCRIPTION
strcmp() strcmp() returns 0 if the strings are the same, or the integer value of the expression (∗s1 -

∗s2) for the last characters compared if they differ.

strncmp() strncmp() returns 0 if the first n characters of s1 and s2 are the same, or (∗s1 - ∗s2) for the
last characters compared if they differ.

RETURN VALUES strcmp() returns 0 if the strings are the same, or (∗s1 - ∗s2) for the last characters com-
pared if they differ.

strncmp() returns 0 if the first n characters of strings are the same, or (∗s1 - ∗s2) for the
last characters compared if they differ.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 1 Apr 1994 9F-301

strcpy (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME strcpy, strncpy − copy a string from one location to another.

SYNOPSIS #include <sys/ddi.h>

char ∗strcpy(char ∗dst , char ∗srs);

char ∗strncpy(char ∗dst , char ∗srs, size_t n);

ARGUMENTS dst, srs Pointers to character strings.

n Count of characters to be copied.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION
strcpy() strcpy() copies characters in the string srs to dst , terminating at the first null character in

srs, and returns dst to the caller. No bounds checking is done.

strncpy() strncpy() copies srs to dst , null-padding or truncating at n bytes, and returns dst . No
bounds checking is done.

RETURN VALUES strcpy(), and strncpy() return dst.

CONTEXT strcpy() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-302 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions strlen (9F)

NAME strlen − determine the number of non-null bytes in a string.

SYNOPSIS #include <sys/ddi.h>

size_t strlen(const char ∗s);

ARGUMENTS s Pointer to a character string.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION strlen() returns the number of non-null bytes in the string argument s.

RETURN VALUES strlen() returns the number of non-null bytes in s.

CONTEXT strlen() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 9F-303

strlog (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME strlog − submit messages to the log driver

SYNOPSIS #include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/log.h>

int strlog(short mid, short sid, char level, unsigned short flags , char ∗fmt, ...);

ARGUMENTS mid Identification number of the module or driver submitting the message (in the
case of a module, its mi_idnum value from module_info(9S)).

sid Identification number for a particular minor device.

level Tracing level for selective screening of low priority messages. Larger values
imply less important information.

flags Valid flag values are:

SL_ERROR Message is for error logger.
SL_TRACE Message is for trace.
SL_NOTIFY Mail copy of message to system administrator.
SL_CONSOLE Log message to console.
SL_FATAL Error is fatal.
SL_WARN Error is a warning.
SL_NOTE Error is a notice.

fmt printf(3S) style format string. %s, %e, %g, and %G formats are not allowed.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION strlog() submits formatted messages to the log(7) driver. The messages can be retrieved
with the getmsg(2) system call. The flags argument specifies the type of the message and
where it is to be sent. strace(1M) receives messages from the log driver and sends them
to the standard output. strerr(1M) receives error messages from the log driver and
appends them to a file called /var/adm/streams/error. mm-dd, where mm-dd identifies the
date of the error message.

RETURN VALUES strlog() returns 0 if the message is not seen by all the readers, 1 otherwise.

CONTEXT strlog() can be called from user or interrupt context.

SEE ALSO strace(1M), strerr(1M), getmsg(2), log(7), module_info(9S)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-304 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions strqget (9F)

NAME strqget − get information about a queue or band of the queue

SYNOPSIS #include <sys/stream.h>

int strqget(queue_t ∗q, qfields_t what , unsigned char pri, long ∗valp);

ARGUMENTS q Pointer to the queue.

what Field of the queue structure for (or the specified priority band) to return informa-
tion about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

QCOUNT Approximate size (in bytes) of data.

QFIRST First message.

QLAST Last message.

QFLAG Status.

pri Priority band of interest.

valp The address of where to store the value of the requested field.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION strqget() gives drivers and modules a way to get information about a queue or a particu-
lar band of a queue without directly accessing STREAMS data structures, thus insulating
them from changes in the implementation of these data structures from release to release.

RETURN VALUES On success, 0 is returned and the value of the requested field is stored in the location
pointed to by valp . An error number is returned on failure.

CONTEXT strqget() can be called from user or interrupt context.

SEE ALSO freezestr(9F), queue(9S), strqset(9F), unfreezestr(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES The stream must be frozen using freezestr(9F) before calling strqget().

modified 28 Jan 1993 9F-305

strqset (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME strqset − change information about a queue or band of the queue

SYNOPSIS #include <sys/stream.h>

int strqset(queue_t ∗q, qfields_t what , unsigned char pri, long val);

ARGUMENTS q Pointer to the queue.

what Field of the queue structure (or the specified priority band) to return information
about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

pri Priority band of interest.

val The value for the field to be changed.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION strqset() gives drivers and modules a way to change information about a queue or a par-
ticular band of a queue without directly accessing STREAMS data structures.

RETURN VALUES On success, 0 is returned. EINVAL is returned if an undefined attribute is specified.

CONTEXT strqset() can be called from user or interrupt context.

SEE ALSO freezestr(9F), queue(9S), strqget(9F), unfreezestr(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES The stream must be frozen using freezestr(9F) before calling strqset().

To set the values of QMINPSZ and QMAXPSZ from within a single call to
freezestr(9F)/unfreezestr(9F): when lowering the existing values, set QMINPSZ before
setting QMAXPSZ; when raising the existing values, set QMAXPSZ before setting
QMINPSZ.

