
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

x86 Assembly Language
Reference Manual

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, the Sun Microsystems Computer
Corporation logo, SunSoft, the SunSoft logo, SunSoft, SunSoft logo, ProWorks, ProWorks/TeamWare, ProCompiler, Sun-4,
SunOS, Solaris, ONC, ONC+, NFS, OpenWindows, DeskSet, ToolTalk, SunView, XView, X11/NeWS, AnswerBook, and
Magnify Help are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX
is a registered trademark of Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive
licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript and Display PostScript are
trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler licensed exclusively
to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOKand Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. The SunOS Assembler for x86 . 1

1.1 References . 2

2. Assembler Input . 3

2.1 Source Files in Assembly Language Format 4

File Organization . 4

Statements . 5

Values and Symbol Types . 6

Expressions . 8

Expression Syntax . 8

Expression Semantics (Absolute vs. Relocatable). 10

Machine Instruction Syntax . 11

Instruction Description . 13

2.2 Pseudo Operations . 17

General Pseudo Operations . 17

Symbol Definition Pseudo Operations 22

iv x86 Assembly Language Reference Manual—August 1994

3. Instruction-Set Mapping . 25

3.1 Introduction . 25

Notational Conventions. 25

References . 27

3.2 Segment Register Instructions . 27

 Load Full Pointer (lds, les, lfs, lgs, and lss) 27

Pop Stack into Word (pop) . 27

Push Stack into Word(push) . 27

3.3 I/O Instructions. 28

Input from Port (in, ins). 28

Output from Port (out, outs) . 28

3.4 Flag Instructions . 28

Load Flags into AH Register (lahf). 28

Store AH into Flags (sahf) . 28

Pop Stack into Flag (popf) . 28

Push Stack into Flag (pushf) . 28

Complement Carry Flag (cmc) . 28

Clear Carry Flag (clc) . 29

Set Carry Flag (stc) . 29

Clear Interrupt Flag (cli) . 29

Set Interrupt Flag (sti) . 29

Clear Direction Flag (cld) . 29

Set Direction Flag (std) . 29

3.5 Arithmetic Logical Instructions. 29

Contents v

Integer Addition (add) . 29

Integer Add With Carry (adc) . 29

Integer Subtraction (sub) . 30

Integer Subtraction With Borrow (sbb) 30

Compare Two Operands (cmp). 30

Increment by 1 (inc) . 30

Decrease by 1 (dec). 30

Logical Comparison or Test (test). 30

Shift (sal, shl, sar, shr) . 30

Double Precision Shift Left (shld). 31

Double Precision Shift Right (shrd) 31

One’s Complement Negation (not) 31

Two’s Complement Negation (neg) 31

Check Array Index Against Bounds (bound) 31

Logical And (and). 31

Logical Inclusive OR (or). 31

Logical Exclusion OR (xor) . 32

3.6 Multiply and Divide Instructions 32

Signed Multiply (imul) . 32

Unsigned Multiplication of AL, AX or EAX(mul). . . . 32

Unsigned Divide (div) . 32

Signed Divide (idiv) . 32

3.7 Conversion Instructions . 33

Convert Byte to Word (cbtw) . 33

vi x86 Assembly Language Reference Manual—August 1994

 Convert Word to Long (cwtl) . 33

Convert Signed Word to Signed Double Word (cwtd). 33

Convert Signed Long to Signed Double Long (cltd) . . 33

3.8 Decimal Arithmetic Instructions 33

Decimal Adjust AL after Addition (daa) 33

Decimal Adjust AL after Subtraction (das) 33

ASCII Adjust after Addition (aaa). 33

ASCII Adjust after Subtraction (aas) 33

ASCII Adjust AX after Multiply (aam) 34

ASCII Adjust AX before Division (aad). 34

3.9 Coprocessor Instructions . 34

Wait (wait, fwait) . 34

3.10 String Instructions. 34

Move Data from String to String (movs, smov) 34

Compare String Operands (cmps, scmp). 34

Store String Data (stos, ssto) . 34

The Load String Operand (lods, slod) 34

Compare String Data (scas, ssca) 35

Look-Up Translation Table (xlat) 35

Repeat Following String Operation (rep, repnz, repz) 35

3.11 Procedure Call and Return Instructions 35

Call Procedure (call) . 35

Return from Procedure (ret) . 35

Long Return (lret) . 35

Contents vii

Enter or Make a Stack Frame for Procedure Parameters (en-
ter) . 35

High Level Procedure Exit (leave) 36

3.12 Jump Instructions . 36

Jump if ECX is Zero (jcxz) . 36

Loop Control with CX Counter (loop, loopnz, loopz) . 36

Jump (jmp, ljmp). 36

3.13 Interrupt Instructions . 36

Call to Interrupt Procedure (int, into) 36

Interrupt Return (iret) . 36

3.14 Protection Model Instructions . 37

Store Local Descriptor Table Register (sldt) 37

Store Task Register (str) . 37

Load Local Descriptor Table Register (lldt). 37

Load Task Register (ltr) . 37

Verify a Segment for Reading or Writing (verr, verw) . 37

Store Global/Interrupt Descriptor Table Register (sgdt,
sidt) . 37

Load Global/Interrupt Descriptor Table (lgdt, lidt) . . 37

Store Machine Status Word (smsw) 37

Load Machine Status Word (lmsw) 38

Load Access Rights (lar) . 38

Load Segment Limit (lsl) . 38

Clear Task-Switched (clts) . 38

Adjust RPL Field of Selector (arpl). 38

viii x86 Assembly Language Reference Manual—August 1994

3.15 Bit Instructions. 38

Bit Scan Forward . 38

Bit Scan Reverse . 38

Bit Test . 38

Bit Test And Complement . 38

Bit Test And Reset. 39

Bit Test And Set. 39

3.16 Exchange Instructions. 39

Compare and Exchange [486] . 39

3.17 Floating Point Transcendental . 39

Floating Point Sine . 39

Floating Point Cosine. 39

Floating Point Sine and Cosine. 39

3.18 Floating Point Constant . 39

Floating Point Load One . 39

3.19 Processor Control Floating Point. 40

Floating Point Load Control Word 40

Floating Point Load Environment 40

3.20 Other Floating Point . 40

Floating Point Different Reminder 40

3.21 Floating Point Comparison . 40

Floating Point Unsigned Compare. 40

Floating Point Unsigned Compare And Pop 40

Floating Point Unsigned Compare And Pop Two 40

Contents ix

3.22 Load and Move Instructions . 41

Load Effective Address . 41

Move . 41

Move Segment Registers . 41

Move Control Registers . 41

Move Debug Registers. 41

Move Test Registers . 41

Move With Sign Extend . 41

Move With Zero Extend. 42

3.23 Pop Instructions. 42

Pop All General Registers . 42

3.24 Push Instructions. 42

Push All General Registers . 42

3.25 Rotate Instructions . 42

Rotate With Carry Left. 42

Rotate With Carry Right . 42

Rotate Left . 42

Rotate Right. 42

3.26 Byte Instructions . 43

Byte Set On Condition . 43

Byte Swap [486] . 43

3.27 Exchange Instructions. 43

Exchange And Add [486]. 43

Exchange Register / Memory With Register 43

x x86 Assembly Language Reference Manual—August 1994

3.28 Miscellaneous Instructions. 43

Write Back and Invalidate Cache [486 only] 43

Invalidate [486 only] . 43

Invalidate Page [486 only] . 43

LOCK Prefix (lock) . 44

No Operation (nop) . 44

Halt (hlt) . 44

3.29 Real Transfers. 44

Load real . 44

Store real . 44

Store real and pop . 44

Exchange registers . 44

3.30 Integer Transfers . 45

Integer load . 45

Integer store . 45

Integer store and pop. 45

3.31 Packed Decimal Transfers . 45

Packed decimal (BCD) load. 45

Packed decimal (BCD) store and pop 45

3.32 Additions . 45

Real add. 45

Real add and pop . 45

Integer add . 45

3.33 Subtractions . 46

Contents xi

Subtract real and pop. 46

Subtract real . 46

Subtract real reversed . 46

Subtract real reversed and pop. 46

Integer subtract. 46

Integer subtract reverse . 46

3.34 Multiplications. 46

Multiply real . 46

Multiply real and pop . 46

Integer multiply . 47

3.35 Divisions. 47

Divide real . 47

Divide real and pop . 47

Divide real reversed . 47

Divide real reversed and pop . 47

Integer divide . 47

Integer divide reversed . 47

3.36 Floating Point Opcode Errors . 47

3.37 Other Arithmetic Operations. 48

Square root . 48

Scale . 48

Partial remainder . 48

Round to integer. 48

Extract exponent and significand 49

xii x86 Assembly Language Reference Manual—August 1994

Absolute value . 49

Change sign. 49

3.38 Comparison Instructions . 49

Compare real. 49

Compare real and pop . 49

Compare real and pop twice . 49

Integer compare . 49

Integer compare and pop . 49

Test . 49

Examine . 50

3.39 Transcendental Instructions . 50

Partial tangent. 50

Partial arctangent . 50

2x - 1 . 50

Y * log2 X . 50

Y * log2 (X+1) . 50

3.40 Constant Instructions . 50

Load log2 E . 50

Load log2 10. 50

Load log10 2 . 51

Load loge 2 . 51

Load pi . 51

Load + 0 . 51

3.41 Processor Control Instructions . 51

Contents xiii

Initialize processor . 51

No operation . 51

Save state . 51

Store control word . 51

Store environment . 51

Store status word . 52

Restore state . 52

Set protected mode. 52

CPU wait . 52

Clear exceptions . 52

Decrement stack pointer . 52

Free registers . 52

Increment stack pointer . 52

4. Assembler Output. 53

4.1 Introduction to Assembler Output 53

4.2 Object Files in Extensible and Linking Format (ELF) . . 54

ELF Header . 55

Section Header . 56

Sections . 61

Relocation Tables . 63

Symbol Tables . 64

String Tables . 66

A. Using the Assembler Command Line . 67

A.1 Assembler Command Line. 67

xiv x86 Assembly Language Reference Manual—August 1994

A.2 Assembler Command Line Options 68

A.3 Disassembling Object Code . 69

Index.. 71

xv

Tables
Table 2-1 Operators Supported by the Assembler. 8

Table 2-2 Syntactical Rules of Expressions . 9

Table 2-3 8-Bit (byte), 16-Bit (word), and 32-Bit (long) General Registers 12

Table 2-4 Description of Segment Registers . 13

Table 4-1 Object File Types . 56

Table 4-2 Section Attribute Flags . 58

Table 4-3 Section Types . 58

Table 4-4 Predefined User Sections . 62

Table 4-5 Predefined Non-User Sections. 63

Table 4-6 Symbol Types. 65

Table 4-7 Symbol Bindings . 65

xvi x86 Assembly Language Reference Manual—August 1994

1

The SunOS Assembler for x86 1

This section contains a brief description of the SunOS assembler that runs on
x86 and also includes a list of documents that can be used for reference.

