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Preface

Purpose
Read this guide for information about system services in the SunOS
environment. Rather than teaching you to write programs, this guide
supplements programming texts by concentrating on other elements that are
part of getting programs into operation.

Audience and Prerequisite Knowledge
This guide addresses programmers. Expert programmers, such as those
developing system software, might find that this guide lacks the depth of
information they need. Expert programmers should see the Solaris 2.4 Reference
Manual AnswerBook.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory and file structure is assumed. Read the Solaris User’s Guide to review
these basic tools and concepts.

The C Connection
The SunOS system supports many programming languages. Nevertheless, the
relationship between this operating system and C has always been and
remains very close.
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Most of the code in the operating system is written in the C language. So, while
this guide is intended to be useful to you no matter what language you are
using, most of the examples assume you are programming in C.

Hardware And Software Dependencies
Except for hardware-specific information such as addresses, most of the text in
this book applies to any computer running the SunOS 5.2 operating system.

If commands work differently in your system environment, your system might
be running a different software release. If some commands do not seem to
exist, they might be in packages that are not installed on your system—talk to
your system administrators to find out what commands you have available.

Typeface Conventions
The following conventions are used in this guide:

• Prompts and error messages from the system are printed in listing type
like this .

• Information you type as a command or in response to prompts is shown in
boldface listing type like this . Type everything shown in
boldface exactly as it appears in the text.

• Parts of a command shown in italic text like this refer to a variable that you
have to substitute from a selection. It is up to you to make the correct
substitution.

• Dialogs between you and the system are enclosed in boxes:

$pwd
/home/traveler/scotty
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• Sections of program code are enclosed in boxes:

• You are expected to press the RETURN key after entering a command or
menu choice, so the RETURN key is not explicitly shown in these cases. If,
however, you are expected to press RETURN without typing any text, the
notation is shown.

• Control characters are shown by the string “CTRL-” followed by the
appropriate character, such as D (this is known as CTRL-D). To enter a
control character, hold down the key marked CTRL (or CONTROL) and
press the D key.

• The default prompt signs for an ordinary user and root  are the dollar sign
or percent sign ($ or %) and the number sign (#). When the # prompt is used
in an example, the command illustrated can be executed only by root .

Command References
When a command is mentioned in a section of the text for the first time, a
reference to the manual section where the command is formally described is
included in parentheses: command(section). Numbered sections are in the
Solaris 2.4 Reference Manual AnswerBook.

For example, “See priocntl(2) ” tells you to look at the priocntl  page in
section 2 of the Solaris 2.4 Reference Manual AnswerBook.

Information in the Examples
While every effort has been made to present displays of information just as
they appear on your terminal, it is possible that your system might produce
slightly different output. Some displays depend on a particular machine
configuration that might differ from yours.

nt test (100);

main()
{

register int a, b, c, d, e, f;

test(a) = b & test(c & 0x1) & test(d & 0x1);
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Programming in the System
Environment 1

This chapter introduces the C language functions for handling errors,
processes, and signals. It also describes the following tools and gives you a
sense of the situations in which you use these tools and how the tools fit
together:

• File and record locking

• Interprocess communication

• Virtual memory

• Process scheduling

Programming Functions
The SunOS 5.x functions discussed in this section are the interface between the
kernel and the user programs. The read , write , and other functions in
Sections 2 and 3 of the Solaris 2.4 Reference Manual AnswerBook define the
SunOS operating system.

Strictly speaking, these functions are the only way to access such facilities as
the file system, interprocess communication primitives, and multitasking
mechanisms.

When you use the library routines described in section 3 of the Solaris 2.4
Reference Manual AnswerBook, the details of their implementation are
transparent to the program. For example, the function read  underlies the
fread  implementation in the standard C library. In contrast, programs that
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call these functions directly are generally portable only to other SunOS 5.x or
SunOS 5.x–like systems. Other operations, however, including most
multitasking mechanisms,  require direct interaction with the system kernel.
These operations are the subject of the first part of this chapter.

A C program is automatically linked with the functions invoked when you
compile the program. The procedure might be different for programs written in
other languages. See the Linker and Libraries Guide for more information.

Error Handling

Functions that do not conclude successfully almost always return a value of –1
to your program. (For a few functions in Section 2 of the man Pages(2): System
Calls, there are a few calls for which no return value is defined, but these are
the exceptions.) In addition to the –1 that is returned to the program, the
unsuccessful function places an integer in an externally declared variable,
errno . In a C program, you can determine the value in errno  if your program
contains the following statement

:

The value in errno  is not cleared on successful calls, so check it only if the
function returned  –1. See error descriptions in intro (2) of the man Pages(2):
System Calls.

You can use the C language function perror (3C) to print an error message on
stderr  based on the value of errno .

Basic File I/O

These functions perform basic operations on files:

Table 1-1 Basic File I/O Functions

Function Name Purpose

open Open a file for reading or writing

close Close a file descriptor

#include <errno.h>
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Advanced File I/O

These functions create and remove directories and files, create links to existing
files, and obtain or modify file status information:

read Read from a file

write Write to a file

creat Create a new file or rewrite an existing one

unlink Remove a directory entry

lseek Move read/write file pointer

Table 1-2 Advanced File I/O Functions

Function Name Purpose

link Link to a file

access Determine accessibility of a file

mknod Make a special or ordinary file

chmod Change mode of file

chown
lchown
fchown

Change owner and group of a file

utime Set file access and modification times

stat
lstat
fstat

Get file status

fcntl Perform file control functions

ioctl Control device

fpathconf
pathconf

Get configurable path name variables

opendir
readdir
closedir

Perform directory operations

mkdir Make a directory

readlink Read the value of a symbolic link

Table 1-1 Basic File I/O Functions
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Terminal I/O

These functions deal with a general terminal interface for controlling
asynchronous communications ports:

rename Change the name of a file

rmdir Remove a directory

symlink Make a symbolic link to a file

Table 1-3 Terminal I/O Functions

Function Name Purpose

tcgetattr
tcsetattr

Get and set terminal attributes

tcsendbreak
tcdrain
tcflush
tcflow

Perform line control functions

cfgetospeed
cfgetispeed
cfsetispeed
cfsetospeed

Get and set baud rate

tcgetpgrp
tcsetpgrp

Get and set terminal foreground process group ID

tcgetsid Get terminal session ID

Table 1-2 Advanced File I/O Functions (Continued)

Function Name Purpose
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Processes

These functions control user processes:

Table 1-4 Process Functions

Function Name Purpose

fork Create a new process

exec
execl
execv
execle
execve
execlp
execvp

Execute a program

exit
_exit

Terminate a process

wait Wait for a child process to stop or terminate

setuid
setgid

Set user and group IDs

setpgrp Set process group ID

chdir
fchdir

Change working directory

chroot Change root directory

nice Change priority of a process

getcontext
setcontext

Get and set current user context

getgroups
setgroups

Get or set supplementary group access list IDs

getpid
getpgrp
getppid
getpgid

Get process, process group, and parent process IDs

getuid
geteuid
getgid
getegid

Get real user, effective user, real group, and effective group IDs
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Overview of Processes

Whenever you execute a command, you start a process that is numbered and
tracked by the operating system. A flexible feature of the operating system is
that processes can be generated by other processes. This happens often.

For example, log in to your system running the shell, then use an editor such
as vi . Take the option of invoking the shell from vi . Execute the ps  command
and you will see a display resembling this (which shows the results of a
ps –f  command):

Here, user abc  has four processes active. When you trace the chain shown in
the process ID (PID) and parent process ID (PPID) columns, you see that the
shell that was started when user abc  logged on is process 24210; its parent is
the initialization process (process ID 1). Process 24210 is the parent of process
24631, and so on.

The four processes in the example are shell-level commands, but you can start
new processes from your own program.

pause Suspend process until signal

priocntl Control process scheduler

setpgid Set process group ID

setsid Set session ID

waitid Wait for a child process to change state

kill Send a signal to a process or group of processes

Table 1-4 Process Functions (Continued)

Function Name Purpose

UID PID PPID C STIME TTY TIME COMD
abc 24210     1 0 06:13:14 tty29 0:05 –sh
abc 24631 24210 0 06:59:07 tty29 0:13 vi c2
abc 28441 28358 80 09:17:22 tty29 0:01 ps –f
abc 28358 24631 2 09:15:14 tty29 0:01 sh –i
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Overlooking the case where your program is interactive and contains many
choices for the user, it might need to run one or more other programs based on
conditions it encounters in its own processing. The reasons why it might not be
practical to create one large executable include:

• The load module might get too big to fit in the maximum process size for
your system.

• You might not have control over the object code of all the other modules
you want to include.

With the exec(2)  and fork(2)  functions, discussed in the following sections,
you can stop one process and start another, or you can start a copy of a
process.

exec (2)

exec  is the name of a family of functions that includes execl , execv ,
execle , execve , execlp , and execvp . They all transform the calling process
into a new process, but with different ways of pulling together and presenting
the arguments of the function. For example, execl  could be used like this:

The execl argument list is:

/usr/bin/prog2 The path name of the new process file.
prog2 The name the new process gets in its argv[0].
progarg1, progarg2 The arguments to prog2  as char  (*)s.
(char (*)0 ) A null char  pointer to mark the end of the

arguments.

See exec (2) for more details.

execl("/usr/bin/prog2", “prog2”, progarg1, progarg2, (char (*)0);
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The key point about the exec  family is that there is no return from a successful
execution; the new process overlays the process that makes the exec  call. The
new process also takes over the process ID and other attributes of the old
process. If the call to exec  is unsuccessful, control is returned to your program
with a return value of –1. You can check errno  to learn why it failed.

fork (2)

The fork  call creates a new process that is an exact copy of the calling process.
The new process is known as the child process; the creator is known as the
parent process. The one major difference between the two processes is that the
child gets its own unique process ID. When the fork  process has finished
successfully, it returns a 0 to the child process and the child’s process ID to the
parent. Although the two processes are identical, you can differentiate between
them:

• Because the return value is different between the child process and the
parent, a program can contain the logic to determine different paths.

• The child process issues an exec  for an entirely different program.

• The parent process issues a wait  until it is notified that the process being
exec ’d by the child process is finished.
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Your code might include statements like this:

Because the child process ID is taken over by the new exec ’d process, the
parent knows the ID. This is a way of leaving one program to run another,
returning to the point in the first program where processing left off. This is
basically what the function system  in the standard C library does.

Keep in mind that the fragment of code above includes minimal checking for
error conditions. There is also potential confusion about open files and which
program is writing to a file.

 #include <errno.h>
 int ch_stat, ch_pid, status;
 char *progarg1;
 char *progarg2;
 void exit();
 extern int errno;

 if ((ch_pid = fork()) < 0)
 {

/* Could not fork...
 check errno
*/

 }
 else if (ch_pid == 0)/* child */
 {

(void)execl("/usr/bin/prog2","prog2",progarg1,progarg2,(char *)0);
exit(2);/* execl() failed */

 }
 else /* parent */
 {

while ((status = wait(&ch_stat)) != ch_pid)
{

if (status < 0 && errno == ECHILD)
 break;
errno = 0;

}
 }
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Leaving out the possibility of named files, the new process created by the fork
or exec  function has the three standard files that are automatically opened:
stdin , stdout , and stderr . When the parent has buffered output that
should appear before output from the child, the buffers must be flushed before
the fork .

Also, if the parent and the child process both read input from a stream,
whatever is read by one process will be lost to the other. That is, once
something has been delivered from the input buffer to a process, the pointer
has moved on.

Basic Interprocess Communication

The pipe(2)  and dup(2)  functions connect processes so they can
communicate.

pipe  is the function for creating an interprocess channel. (The interprocess
channel created by pipe  is not suitable for interprocessor communication.
STREAMS supports mounting a fifo .)

dup  is the function for duplicating an open file descriptor.

Advanced Interprocess Communication

These functions support interprocess messages, semaphores, and shared
memory and are useful in database management. (These IPC mechanisms do
not apply to processes on separate hosts.)

Table 1-5 Advanced Interprocess Communication Functions

Function Name Purpose

msgget Get message queue

msgctl Perform message control operations

msgsnd Send a message

msgop Receive a message

semget Get set of semaphores

semctl Control semaphore operations

semop Perform semaphore operations
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Memory Management

These functions give you access to virtual memory facilities:

File System Control

These functions allow you to control various aspects of the file system:

shmget Get shared memory segment identifier

shmctl Control shared memory operations

shmnt Attach shared memory segment

shmdt Detach shared memory segment

Table 1-6 Memory Management Functions

Function Name Purpose

getpagesize Get system page size

memcntl Control memory management

mmap Map pages of memory

mprotect Set protection of memory mapping

munmap Unmap pages of memory

plock Lock process, text, or data in memory

brk
sbrk

Change data segment space allocation

Table 1-7 File System Control Functions

Function Name Purpose

ustat Get file system statistics

sync Update super block

mount Mount a file system

unmount Unmount a file system

Table 1-5 Advanced Interprocess Communication Functions (Continued)

Function Name Purpose
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Signals Overview

The system defines a set of signals that can be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is
normally blocked from further occurrence, the current process context is saved,
and a new one is built. A process can specify the handler to which a signal is
delivered or specify that the signal is to be blocked or ignored. A process can
also specify that an action is to be taken when signals occur.

Some signals cause a process to exit when they are not caught. This can be
accompanied by creation of a core  image file, containing the current memory
image of the process for use in postmortem debugging. A process can choose
to have signals delivered on a particular stack, so that sophisticated software
stack manipulations are possible.

Not all signals have the same priority. If multiple signals are simultaneously
pending  and deliverable, the signal with the smallest number will be
delivered first. A signal routine usually executes concurrently with the signal
that caused its invocation, but other signals can still occur. Mechanisms are
provided so that critical sections of code can protect themselves against the
occurrence of specified signals.

Each signal defined by the system falls into one of five classes:

•  Hardware conditions
•  Software conditions
•  Input/output notification
•  Process control
•  Resource control

The set of signals is defined in the header <signal.h> .

statvfs
fstatvfs

Get file system information

sysfs Get file system type information

Table 1-7 File System Control Functions

Function Name Purpose
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Hardware Signals

Hardware signals are derived from exceptional conditions that can occur
during execution. Such signals include

• SIGFPE—representing floating point and other arithmetic exceptions

• SIGILL — for illegal instruction execution

• SIGSEGV—for addresses outside the currently assigned area of memory or
for accesses that violate memory protection constraints

• SIGBUS—for accesses that result in hardware-related errors

Other, more CPU-specific hardware signals exist, such as SIGIOT , SIGEMT, and
SIGTRAP.

Software Signals

Software signals reflect interrupts generated by user request:

• SIGINT —the normal interrupt signal

• SIGQUIT—this more powerful quit signal usually causes a core  image to
be generated

• SIGHUP and SIGTERM—these signals provide graceful process termination,
either because a user has “hung up” or through a user or program request

• SIGKILL —a more powerful termination signal that a process cannot catch
or ignore

• SIGUSR1 and SIGUSR2—allow programs to define their own asynchronous
events

• SIGRTMIN through SIGRTMAX—a range of signals which allow programs to
define their own events

Other software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the
expiration of interval timers.

Notification Signals

A process can request notification with a SIGPOLL signal when input or
output is possible on a descriptor, or when an operation finishes.
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A process can request to receive a SIGURG signal when an urgent condition
arises on a communication channel.

Process Control Signals

A process can be notified by a signal sent to it or to the members of its process
group.

• SIGSTOP—stops the process; this powerful signal cannot be caught

• SIGTSTP—indicates that a user request stopped the process

• SIGTTIN—indicates that an input request stopped the process

• SIGTTOU—indicates that an output request stopped the process

• SIGCONT—indicates that a process continued from a stopped state

• SIGCHLD—notifies a process that a child process has changed state, either
by stopping or by terminating

Resource Limit Signals

Exceeding resource limits can generate signals.

• SIGXCPU occurs when a process nears its CPU time limit

• SIGXFSZ warns that the limit on file-size creation has been reached

Signal Handlers

A process has a handler associated with each signal. The handler controls the
way the signal is delivered.

Each handler specifies an interrupt routine for the signal, that the signal is to
be ignored, or that a default action (usually process termination) takes place if
the signal occurs. The constants SIG_IGN  and SIG_DFL, used as values for
sa_handler , cause ignoring or defaulting of a condition.

Note –  To reset a signal handler from within a signal handler, reset the signal
handler routine that catches the signal (signal( n, SIG_DFL);) and unblock
the blocked signal with sigprocmask .
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Signal Set Operations
The sa_mask  field specifies the set of signals to be masked when the handler is
invoked; it implicitly includes the signal that invoked the handler.

Five operations are permitted on signal sets.

• sigemptyset —empties the signal set
• sigfillset —fills the signal set with every signal currently supported
• sigaddset —adds specific signals to the set
• sigdelset —deletes specific signals from the set
• sigismember —tests set membership

Initialize signal sets with a call to sigemptyset  or sigfillset .

Unique Signal Properties
The sa_flags  field specifies unique properties of the signal. Such properties
include:

•  whether or not functions should be restarted if the signal handler returns

•  whether the signal action should be reset to SIG_DFL when it is caught

•  whether subsequent occurences of a signal which is already pending should
be queued

• whether the handler should operate on the normal run-time stack or on a
particular signal stack.

If osa is nonzero, the previous signal action is returned.

Signal Generation
A process can send a signal to another process or group of processes with the
calls:

#include <signal.h>

int
kill(pid_t pid, int sig);
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Unless the process sending the signal is privileged, its real or effective user ID
must be that of the receiving process’s real or saved user ID.

Signals can also be sent from a terminal device to the process group or session
leader associated with the terminal. See the termio(7) manual page for more
information.

Signal Delivery
When a signal condition arises for a process, the signal is added to a set of
signals pending for the process. If the signal is not currently blocked by the
process then it will be delivered.

The process of signal delivery:

• Adds the signal to be delivered and those signals specified in the associated
signal handler’s sa_mask  to a set of those masked for the process

• Saves the current process context

• Places the process in the context of the signal handling routine

The call is arranged so that if the signal handling routine exits normally the
signal mask is restored and the process resumes execution in the original
context.

#include <signal.h>

int
sigsend(idtype_t idtype, id_t id, int sig);                     int

int
sigsendset(procset_t *psp, int sig);

#include <signal.h>

int
sigqueue (pid_t pid, int signo, const union sigval value);
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Note –  For the process to resume in a different context it must arrange to
restore the signal mask itself.

The mask of blocked signals is independent of handlers for delays. It delays
the delivery of signals in the same way that a raised hardware interrupt
priority level delays hardware interrupts. Preventing an interrupt from
occurring by changing the handler is like disabling a device from further
interrupts.

The signal handling routine sa_handler  is called by a C call of the form:

The signo  field gives the number of the signal that occurred. The infop  field
is either equal to 0 or points to a structure that contains information detailing
the reason the signal was generated. This information must be explicitly asked
for when the signal action is specified. The ucp  field is a pointer to a structure
containing the process’s context before delivery of the signal. It restores the
process’s context upon return from the signal handler.

To block a section of code against one or more signals, use a sigprocmask  call
to add a set of signals to the existing mask and to return the old mask:

The old mask can then be restored later with sigprocmask :

#include <siginfo.h>
#include <ucontext.h>

(*sa_handler)(int signo, siginfo_t *infop, ucontext_t *ucp);

#include <signal.h>

int
sigprocmask(int SIG_BLOCK,const sigset_t *mask,sigset_t *omask);

#include <signal.h>

int
sigprocmask(int SIG_UNBLOCK, const sigset_t *mask,
    sigset_t *omask);
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Or, the old mask can be reset with

The sigprocmask  call can be used to read the current mask without changing
it by specifying a null pointer as its mask argument.

You can check conditions with some signals blocked, and then pause to wait
for a signal and restore the mask, by using:

Applications can receive signals synchronously by using:

Programs maintaining complex or fixed-size stacks can use the call:

#include <signal.h>

int
sigprocmask(int SIG_SETMASK, const sigset_t *mask,
    sigset_t *omask);

#include <signal.h>

int
sigsuspend(const sigset_t *mask);

#include <signal.h>

int
sigwaitinfo(const sigset_t *mask, siginfo_t *siginfo);

int
sigtimedwait(const sigset_t *mask,siginfo_t *siginfo,
    const struct timespec *timeout);

#include <signal.h>

int
sigaltstack(const stack_t *ss, stack_t *oss);
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where the stack_t  structure contains

This provides the system with a stack based at ss_sp  of size ss_size  for
signal delivery. The system automatically adjusts for direction of stack growth.
ss_flags  indicates whether the process is currently on the signal stack and
whether or not the signal stack is disabled.

When a signal is to be delivered and the process has requested that it be
delivered on the alternate stack (see sigaction  above), the system checks
whether the process is on a signal stack. If it is not, then the process is switched
to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

For a process to take a nonlocal exit from the signal routine, or to run code
from the signal stack that uses a different stack, use a sigaltstack  call to
reset the signal stack.

Signal functions include:

int *ss_sp
long ss_size
int ss_flags

Table 1-8 Signal Functions

Function Name Purpose

sigaction
sigset
sighold
sigrelse
sigignore

 Manage signal (detailed)

sigaltstack Set or get signal alternate stack context

signal
sigpause

Manage signal (simplified)

sigpending Examine signals that are blocked and pending

sigprocmask Change or examine signal mask

kill Send a signal to a process or group of processes

sigsend
sigsendset

Send a signal to a process or group of processes



20 System Services Guide—August 1994

1

Miscellaneous Functions

These functions are for administration, timing, and other miscellaneous
purposes:

Note – When changing file descriptor limits with setrlimit , note that some
library routines allocate data structures based on the current file descriptor list,
so continually resetting the limit throughout the life of the process can cause
problems. This is especially true for some SunOS 4.x applications running
under the BCP (Binary Compatibility Package), which accept a maximum of

sigqueue Send a signal with a value to a process

sigwaitinfosigti
sigtimedwait

Receive a value and signal synchronously

sigsuspend Install a signal mask and suspend process until signal

Table 1-9 Miscellaneous Functions

Function Name Purpose

ulimit Get and set user limits

alarm Set a process alarm clock

getmsg Get next message off a stream

getrlimit
setrlimit

Control maximum system resource consumption

uname Get/set name of current system

putmsg Send a message on a stream

profil Get execution time profile

sysconf Determine value for system configuration

uadmin Perform administrative control

time Get time

stime Set time

acct Enable or disable process accounting.

Table 1-8 Signal Functions (Continued)

Function Name Purpose
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256 open file descriptors. When you increase the file descriptor limit, it is good
practice to increase it at the beginning of the process and to decrease it after
fork ing, but before exec ’ing, the new process.

Developing Software
This section briefly describes tools for input, processing, and output.

File and Record Locking

You lock files, or portions of files, to prevent the errors that can occur when
two or more users of a file try to update information at the same time.

File locking and record locking are really the same thing, except that file
locking implies that the whole file is affected, while record locking means that
only a specified portion of the file is locked. (In the SunOS 5.x system, file
structure is undefined: a record is a concept of the programs that use the file.)

Read and Write Locks

Two types of locks are available: read locks and write locks. When a process
places a read lock on a file, other processes can also read the file but all are
prevented from writing to it—that is, changing any of the data. When a process
places a write lock on a file, no other processes can read or write in the file
until the lock is removed. Write locks are also known as “exclusive locks.” The
term “shared lock” is sometimes applied to read locks.

Mandatory and Advisory Locking

Mandatory locking means that the discipline is enforced automatically for the
functions that read, write, or create files. This is done through a permission flag
established by the file’s owner (or the superuser) and enforced by the kernel.

Advisory locking means that the processes that use the file take the
responsibility for setting and removing locks as needed.
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The principal weakness in mandatory locking is that the lock is in place only
while the single function is being called. It is extremely common for a single
transaction to require a series of reads and writes before it is complete. In cases
like this, this transaction must be viewed as an indivisible unit.

The preferred way to manage locking in this case is to make certain the lock is
in place before any I/O starts, and that it is not removed until the transaction
is done. Advisory locking would be more appropriate than mandatory locking
in this instance.

Also see the fcntl(2) , fcntl(5) , lockf(3C) , and chmod(2)  manual pages.
The fcntl(2)  function performs file and record locking (although it isn’t
limited to that only). The fcntl(5)  page describes the file control options.
The subroutine lockf(3C)  can also be used to lock sections of a file or an
entire file. The chmod(2)  function is used to set or clear mandatory locking
mode.

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
The SunOS 5.x system offers three additional facilities for interprocess
communications (IPC):

messages Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be contained
in an array the size of which is determined by the system
administrator. The default maximum size for the array is
25.

shared memory Communication takes place through a common area of
main memory. One or more processes can attach a
segment of memory and as a consequence can share
whatever data is placed there.

The following sets of IPC functions are described in Section 2 of the man
Pages(2): System Calls:

msgget semget shmget
msgctl semctl shmctl
msgop semop shmop
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Each “get ” function returns to the calling program an identifier for the type of
IPC facility that is being requested.

The “ctl ” functions provide a variety of control operations that include
obtaining (IPC_STAT), setting (IPC_SET), and removing (IPC_RMID) the
values in data structures associated with the identifiers picked up by the get
calls.

The “op ” manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. The msgop page
describes calls that send or receive messages. The semop operations increment
or decrement the value of a semaphore, among other functions. The shmop
operations attach or detach shared memory segments.

For more information, see section 2 of the man Pages(2): System Calls.

Process Scheduler

The system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically in an attempt to give good response time
to interactive processes and good throughput to CPU-intensive processes.

The scheduler offers an alternate real-time scheduling policy as well. Real-time
scheduling allows users to set fixed priorities— priorities that the system does
not change. The highest priority real-time user process always gets the CPU as
soon as it can be run, even if other system processes are also eligible to be run.
A program can therefore specify the exact order in which processes run. You
can also write a program so that its real-time processes have a guaranteed
response time from the system.

For most SunOS 5.x system environments, the default scheduler configuration
works well and no real-time processes are needed: administrators need not
change configuration parameters and users need not change scheduler
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properties of their processes. However, for some programs with strict timing
constraints, real-time processes are the only way to guarantee that the timing
requirements are met.

For more information, see priocntl(1) , priocntl(2)  and dispadmin(1M )
of the man Pages(2): System Calls.