9F-306 modified 28 Jan 1993

SunOS 5.4 DDI and DKI Kernel Functions swab (9F)

NAME swab − swap bytes in 16-bit halfwords

SYNOPSIS #include <sys/sunddi.h>

void swab (void ∗src, void ∗dst , size_t nbytes);

ARGUMENTS src A pointer to the buffer containing the bytes to be swapped.

dst A pointer to the destination buffer where the swapped bytes will be written. If
dst is the same as src the buffer will be swapped in place.

nbytes Number of bytes to be swapped, rounded down to the nearest half-word.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION swab() copies the bytes in the buffer pointed to by src to the buffer pointer to by dst ,
swapping the order of adjacent bytes in half-word pairs as the copy proceeds. A total of
nbytes bytes are copied, rounded down to the nearest half-word.

CONTEXT swab() can be called from user or interrupt context.

NOTES Since swab() operates byte-by-byte, it can be used on non-aligned buffers.

SEE ALSO Writing Device Drivers

modified 1 Feb 1991 9F-307

testb (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME testb − check for an available buffer

SYNOPSIS #include <sys/stream.h>

int testb(int size, unsigned int pri);

ARGUMENTS size Size of the requested buffer.

pri Priority of the allocb request.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION testb() checks to see if an allocb(9F) call is likely to succeed if a buffer of size bytes at
priority pri is requested. Even if testb() returns successfully, the call to allocb (9F) can
fail. The pri argument is no longer used, but is retained for compatibility.

RETURN VALUE Returns 1 if a buffer of the requested size is available, and 0 if one is not.

CONTEXT testb() can be called from user or interrupt context.

EXAMPLES In a service routine, if copymsg(9F) fails (line 6), the message is put back on the queue
(line 7) and a routine, tryagain, is scheduled to be run in one tenth of a second. Then the
service routine returns.

When the timeout(9F) function runs, if there is no message on the front of the queue, it
just returns. Otherwise, for each message block in the first message, check to see if an
allocation would succeed. If the number of message blocks equals the number we can
allocate, then enable the service procedure. Otherwise, reschedule tryagain to run again
in another tenth of a second. Note that tryagain is merely an approximation. Its account-
ing may be faulty. Consider the case of a message comprised of two 1024-byte message
blocks. If there is only one free 1024-byte message block and no free 2048-byte message
blocks, then testb() will still succeed twice. If no message blocks are freed of these sizes
before the service procedure runs again, then the copymsg(9F) will still fail. The reason
testb() is used here is because it is significantly faster than calling copymsg. We must
minimize the amount of time spent in a timeout routine.

1 xxxsrv(q)
2 queue_t ∗q;
3 {
4 mblk_t ∗mp;
5 mblk_t ∗nmp;

. . .
6 if ((nmp = copymsg(mp)) == NULL) {
7 putbq(q, mp);
8 timeout(tryagain, (long)q, drv_usectohz(100000));
9 return;
10 }

. . .

9F-308 modified 19 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions testb (9F)

11 }
12
13 tryagain(q)
14 queue_t ∗q;
15 {
16 register int can_alloc = 0;
17 register int num_blks = 0;
18 register mblk_t ∗mp;
19
20 if (!q->q_first)
21 return;
22 for (mp = q->q_first; mp; mp = mp->b_cont) {
23 num_blks++;
24 can_alloc += testb((mp->b_datap->db_lim -
25 mp->b_datap->db_base), BPRI_MED);
26 }
27 if (num_blks == can_alloc)
28 qenable(q);
29 else
30 timeout(tryagain, (long)q, drv_usectohz(100000));
31 }

SEE ALSO allocb(9F), bufcall(9F), copymsg(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

NOTES The pri argument is provided for compatibility only. Its value is ignored.

modified 19 Nov 1992 9F-309

timeout (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME timeout − execute a function after a specified length of time

SYNOPSIS #include <sys/types.h>

int timeout(void (∗func)(caddr_t), caddr_t arg , long ticks);

ARGUMENTS func Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The timeout() function schedules the specified function to be called after a specified time
interval. The exact time interval over which the timeout takes effect cannot be
guaranteed, but the value given is a close approximation.

The function called by timeout() must adhere to the same restrictions as a driver soft
interrupt handler.

The timeout() function returns an identifier that may be passed to the untimeout(9F)
function to cancel a pending request.

RETURN VALUES Under normal conditions, timeout() returns an integer timeout identifier not equal to
zero. If, however, the timeout table is full, the system will panic with the following panic
message:

PANIC: Timeout table overflow

CONTEXT timeout() can be called from user or interrupt context.

EXAMPLE In the following example, the device driver has issued an IO request and is waiting for
the device to respond. If the device does not respond within 5 minutes, the device driver
will print out an error message to the console.

static void
xxtimeout_handler(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;

mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->timeout_id = 0;
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);

}

9F-310 modified 30 May 1994

SunOS 5.4 DDI and DKI Kernel Functions timeout (9F)

static u_int
xxintr(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;
.
.
.

mutex_enter(&xsp->lock);
if (xsp->timeout_id != 0) {

(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}

/∗ Service interrupt ∗/

cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);

return(DDI_INTR_CLAIMED);
}

static void
xxcheckcond(struct xxstate ∗xsp)
{

.

.

.
mutex_enter(&xsp->lock);
xsp->timeout_id = timeout(xxtimeout_handler,

(caddr_t)xsp, (5 ∗ drv_usectohz(1000000));
while (/∗ Waiting for interrupt or timeout∗/)

cv_wait(&xsp->cv, &xsp->lock);

if (xsp->flags & TIMED_OUT)
cmn_err(CE_WARN, "Device not responding");

.

.

.
mutex_exit(&xsp->lock);

.

.