The SunOS assembler that runs on x86, referred to as the “SunOS x86” in this
manual, translates source files that are in assembly language format into object
files in linking format.

In the program development process, the assembler is a tool to use in
producing program modules intended to exploit features of the Intel®
architecture in ways that cannot be easily done using high level languages and
their compilers. More precisely, the assembler is the tool of choice when
assembly language is the language of choice.

Whether assembly language is chosen for the development of program
modules depends on the extent to which and the ease with which the language
allows the programmer to control the architectural features of the processor.

The assembly language described in this manual offers full direct access to the
x86 instruction set. The assembler may also be used in connection with
SunOS™ 5.1 macro preprocessors to achieve full macro-assembler capability.
Further more, the assembler responds to directives that allow the programmer
a great deal of direct control over the contents of the relocatable object file into
which it translates the input source files.

2 x86 Assembly Language Reference Manual—August 1994

1

This document describes the language in which the source files must be
written. The nature of the machine mnemonics governs the way in which the
program’s executable portion is written. This document includes descriptions
of the pseudo operations that allow control over the object file. This facilitates
the development of programs that are easy to understand and maintain.

1.1 References
Use the following documents as references:

• Intel 80386 Programmer’s Reference Manual

• i486 Microprocessor Programmer Reference Manual (1990)

• Intel 80387 Programmer’s Reference Manual (1987)

• System V Application Binary Interface Intel 386 Processor Supplement

• System V Application Binary Interface

• SVID System V Interface Definition

You should also become familiar with the following:

• Manual pages: as (1), ld (1), cpp (1), mn(4),cof2elf (1), elf (3E), dis (1),
a.out (5).

• ELF-related sections of the Programming Utilities manual.

3

Assembler Input 2

The SunOS x86 assembler translates source files in the assembly language
format specified in this document into relocatable object files for processing by
the link editor. This translation process is called assembly. The main input
required to assemble a source file in assembly language format is that source
file itself.

Such a source file may be produced by one of the following:

• a human programmer using a text editor

• a compiler as an intermediate step in the process of translating from a high-
level language to executable code

• an automatic program generator

• some other mechanism.

In whatever manner it is produced, the source input file must have a certain
structure and content. The specification of this structure and content
constitutes the syntax of the assembly language.

The assembler may also allow ancillary input incidental to the translation
process. For example, there are several invocation options available. Each such
option exercised constitutes information input to the assembler. However, this
ancillary input has little direct connection to the translation process, so it is not
properly a subject for this manual. Information about invoking the assembler
and the available options appears in the as (1) man pages.

4 x86 Assembly Language Reference Manual -August 1994

2

This chapter describes the overall structure required by the assembler for input
source files. This structure is relatively simple: the input source file must be a
sequence of assembly language statements. This chapter also begins the
specification of the contents of the input source file by describing assembly
language statements as textual objects of a certain form.

This document completes the specification by presenting detailed assembly
language statements that correspond to the Intel instruction set and are
intended for use on machines that run SunOS x86 architecture. For more
information on assembly language instruction sets, please refer to the the
product documentation from Intel Corporation.

2.1 Source Files in Assembly Language Format
This section details the following:

• file organization

• statements

• values and symbols

• expressions

• machine instruction syntax

File Organization

The input to the assembler is a text file consisting of a sequence of statements.
Each statement ends with the first occurrence of a newline character
(ASCII LF), or of a semi-colon (;) that is not within a string operand or between
a slash and a newline character. Thus, it is possible to have several statements
on one line.

To make programs easy to read, understand and maintain, however, it is good
programming practice not to have more than one statement per line. As
indicated above, a line may contain one or more statements. If several
statements appear on a line, they must be separated by semicolons (;).

Assembler Input 5

2

Statements

This section outlines the types of statements that apply to assembly language.
Each statement must be one of the following types:

• An empty statement is one that contains nothing other than spaces, tabs, or
formfeed characters.

Empty statements have no meaning to the assembler. They can be inserted
freely to improve the appearance of a source file or of a listing generated
from it.

• An assignment statement is one that gives a value to a symbol. It consists of
a symbol, followed by an equal sign (=), followed by an expression.

The expression is evaluated and the result is assigned to the symbol.
Assignment statements do not generate any code. They are used only to
assign assembly time values to symbols.

• A pseudo operation statement is a directive to the assembler that does not
necessarily generate any code. It consists of a pseudo operation code,
optionally followed by operands. Every pseudo operation code begins with
a period (.).

• A machine operation statement is a mnemonic representation of an executable
machine language instruction to which it is translated by the assembler. It
consists of an operation code, optionally followed by operands.

Furthermore, any statement remains a statement even if it is modified in either
or both of the following ways:

• Prefixing a label at the beginning of the statement.

A label consists of a symbol followed by a colon (:). When the assembler
encounters a label, it assigns the value of the location counter to the label.

• Appending a comment at the end of the statement by preceding the
comment with a slash (/).

The assembler ignores all characters following a slash up to the next
occurrence of newline. This facility allows insertion of internal program
documentation into the source file for a program.

6 x86 Assembly Language Reference Manual -August 1994

2

Values and Symbol Types

This section presents the values and symbol types that the assembler uses.

Values
Values are represented in the assembler by numerals which can be faithfully
represented in standard two’s complement binary positional notation using 32
bits. All integer arithmetic is performed using 32 bits of precision. Note,
however, that the values used in an x86 instruction may require 8, 16, or 32
bits.

Symbols
A symbol has a value and a symbol type, each of which is either specified
explicitly by an assignment statement or implicitly from context. Refer to the
next section for the regular definition of the expressions of a symbol.

The following symbols are reserved by the assembler:

. Commonly referred to as dot. This is the location counter while
assembling a program. It takes on the current location in the text ,
data , or bss section.

.text This symbol is of type text. It is used to label the beginning of a
 .text section in the program being assembled.

.data This symbol is of type data. It is used to label the beginning of a
.data section in the program being assembled.

.bss This symbol is of type bss . It is used to label the beginning of a .bss
section in the program being assembled.

.init This is used with C++ programs which require constuctors.

.fini This is used with C++ programs which require denstuctors.

Symbol Types
Symbol type is one of the following:

undefined

Assembler Input 7

2

A value is of undefined symbol type if it has not yet been defined. Example
instances of undefined symbol types are forward references and externals.

absolute
A value is of absolute symbol type it does not change with relocation.
Example instances of absolute symbol types are numeric constants and
expressions whose proper sub-expressions are themselves all absolute.

text
A value is of text symbol type if it is relative to the .text section.

data
A value is of data symbol type if it is relative to the .data section.

bss
A value is of bss symbol type if it is relative to the .bss section.

You can give any of these symbol types the attribute EXTERNAL.

Sections
Five of the symbol types are defined with respect to certain sections of the
object file into which the assembler translates the source file. This section
describes symbol types.

If the assembler translates a particular assembly language statement into a
machine language instruction or into a data allocation, the translation will be
associated with one of the following five sections of the object file into which
the assembler is translating the source file:

Section Purpose

text This is an initialized section. Normally, it is read-only and con-
tains code from a program. It may also contain read-only tables

data This is an initialized section. Normally, it is readable and writ-
able. It contains initialized data. These can be scalars or tables.

bss This is an initialized section. Space is not allocated for this seg-
ment in the object file.

init This is used with C++ programs that require constructors.

fini This is used by C++ programs that require destructors.

8 x86 Assembly Language Reference Manual -August 1994

2

An optional section, .comment , may also be produced (see Chapter 4, Assembler
Output).

The section associated with the translated statement is .text unless the
original statement occurs after a section control pseudo operation has directed
the assembler to associate the statement with another section.

Expressions

The expressions accepted by the x86 assembler are defined by their syntax and
semantics. The following are the operators supported by the assembler:

Table 2-1 Operators Supported by the Assembler

Operator Action

+ Addition

− Subtraction

* Multiplication

\/ Division

& Bit-wise logical and

| Bit-wise logical or

>> Right shift

<< Left shift

\% Remainder operator

! Bit-wise logical and not

Expression Syntax

In the following table that includes syntactic rules, the non terminals are
represented by lowercase letters, the terminal symbols are represented by
uppercase letters, and the symbols enclosed in double quotes are terminal
symbols. There is no precedence assigned to the operators. You must use
square brackets to establish precedence.

The terminal nodes are given by the following regular expressions:

LABEL = [a-zA-Z_][a-zA-Z0-9_]*:

DEC_VAL = [1-9][0-9]*

HEX_VAL = 0[Xx][0-9a-fA-F][0-9a-fA-F]*

Assembler Input 9

2

OCT_VAL = 0[0-7]*

BIN_VAL = 0[Bb][0-1][0-1]*

In the above regular expressions, choices are enclosed in square brackets; a
range of choices is indicated by letters or numbers separated by a dash (-); and
the asterisk (*) indicates zero or more instances of the previous character.