Memory Management

The operating system includes a complete set of memory-mapping
mechanisms. Process address spaces are composed of a vector of memory
pages, each of which can be independently mapped and manipulated. The
memory-management facilities:

• Unify system operations on memory

• Provide a set of kernel mechanisms powerful and general enough to
support the implementation of fundamental system services without
special-purpose kernel support

• Maintain consistency with the existing environment, in particular using the
file system as the name space for named virtual-memory objects

The system virtual memory consists of all available physical memory resources
including local and remote file systems, processor primary memory, swap
space, and other random-access devices. Named objects in the virtual memory
are referenced though the file system. However, not all file system objects are
in the virtual memory; devices that the SunOS operating system cannot treat as
storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
shared memory segments, do not have names.

The Memory Mapping Interface

You can access to the facilities of the virtual memory system through several
sets of functions:

• mmap establishes a mapping between the process address space and a
virtual memory object

• mprotect  assigns access protection to a block of virtual memory

• munmap removes a memory mapping
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• getpagesize  returns the system-dependent size of a memory page

• mincore  tells whether mapped memory pages are in primary memory

Note – It is better to use the memory management routines to implement
shared memory than to use the advanced interprocess communication
functions.

For more information, see the mmap(2) , mprotect(2) , munmap(2) ,
getpagesize(3B) , and mincore(2) of the man Pages(2): System Calls.
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File and Record Locking 2

Mandatory and advisory file and record locking both are available in the
SunOS 5.x system. These provide a synchronization mechanism for programs
simultaneously accessing the same stores of data. Such processing is
characteristic of many multiuser applications.

Use advisory file and record locking with processes that cooperate to achieve
synchronization. In mandatory locking, the I/O functions enforce the locking
protocol. In this way, at the cost of a little efficiency, mandatory locking double
checks the programs against accessing the data out of sequence.

Supported File Systems

This chapter describes file locking for local file systems. These include the
following file system types.

• ufs —the default disk-based file system

• fifofs —a pseudo file system of named pipe files that give processes
common access to data.

• namefs —a pseudo file system used mostly by STREAMS for dynamic
mounts of file descriptors on top of files.

• specfs —a pseudo file system that provides access to special character and
block devices.
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File locking is not supported for the proc  and fd  file systems. NFS supports
advisory file locking only,  and uses the Network Lock Manager and the Status
Monitor to support remote requests for advisory file locking.

The remainder of this chapter describes how you can use file and record
locking. Examples show how to use record locking correctly. Misconceptions
about the amount of protection that record locking affords are
dispelled—programs should view record locking as a synchronization
mechanism, not as a security mechanism.

The manual pages for the fcntl (2) function, the lockf (3C) library function,
and fcntl (5) data structures and commands are referred to throughout this
section. Read them before continuing.

Choosing A Locking Type
Mandatory locking forces processes to wait until file segments are free by
suspending them. Advisory locking simply returns a result indicating whether
the lock was obtained or not. Processes can ignore the result and go ahead and
do the I/O anyway. Advisory locking is intended for use with “well-behaved”
or cooperating processes that can be relied on to follow the advisory results.

You can have both mandatory and advisory file locking on the same file at the
same time. Rather, the mode of the file at the time of I/O access determines
whether the existing locks on the file are treated as mandatory or advisory.

Of the two basic locking calls, the lockf (3C) routine should be your default
choice because library routines are generally safer for application programs
than are system calls. fcntl  is a kernel service and should be used if your
software is striving for the last ounce of performance (though if this is the case,
seek a program design that doesn’t require file locking). lockf (2) is
implemented by calling fcntl .

Note – Only advisory locking is supported on remote (NFS-accessed) file
systems. Note that file locking can be fragile under stressful file processing
conditions such as large numbers of locks.
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Terminology
Before discussing how to use record locking, here are some important
definitions:

Record
A contiguous set of bytes in a file. The UNIX operating system does not impose
a record structure on files. This can be done by the programs that use the files.

 Cooperating Processes
Processes that work together in some well-defined fashion to accomplish the
tasks at hand. Processes that share files must request permission to access the
files before using them. File access permissions must be carefully set to restrict
noncooperating processes from accessing those files. The term “process” is
used interchangeably with “cooperating process” to refer to a task obeying
such protocols.

Read (Share) Locks
These are used to gain limited access to sections of files. When a read lock is in
place on a record, other processes can also lock that record for reading, in
whole or in part. No other process, however, can have or obtain a write lock on
an overlapping section of the file. This access method also permits many
processes to read the given record. This is useful when searching a file, to
avoid the contention involved if a write or exclusive lock were to be used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a write
lock is in place on a record, no other process can read or write lock that record,
in whole or in part. If a process holds a write lock it can assume that no other
process will be reading or writing that record at the same time.

Advisory Locking
A form of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creat (2), open (2), read (2),
or write (2). The control over records is accomplished by requiring an
appropriate record lock request before I/O operations. If appropriate requests
are always made by all processes accessing the file, then the accessibility of the
file will be controlled by the interaction of these requests. Advisory locking
depends on the individual processes to enforce the record locking protocol; it
does not require an accessibility check at the time of each I/O request.



30 System Services Guide—August 1994

2

Mandatory Locking
A form of record locking that does interact with the I/O subsystem. Access to
locked records is enforced by the creat (2), open (2), read (2), and write (2)
functions. If a record is locked, then accessing that record by any other process
is restricted according to the type of lock on the record. The control over
records should still be performed explicitly by requesting an appropriate
record lock before I/O operations, but an additional check is made by the
system before each I/O operation to ensure the record locking protocol is being
honored. Mandatory locking offers an extra synchronization check, but at the
cost of some additional system overhead.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. If read locks are used, then the file must be opened with at
least read accessibility. For write locks, the file must be opened with write
accessibility.
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In the example, a file is opened for both read and write access:

The file is now open for both locking and I/O functions. Proceed with the task
of setting a lock.

Note – Mapped files cannot be locked: if a file has been mapped, any attempt
to use file or record locking on the file fails. See mmap(2).

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd; /* file descriptor */
char *filename;

main(int argc, char *argv[])
{

extern void exit(), perror();

/* get data base file name from command line and open the
 * file for read and write access.
 */
if (argc != 2) {

(void) fprintf(stderr, "usage: %s filename\n", argv[0]);
exit(2);

}
filename = argv[1];
fd = open(filename, O_RDWR);
if (fd < 0) {

perror(filename);
exit(2);
}

.

.

.
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Setting a File Lock

There are several ways to set a lock on a file. In part, these methods depend on
how the lock interacts with the rest of the program. There are also questions of
performance as well as portability. Two methods are given here, one using the
POSIX standard-compatible fcntl (2) function, the other using the lockf
library function call.

Locking an entire file is just a special case of record locking. In both cases the
effect of the lock is the same. The file is locked starting at a given byte offset
and for a particular size. In the case of locking an entire file the offset is zero,
and by convention the size is also set to zero.
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The code using the fcntl  function is as follows:

This portion of code tries to lock a file. This is attempted several times until
one of the following happens.

• The file is successfully locked, or

• An error occurs, or

#include <fcntl.h>
#define MAX_TRY 10
int try;
struct flock lck;

try = 0;

/* set up the record locking structure, the address of which
 * is passed to the fcntl function.
 */
lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = (off_t)0;
lck.l_len = (off_t)0; /* until the end of the file address space */

/* Attempt locking MAX_TRY times before giving up.
 */
while (fcntl(fd, F_SETLK, &lck) <0) {

if (errno == EAGAIN || errno == EACCES) {
/* There might be other error cases in which
 * you might try again.
 */
if (++try < MAX_TRY) {

(void) sleep (2);
continue;

}
(void) fprintf(stderr, "File busy try again later!\n");
return;

}
perror("fcntl");
exit (2);

}
.
.
.
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• MAX_TRY is exceeded, and the program gives up trying to lock the file

To perform the same task using the lockf  function, the code is as follows:

Note that the lockf (3C) example appears to be simpler, but the fcntl (2)
example shows more flexibility. Using the fcntl (2) method, you can set the
type and start of the lock request by setting a few structure variables. The
lockf  method sets only write (exclusive) locks; an additional function, lseek ,
is required to specify the start of the lock.

#include <unistd.h>
#define MAX_TRY 10
int try;
try = 0;

/* make sure the file pointer
 * is at the beginning of the file.
 */
lseek(fd, (off_t)0, 0);

/* Attempt locking MAX_TRY times before giving up.
 */
while (lockf(fd, F_TLOCK, 0L) < 0) {

if (errno == EAGAIN || errno == EACCES) {
/* There might be other error cases in which
 * you might try again.
 */
if (++try < MAX_TRY) {

sleep(2);
continue;

}
(void) fprintf(stderr,"File busy try again later!\n");
return;

}
perror("lockf");
exit(2);

}
.
.
.
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Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the different
starting point and length of the lock. Here is an interesting and real problem.
Two records (in the same or different files) must be updated simultaneously so
that other processes get a consistent view of this information. (This type of
problem comes up, for example, when updating the inter-record pointers in a
doubly linked list.)

To update two records simultaneously, answer the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you get all the required locks?

• What do you do if you do not get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain
all the required locks. It is because of contention for these records that record
locking is being used, so different programs might:

• Wait a certain amount of time, then try again

• Abort the procedure and warn the user

• Let the process sleep until signaled that the lock has been freed

• Do some combination of the above

The next example demonstrates inserting an entry into a doubly linked list that
is stored in a file of list element records. For the example, assume that the
record after which the new record is to be inserted has a read lock on it already.
The lock on this record must be changed or promoted to a write lock so that
the record can be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. When
processes with pending write locks are sleeping on the same section of the file,
the lock promotion succeeds and the other (sleeping) locks wait. Changing a
write lock to a read lock carries no restrictions. In either case, the lock is merely
reset with the new lock type. Because the lockf  function does not have read
locks, lock promotion does not apply to that call.
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An example of record locking with lock promotion follows:

struct record {
.
./* data portion of record */
.
off_t prev;/* index to previous record in the list */
off_t next;/* index to next record in the list */
};

/* Lock promotion using fcntl(2)
 * When this routine is entered it is assumed that there are read
 * locks on "here" and "next."
 * If write locks on "here" and "next" are obtained;
 *    Set a write lock on "this."
 *    Return index to "this" record.
 * If any write lock is not obtained;
 *    Restore read locks on "here" and "next."
 *    Remove all other locks.
 *    Return a -1.
 */
off_t
set3lock (this, here, next)
off_t this, here, next;
{
struct flock lck;
lck.l_type = F_WRLCK;/* setting a write lock */
lck.l_whence = 0;/* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {
    return (-1);
}
/* lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
    /* Lock on "this" failed;
     * demote lock on "here" to read lock.
     */
    lck.l_type = F_RDLCK;
    lck.l_start = here;
    (void) fcntl(fd, F_SETLKW, &lck);
    return (-1);
}
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The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW
command. If the F_SETLK command were used instead, the fcntl  functions
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error-return sections.

The next example shows the lockf  function. Because there are no read locks,
all write locks will be referred to generically as locks:

/* promote lock on "next" to write lock */

lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* Lock on "next" failed;
 * demote lock on "here" to read lock,
 */
lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLK, &lck);
/* and remove lock on "this".
 */
lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl(fd, F_SETLK, &lck);
return (-1); /* cannot set lock, try again or quit */

}

return (this);
}

/* lockf(3C)
 * When this routine is entered it is assumed that there are
 * no locks on "here" and "next".
 * If locks are obtained: set a lock on "this"; return index to "this" record.
 * If any lock is not obtained: remove all other locks; return a -1.
 */
#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;
{
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Locks are removed in the same manner as they are set—only the lock type is
different (F_ULOCK). An unlock cannot be blocked by another process and will
affect only locks that were placed by this process. The unlock affects only the
section of the file defined in the previous example by lck .

It is possible to unlock a section of a previously locked region, or (in the case of
flock (1)) to change the type of the lock in a previously locked region. If this is
done in the middle of a previously locked region it will cause the creation of an
additional lock (in other words, the extant lock has been broken in two). This

/* lock "here" */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

return (-1);
}

/* lock "this" */
(void) lseek(fd, this, SEEK_SET);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed.
 * Clear lock on "here".
 */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}
/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "next" failed.
 * Clear lock on "here",
 */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));

/* and remove lock on "this".
 */
(void) lseek(fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);/* cannot set lock, try again or quit */

}
return (this);

}
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can cause an additional lock (two locks for one function) to be used by the
operating system. This occurs if the subsection is from the middle of the
previously set lock.

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or to find locks on a file. A lock is set up as in
the previous examples and the F_GETLK  command is used in the fcntl  call.

If the lock passed to fcntl  would be blocked, the first blocking lock is
returned to the process through the structure passed to fcntl . That is, the lock
data passed to fcntl  is overwritten by blocking lock information. This
information includes two pieces of data that have not been discussed yet,
l_pid  and l_sysid , used only by F_GETLK. These fields uniquely identify
the process holding the lock, and, when locking is over the network, the
system.
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If a lock passed to fcntl  using the F_GETLK command would not be blocked
by another process’s lock, then the l_type  field is changed to F_UNLCK and
the remaining fields in the structure are unaffected. Use this ability to print all
the segments locked by other processes. If there are several read locks over the
same segment, only one of these will be found.

The fcntl  function with the F_GETLK command can sleep while waiting for a
server to respond, and it can fail (returning ENOLCK) if there is a resource
shortage on either the client or server.

The lockf  function with the F_TEST command can also be used to test if a
process is blocking a lock. This function does not, however, return the
information about where the lock is and which process owns the lock.

struct flock lck;

/* Find and print "write lock" blocked segments of this file. */
(void) printf("sysid pid type start length\n");
lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
do {

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {

(void) printf("%d %d %c %8d %8d\n",
lck.l_sysid,
lck.l_pid,
(lck.l_type == F_WRLCK) ? ’W’ : ’R’,
lck.l_start,
lck.l_len);

/* if this lock goes to the end of the address
 * space, no need to look further, so break out.
 */
if (lck.l_len == 0)

break;
/* otherwise, look for new lock after the one
 * just found.
 */
lck.l_start += lck.l_len;

}
} while (lck.l_type != F_UNLCK);
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A routine using lockf  to test for a lock on a file follows (please note that
errno  is printed as an integer in this example,. but using perror (3C) or
strerror (3C) is better programming practice).

Forking Locks

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. However, locks are not inherited by the child because the
locks are owned by a specific process. The parent and child also share a
common file pointer for each file. If the parent were to seek to a point in the
file, the child’s file pointer would also be at that location. This feature has
important implications when using record locking.

The current value of the file pointer is used as the reference for the offset of the
beginning of the lock, as described by l_start , when using a l_whence
value of 1. If both the parent and child process set locks on the same file, there
is a possibility that a lock will be set using a file pointer that was reset by the

/* find a blocked record. */
/* seek to beginning of file */
(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero (0)
 * to test until the end of the file address space.
 */
if (lockf(fd, (off_t)0, SEEK_SET) < 0) {

switch (errno) {
case EACCES:
case EAGAIN:

(void) printf("file is locked by another process\n");
break;

case EBADF:
/* bad argument passed to lockf */
perror("lockf");
break;

default:
(void) printf("lockf: unexpected error <%d>\n",

errno);
break;

}
}
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other process. This problem appears in the lockf (3C) library routine as well
as the fcntl(2) system call and is a result of the original /usr/group standards
requirements for record locking.

If a record locking program forks, the child process should close and reopen
the file (regardless of the locking method). This will result in the creation of a
new and separate file pointer that can be manipulated without this problem
occurring. Another solution is to use the fcntl  function with a l_whence
value of 0 or 2. This makes the range of the lock absolute instead of relative to
the pointer, so that even processes sharing file pointers can be locked without
difficulty.

Deadlock Handling

The UNIX locking facilities provide deadlock detection/avoidance.

Deadlocks can potentially occur only when the system is about to put a record
locking function to sleep. A search is made to determine whether a process is
about to be put to sleep waiting for a lock that could never be granted because,
directly or indirectly, the process the granting of the lock depends on is about
to be suspended (for example, process A is waiting for a lock that B holds
while B is waiting for a lock that A holds).

If such a situation is detected, the locking function will fail and set errno  to
the deadlock error number. Processes setting locks using F_SETLK do not
cause a deadlock because they are not suspended when the lock cannot be
granted immediately.

Selecting Advisory or Mandatory Locking

Mandatory locking is not recommended for reasons that will be made clear in
“Cautions about Mandatory Locking” on page 44. Whether or not locks are
enforced by the I/O functions is determined at the time the calls are made by
the permissions on the file; see chmod(2).
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For locks to be under mandatory enforcement, the file must be a regular file
with the set-group-ID bit on and the group execute permission off. If either
condition fails, all record locks are advisory. Mandatory enforcement can be
assured by the following code:

Files that are to be record locked should never have any type of execute
permission set on them. This is because the operating system does not obey the
record locking protocol when executing a file. In practice this is not a problem,
as it would be a strange application that wanted to lock portions of a binary
executable.

The chmod(1) command can also be used to set a file to permit mandatory
locking. This can be done with the command:

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

.

.

.
if (stat(filename, &buf) < 0) {

perror("program");
exit (2);

}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);
/* set ’set group id bit’ in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {

perror("program");
exit(2);

}
.
.
.

$ chmod +l file
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(Note that this is letter “l” and not the number “1”.) This command sets two
permission bits in the file mode, which the system uses to understand that
mandatory locking is enabled on this file. The two bits in the mode are
.1./.../..0/...

Therefore, an idividual file cannot simultaneously be enabled for mandatory
locking and have the set-group-ID on execution bit set. Nor can an individual
file be enabled for mandatory locking and for group execution. These sets of
two attributes are mutually exclusive. In practice this is not a problem because
file locking is used for data files, and set-group-ID is used for executable
programs. Similarly, the bit is ignored on directory files.

The ls (1) command shows this setting when you ask for the long listing
format with the –l  option:

The following information is displayed:

The letter “l” in the permissions indicates that the set-group-ID bit is on, so
mandatory locking is enabled, as well as the normal semantics of set group ID.

Cautions about Mandatory Locking
• Mandatory locking is available only for local files. It is not supported when

accessing files over NFS.

• Mandatory locking protects only those portions of a file that are locked.
Other portions of the file that are not locked can be accessed according to
normal file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all such pieces before any I/O begins.
Advisory enforcement is sufficient for all programs that perform in this way.

• As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

$ ls -l file

-rw---l--- 1 user group size mod_time file
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• Advisory locking is more efficient because a record lock check does not have
to be performed for every I/O request.

File and Record Locking

The system on which the locking process resides can be remote from the
system on which the file and record locks reside. In this way multiple
processes on different systems can put advisory locks upon a single file that
resides on one of these or on another system.

The record locks for a file reside on the system that maintains the file.
Deadlock detection is supported over NFS, but only for locks that reside on a
particular system. A deadlock involving files residing on more than one NFS
server will not be detected. Therefore, a process should hold record locks only
on a single system at any given time for the deadlock mechanism to be
effective.

If a process needs to maintain locks over several systems,the process can avoid
the sleep-when-blocked features of fcntl  or lockf  and maintain its own
deadlock detection. If the process uses the sleep-when-blocked feature, provide
a timeout mechanism (see alarm (2)) so that the process does not hang waiting
for a lock to be cleared.

When maintaining deadlock detection is more expensive that you would like,
you can define an ordering for obtaining locks rather than relying on deadlock
detection. Just figure out which locks need to be held when. If a program will
ever hold more than one lock at a time, declare which lock should be held first,
which second, and so on. As long as the program obtains the locks in the
defined order, the locks will never deadlock. This approach works for either
blocking or nonblocking lock requests.

File locks

System 1 System2 System3
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Interprocess Communication 3

The SunOS 5.x system provides several mechanisms that allow processes to
exchange data and synchronize execution. The simpler of these mechanisms
are pipes, named pipes, and signals. These are limited, however, in what they
can do:

• Pipes do not allow unrelated processes to communicate.

• Named pipes allow unrelated processes to communicate, but do not provide
private channels for pairs of communicating processes; that is, any process
with appropriate permission can read from or write to a named pipe.

• Sending signals with the kill  function allows arbitrary processes to
communicate, but the message consists only of the signal number.

The SunOS 5.x system provides an InterProcess Communication (IPC) package
that supports three more versatile types of interprocess communication:

• Messages allow processes to send formatted data streams to arbitrary
processes.

• Semaphores allow processes to synchronize execution.

• Shared memory allows processes to share parts of their virtual address
space.

When implemented as a unit, these three mechanisms share common
properties:

• Each mechanism contains a “get” function to create a new entry or retrieve
an existing one.
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• Each mechanism contains a “control” function to query the status of an
entry, to set status information, and to remove the entry from the system.

• Each mechanism contains one or more “operations” functions to perform
various operations on an entry.

This chapter describes the functions for each of these three forms of IPC.

This information is for programmers who write multiprocess applications.
These programmers should have a general understanding of what semaphores
are and how they are used.

See the following manual pages as listed in Figure 3-1 for more information
about IPC.

Included in this chapter are several example programs showing the use of
these IPC functions. You can accomplish the same task in many ways, so keep
in mind that the example programs were written for clarity and not for
program efficiency. Usually, functions are embedded within a larger user-
written program that uses a particular function provided by the calls.

Permissions

Permissions for messages, semaphores, and shared memory can be extended to
users other than the one for which the facility was created. The creating
process identifies the default owner. Unlike files, however, the creator can
assign ownership of the facility to another user; it can also revoke an
ownership assignment. The current owner process, in turn, can grant read or
write access to still other users.

Table 3-1 IPC Reference Manual Pages

ipcrm (1) ipcs (1) intro (2)

msgget (2) msgctl (2) msgop(2)

semget (2) semctl (2) semop(2)

shmget (2) shmctl (2) shmop(2)

stdipc (3C)
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The definition for the IPC permissions data structure ipc_perm  is given in
<sys/ipc.h> :

Figure 3-1 IPC Permissions Data Structure

This structure is common to messages, semaphores, and shared memory.
Permissions for an IPC facility are initialized by the creating process and can
be modified by any process with permission to perform control operations on
that facility.

Permissions are specified as octal values in the flags argument of the
appropriate IPC creation or control function:

struct ipc_perm
{

uid_t uid; /* owner’s user id */
gid_t gid; /* owner’s group id */
uid_t cuid; /* creator’s user id */
gid_t cgid; /* creator’s group id */
mode_t mode; /* access modes */
ulong seq; /* slot usage sequence number */
key_t key; /* key */
long pad[4]; /*reserve area */

};

Table 3-2 Octal Permission Values

Access Permissions Octal Value

Write by Owner 0200

Read by Owner 0400

R/W by Owner 0600

Write by Group 0020

Read by Group 0040

R/W by Group 0060

Write by Others 0002

Read by Others 0004

R/W by Others 0006
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For instance, to get read access by the owner and read and write access by
others, the permissions value is 0406 .

IPC Functions, Key Arguments, and Creation Flags

Processes requesting access to a common IPC facility must have a way to
determine the identity of the facility. To do this, functions that initialize or
provide access to an IPC facility use a key argument (of type key_t ).

This key is a value known to all the programs, or one that can be derived from
a common seed at run time. A common way to derive the key is with ftok
(see stdipc (3C)). This converts a filename to a key value that is virtually
unique within the system. The key value can be used by all programs
(processes) attempting to access the facility.

Functions that initialize or get access to messages, semaphores, or shared
memory return an ID number of type int . IPC functions that perform read,
write, and control operations use this ID.

If the key argument is specified as IPC_PRIVATE  (defined to be zero), the call
initializes a new instance of an IPC facility that is private to the creating
process.

When the IPC_CREAT flag is supplied in the flags argument appropriate to the
call, the function attempts to create the facility if it does not exist already.

When called with both the IPC_CREAT and IPC_EXCL flags, the function fails
if the facility already exists. This can be useful when more than one process
might attempt to initialize the facility. One such case might involve several
server processes having access to the same facility. If they all attempt to create
the facility with IPC_EXCL in effect, only the first attempt succeeds.

If neither of these flags is given and the facility already exists, the functions to
get access simply return the ID of the facility. If IPC_CREAT is omitted and the
facility is not already initialized, the calls fail.
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These control flags are combined, using logical (bitwise) OR, with the octal
permission modes to form the flags argument. For example, the statement in
the next example initializes a new message queue if the queue does not exist
already.

The first argument evaluates to a key (‘A’  in the following figure) based on
the string ("/tmp " in the following figure). The second argument evaluates to
the combined permissions and control flags:

Figure 3-2 IPC Permission Modes

Messages
IPC messaging allows processes to send and receive messages, and to queue
messages for processing in an arbitrary order. Unlike the file byte-stream
model of data flow used for pipes, each IPC message has an explicit length.
More importantly, messages can be assigned a specific type. Because of this, a
server process can direct message traffic between clients on its queue by using
the client process PID as the message type. For single-message transactions,
multiple server processes can work in parallel on transactions sent to a shared
message queue.

Before a process can send or receive a message, the queue must be initialized
through the msgget (2) function. The owner or creator of a queue can change
its ownership or permissions using msgctl (2). Also, any process with
permission to do so can use msgctl()  for control operations.

Operations to send and receive messages are performed by the msgsnd()  and
msgrcv()  functions, respectively (see msgop(2)). When a message is sent, its
text is copied to the message queue.

The msgsnd()  and msgrcv()  functions can be performed as either blocking
or non-blocking operations. A blocked message operation remains suspended
until one of the following three conditions occurs:

• The call succeeds.

• The process receives a signal.

• The queue is removed.

msqid = msgget(ftok("/tmp", ’A’), (IPC_CREAT | IPC_EXCL | 0400));



52 System Services Guide—August 1994

3

Structure of a Message Queue

A message queue contains a control structure with a unique ID, a linked list of
message headers, and a buffer for the message text. The identifier for the queue
is the msqid .

Figure 3-3 Structure of a Message Queue

The control structure for the message queue contains the following
information:

• A permissions structure.

• A pointer to the first message on the queue.

• A pointer to the last message on the queue.

• The number of bytes in the queue.

• The number of messages in the queue.

• The maximum number of bytes allowed in the queue.

• The process ID (PID) of the last message sender.

• The PID of the last message receiver.

• The time the last message was sent.

• The time the last message was received.

• The time of the last change to the structure.

Each message header contains the following information:

• A pointer to the next message on the queue.

control
structure

header message
buffer
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• The message type.

• The message text size.

• The message text address.