.
}

modified 30 May 1994 9F-311

timeout (9F) DDI and DKI Kernel Functions SunOS 5.4

SEE ALSO bufcall(9F), delay(9F), untimeout(9F)

Writing Device Drivers

9F-312 modified 30 May 1994

SunOS 5.4 DDI and DKI Kernel Functions uiomove (9F)

NAME uiomove − copy kernel data using uio structure

SYNOPSIS #include <sys/types.h>
#include <sys/uio.h>

int uiomove(caddr_t address, long nbytes, enum uio_rw rwflag, uio_t ∗uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS address Source/destination kernel address of the copy.

nbytes Number of bytes to copy.

rwflag Flag indicating read or write operation. Possible values are UIO_READ and
UIO_WRITE.

uio_p Pointer to the uio structure for the copy.

DESCRIPTION The uiomove() function copies nbytes of data to or from the space defined by the uio
structure (described in uio.h) and the driver.

The uio_segflg member of the uio(9S) structure determines the the type of space to or
from which the transfer being made. If it is set to UIO_SYSSPACE the data transfer is
between addresses in the kernel. If it is set to UIO_USERSPACE the transfer is between a
user program and kernel space.

In addition to moving the data, uiomove() adds the number of bytes moved to the
iov_base member of the iovec(9S) structure, decreases the iov_len member, increases the
uio_offset member of the uio(9S) structure, and decreases the uio_resid member.

This function does automatic page boundary checking. nbytes does not have to be word-
aligned.

RETURN VALUES uiomove() returns 0 upon success or EFAULT on failure.

CONTEXT User context only, if uio_segflg is set to UIO_USERSPACE. User or interrupt context, if
uio_segflg is set to UIO_SYSSPACE.

SEE ALSO ureadc(9F), uwritec(9F), iovec(9S), uio(9S)

Writing Device Drivers

WARNINGS If uio_segflg is set to UIO_SYSSPACE and address is selected from user space, the system
may panic.

modified 24 Nov 1993 9F-313

unbufcall (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME unbufcall − cancel a pending bufcall request

SYNOPSIS #include <sys/stream.h>

void unbufcall(int id);

ARGUMENTS id Identifier returned from bufcall(9F) or esbbcall(9F)

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION unbufcall cancels a pending bufcall() or esbbcall() request. The argument id is a non-
zero identifier for the request to be cancelled. id is returned from the bufcall() or esbb-
call() function used to issue the request.

unbufcall() will not return until the pending callback is cancelled or has run. Because of
this, locks acquired by the callback routine should not be held across the call to unbuf-
call() or deadlock may result.

RETURN VALUES None.

CONTEXT unbufcall() can be called from user or interrupt context.

SEE ALSO bufcall(9F), esbbcall(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

9F-314 modified 19 Nov 1992

SunOS 5.4 DDI and DKI Kernel Functions unlinkb (9F)

NAME unlinkb − remove a message block from the head of a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗unlinkb(mblk_t ∗mp);

ARGUMENTS mp Pointer to the message.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION unlinkb() removes the first message block from the message pointed to by mp. A new
message, minus the removed message block, is returned.

RETURN VALUES If successful, unlinkb() returns a pointer to the message with the first message block
removed. If there is only one message block in the message, NULL is returned.

CONTEXT unlinkb() can be called from user or interrupt context.

EXAMPLE The routine expects to get passed an M_PROTO T_DATA_IND message. It will remove
and free the M_PROTO header and return the remaining M_DATA portion of the mes-
sage.

1 mblk_t ∗
2 makedata(mp)
3 mblk_t ∗mp;
4 {
5 mblk_t ∗nmp;
6
7 nmp = unlinkb(mp);
8 freeb(mp);
9 return(nmp);
10 }

SEE ALSO linkb(9F)

Writing Device Drivers
STREAMS Programmer’s Guide

modified 11 Apr 1991 9F-315

untimeout (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME untimeout − cancel previous timeout function call

SYNOPSIS #include <sys/types.h>

int untimeout(int id);

ARGUMENTS id Identification value generated by a previous timeout(9F) function call.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION untimeout() cancels a pending timeout(9F) request. untimeout() will not return until
the pending callback is cancelled or has run. Because of this, locks acquired by the call-
back routine should not be held across the call to untimeout() or a deadlock may result.

RETURN VALUES untimeout() returns -1 if the id is not found. Otherwise, it returns an integer value
greater than or equal to 0.

CONTEXT untimeout() can be called from user or interrupt context.

EXAMPLE In the following example, the device driver has issued an IO request and is waiting for
the device to respond. If the device does not respond within 5 minutes, the device driver
will print out an error message to the console.

static void
xxtimeout_handler(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;

mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->timeout_id = 0;
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);

}
static u_int
xxintr(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;
.
.
.
mutex_enter(&xsp->lock);
if (xsp->timeout_id != 0) {

(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}

9F-316 modified 30 May 1994

SunOS 5.4 DDI and DKI Kernel Functions untimeout (9F)

/∗ Service interrupt ∗/

cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);

return(DDI_INTR_CLAIMED);
}

static void
xxcheckcond(struct xxstate ∗xsp)
{

.

.

.
mutex_enter(&xsp->lock);
xsp->timeout_id = timeout(xxtimeout_handler,

(caddr_t)xsp, (5 ∗ drv_usectohz(1000000));
while (/∗ Waiting for interrupt or timeout∗/)

cv_wait(&xsp->cv, &xsp->lock);

if (xsp->flags & TIMED_OUT)
cmn_err(CE_WARN, "Device not responding");

.

.

.
mutex_exit(&xsp->lock);
.
.
.

}

SEE ALSO open(9E), cv_signal(9F), cv_wait_sig(9F), delay(9F), timeout(9F)

Writing Device Drivers

modified 30 May 1994 9F-317

ureadc (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME ureadc − add character to a uio structure

SYNOPSIS #include <sys/uio.h>
#include <sys/types.h>

int ureadc(int c, uio_t ∗uio_p);

ARGUMENTS c The character added to the uio (9S) structure.

uio_p Pointer to the uio(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION ureadc() transfers the character c into the address space of the uio(9S) structure pointed
to by uio_p, and updates the uio structure as for uiomove(9F).

