
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Solaris VISUAL Overview for
Driver Developers

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, XGL, XIL, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries;
X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc.
PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the
trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Solaris VISUAL Overview for Driver Developers 1

Solaris VISUAL . 1

Solaris VISUAL Architecture . 3

Distributed Graphics . 5

Direct Graphics Access . 6

Graphics Porting Interfaces . 8

Porting Tasks . 10

Porting Strategies. 11

Porting Environment . 13

Testing a Device Handler . 13

Software Distribution . 14

References . 14

iv Solaris VISUAL Overview for Driver Developers—August 1994

1

Solaris VISUAL Overview for
Driver Developers

This document provides an introduction to the Solaris™ Graphics Porting
Interfaces (GPIs), the low-level interfaces for porting the Solaris graphics
environment — Solaris VISUAL™ — to frame buffers, graphics accelerators,
and other graphics devices. All the components and porting options are
covered at a high level, and a guide to the detailed Solaris VISUAL Driver
Developer Kit (DDK) documents is provided.

Solaris VISUAL
Solaris VISUAL is the Solaris windows and graphics environment, including
the graphics libraries and the X11R5 server. Solaris VISUAL includes
Application Programming Interfaces (APIs) for a wide variety of graphics
functionality, including 2-D and 3-D geometric graphics, imaging and digital
video, stencil/paint style graphics (PostScript™), and basic pixel graphics
(X11). Figure 1 illustrates the components of Solaris VISUAL at a high level.
Applications may be built using a set of application libraries, including
libraries from SunSoft™ and from third parties, as well. These application
libraries are built on a set of foundation libraries that are part of the Solaris
system — one for each major area of graphics functionality. Some of these
foundation libraries are also available directly to application developers. Each
foundation library defines a Graphics Porting Interface (GPI) that is the
interface for porting the library to hardware devices. A more extensive
introduction to Solaris VISUAL may be found in the Solaris VISUAL White
Paper.

Device developers may port their device to the Solaris VISUAL environment
by porting one or more of the Solaris GPIs to the device. The Solaris DDK
provides information enabling developers to do this. A device might be a
frame buffer, graphics accelerator, input device, frame grabber, image
compression device, etc. In some cases, a device might also be a software
component, e.g., an optimized version of a compression algorithm or rendering
pipeline. The Solaris GPI interfaces can be used to support such “software
devices.”

2 Solaris VISUAL Overview for Driver Developers—August 1994

Figure 1 Solaris VISUAL Components

Hardware

XGL XIL PostScript X

Applications

OpenGL 3rd-party
Libraries

Solaris
X Ext. Libs

Hardware
Interfaces

PIKS

PEX XIE
(future)

DPS XLIB

Application
Libraries

Foundation
Libraries

Solaris VISUAL Architecture 3

The Solaris VISUAL GPIs are designed to satisfy the following requirements of
Independent Hardware Vendors (IHVs) and OEMs:

1. The ability to port the Solaris VISUAL environment using only interface
documentation, test/verification suites, and sample code provided in the
DDK (i.e., no source licensing required)

2. The ability to port at a functional level appropriate to the device (e.g., utilize
Solaris-provided software implementations where devices lack certain
functionality and make full use of device capabilities when available)

3. The ability to get a simple port going with minimal effort and to tune the
port with additional effort

4. The ability to produce hardware and associated device software that can be
installed in the field by end users

Subsequent sections of this overview provide further explanation of the Solaris
VISUAL architecture, a guide to the components of the DDK, and a few hints
to developers along the way.

Solaris VISUAL Architecture
Figure 2 shows a more detailed diagram of the Solaris VISUAL architecture. A
set of standard APIs are provided for application developers — PEXlib, XIElib
(future), DPSlib, and Xlib. These APIs are all based on the X Window System
in that they are bindings to the X11 protocol (Xlib) or extensions to it (PEXlib,
XIElib, and DPSlib). The Solaris environment provides a window system
server based on the X11R5 server from the X Consortium. The server provides
resource management for the graphics resources of a machine and enables
network distributed graphics by accepting connections for communication of
graphics requests using the X11 protocol or an extension (see below).