The message queue control structure is defined in <sys/msg.h> :

Figure 3-4 Message Queue Control Structure

The definition for the message-header data structure is the following:

Figure 3-5 Message Header Structure

struct msqid_ds
{

struct ipc_perm msg_perm; /* operation permission struct */
struct msg *msg_first; /* ptr to first message on q */
struct msg *msg_last; /* ptr to last message on q */
ulong msg_cbytes; /* current # bytes on q */
ulong msg_qnum; /* # of messages on q */
ulong msg_qbytes; /* max # of bytes on q */
pid_t msg_lspid; /* pid of last msgsnd */
pid_t msg_lrpid; /* pid of last msgrcv */
time_t msg_stime; /* last msgsnd time */
long msg_pad1; /* reserved for time_t expansion */
time_t msg_rtime; /* last msgrcv time */
long msg_pad2; /* time_t expansion */
time_t msg_ctime; /* last change time */
long msg_pad3; /* time expansion */
long msg_pad4[4]; /* reserve area*/

};

struct msg
{

struct msg *msg_next; /* ptr to next message on q */
long  msg_type; /* message type */
short  msg_ts; /* message text size */
short  msg_spot; /* message text map address */

};
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Initializing a Message Queue with msgget ( )

The msgget()  function initializes a new message queue. It can also return the
message queue ID (msqid ) of the queue corresponding to the key argument.
When the call fails, it returns –1 and sets the external variable errno  to the
appropriate error code. The msgget()  synopsis is shown in the following
figure:

Figure 3-6 Synopsis of msgget ()

The value passed as the msgflg  argument must be an octal integer with
settings for the queue’s permissions and control flags.

The MSGMNI kernel configuration option determines the maximum number of
unique message queues that the kernel will support.  The msgget()  function
fails when this limit is exceeded.

The following example is a simple program that illustrates the msgget()
function. The program prompts for a key, an octal permissions code, and for
your choice of control flags. It allows all possible combinations. When msgget

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);
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succeeds, it displays the message queue ID that the call returned. When
msgget () fails, the program indicates that there was an error and displays the
reason for the failure:

/*
** msgget.c: Illustrate the msgget() function.
**
** This is a simple exerciser of the msgget() function.
** It prompts for the arguments, makes the call, and reports the
** results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);
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Figure 3-7 Sample Program to Illustrate msgget ()

Controlling Message Queues with msgctl ( )

The msgctl()  function alters the permissions and other characteristics of a
message queue.

Its synopsis is as follows:

Figure 3-8 Synopsis of msgctl ()

(void) fprintf(stderr, "\nExpected flags for msgflg argument are:\n");
(void) fprintf(stderr, "\tIPC_EXCL =\t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter msgflg value: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx, %#o)\n",
key, msgflg);

if ((msqid = msgget(key, msgflg)) == –1)
{

perror("msgget: msgget failed");
exit(1);

} else {
(void) fprintf(stderr,

"msgget: msgget succeeded: msqid = %d\n", msqid);
exit(0);

}
/* NOTREACHED */

}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, .../* struct msqid_ds *buf */);
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Upon successful completion, the call returns zero. Upon failure, it returns –1
and sets errno  appropriately.

The msqid  argument must be the ID of an existing message queue. The cmd
argument is one of the following:

IPC_STAT
Place information about the status of the queue in the data structure pointed
to by buf . The process must have read permission for this call to succeed.

IPC_SET
Set the owner’s user and group ID, the permissions, and the size (in number
of bytes) of the message queue. A process must have the effective user ID of
the owner, creator, or superuser for this call to succeed.

IPC_RMID
Remove the message queue specified by the msqid  argument.
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The following sample program illustrates the msgctl (2) function with all its
various flags:

/*
** msgctl.c:  Illustrate the msgctl() function.
**
** This is a simple exerciser of the msgctl() function.  It allows
** you to perform one control operation on one message queue.  It
** gives up immediately if any control operation fails, so be careful not
** to set permissions to preclude read permission; you won’t be able to
** reset the permissions with this code if you do.
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>

static void do_msgctl();
extern void exit();
extern void perror();
static char warning_message[] = "If you remove read permission for \
yourself, this program will fail frequently!";

main()
{

struct msqid_dsbuf; /* queue descriptor buffer for IPC_STAT
   and IP_SET commands */

int cmd, /* command to be given to msgctl() */
msqid; /* queue ID to be given to msgctl() */

(void fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqid and cmd arguments for the msgctl() call. */
(void) fprintf(stderr,

"Please enter arguments for msgctls() as requested.");
(void) fprintf(stderr, "\nEnter the msqid: ");
(void) scanf("%i", &msqid);
(void) fprintf(stderr, "Valid msgctl commands are:\n");
(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
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(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
(void) fprintf(stderr, "\nEnter the value for the command: ");
(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_SET:
/* Modify settings in the message queue control structure. */
(void) fprintf(stderr, "Before IPC_SET, get current values:");
/* fall through to IPC_STAT processing */

case IPC_STAT:
/*
** Get a copy of the current message queue control structure
** and show it to the user.
*/
do_msgctl(msqid, IPC_STAT, &buf);
(void) fprintf(stderr,

"msg_perm.uid = %d\n", buf.msg_perm.uid);
(void) fprintf(stderr,

"msg_perm.gid = %d\n", buf.msg_perm.gid);
(void) fprintf(stderr,

"msg_perm.cuid = %d\n", buf.msg_perm.cuid);
(void) fprintf(stderr,

"msg_perm.cgid = %d\n", buf.msg_perm.cgid);
(void) fprintf(stderr, "msg_perm.mode = %#o, ",

buf.msg_perm.mode);
(void) fprintf(stderr, "access permissions = %#o\n",

buf.msg_perm.mode & 0777);
(void) fprintf(stderr, "msg_cbytes = %d\n", buf.msg_cbytes);
(void) fprintf(stderr, "msg_qbytes = %d\n", buf.msg_qbytes);
(void) fprintf(stderr, "msg_qnum = %d\n", buf.msg_qnum);
(void) fprintf(stderr, "msg_lspid = %d\n", buf.msg_lspid);
(void) fprintf(stderr, "msg_lrpid = %d\n", buf.msg_lrpid);
(void) fprintf(stderr, "msg_stime = %s", buf.msg_stime ?

ctime(&buf.msg_stime) : "Not Set\n");
(void) fprintf(stderr, "msg_rtime = %s", buf.msg_rtime ?

ctime(&buf.msg_rtime) : "Not Set\n");
(void) fprintf(stderr, "msg_ctime = %s", ctime(&buf.msg_ctime));
if (cmd == IPC_STAT)

break;
/*
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**  Now continue with IPC_SET.
*/

(void) fprintf(stderr, "Enter msg_perm.uid: ");
(void) scanf ("%hi", &buf.msg_perm.uid);
(void) fprintf(stderr, "Enter msg_perm.gid: ");
(void) scanf("%hi", &buf.msg_perm.gid);
(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr, "Enter msg_perm.mode: ");
(void) scanf("%hi", &buf.msg_perm.mode);
(void) fprintf(stderr, "Enter msg_qbytes: ");
(void) scanf("%hi", &buf.msg_qbytes);
do_msgctl(msqid, IPC_SET, &buf);
break;

case IPC_RMID:
default:

/* Remove the message queue or try an unknown command. */
do_msgctl(msqid, cmd, (struct msqid_ds *)NULL);
break;

}
exit(0);
/* NOTREACHED */

}
/*
** Print indication of arguments being passed to msgctl(), call msgctl(),
** and report the results.
** If msgctl() fails, do not return; this example doesn’t deal with
** errors, it just reports them.
*/
static void
do_msgctl(msqid, cmd, buf)
struct msqid_ds *buf; /* pointer to queue descriptor buffer */
int cmd, /* command code */

msqid; /* queue ID */
{

register int rtrn; /* hold area for return value from msgctl() */

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d, %s)\n",
msqid, cmd, buf ? "&buf" : "(struct msqid_ds *)NULL");

rtrn = msgctl(msqid, cmd, buf);
if (rtrn == –1) {

perror("msgctl: msgctl failed");
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Figure 3-9 Sample Program to Illustrate msgctl ()

Sending and Receiving Messages

The msgsnd () and msgrcv () functions (see the msgop(2) manual page) send
and receive messages, respectively. Their synopses are as follows:

Figure 3-10 Synopses of msgsnd() and msgrcv ()

Upon successful completion, each of these functions returns zero. When
unsuccessful, each call returns –1 and sets the external variable errno  to the
appropriate error code.

The msqid  argument must be the ID of an existing message queue. The msgp
argument is a pointer to a structure that contains the type of the message and
its text. The msgsz  argument specifies the length of the message in bytes.

Various control flags can be passed in the msgflg  argument. Combine flags
within the argument using the logical OR operator. When IPC_NOWAIT is set,
a send or receive operation that cannot finish fails. For instance, a non-blocking
msgrcv()  operation fails when there is no message to receive. If
MSG_NOERROR is set, then a message longer than the size specified by msgsz  is

exit(1);
/* NOTREACHED */

} else {
(void) fprintf(stderr, "msgctl: msgctl returned %d\n", rtrn);

}
}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp,
size_t msgsz, int msgflg);

int msgrcv(int msqid, void *msgp,
size_t msgsz, long msgtyp, int msgflg);
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truncated to that size. The trailing portion of the truncated message is lost.
Without the MSG_NOERROR flag, attempting to receive a message that is
longer than expected results in failure.

The msgtyp  argument to msgrcv()  indicates the type of message to receive.
When msgtyp()  equals zero, the call receives the first message on the queue.
When it is greater than zero, the call receives the first message of the indicated
type.

When msgtyp  is less than zero, the call receives the first message on the queue
with lowest type value, up to and including the absolute value of the
argument. For instance, when msgtyp  has a value of –3, the call retrieves the
first message of type 1, if any, or the first message of type 2, if any, or the first
message of type 3. It does not receive a message of type 4. This allows you to
prioritize message processing according to type.
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The following sample program illustrates msgsnd()  and msgrcv() :

/*
** msgop.c: Illustrate the msgsnd() and msgrcv() functions.
**
** This is a simple exerciser of the message send and receive
** routines. It allows the user to attempt to send and receive as many
** messages as wanted to or from one message queue.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

static int ask();
extern void exit();
extern char *malloc();
extern void perror();

char first_on_queue[] = "–> first message on queue",
full_buf[] = "Message buffer overflow. Extra message text discarded.";

main()
{

register int c; /* message text input */
int choice; /* user’s selected operation code */
register int i; /* loop control for mtext */
int msgflg; /* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqid, /* message queue ID to be used */

maxmsgsz, /* size of allocated message buffer */
rtrn; /* return value from msgrcv or msgsnd */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
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/* Get the message queue ID and set up the message buffer. */
(void) fprintf(stderr, "Enter msqid: ");
(void) scanf("%i", &msqid);
/*
** Note that <sys/msg.h> includes a definition of struct msgbuf
** with the mtext field defined as:
**  char mtext[1];
** therefore, this definition is only a template, not a structure
** definition that you can use directly, unless you want only to send
** and receive messages of 0 or 1 byte.
** To handle this, malloc an area big enough to contain the
** template – the size of the mtext template field + the size of
** the mtext field wanted. Then you can use the pointer returned
** by malloc as a struct msgbuf with an mtext field of the size
** you want.
**  Note also that sizeof msgp–>mtext is valid even though msgp
** isn’t pointing to anything yet. Sizeof doesn’t dereference msgp,
** but uses its type to figure out what you are asking about.
*/
(void) fprintf(stderr, "Enter the message buffer size you want: ");
(void) scanf("%i", &maxmsgsz);
if (maxmsgsz < 0) {

(void) fprintf(stderr, "msgop: %s\n",
"The message buffer size must be >= 0.");

exit(1);
/* NOTREACHED */

}
msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf) –

sizeof msgp–>mtext + maxmsgsz));
if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",
"could not allocate message buffer for", maxmsgsz);

exit(1);
/* NOTREACHED */

}
/* Loop through message operations until the user is ready to quit. */
while (choice = ask()) {

switch (choice) {
case 1: /* msgsnd() requested: Get the arguments, make the

call, and report the results. */
(void) fprintf(stderr, "Valid msgsnd message %s\n",

"types are positive integers.");
(void) fprintf(stderr, "Enter msgp–>mtype: ");
(void) scanf("%li", &msgp–>mtype);
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if (maxmsgsz) {
/* Since you’ve been using scanf, you need the
following loop to throw away the rest of
the input on the line after the entered
mtype before you start reading the mtext. */

while ((c = getchar()) != ’\n’ && c != EOF)
;

(void) fprintf(stderr, "Enter a %s:\n",
"one line message");

for (i = 0; ((c = getchar()) != ’\n’); i++) {
if (i >= maxmsgsz) {

(void) fprintf(stderr,
"\n%s\n", full_buf);

while ((c = getchar()) != ’\n’)
;

break;
}
msgp–>mtext[i] = c;

}
msgsz = i;

} else
msgsz = 0;

(void) fprintf(stderr,
"\nMeaningful msgsnd flag is:\n");

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",
"msgop: Calling msgsnd", msqid, msgsz, msgflg);

(void) fprintf(stderr, "msgp–>mtype = %ld\n",
msgp–>mtype);

(void) fprintf(stderr, "msgp–>mtext = \"");
for (i = 0; i < msgsz; i++)

(void) fputc(msgp–>mtext[i], stderr);
(void) fprintf(stderr, "\"\n");

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if (rtrn == –1)

perror("msgop: msgsnd failed");
else
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(void) fprintf(stderr,
"msgop: msgsnd returned %d\n", rtrn);

break;
case 2: /* msgrcv() requested: Get the arguments, make the

call, and report the results. */
for (msgsz = –1; msgsz < 0 || msgsz > maxmsgsz;

(void) scanf("%i", &msgsz))
(void) fprintf(stderr,

"%s (0 <= msgsz <= %d): ",
"Enter msgsz", maxmsgsz);

(void) fprintf(stderr, "msgtyp meanings:\n");
(void) fprintf(stderr, "\t 0 %s\n", first_on_queue);
(void) fprintf(stderr, "\t>0 %s of given type\n",

first_on_queue);
(void) fprintf(stderr,

"\t<0 %s with type <= |msgtyp|\n",
first_on_queue);

(void) fprintf(stderr, "Enter msgtyp: ");
(void) scanf("%li", &msgtyp);

(void) fprintf(stderr,
"Meaningful msgrcv flags are:\n");

(void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",
MSG_NOERROR);

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",
"msgop: Calling msgrcv",
msqid, msgsz, msgtyp, msgflg);

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if (rtrn == –1)
perror("msgop: msgrcv failed");

else {
(void) fprintf(stderr, "msgop: %s %d\n",

"msgrcv returned", rtrn);
(void) fprintf(stderr, "msgp–>mtype = %ld\n",

msgp–>mtype);
(void) fprintf(stderr, "msgp–>mtext is: \"");
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Figure 3-11 Sample Program to Illustrate msgsnd() and msgrcv ()

for (i = 0; i < rtrn; i++)
(void) fputc(msgp–>mtext[i], stderr);

(void) fprintf(stderr, "\"\n");
}
break;

default:
(void) fprintf(stderr, "msgop: operation unknown\n");
break;

}
}
exit(0);
/* NOTREACHED */

}
/*
** Ask the user what to do next. Return the user’s choice code.
** Don’t return until the user selects a valid choice.
*/
static
ask()
{

int response;/* User’s response. */

do {
(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\tExit =\t0 or Control–D\n");
(void) fprintf(stderr, "\tmsgsnd =\t1\n");
(void) fprintf(stderr, "\tmsgrcv =\t2\n");
(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so "^D" will be interpreted as exit. */
response = 0;
(void) scanf("%i", &response);

} while (response < 0 || response > 2);

return(response);
}
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Semaphores
Semaphores provide a way for processes to query or alter status information.
They are often used to monitor and control the availability of system resources
such as shared memory segments. Semaphores can be operated on as
individual units or as elements in a set.

A semaphore set consists of a control structure and an array of individual
semaphores. By default, a set of semaphores can contain up to 25 elements.
Your system administrator can alter this limit through the SEMMSL system
configuration option.

Before a process can use a semaphore, the semaphore set must be initialized
using semget (2). The semaphore owner or creator can change its ownership or
permissions using semctl (2). Also, any process with permission to do so can
use semctl()  to perform control operations.

Semaphore operations are performed by the semop(2) function. This call
accepts a pointer to an array of semaphore operation structures. Each structure
in the operations array contains information about an operation to perform on
a semaphore. The operations array is described in detail in the Semaphore
Operations section.

Any process with read permission can test to see whether or not a semaphore
has a zero value by supplying a 0 in the sem_op field of the operation
structure. Operations to increment or decrement a semaphore require alter
permission (write permission).

When an attempt to perform any of the requested operations fails, none of the
semaphores is altered. The process blocks (unless the IPC_NOWAIT flag is set),
and remains blocked until one of the following occurs:

• the semaphore operations can all finish, so the call succeeds,

• the process receives a signal, or

• the semaphore set is removed.

When a semaphore operation fails, the call returns –1 and sets errno
appropriately.
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Only one process at a time can update a semaphore. Simultaneous requests by
different processes are performed in an arbitrary order. When an array of
operations is given by a semop()  call, the updates are made atomically. That
is, no updates are done until all operations in the array can finish in order
successfully.

When a process performs an operation on a semaphore, the system does not
usually keep track of whether or not that operation has been undone. If a
process with exclusive use of a semaphore terminates abnormally and neglects
to undo the operation or free the semaphore, the semaphore remains locked in
memory.

To prevent this, semop()  accepts the SEM_UNDO control flag. When this flag is
in effect, semop()  allocates an undo structure for each semaphore operation.
That structure contains the operation needed to return the semaphore to its
previous state.

When the process dies, the system applies the operations in the undo
structures. That way an aborted process need not leave a semaphore set in an
inconsistent state.

If processes share access to a resource controlled by a semaphore, operations
on the semaphore should not be made with SEM_UNDO in effect. If the process
that currently has control of the resource terminates abnormally, the resource is
presumed to be inconsistent. Another process must be able to recognize this to
restore the resource to a consistent state.

When performing a semaphore operation with SEM_UNDO in effect, you must
also have it in effect for the call that would perform the reversing operation.
When the process runs normally, the reversing operation updates the undo
structure with a complementary value.

This insures that, unless the process is aborted, the values applied to the undo
structure will eventually cancel out to zero. When the undo structure reaches
zero, it is removed.

Using SEM_UNDO inconsistently can lead to excessive resource consumption
because allocated undo structures might not be freed until the system is
rebooted.
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Structure of a Semaphore Set

A semaphore set is composed of a control structure with a unique ID and an
array of semaphores. The identifier for the semaphore or array is called the
semid :

Figure 3-12 Structure of a Semaphore

The control structure for the semaphore contains the following information:

• The permissions structure

• A pointer to first semaphore in the array

• The number of semaphores in the array

• The time of the last operation on any semaphore the array

• The time of the last update to any semaphore in the array

Each semaphore structure in the array contains the following information:

• The semaphore value

• The PID of the process performing the last successful operation

• The number of processes waiting for the semaphore to increase

• The number of processes waiting for the semaphore to reach zero

control
structure

semaphore
array
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The control structure is defined in <sys/sem.h> :

The sem_perm  member of this structure uses ipc_perm  (defined in
<sys/ipc.h> ) as a template.

The semaphore structure is defined in the same header file:

struct semid_ds
{

struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* ptr to first semaphore in set */
ushort sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* last semop time */
long sem_pad1; /* reserved for time_t expansion */
time_t sem_ctime; /* last change time */
long sem_pad2; /* time_t expansion */
long sem_pad3[4]; /* reserve area */

};

struct sem
{

ushort semval; /* semaphore text map address */
pid_t sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

};
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Initializing a Semaphore Set with semget ( )

The semget()  function initializes or gains access to a semaphore. When the
call succeeds, it returns the semaphore ID (semid ). When the call fails, it
returns –1 and sets the external variable errno  to the appropriate error code.
The semget()  function has the following synopsis:

Figure 3-13 Synopsis of semget ()

The key argument is a value associated with the semaphore ID.

The nsems argument specifies the number of elements in a semaphore array.
The call fails when nsems is greater than the number of elements in an existing
array; when the correct count is not known, supplying 0 for this argument
assures that it will succeed. The semflg  argument specifies the initial access
permissions and creation control flags.

The SEMMNI system configuration option determines the maximum number of
semaphore arrays allowed. The SEMMNS option determines the maximum
possible number of individual semaphores across all semaphore sets. The
semget()  call fails when one of these limits is exceeded. Because of
fragmentation between semaphore sets, it might not be possible to allocate all
available semaphores.

The following program illustrates the semget()  function. It begins by
prompting for a hexadecimal key, an octal permissions code, and control
command combinations selected from a menu. All possible combinations are
allowed.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);
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It then asks the number of semaphores in the array and issues the function to
initialize the array. If the call succeeds, the program displays the returned
semaphore ID. Otherwise, it displays an error message:

/*
** semget.c: Illustrate the semget() function.
**
** This is a simple exerciser of the semget() function.
** It prompts for the arguments, makes the call, and reports the
** results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);

 (void) fprintf(stderr, "Enter nsems value: ");
 (void) scanf("%i", &nsems);
 (void) fprintf(stderr, "\nExpected flags for semflg are:\n");
 (void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
 (void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
 (void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);
 (void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);
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Figure 3-14 Sample Program to Illustrate semget ()

Controlling Semaphores with semctl ( )

The semctl()  function allows a process to alter permissions and other
characteristics of a semaphore set. Its synopsis is as follows:

Figure 3-15 Synopsis of semctl ()

(void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup alter = \t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read = \t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother alter = \t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter semflg value: ");
(void) scanf("%i", &semflg);

(void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %d, %#o)\n",
key, nsems, semflg);

if ((semid = semget(key, nsems, semflg)) == –1) {
perror("semget: semget failed");
exit(1);

} else {
(void) fprintf(stderr, "semget: semget succeeded: semid = %d\n",

semid);
exit(0);

}
/*NOTREACHED*/

}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {
int val;
struct semid_ds *buf;
ushort * array;

};

int semctl(int semid, int semnum, int cmd, union semun arg)
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The semid  value is a valid semaphore ID. The semnum value selects a
semaphore within an array by its index. The cmd argument is one of the
following control flags. What you supply for arg  depends upon the control
flag given in cmd:

GETVAL
Return the value of a single semaphore.

SETVAL
Set the value of a single semaphore. In this case, arg  is taken as arg.val ,
an int .

GETPID
Return the PID of the process that performed the last operation on the
semaphore or array.

GETNCNT
Return the number of processes waiting for the value of a semaphore to
increase.

GETZCNT
Return the number of processes waiting for the value of a particular
semaphore to reach zero.

GETALL
Return the values for all semaphores in a set. In this case, arg  is taken as
arg.array , a pointer to an array of unsigned short s.

SETALL
Set values for all semaphores in a set. In this case, arg  is taken as
arg.array , a pointer to an array of unsigned short s.

IPC_STAT
Return the status information from the control structure for the semaphore
set and place it in the data structure pointed to by arg.buf , a pointer to a
buffer of type semid_ds .

IPC_SET
Set the effective user and group identification and permissions. In this case,
arg  is taken as arg.buf .