RETURN VALUES 0 is returned on success and EFAULT on failure.

CONTEXT ureadc() can be called from user or interrupt context.

SEE ALSO uiomove(9F), uwritec(9F), iovec(9S), uio(9S)

Writing Device Drivers

9F-318 modified 11 Apr 1991

SunOS 5.4 DDI and DKI Kernel Functions uwritec (9F)

NAME uwritec − remove a character from a uio structure

SYNOPSIS #include <sys/uio.h>

int uwritec (uio_t ∗uio_p);

ARGUMENTS uio_p Pointer to the uio(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION uwritec() returns a character from the uio structure pointed to by uio_p, and updates the
uio structure as for uiomove(9F).

RETURN VALUES The next character for processing is returned on success, and -1 is returned if uio is
empty or there is an error.

CONTEXT uwritec() can be called from user or interrupt context.

SEE ALSO uiomove(9F), ureadc(9F), iovec(9S), uio(9S)

Writing Device Drivers

modified 11 Apr 1991 9F-319

vsprintf (9F) DDI and DKI Kernel Functions SunOS 5.4

NAME vsprintf − format characters in memory

SYNOPSIS #include <sys/ddi.h>

char ∗vsprintf(char ∗buf, const char ∗fmt, va_list ap);

ARGUMENTS buf Pointer to a character string.

fmt Pointer to a character string.

ap Pointer to a variable argument list.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION vsprintf() builds a string in buf under the control of the format fmt. The format is a char-
acter string with either plain characters, which are simply copied into buf, or conversion
specifications, each of which converts zero or more arguments, again copied into buf.
The results are unpredictable if there are insufficient arguments for the format; excess
arguments are simply ignored. It is the user’s responsibility to ensure that enough
storage is available for buf.

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conver-
sion. The converted value will be right-justified and padded with leading zeroes
if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned
octal (o, O), unsigned hexadecimal (x, X) or unsigned decimal (u),
respectively, and copied. The letters abcdef are used for x and X conver-
sion.

c The character value of argument is copied.

b This conversion uses two additional arguments. The first is an integer,
and is converted according to the base specified in the second argument.
The second argument is a character string in the form <base>[<arg> . . .].
The base supplies the conversion base for the first argument as a binary
value; \10 gives octal, \20 gives hexadecimal. Each subsequent <arg> is
a sequence of characters, the first of which is the bit number to be tested,
and subsequent characters, up to the next bit number or terminating null,
supply the name of the bit.

9F-320 modified 27 Sep 1991

SunOS 5.4 DDI and DKI Kernel Functions vsprintf (9F)

A bit number is a binary-valued character in the range 1-32. For each bit
set in the first argument, and named in the second argument, the bit
names are copied, separated by commas, and bracketed by < and >.
Thus, the following function call would generate
reg=3<BitTwo,BitOne>\n in buf.

vsprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s The argument is taken to be a string (character pointer), and characters
from the string are copied until a null character is encountered. If the
character pointer is NULL, the string <null string> is used in its place.

% Copy a %; no argument is converted.

RETURN VALUES vsprintf() returns its first argument, buf.

CONTEXT vsprintf() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 27 Sep 1991 9F-321

Index

A
add a fully initialized kstat to the system —

kstat_install, 9F-194
adjmsg — trim bytes from a message, 9F-35
allocate and free a scsi_pkt structure —

scsi_hba_pkt_alloc, 9F-274
scsi_hba_pkt_free, 9F-274

allocate and free non-sequentially accessed memory
— ddi_iopb_alloc, 9F-123
— ddi_iopb_free, 9F-123

allocate and free transport structures —
scsi_hba_tran_alloc, 9F-277
scsi_hba_tran_free, 9F-277

allocate space — rmalloc, 9F-246
allocate space from a resource map —

rmalloc_wait, 9F-249
assert — expression verification, 9F-5
asynchronous STREAMS perimeter upgrade —

qwriter, 9F-245

B
bcopy — copy data between address locations in

kernel, 9F-41
bioerror — indicate error in buffer header, 9F-45
bioreset — reuse a private buffer header after

I/O is complete, 9F-46
bufcall — call a function when a buffer becomes

available, 9F-314, 9F-53
buffer header

indicate error — bioerror, 9F-45
reuse a private buffer header after I/O is com-

plete — bioreset, 9F-46
busy-wait for specified interval — drv_usecwait,

9F-161
byte streams

compare two — bcmp, 9F-40
bytes, size

convert size in pages — ptob, 9F-221
convert to size in memory pages (round down)

— btop, 9F-51
convert to size in memory pages (round up) —

btopr, 9F-52

C
call a function when a buffer becomes available —

qbufcall, 9F-234
call a STREAMS put procedure — put, 9F-224
cancel a pending qbufcall request — qunbufcall,

9F-241
cancel previous timeout function call — qun-

timeout, 9F-242
character strings

compare two null terminated strings —
strcmp, strncmp, 9F-301

convert between an integer and a decimal

Index−1

string
character strings, continued

— stoi, numtos, 9F-299
copy a string from one location to another —

strcpy, strncpy, 9F-302
determine the number of non-null bytes in a

string — strlen, 9F-303
find a character in a string — strchr, 9F-300
format in memory — sprintf, 9F-297

check for an available buffer — testb, 9F-308
condition variable routines, driver