Table 2-2 Syntactical Rules of Expressions

expr : term

| expr "+" term

| expr "-" term

| expr "*" term

| expr "\/" term

| expr "&" term

| expr "|" term

| expr ">>" term

| expr "<<" term

| expr "\%" term

| expr "!" term

;

term : id

| number

| "-" term

| "[" expr "]"

| "<o>" term

| "<s>" term

;

id : LABEL

;

number : DEC_VAL

| HEX_VAL

| OCT_VAL

| BIN_VAL

;

10 x86 Assembly Language Reference Manual -August 1994

2

Expression Semantics (Absolute vs. Relocatable)

Semantically, the expressions fall into two groups, absolute and relocatable.
The equations later in this section show the legal combinations of absolute and
relocatable operands for the addition and subtraction operators. All other
operations are only legal on absolute-valued expressions.

All numbers have the absolute attribute. Symbols used to reference storage,
text, or data are relocatable. In an assignment statement, symbols on the left
side inherit their relocation attributes from the right side.

In the equations below, a is an absolute-valued expression and r is a
relocatable-valued expression. The resulting type of the operation is shown to
the right of the equal sign.

a + a = a

r + a = r

a - a = a

r - a = r

r - r = a

In the last example, you must declare the relocatable expressions before taking
their difference.

Following are some examples of valid expressions:

label
$label
[label + 0x100]
[label1 - label2]
$[label1 - label2]

Following are some examples of invalid expressions:

[$label - $label]
[label1 * 5]
(label + 0x20)

Assembler Input 11

2

Machine Instruction Syntax

This section describes the instructions that the assembler accepts. The detailed
specification of how the particular instructions operate is not included; for this,
see Intel’s 80386 Programmer’s Reference Manual.

The following list delineates the three main aspects of the SunOS x86
assembler:

• All register names use the percent sign (%) as a prefix to distinguish them
from symbol names.

• Instructions with two operands use the left one as the source and the right
one as the destination. This follows the SunOS system’s assembler
convention, and is reversed from Intel’s notation.

• Most instructions that can operate on a byte, word, or long may have b, w, or
l appended to them. When an opcode is specified with no type suffix, it
usually defaults to long. In general, the SunOS assembler derives its type
information from the opcode , whereas the Intel assembler can derive its
type information from the operand types. Where the type information is
derived motivates the b , w, and l suffixes used in the SunOS assembler. For
example, in the instruction movw $1,%eax the w suffix indicates the operand
is a word.

Operands
Three kinds of operands are generally available to the instructions: register,
memory, and immediate. Full descriptions of each type appear in the “Notational
Conventions” section. Indirect operands are available only to jump and call
instructions.

The assembler always assumes it is generating code for a 32-bit segment. When
16-bit data is called for (e.g., movw %ax, %bx), the assembler automatically
generates the 16-bit data prefix byte.

Byte, word, and long registers are available on the x86 processor. The
instruction pointer (%eip) and flag register (%efl) are not available as explicit
operands to the instructions. The code segment (%cs) may be used as a source
operand but not as a destination operand.

The names of the byte, word, and long registers available as operands and a
brief description of each follow; the segment registers are listed also.

12 x86 Assembly Language Reference Manual -August 1994

2

Table 2-3 8-Bit (byte), 16-Bit (word), and 32-Bit (long) General Registers

8-Bit (byte) General Registers

%al Low byte of %axregister

%ah High byte of %axregister

%cl Low byte of %cx register

%ch High byte of %cx register

%dl Low byte of %dxregister

%dh High byte of %dxregister

%bl Low byte of %bxregister

%bh High byte of %bxregister

16-Bit (word) General Registers

%ax Low 16-bits of %eax register

%cx Low 16-bits of %ecx register

%dx Low 16-bits of %edx register

%bx Low 16-bits of %ebx register

%sp Low 16-bits of the stack pointer

%bp Low 16-bits of the frame pointer

%si Low 16-bits of the source index register

%di Low 16-bits of the destination index register

32-Bit (long) General Registers

%eax 32-bit general register

%ecx 32-bit general register

%edx 32-bit general register

%ebx 32-bit general register

%esp 32-bit stack pointer

%ebp 32-bit frame pointer

%esi 32-bit source index register

%edi 32-bit destination index register

Assembler Input 13

2

Table 2-4 Description of Segment Registers

Segment Registers

%cs Code segment register; all references to the
instruction space use this register

%ds Data segment register, the default segment
register for most references to memory operands

%ss Stack segment register, the default segment
register for memory operands in the stack
(i.e., default segment register for
%bp, %sp, %esp , and%ebp)

%es General-purpose segment register; some string
instructions use this extra segment as their
default segment

%fs General-purpose segment register

%gs General-purpose segment register

Instruction Description

This section describes the SunOS x86 instruction syntax.

The assembler assumes it is generating code for a 32-bit segment, therefore, it
also assumes a 32-bit address and automatically precedes word operations
with a 16-bit data prefix byte.

14 x86 Assembly Language Reference Manual -August 1994

2

Notational Conventions
This manual uses the following notational conventions:

• The mnemonics are expressed in a regular expression-type syntax.

° Alternatives separated by a vertical bar (|) and enclosed within square
brackets ([]) denote that you must choose one of them.

° Alternatives enclosed within curly braces ({}) denote that you can use
one or none of them.

° The vertical bar separates different suffixes for operators or operands. For
example, imm[8|16|32] indicates that an 8-, 16-, or 32-bit immediate
value is permitted in an instruction.

• imm[8|16|32|48] — an immediate value. You define immediate values
using the regular expression syntax previously described. If there is a choice
between operand sizes, the assembler will choose the smallest
representation.

• reg[8|16|32] — a general-purpose register, where each number indicates
one of the following:

32: %eax , %ecx, %edx, %ebx, %esi , %edi , %ebp, %esp

16: %ax , %cx, %dx, %bx, %si , %di , %bp, %sp

8: %al , %ah, %cl , %ch, %dl , %dh, %bl , %bh

• mem[8|16|32|48|64|80] — a memory operand; the 8, 16, 32, 48, 64, and
80 suffixes represent byte, word, long (or float), inter-segment, double, and
long double memory address quantities, respectively.

• r/m[8|16|32] — a general-purpose register or memory operand; the
operand type is determined from the suffix. They are: 8 = byte, 16 = word,
and 32 = long. The registers for each operand size are the same as
reg[8|16|32] above.

• creg — a control register; the control registers are: %cr0 , %cr2 , %cr3, or
%cr4 .

• dreg — a debug register; the debug registers are: %db0, %db1, %db2, %db3,
%db6, and %db7 .

• sreg — a segment register; the segment registers are: %cs, %ds, %ss, %es,
%fs , and %gs.

• treg — a test register; the test registers are: %tr6 and %tr7 .

Assembler Input 15

2

• freg — floating-point registers; these registers are as follows:

%st, %st(1), %st(2), %st(3) %st(4), %st(5), %st(6), %st(7)

Note – %st is the same as %st(0).

• cc — condition codes; the 30 condition codes are:
a above
ae above or equal
b below
be below or equal
c carry
e equal
g greater
ge greater than or equal to
l less than
le less than or equal to
na not above
nae not above or equal to
nb not below
nbe not below or equal to
nc not carry
ne not equal
ng not greater than
nge not greater than or equal to
nl not less than
nle not less than or equal to
no not overflow
np not parity
ns not sign
nz not zero
o overflow
p parity
pe parity even
po parity odd
s sign
z zero

16 x86 Assembly Language Reference Manual -August 1994

2

• disp[8|32] — the number of bits used to define the distance of a relative
jump; because the assembler only supports a 32-bit address space, only 8-bit
sign extended and 32-bit addresses are supported.

• immPtr — an immediate pointer; when the immediate form of a long call or
a long jump is used, the selector and offset are encoded as an immediate
pointer. An immediate pointer consists of $imm16, $imm32 where the first
immediate value represents the segment and the second represents the
offset.

Addressing Modes
Addressing modes are represented by the following:

[sreg:][offset][([base][,index][,scale])]

• All the items in the square brackets are optional, but at least one is
necessary. If you use any of the items inside the parentheses, the
parentheses are mandatory.

• sreg is a segment register override prefix. It may be any segment register. If
a segment override prefix is present, you must follow it by a colon before
the offset component of the address. sreg does not represent an address by
itself. An address must contain an offset component.

• offset is a displacement from a segment base. It may be absolute or
relocatable. A label is an example of a relocatable offset. A number is an
example of an absolute offset.

• base and index can be any 32-bit register. scale is a multiplication factor
for the index register field. Its value may be 1, 2, 4, 8 to indicate the
number to multiply by. The multiplication then occurs by 1, 2, 4, and 8.

Refer to Intel’s 80386 Programmer’s Reference Manual for more details on x86
addressing modes.

Following are some examples of addresses:

movl var, %eax

Move the contents of memory location var into %eax.

movl %cs:var, %eax

Move the contents of the memory location var in the code segment into
%eax.

Assembler Input 17

2

movl $var, %eax

Move the address of var into %eax.

movl array_base(%esi), %eax

Add the address of memory location array_base to the contents of
%esi to get an address in memory. Move the contents of this address
into %eax.

movl (%ebx, %esi, 4), %eax

Multiply the contents of %esi by 4 and add this to the contents of %ebx
to produce a memory reference. Move the contents of this memory
location into %eax.

movl struct_base(%ebx, %esi, 4), %eax

Multiply the contents of %esi by 4, add this to the contents of %ebx, and
add this to the address of struct_base to produce an address. Move
the contents of this address into %eax.

Expressions and Immediate Values
An immediate value is an expression preceded by a dollar sign:

immediate: "$" expr

Immediate values carry the absolute or relocatable attributes of their
expression component. Immediate values cannot be used in an
expression, and should be considered as another form of address, i.e., the
immediate form of address.

immediate: "$" expr "," "$" expr

The first expr is 16 bits of segment. The second expr is 32 bits of offset.