IPC_RMID
Remove the specified semaphore set.
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A process must have an effective user identification of OWNER, CREATOR, or
superuser to perform an IPC_SET or IPC_RMID command. Read and write
permission is required as for the other control commands.
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The following program illustrates semctl() :

/*
** semctl.c:Illustrate the semctl() function.
**
** This is a simple exerciser of the semctl() function. It
** allows you to perform one control operation on one semaphore set.
** It gives up immediately if any control operation fails, so be careful not
** to set permissions to preclude read permission; you won’t be able to reset
** the permissions with this code if you do.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();
static void do_stat();
extern char *malloc();
extern void exit();
extern void perror();

char warning_message[] = "If you remove read permission for\
yourself, this program will fail frequently!";

main()
{

union semunarg; /* union to pass to semctl() */
int cmd, /* command to give to semctl() */

i, /* work area */
semid, /* semid to pass to semctl() */
semnum;/* semnum to pass to semctl() */

(void) fprintf(stderr,
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"All numeric input must follow C conventions:\n");
(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "Enter semid value: ");
(void) scanf("%i", &semid);

(void) fprintf(stderr, "Valid semctl cmd values are:\n");
(void) fprintf(stderr, "\tGETALL = %d\n", GETALL);
(void) fprintf(stderr, "\tGETNCNT = %d\n", GETNCNT);
(void) fprintf(stderr, "\tGETPID = %d\n", GETPID);
(void) fprintf(stderr, "\tGETVAL = %d\n", GETVAL);
(void) fprintf(stderr, "\tGETZCNT = %d\n", GETZCNT);
(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
(void) fprintf(stderr, "\tSETALL = %d\n", SETALL);
(void) fprintf(stderr, "\tSETVAL = %d\n", SETVAL);
(void) fprintf(stderr, "\nEnter cmd: ");
(void) scanf("%i", &cmd);

/* Perform some setup operations needed by multiple commands. */
switch (cmd) {
case GETVAL:
case SETVAL:
case GETNCNT:
case GETZCNT:

/* Get the semaphore number for these commands. */
(void) fprintf(stderr, "\nEnter semnum value: ");
(void) scanf("%i", &semnum);
break;

case GETALL:
case SETALL:

/* Allocate a buffer for the semaphore values. */
(void) fprintf(stderr,

"Get number of semaphores in the set.\n");
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
if (arg.array =

(ushort *)malloc((unsigned)
(semid_ds.sem_nsems * sizeof(ushort)))) {

/* Break out if you got what you needed. */
break;
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}
(void) fprintf(stderr,

"semctl: unable to allocate space for %d values\n",
semid_ds.sem_nsems);

exit(2);
/*NOTREACHED*/

}

/* Get the rest of the arguments needed for the specified command. */
switch (cmd) {
case SETVAL:

/* Set value of one semaphore. */
(void) fprintf(stderr, "\nEnter semaphore value: ");
(void) scanf("%i", &arg.val);
do_semctl(semid, semnum, SETVAL, arg);

/* Fall through to verify the result. */
(void) fprintf(stderr,

"Perform semctl GETVAL command to verify results.\n");

case GETVAL:
/* Get value of one semaphore. */
arg.val = 0;
do_semctl(semid, semnum, GETVAL, arg);
break;

case GETPID:
/* Get PID of last process to successfully complete a

semctl(SETVAL), semctl(SETALL), or semop() on the semaphore. */
arg.val = 0;
do_semctl(semid, 0, GETPID, arg);
break;

case GETNCNT:
/* Get number of processes waiting for semaphore value to increase. */
arg.val = 0;
do_semctl(semid, semnum, GETNCNT, arg);
break;

case GETZCNT:
/* Get number of processes waiting for semaphore value to become zero. */

arg.val = 0;



80 System Services Guide—August 1994

3

do_semctl(semid, semnum, GETZCNT, arg);
break;

case SETALL:
/* Set the values of all semaphores in the set. */
(void) fprintf(stderr, "There are %d semaphores in the set.\n",

semid_ds.sem_nsems);
(void) fprintf(stderr, "Enter semaphore values:\n");
for (i = 0; i < semid_ds.sem_nsems; i++) {

(void) fprintf(stderr, "Semaphore %d: ", i);
(void) scanf("%hi", &arg.array[i]);

}
do_semctl(semid, 0, SETALL, arg);

/* Fall through to verify the results. */
(void) fprintf(stderr,

"Perform semctl GETALL command to verify results.\n");

case GETALL:
/* Get and print the values of all semaphores in the set.*/
do_semctl(semid, 0, GETALL, arg);
(void) fprintf(stderr, "The values of the %d semaphores are:\n",

semid_ds.sem_nsems);
for (i = 0; i < semid_ds.sem_nsems; i++)

(void) fprintf(stderr, "%d ", arg.array[i]);
(void) fprintf(stderr, "\n");
break;

case IPC_SET:
/* Modify mode and/or ownership. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
(void) fprintf(stderr, "Status before IPC_SET:\n");
do_stat();

(void) fprintf(stderr, "Enter sem_perm.uid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.uid);

(void) fprintf(stderr, "Enter sem_perm.gid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr,
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"Enter sem_perm.mode value: ");
(void) scanf("%hi", &semid_ds.sem_perm.mode);

do_semctl(semid, 0, IPC_SET, arg);

/* Fall through to verify changes. */
(void) fprintf(stderr, "Status after IPC_SET:\n");

case IPC_STAT:
/* Get and print current status. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
do_stat();
break;

case IPC_RMID:
/* Remove the semaphore set. */
arg.val = 0;
do_semctl(semid, 0, IPC_RMID, arg);
break;

default:
/* Pass unknown command to semctl. */
arg.val = 0;
do_semctl(semid, 0, cmd, arg);
break;

}
exit(0);
/*NOTREACHED*/

}

/*
** Print indication of arguments being passed to semctl(), call semctl(),
** and report the results.
** If semctl() fails, do not return; this example doesn’t deal with
** errors, it just reports them.
*/
static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,

semid,
semnum;

{



82 System Services Guide—August 1994

3

register int i; /* work area */

void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d, ",
semid, semnum, cmd);

switch (cmd) {
case GETALL:

(void) fprintf(stderr, "arg.array = %#x)\n", arg.array);
break;

case IPC_STAT:
case IPC_SET:

(void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);
break;

case SETALL:
(void) fprintf(stderr, "arg.array = [", arg.buf);
for (i = 0;i < semid_ds.sem_nsems;) {

(void) fprintf(stderr, "%d", arg.array[i++]);
if (i < semid_ds.sem_nsems)

(void) fprintf(stderr, ", ");
}
(void) fprintf(stderr, "])\n");
break;

case SETVAL:
default:

(void) fprintf(stderr, "arg.val = %d)\n", arg.val);
break;

}
i = semctl(semid, semnum, cmd, arg);
if (i == –1) {

perror("semctl: semctl failed");
exit(1);
/* NOTREACHED */

}
(void) fprintf(stderr, "semctl: semctl returned %d\n", i);
return;

}

/*
** Display contents of commonly used pieces of the status structure.
*/
static void
do_stat()
{

(void) fprintf(stderr, "sem_perm.uid = %d\n", semid_ds.sem_perm.uid);
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Figure 3-16 Sample Program to Illustrate semctl ()

Performing Semaphore Operations with semop( )

The semop()  function performs operations on a semaphore set. Its synopsis is
as follows:

Figure 3-17 Synopsis of semop()

The semid  argument is the semaphore ID returned by a previous semget()
call. The sops  argument is a pointer to an array of structures, each containing
the following information about a semaphore operation:

• The semaphore number

• The operation to be performed

• Control flags, if any

(void) fprintf(stderr, "sem_perm.gid = %d\n", semid_ds.sem_perm.gid);
(void) fprintf(stderr, "sem_perm.cuid = %d\n", semid_ds.sem_perm.cuid);
(void) fprintf(stderr, "sem_perm.cgid = %d\n", semid_ds.sem_perm.cgid);
(void) fprintf(stderr, "sem_perm.mode = %#o, ",

semid_ds.sem_perm.mode);
(void) fprintf(stderr, "access permissions = %#o\n",

semid_ds.sem_perm.mode & 0777);
(void) fprintf(stderr, "sem_nsems = %d\n", semid_ds.sem_nsems);
(void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?

ctime(&semid_ds.sem_otime) : "Not Set\n");
(void) fprintf(stderr, "sem_ctime = %s", ctime(&semid_ds.sem_ctime));

}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);
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The sembuf  structure specifies a semaphore operation, as defined in
<sys/sem.h> :

The nsops  argument specifies the length of the array, the maximum size of
which is determined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop()  call, and is set to 10 by
default.

The operation to be performed is determined as follows:

• A positive integer increments the semaphore value by that amount.

• A negative integer decrements the semaphore value by that amount.
However, a semaphore can never take on a negative value. An attempt to set
a semaphore to a value below zero either fails or blocks, depending on
whether or not IPC_NOWAIT is in effect.

• A value of zero means to wait for the semaphore value to reach zero.

You can use the following control flags with semop() :

IPC_NOWAIT
This operation command can be set for any operations in the array. The
function returns unsuccessfully without changing any semaphore values if
any operation for which IPC_NOWAIT is set cannot be performed
successfully. The function will be unsuccessful when trying to decrement a
semaphore more than its current value, or when testing for a semaphore to
be equal to zero when it is not.

SEM_UNDO
This command allows individual operations in the array to be undone when
the process exits.

struct sembuf {
ushort sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};
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The following program illustrates the semop()  function:

/*
** semop.c: Illustrate the semop() function.
**
** This is a simple exerciser of the semop() function. It allows
** you to set up arguments for semop() and make the call. It then reports
** the results repeatedly on one semaphore set. You must have read
** permission on the semaphore set or this exerciser will fail. (It needs
** read permission to get the number of semaphores in the set and to report
** the values before and after calls to semop().)
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static int  ask();
extern void exit();
extern void free();
extern char *malloc();
extern void perror();

static struct semid_dssemid_ds; /* status of semaphore set */

static charerror_mesg1[] = "semop: Can’t allocate space for %d\
semaphore values. Giving up.\n";

static charerror_mesg2[] = "semop: Can’t allocate space for %d\
sembuf structures. Giving up.\n";

main()
{

register int i; /* work area */
int nsops; /* number of operations to perform */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Loop until the invoker doesn’t want to do anymore. */
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while (nsops = ask(&semid, &sops)) {
/* Initialize the array of operations to be performed.*/
for (i = 0; i < nsops; i++) {

(void) fprintf(stderr,
"\nEnter values for operation %d of %d.\n",
i + 1, nsops);

(void) fprintf(stderr,
"sem_num(valid values are 0 <= sem_num < %d): ",
semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i].sem_num);
(void) fprintf(stderr, "sem_op: ");
(void) scanf("%hi", &sops[i].sem_op);
(void) fprintf(stderr,

"Expected flags in sem_flg are:\n");
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",

SEM_UNDO);
(void) fprintf(stderr, "sem_flg: ");
(void) scanf("%hi", &sops[i].sem_flg);

}

/* Recap the call to be made. */
(void) fprintf(stderr,

"\nsemop: Calling semop(%d, &sops, %d) with:",
semid, nsops);

for (i = 0; i < nsops; i++)
{

(void) fprintf(stderr, "\nsops[%d].sem_num = %d, ", i,
sops[i].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[i].sem_op);
(void) fprintf(stderr, "sem_flg = %#o\n",

sops[i].sem_flg);
}

/* Make the semop() call and report the results. */
if ((i = semop(semid, sops, nsops)) == –1) {

perror("semop: semop failed");
} else {

(void) fprintf(stderr, "semop: semop returned %d\n", i);
}

}
/*NOTREACHED*/

}
/*
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** Ask if user wants to continue.
**
** On the first call:
** Get the semid to be processed and supply it to the caller.
** On each call:
** 1. Print current semaphore values.
** 2. Ask user how many operations are to be performed on the next call to
**  semop. Allocate an array of sembuf structures sufficient for the
**    job and set caller-supplied pointer to that array. (The array
**    is reused on subsequent calls if it is big enough. If
**    it isn’t, it is freed and a larger array is allocated.)
*/
static
ask(semidp, sopsp)
int *semidp; /* pointer to semid (used only the first time) */
struct sembuf **sopsp;
{

static union semun arg; /* argument to semctl */
int i; /* work area */
static int nsops = 0; /* size of currently allocated

   sembuf array */
static int semid = –1; /* semid supplied by user */
static struct sembuf *sops; /* pointer to allocated array */

if (semid < 0) {

/* First call; get semid from user and the current state of the semaphore set. */
(void) fprintf(stderr,

"Enter semid of the semaphore set you want to use: ");
(void) scanf("%i", &semid);
*semidp = semid;
arg.buf = &semid_ds;
if (semctl(semid, 0, IPC_STAT, arg) == –1) {

perror("semop: semctl(IPC_STAT) failed");

/* Note that if semctl fails, semid_ds remains filled with
zeros, so later test for number of semaphores will be zero. */

(void) fprintf(stderr,
"Before and after values will not be printed.\n");

} else {
if ((arg.array = (ushort *)malloc(

(unsigned)(sizeof(ushort) * semid_ds.sem_nsems)))
== NULL) {
(void) fprintf(stderr, error_mesg1,
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Figure 3-18 Sample Program to Illustrate semop()

semid_ds.sem_nsems);
exit(1);

}
}

}
/* Print current semaphore values. */
if (semid_ds.sem_nsems) {

(void) fprintf(stderr, "There are %d semaphores in the set.\n",
semid_ds.sem_nsems);

if (semctl(semid, 0, GETALL, arg) == –1) {
perror("semop: semctl(GETALL) failed");

} else {
(void) fprintf(stderr, "Current semaphore values are:");
for (i = 0; i < semid_ds.sem_nsems;

(void) fprintf(stderr, " %d", arg.array[i++]))
;

(void) fprintf(stderr, "\n");
}

}
/* Find out how many operations are going to be done in the next
   call and allocate enough space to do it. */
(void) fprintf(stderr, "How many semaphore operations do you want %s\n",

"on the next call to semop()?");
(void) fprintf(stderr, "Enter 0 or control–D to quit: ");
i = 0;
if (scanf("%i", &i) == EOF || i == 0)

exit(0);
if (i > nsops) {

if (nsops)
free((char *)sops);

nsops = i;
if ((sops = (struct sembuf *)malloc((unsigned)(nsops *

sizeof(struct sembuf)))) == NULL) {
(void) fprintf(stderr, error_mesg2, nsops);
exit(2);

}
}
*sopsp = sops;
return (i);

}
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Shared Memory
In the SunOS 5.x operating system, the most efficient way to implement shared
memory applications is to rely on native virtual memory management and the
mmap(2) function.

Shared memory allows more than one process at a time to attach a segment of
physical memory to its virtual address space. When write access is allowed for
more than one process, an outside protocol or mechanism such as a semaphore
can be used to prevent inconsistencies and collisions.

A process creates a shared memory segment using the shmget (2) function.
This call can also be used to obtain the ID of an existing shared segment. The
creating process sets the permissions and the size in bytes for the segment.

The original owner of a shared memory segment can assign ownership to
another user with the shmctl (2) function; it can also revoke this assignment.
Other processes with proper permission can perform various control functions
on the shared memory segment using shmctl().

Once created, a shared segment can be attached to a process address space
using the shmat () function; it can be detached using shmdt (). (See shmop(2)
for details.)

The attaching process must have the appropriate permissions for shmat()  to
succeed. Once attached, the process can read or write to the segment, as
allowed by the permission requested in the attach operation. A shared segment
can be attached multiple times by the same process.

If the above-mentioned function fails, it returns –1 and sets the external
variable errno  to the appropriate value.

Structure of a Shared Memory Segment

A shared memory segment is composed of a control structure with a unique ID
that points to an area of physical memory. The identifier for the segment is
referred to as the shmid .
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Figure 3-19 Structure of a Shared Memory Segment

The data structure includes the following information about the memory
segment:

• Access permissions.

• Segment size.

• The PID of the process performing last operation.

• The PID of the creator process.

• The current number of processes to which the segment is attached.

• The time of the last attachment.

• The time of the last detachment.

• The time of the last change to the segment.

• Memory map segment descriptor pointer.

control
structure shared memory segment



Interprocess Communication 91

3

The structure definition for the shared memory segment control structure can
be found in <sys/shm.h> . This structure definition is shown below:

Note that the shm_perm  member of this structure uses ipc_perm  as a
template, as defined in <sys/ipc.h> .

/*
 *  There is a shared mem id data structure for each segment in the system.
 */

struct shmid_ds {
struct ipc_perm shm_perm; /* operation permission struct */
int shm_segsz; /* size of segment in bytes */
struct anon_map *shm_amp; /* segment anon_map pointer */
ushort shm_lkcnt; /* number of times it is being locked */
pid_t shm_lpid; /* pid of last shmop */
pid_t shm_cpid; /* pid of creator */
ulong shm_nattch; /* used only for shminfo */
ulong shm_cnattch; /* used only for shminfo */
time_t shm_atime; /* last shmat time */
long shm_pad1; /* reserved for time_t expansion */
time_t shm_dtime; /* last shmdt time */
long shm_pad2; /* reserved for time_t expansion */
time_t shm_ctime; /* last change time */
long shm_pad3; /* reserved for time_t expansion */
long shm_pad4[4]; /* reserve area */

};
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Using shmget ( ) to Access a Shared Memory Segment

The shmget()  function is used to obtain access to a shared memory segment.
When the call succeeds, it returns the shared memory segment ID (shmid ).
When it fails, it returns –1 and sets errno  to the appropriate error code. The
shmget()  function has the following synopsis:

Figure 3-20 Synopsis of shmget ()

The value passed as the shmflg  argument must be an integer, which
incorporates settings for the segment’s permissions and control flags, as
described under “Permissions” on page 48.

The SHMMNI system configuration option determines the maximum number of
shared memory segments that are allowed, 100 by default.

The function fails if the size  value is less than SHMMIN or greater than
SHMMAX, the configuration options for the minimum and maximum segment
sizes. By default, SHMIN is 1, SHMAX is 131072.

#include  <sys/types.h>
#include  <sys/ipc.h>
#include  <sys/shm.h>

int shmget(key_t key, int size, int shmflg);
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The following sample program illustrates the shmget()  function:

/*
** shmget.c: Illustrate the shmget() function.
**
** This is a simple exerciser of the shmget() function.
** It prompts for the arguments, makes the call, and reports the results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to shmget() */
int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */
int size; /* size to be passed to shmget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the key. */
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);

/* Get the size of the segment. */
(void) fprintf(stderr, "Enter size: ");
(void) scanf("%i", &size);

/* Get the shmflg value. */
(void) fprintf(stderr, "Expected flags for the shmflg argument are:\n");
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);



94 System Services Guide—August 1994

3

Figure 3-21 Sample Program to Illustrate shmget ()

Controlling a Shared Memory Segment with shmctl ( )

The shmctl()  function is used to alter the permissions and other
characteristics of a shared memory segment. It synopsis is as follows:

Figure 3-22 Synopsis of shmctl ()

The shmid  argument is the ID of the shared memory segment as returned by
shmget() .

(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter shmflg: ");
(void) scanf("%i", &shmflg);

/* Make the call and report the results. */
(void) fprintf(stderr, "shmget: Calling shmget(%#lx, %d, %#o)\n",

key, size, shmflg);
if ((shmid = shmget (key, size, shmflg)) == –1) {

perror("shmget: shmget failed");
exit(1);

} else {
(void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);
exit(0);

}
/*NOTREACHED*/

}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);
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The cmd argument is one of following control commands:

SHM_LOCK
Lock the specified shared memory segment in memory. The process must
have the effective ID of superuser to perform this command.

SHM_UNLOCK
Unlock the shared memory segment. The process must have the effective ID
of superuser to perform this command.

IPC_STAT
Return the status information contained in the control structure and place it
in the buffer pointed to by buf . The process must have read permission on
the segment to perform this command.

IPC_SET
Set the effective user and group identification and access permissions. The
process must have an effective ID of owner, creator or superuser to perform
this command.

IPC_RMID
Remove the shared memory segment. The process must have an effective ID
of owner, creator or superuser to perform this command.

The following program illustrates the shmctl()  function:

/*
** shmctl.c: Illustrate the shmctl() function.
**
** This is a simple exerciser of the shmctl() function. It allows
** you to perform one control operation on one shared memory segment.
** (Some operations are done for the user whether requested or not. It gives
** up immediately if any control operation fails. Be careful not to set
** permissions to preclude read permission; you won’t be able to reset the
** permissions with this code if you do.)
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
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static void do_shmctl();
extern void exit();
extern void perror();

main()
{

int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_ds shmid_ds; /* shared memory data structure to hold results */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get shmid and cmd. */
(void) fprintf(stderr, "Enter the shmid for the desired segment: ");
(void) scanf("%i", &shmid);
(void) fprintf(stderr, "Valid shmctl cmd values are:\n");
(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);
(void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_LOCK);
(void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);
(void) fprintf(stderr, "Enter the desired cmd value: ");
(void) scanf("%i", &cmd);

switch (cmd) {
case IPC_STAT:

/* Get shared memory segment status. */
break;

case IPC_SET:
/* Set owner UID and GID and permissions. */
/* Get and print current values. */
do_shmctl(shmid, IPC_STAT, &shmid_ds);

/* Set UID, GID, and permissions to be loaded. */
(void) fprintf(stderr, "\nEnter shm_perm.uid: ");
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(void) scanf("%hi", &shmid_ds.shm_perm.uid);
(void) fprintf(stderr, "Enter shm_perm.gid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.gid);
(void) fprintf(stderr,

"Note: Keep read permission for yourself.\n");
(void) fprintf(stderr, "Enter shm_perm.mode: ");
(void) scanf("%hi", &shmid_ds.shm_perm.mode);
break;

case IPC_RMID:
/* Remove the segment when the last attach point is detached. */
break;

case SHM_LOCK:
/* Lock the shared memory segment. */
break;

case SHM_UNLOCK:
/* Unlock the shared memory segment. */
break;

default:
/* Unknown command will be passed to shmctl. */
break;

}
do_shmctl(shmid, cmd, &shmid_ds);
exit(0);
/*NOTREACHED*/

}
/*
** Display the arguments being passed to shmctl(), call shmctl(), and report the results.
** If shmctl() fails, do not return; this example doesn’t deal with
** errors, it just reports them.
*/
static void
do_shmctl(shmid, cmd, buf)
int shmid, /* attach point */

cmd; /* command code */
struct shmid_ds *buf; /* pointer to shared memory data structure */
register int rtrn; /* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d, buf)\n",
shmid, cmd);

if (cmd == IPC_SET) {
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Figure 3-23 Sample Program to Illustrate shmctl ()

(void) fprintf(stderr, "\tbuf–>shm_perm.uid == %d\n",
buf–>shm_perm.uid);

(void) fprintf(stderr, "\tbuf–>shm_perm.gid == %d\n",
buf–>shm_perm.gid);

(void) fprintf(stderr, "\tbuf–>shm_perm.mode == %#o\n",
buf–>shm_perm.mode);

}
if ((rtrn = shmctl(shmid, cmd, buf)) == –1) {

perror("shmctl: shmctl failed");
exit(1);

} else {
(void) fprintf(stderr, "shmctl: shmctl returned %d\n", rtrn);

}
if (cmd != IPC_STAT && cmd != IPC_SET)

return;

/* Print the current status. */
(void) fprintf(stderr, "\nCurrent status:\n");
(void) fprintf(stderr, "\tshm_perm.uid = %d\n", buf–>shm_perm.uid);
(void) fprintf(stderr, "\tshm_perm.gid = %d\n", buf–>shm_perm.gid);
(void) fprintf(stderr, "\tshm_perm.cuid = %d\n", buf–>shm_perm.cuid);
(void) fprintf(stderr, "\tshm_perm.cgid = %d\n", buf–>shm_perm.cgid);
(void) fprintf(stderr, "\tshm_perm.mode = %#o\n", buf–>shm_perm.mode);
(void) fprintf(stderr, "\tshm_perm.key = %#x\n", buf–>shm_perm.key);
(void) fprintf(stderr, "\tshm_segsz = %d\n", buf–>shm_segsz);
(void) fprintf(stderr, "\tshm_lpid = %d\n", buf–>shm_lpid);
(void) fprintf(stderr, "\tshm_cpid = %d\n", buf–>shm_cpid);
(void) fprintf(stderr, "\tshm_nattch = %d\n", buf–>shm_nattch);
(void) fprintf(stderr, "\tshm_atime = %s",

buf–>shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");
(void) fprintf(stderr, "\tshm_dtime = %s",

buf–>shm_dtime ? ctime(&buf->shm_dtime) : "Not Set\n");
(void) fprintf(stderr, "\tshm_ctime = %s", ctime(&buf–>shm_ctime));

}
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Attaching and Detaching a Shared Memory Segment with shmat ( ) and
shmdt ( )

The shmat()  and shmdt()  functions are used to attach and detach shared
memory segments. Their synopses are as follows:

Figure 3-24 Synopses of shmat () and shmdt ()

Upon successful completion, the shmat()  function returns a pointer to the
head of the shared segment; when unsuccessful, it returns (void *) –1  and
sets the external variable errno  to the appropriate error code.

The shmid  argument is the ID of an existing shared memory segment. The
shmaddr  argument is the address at which to attach the segment. If supplied
as zero, the system provides a suitable address. For portability, it is usually
better to allow the system to determine the address.

The shmflg  argument is a control flag used to pass the SHM_RND and
SHM_RDONLY flags to the shmat()  function.

The shmdt()  function detaches the shared memory segment located at the
address indicated by shmaddr . Upon successful completion, schmdt()
returns zero; when unsuccessful, it returns –1 and sets the external variable
errno  to the appropriate error code.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt (void *shmaddr);
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The following sample program illustrates shmat()  and shmdt() :

/*
** shmop.c: Illustrate the shmat() and shmdt() functions.
**
** This is a simple exerciser for the shmat() and shmdt() system
** calls. It allows you to attach and detach segments and to
** write strings into and read strings from attached segments.
*/

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask();
static void catcher();
extern void exit();
static good_addr();
extern void perror();
extern char *shmat();

static struct state { /* Internal record of currently attached segments. */
int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */
static jmp_buf segvbuf; /* Process state save area for SIGSEGV catching. */

main()
{

register int action; /* action to be performed */
char *addr; /* address work area */
register int i; /* work area */
register struct state *p; /* ptr to current state entry */
void (*savefunc)(); /* SIGSEGV state hold area */
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(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
while (action = ask()) {

if (nap) {
(void) fprintf(stderr,

"\nCurrently attached segment(s):\n");
(void) fprintf(stderr, " shmid address\n");
(void) fprintf(stderr, "–----- ----------\n");

p = &ap[nap];
while (p–- != ap) {

(void) fprintf(stderr, "%6d", p–>shmid);
(void) fprintf(stderr, "%#11x", p–>shmaddr);
(void) fprintf(stderr, " Read%s\n",

(p–>shmflg & SHM_RDONLY) ?
"–Only" : "/Write");

}
} else

(void) fprintf(stderr,
"\nNo segments are currently attached.\n");

switch (action) {
case 1: /* Shmat requested. */

/* Verify that there is space for another attach. */
if (nap == MAXnap) {

(void) fprintf(stderr, "%s %d %s\n",
"This simple example will only allow",
MAXnap, "attached segments.");

break;
}
p = &ap[nap++];

/* Get the arguments, make the call, report the
results, and update the current state array. */

(void) fprintf(stderr,
"Enter shmid of segment to attach: ");

(void) scanf("%i", &p–>shmid);

(void) fprintf(stderr, "Enter shmaddr: ");
(void) scanf("%i", &p–>shmaddr);
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(void) fprintf(stderr,
"Meaningful shmflg values are:\n");

(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",
SHM_RDONLY);

(void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",
SHM_RND);

(void) fprintf(stderr, "Enter shmflg value: ");
(void) scanf("%i", &p–>shmflg);

(void) fprintf(stderr,
"shmop: Calling shmat(%d, %#x, %#o)\n",
p–>shmid, p->shmaddr, p->shmflg);

p–>shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p–>shmaddr == (char *)-1) {

perror("shmop: shmat failed");
nap–-;

} else {
(void) fprintf(stderr,

"shmop: shmat returned %#8.8x\n",
p–>shmaddr);

}
break;

case 2: /* Shmdt requested. */
/* Get the address, make the call, report the results,

and make the internal state match. */
(void) fprintf(stderr,

"Enter detach shmaddr: ");
(void) scanf("%i", &addr);

i = shmdt(addr);
if(i == –1) {

perror("shmop: shmdt failed");
} else {

(void) fprintf(stderr,
"shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i–-; p++) {
if (p–>shmaddr == addr)

*p = ap[–-nap];
}

}
break;

case 3:/* Read from segment requested. */
if (nap == 0)
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break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");

(void) scanf("%i", &addr);

if (good_addr(addr))
(void) fprintf(stderr, "String @ %#x is ‘%s’\n",

addr, addr);
break;

case 4:/* Write to segment requested. */
if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");

(void) scanf("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to
write into a read–only attached segment. */

savefunc = signal(SIGSEGV, catcher);

if (setjmp(segvbuf)) {
(void) fprintf(stderr, "shmop: %s: %s\n",

"SIGSEGV signal caught",
"Write aborted.");

} else {
if (good_addr(addr)) {

(void) fflush(stdin);
(void) fprintf(stderr, "%s %s %#x:\n",

"Enter one line to be copied",
"to shared segment attached @",
addr);

(void) gets(addr);
}

}
(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */
(void) signal(SIGSEGV, savefunc);
break;

}
}
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exit(0);
/*NOTREACHED*/

}
/*
** Ask for next action.
*/
static
ask()
{

int response; /* user response */
do {

(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\t^D = exit\n");
(void) fprintf(stderr, "\t 0 = exit\n");
(void) fprintf(stderr, "\t 1 = shmat\n");
(void) fprintf(stderr, "\t 2 = shmdt\n");
(void) fprintf(stderr, "\t 3 = read from segment\n");
(void) fprintf(stderr, "\t 4 = write to segment\n");
(void) fprintf(stderr,

"Enter the number corresponding to your choice: ");

/* Preset response so "^D" will be interpreted as exit. */
response = 0;
(void) scanf("%i", &response);

} while (response < 0 || response > 4);
return (response);

}
/*
** Catch signal caused by attempt to write into shared memory segment
** attached with SHM_RDONLY flag set.
*/
/*ARGSUSED*/
static void
catcher(sig)
{

longjmp(segvbuf, 1);
/*NOTREACHED*/

}
/*
** Verify that given address is the address of an attached segment.
** Return 1 if address is valid; 0 if not.
*/
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Figure 3-25 Sample Program to Illustrate shmat () and shmdt ()

static
good_addr(address)
char*address;
{

register struct state *p; /* ptr to state of attached segment */

for (p = ap; p != &ap[nap]; p++)
if (p–>shmaddr == address)

return(1);
return(0);

}
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Process Scheduler 4

The UNIX system scheduler determines when processes run. It maintains
process priorities based on configuration parameters, process behavior, and
user requests; it uses these priorities to assign processes to the CPU.