— condvar, 9F-63
— cv_broadcast, 9F-63
— cv_init, 9F-63
— cv_signal, 9F-63
— cv_timedwait, 9F-63
— cv_timedwait_sig, 9F-63
— cv_wait, 9F-63
— cv_wait_sig, 9F-63

control driver notification of user accesses —
ddi_mapdev_intercept, 9F-129
ddi_mapdev_nointercept, 9F-129

convert a DMA segment to a DMA address cookie
— ddi_dma_segtocookie, 9F-104

convert clock ticks to microseconds —
drv_hztousec, 9F-158

convert microseconds to clock ticks —
drv_usectohz, 9F-160

create a minor node for this device —
ddi_create_minor_node, 9F-84

create and initialize a new kstat — kstat_create,
9F-192

create driver-controlled mapping of device —
ddi_mapdev, 9F-128

D
datamsg — test whether a message is a data mes-

sage, 9F-74
DDI access credential structure

— ddi_get_cred, 9F-116
DDI announce a device

— ddi_report_dev, 9F-144
DDI device access

DDI device access, continued
slave access only — ddi_slaveonly, 9F-147

DDI device critical region of control
enter — ddi_enter_critical, 9F-114
exit — ddi_exit_critical, 9F-114

DDI device information structure
find parent — ddi_get_parent, 9F-120
get the root of the dev_info tree —

ddi_root_node, 9F-145
remove a minor node for this devinfo —

ddi_remove_minor_node, 9F-143
DDI device instance number

get — ddi_get_instance, 9F-118
DDI device mapping

ddi_mapdev — create driver-controlled map-
ping of device, 9F-128

ddi_mapdev_intercept — control driver
notification of user accesses, 9F-129

ddi_mapdev_nointercept — control driver
notification of user accesses, 9F-129

DDI device registers
map — ddi_map_regs, 9F-125
return the number of register sets —

ddi_dev_nregs, 9F-89
return the size — ddi_dev_regsize, 9F-90
unmap — ddi_unmap_regs, 9F-125

DDI device virtual address
read a character — ddi_peekc, 9F-133
read a long — ddi_peekl, 9F-133
read a longlong — ddi_peekd, 9F-133
read a short — ddi_peeks, 9F-133
read a value — ddi_peek, 9F-133
write a character — ddi_pokec, 9F-135
write a long — ddi_pokel, 9F-135
write a longlong — ddi_poked, 9F-135
write a short — ddi_pokes, 9F-135
write a value — ddi_poke, 9F-135

DDI device’s private data area
get the address —

ddi_get_driver_private, 9F-117
set the address —

ddi_set_driver_private, 9F-117
DDI devinfo node name

return — ddi_get_name, 9F-119
DDI direct memory access

Index−2

DDI direct memory access, continued
convert DMA handle to DMA addressing

cookie — ddi_dma_htoc, 9F-98
DDI direct memory access services

allocate consistent memory—
ddi_iopb_alloc, 9F-131

convert a DMA cookie — ddi_dma_coff,
9F-94

easier DMA setup — ddi_dma_addr_setup,
9F-91, 9F-92

find minimum alignment and transfer size for
device — ddi_iomin, 9F-122

find post DMA mapping alignment and
minimum effect properties —
ddi_dma_devalign, 9F-96

free consistent memory — ddi_iopb_free,
9F-131

report current DMA window offset and size —
ddi_dma_curwin, 9F-95

setup DMA mapping — ddi_dma_setup,
9F-101, 9F-102, 9F-104

setup DMA resources — ddi_dma_setup,
9F-106

shift current DMA window —
ddi_dma_movwin, 9F-99

tear down DMA mapping — ddi_dma_free,
9F-97

DDI interrupt handling
add an interrupt — ddi_add_intr, 9F-75
indicate interrupt handler type —

ddi_intr_hilevel, 9F-121
remove an interrupt — ddi_remove_intr,

9F-75
return the number of interrupt specifications —

ddi_dev_nintrs, 9F-88
DDI memory mapping

map a segment — ddi_segmap, 9F-146
DDI page size conversions

— ddi_btop, 9F-79
— ddi_btopr, 9F-79
— ddi_ptob, 9F-79

DDI property management
create properties for leaf device drivers —

ddi_prop_create, 9F-137
— ddi_getlongprop, 9F-141

DDI property management, continued
— ddi_getlongprop_buf, 9F-141
— ddi_getprop, 9F-141
— ddi_getproplen, 9F-141
— ddi_prop_op, 9F-141
modify properties for leaf device drivers —

ddi_prop_modify, 9F-137
remove all properties for leaf device drivers —

ddi_prop_remove_all, 9F-137
remove properties for leaf device drivers —

ddi_prop_remove, 9F-137
DDI self identifying devices

tell whether a device is self-identifying —
ddi_dev_is_sid, 9F-86

DDI soft interrupt handling
add a soft interrupt — ddi_add_softintr,

9F-77
remove a soft interrupt —

ddi_remove_softintr, 9F-77
trigger a soft interrupt —

ddi_trigger_softintr, 9F-77
DDI soft state utility routines

allocate state structure —
ddi_soft_state_zalloc, 9F-148

— ddi_soft_state, 9F-148
free soft state entry —

ddi_soft_state_free, 9F-148
get pointer to soft state —

ddi_get_soft_state, 9F-148
initialize state — ddi_soft_state_init,

9F-148
remove all state info —

ddi_soft_state_fini, 9F-148
ddi_create_minor_node — create a minor node

for this device, 9F-84
ddi_dma_burstsizes — find out the allowed

burst sizes for a DMA mapping, 9F-93
ddi_dma_nextseg — get next DMA segment,

9F-101
ddi_dma_nextwin — get next DMA window,

9F-102
ddi_dma_segtocookie — convert a DMA seg-

ment to a DMA address cookie, 9F-104
ddi_dma_sync — synchronize CPU and I/O views