2.2 Pseudo Operations
The pseudo-operations listed in this section are supported by the x86 ssembler.

General Pseudo Operations

Below is a list of the pseudo operations supported by the assembler. This is
followed by a separate listing of pseudo operations included for the benefit of
the debuggers dbx (1).

18 x86 Assembly Language Reference Manual -August 1994

2

.align val

The align pseudo op causes the next data generated to be aligned modulo
val . val should be a positive integer value.

.bcd val

The.bcd pseudo op generates a packed decimal (80-bit) value into the current
section. This is not valid for the.bss section. val is a nonfloating-point
constant.

.bss

The.bss pseudo op changes the current section to.bss.

.bss tag, bytes

Define symbol tag in the.bss section and add bytes to the value of dot
for.bss . This does not change the current section to.bss . bytes must be a
positive integer value.

.byte val [, val]

The.byte pseudo op generates initialized bytes into the current section. This
is not valid for.bss . Each val must be an 8-bit value.

.comm name, expr [, alignment]

The.comm pseudo op allocates storage in the .data section. The storage is
referenced by the symbol name, and has a size in bytes of expr. expr must
be a positive integer. name cannot be predefined. If the alignment is given, the
address of the name will be aligned to a multiple of alignments.

.data

The data pseudo op changes the current section to .data .

.double val

The .double pseudo op generates an 80387 64 bit floating-point constant
(IEEE 754) into the current section. Not valid in the .bss section. val is a
floating-point constant. val is a string acceptable to atof (3); that is, an
optional sign followed by a non-empty string of digits with optional decimal
point and optional exponent.

Assembler Input 19

2

.even

The .even pseudo op aligns the current program counter (.) to an even
boundary.

.file "string"

The .file op creates a symbol table entry where string is the symbol name and
STT_FILE is the symbol table type. string specifies the name of the source file
associated with the object file.

.float val

The .float pseudo op generates an 80387 32 bit floating-point constant (IEEE
754) into the current section. This is not valid in the .bss section. val is a
floating-point constant. val is a string acceptable to atof (3); that is, an
optional sign followed by a non-empty string of digits with optional decimal
point and optional exponent.

.globl symbol [, symbol]*

The globl op declares each symbol in the list to be global; that is, each symbol
is either defined externally or defined in the input file and accessible in other
files; default bindings for the symbol are overridden.

• A global symbol definition in one file will satisfy an undefined reference to
the same global symbol in another file.

• Multiple definitions of a defined global symbol is not allowed. If a defined
global symbol has more than one definition, an error will occur.

Note – This pseudo-op by itself does not define the symbol.

.ident “string”

The .ident pseudo op creates an entry in the comment section containing
string. string is any sequence of characters, not including the double
quote (").

20 x86 Assembly Language Reference Manual -August 1994

2

.lcomm name, expr

The .lcomm pseudo op allocates storage in the .bss section. The storage is
referenced by the symbol name, and has a size of expr. name cannot be
predefined, and expr must be a positive integer type. If the alignment is
given, the address of name will be aligned to a multiple of alignment.

.local symbol [, symbol]*

Declares each symbol in the list to be local; that is, each symbol is defined in the
input file and not accessible in other files; default bindings for the symbol are
overridden. These symbols take precedence over weak and global symbols.

Since local symbols are not accessible to other files, local symbols of the same
name may exist in multiple files.

Note – This pseudo-op by itself does not define the symbol.

.long val

The .long pseudo op generates a long integer (32-bit, two’s complement
value) into the current section. This pseudo op is not valid for the .bss
section. val is a nonfloating-point constant.

.nonvolatile

Defines the end of a block of instruction. The instructions in the block may not
be permuted. This pseudo-op has no effect if:

• The block of instruction has been previously terminated by a Control
Transfer Instruction (CTI) or a label

• There is no preceding .volatile pseudo-op

.section section_name [, attributes]

Makes the specified section the current section.

The assembler maintains a section stack which is manipulated by the section
control directives. The current section is the section that is currently on top of
the stack. This pseudo-op changes the top of the section stack.

• If section_name does not exist, a new section with the specified name and
attributes is created.

• If section_name is a non-reserved section, attributes must be included the first
time it is specified by the .section directive.

Assembler Input 21

2

.set name, expr

The .set pseudo op sets the value of symbol name to expr . This is equivalent
to an assignment.

.string “str ”

This pseudo op places the characters in str into the object module at the
current location and terminates the string with a null. The string must be
enclosed in double quotes (""). This pseudo op is not valid for the .bss
section.

.text

The .text pseudo op defines the current section as .text .

.value expr [,expr]

The .value pseudo op is used to generate an initialized word (16-bit, two’s
complement value) into the current section. This pseudo op is not valid in the
.bss section. Each expr must be a 16-bit value.

.version string

The .version pseudo op puts the C compiler version number into the
.comment section.

.volatile

Defines the beginning of a block of instruction. The instructions in the section
may not be changed. The block of instruction should end at a .nonvolatile
pseudo-op and should not contain any Control Transfer Instructions (CTI) or
labels. The volatile block of instructions is terminated after the last instruction
preceding a CTI or label.

.weak symbol [, symbol]

Declares each symbol in the list to be defined either externally, or in the input
file and accessible to other files; default bindings of the symbol are overridden
by this directive.

• A weak symbol definition in one file will satisfy an undefined reference to a
global symbol of the same name in another file.

• Unresolved weak symbols have a default value of zero; the link editor does
not resolve these symbols.

22 x86 Assembly Language Reference Manual -August 1994

2

• If a weak symbol has the same name as a defined global symbol, the weak
symbol is ignored and no error results.

Note – This pseudo-op does not itself define the symbol.

symbol =expr

Assigns the value of expr to symbol.

Symbol Definition Pseudo Operations

.def name
The .def pseudo op starts a symbolic description for symbol name. See endef
(above). name is a symbol name.

.dim expr [,expr]
The .dim pseudo op is used with the .def pseudo op. If the name of a .def
is an array, the expressions give the dimensions; up to four dimensions are
accepted. The type of each expression should be positive.

.endef
The .endef pseudo op is the ending bracket for a .def .

.file name
The .file pseudo op is the source file name. Only one is allowed per source
file. This must be the first line in an assembly file.

.line expr
The .line pseudo op is used with the .def pseudo op. It defines the source
line number of the definition of symbol name in the .def. expr should yield
a positive value.

.ln line [,addr]
This pseudo op provides the relative source line number to the beginning of a
function. It is used to pass information through to sdb .

.scl expr
The .scl pseudo op is used with the .def pseudo op. Within the .def it
gives name the storage class of expr . The type of expr should be positive.

Assembler Input 23

2

.size expr
The .size pseudo op is used with the .def pseudo op. If the name of a .def
is an object such as a structure or an array, this gives it a total size of expr.
expr must be a positive integer.

.stabs name type 0 desc value

.stabn type 0 desc value
The .stabs and .stabn pseudo ops are debugger directives generated by the
C compiler when the -g option are used. name provides the symbol table name
and type structure. type identifies the type of symbolic information (i.e., source
file, global symbol, or source line). desc specifies the number of bytes occupied
by a variable or type, or the nesting level for a scope symbol. value specifies an
address or an offset.

.tag str
The .tag pseudo op is used in conjunction with a previously defined .def
pseudo op. If the name of a .def is a structure or a union, str should be the
name of that structure or union tag defined in a previous .def-.endef pair.

.type expr
The .type pseudo op is used within a .def-.endef pair. It gives name the C
compiler type representation expr .

.val expr
The .val pseudo op is used with a .def-.endef pair. It gives name (in the
.def) the value of expr . The type of expr determines the section for name.

24 x86 Assembly Language Reference Manual -August 1994

2

25

Instruction-Set Mapping 3

3.1 Introduction
This chapter describes the instruction set mappings for the SunOS x86
processor. For more details of the operation and a summary of the exceptions,
please refer to the i486 Microprocessor Programmer’s Reference Manual from Intel
Corporation.

Although the Intel processor supports address-size attributes of either 16 or 32
bits, the x86 assembler only supports address-size attributes of 32 bits. The
operand-size is either 16 or 32 bits. An instruction that accesses 16-bit words
or 32-bit longs has an operand-size attribute of either 16 or 32 bits.

Notational Conventions

The notational conventions used in the instructions included in this chapter are
described below:

• The mnemonics are expressed in a regular expression-type syntax.

• When a group of letters is separated from other letters by a bar (|) within
square brackets or curly braces, then the group of letters between the bars or
between a bar and a closing bracket or brace is considered an atomic unit.

For example, fld[lst] means fldl , flds , or fldt ; fst{ls} means fst ,
fstl , or fsts ; and fild{l|ll} means fild , fildl , or fildll .

•
° Square brackets ([]) denotes choices, but at least one irequired.

26 x86 Assembly Language Reference Manual—August 1994

3

° Alternatives enclosed within curly braces ({}) denote that you can use
one or none of them

° The vertical bar separates different suffixes for operators or operands. For
example, the following indicates that an 8-, 16-, or 32-bit immediate value
is permitted in an instruction:

imm[8|16|32]

• The SunOS operators are built from the Intel operators by adding suffixes to
them. The 80387, 80486 deals with three data types: integer, packed decimal,
and real.

The SunOS assembler is not typed; the operator has to carry with it the type
of data item it is operating on. If the operation is on an integer, the following
suffixes apply: none for Intel’s short (16 bits), l for Intel’s long (32 bits),
and ll for Intel’s longlong (64 bits). If the operator applies to reals, then: s
is short (32 bits), l is long (64 bits), and t is temporary real (80 bits).

• reg[8|16|32] defines a general-purpose register, where each number
indicates one of the following:

32:%eax , %ecx, %edx, %ebx, %esi , %edi , %ebp, %esp

16:%ax , %cx, %dx, %bx, %si , %di , %bp, %sp

8: %al , %ah, %cl , %ch, %dl , %dh, %bl , %bh

• mem[8|16|32|48] stands for a memory operand, which is one of the
following: the 8, 16, 32, and 48 suffixes represent byte, word, long, and inter-
segment memory address quantities, respectively.