This chapter describes the process scheduler for the process model. See the
Multithreaded Programming Guide for scheduler information under the
multithreading model.This chapter is addressed to programmers who need
more control over order of process execution than they get using default
scheduler parameters.

The SunOS 5.x system gives users absolute control over the order in which
certain processes run and the amount of time each process can use the CPU
before another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically to provide good response time to
interactive processes and good throughput to processes that use a lot of CPU
time.

The SunOS 5.x system scheduler offers a realtime scheduling policy as well as
a time-sharing policy. Realtime scheduling allows users to set fixed priorities
on a per-process basis. The highest-priority  realtime user process always gets
the CPU as soon as the process is runnable, even if system processes are
runnable. A program can therefore specify the order in which processes run.
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A program can also be written so that its realtime processes have a guaranteed
response time from the system. See Chapter 6, “Realtime Programming and
Administration” for detailed information.

For most UNIX environments, the default scheduler configuration works well
and no realtime processes are needed. Administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for a program include strict
timing constraints, realtime processes sometimes provide the only way to
satisfy those constraints.

Note – Realtime processes used carelessly can have a dramatically negative
effect on the performance of time-sharing processes.

Because changes in scheduler administration can affect scheduler behavior,
programmers might also need to know something about scheduler
administration.

There are a few reference manual entries with information on scheduler
administration:

• dispadmin (1M) tells how to change scheduler configuration in a running
system.

• ts_dptbl (4) and rt_dptbl (4) describe the time-sharing and realtime
parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows.

• The “Overview of the Process Scheduler” tells what the scheduler does and
how it does it. It also introduces scheduler classes.

• The “Commands and Functions” section describes and gives examples of the
priocntl (1) command and the priocntl (2) and priocntlset (2)
functions, which are the user interfaces to scheduler services. The
priocntl  functions allow you to retrieve scheduler parameters for a
process or for a set of processes.

• “Interaction with Other Functions” describes the interactions between the
scheduler and related functions.

• The “Performance” section discusses scheduler latencies about which some
programs must be aware.
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Overview of the Process Scheduler
Figure 4-1 shows how the SunOS 5.x process scheduler works:

Figure 4-1 SunOS 5.x Process Scheduler

When a process is created, it inherits its scheduler parameters, including
scheduler class and a priority within that class. A process changes class only as
a result of a user request. The system manages the priority of a process based
on user requests and a policy associated with the scheduler class of the
process.

In the default configuration, the initialization process belongs to the time-
sharing class. Because processes inherit their scheduler parameters, all user
login shells begin as time-sharing processes in the default configuration.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs—the scheduler always runs the
runnable process with the highest global priority. Numerically higher priorities
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run first. Once the scheduler assigns a process to the CPU, the process runs
until it uses up its time slice, sleeps, or is preempted by a higher-priority
process. Processes with the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
can assign per-process time slices to realtime processes.

You can display the global priority of a process with the –cl  options of the
ps (1) command. You can display configuration information about class-specific
priorities with the priocntl (1) command and the dispadmin (1M) command.

By default, all realtime processes have higher priorities than any kernel
process, and all kernel processes have higher priorities than any time-sharing
process.

Note – As long as there is a runnable realtime process, no kernel process and
no time-sharing process run.

The following sections describe the scheduling policies of the three default
classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to
interactive processes and good throughput to CPU-bound processes. The
scheduler switches CPU allocation frequently enough to provide good
response time, but not so frequently that it spends too much time doing the
switching. Time slices are typically on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices
of different lengths. The scheduler raises the priority of a process that sleeps
after only a little CPU use (a process sleeps, for example, when it starts an I/O
operation such as a terminal read or a disk read); frequent sleeps are
characteristic of interactive tasks such as editing and running simple shell
commands. On the other hand, the time-sharing policy lowers the priority of a
process that uses the CPU for long periods without sleeping.
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The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the
CPU, it gets a bigger chunk of time. If a higher-priority process becomes
runnable during a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters
in the time-sharing parameter table ts_dptbl . This table contains information
specific to the time-sharing class.

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging daemon. The system class
is reserved for use by the kernel; users can neither add nor remove a process
from the system class. Priorities for system class processes are set up in the
kernel code for those processes; once established, the priorities of system
processes do not change. (User processes running in kernel mode are not in the
system class.)

Realtime Class

The realtime class uses a fixed-priority scheduling policy so that critical
processes can run in predetermined order. Realtime priorities never change
except when a user requests a change. Contrast this fixed-priority policy with
the time-sharing policy, in which the system changes priorities to provide good
interactive response time.

Privileged users can use the priocntl  command or the priocntl  function to
assign realtime priorities.

The scheduler manages realtime processes using configurable parameters in
the realtime parameter table rt_dptbl . This table contains information
specific to the realtime class.

Commands and Functions
Here is a programmer’s view of default process priorities.
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Figure 4-2 Process Priorities (Programmer’s View)

From a user’s or programmer’s point of view, a process priority has meaning
only in the context of a scheduler class. You specify a process priority by
specifying a class and a class-specific priority value. The class and class-
specific value are mapped by the system into a global priority that the system
uses to schedule processes.

• Realtime priorities run from zero to a configuration-dependent maximum.
The system maps them directly into global priorities. They never change
except when a user changes them.

• System priorities are controlled entirely in the kernel. Users cannot affect
them.

• Time-sharing priorities have a user-controlled component (the “user
priority”) and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process
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basis to provide good overall system performance; users cannot affect the
system-controlled component. The scheduler combines these two
components to get the process global priority.

The user priority runs from the negative of a configuration-dependent
maximum to the positive of that maximum. A process inherits its user
priority. Zero is the default initial user priority.

The “user priority limit” is the configuration-dependent maximum value of
the user priority. You can set a user priority to any value below the user
priority limit. With appropriate permission, you can raise the user priority
limit. Zero is the default user priority limit.

You can lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user priority
to get better service. Because you cannot set the user priority above the user
priority limit, you must raise the user priority limit before you raise the user
priority if both have their default values of zero.

An administrator configures the maximum user priority independent of
global time-sharing priorities. In the default configuration, for example, a
user can set a user priority only in the range from –20 to +20, but 60 time-
sharing global priorities are configured.

A system administrator’s view of priorities is different from that of a user or
programmer. When configuring scheduler classes, an administrator deals
directly with global priorities. The system maps priorities supplied by users
into these global priorities. See the File System Administration for more
information about priorities.

The ps -cel  command reports global priorities for all active processes. The
priocntl  command reports the class-specific priorities that users and
programmers use.

Note – Global process priorities and user-supplied priorities are in ascending
order: numerically higher priorities run first.

The priocntl (1) command and the priocntl (2) and priocntlset (2)
functions set or retrieve scheduler parameters for processes. The basic idea for
setting priorities is the same for all three functions:

• Specify the target processes.
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• Specify the scheduler parameters you want for those processes.

• Do the command or function to set the parameters for the processes.

You specify the target processes using an ID type and an ID. The ID type tells
how to interpret the ID. [This concept of a set of processes applies to signals as
well as to the scheduler; see sigsend (2).] The following table lists the valid ID
types that you can specify.

These IDs are basic properties of UNIX processes. [See intro (2).] The class ID
refers to the scheduler class of the process. priocntl  works only for the time-
sharing and the realtime classes, not for the system class. Processes in the
system class have fixed priorities assigned when they are started by the kernel.

The priocntl  Command

The priocntl  command comes in four forms:

• priocntl –l  displays configuration information.

• priocntl –d  displays the scheduler parameters of processes.

• priocntl –s  sets the scheduler parameters of processes.

• priocntl –e  executes a command with the specified scheduler
parameters.

Table 4-1 Valid priocntl  ID Types

priocntl  ID types

process ID

parent process ID

process group ID

session ID

class ID

effective user ID

effective group ID

all processes
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Here is the output of the –l  option for the default configuration.

The –d  option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding ID types in
idlist:

$ priocntl –l
CONFIGURED CLASSES
==================

SYS (System Class)

TS (Time Sharing)
Configured TS User Priority Range: -20 through 20

RT (Real Time)
Maximum Configured RT Priority: 59

priocntl -d -i idtype idlist

Table 4-2 Valid idtype Values

idtype idlist

pid process IDs

ppid parent process IDs

pgid process group IDs

sid session IDs

class class names (TS or
RT)

uid effective user IDs

gid effective group IDs

all
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Here are some examples of the –d  option of priocntl .

Display information on all processes.

Display information on all time-sharing processes.

Display information on all processes with user ID 103 or 6626.

The –s  option sets scheduler parameters for a process or a set of processes. The
syntax for this option is

idtype and idlist are the same as for the –d  option described above.

$ priocntl -d -i all
          .
          .
          .

$ priocntl -d -i class TS
          .
          .
          .

$ priocntl -d -i uid 103 6626
          .
          .
          .

priocntl -s -c class class_options  -i idtype idlist



Process Scheduler 117

4

class is TS for time-sharing or RT for realtime. You must be superuser to create
a realtime process, to raise a time-sharing user priority above a per-process
limit, or to raise the per-process limit above zero. Class options are class-
specific:

For a realtime process you can assign a priority and a time slice.

• The priority is a number from 0 to the realtime maximum as reported by
priocntl -l  ; the default maximum value is 59.

• You specify the time slice as a number of clock intervals and the resolution
of the interval. Resolution is specified in intervals per second. The time slice,
therefore, is tslc/res seconds. To specify a time slice of one-tenth of a second,
for example, you could specify a tslc of 1 and a res of 10. If you specify a
time slice without specifying a resolution, millisecond resolution (a res of
1000) is assumed.

If you change a time-sharing process into a realtime process, it gets a default
priority and time slice if you don’t specify one. To change only the priority of a
realtime process and leave its time slice unchanged, omit the –t  option. To
change only the time slice of a realtime process and leave its priority
unchanged, omit the –p  option.

For a time-sharing process you can assign a user priority and a user priority
limit.

• The user priority is the user-controlled component of a time-sharing
priority. The scheduler calculates the global priority of a time-sharing
process by combining this user priority with a system-controlled component

Table 4-3 Class-Specific Options for priocntl

Class-specific options for priocntl

class -c class Options Meaning

realtime RT -p pri priority

-t tslc time slice

-r res resolution

time-sharing TS -p upri user priority

-muprilim user priority limit
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that depends on process behavior. The user priority has the same effect as a
value set by nice  (except that nice  uses higher numbers for lower
priority).

• The user priority limit is the maximum user priority a process can set for
itself without being superuser. By default, the user priority limit is 0; you
must be superuser to set a user priority limit above 0.

Both the user priority and the user priority limit must be within the user
priority range reported by the priocntl -l  command. The default range is
-20 to +20.

You can lower and raise a process user priority as often as you like, as long as
the value is below the process user priority limit. It is a courtesy to other users
to lower your user priority for big chunks of low-priority work. On the other
hand, if you lower your user priority limit, you must be superuser to raise it. A
typical use of the user priority limit is to reduce permanently the priority of
child processes or of some other set of low-priority processes.

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the
new user priority limit. If you attempt to set the user priority above the user
priority limit, the user priority is set to the user priority limit.

Here are some examples of the –s  option of priocntl :

Make the process with ID 24668 a realtime process with default parameters.

Make 3608 RT with priority 55 and a one-fifth second time slice.

Change all processes into time-sharing processes.

$ priocntl -s -c RT -i pid 24668

$ priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

$ priocntl -s -c TS -i all
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For uid 1122, reduce TS user priority and user priority limit to -10.

The –e option sets scheduler parameters for a specified command and executes
the command. The syntax for this option is

The class and class options are the same as for the –s  option described above.

Start a realtime shell with default realtime priority.

Run make with a time-sharing user priority of -10.

The priocntl  command subsumes the function of nice . nice  works only on
time-sharing processes and uses higher numbers to assign lower priorities. The
example above is equivalent to using nice  to set an “increment’’ of 10:

$ priocntl -s -c TS -p -10 -m -10 -i uid 1122

priocntl -e -c class class_options command  [ command arguments ]

$ priocntl -e -c RT /bin/sh

$ priocntl -e -c TS -p -10 make bigprog

$ nice -10 make bigprog
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The priocntl  Function

The priocntl  function gets or sets the scheduler parameters of a set of
processes. The input arguments follow.

• idtype  is the type of ID you are specifying.

• id  is the ID.

• cmd specifies which priocntl  function to perform. The functions are listed
in Table 4-4.

• arg  is a pointer to a structure that depends on cmd.

Here are the valid values for idtype, which are defined in priocntl.h , and
their corresponding ID types in id:

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd,
cmd_struct   arg);

Table 4-4 Valid priocntl.h idtypes

idtype Interpretation of id

P_PID process ID (of a single process)

P_PPID parent process ID

P_PGID process group ID

P_SID session ID

P_CID class ID

P_UID effective user ID

P_GID effective group ID

P_ALL all processes
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Here are the valid values for cmd, their meanings, and the type of arg :

Here are the values priocntl  returns on success:

• The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

• PC_SETPARMS returns 0.

• PC_GETPARMS returns the process ID of the process whose scheduler
properties it is returning.

On failure, priocntl  returns –1 and sets errno  to indicate the reason for the
failure. See priocntl (2) for the complete list of error conditions.

PC_GETCID, PC_GETCLINFO

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler
parameters for a class based on the class ID or class name. Both commands use
the pcinfo  structure to send arguments and receive return values:

The PC_GETCID command gets scheduler class ID and parameters given the
class name. The class ID is used in some of the other priocntl  commands to
specify a scheduler class. The valid class names are TS for time-sharing and RT
for realtime .

Table 4-5 Valid cmd Values

priocntl  Commands

cmd arg  Type Function

PC_GETCID pcinfo_t get class ID and attributes

PC_GETCLINFO pcinfo_t get class name and attributes

PC_SETPARMS pcparms_t set class and scheduling parameters

PC_GETPARMS pcparms_t get class and scheduling parameters

typedef struct pcinfo {
id_t pc_cid; /* class id */
char pc_clname[PC_CLNMSZ]; /* class name */
long pc_clinfo[PC_CLINFOSZ]; /* class information */

} pcinfo_t;
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For the realtime class, pc_clinfo  contains an rtinfo  structure, which holds
rt_maxpri , the maximum valid realtime priority; in the default configuration,
this is the highest priority any process can have. The minimum valid realtime
priority is zero. rt_maxpri  is a configurable value.

For the time-sharing class, pc_clinfo  contains a tsinfo  structure, which
holds ts_maxupri,  the maximum time-sharing user priority. The minimum
time-sharing user priority is –ts_maxupri . ts_maxupri  is also a
configurable value.

typedef struct rtinfo {
short rt_maxpri; /* maximum realtime priority */

} rtinfo_t;

typedef struct tsinfo {
short ts_maxupri; /* limits of user priority range */

} tsinfo_t;
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The following program is a substitute for priocntl –l  ; it gets and prints the
range of valid priorities for the time-sharing and realtime scheduler classes.

/*
 * Get scheduler class IDs and priority ranges.
 */

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
main ()
{

pcinfo_t pcinfo;
tsinfo_t *tsinfop;
rtinfo_t* rtinfop;
short maxtsupri, maxrtpri;

/* time sharing */
(void) strcpy (pcinfo.pc_clname, "TS");
if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {

perror ("PC_GETCID failed for time-sharing class");
exit (1);

}
tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;
maxtsupri = tsinfop->ts_maxupri;
(void) printf("Time sharing: ID %ld, priority range -%d through %d\n",

pcinfo.pc_cid, maxtsupri, maxtsupri);
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The following screen shows the output of this program, called getcid  in this
example.

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class ID and maximum priority in the class.

/* real time */
(void) strcpy(pcinfo.pc_clname, "RT");
if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {

perror ("PC_GETCID failed for realtime  class");
exit (2);

}
rtinfop = (struct rtinfo *) pcinfo.pc_clinfo;
maxrtpri = rtinfop->rt_maxpri;
(void) printf("Real time: ID %ld, priority range 0 through %d\n",

pcinfo.pc_cid, maxrtpri);
return (0);

}

$ getcid
Time sharing: ID 1, priority range -20 through 20
Real time: ID 2, priority range 0 through 59
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Note – The following examples omit the lines that include header files. The
examples compile with the same header files used in the previous code
example.

The PC_GETCLINFO command gets a scheduler class name and parameters
given the class ID. This command makes it easy to write programs that make
no assumptions about what classes are configured.

/*
* Return class ID and maximum priority.
* Input argument name is class name.
* Maximum priority is returned in *maxpri.
*/

id_t
schedinfo (name, maxpri)

char *name;
short *maxpri;

{
pcinfo_tinfo;
tsinfo_t*tsinfop;
rtinfo_ *rtinfop;

(void) strcpy(info.pc_clname, name);
if (priocntl (0L, 0L, PC_GETCID, &info) == -1L) {

return (-1);
}
if (strcmp(name, "TS") == 0) {

tsinfop = (struct tsinfo *) info.pc_clinfo;
*maxpri = tsinfop->ts_maxupri;

} else if (strcmp(name, "RT") == 0) {
rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

} else {
return (-1);

}
return (info.pc_cid);

}
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The following program uses PC_GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID , which retrieves the class ID of a process given the process ID;
this function is given in the following section.

/* Get scheduler class name given process ID. */

main (argc, argv)
int argc;
char *argv[];

{
pcinfo_t pcinfo;
id_t pid, classID;
id_t getclassID();

if ((pid = atoi(argv[1])) <= 0) {
perror ("bad pid");
exit (1);

}
if ((classID = getclassID(pid)) == -1) {

perror ("unknown class ID");
exit (2);

}
pcinfo.pc_cid = classID;
if (priocntl (0L, 0L, PC_GETCLINFO, &pcinfo) == -1L) {

perror ("PC_GETCLINFO failed");
exit (3);

}
(void) printf("process ID %d, class %s\n", pid,
 pcinfo.pc_clname);

}
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PC_GETPARMS, PC_SETPARMS

The PC_GETPARMS command gets and the PC_SETPARMS command sets
scheduler parameters for processes. Both commands use the pcparms
structure to send arguments or receive return values:

Ignoring class-specific information for the moment, here is a simple function
for returning the scheduler class ID of a process, as promised in the previous
section.

For the realtime class, pc_clparms  contains an rtparms  structure. rtparms
holds scheduler parameters specific to the realtime class.

typedef struct pcparms {
id_t pc_cid; /* process class */
long pc_clparms[PC_CLPARMSZ]; /* class specific */

} pcparms_t;

/*
 * Return scheduler class ID of process with ID pid.
 */

getclassID (pid)
id_t pid;

{
pcparms_t pcparms;

pcparms.pc_cid = PC_CLNULL;
if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {

return (-1);
}
return (pcparms.pc_cid);

}

typedef struct rtparms {
short rt_pri; /* realtime priority */
ulong rt_tqsecs; /* seconds in time quantum */
long rt_tqnsecs; /* additional nsecs in quantum */

} rtparms_t;
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rt_pri  is the realtime priority; rt_tqsecs  is the number of seconds and
rt_tqnsecs  is the number of additional nanoseconds in a time slice. That is,
rt_tqsecs  seconds plus rt_tqnsecs  nanoseconds is the interval a process
can use the CPU without sleeping before the scheduler gives another process a
chance at the CPU.

For the time-sharing class, pc_clparms  contains a tsparms  structure.
tsparms  holds the scheduler parameter specific to the time-sharing class.

ts_upri  is the user priority, the user-controlled component of a time-sharing
priority. ts_uprilim  is the user priority limit, the maximum user priority a
process can set for itself without being superuser. These values are described
above in the discussion of the -s  option of the priocntl  command. Both the
user priority and the user priority limit must be within the range reported by
the priocntl -l  command; this range is also reported by the PC_GETCID
and PC_GETCLINFO commands to the priocntl  function.

The PC_GETPARMS command gets the scheduler class and parameters of a
single process. The return value of the priocntl  is the process ID of the
process whose parameters are returned in the pcparms  structure. The process
chosen depends on the idtype  and id  arguments to priocntl  and on the
value of pcparms.pc_cid , which contains PC_CLNULL or a class ID returned
by PC_GETCID:

typedef struct tsparms {
short ts_uprilim; /* user priority limit */
short ts_upri; /* user priority */

} tsparms_t;

Table 4-6 What PC_GETPARMS Returns

Number of
Processes Selected
by idtype  and id

pc_cid

RT class ID TS class ID PC_CLNULL

1 RT parameters of
process selected

TS parameters of
process selected

class and
parameters of
process selected

More than 1 RT parameters of
highest-priority
RT process

TS parameters of
process with
highest user
priority

(error)
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If idtype  and id  select a single process and pc_cid  does not conflict with the
class of that process, priocntl  returns the scheduler parameters of the
process. If they select more than one process of a single scheduler class,
priocntl  returns parameters using class-specific criteria as shown in the
table. priocntl  returns an error in the following cases:

• idtype  and id  select one or more processes and none is in the class
specified by pc_cid .

• idtype  and id  select more than one process and pc_cid  is PC_CLNULL.

• idtype  and id  select no processes.

The following program takes a process ID as its input and prints the scheduler
class and class-specific parameters of that process.

/*
 * Get scheduler class and parameters of
 * process whose pid is input argument.
 */

main (argc, argv)
int argc;
char *argv[];

{
pcparms_t pcparms;
rtparms_t *rtparmsp;
tsparms_t *tsparmsp;
id_t pid, rtID, tsID;
id_t schedinfo();
short priority, tsmaxpri, rtmaxpri;
ulong secs;
long nsecs;

pcparms.pc_cid = PC_CLNULL;
rtparmsp = (rtparms_t *) pcparms.pc_clparms;
tsparmsp = (tsparms_t *) pcparms.pc_clparms;
if ((pid = atoi(argv[1])) <= 0) {

perror ("bad pid");
exit (1);

}

/* get scheduler properties for this pid */
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The PC_SETPARMS command sets the scheduler class and parameters of a set
of processes. The idtype  and id  input arguments specify the processes to be
changed.

The pcparms  structure contains the new parameters: pc_cid  contains the ID
of the scheduler class to which the processes are to be assigned, as returned by
PC_GETCID; pc_clparms  contains the class-specific parameters:

if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {
perror ("GETPARMS failed");
exit (2);

}

/* get class IDs and maximum priorities for TS and RT */
if ((tsID = schedinfo ("TS", &tsmaxpri)) == -1) {

perror ("schedinfo failed for TS");
exit (3);

}
if ((rtID = schedinfo ("RT", &rtmaxpri)) == -1) {

perror ("schedinfo failed for RT");
exit (4);

}

/* print results */
if (pcparms.pc_cid == rtID) {

priority = rtparmsp->rt_pri;
secs = rtparmsp->rt_tqsecs;
nsecs = rtparmsp->rt_tqnsecs;
(void) printf ("process %d: RT priority %d\n",

pid, priority);
(void) printf ("time slice %ld secs, %ld nsecs\n",

secs, nsecs);
} else if (pcparms.pc_cid == tsID) {

priority = tsparmsp->ts_upri;
(void) printf ("process %d: TS priority %d\n",

pid, priority);
} else {

printf ("Unknown scheduler class %d\n",
pcparms.pc_cid);

exit (5);
}
return (0);

}
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• If pc_cid  is the realtime class ID, pc_clparms  contains an rtparms
structure in which rt_pri  contains the realtime priority and rt_tqsecs
plus rt_tqnsecs  contains the time slice to be assigned to the processes.

• If pc_cid  is the time-sharing class ID, pc_clparms  contains a tsparms
structure in which ts_uprilim  contains the user priority limit and
ts_upri  contains the user priority to be assigned to the processes.
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The following program takes a process ID as input, makes the process a
realtime process with the highest valid priority minus 1, and gives it the
default time slice for that priority. The program calls the schedinfo  function
listed above to get the realtime class ID and maximum priority.

/*
 * Input arg is proc ID. Make process a realtime
 * process with highest priority minus 1.
 */

main (argc, argv)
int argc;
char *argv[];

{
pcparms_t pcparms;
rtparms_t *rtparmsp;
id_t pid, rtID;
id_t schedinfo();
short maxrtpri;
if ((pid = atoi(argv[1])) <= 0) {

perror ("bad pid");
exit (1);

}

/* Get highest valid RT priority. */
if ((rtID = schedinfo ("RT", &maxrtpri)) == -1) {

perror ("schedinfo failed for RT");
exit (2);

}

/* Change proc to RT, highest prio - 1, default time slice */
pcparms.pc_cid = rtID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt_pri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_TQDEF;

if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1) {
perror ("PC_SETPARMS failed");
exit (3);

}
}
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The following table lists the special values rt_tqnsecs  can take when
PC_SETPARMS is used on realtime processes. When any of these is used,
rt_tqsecs  is ignored. These values are defined in the header file
rtpriocntl.h .

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time
slice configured for the realtime priority being set with the SETPARMS call.
RT_NOCHANGE specifies no change from the current time slice; this value is
useful, for example, when you change process priority but do not want to
change the time slice. (You can also use RT_NOCHANGE in the rt_pri  field to
change a time slice without changing the priority.)