Index−3

of memory, 9F-108
ddi_dmae — system DMA engine functions, 9F-110
ddi_dmae_1stparty — system DMA engine

functions, 9F-110
ddi_dmae_alloc — system DMA engine func-

tions, 9F-110
ddi_dmae_disable — system DMA engine func-

tions, 9F-110
ddi_dmae_enable — system DMA engine func-

tions, 9F-110
ddi_dmae_getcnt — system DMA engine func-

tions, 9F-110
ddi_dmae_getlim — system DMA engine func-

tions, 9F-110
ddi_dmae_prog — system DMA engine functions,

9F-110
ddi_dmae_release — system DMA engine func-

tions, 9F-110
ddi_dmae_stop — system DMA engine functions,

9F-110
ddi_ffs — find first (last) bit set in a long integer,

9F-115
ddi_fls — find first (last) bit set in a long integer,

9F-115
ddi_iopb_alloc — allocate and free non-

sequentially accessed memory, 9F-123
ddi_iopb_free — allocate and free non-

sequentially accessed memory, 9F-123
ddi_mapdev — create driver-controlled mapping

of device, 9F-128
ddi_mapdev_intercept — control driver

notification of user accesses, 9F-129
ddi_mapdev_intercept — control driver

notification of user accesses, 9F-129
default SCSI HBA probe function —

scsi_hba_probe, 9F-276
delay — delay process execution for a specified

number of clock ticks, 9F-153
Device Driver Interface, See DDI
device switch tables

return function for insignificant entries —
nulldev, 9F-214

devices
get major device number — getmajor, 9F-180
get minor device number — getminor, 9F-181
make device number from major and minor

numbers — makedevice, 9F-201
devices, non-pollable

error return function — nochpoll, 9F-211
disksort — single direction elevator seek sort for

buffers, 9F-155
DMA mapping, the allowed burst sizes for —

ddi_dma_burstsizes, 9F-93
driver buffers

copy data— copyin, 9F-80
copy data from driver — copyout, 9F-82
copy data from driver to user program —

copyout, 9F-72
copy data from user program — copyin,

9F-68
return to free list — brelse, 9F-50

driver error messages
display an error message or panic the system

— cmn_err, 9F-61
driver privilege — drv_priv, 9F-159
drv_getparm — retrieve kernel state information,

9F-156
drv_hztousec — convert clock ticks to

microseconds, 9F-158
drv_priv — determine driver privilege, 9F-159
drv_usectohz — convert microseconds to clock

ticks, 9F-160
drv_usecwait — busy-wait for specified interval,

9F-161
dupb — duplicate a message block descriptor,

9F-162
duplicate a message — dupmsg, 9F-165
duplicate a message block descriptor — dupb,

9F-162
dupmsg — duplicate a message, 9F-165

E
error return function for illegal entries — nodev,

9F-212
expression verification

Index−4

expression verification, continued
— assert, 9F-5

F
find first (last) bit set in a long integer — ddi_ffs,

9F-115
ddi_fls, 9F-115

flushband — flush messages for specified priority
band, 9F-170

free space — rmfree, 9F-251
freerbuf — free a raw buffer header, 9F-175
freeze, thaw the state of a stream — freezestr,

9F-176
unfreezestr, 9F-176

freezestr — freeze, thaw the state of a stream,
9F-176

G
get next DMA segment — ddi_dma_nextseg,

9F-101
get next DMA window — ddi_dma_nextwin,

9F-102
getmajor — get major device number, 9F-180
getminor — get minor device number, 9F-181
getrbuf — get a raw buffer header, 9F-183

I
I/O error

return — geterror, 9F-179
I/O, block

suspend processes pending completion —
biowait, 9F-47

I/O, buffer
release buffer and notify processes —

biodone, 9F-43
I/O, paged request

allocate virtual address space — bp_mapin,
9F-48

deallocate virtual address space —
bp_mapout, 9F-49

I/O, physical
— minphys, 9F-216
— physio, 9F-216

inb — read from an I/O port, 9F-185
initialize a named kstat — kstat_named_init,

9F-195
inl — read from an I/O port, 9F-185
inw — read from an I/O port, 9F-185

K
kernel address locations

between locations — bcopy, 9F-41
kernel addresses

get page frame number — hat_getkpfnum,
9F-184

kernel memory
allocate and clear space — kmem_zalloc,

9F-190
allocate space — kmem_alloc, 9F-188
free previously allocated — kmem_free,

9F-189
kernel modules, dynamic loading

add loadable module — mod_install, 9F-204
query loadable module — mod_info, 9F-204
remove loadable module — mod_remove,

9F-204
kstat_create — create and initialize a new kstat,

9F-192
kstat_delete — remove a kstat from the system,

9F-193
kstat_install — add a fully initialized kstat to

the system, 9F-194
kstat_named_init — initialize a named kstat,

9F-195
kstat_queue — update I/O kstat statistics, 9F-196
kstat_runq_back_to_waitq — update I/O

kstat statistics, 9F-196
kstat_runq_enter — update I/O kstat statistics,

9F-196
kstat_runq_exit — update I/O kstat statistics,

9F-196
kstat_waitq_enter — update I/O kstat statis-

tics, 9F-196
kstat_waitq_exit — update I/O kstat statistics,

9F-196
kstat_waitq_to_runq — update I/O kstat statis-

Index−5

tics, 9F-196

M
makedevice — make device number from major

and minor numbers, 9F-201
max — return the larger of two integers, 9F-202
memory

clear for a given number of bytes — bzero,
9F-56

min — return the lesser of two integers, 9F-203
minor node for device

create — ddi_create_minor_node, 9F-84
mt-streams — STREAMS multithreading, 9F-207
mutex routines