• r/m[8|16|32] is a general-purpose register or memory operand; the
operand type is determined from the suffix. They are: 8 = byte, 16 = word,
and 32 = long. The registers for each operand size are the same as
reg[8|16|32] above.

• creg is a control register; the control registers are: %cr0 , %cr2 , or %cr3 .

• dreg is a debug register; the debug registers are: %db0, %db1, %db2, %db3,
%db6, %db7.

• sreg is a segment register. The segment registers are: %cs, %ds, %ss, %es,
%fs , and %gs.

• treg is a test register. The test registers are: %tr6 and %tr7 .

• .freg is floating point registers %st, %st(1) - %st(7).

Instruction-Set Mapping 27

3

• cc represent condition codes. There are 30 condition codes. For more
information on condition codes, refer to Chapter 2, “Assembler Input,” in
this manual.

References

This document presumes that you are familiar with the manner in which the
Intel instruction sets function. For more information on specific instruction
descriptions, please refer to x86 product documentation from Intel
Corporation.

3.2 Segment Register Instructions
Following are the segment register instructions supported by the x86
processor.

Load Full Pointer (lds, les , lfs , lgs , and lss)
lds{wl} mem[32|48], reg[16|32]

les{wl} mem[32|48], reg[16|32]

lfs{wl} mem[32|48], reg[16|32]

lgs{wl} mem[32|48], reg[16|32]

lss{wl} mem[32|48], reg[16|32]

Pop Stack into Word (pop)
pop{wl} r/m[16|32]

pop{l} [%ds|%ss|%es|%fs|%gs]

Push Stack into Word(push)
push{wl} r/m[16|32]

push{wl} imm[8|16|32]

push{l} [%cs|%ds|%ss|%es|%fs|%gs]

28 x86 Assembly Language Reference Manual—August 1994

3

3.3 I/O Instructions

Input from Port (in , ins)
in{bwl} imm8

in{bwl} (%dx)

ins{bwl}

Output from Port (out , outs)

out{bwl} imm8

out{bwl} (%dx)

outs{bwl}

3.4 Flag Instructions

Load Flags into AH Register (lahf)
lahf

Store AH into Flags (sahf)
sahf

Pop Stack into Flag (popf)
popf{wl}

Push Stack into Flag (pushf)
pushf{wl}

Complement Carry Flag (cmc)
cmc

Instruction-Set Mapping 29

3

Clear Carry Flag (clc)
clc

Set Carry Flag (stc)
stc

Clear Interrupt Flag (cli)
cli

Set Interrupt Flag (sti)
sti

Clear Direction Flag (cld)
cld

Set Direction Flag (std)
std

3.5 Arithmetic Logical Instructions

Integer Addition (add)
add{bwl} reg[8|16|32], r/m[8|16|32]

add{bwl} r/m[8|16|32], reg[8|16|32]

add{bwl} imm[8|16|32], r/m[8|16|32]

Integer Add With Carry (adc)
adc{bwl} reg[8|16|32], r/m[8|16|32]

adc{bwl} r/m[8|16|32], reg[8|16|32]

adc{bwl} imm[8|16|32], r/m[8|16|32]

30 x86 Assembly Language Reference Manual—August 1994

3

Integer Subtraction (sub)
sub{bwl} reg[8|16|32], r/m[8|16|32]

sub{bwl} r/m[8|16|32], reg[8|16|32]

sub{bwl} imm[8|16|32], r/m[8|16|32]

Integer Subtraction With Borrow (sbb)
sbb{bwl} reg[8|16|32], r/m[8|16|32]

sbb{bwl} r/m[8|16|32], reg[8|16|32]

sbb{bwl} imm[8|16|32], r/m[8|16|32]

Compare Two Operands (cmp)
cmp{bwl} reg[8|16|32], r/m[8|16|32]

cmp{bwl} r/m[8|16|32], reg[8|16|32]

cmp{bwl} imm[8|16|32], r/m[8|16|32]

Increment by 1 (inc)
inc{bwl} r/m[8|16|32]

Decrease by 1 (dec)
dec{bwl} r/m[8|16|32]

Logical Comparison or Test (test)
test{bwl} reg[8|16|32], r/m[8|16|32]

test{bwl} r/m[8|16|32], reg[8|16|32]

test{bwl} imm[8|16|32], r/m[8|16|32]

Shift (sal , shl , sar , shr)
sal{bwl} imm8, r/m[8|16|32]

sal{bwl} %cl, r/m[8|16|32]

shl{bwl} imm8, r/m[8|16|32]

shl{bwl} %cl, r/m[8|16|32]

Instruction-Set Mapping 31

3

sar{bwl} imm8, r/m[8|16|32]

sar{bwl} %cl, r/m[8|16|32]

shr{bwl} imm8, r/m[8|16|32]

shr{bwl} %cl, r/m[8|16|32]

Double Precision Shift Left (shld)
shld{wl} imm8, reg[16|32], r/m[16,32]

shld{wl} reg[16|32], r/m[16,32], r/m[16,32]

Double Precision Shift Right (shrd)
shrd{wl} imm8, reg[16|32]

shrd{wl} reg[16|32], r/m[16,32]

One’s Complement Negation (not)
not{bwl} r/m[8|16|32]

Two’s Complement Negation (neg)
neg{bwl} r/m[8|16|32]

Check Array Index Against Bounds (bound)
bound{wl} r/m[16|32], reg[16|32]

Logical And (and)
and{bwl} reg[8|16|32], r/m[8|16|32]

and{bwl} r/m[8|16|32], reg[8|16|32]

and{bwl} imm[8|16|32], r/m[8|16|32]

Logical Inclusive OR (or)
or{bwl} reg[8|16|32], r/m[8|16|32]

or{bwl} r/m[8|16|32], reg[8|16|32]

32 x86 Assembly Language Reference Manual—August 1994

3

or{bwl} imm[8|16|32], r/m[8|16|32]

Logical Exclusion OR (xor)
xor{bwl} reg[8|16|32], r/m[8|16|32]

xor{bwl} r/m[8|16|32], reg[8|16|32]

xor{bwl} imm[8|16|32], r/m[8|16|32]

3.6 Multiply and Divide Instructions
When the type suffix is not included in a multiply or divide instruction, it
defaults to a long .

Signed Multiply (imul)
imulb r/m8

imulw r/m16

imul{l} r/m32

imul{wl} r/m[16|32], reg[16|32]

imul{bwl} imm[16|32], r/m[16|32], reg[16|32]

Unsigned Multiplication of AL, AX or EAX(mul)

mul{bwl} r/m[8|16|32]

Unsigned Divide (div)
div{bwl} r/m[8|16|32]

Signed Divide (idiv)
idiv{bwl} r/m[8|16|32]

Instruction-Set Mapping 33

3

3.7 Conversion Instructions

Convert Byte to Word (cbtw)
cbtw

 Convert Word to Long (cwtl)
 cwtl

Convert Signed Word to Signed Double Word (cwtd)

 cwtd

Convert Signed Long to Signed Double Long (cltd)
cltd

3.8 Decimal Arithmetic Instructions

Decimal Adjust AL after Addition (daa)
daa

Decimal Adjust AL after Subtraction (das)
das

ASCII Adjust after Addition (aaa)
aaa

ASCII Adjust after Subtraction (aas)
aas

34 x86 Assembly Language Reference Manual—August 1994

3

ASCII Adjust AX after Multiply (aam)
aam

ASCII Adjust AX before Division (aad)
aad

3.9 Coprocessor Instructions

Wait (wait , fwait)
wait

fwait

3.10 String Instructions
All Intel string op mnemonics default to long.

Move Data from String to String (movs, smov)
movs{bwl}

smov{bwl}

Compare String Operands (cmps , scmp)

cmps{bwl}

scmp{bwl}

Store String Data (stos , ssto)
stos{bwl}

ssto{bwl}

The Load String Operand (lods , slod)
lods{bwl}

slod{bwl}

Instruction-Set Mapping 35

3

Compare String Data (scas , ssca)
scas{bwl}

ssca{bwl}

Look-Up Translation Table (xlat)
xlat

Repeat Following String Operation (rep , repnz , repz)
rep

repnz

repz

3.11 Procedure Call and Return Instructions
lcall immptr

lcall *mem48

Call Procedure (call)
call disp32

call *r/m32

Return from Procedure (ret)
ret

ret imm16

Long Return (lret)
lret

lret imm16

Enter or Make a Stack Frame for Procedure Parameters (enter)
enter imm16, imm8

36 x86 Assembly Language Reference Manual—August 1994

3

High Level Procedure Exit (leave)
leave

3.12 Jump Instructions

Jump if ECX is Zero (jcxz)
jcxz disp8

Loop Control with CX Counter (loop , loopnz , loopz)
loop disp8

loopnz disp8

loopne disp8

loopz disp8

loope disp8

Jump (jmp, ljmp)
jmp disp[8|32]

ljmp immPtr

jmp *r/m32

ljmp *mem48

j cc disp[8|32]

3.13 Interrupt Instructions

Call to Interrupt Procedure (int , into)
int imm8

into

Interrupt Return (iret)
iret

Instruction-Set Mapping 37

3

3.14 Protection Model Instructions

Store Local Descriptor Table Register (sldt)
sldt r/m16

Store Task Register (str)
str r/m16

Load Local Descriptor Table Register (lldt)
lldt r/m16

Load Task Register (ltr)
ltr r/m16

Verify a Segment for Reading or Writing (verr , verw)
verr r/m16

verw r/m16

Store Global/Interrupt Descriptor Table Register (sgdt , sidt)
sgdt mem48

sidt mem48

Load Global/Interrupt Descriptor Table (lgdt , lidt)
lgdt mem48

lidt mem48

Store Machine Status Word (smsw)
smsw r/m16

38 x86 Assembly Language Reference Manual—August 1994

3

Load Machine Status Word (lmsw)
lmsw r/m16

Load Access Rights (lar)
 lar r/m32, reg32

Load Segment Limit (lsl)
lsl r/m32, reg32

Clear Task-Switched (clts)
clts

Adjust RPL Field of Selector (arpl)
arpl r16, r/m16

3.15 Bit Instructions

Bit Scan Forward
bsf{wl} r/m[16|32], reg[16|32]