The priocntlset  Function

The pri ocntlset  function changes scheduler parameters of a set of
processes, just like priocntl . priocntlset  has the same command set as
priocntl ; the cmd and arg  input arguments are the same. But while
priocntl  applies to a set of processes specified by a single idtype/id  pair,
priocntlset  applies to a set of processes that results from a logical
combination of two idtype/id  pairs.

Table 4-7 Special Values for rt_tqnsecs

rt_tqnsecs Time Slice

RT_TQINF infinite

RT_TQDEF default

RT_NOCHANGE unchanged

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset(procset_t *psp, int cmd,
     cmd_struct  arg);
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The input argument psp  points to a procset  structure that specifies the two
idtype/id  pairs and the logical operation to perform. This structure is
defined in procset.h .

p_lidtype  and p_lid  specify the ID type and ID of one (“left”) set of
processes; p_ridtype  and p_rid  specify the ID type and ID of a second
(“right”) set of processes. p_op  specifies the operation to perform on the two
sets of processes to get the set of processes to operate on.

The valid values for p_op  and the processes they specify are:

• POP_DIFF: set difference—processes in left set and not in right set

• POP_AND: set intersection—processes in both left and right sets

• POP_OR: set union—processes in either left or right sets or both

• POP_XOR: set exclusive-or—processes in left or right set but not in both

The following macro, also defined in procset.h , offers a convenient way to
initialize a procset  structure.

typedef struct procset {
idop_t p_op; /* operator connecting */

/* left and right sets */

/* left set: */
idtype_t p_lidtype; /* left ID type */
id_t p_lid; /* left ID */

/* right set: */
idtype_t p_ridtype; /* right ID type */
id_t p_rid; /* right ID */

} procset_t;

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)->p_op = (op); \
(psp)->p_lidtype = (ltype); \
(psp)->p_lid = (lid); \
(psp)->p_ridtype = (rtype); \
(psp)->p_rid = (rid);
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Here is a situation where priocntlset  would be useful: suppose a program
had both realtime and time-sharing processes that ran under a single user ID.
If the program wanted to change the priority of only its realtime processes
without changing the time-sharing processes to realtime processes, it could do
so as follows. (This example uses the function schedinfo , which is defined
above in the section on PC_GETCID.)

/*
 * Change realtime priorities of this uid
 * to highest realtime priority minus 1.
 */

main (argc, argv)
int argc;
char *argv[];

{
procset_t procset;
pcparms_t pcparms;
struct rtparms *rtparmsp;
id_t rtclassID;
id_t schedinfo();
short maxrtpri;

/* left set: select processes with same uid as this process */
procset.p_lidtype = P_UID;
procset.p_lid = getuid();

/* get info on realtime class */
if ((rtclassID = schedinfo ("RT", &maxrtpri)) == -1) {

perror ("schedinfo failed");
exit (1);

}
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priocntl  offers a simple scheduler interface that is adequate for many
applications. When a process needs a more powerful way to specify sets, use
priocntlset .

Interaction with Other Functions

Kernel Processes

The kernel assigns its daemon and housekeeping processes to the system
scheduler class. Users can neither add processes to nor remove processes from
this class, nor can they change the priorities of these processes. The command
ps –cel  lists the scheduler class of all processes. Processes in the system class
are identified by a SYS entry in the CLS column.

If the workload on a machine contains realtime processes that use too much
CPU, they can lock out system processes, which can lead to trouble. Realtime
applications must ensure that they leave some CPU time for system and other
processes.

/* right set: select realtime processes */
procset.p_ridtype = P_CID;
procset.p_rid = rtclassID;

/* select only my RT processes */
procset.p_op = POP_AND;

/* specify new scheduler parameters */
pcparms.pc_cid = rtclassID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt_pri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_NOCHANGE;
if (priocntlset (&procset, PC_SETPARMS, &pcparms) == -1) {

perror ("priocntlset failed");
exit (2);

}
}
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fork and exec

Scheduler class, priority, and other scheduler parameters are inherited across
the fork (2) and exec (2) functions.

nice

The nice (1) command and the nice (2) function work as in previous versions
of the UNIX system. They allow you to change the priority of a time-sharing
process. You still use lower numeric values to assign higher time-sharing
priorities with these functions.

To change the scheduler class of a process or to specify a realtime priority, you
must use one of the priocntl  functions. You use higher numeric values to
assign higher priorities with the priocntl  functions.

init

The init  process is treated as a special case by the scheduler. To change the
scheduler properties of init , init  must be the only process specified by
idtype  and id  or by the procset  structure.

Performance
Because the scheduler determines when and for how long processes run, it has
an overriding importance in the performance and perceived performance of a
system.

By default, all processes are time-sharing processes. A process changes class
only as a result of one of the priocntl  functions.

In the default configuration, all realtime process priorities are above any time-
sharing process priority. This implies that as long as any realtime process is
runnable, no time-sharing process or system process ever runs. So if a realtime
application is not written carefully, it can completely lock out users and
essential kernel housekeeping.

Besides controlling process class and priorities, a realtime application must
also control several other factors that influence its performance. The most
important factors in performance are CPU power, amount of primary memory,
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and I/O throughput. These factors interact in complex ways. In particular, the
sar (1) command has options for reporting on all the factors discussed in this
section.

Process State Transition

Applications that have strict realtime constraints might need to prevent
processes from being swapped or paged out to secondary memory. Here’s a
simplified overview of UNIX process states and the transitions between states:

Figure 4-3 Process State Transition Diagram

An active process is normally in one of the five states in the diagram. The
arrows show how it changes states.

• A process is running if it is assigned to a CPU. A process is preempted—that
is, removed from the running state—by the scheduler if a process with a
higher priority becomes runnable. A process is also preempted if it
consumes its entire time slice and a process of equal priority is runnable.

• A process is runnable in memory if it is in primary memory and ready to
run, but is not assigned to a CPU.

running

runnable
in memory

runnable
swapped

sleep

sleeping
in memory

swap out swap outswap in
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• A process is sleeping in memory if it is in primary memory but is waiting
for a specific event before it can continue execution. For example, a process
is sleeping if it is waiting for an I/O operation to complete, for a locked
resource to be unlocked, or for a timer to expire. When the event occurs, the
process is sent a wakeup; if the reason for its sleep is gone, the process
becomes runnable.

• A process is runnable and swapped if it is not waiting for a specific event
but has had its whole address space written to secondary memory to make
room in primary memory for other processes.

• A process is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to make
room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory:

• When the system is short of primary memory, it writes individual pages of
some processes to secondary memory but still leaves those processes
runnable. When a process runs, if it accesses those pages, it must sleep while
the pages are read back into primary memory.

• When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes to secondary memory and marks
those processes as swapped. Such processes get back into a state where they
can be scheduled only by being chosen by the system scheduler daemon
process, then read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a
process is ready to run again. For processes that have strict timing
requirements, this delay can be unacceptable.

To avoid swapping delays, realtime processes are never swapped, though parts
of them can be paged. A program can prevent paging and swapping by locking
its text and data into primary memory.

For more information see memcntl (2). Of course, how much can be locked is
limited by how much memory is configured. Also, locking too much can cause
intolerable delays to processes that do not have their text and data locked into
memory.
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Trade-offs between performance of realtime processes and performance of
other processes depend on local needs. On some systems, process locking
might be required to guarantee the necessary realtime response.

Software Latencies

See “Dispatch Latency” on page 164 for information about latencies in realtime
applications.
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Overview of the Virtual Memory System
The UNIX system provides a complete set of memory management
mechanisms, providing applications complete control over the construction of
their address space and permitting a wide variety of operations on both
process address spaces and the variety of memory objects in the system.

Process address spaces are composed of a vector of memory pages, each of
which can be independently mapped and manipulated. Typically, the system
presents the user with mappings that simulate the traditional UNIX process
memory environment, but other views of memory are useful as well.

The UNIX memory-management facilities do the following.

• Unify system operations on memory

• Provide a set of kernel mechanisms powerful and general enough to
support the implementation of fundamental system services without
special-purpose kernel support

• Maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects

Virtual Memory, Address Spaces, and Mapping

The system virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the
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virtual memory are referenced though the UNIX file system. However, not all
file system objects are in the virtual memory; devices that cannot be treated as
storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
shared memory segments, do not have names.

A process address space is defined by mappings onto objects in the system
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is
executing. Each page may be mapped (or not) independently. Only process
addresses that are mapped to some system object are valid, for there is no
memory associated with processes themselves—all memory is represented by
objects in the system virtual memory.

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The physical storage associated
with virtual memory is thus accessed by transforming process addresses to
object addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important
characteristic of a mapping is that the object to which the mapping is made is
not affected by the existence of the mapping. Thus, it cannot, in general, be
expected that an object has an “awareness” of having been mapped, or of
which portions of its address space are accessed by mappings; in particular, the
notion of a “page” is not a property of the object. Establishing a mapping to an
object simply provides the potential for a process to access or change the
object’s contents.

The establishment of mappings provides an access method that renders an
object directly addressable by a process. Applications may find it
advantageous to access the storage resources they use directly rather than
indirectly through read  and write . Potential advantages include efficiency
(elimination of unnecessary data copying) and reduced complexity (single-step
updates rather than the read , modify buffer, write  cycle). The ability to
access an object and have it retain its identity over the course of the access is
unique to this access method, and facilitates the sharing of common code and
data.
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Networking, Heterogeneity, and Coherence

The VM system is designed to fit well with the larger UNIX heterogeneous
environment. This environment extensively uses networking to access file
systems—file systems that are now part of the system virtual memory.

Networks are not constrained to consist of similar hardware or to be based
upon a common operating system; in fact, the opposite is encouraged, for such
constraints create serious barriers to accommodating heterogeneity.

Although a given set of processes might apply a set of mechanisms to establish
and maintain the properties of various system objects—properties such as page
sizes and the ability of objects to synchronize their own use—a given operating
system should not impose such mechanisms on the rest of the network.

As it stands, the access method view of a virtual memory maintains the
potential for a given object (say a text file) to be mapped by systems running
the UNIX memory management system and also to be accessed by systems for
which virtual memory and storage management techniques such as paging are
totally foreign, such as PC-DOS. Such systems can continue to share access to
the object, each using and providing its programs with the access method
appropriate to that system.

Another consideration arises when applications use an object as a
communications channel, or otherwise attempt to access it simultaneously. In
both of these cases, the object is being shared, and the applications must use
some synchronization mechanism to guarantee the coherence of their
transactions with it. The scope and nature of the synchronization mechanism is
best left to the application to decide.

For example, file access on systems that do not support virtual memory access
methods must be indirect, by way of read  and write . Applications sharing
files on such systems must coordinate their access using semaphores, file
locking, or some application-specific protocols.

What is required in an environment where mapping replaces read  and write
as the access method is an operation, such as fsync , that supports atomic
update operations.

The nature and scope of synchronization over shared objects is application-
defined from the outset. If the system attempted to impose any automatic
semantics for sharing, it might prohibit other useful forms of mapped access
that have nothing whatsoever to do with communication or sharing.
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By providing the mechanism to support coherency, and leaving it to
cooperating applications to apply the mechanism, the needs of applications are
met without erecting barriers to heterogeneity. Note that this design does not
prohibit the creation of libraries that provide coherent abstractions for common
application needs.

Memory Management Interfaces
The applications programmer gains access to the facilities of the virtual
memory system through several sets of functions. This section summarizes
these calls and provides examples of their use. For details, see the man Pages(2):
System Calls.

Creating and Using Mappings

mmap establishes a mapping between a process address space and an object in
the system virtual memory. It is the system’s most fundamental function for
defining the contents of an address space—all other system functions that
contribute to the definition of an address space are built from mmap. The
format of an mmap call is:

mmap establishes a mapping from the process address space at an address paddr
for len bytes to the object specified by fd at offset off for len bytes. The value
returned by mmap is an implementation-dependent function of the parameter
addr and the setting of the MAP_FIXED bit of flags, as described below. A
successful call to mmap returns paddr as its result. The address range [paddr,
paddr + len)1 must be valid for the address space of the process and the range
[off, off + len) must be valid for the virtual memory object.

1. Read the notation [ lower, lower + upper) as “from and including the lower boundary up to, but not including,
the upper boundary.”

caddr_t
mmap(caddr_t addr, size_t len, int prot, int flags, int fd, off_t off);

paddr = mmap(addr, len, prot, flags, fd, off);
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Note – The mapping established by mmap replaces any previous mappings for
the process pages in the range [ paddr, paddr + len ).

The parameter prot determines whether read, execute, write, or some
combination of accesses are permitted to the pages being mapped. To deny all
access, set prot to PROT_NONE. Otherwise, specify permissions by an OR of
PROT_READ, PROT_EXECUTE, and PROT_WRITE (note that PROT_EXECUTE is
specific to the SPARC architecture). A write access will fail if PROT_WRITE has
not been set, though the behavior of the write can be influenced by setting
MAP_PRIVATE in the flags parameter, as described below.

The flags parameter provides other information about the handling of mapped
pages.

• MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of store
operations made by this process into the address range defined by the
mapping operation.

If MAP_SHAREDis specified, write references will modify the mapped
object. No further operations on the object are necessary to effect a
change—the act of storing into a MAP_SHARED mapping is equivalent to
doing a write  function.

On the other hand, if MAP_PRIVATE is specified, an initial write reference
to a page in the mapped area will create a copy of that page and redirect the
initial and successive write references to that copy. This operation is
sometimes referred to as copy-on-write and occurs invisibly to the process
causing the store. Only pages actually modified have copies made in this
manner.

The mapping type is retained across a fork .

Note – The private copy is not created until the first write; until then, other
users who have the object mapped MAP_SHARED can change the object. That is,
if one user has an object mapped MAP_PRIVATE and another user has the same
object mapped MAP_SHARED, and the MAP_SHARED user changes the object
before the MAP_PRIVATE user does the first write, then the changes appear in



146 System Services Guide—August 1994

5

the MAP_PRIVATE user’s copy that the system makes on the first write. If an
application needs isolation from changes made by other processes, it should
use read  to make a copy of the data it is isolating.

MAP_PRIVATE mappings are used by system functions such as exec (2)
when mapping files containing programs for execution. This permits
operations by programs such as debuggers to modify the “text” (code) of
the program without affecting the file from which the program is obtained.

• MAP_FIXED informs the system that the value returned by mmap must be
exactly addr. The use of MAP_FIXED is discouraged, as it can prevent an
implementation from making the most effective use of system resources.

When MAP_FIXED is not set, the system uses addr as a hint to arrive at paddr.
The paddr so chosen is an area of the address space that the system deems
suitable for a mapping of len bytes to the specified object. An addr value of
zero grants the system complete freedom in selecting paddr, subject to
constraints described below. A non-zero value of addr is taken as a
suggestion of a process address near which the mapping should be placed.

When the system selects a value for paddr, it never places a mapping at
address 0, nor replaces any extant mapping, nor maps into areas considered
part of the potential data or stack “segments.” The system strives to choose
alignments for mappings that maximize the performance of the hardware
resources.

• MAP_NORESERVE specifies that no swap space is to be reserved in advance
for a mapping. Without this flag, a MAP_PRIVATE mapping has swap space
reserved for it when the mapping is first created; this swap space is later
used to back the private pages that are created by copy-on-write operations.

Without this advance reservation, swap space might not be available in the
system when a copy-on-write is attempted; the system then fails the write
access to the page and sends a SIGBUS signal to the process. However, a
process can prevent swap space from being reserved in advance by setting
the MAP_NORESERVE flag if that process is willing to handle the case in
which swap space is not available.

The advantage of using this flag is that a process can, for example, create
and access a huge data segment on a machine that has a relatively small
amount of swap space, as long as the process also provides for the case
where writes into the segment might fail. Without MAP_NORESERVE it
would be impossible to create this segment.
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The file descriptor used in a mmap call need not be kept open after the mapping
is established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses
occupied by this mapping or until the mapping is removed either by process
termination or a call to munmap.

Although the mapping endures independent of the existence of a file
descriptor, changes to the file can influence accesses to the mapped area, even
if they do not affect the mapping itself.

For instance, should a file be shortened by a call to truncate , such that the
mapping now “overhangs” the end of the file, then accesses to that area of the
file that no longer exists, SIGBUS signals will result.

It is possible to create the mapping in the first place such that it “overhangs”
the end of the file—the only requirement when creating a mapping is that the
addresses, lengths, and offsets specified in the operation be possible (such as,
within the range permitted for the object in question), not that they exist at the
time the mapping is created (or subsequently.)

Similarly, if a program accesses an address in a manner inconsistent with how
it has been mapped (for instance, by attempting a store operation into a
mapping that was established with only PROT_READ access), then a SIGSEGV
signal will result. SIGSEGV signals will also result on any attempt to reference
an address not defined by any mapping.

In general, if a program references an address that is inconsistent with the
mapping (or lack of a mapping) established at that address, the system will
respond with a SIGSEGV violation.

However, if a program references an address consistent with how the address
is mapped, but that address does not evaluate at the time of the access to
allocated storage in the object being mapped, then the system will respond
with a SIGBUS violation.

In this manner a program (or user) can distinguish between whether it is the
mapping or the object that is inconsistent with the access, and take appropriate
remedial action.

Using mmap to access system memory objects can simplify programs in a
variety of ways. Keeping in mind that mmap can really be viewed as just a
means to access memory objects, it is possible to program using mmap in many
cases where you might program with read  or write .
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However, it is important to realize that mmap can only be used to gain access to
memory objects—those objects that can be thought of as randomly accessible
storage. Thus, terminals and network connections cannot be accessed with
mmap because they are not “memory.” Magnetic tapes, even though they are
memory devices, cannot be accessed with mmap because storage locations on
the tape can only be addressed sequentially.

Some examples of situations that can be thought of as candidates for use of
mmap over more traditional methods of file access include:

• Random access operations—either map the entire file into memory or, if the
address space cannot accommodate the file or if the file size is variable,
create “windows” of mappings to the object.

• Efficiency—even in situations where access is sequential, if the object being
accessed can be accessed via mmap, an efficiency gain may be obtained by
avoiding the copying operations inherent in accesses via read  or write .

• Structured storage—if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to the
file is treated just as though the tables were in memory.

Previously, programs could not simply make storage or table alterations in
memory and save them for access in subsequent runs; however, when the
addresses of the table are defined by mappings to a file, then changes to the
storage are changes to the file, and are thus automatically recorded in it.

• Scattered storage—if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation.

The remainder of this section illustrates some other concepts surrounding
mapping creation and use.

Mapping /dev/zero   gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap. /dev/zero  is a special
device, that responds to read  as an infinite source of bytes with the value 0,
but when mapped creates an unnamed object to back the mapped region of
memory.
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The following code fragment demonstrates a use of this to create a block of
scratch storage in a program, at an address that the system chooses.

As written, this function permits a hierarchy of processes to use the area of
allocated storage as a region of communication (for implicit interprocess
communication purposes).

In some cases, devices or files are useful only if accessed via mapping. An
example of this is frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate
randomly on the addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define
multiple pages of an address space, there is absolutely no restriction that
subsequent operations on those addresses must operate on the same number of
pages.

/*
 * Function to allocate a block of zeroed storage. Parameter
 * is the number of bytes desired. The storage is mapped as
 * MAP_SHARED, so that if a fork occurs, the child process
 * will be able to access and modify the storage. If we wished
 * to cause the child’s modifications (as well as those by the
 * parent) to be invisible to the ancestry of processes, we
 * would use MAP_PRIVATE.
 */
caddr_t
get_zero_storage(int len);
{

int fd;
caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
(void) close(fd);
return (result);

}
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For instance, an mmap operation defining ten pages of an address space may be
followed by subsequent munmap (see below) operations that remove every
other page from the address space, leaving five mapped pages each followed
by an unmapped page.

Those unmapped pages may subsequently be mapped to different locations in
the same or different objects, or the whole range of pages (or any partition,
superset, or subset of the pages) used in other mmap or other memory
management operations.

Further, any mapping operation that operates on more than a single page can
partially succeed in that some parts of the address range can be affected even
though the call returns an overall failure.

Thus, an mmap operation that replaces another mapping, if it fails, might have
deleted the previous mapping and failed to replace it. Similarly, other
operations (unless specifically stated otherwise) might process some pages in
the range successfully before operating on a page where the operation fails.

Not all device drivers support memory mapping. mmap fails if you try to map
a device that does not support mapping.

Removing Mappings

munmap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process.

It is not an error to remove mappings from addresses that do not have them,
and any mapping, no matter how it was established, can be removed with
munmap. munmap does not in any way affect the objects that were mapped at
those addresses.

int
munmap(caddr_t addr, size_t len);
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Cache Control

The UNIX memory management system can be thought of as a form of “cache
management,” in which processor primary memory is used as a cache for
pages from objects from the system virtual memory. Thus, there are a number
of operations that control or interrogate the status of this cache, as described in
this section.

mincore  determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len).

Using the cache concept described earlier, this function can be viewed as an
operation that interrogates the status of the cache, and returns an indication of
what is currently resident in the cache. The status is returned as a char-per-
page in the character array referenced by *vec (which the system assumes to be
large enough to encompass all the pages in the address range).

The low order bit of each character contains either a 1 (indicating that the page
is resident in the system’s primary storage), or a 0 (indicating that the page is
not resident in primary storage). Other bits in the character are reserved for
possible future expansion—therefore, programs testing residency should test
only the least significant bit of each character.

Because the status of a page can change after mincore  checks it, but before
mincore  returns the information, returned information might be outdated.
Only locked pages are guaranteed to remain in memory.

mlock  causes the pages referenced by the mapping in the range [addr, addr +
len) to be locked in physical memory. References to those pages (through
mappings in this or other processes) will not result in page faults that require
an I/O operation to obtain the data needed to satisfy the reference.

int
mincore(caddr_t addr, size_t len, char *vec);

int
mlock(caddr_t addr, size_t len);

int
munlock(caddr_t addr, size_t len);
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Because this operation ties up physical system resources and has the potential
to disrupt normal system operation, use of this facility is restricted to the
superuser. The system will not permit more than a configuration-dependent
limit of pages to be locked in memory simultaneously. The call to mlock  fails if
this limit is exceeded.

munlock  releases the locks on physical pages. Note that if multiple mlock
calls are made through the same mapping, only a single munlock  call is
required to release the locks (in other words, locks on a given mapping do not
nest).

However, if different mappings to the same pages are processed with mlock ,
then the pages will not be unlocked until the locks on all the mappings are
released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap operation or removed explicitly with munmap.

A lock will be transferred between pages on the “copy-on-write” event
associated with a MAP_PRIVATE mapping, thus locks on an address range that
includes MAP_PRIVATE mappings will be retained transparently along with
the copy-on-write redirection (see mmap above for a discussion of this
redirection).

mlockall  and munlockall  are similar in purpose and restriction to mlock
and munlock , except that they operate on entire address spaces. mlockall
accepts a flags argument built as a bit-field of values from the set:

MCL_CURRENT Current mappings
MCL_FUTURE Future mappings

If flags is MCL_CURRENT, the lock is to affect everything currently in the
address space. If flags is MCL_FUTURE, the lock is to affect everything added in
the future. If flags is (MCL_CURRENT | MCL_FUTURE), the lock is to affect
both current and future mappings.

int
mlockall(int flags);

int
munlockall(void);
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munlockall  removes all locks on all pages in the address space, whether
established by mlock  or mlockall .

msync  supports applications that require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent
communications in a distributed environment.

msync  causes all modified copies of pages over the range [addr, addr + len) to
be flushed to the objects mapped by those addresses. In the cache analogy
discussed previously, msync  is the cache “write-back,” or flush, operation. It is
similar in purpose to the fsync  operation for files.

msync  optionally invalidates each such cache entry so that the first subsequent
reference to the page causes the system to obtain it from its permanent storage
location.

The flags argument provides a bit field of values that influences the behavior of
msync . The bit names and their interpretations are:

MS_SYNC synchronized write
MS_ASYNC return immediately
MS_INVALIDATE invalidate caches

MS_SYNC causes msync  to return only after all I/O operations are complete.
MS_ASYNC causes msync  to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be reobtained from object storage
upon the next reference.

int
msync(caddr_t addr, size_t len, int flags);
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Other Mapping Functions

sysconf  returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of sysconf  to obtain that information.

Note that it is not unusual for page sizes to vary even among implementations
of the same instruction set, increasing the importance of using this function for
portability.

mprotect  has the effect of assigning protection prot to all pages in the range of
[addr, addr + len). The protection assigned cannot exceed the permissions
allowed on the underlying object.

For instance, a read-only mapping to a file that was opened for read-only
access cannot be set to be writable with mprotect  (unless the mapping is of
the MAP_PRIVATE type, in which case the write access is permitted since the
writes will modify copies of pages from the object, and not the object itself).

Address Space Layout
Traditionally, the address space of a UNIX process has consisted of exactly
three segments: one each for write-protected program code (text), a heap of
dynamically allocated storage (data), and the process stack. Text is read-only
and shared, while the data and stack segments are private to the process.

long
sysconf(_SC_PAGESIZE);

int
mprotect(caddr_t addr, size_t len, int prot);
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Figure 5-1 Traditional UNIX System Address-Space Layout

In the SunOS 5.x system, a process’s address space is simply a vector of pages,
and the division between different address-space segments is not so clear-cut.
Process text and data spaces are simply groups of pages.1

There are often multiple text and data segments, some belonging to specific
programs and some belonging to code running in shared libraries. The
following figure illustrates one possible address space layout.

1. For compatibility, the system maintains address ranges that should belong to such segments to support
operations such as extending or contracting the data segment’s break. These are initialized when a program
is initiated with execve ().
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Figure 5-2 Address-Space Layout

Although the system still uses text, data, and stack segments, these should be
thought of as constructs provided by the programming environment rather
than by the operating system.

As such, it is possible to construct processes that have multiple segments of
each type, or of types of arbitrary semantic value—programs no longer need to
be built only from objects the system can represent directly.

For instance, a process address space may contain multiple text and data
segments, some belonging to specific programs and some shared among
multiple programs. Text segments from shared libraries, for example, typically
appear in the address spaces of many processes.
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A process address space is simply a vector of pages, and there is no necessary
division between different address space segments. Process text and data
spaces are simply groups of pages mapped in ways appropriate to the function
they provide the program.