— mutex, 9F-209
— mutex_destroy, 9F-209
— mutex_enter, 9F-209
— mutex_exit, 9F-209
— mutex_init, 9F-209
— mutex_owned, 9F-209
— mutex_tryenter, 9F-209

mutual exclusion lock, See mutex

O
OTHERQ — get pointer to queue’s partner queue,

9F-31
outb — write to an I/O port, 9F-215
outl — write to an I/O port, 9F-215
outw — write to an I/O port, 9F-215

P
pollwakeup — inform a process that an event has

occurred, 9F-218
proc_ref — send a signal to a process, 9F-219
proc_signal — send a signal to a process, 9F-219
proc_unref — send a signal to a process, 9F-219
put — call a STREAMS put procedure, 9F-224

Q
qbufcall — call a function when a buffer becomes

available, 9F-234
qtimeout — execute a function after a specified

length of time, 9F-240
qunbufcall — cancel a pending qbufcall request,

9F-241
quntimeout — cancel previous timeout function

call, 9F-242
qwait — STREAMS wait routines, 9F-243
qwait_sig — STREAMS wait routines, 9F-243
qwriter — asynchronous STREAMS perimeter

upgrade, 9F-245

R
raw buffer

free a raw buffer header — freerbuf, 9F-175
get a raw buffer header — getrbuf, 9F-183

RD — get pointer to the read queue, 9F-32
read from an I/O port — inb, 9F-185

inl, 9F-185
inw, 9F-185
repinsb, 9F-185
repinsd, 9F-185
repinsw, 9F-185

readers/writer lock functions
— rw_destroy, 9F-256
— rw_downgrade, 9F-256
— rw_enter, 9F-256
— rw_exit, 9F-256
— rw_init, 9F-256
— rw_read_locked, 9F-256
— rw_tryenter, 9F-256
— rw_tryupgrade, 9F-256
— rwlock, 9F-256

remove a kstat from the system — kstat_delete,
9F-193

repinsb — read from an I/O port, 9F-185
repinsd — read from an I/O port, 9F-185
repinsw — read from an I/O port, 9F-185
repoutsb — write to an I/O port, 9F-215
repoutsd — write to an I/O port, 9F-215
repoutsw — write to an I/O port, 9F-215
resource map

allocate resource maps — rmallocmap, 9F-250
free resource maps — rmallocmap, 9F-250

retrieve kernel state information — drv_getparm,

Index−6

9F-156
return index matching capability string —

scsi_hba_lookup_capstr, 9F-273
return the larger of two integers — max, 9F-202
return the lesser of two integers — min, 9F-203
rmalloc — allocate space from a resource map,

9F-246
rmalloc_wait — allocate space from a resource

map, 9F-249
rmfree — free space back into a resource map,

9F-251

S
SAMESTR — test if next queue is in the same stream,

9F-33
SCSI commands, make packet

— makecom, 9F-199
— makecom_g0, 9F-199
— makecom_g0_s, 9F-199
— makecom_g1, 9F-199
— makecom_g5, 9F-199

SCSI dma utility routines
— scsi_dmafree, 9F-264
— scsi_dmaget, 9F-264

SCSI HBA attach and detach routines —
scsi_hba_attach, 9F-270
scsi_hba_detach, 9F-270

SCSI Host Bus Adapter system initialization and
completion routines — scsi_hba_init,
9F-272
scsi_hba_fini, 9F-272

SCSI packet
allocate a SCSI packet in iopb map —

get_pktiopb, 9F-177
free a packet in iopb map — free_pktiopb,

9F-177
free an allocated SCSI packet and its DMA

resource — scsi_destroy_pkt,
9F-263

SCSI packet utility routines
— scsi_pktalloc, 9F-285
— scsi_pktfree, 9F-285
— scsi_resalloc, 9F-285

SCSI packet utility routines, continued
— scsi_resfree, 9F-285

scsi_abort — abort a SCSI command, 9F-258
scsi_alloc_consistent_buf — scsi dma utility

for allocating an I/O buffer for SCSI DMA,
9F-259

scsi_cname — decode SCSI commands, 9F-261
scsi_destroy_pkt — free an allocated SCSI

packet and its DMA resource, 9F-263
scsi_dname — decode SCSI peripheral device

type, 9F-261
scsi_errmsg — display a SCSI request sense mes-

sage, 9F-266
scsi_free_consistent_buf — free a previ-

ously allocated SCSI DMA I/O buffer, 9F-269
scsi_hba_attach — SCSI HBA attach and detach

routines, 9F-270
scsi_hba_detach — SCSI HBA attach and detach

routines, 9F-270
scsi_hba_fini — SCSI Host Bus Adapter system

completion routines, 9F-272
scsi_hba_init — SCSI Host Bus Adapter system

initialization routines, 9F-272
scsi_hba_lookup_capstr — return index

matching capability string, 9F-273
scsi_hba_pkt_alloc — allocate and free a

scsi_pkt structure, 9F-274
scsi_hba_pkt_free — allocate and free a

scsi_pkt structure, 9F-274
scsi_hba_probe — default SCSI HBA probe

function, 9F-276
scsi_hba_tran_alloc — allocate and free tran-

sport structures, 9F-277
scsi_hba_tran_free — allocate and free tran-

sport structures, 9F-277
scsi_ifgetcap — get SCSI transport capability,

9F-278
scsi_ifsetcap — set SCSI transport capability,

9F-278
scsi_init_pkt — prepare a complete SCSI

packet, 9F-280
scsi_log — display a SCSI-device-related mes-

Index−7

sage, 9F-283
scsi_mname — decode SCSI messages, 9F-261
scsi_poll — run a polled SCSI command on

behalf of a target driver, 9F-287
scsi_probe — utility for probing a scsi device,