Bit Scan Reverse
bsr{wl} r/m[16|32], reg[16|32]

Bit Test
bt{wl} imm8, r/m[16|32]

bt{wl} reg[16|32], r/m[16|32]

Bit Test And Complement
btc{wl} imm8, r/m[16|32]

btc{wl} reg[16|32], r/m[16|32]

Instruction-Set Mapping 39

3

Bit Test And Reset
btr{wl} imm8, r/m[16|32]

btr{wl} reg[16|32], r/m[16|32]

Bit Test And Set
bts{wl} imm8, r/m[16|32]

bts{wl} reg[16|32], r/m[16|32]

3.16 Exchange Instructions

Compare and Exchange [486]
cmpxchg{bwl} reg[8|16|32], r/m[8|16|32]

3.17 Floating Point Transcendental

Floating Point Sine
fsin

Floating Point Cosine
fcos

Floating Point Sine and Cosine
fsincos

3.18 Floating Point Constant

Floating Point Load One
fld1

fld12+

fld12e

40 x86 Assembly Language Reference Manual—August 1994

3

fldpi

fldlg2

fldln2

fldz

3.19 Processor Control Floating Point

Floating Point Load Control Word
fldcw r/m16

Floating Point Load Environment
fldenv mem

3.20 Other Floating Point

Floating Point Different Reminder
fprem1

3.21 Floating Point Comparison

Floating Point Unsigned Compare
fucom freg

Floating Point Unsigned Compare And Pop
fucomp freg

Floating Point Unsigned Compare And Pop Two
fucompp

Instruction-Set Mapping 41

3

3.22 Load and Move Instructions

Load Effective Address
lea{wl} r/m[16|32], reg[16|32]

Move
mov{bwl} imm[8|16|32], r/m[8|16|32]

mov{bwl} reg[8|16|32], r/m[8|16|32]

mov{bwl} r/m[8|16|32], reg[8|16|32]

Move Segment Registers
movw sreg,r/m16

movw r/m16, sreg

Move Control Registers
mov{l} creg, reg32

mov{l} reg32, creg

Move Debug Registers
mov{l} dreg, reg32

mov{l} reg32, dreg

Move Test Registers
mov{l} treg, reg32

mov{l} reg32, treg

Move With Sign Extend
movsb{wl} r/m8, reg[16|32]

movsbwl r/m16, reg32

42 x86 Assembly Language Reference Manual—August 1994

3

Move With Zero Extend
movzb[wl] r/m8, reg[16|32]

movzwl r/m16, reg32

3.23 Pop Instructions

Pop All General Registers
popa{wl}

3.24 Push Instructions

Push All General Registers
pusha{wl}

3.25 Rotate Instructions

Rotate With Carry Left
rcl{bwl} imm8, r/m[8|16|32]

rcl{bwl} %cl, r/m[8|16|32]

Rotate With Carry Right
rcr{bwl} imm8, r/m[8|16|32]

rcr{bwl} %cl, r/m[8|16|32]

Rotate Left
rol{bwl} imm8, r/m[8|16|32]

rol{bwl} %cl, r/m[8|16|32]

Rotate Right
ror{bwl} imm8, r/m[8|16|32]

Instruction-Set Mapping 43

3

ror{bwl} %cl, r/m[8|16|32]

3.26 Byte Instructions

Byte Set On Condition
set cc r/m8

Byte Swap [486]
bswap reg[16|32]

3.27 Exchange Instructions

Exchange And Add [486]
xadd{bwl} reg[8|16|32], r/m[8|16|32]

Exchange Register / Memory With Register
xchg{bwl} reg[8|16|32], r/m[8|16|32]

3.28 Miscellaneous Instructions

Write Back and Invalidate Cache [486 only]

wbinv d

Invalidate [486 only]
invd

Invalidate Page [486 only]
invlpg mem32

44 x86 Assembly Language Reference Manual—August 1994

3

LOCK Prefix (lock)
lock

No Operation (nop)
nop

Halt (hlt)
hlt

Address Prefix

addr16

Data Prefix

data16

3.29 Real Transfers

Load real
fld{lst}

Store real
fst{ls}

Store real and pop
fstp{lst}

Exchange registers
fxch

Instruction-Set Mapping 45

3

3.30 Integer Transfers

Integer load
fild{l|ll}

Integer store
fist{l}

Integer store and pop
fistp{l|ll}

3.31 Packed Decimal Transfers

Packed decimal (BCD) load
fbld

Packed decimal (BCD) store and pop
fbstp

3.32 Additions

Real add
fadd{ls}

Real add and pop
faddp

Integer add
fiadd{l}

46 x86 Assembly Language Reference Manual—August 1994

3

3.33 Subtractions

Subtract real and pop
fsub{ls}

Subtract real
subp

Subtract real reversed
fsubr{ls}

Subtract real reversed and pop
fsubrp

Integer subtract
fsubrp

Integer subtract reverse
fisubr{l}

3.34 Multiplications

Multiply real
fmul{ls}

Multiply real and pop
fmulp

Instruction-Set Mapping 47

3

Integer multiply
fimul{l}

3.35 Divisions

Divide real
fdiv{ls}

Divide real and pop
divp

Divide real reversed
fdivr{ls}

Divide real reversed and pop
fdivrp

Integer divide

fidiv{l}

Integer divide reversed

fidivr{l}

3.36 Floating Point Opcode Errors

Warning – The SunOS x86 assembler generates the wrong object code for some
of the floating point opcodes fsub , fsubr , fdiv , and fdivr when there are
two floating register operands, and the second op destination is not the zeroth
floating point register. This error has been made to many versions of the USL
UNIX® system and would probably cause problems if it were fixed.

48 x86 Assembly Language Reference Manual—August 1994

3

Replace the following instructions, in column 1, with their substitutions, in
column 2, for x86 platforms:

fsub %st,%st(n) fsubr %st, %st(n)

fsubp %st,%st(n) fsubrp %st, %st(n)

fsub fsubr

fsubr %st,%st(n) fsub %st, %st(n)

fsubrp %st,%st(n) fsubp %st, %st(n)

fsubr fsub

fdiv %st,%st(n) fdivr %st,%st(n)

fdivp %st,%st(n) fdivrp %st,%st(n)

fdiv fdivr

fdivr %st,%st(n) fdiv %st,%st(n)

fdivrp %st,%st(n) fdivp %st,%st(n)

fdivr fdiv

3.37 Other Arithmetic Operations

Square root
fsqrt

Scale
fscale

Partial remainder
fprem

Round to integer
frndint

Instruction-Set Mapping 49

3

Extract exponent and significand
fxtract

Absolute value
fabs

Change sign
fchs

3.38 Comparison Instructions

Compare real
fcom{ls}

Compare real and pop
fcomp{ls}

Compare real and pop twice
fcompp

Integer compare
ficom{l}

Integer compare and pop
ficomp{l}

Test
ftst

50 x86 Assembly Language Reference Manual—August 1994

3

Examine
fxam

3.39 Transcendental Instructions

Partial tangent
fptan

Partial arctangent
fptan

2x - 1
f2xm1

Y * log2 X
fyl2x

Y * log2 (X+1)
fyl2xp1

3.40 Constant Instructions

Load log2E
fldl2e

Load log2 10
fldl2t

Instruction-Set Mapping 51

3

Load log10 2
fldlg2

Load loge 2
fldln2

Load pi
fldpi

Load + 0
fldz

3.41 Processor Control Instructions

Initialize processor
finit/fninit

No operation
fnop

Save state
fsave/fnsave

Store control word
fstcw/fnstcw

Store environment
fstenv/fnstenv

52 x86 Assembly Language Reference Manual—August 1994

3

Store status word
fstsw/fnstsw

Restore state
frstor

Set protected mode
fsetpm

CPU wait
fwait/wait

Clear exceptions
fclex/fnclex

Decrement stack pointer
fdecstp

Free registers
ffree

Increment stack pointer
fincstp

53

Assembler Output 4

4.1 Introduction to Assembler Output
The main output produced by assembling an input assembly language source
file is the translation of that file into an object file in Extensible and Linking
Format (ELF). ELF files thus produced by the assembler are relocatable files that
hold code and/or data. They are input files for the linker, which combines
these relocatable files with other ELF object files to create an executable file or
a shared object file in the next stage of program building, after translation from
source files into object files.

The three main kinds of ELF files are relocatable, executable and shared object
files. The assembler may also produce ancillary output incidental to the
translation process. For example, if the assembler is invoked with the -V
option, it may write information to standard output and to standard error.

The assembler also creates a default output file when standard input or
multiple input files are used. Ancillary output has little direct connection to the
translation process, so it is not properly a subject for this manual. Information
about such output appears in as (1) manual page.

Certain assembly language statements are directives to the assembler
regarding the organization or content of the object file to be generated.
Therefore, they have a direct effect on the translation performed by the
assembler. To understand these directives, which are presented in Chapter 3,
“Instruction-Set Mapping,” it is helpful to have some working knowledge of
ELF, at least for relocatable files.

54 x86 Assembly Language Reference Manual—August 1994

4

Hence, this chapter presents an overview of ELF for the relocatable object files
produced by the assembler. The fully detailed definition of ELF appears in the
System V Application Binary Interface and the Intel 386 Processor Supplement.