A process address space is usually sparsely populated, with data and text
pages intermingled. The precise mechanics of the management of stack space is
machine-dependent.

By convention, page 0 is not used. Process address spaces are often constructed
through dynamic linking when a program is exec ’d. Operations such as exec
and dynamic linking build upon the mapping operations described previously.

Although the system can have multiple areas that can be considered “data”
segments, for programming convenience the system maintains operations to
operate on an area of storage associated with a process initial “heap storage
area.”

A process can manipulate this area by calling brk  and sbrk :

brk  sets the system idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system page size).

sbrk , the alternate function, adds incr bytes to the caller data space and
returns a pointer to the start of the new data area.

caddr_t
brk(caddr_t addr);

caddr_t
sbrk(int incr);
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159

Realtime Programming and
Administration 6

This chapter describes writing and porting realtime applications to run under
SunOS 5.x. This chapter is written for programmers experienced in writing
realtime applications and administrators familiar with realtime processing and
the SunOS system.

Basic Rules of Realtime Applications
Realtime response is guaranteed when certain conditions are met. This section
identifies these conditions and some of the more significant design errors that
can cause problems or disable a system.

Most of the potential problems described here can degrade the response time
of the system. One of the potential problems can freeze a workstation. Other,
more subtle mistakes are priority inversion and system overload (too much to
do).

A SunOS realtime process:

• runs in the RT scheduling class, as described in “Scheduling” on page 164

• locks down all the memory in its process address space, as described in
“Memory Locking” on page 180

• is from a statically-linked program or from a program in which all dynamic
binding is completed early, as described in “Shared Libraries” on page 161
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Realtime operations are described in this chapter in terms of single-threaded
processes, but the description can also apply to multithreaded processes (for
detailed information about multithreaded processes, see the Multithreaded
Programming Guide). To guarantee realtime scheduling of a thread, it must be
created as a bound thread, and the thread’s LWP must be run in the RT
scheduling class. The locking of memory and early dynamic binding is
effective for all threads in a process.

When a process is the highest priority realtime process, it:

• acquires the processor within the guaranteed dispatch latency period of
becoming runnable (see“Dispatch Latency” on page 164)

• continues to run for as long as it remains the highest priority runnable
process

A realtime process can lose control of the processor or can be unable to gain
control of the processor because of other events on the system. These events
include external events (such as interrupts), resource starvation, waiting on
external events (synchronous I/O), and preemption by a higher priority
process.

Realtime scheduling generally does not apply to system initialization and
termination services such as open (2) and close (2).

Degrading Response Time

The problems described in this section all increase the response time of the
system to varying extents. The degradation can be serious enough to cause an
application to miss a critical deadline.

Realtime processing can also significantly impact the operation of aspects of
other applications active on a system running a realtime application. Since
realtime processes have higher priority, time-sharing processes can be
prevented from running for significant amounts of time. This can cause
interactive activities, such as displays and keyboard response time, to be
noticeably slowed.
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System Response Time

System response under SunOS 5.x provides no bounds to the timing of I/O
events. This means that synchronous I/O calls should never be included in any
program segment whose execution is time critical. Even program segments
that permit very large time bounds must not perform synchronous I/O. Mass
storage I/O is such a case, where causing a read or write operation hangs the
system while the operation takes place.

Interrupt Servicing

Prioritizing processes does not carry through to prioritizing the services of
hardware interrupts that result from the actions of the processes. This means
that interrupt processing for a device controlled by a realtime process is not
necessarily done before interrupt processing for another device controlled by a
timeshare process.

Shared Libraries

Time-sharing processes can save significant amounts of memory by using
dynamically linked, shared libraries. This type of linking is implemented
through a form of file mapping. Dynamically linked library routines cause
implicit reads.

Realtime programs can use shared libraries, yet avoid dynamic binding, by
setting the environment variable LD_BIND_NOW to a non-NULL value when
the program is invoked. This forces all dynamic linking to be bound before the
program begins execution. See the Linker and Libraries Guide for more
information.

Priority Inversion

A time-sharing process can block a realtime process by acquiring a resource
that is required by a realtime process. Priority inversion is a condition that
occurs when a higher priority process is blocked by a lower priority process.
The term blocking describes a situation in which a process must wait for one or
more processes to relinquish control of resources. If this blocking is prolonged,
even for lower level resources, deadlines might be missed.
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By way of illustration, consider the case in Figure 6-1 where a high priority
process wanting to use a shared resource gets blocked when a lower priority
process holds the resource, and the lower priority process is preempted by an
intermediate priority process. This condition can persist for a long time,
arbitrarily long, in fact, since the amount of time the high priority process must
wait for the resource depends not only on the duration of the critical section
being executed by the lower priority process, but on the duration until the
intermediate process blocks.

Figure 6-1 Unbounded Priority Inversion

Sticky Locks

A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is implementation-defined and might change in
future releases. Pages locked this way cannot be unlocked.

Runaway Realtime Processes

Runaway realtime processes can cause the system to halt or can slow the
system response so much that the system appears to halt.

Note – If you have a runaway process, try the (L1-A) sequence. You might
have to repeat this procedure many times. If this doesn’t work, disconnect the
keyboard.

    Shared Resource

  Intermediate

 Priority

      Higher Priority

   Lower Priority
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When a high priority realtime process will not relinquish control of the CPU,
there is no simple way to regain control of the system until the infinite loop is
forced to terminate. Such a runaway process will not respond to the control-C
kill sequence.

Caution – Attempts to use a shell set at a higher priority than a runaway
process will not succeed. The STREAMS processes that govern tty
management are running at system priority, and so will not get scheduled.
Therefore, keyboard input is not received by the shell, even when the shell is
running at a higher priority.

I/O Behavior

Asynchronous I/O

There is no guarantee that asynchronous I/O operations will be done in the
sequence in which they are queued to the kernel. Nor is there any guarantee
that asynchronous operations will be returned to the caller in the sequence in
which they were done.

If a single buffer is specified for a rapid sequence of calls to aioread (3), there
is no guarantee about the state of the buffer between the time that the first call
is made and the time that the last result is signaled to the caller.

Use a single aio_result_t  structure only for one asynchronous read or write
at a time.

Realtime Files

SunOS 5.x provides no facilities to assure that files will be allocated as
physically contiguous. For regular files, the read () and write () operations are
always buffered. An application can use mmap() and msync () to effect direct
I/O transfers between secondary storage and process memory.
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Scheduling
Realtime scheduling constraints are necessary to manage data acquisition or
process control hardware. The realtime environment requires that a process be
able to react to external events in a bounded amount of time. Such constraints
can exceed the capabilities of a kernel designed to provide a “fair” distribution
of the processing resources to a set of time-sharing processes.

This section describes the SunOS 5.x realtime scheduler, its priority queue, and
how to use system calls and utilities that control scheduling. For more
information about the functions described in this section, see the man Pages(3):
Library Routines.

Dispatch Latency

The most significant element in scheduling behavior for realtime applications
is the provision of a real-time scheduling class. The standard time-sharing
scheduling class is not suitable for realtime applications because this
scheduling class treats every process equally and has a limited notion of
priority. Realtime applications require a scheduling class in which process
priorities are taken as absolute and are changed only by explicit application
operations.

The term dispatch latency describes the amount of time it takes for a system to
respond to a request for a process to begin operation. With a scheduler written
specifically to honor application priorities, realtime applications can be
developed with a bounded dispatch latency.
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Figure 6-2 illustrates the amount of time it takes an application to respond to a
request from an external event.

Figure 6-2 Application Response Time

The overall application response time is composed of the interrupt response
time, the dispatch latency, and the time it takes the application itself to
determine its response.

The interrupt response time for an application includes both the interrupt
latency of the system and the device driver’s own interrupt processing time.
The interrupt latency is determined by the longest interval that the system
must run with interrupts disabled; this is minimized in SunOS 5.x using
synchronization primitives that do not commonly require a raised processor
interrupt level.

During interrupt processing, the driver’s interrupt routine wakes up the high
priority process and returns when finished. The system detects that a process
with higher priority than the interrupted process in now dispatchable and
arranges to dispatch that process. The time to switch context from a lower
priority process to a higher priority process is included in the dispatch latency
time.
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Figure 6-3 illustrates the internal dispatch latency/application response time of
a system, defined in terms of the amount of time it takes for a system to
respond to an internal event. The dispatch latency of an internal event
represents the amount of time required for one process to wake up another
higher priority process, and for the system to dispatch the higher priority
process.

The application response time is the amount of time it takes for a driver to
wake up a higher priority process, have a low priority process release
resources, reschedule the higher priority task, calculate the response, and
dispatch the task.

Note –  Interrupts can arrive and be processed during the dispatch latency
interval. This processing increases the application response time, but is not
attributed to the dispatch latency measurement, and so is not bounded by the
dispatch latency guarantee.

Figure 6-3 Internal Dispatch Latency

With the new scheduling techniques provided with realtime SunOS 5.x, the
system dispatch latency time is within specified bounds.
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As you can see in Table 6-1, dispatch latency improves with a bounded number
of processes.

Tests for dispatch latency and experience with such critical environments as
manufacturing and data acquisition have proven that the Sun workstation is an
able platform for the development of realtime applications.

Scheduling Classes

The SunOS 5.x kernel dispatches processes by priority. The scheduler (or
dispatcher) supports the concept of scheduling classes. Classes are defined as
Realtime (RT), System (sys ), and Time-Sharing (TS). Each class has a unique
scheduling policy for dispatching processes within its class.

The kernel dispatches highest priority processes first. By default, realtime
processes have precedence over sys  and TS processes, but administrators can
configure systems so that TS and RT processes have overlapping priorities.

Table 6-1 Realtime System Dispatch Latency with SunOS 5.x

                                      Dispatch Latency

Workstation  Bounded Number of Processes    Arbitrary Number of Processes

SPARCstation 1 < 2.0 milliseconds in a system with
fewer than 8 active processes

          4.5 milliseconds

SPARCstation 1+ < 2.0 milliseconds in a system with
fewer than 8 active processes

          4.0 milliseconds

SPARCstation IPX < 1.0 milliseconds in a system with
fewer than 8 active processes

          2.2 milliseconds

SPARCstation 2 < 1.0 milliseconds in a system with
fewer than 16 active processes

          2.0 milliseconds
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Figure 6-4 illustrates the concept of classes as viewed by the SunOS 5.x kernel.

Figure 6-4 Dispatch Priorities for Scheduling Classes

At highest priority are the hardware interrupts; these cannot be controlled by
software. The interrupt processing routines are dispatched directly and
immediately from interrupts, without regard to the priority of the current
process.

Realtime processes have the highest default software priority. Processes in the
RT class have a priority and time quantum value. RT processes are scheduled
strictly on the basis of these parameters. As long as an RT process is ready to
run, no sys  or TS process can run. Fixed priority scheduling allows critical
processes to run in a predetermined order until completion. These priorities
never change unless an application changes them.

An RT class process inherits the parent’s time quantum, whether finite or
infinite. A process with a finite time quantum runs until the time quantum
expires or the process terminates, blocks (while waiting for an I/O event), or is
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preempted by a higher priority runnable realtime process. A process with an
infinite time quantum ceases execution only when it terminates, blocks, or is
preempted.

The sys  class exists to schedule the execution of special system processes, such
as paging, STREAMS, and the swapper. It is not possible to change the class of
a process to the sys  class. The sys  class of processes has fixed priorities
established by the kernel when the processes are started.

At lowest priority are the time-sharing (TS) processes. TS class processes are
scheduled dynamically, with a few hundred milliseconds for each time slice.
The TS scheduler switches context in round-robin fashion often enough to give
every process an equal opportunity to run, depending upon its time slice
value, its process history (when the process was last put to sleep), and
considerations for CPU utilization. Default time-sharing policy gives larger
time slices to processes with lower priority.

A child process inherits the scheduling class and attributes of the parent
process through fork (2). A process’ scheduling class and attributes are
unchanged by exec (2).

Different algorithms dispatch each scheduling class. Class dependent routines
are called by the kernel to make decisions about CPU process scheduling. The
kernel is class-independent, and takes the highest priority process off its
queue. Each class is responsible for calculating a process’ priority value for its
class. This value is placed into the dispatch priority variable of that process.
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As Figure 6-5 illustrates, each class algorithm has its own method of
nominating the highest priority process to place on the global run queue.

Figure 6-5 The Kernel Dispatch Queue

Each class has a set of priority levels that apply to processes in that class. A
class-specific mapping maps these priorities into a set of global priorities. It is
not required that a set of global scheduling priority maps start with zero, nor
that they be contiguous.

By default, the global priority values for time-sharing (TS ) processes range
from  -20 to +20, mapped into the kernel from 0-40, with temporary
assignments as high as 99. The default priorities for realtime (RT ) processes
range from 0-59, and are mapped into the kernel from 100 to 159. The kernel’s
class-independent code runs the process with the highest global priority on the
queue.
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Dispatch Queue

The dispatch queue is a linear linked list of processes with the same global
priority. Each process is invoked with class specific information attached to it.
A process is dispatched from the kernel dispatch table based upon its global
priority.

Dispatching Processes

When a process is dispatched, the process’ context is mapped into memory
along with its memory management information, its registers, and its stack.
Then execution begins. Memory management information is in the form of
hardware registers containing data needed to perform virtual memory
translations for the currently running process.

Preemption

When a higher priority process becomes dispatchable, the kernel interrupts its
computation and forces the context switch, preempting the currently running
process. A process can be preempted at any time if the kernel finds that a
higher priority process is now dispatchable.

For example, suppose that process A performs a read from a peripheral device.
Process A is put into the sleep state by the kernel. The kernel then finds that a
lower priority process B is runnable, so process B is dispatched and begins
execution. Eventually, the peripheral device interrupts, and the driver of the
device is entered. The device driver makes process A runnable and returns.
Rather than returning to the interrupted process B, the kernel now preempts B
from processing and resumes execution of the awakened process A.

Another interesting situation occurs when several processes contend for kernel
resources. When a lower priority process releases a resource for which a higher
priority realtime process is waiting, the kernel immediately preempts the lower
priority process and resumes execution of the higher priority process.
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Kernel Priority Inversion

Priority inversion occurs when a higher priority process is blocked by one or
more lower priority processes for a long time. The use of synchronization
primitives such as mutual-exclusion locks in the SunOS 5.x kernel can lead to
priority inversion.

The term blocking describes the situation in which a process must wait for one
or more processes to relinquish resources. If this blocking continues, it can lead
to deadlines being missed, even for low levels of utilization.

The problem of priority inversion has been addressed for mutual-exclusion
locks for the SunOS 5.x kernel by implementing a basic priority inheritance
policy. The policy states that a lower priority process inherits the priority of a
higher priority process when the lower priority process blocks the execution of
the higher priority process. This places an upper bound on the amount of time
a process can remain blocked. The policy is a property of the kernel’s behavior,
not a solution that a programmer institutes through system calls or function
execution. User-level processes can still exhibit priority inversion, however.

User Priority Inversion

There is no mechanism by which processes synchronizing with other processes
will automatically inherit the priority of waiting processes. An application can
bound its priority inversion by using priority ceiling emulation.

Under this model, the application associates a priority with each
synchronization object, which is typically the highest priority of any process
that can block on that object.
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Each process then uses the following sequence when manipulating the shared
resources.

System Calls That Control Scheduling

System calls implemented for realtime scheduling include the library calls and
functions listed in this section. For more detail about using these, see the man
Pages(3): Library Routines.

/*
 * raise process priority to maximum of current level
 * and synchronization object level
 */

...

/*
 * acquire synchronization object
 */

...

/*
 * execute the critical section
 */

...

/*
 * release synchronized object
 */

...

/*
 * return to previous process priority level
 */

...
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Using priocntl (2)

Control over scheduling of active classes is handled with priocntl (2). Class
attributes are inherited over fork (2) and exec (2), along with scheduling
parameters and permissions required for priority control. These characteristics
are true for both the RT and the TS classes.

The priocntl (2) function provides an interface for specifying a realtime
process, a set of processes, or a class to which the system call will apply. The
priocntlset (2) system call also provides the more general interface for
specifying an entire set of processes to which the system call is to apply.

The idtype and id arguments are used together to specify the set of processes on
the queue. Depending upon the value of idtype, id can have values for a single
process ID, a parent process ID, a process group ID, a session ID, a class ID, a
user ID,  a group ID, or a lightweight process ID.

The command arguments of priocntl  can be one of: PC_GETCID,
PC_GETCLINFO, PC_GETPARMS, or PC_SETPARMS. The real or effective ID of
the calling process must match that of the affected process or processes, or
must have super-user privilege.

PC_GETCID

This command takes the name field of a structure that contains a recognizable
class name (RT for realtime and TS for time-sharing). The class ID and an array
of class attribute data are returned.

PC_GETCLINFO

This command takes the ID field of a structure that contains a recognizable
class identifier. The class name and an array of class attribute data are
returned.

PC_GETPARMS

This command returns the scheduling class identifier and/or the class specific
scheduling parameters of one of the specified processes. Even though idtype
& id might  specify a big set,PC_GETPARMS returns the parameter of only
one process. It is up to the class to select which one.
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PC_SETPARMS

This command sets the scheduling class and/or the class specific scheduling
parameters of the specified process or processes.

Utilities that Control Scheduling

The administrative utilities that control process scheduling are
dispadmin (1M) and priocntl (1). Both these utilities support the
priocntl (2) system call with compatible options and loadable modules.
Using these utilities provides system administration functions that control
realtime process scheduling during runtime. For more details about using these
utilities, see the man Pages(1): User Commands and the Security, Performance, and
Accounting Administration guide.

Using priocntl (1)

The priocntl (1) command sets and retrieves scheduler parameters for
processes. See “The priocntl Command” on page 114 for more information.

Using dispadmin (1M)

The dispadmin (1M) utility displays all current process scheduling classes by
including the - l  command line option during runtime. Process scheduling can
also be changed for the class specified after the -c  option, using RT as the
argument for the realtime class.

The following options are also available:

Table 6-2 Class Options for the dispadmin (1M) Utility

option meaning

–l lists scheduler classes currently configured

–c specifies the class whose parameters are to
be displayed or changed
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A class specific file containing the dispatch parameters can also be loaded
during runtime. Use this file to establish a new set of priorities replacing the
default values established during boot time.This class specific file must assert
the arguments in the format used by the -g  option. Parameters for the RT class
are found in the rt_dptbl (4), and are listed in the example at the end of this
section.

To add an RT class file to the system, the following modules must be present:

• An rt_init () routine in the class module which loads the rt_dptbl .

• A rt_dptbl module that provides the dispatch parameters and a routine
to return pointers to config_rt_dptbl .

• The dispadmin executable.

Then load the class specific module with the following command, where
<module_name>  is the class specific module.

modload /kernel/sched/<module_name>

Then invoke the dispadmin  command:

The file must describe a table with the same number of entries as the table that
is being overwritten.

–g gets the dispatch parameters for the specified
class

–r when using –g, specifies time quantum
resolution

–s specifies a file where values can be located

# dispadmin -c RT -s <file_name>

Table 6-2 Class Options for the dispadmin (1M) Utility

option meaning
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Configuring Scheduling

Associated with each scheduling class is a parameter table,
config_rt_dptbl  (RT), and config_ts_dptbl  (TS). These tables are
configurable by using a loadable module at boot time, or with dispadmin (1M)
during runtime.

The Dispatcher Parameter Table

The in-core table for realtime establishes the properties for RT scheduling. The
config_rt_dptbl  structure consists of an array of parameters, struct
rt_dpent , one for each of the n priority levels. The properties of a given
priority level i  are specified by the i th parameter structure in the array,
config_rt_dptbl[i] .

A parameter structure consists of the following members (also described in the
/usr/include/sys/rt.h  header file):

rt_globpri
The global scheduling priority associated with this priority level. The
rt_globpri values cannot be changed with dispadmin (1M).

rt_quantum
The length of the time quantum allocated to processes at this level in ticks
(HZ). The time quantum value is only a default or starting value for
processes at a particular level. The time quantum of a realtime process can
be changed by using the priocntl (1) command or the priocntl (2)
system call.

Reconfiguring config_rt_dptbl

A realtime administrator can change the behavior of the realtime portion of the
scheduler by reconfiguring the config_rt_dptbl  at any time. Two methods
are described here.

The first method is to reconfigure the config_rt_dptb l parameter table with
a loadable module which contains a new dispatch table loaded at boot time.
The module containing the dispatch table is a separate module. This is the only
method that can be used to change the number of realtime priority levels or the
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set of global scheduling priorities used by the realtime class. Note that
changing the config_rt_dptbl  affects the realtime processes that you set
after the table gets updated.

A second method for examining or modifying the realtime parameter table on
a running system is through using the dispadmin (1M) command. Invoking
dispadmi n  for the realtime class allows retrieval of the current rt_quantum
values in the current config_rt_dptbl  configuration from the kernel’s in-
core table. When overwriting the current in-core table, the configuration file
used for input to dispadmin  must conform to the specific format described in
the manual page for config_rt_dptbl  found in the man Pages(1M): System
Administration Commands.
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Following is an example of prioritized processes rtdpent_t  with their
associated time quantum config_rt_dptbl[]  value as they might appear in
config_rt_dptbl[]:

rtdpent_t   rt_dptbl[] = {
        /* prilevel Time quantum */
                100,    100,
                101,    100,
                102,    100,
                103,    100,
                104,    100,
                105,    100,
                106,    100,
                107,    100,
                108,    100,
                109,    100,
                110,    80,
                111,    80,
                112,    80,
                113,    80,
                114,    80,
                115,    80,
                116,    80,
                117,    80,
                118,    80,
                119,    80,
                120,    60,
                121,    60,
                122,    60,
                123,    60,
                124,    60,
                125,    60,
                126,    60,
                127,    60,
                128,    60,
                129,    60,
                130,    40,
                131,    40,
                132,    40,
                133,    40,

                134,    40,
                135,    40,
                136,    40,
                137,    40,
                138,    40
                139,    40,
                140,    20,
                141,    20,
                142,    20,
                143,    20,
                144,    20,
                145,    20,
                146,    20,
                147,    20,
                148,    20,
                149,    20,
                150,    10,
                151,    10,
                152,    10,
                153,    10,
                154,    10,
                155,    10,
                156,    10,
                157,    10,
                158,    10,
                159,    10,
}
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Memory Locking
Locking memory is one of the most important issues for realtime applications.
In a realtime environment, a process must be able to guarantee continuous
memory residence to reduce latency and to prevent paging and swapping.

This section describes the memory locking mechanisms available to realtime
applications in SunOS 5.x. For more details about using memory management
functions and calls, see the man Pages(3): Library Routines for pertinent manual
pages.

Overview

Under SunOS 5.x, the memory residency of a process is determined by its
current state, the total available physical memory, the number of active
processes, and the processes’ demand for memory. This is appropriate in a
time-share environment, but it is often unacceptable for a realtime process. In a
realtime environment, a process must be able to guarantee memory residence
for all or part of itself to reduce its memory access and dispatch latency.

For realtime in SunOS 5.x, memory locking is provided by a set of library
routines that allow a process running with superuser privileges to lock
specified portions of its virtual address space into physical memory. Pages
locked in this manner are exempt from paging until they are unlocked or the
process exits.

There is a system-wide limit on the number of pages that can be locked at any
time. This is a tunable parameter whose default value is calculated at boot
time. It is based on the number of page frames less another percentage
(currently set at ten percent).

Locking a Page

A call to mlock (3) requests that one segment of memory be locked into the
system’s physical memory. The pages that make up the specified segment are
faulted in and the lock count of each is incremented. Any page with a lock
count greater than 0 is exempt from paging activity.
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A particular page can be locked multiple times by multiple processes through
different mappings. If two different processes lock the same page, the page
remains locked until both processes remove their locks. However, within a
given mapping, page locks do not nest. Multiple calls of locking functions on
the same address by the same process are removed by a single unlock request.

If the mapping through which a lock has been performed is removed, the
memory segment is implicitly unlocked. When a page is deleted through
closing or truncating the file, it is also unlocked implicitly.

Locks are not inherited by a child process after a fork (2) call is made. So, if a
process with memory locked forks a child, the child must perform a memory
locking operation in its own behalf to lock its own pages. Otherwise, the child
process incurs copy-on-write pages, which are the usual penalties associated
with forking a process.

Unlocking a Page

To unlock a page of memory, a process requests that a segment of locked
virtual pages be released by a call to munlock (3). The lock counts of the
specified physical pages are decremented. Once the lock count of a page has
been decremented to 0, the page is swapped normally.

Locking All Pages

A superuser process can request that all mappings within its address space be
locked by a call to mlockall (3). If the flag MCL_CURRENT is set, all the
existing memory mappings are locked. If the flag MCL_FUTURE is set, every
mapping that is added to or that replaces an existing mapping is locked into
memory.

Sticky Locks

A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is implementation defined and might change in
future releases. Pages locked in this manner cannot be unlocked. Reboot the
system to recover.



182 System Services Guide—August 1994

6

High Performance I/O
This section describes I/O with realtime processes. With SunOS 5.x, several
functions and calls are available within the libraries supplied to perform  fast,
asynchronous I/O operations. For robustness, SunOS provides file
synchronization operations and modes to prevent information loss and data
inconsistency.

See the man Pages(3): Library Routines for more detailed information.

 Asynchronous I/O

Standard UNIX I/O is generally synchronous to the application programmer.
An application that calls read (2) or write (2) is not usually allowed to
proceed until that system call has finished, successfully or otherwise.

Realtime applications need asynchronous bounded I/O behavior. A process that
issues an asynchronous I/O call does not wait until the I/O operation has been
completed before it is allowed to proceed. Instead, the caller is notified that the
I/O operation has finished at a later time while the process is doing something
else.

Asynchronous I/O applies to any SunOS file. Files are opened in the
synchronous way and no special flagging is required. An asynchronous I/O
transfer is composed of three elements: call, request, and operation. The
application calls an asynchronous I/O function, the request for the I/O is
placed on a queue, and the call returns immediately. At some point, the system
dequeues the request and initiates the I/O operation itself.

Asynchronous and standard I/O requests can be intermingled on any file
descriptor. Note, however, that the system does not necessarily maintain any
particular sequence of read and write requests. The system can and does
arbitrarily resequence any and all pending read and write requests. If a specific
sequence is required for the application, it must be planned for ahead of time.