9F-288
scsi_reset — reset a SCSI bus or target, 9F-290
scsi_rname — decode SCSI packet completion

reasons, 9F-261
scsi_slave — utility for SCSI target drivers to

establish the presence of a target, 9F-291
scsi_sname — decode SCSI sense keys, 9F-261
scsi_sync_pkt — synchronize CPU and I/O

views of memory, 9F-292
scsi_transport — request by a target driver to

start a SCSI command, 9F-293
scsi_unprobe — free resources allocated during

initial probing, 9F-294
scsi_unslave — free resources allocated during

initial probing, 9F-294
semaphore functions

— sema_destroy, 9F-295
— sema_init, 9F-295
— sema_p, 9F-295
— sema_p_sig, 9F-295
— sema_tryp, 9F-295
— sema_v, 9F-295
— semaphore, 9F-295

send a signal to a process — proc_signal, 9F-219
proc_ref, 9F-219
proc_unref, 9F-219

single direction elevator seek sort for buffers —
disksort, 9F-155

size in bytes
convert size in pages — ptob, 9F-221
convert to size in memory pages (round down)

— btop, 9F-51
convert to size in memory pages (round up) —

btopr, 9F-52
sprintf — format characters in memory, 9F-297
STREAMS message blocks

allocate — allocb, 9F-36
attach a user-supplied data buffer in place —

esballoc,
STREAMS message blocks, continued

9F-167
call a function when a buffer becomes available

— bufcall, 9F-314, 9F-53, 9F-234,
9F-241

call function when buffer is available — esbb-
call, 9F-169

concatenate bytes in a message — msgpullup,
9F-206, 9F-222

concatenate two — linkb, 9F-198
copy — copyb, 9F-66
erase the contents of a buffer — clrbuf, 9F-59
free all message blocks in a message —

freemsg, 9F-174
free one — freeb, 9F-173
remove from head of message — unlinkb,

9F-315
remove one form a message — rmvb, 9F-252

STREAMS message queue
insert a message into a queue — insq, 9F-186

STREAMS message queues, 9F-38
STREAMS Message queues

get next message — getq, 9F-182
STREAMS message queues

reschedule a queue for service — enableok,
9F-166

test for room — canput, 9F-57, 9F-58
STREAMS messages

copy a message — copymsg, 9F-70
flush for specified priority band — flush-

band, 9F-170
remove form queue — flushq, 9F-171, 9F-254
return the number of bytes in a message —

msgdsize, 9F-205
submit messages to the log driver — strlog,

9F-304
test whether a message is a data message —

datamsg, 9F-74
trim bytes — adjmsg, 9F-35

STREAMS multithreading
— mt-streams, 9F-207
qbufcall — call a function when a buffer

becomes available, 9F-234
qtimeout — execute a function after a

Index−8

specified
STREAMS multithreading, continued

length of time, 9F-240
qunbufcall — cancel a pending qbufcall

request, 9F-241
quntimeout — cancel previous timeout func-

tion call, 9F-242
qwait, qwait_sig — STREAMS wait rou-

tines, 9F-243
qwriter — asynchronous STREAMS perime-

ter upgrade, 9F-245
STREAMS put and service procedures

disable — qprocsoff, 9F-236
enable — qprocson, 9F-236

STREAMS queues
change information about a queue or band of

the queue — strqset, 9F-306
enable a queue — qenable, 9F-235
get information about a queue or band of the

queue — strqget, 9F-305
get pointer to queue’s partner queue — OTH-

ERQ, 9F-31
get pointer to the read queue — RD, 9F-32
number of messages on a queue — qsize,

9F-239
place a message at the head of a queue —

putbq, 9F-225
prevent a queue from being scheduled —

noenable, 9F-213
put a message on a queue — putq, 9F-233
send a control message to a queue — putctl,

9F-226, 9F-230
send a control message with a one-byte param-

eter to a queue — putctl1, 9F-228,
9F-232

send a message on a stream in the reverse
direction — qreply, 9F-237

send a message to the next queue — putnext,
9F-229

test for flow control in specified priority band
— bcanput, 9F-39

test if next queue is in the same stream —
SAMESTR, 9F-33

STREAMS wait routines — qwait, qwait_sig,
9F-243

STREAMS write queues
get pointer for this module or driver — WR,

9F-34
swab — swap bytes in 16-bit halfwords, 9F-307
synchronize CPU and I/O views of memory —

ddi_dma_sync, 9F-108, 9F-292
system DMA engine functions — ddi_dmae,

9F-110
ddi_dmae_1stparty, 9F-110
ddi_dmae_alloc, 9F-110
ddi_dmae_disable, 9F-110
ddi_dmae_enable, 9F-110
ddi_dmae_getcnt, 9F-110
ddi_dmae_getlim, 9F-110
ddi_dmae_prog, 9F-110
ddi_dmae_release, 9F-110
ddi_dmae_stop, 9F-110

T
testb — check for an available buffer, 9F-308
timeout — execute a function after a specified

length of time, 9F-310
cancel previous timeout function call —

untimeout, 9F-316

U
uio structure

add character — ureadc, 9F-318
remove a character — uwritec, 9F-319

uiomove — copy kernel data using uio structure,
9F-313

unfreezestr — freeze, thaw the state of a stream,
9F-176

update I/O kstat statistics
— kstat_queue, 9F-196
— kstat_runq_back_to_waitq, 9F-196
— kstat_runq_enter, 9F-196
— kstat_runq_exit, 9F-196
— kstat_waitq_enter, 9F-196
— kstat_waitq_exit, 9F-196
— kstat_waitq_to_runq, 9F-196

Index−9

V
vsprintf — format characters in memory, 9F-320

W
write to an I/O port — outb, 9F-215

outl, 9F-215
outw, 9F-215
repoutsb, 9F-215
repoutsd, 9F-215
repoutsw, 9F-215

Index−10