4.2 Object Files in Extensible and Linking Format (ELF)
Relocatable ELF files produced by the assembler consist of:

• an ELF header

• a section header table

• sections

The ELF header is always the first part of an ELF file. It is essentally a structure
of fixed size and format. The fields, or members, of this structure describe the
nature, organization and contents of the rest of the file. In particular, the ELF
header has a field which specifies the location within the file at which the
section header table begins.

 The section header table is an array of section headers, which are structures of
fixed size and format. The section headers are thus the elements of the array, or
the entries in the table. The section header table has exactly one entry for each
section in the ELF file. However, the table may also have entries (section
headers) that do not correspond to any section in the file. Such entries and
their array indices are reserved. The members of each section header constitute
information useful to the linker about the contents of the corresponding
section, if any.

All of a relocatable file’s information that does not lie within its ELF header or
its section header table lies within its sections. Sections contain most of the
information needed to combine relocatable files with other ELF files to produce
shared object files or executable files. Sections also contain the material to be
combined. For example, sections may hold:

• Relocation tables

• Symbol tables

• String tables

Each section in an ELF file fills a contiguous (possibly empty) sequence of that
file’s bytes. Sections never overlap. However, the (set theoretic) union of a
relocatable file’s ELF header, the file’s section header table, and all the file’s

Assembler Output 55

4

sections may omit some of the file’s bytes. Bytes of a relocatable file that are
not in the file’s ELF header, or in the file’s section header table, or in any of the
file’s sections constitute the file‘s inactive space. The contents of a file’s inactive
space, if any, are unspecified.

ELF Header

The ELF header is always located at the beginning of the ELF file. It describes
the ELF file organization and contains the actual sizes of the object file control
structures.

The ELF header consists of the following fields, or members, some of which
have the value 0 for relocatable files:

e_ident – This is a byte array consisting of the EI_NIDENT initial bytes of the
ELF header, where EI_NIDENT is a name for 16. The elements of this array
mark the file as an ELF object file and provide machine-independent data
which may be used to decode and interpret the file’s contents.

e_type – Identifies the object file type. A value of 1, which has the name
ET_REL, specifies a relocatable file. Table 4-1 describes all the object file
types.

e_machine – Specifies the required architecture for an individual file. A value
of 3, which has the name EM_386, specifies Intel 80386. EM_486, specifies
Intel 80486.

e_version – Identifies the version of this object file’s format. This field should
have the current version number, named EV_CURRENT.

e_entry – Virtual address at which the process is to start. A value of 0
indicates no associated entry point.

e_phoff – Program header table’s file offset, in bytes. The value of 0 indicates
no program header. (Relocatable files do not need a program header table.)

e_shoff – Section header table’s file offset, in bytes. The value of 0 indicates
no section header table. (Relocatable files must have a section header table.)

e_flag – Processor-specific flags associated with the file. For the Intel 80386,
this field has value 0.

e_ehsize – ELF header’s size, in bytes.

56 x86 Assembly Language Reference Manual—August 1994

4

e_phentsize – Size, in bytes, of entries in the program header table. All entries
are the same size. (Relocatable files do not need a program header table.)

e_phnum – Number of entries in program header table. A value of 0
indicates the file has no program header table. (Relocatable files do not need
a program header table.)

e_shentsize – Size, in bytes, of the section header structure. A section header
is one entry in the section header table; all entries are the same size.

e_shnum – Number of entries in section header table. A value of 0 indicates
the file has no section header table. (Relocatable files must have a section
header table.)

e_shstrndx – Section header table index of the entry associated with the
section name string table. A value of SHN_UNDEF indicates the file does
not have a section name string table.

Section Header

The section header table has all of the information necessary to locate and isolate
each of the file’s sections. A section header entry in a section header table
contains information characterizing the contents of the corresponding section,
if the file has such a section.

Table 4-1 Object File Types

Type Value Description

none 0 No file type

rel 1 Relocatable file

exec 2 Executable file

dyn 3 Shared object file

core 4 Core file

loproc 0xff00 Processor-specific

hiproc 0xffff Processor-specific

Assembler Output 57

4

Each entry in the section header table is a section header, which is a structure
of fixed size and format, consisting of the following fields, or members:

sh_name – Specifies the section name. The value of this field is an index into
the section header string table section, wherein it indicates the beginning of
a null-terminated string that names the section.

sh_type – Categorizes the section’s contents and semantics. Table 4-3
describes the section types.

sh_flags – One-bit descriptions of section attributes. Table 4-2 describes the
section attribute flags.

sh_addr – Address at which the first byte resides if the section appears in the
memory image of a process; a value of 0 indicates the section will not
appear in the memory image of a process.

sh_offset – Specifies the byte offset from the beginning of the file to the first
byte in the section.

Note – If the section type is SHT_NOBITS, the corresponding section occupies
no space in the file. In this case, sh_offset specifies the location at which the
section would have begun if it did occupy space within the file.

sh_size – Specifies the size, in byte units, of the section.

Note – Even if the section type is SHT_NOBITS, sh_size may be non-zero;
however, the corresponding section still occupies no space in the file.

sh_link – Section header table index link. The interpretation of this
information depends on the section type, as described in Table 4-3.

sh_info – Extra information. The interpretation of this information depends
on the section type, as described in Table 4-3.

sh_addralign – If a section has an address alignment constraint, the value in
this field is the modulus, in byte units, by which the value of sh_addr must
be congruent to 0; i.e., sh_addr = 0 (mod sh_addralign).

58 x86 Assembly Language Reference Manual—August 1994

4

For example, if a section contains a long (32 bits), the entire section must be
ensured long alignment, so sh_addralign would have the value 4. Only 0
and positive integral powers of 2 are currently allowed as values for this
field. A value of 0 or 1 indicates no address alignment constraints.

sh_entsize – Size, in byte units, for entries in a section which is a table of
fixed-size entries, such as a symbol table. Has the value 0 if the section is not
a table of fixed-size entries.

Table 4-2 Section Attribute Flags

Flag Default Value Description

SHF_WRITE 0x1 Contains data that is writable during process execution.

SHF_ALLOC 0x2 Occupies memory during process execution. This attribute is
off if a control section does not reside in the memory image of
the object file.

SHF_EXECINSTR 0x4 Contains executable machine instructions.

SHF_MASKPROC 0xf0000000 Reserved for processor-specific semantics.

Table 4-3 Section Types

Name Value Description

Interpretation by

sh_info sh_link

SHT_NULL 0 Marks section header as inactive; file
has no corresponding section.

0 SHN_UNDEF

SHT_PROGBITS 1 Contains information defined by the
program, and in a format and with a
meaning determined solely by the
program.

0 SHN_UNDEF

Assembler Output 59

4

SHT_SYMTAB 2 Is a complete symbol table, usually
for link editing. This table may also
be used for dynamic linking;
however, it may contain many
unnecessary symbols.

Note: Only one section of this type is
allowed in a file

One greater than the
symbol table index of
the last local symbol.

The section
header index of
the associated
string table.

SHT_STRTAB 3 Is a string table. A file may have
multiple string table sections.

0 SHN_UNDEF

SHT_RELA 4 Contains relocation entries with
explicit addends. A file may have
multiple relocation sections.

The section header
index of the section to
which the relocation
applies.

The section
header index of
the associated
symbol table.

SHT_HASH 5 Is a symbol rehash table.

Note: Only one section of this type is
allowed in a file

0 The section
header index of
the symbol table
to which the hash
table applies.

SHT_DYNAMIC 6 Contains dynamic linking
information.

Note: Only one section of this type is
allowed in a file

0 The section
header index of
the string table
used by entries in
the section.

SHT_NOTE 7 Contains information that marks the
file.

0 SHN_UNDEF

Table 4-3 Section Types (Continued)

Name Value Description

Interpretation by

sh_info sh_link

60 x86 Assembly Language Reference Manual—August 1994

4

SHT_NOBITS 8 Contains information defined by the
program, and in a format and with a
meaning determined solely by the
program. However, a section of this
type occupies no space in the file,
but the section header’s offset field
specifies the location at which
the section would have begun if
it did occupy space within the
file.

0 SHN_UNDEF

SHT_REL 9 Contains relocation entries without
explicit addends. A file may have
multiple relocation sections.

The section header
index of the section to
which the relocation
applies.

The section
header index of
the associated
symbol table.

SHT_SHLIB 10 Reserved. 0 SHN_UNDEF

SHT_DYNSYM 11 Is a symbol table with a minimal set
of symbols for dynamic linking.

Note: Only one section of this type is
allowed in a file

One greater than the
symbol table index of
the last local symbol.

The section
header index of
the associated
string table.

SHT_LOPROC

SHT_HIPROC

0x70000000

0x7fffffff

Lower and upper bounds of range of
section types reserved for processor-
specific semantics.

0 SHN_UNDEF

SHT_LOUSER

SHT_HIUSER

0x80000000

0xffffffff

Lower and upper bounds of range of
section types reserved for
application programs.

Note: Section types in this range may
be used by an application without
conflicting with system-defined
section types.

0 SHN_UNDEF

Table 4-3 Section Types (Continued)

Name Value Description

Interpretation by

sh_info sh_link

Assembler Output 61

4

Note – Some section header table indices are reserved, and the object file will
not contain sections for these special indices.

Sections

A section is the smallest unit of an object file that can be relocated. Sections
containing the following material usually appear in relocatable ELF files:

• Executable text

• Read-only data

• Read-write data

• Read-write uninitialized data (only section header appears)

Sections do not need to occur in any particular order within the object file. The
sections of a relocatable ELF file contain all of that file’s information which is
not contained in the ELF header or in the section header table. The sections in
any ELF file must satisfy several conditions:

1. Every section in the file must have exactly one section header entry in the
section header table to describe the section. However, the section header
table may have section header entries which correspond to no section in the
file.

2. Each section occupies one contiguous sequence of bytes within a file. The
section may be empty (even so, its section header entry in the section header
table may have a non-zero value for the field sh_size).