Notification (SIGIO)

When an asynchronous I/O call returns successfully, the I/O operation has
only been placed on the queue, waiting to be done. The actual operation also
has a return value and a potential error identifier. These are the values that
would have been returned to the caller as the result of a synchronous call.
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When the I/O is finished, the return value and error value are stored at a
location given by the user at the time of the request as a pointer to an
aio_result_t . The structure of the aio_result_t  is defined in
<sys/asynch.h> :

When aio_result_t  has been updated, a SIGIO  signal is delivered to the
process that made the I/O request.

Note that a person with two or more asynchronous I/O operations pending
has no certain way to determine which request or even whether either request
is the cause of the SIGIO  signal. A process receiving a SIGIO should check all
its conditions which could be generating the SIGIO  signal.

Using aioread(3)

The aioread (3) function is the asynchronous version of read (2). In addition
to the normal read arguments, aioread  takes the arguments specifying a file
position and the address of an aio_result_t  structure at which the system is
to store the result information about the operation.

The file position specifies a seek to be performed within the file before the
operation. If the aioread  call succeeds, the file pointer is updated to the
position that would have resulted in a successful seek and read. The file
pointer is also updated when a read fails to allow for subsequent read requests.

Using aiowrite(3)

The aiowrite (3) function is the asynchronous version of write (2). In
addition to the normal write arguments, aiowrite  takes arguments
specifying a file position and the address of an aio_result_t  structure at
which the system is to store the result information about the operation.

typedef struct aio_result_t
    {
        int aio_return; /* return value of read or write */
        int aio_errno;  /* errno generated by the IO */
    } aio_result_t;
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The file position specifies a seek to be performed within the file before the
operation. If the aiowrite  call succeeds, the file pointer is updated to the
position that would have resulted in a successful seek and write. The file
pointer is also updated when a write fails to allow for subsequent write
requests.

Using aiocancel(3)

The aiocancel (3) function attempts to cancel the asynchronous request
whose aio_result_t  structure is given as an argument. An aiocancel  call
succeeds only if the request is still queued. If the operation is in progress,
aiocancel  fails.

Using aiowait(3)

A call to the aiowait (3) function blocks the calling process until at least one
outstanding asynchronous I/O operation is completed. The timeout parameter
points to a maximum interval to wait for I/O completion. A timeout value of
zero specifies that no wait is wanted. The aiowait  function returns a pointer
to the aio_result_t  structure for the completed operation.

Using poll(2)

When you prefer to poll devices rather than to depend on a SIGIO  interrupt,
use the poll (2) system call. You can also poll to determine the origin of an
SIGIO  interrupt.

Using close(2)

Files are closed by a call to close (2). The call to close  cancels any
outstanding asynchronous I/O request that can be cancelled. The close
function waits on an operation that cannot be cancelled. When a call to close
returns, there is no asynchronous I/O pending for the file descriptor.

Only asynchronous I/O requests that are queued to the specified file descriptor
are cancelled when a file is closed. Any I/O requests that are pending for other
file descriptors are not cancelled.
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Synchronized I/O

Applications may need to guarantee that information has been written to
stable storage, or that file updates are performed in a particular order.
Synchronized I/O provides for these needs.

Modes of Synchronization

Under SunOS 5.x, data is successfully transferred for a write operation to a
regular file when the system ensures that all data written is readable on any

subsequent open of the file (even one that follows a system or power failure) in
the absence of a failure of the physical storage medium.  Data is successfully

transferred for a read operation when an image of the data on the physical
storage medium is available to the requesting process.  An I/O operation is
complete when either the associated data been successfully transferred or the
operation has been diagnosed as unsuccessful.

An I/O operation has reached synchronized I/O data integrity completion
when:

For reads, the operation has been completed or diagnosed if unsuccessful.
The read is complete only when an image of the data has been successfully
transferred to the requesting process.  If there were any pending write
requests affecting the data to be read at the time that the synchronized read
operation was requested, these write requests are successfully transferred
prior to reading thedata.

For writes, the operation has been completed or diagnosed if unsuccessful.
The write is complete only when the data specified in the write request is
successfully transferred, and all file system information required to retrieve
the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time,
modification time, status change time) are not successfully transferred prior to
returning to the calling process.

Synchronized I/O file integrity completion is identical to synchronized I/O
data integrity completion with the  addition that all file attributes relative to
the I/O operation (including access time, modification time, status change
time) must be successfully transferred prior to returning to the calling process.
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Synchronizing a File

The fsync(3C)  and fdatasync(3R)  functions explicitly synchronize a file
to secondary storage:

int fsync (int fildes);

int fdatasync (int fildes);

The fsync()  guarantees the function is synchronized at the the I/O file
integrity completion level, while The fdatasync()  guarantees the function is
synchronized at the the I/O data integrity completion level.

Applications can arrange that each I/O operation is synchronized before the
operation completes.  Setting the O_DSYNC flag on the file description via
open(2) or fcntl(2)  ensures that all I/O writes (write(2),
aiowrite(3))  have reached I/O data completion before the the operation is
indicated as completed.  Setting the O_SYNC flag on the file description
ensures that all I/O writes have reached I/O file completion before the the
operation is indicated as completed.  Setting the O_RSYNCflag on the file
description ensures that all I/O reads (read(2) , aioread(3)) have
reached the same level of completion as request for writes by the setting
O_DSYNC or O_SYNC on the descriptor.

Interprocess Communication
This section describes the interprocess communication (IPC) functions of
SunOS 5.x as they relate to realtime processing. Signals, pipes, FIFOs (named
pipes), message queues, shared memory, file mapping, and semaphores are
described here. For more information about the libraries, functions, and
routines useful for interprocess communication, see chapter three,
“Interprocess Communication,” and the man Pages(3): Library Routines.

Overview

Realtime processing often requires fast, high-bandwidth interprocess
communication. The choice of which mechanisms should be used can be
dictated by functional requirements, and the relative performance will depend
upon application behavior.
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The traditional method of interprocess communication in UNIX is the pipe.
Unfortunately, pipes can have framing problems. Messages can become
intermingled by multiple writers or can be torn apart by multiple readers.

IPC messages mimic the reading and writing of files. They are easier to use
than pipes when more than two processes must communicate by using a single
medium.

The IPC shared semaphore facility provides process synchronization. Shared
memory is the fastest form of interprocess communication. The main
advantage of shared memory is that the copying of message data is eliminated.
The usual mechanism for synchronizing shared memory access is semaphores.

Signals

Signals may be used to send a small amount of information between processes.
The sender can use the sigqueue(3R)  function to send a signal together with
a small amount of information to a target process:

        int sigqueue(pid_t pid, int signo,
                        const union sigval value);

        union sigval {
                int     sival_int;      /* integer value */
                void    *sival_ptr;     /* pointer value */
        };

The target process must have the SA_SIGINFO bit set for the given signal
number (see sigaction(2)) , in order that occurrences of the signal
occurring when that signal is already pending will be queued.

The target process can receive the signals either synchronously or
asynchronously.  By leaving that signal blocked (sigprocmask(2) ) and
calling either sigwaitinfo(3R ) or sigtimedwait(3R ), the signal will be
received synchronously, with the value sent by the caller of sigqueue()  being
stored in the si_value  member of the siginfo_t   argument.  By leaving the
signal unblocked, the arrival will be delivered to the signal handler specified
by sigaction() , with the value appearing in the si_value of the
siginfo_t  argument to the handler.
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Only a fixed number of signals with associated values can be sent by a process
and remain undelivered. Storage for {SIGQUEUE_MAX} signals is allocated at
the first call to sigqueue() .  Thereafter, a call to sigqueue()  either
successfully enqueues at the target process or fails within a bounded amount
of time.

Pipes

Pipes provide one-way communication between processes. Pipes are created by
a process using the pipe (2) system call. The pipe (2) system call returns two
file descriptors, the first for reading and the second for writing. Once the pipe
is created, the process must create other processes with the fork (2) system
call, which allows the processes to communicate among themselves. Processes
must have a common ancestor in order to communicate with pipes.

Data passed through a pipe is treated as a conventional UNIX byte stream.
Data is sent into the pipe by calls to write (2V) using the writing file
descriptor.

Data is received from the pipe by calls to read (2V) using the reading file
descriptor. The read  call is usually a blocking function: it does not return to
the caller until some data can be returned. To get a non-blocking read , the
pipe can be set so that it doesn’t block by using the ioctl (2) or fcntl (2)
functions.

A read  on an empty, non-blocking pipe returns with an indication that no data
is available.

Named Pipes

SunOS 5.x provides named pipes or FIFOs. The FIFO is more flexible than the
pipe because it is a named entity in a directory. Once created, a FIFO can be
opened by any process that has legitimate access to it. Processes do not have to
share a parent and there is no need for a parent to initiate the pipe and pass it
to the descendants. A FIFO can be created with mknod(2).

A process connects to a FIFO through a call to open (2V). A process that opens
a FIFO for a read is blocked until that FIFO has been opened by a process for
writing. The decision about whether or not reads block is made in the open
call or by using a subsequent call to fcntl .
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As with pipes, data in a FIFO is treated as a byte stream. Input is obtained
from a FIFO with calls to read  and output is sent with calls to write . A
process ends use of a FIFO through a call to close (2).

IPC Message Queues

IPC message queues provide a powerful means of communicating between
processes by allowing any number of processes to send and receive from the
same message queue. Messages are passed as blocks of arbitrary size, not as
byte streams. Each message includes an integer type, which can be used by
application convention as a message priority, or as message categories. The
latter usage provides multiple flows of messages with a single message queue.
This can be simpler than opening an arbitrary number of pipes or FIFOs when
a large number are required. Note that IPC insertion is strictly FIFO.

IPC message queue structures are initiated by a call to msgget (2). A message is
sent by a call to msgsnd(2), and msgrcv (2) is called to extract a message from
the queue structure. The msgctl (2) system call controls various functions on a
message queue structure, including removal.

IPC Semaphores

The IPC semaphore is a mechanism that synchronizes access to shared
resources. IPC semaphores are created in arrays, each element of which can be
used to control the execution of processes that call for operations on the array
elements.

Create an array of IPC semaphores with a call to semget (2). Query or set
individual semaphores or the complete array of semaphores with calls to
semctl (2). Acquire and release a semaphore or the array of semaphores with
calls to semop(2). Look in intro (2) for more information about information
structures and the operation of IPC semaphores.

Note that using IPC semaphores can cause priority inversions unless these are
explicitly avoided by the techniques mentioned earlier in this chapter.
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Shared Memory

The fastest way for processes to communicate is directly, through a shared
segment of memory. A common memory area is added to the address space of
processes wishing to communicate. Applications use stores to send data and
fetches to receive communicated data. SunOS 5.x provides two mechanisms for
shared memory: memory mapped files and IPC shared memory.

The major difficulty with shared memory is that results can be wrong when
more than two processes are trying to read and write in it at the same time. See
“Shared Memory Synchronization” on page 191 for more information.

Memory Mapped Files

The system call mmap(2) connects a shared memory segment to the caller’s
memory. The caller specifies the shared segment by address and length. The
caller must also specify access protection flags and how the mapped pages are
managed.

The mmap(2) system call can also be used to map a file or a segment of a file to
a process’s memory. While this technique is very convenient in some
applications, it is easy to forget that any access to the mapped file segment
might result in implicit I/O. This can make an otherwise bounded process
have unpredictable response times. The function msync (3) forces immediate or
eventual copies of the specified memory segment to its permanent storage
location(s).

The process can later change the access protection of the segment by the
system call mprotect (2). The segment is specified by address and length.

The system call munmap(2) disconnects a mapped memory segment. The
segment is specified by address and length.

Fileless Memory Mapping

The zero special file, /dev/zero (4S), can be used to create an unnamed, zero
initialized memory object. The length of the memory object is the least number
of pages that contain the mapping. The object can be shared only by
descendants of a common ancestor process.
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IPC Shared Memory

A shmget (2) call can be used either to create and obtain a shared memory
segment or to obtain an existing shared memory segment. The call specifies an
identifying key, the size of the segment, and a flag parameter. The flags contain
the usual access permission bits and can contain a flag to create a new
segment. The shmget  function returns an identifier that is analogous to a file
identifier.

The shared memory segment is made accessible to the process by a call to
shmat (2). The shared memory segment becomes a virtual segment of the
process memory space and can be freely written to and read from depending
on creating permissions. The shared memory segment is detached from a
process’s memory space by a call to shmdt (2). The shmctl  system call can be
used to control a variety of functions on an IPC shared memory object,
including removal.

Shared Memory Synchronization

In sharing memory, a portion of memory can be mapped into the address space
of one or more processes. This allows shared access to that portion of memory
by the attached processes. No method of coordinating access is automatically
provided, so nothing prevents two processes from writing to the shared
memory at the same time. For this reason, it is typically used with semaphores,
which are used to synchronize processes.

Choice of IPC Mechanism

Applications can have specific functional requirements that determine which
IPC mechanism to use. If one of several mechanisms can be used, the
application writer determines which mechanism performs best for the
application. The SunOS 5.x interprocess communication facilities are sensitive
to application behavior. Determine which mechanism provides the best
response capabilities by measuring the throughput capacity of each mechanism
for the particular combination of message sizes used in the application
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Asynchronous Networking
This section discusses the techniques of asynchronous network communication
using Transport-Level Interface (TLI) for realtime applications. SunOS provides
support for asynchronous network processing of TLI events using a
combination of STREAMS asynchronous features and the non-blocking mode
of the TLI library routines.

For more information on the Transport-Level Interface, see the Network
Interfaces Programmer’s Guide and theman Pages(3): Library Routines.

Modes of Networking

The Transport-Level Interface provides two modes of service: connection-mode
and connectionless-mode.

Connection-Mode Service

The connection-mode is circuit-oriented and enables the transmission of data
over an established connection in a reliable, sequenced manner. It also
provides an identification procedure that avoids the overhead of address
resolution and transmission during the data transfer phase. This service is
attractive for applications that require relatively long-lived, datastream-
oriented interactions.

Connectionless-Mode Service

Connectionless-mode is message-oriented and supports data transfer in self-
contained units with no logical relationship required among multiple units. All
information required to deliver a unit of data, including the destination
address, is passed by the sender to the transport provider, together with the
data, in a single service request. Connectionless-mode service is attractive for
applications that involve short-term request/response interactions and do not
require guaranteed, in-sequence delivery of data. It is generally assumed that
connectionless transports are unreliable.
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Networking Programming Models

Like file and device I/O, network transfers can be done synchronously or
asynchronously with process service requests.

Synchronous Networking

Synchronous networking proceeds similarly to synchronous file and device
I/O. Like the write (2) function, the request to send returns after buffering the
message, but might suspend the calling process if buffer space is not
immediately available. Like the read (2) function, a request to receive suspends
execution of the calling process until data arrives to satisfy the request. Because
SunOS 5.x provides no guaranteed bounds for transport services, synchronous
networking is inappropriate for processes that must have realtime behavior.

Asynchronous Networking

Asynchronous networking is provided by non-blocking service requests.
Additionally, applications can request asynchronous notification when a
connection might be established, when data might be sent, or when data might
be received.

Asynchronous Connectionless-Mode Service

Asynchronous connectionless mode networking is conducted by configuring
the endpoint for non-blocking service, and either polling for or receiving
asynchronous notification when data might be transferred. If asynchronous
notification is used, the actual receipt of data typically takes place within a
signal handler.

Making the Endpoint Asynchronous

After the endpoint has been established using t_open (3), and its identity
established using t_bind (3), the endpoint can be configured for asynchronous
service. This is done by using the fcntl (2) function to set the O_NONBLOCK
flag on the endpoint. Thereafter, calls to t_sndudata (3) for which no buffer
space is immediately available return -1 with t_errno  set to TFLOW. Likewise,
calls to t_rcvudata (3) for which no data are available return -1  with
t_errno  set to TNODATA.
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Asynchronous Network Transfers

Although an application can use the poll (2) function to wait for the receipt of
data on an endpoint, it might be necessary to receive asynchronous notification
when data has arrived. This can be done by using the ioctl (2) function with
the I_SETSIG  command to request that a SIGPOLL signal be sent to the
process upon receipt of data at the endpoint. Applications should check for the
possibility of multiple messages causing a single signal.

In the following example, protocol  is the name of the application-chosen
transport protocol.
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#include <sys/types.h>
#include <tiuser.h>
#include <signal.h>
#include <stropts.h>

int             fd;
struct t_bind   *bind;
void            sigpoll(int);

        fd = t_open(protocol, O_RDWR, (struct t_info *) NULL);

        bind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
        ...     /* set up binding address */
        t_bind(fd, bind, bind);

        /* make endpoint non-blocking */
        fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

        /* establish signal handler for SIGPOLL */
        signal(SIGPOLL, sigpoll);

        /* request SIGPOLL signal when receive data is available */
        ioctl(fd, I_SETSIG, S_INPUT | S_HIPRI);

        ...

void sigpoll(int sig)
{
        int                     flags;
        struct t_unitdata       ud;

        for (;;) {
                ... /* initialize ud */
                if (t_rcvudata(fd, &ud, &flags) < 0) {
                        if (t_errno == TNODATA)
                                break;  /* no more messages */
                        ... /* process other error conditions */
                }
                ... /* process message in ud */
        }
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Asynchronous Connection-Mode Service

For connection-mode service, an application can arrange for not only the data
transfer, but for the establishment of the connection itself to be done
asynchronously. The sequence of operations depends on whether the process is
attempting to connect to another process or is awaiting connection attempts.

Asynchronously Establishing a Connection

A process can attempt a connection and asynchronously complete the
connection. The process first creates the connecting endpoint, and, using
fcntl (), configures the endpoint for non-blocking operation. As with
connectionless data transfers, the endpoint can also be configured for
asynchronous notification upon completion of the connection and subsequent
data transfers. The connecting process then uses the t_connect (3) function to
initiate setting up the transfer. Then the t_rcvconnect (3) function is used to
confirm the establishment of the connection.

Asynchronous Use of a Connection

To asynchronously await connections, a process first establishes a non-blocking
endpoint bound to a service address. When either the result of poll () or an
asynchronous notification indicates that a connection request has arrived, the
process can get the connection request by using the t_listen (3) function.To
accept the connection, the process uses the t_accept (3) function. The
responding endpoint must be separately configured for asynchronous data
transfers.



Realtime Programming and Administration 197

6

The following example illustrates how to request a connection asynchronously.

The following example illustrates listening for connections asynchronously.

#include <tiuser.h>

int             fd;
struct t_call   *call;

      fd = .../* establish a non-blocking endpoint */

      call = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR);
      .../* initialize call structure */
      t_connect(fd, call, call);

      /* connection request is now proceeding asynchronously */

      .../* receive indication that connection has been accepted */
      t_rcvconnect(fd, &call);

#include <tiuser.h>

int             fd, res_fd;
struct t_call   call;

    fd = ... /* establish non-blocking endpoint */

    .../*receive indication that connection request has arrived */
    call = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);
    t_listen(fd, &call);

    .../* determine whether or not to accept connection */
    res_fd = ... /* establish non-blocking endpoint for response
*/
    t_accept(fd, res_fd, call);
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Asynchronous Open

Occasionally, an application might be required to dynamically open a regular
file in a file system mounted from a remote host, or on a device whose
initialization might be prolonged. However, while such an open is in progress,
the application would be unable to achieve realtime response to other events.
Fortunately, SunOS 5.x provides a means of solving this problem by having a
second process perform the actual open and then pass the file descriptor to the
realtime process.

Transferring a File Descriptor

The STREAMS interface under SunOS 5.x provides a mechanism for passing an
open file descriptor from one process to another. The process with the open file
descriptor uses the ioctl (2) function with a command argument of
I_SENDFD. The second process obtains the file descriptor by calling the
ioctl () function with a command argument of I_RECVFD.

In this example, the parent process first prints out information about the test
file, and then it creates a pipe. Next, the parent creates a child process, which
opens the test file, and passes the open file descriptor back to the parent
through the pipe. The parent process then displays the status information on
the new file descriptor.
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Code Example 6-1 Transferring a File Descriptor

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stropts.h>
#include <stdio.h>

#define TESTFILE "/dev/null"
main(int argc, char * argv)
{

int fd;
int pipefd[2];
struct stat statbuf;

stat(TESTFILE, &statbuf);
statout(TESTFILE, &statbuf);
pipe(pipefd);
if (fork() == 0) {

close(pipefd[0]);
sendfd(pipefd[1]);

} else {
close(pipefd[1]);
recvfd(pipefd[0]);

}
}
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Timers
This section describes the timing facilities available for realtime applications
under SunOS 5.x. Realtime applications that want to take advantage of these
mechanisms will require detailed information from the manual pages of the
routines listed in this section. These can be found in the man Pages(3): Library
Routines.

The timing functions of SunOS 5.x fall into two separate areas of functionality:
timestamps and interval timers. The timestamp functions provide a measure of
elapsed time and allow the application to measure the duration of a state or the
time between events. Interval timers allow an application to wake up at
specified times and to schedule activities based on the passage of time.

sendfd(int p)
{

int tfd;

tfd = open(TESTFILE, O_RDWR);
ioctl(p, I_SENDFD, tfd);

}

recvfd(int p)
{

struct strrecvfd rfdbuf;
struct stat statbuf;
char fdbuf[32];

ioctl(p, I_RECVFD, &rfdbuf);
fstat(rfdbuf.fd, &statbuf);
sprintf(fdbuf, "recvfd=%d", rfdbuf.fd);
statout(fdbuf, &statbuf);

}

statout(char *f, struct stat *s)
printf("stat: from=%s mode=0%o, ino=%d, dev=%d, rdev=%d\n",

f, s->st_mode, s->st_ino, s->st_dev, s->st_rdev);
fflush(stdout);
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Although an application can poll a timestamp function to schedule itself, such
an application would monopolize the processor to the detriment of other
system functions.

Timestamp Functions

Two functions provide timestamps. The gettimeofday (2) function provides
the current time in a timeval structure, representing the time in seconds and
microseconds since midnight, Greenwich Mean Time, on January 1, 1970. The
clock_gettime(3R ) function, with a clockid of CLOCK_REALTIME, provides
the current time in a timespec structure, representing in seconds and
nanoseconds the same time interval returned by gettimeofday ().

SunOS 5.x uses a hardware periodic timer. For some workstations, this is the
sole timing information, and the accuracy of timestamps is limited to the
resolution of that periodic timer. For other platforms, a timer register with a
resolution of one microsecond allows SunOS 5.x to provide timestamps
accurate to one microsecond.

Interval Timer Functions

Realtime applications often schedule their activities through the use of interval
timers. Interval timers can be either of two types: a “one-shot” type or a
“periodic” type. Further, these timers are either relative to current time, or to the
underlying clock.

The one-shot is an armed timer that is set with an initial expiration time
relative either to current time or to an absolute time. This timer expires once
and is then disarmed. Such a timer might be useful for clearing buffers after
the data has been transferred to storage, or to time-out an operation that
should have finished.

The periodic timer is armed with the initial expiration time (either absolute or
relative) and a repetition interval. Each time the interval timer expires it is
reloaded with the repetition interval and the timer is automatically rearmed.
This timer might be useful for data logging or for servo-control. In calls to
interval timer functions, time values smaller than the resolution of the system
hardware periodic timer are rounded up to the next multiple of the hardware
periodic timer interval (10 ms).
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The IPC shared semaphore facility provides process synchronization. Shared
memory is the fastest form of interprocess communication. The main
advantage of shared memory is that the copying of message data is eliminated.
The usual mechanism for synchronizing shared memory access is semaphores.

There are twos set of timers interfaces in SunOS 5.x. The setitimer(2) and
getitimer(2)  interfaces provide access to fixed set timers, called the BSD
timers, using the timeval structure to specify time intervals. The POSIX timers
are specifically related to POSIX clocks; the only POSIX clock currently
supported is CLOCK_REALTIME.  POSIX timer operations are expressed in
terms of the timespec structure.

The functions getitimer(2) and setitimer(2 ) respectively retrieve and
establish the value of the specified BSD interval timer.  There are three BSD
interval timers available to a process, including a realtime timer designated
ITIMER_REAL.  If a BSD timer is armed and allowed to expire, the system
sends a signal appropriate to the timer to the process that set the timer.

The timer_create(3R)  function can create up to {TIMER_MAX} POSIX
timers.  At the time of creation, the caller can specify what signal and what
associated value will be sent to the process upon timer expiration.  The
timer_gettime(3R) and timer_settime(3R) functions respectively
retrieve and establish the value of the specified POSIX interval timer.
Expirations of POSIX timers while the required signal is pending delivery are
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counted, and the function timer_getoverrun(3R)  retrieves the count of
such expirations.  The function timer_delete(3R)  deallocates a POSIX
timer.

Figure 6-6 illustrates how to use the setitimer  interface to generate a
periodic interrupt, and how to control the arrival of timer interrupts.

Figure 6-6 Controlling Timer Interrupts

#include<unistd.h>
#include<signal.h>
#include<sys/time.h>

#define TIMERCNT 8

voidtimerhandler();
int timercnt;
structtimeval alarmtimes[TIMERCNT];

main()
{

struct itimerval times;
sigset_tsigset;
int i, ret;
struct sigaction act;

/* block SIGALRM */
sigemptyset(&sigset);
sigaddset(&sigset, SIGALRM);
sigprocmask(SIG_BLOCK, &sigset, NULL);

/* set up handler for SIGALRM */
act.sa_handler = timerhandler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction(SIGALRM, &act, NULL);
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/*
 * set up interval timer, starting in three seconds,
 * then every 1/3 second
 */
times.it_value.tv_sec = 3;
times.it_value.tv_usec = 0;
times.it_interval.tv_sec = 0;
times.it_interval.tv_usec = 333333;
ret = setitimer(ITIMER_REAL, &times, NULL);
printf("main:setitimer ret = %d\n", ret);

/* now wait for the alarms */
sigemptyset(&sigset);
timerhandler(0, 0, NULL, NULL);
while (timercnt < TIMERCNT) {

ret = sigsuspend(&sigset);
}
printtimes();

}

void timerhandler(sig, siginfo, context)
int sig;
siginfo_tsiginfo;
void *context;

{
printf("timerhandler:start\n");
gettimeofday(&alarmtimes[timercnt], NULL);
timercnt++;
printf("timerhandler:timercnt = %d\n", timercnt);

}

printtimes()
{

int i;

for (i = 0; i < TIMERCNT; i++) {
printf("%d.%06d\n", alarmtimes[i].tv_sec,

alarmtimes[i].tv_usec);
}

}
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