3. A byte in a file can reside in at most one section. Sections in a file cannot
overlap.

4. An object file may have inactive space, which is the set of all bytes in the file
which are not part of the ELF header, or of the section header table, or of the
program header table (for executable files), or of any section in the file. The
contents of the inactive space are unspecified.

Sections can be added for multiple text or data segments, shared data, user-
defined sections, or information in the object file for debugging.

62 x86 Assembly Language Reference Manual—August 1994

4

Note – Not all of the sections for which there are entries in the file‘s section
header table need to be present.

Predefined Sections
Sections having certain names beginning with "." (dot) are predefined, with
their types and attributes already assigned. These special sections are of two
kinds: predefined user sections and predefined non-user sections.

Predefined User Sections
Sections that an assembly language programmer can manipulate by issuing
section control directives in the source file are user sections. The predefined user
sections are those predefined sections that are also user sections. Table 4-4 lists
the names of the predefined user sections and briefly describes each.

Table 4-4 Predefined User Sections

Section Name Description

".bss " Uninitialized read-write data.

".comment " Version control information.

".data " & ".data1 " Initialized read-write data.

".debug " Debugging information.

".fini " Runtime finalization instructions.

".init " Runtime initialization instructions.

".rodata " &
".rodata1 "

Read-only data.

".text " Executable instructions.

".line " Line # info for symbolic debugging.

".note " Special information from vendors or system
builders.

Assembler Output 63

4

Predefined Non-User Sections
Table 4-5 lists and briefly describes the predefined sections that are not user
sections, because assembly language programmers can not manipulate them by
issuing section control directives in the source file.

Relocation Tables

Locations represent addresses in memory if a section is allocatable; that is, its
contents are to be placed in memory at program runtime. Symbolic references
to these locations must be changed to addresses by the link editor.

Table 4-5 Predefined Non-User Sections

Section Name Description

".dynamic " Dynamic linking information.

".dynstr" Strings needed for dynamic linking.

".dynsym " Dynamic linking symbol table.

".got " Global offset table.

".hash " A symbol hash table.

".interp" The path name of a program interpreter.

".plt " The procedure linking table.

"rel name" &
".rela name"

Relocation information.
name is the section to which the relocations apply.
e.g. ".rel.text ", ".rela.text ".

".shstrtab " String table for the section header table names.

".strtab " The string table.

".symtab " The symbol table.

64 x86 Assembly Language Reference Manual—August 1994

4

The assembler produces a companion relocation table for each relocatable
section. The table contains a list of relocations (that is, adjustments to locations
in the section) to be performed by the link editor.

Symbol Tables

The symbol table contains information to locate and relocate symbolic
definitions and references. The assembler creates the symbol table section for
the object file. It makes an entry in the symbol table for each symbol that is
defined or referenced in the input file and is needed during linking.

The symbol table is then used by the link editor during relocation. The symbol
table’s section header contains the symbol table index for the first non-local
symbol.

The symbol table contains the following information:

st_name – Index into the object file’s symbol string table. A value of zero
indicates the corresponding entry in the symbol table has no name;
otherwise, the value represents the string table index that gives the symbol
name.

st_value – Value of the associated symbol. This value is dependent on the
context; for example, it may be an address, or it may be an absolute value.

st_size – Size of symbol. A value of 0 indicates that the symbol has either no
size or an unknown size.

st_info – Specifies the symbol type and binding attributes. Table 4-6 and
Table 4-7 describe the symbol types and binding attributes.

st_other – Undefined meaning. Current value is 0.

st_shndx – Contains the section header table index to another relevant
section, if specified. As a section moves during relocation, references to the
symbol will continue to point to the same location because the value of the
symbol will change as well.

Assembler Output 65

4

Table 4-6 Symbol Types

Value Type Description

0 notype Type not specified.

1 object Symbol is associated with a data object; for example, a variable or an
array.

2 func Symbol is associated with a function or other executable code. When
another object file references a function from a shared object, the link
editor automatically creates a procedure linkage table entry for the
referenced symbol.

3 section Symbol is associated with a section. These types of symbols are primarily
used for relocation.

4 file Gives the name of the source file associated with the object file.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

Table 4-7 Symbol Bindings

Value Binding Description

0 local Symbol is defined in the object file and not accessible in other files. Local
symbols of the same name may exist in multiple files.

1 global Symbol is either defined externally or defined in the object file and
accessible in other files.

2 weak Symbol is either defined externally or defined in the object file and
accessible in other files; however, these definitions have a lower
precedence than globally defined symbols.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

66 x86 Assembly Language Reference Manual—August 1994

4

String Tables

A string table is a section which contains null-terminated variable-length
character sequences, or strings. The object file uses these strings to represent
symbol names and file names. The strings are referenced by indices into the
string table section. The first and last bytes of a string table must be the null
character.

• A string table index may refer to any byte in the section.

• Empty string table sections are permitted if zero is the value of sh_size in
the section header entry for the string table in the section header table.

A string may appear multiple times and may also be referenced multiple times.
References to substrings may exist, and unreferenced strings are allowed.

67

Using the Assembler Command Line A

A.1 Assembler Command Line
Invoke the assembler command line as follows:

Note – The language drivers (such as cc and f77) invoke the assembler
command line with the fbe command. You can use either the as or fbe
command to invoke the assembler command line.

The as command translates the assembly language source files, inputfile, into
an executable object file, objfile. The Intel assembler recognizes the file name
argument hyphen (-) as the standard input. It accepts more than one file name
on the command line. The input file is the concatenation of all the specified
files. If an invalid option is given or the command line contains a syntax error,
the Intel assembler prints the error (including a synopsis of the command line
syntax and options) to standard error output, and then terminates.

The Intel assembler supports #define macros, #include files, and symbolic
substitution through use of the C preprocessor cpp . The assembler invokes the
preprocessor before assembly begins if it has been specified from the command
line as an option. (See the -P option.)

as [options] [inputfile] ...

68 x86 Assembly Language Reference Manual—August 1994

A

A.2 Assembler Command Line Options

-Dname
-Dname=def

When the -P option is in effect, these options are passed to the cpp
preprocessor without interpretation by the as command; otherwise, they are
ignored.

-Ipath
When the -P option is in effect, this option is passed to the cpp
preprocessor without interpretation by the as command; otherwise, it is
ignored.

-m
This new option runs m4 macro preprocessing on input. The m4
preprocessor is more powerful than the C preprocessor (invoked by the -P
option), so it is more useful for complex preprocessing. See the SunOS 5.1
Reference Manual for x86 for a detailed description of the m4 macro-processor.

-o outfile
Takes the next argument as the name of the output file to be produced. By
default, the .s suffix, if present, is removed from the input file and the .o
suffix is appended to form the output file name.

-P
Run cpp , the C preprocessor, on the files being assembled. The preprocessor
is run separately on each input file, not on their concatenation. The
preprocessor output is passed to the assembler.

-Q[y|n]
This new option produces the “assembler version” information in the
comment section of the output object file if the y option is specified; if the n
option is specified, the information is suppressed.

Using the Assembler Command Line 69

A

-s
This new option places all stabs in the .stabs section. By default, stabs are
placed in stabs.excl sections, which are stripped out by the static linker
ld during final execution. When the -s option is used, stabs remain in the
final executable because .stab sections are not stripped out by the static
linker ld .

-Uname
When the -P option is in effect, this option is passed to the cpp
preprocessor without interpretation by the as command; otherwise, it is
ignored.

-V
This option writes the version information on the standard error output.

A.3 Disassembling Object Code
The dis program is the object code disassembler for ELF. It produces an
assembly language listing of the object file. For detailed information about this
function, see the dis (1) manual page.

70 x86 Assembly Language Reference Manual—August 1994

A

71

Index

A
addresses, 63
as command, 67
assembler (as)

expressions, 8, 17
immediate values, 17
input format, 4 to 5
instruction descriptions, 13 to 16

addressing modes, 16 to 17
instructions

arithmetic/logical, 29
conversion, 33
coprocessor, 34
decimal arithmetic, 33
flag, 28
I/O, 28
miscellaneous, 44
procedure call, 35
protection model, 37 to 38
return, 35
segment register, 27
string, 34 to 35

mnemonics
addition, 45
arithmetic, 48

object file
.comment section, 8

operands

16-bit general registers, 12
32-bit general registers, 12
8-bit general registers, 12
overview, 11
segment registers, 13

operations, dbx pseudo, 23
operations, general pseudo, 17 to 21
operators, 8
statements

assignment, 5
empty, 5
machine operation, 5
modifying, 5
pseudo operation, 5

SunOS vs. Intel, mnemonics, ?? to 52
symbols, 6
syntax rules, 8 to 10
types, 6 to 7
values, 6 to 7

assembler command line, 67
assembler command line options, 68
assembly language, 3

C
cc language driver, 67

72 x86 Assembly Language Reference Manual—August 1994

D
-D option, 68
default output file, 53
dis program, 69
disassembling object code, 69

F
f77 language driver, 67
fbe command, 67
.file , 19

G
.globl , 19

H
hyphen (-), 67

I
-I option, 68
invoking, as command, 67

L
language drivers, 67
.local , 20

M
-m option, 68
multiple files, on as command line , 67
multiple sections, 61
multiple strings, in string table, 66

N
.nonvolatile , 20

O
-o option, 68

P
-P option, 68
predefined non-user sections, 63
predefined user sections, 62
Programming Utilities - SunOS 5.0, 2
pseudo-operations, 17

Q
-Q option, 68

R
references

other, 2
relocatable files, 53
relocation tables, 63

S
-s option, 69
.section , 20
section header, 56
sections, 61
string tables, 66
strings

multiple references in string table, 66
unreferenced in string table, 66

strings, multiple in string table, 66
sub-strings in string table

references to, 66
symbol, 22
symbol tables, 64

T
The, 1

U
-U option, 69

73

V
-V option, 69
.volatile , 21

W
.weak , 21

74 x86 Assembly Language Reference Manual—August 1994