The implementation of the standard APIs relies on a set of four foundation
libraries — XGL™, XIL™, the PostScript foundation, and the X foundation. Of
these, only XGL and XIL are accessible to application developers.

4 Solaris VISUAL Overview for Driver Developers—August 1994

Figure 2 Solaris VISUAL Architecture

Each foundation library has a GPI appropriate to the functionality covered by
the library. An implementation of a GPI for a particular device is called a
device handler (this is different from a kernel device driver — see below).
Device handlers are dynamically-loadable shared object modules. They are
located and loaded as needed as applications or the window system execute.
IHVs can distribute device handlers for their devices and users can install them
on their machines for operation with the Solaris device-independent libraries
and window system. It is not necessary for an IHV to port to each GPI — only
the X GPI (DDX) is required (see “Porting Strategies”). An IHV can optionally
choose to implement additional GPIs to enhance performance in particular
areas of functionality (e.g., the XGL GPI for 3D rendering performance).

Table 1 shows for each graphics area (geometry, imaging, stencil/paint, and
basic pixel graphics) the corresponding standard API (X extension library),
foundation library, and wire protocol. (Note that these APIs may be mixed
within an application by drawing to the same or different windows using
several APIs.)

Applications

Graphics "Devices" (Display, Computation, Memory, Network, Input)

XGL XIL PostScript

(future)

X

Geometry
APIs (PEXlib)

App. Programming

Interface

Foundation Library

Interface

Graphics Porting

Interface

Standard
Graphics
 Libraries

(Solaris Bundled)

Foundation
Graphics
Libraries

Device Handlers

Imaging & Video
APIs (XIElib)

Stencil/Paint
APIs (DPSlib)

Pixel Based
APIs (Xlib)

Distributed Graphics 5

As indicated in Figure 2, Solaris 2.4 does not fully implement Solaris VISUAL
Architecture. XIE and XIElib are still under development by the X Consortium,
but XIL is available for writing imaging applications. In addition, no
PostScript GPI is available in Solaris 2.4. The PostScript foundation utilizes the
X GPI (DDX) in this release. (This is true both for device handlers provided in
Solaris and for those developed by IHVs. See the section on “Graphics Porting
Interfaces.’’) A PostScript GPI may be provided in a future release.

The types of devices that are supported by a GPI vary. All three GPIs (XGL,
XIL, and X) support rendering to system memory, dumb frame buffers, and
graphics accelerators. In addition, the X GPI provides an interface for input
devices (tablets, button and dial devices, etc.). The XIL GPI supports image
input devices, compute devices, storage devices, and compression devices, in
addition to displays.

Distributed Graphics

The X Window System implements distributed graphics using a traditional
client/server model as shown in Figure 3. In a strict implementation of this model,
the window server and the client application are separate UNIX processes. The
client may be on the same machine as the server or a different machine. Client and
server communicate only via IPC mechanisms, and the communication involves
network traffic when they run on different machines. The client calls the X
graphics libraries which emit protocol requests to the server. The server accepts
X11 protocol requests (or protocol extension requests) and invokes device-

Table 1 Solaris VISUAL Components

Graphics
Area

Foundation
Library

Standard API
(X Ext. Lib)

Wire
Protocol

Basic Pixel
Operations

X Xlib X11

Stencil/Paint
Graphics

PostScript DPSlib DPS

Imaging & Digital
Video

XIL XIElib
(future)

XIE
(future)

2-D/3-D
Geometry

XGL PEXlib PEX

6 Solaris VISUAL Overview for Driver Developers—August 1994

dependent code (e.g., DDX) to render the specific primitives. In the Solaris
implementation, rendering is accomplished by one of the foundation libraries and
a device handler associated with the attached display hardware. Solaris VISUAL
supports distributed graphics across a network in this fashion.

Figure 3 Distributed Graphics Client/Server Model

Direct Graphics Access
When the client and server processes are on the same machine, it is possible to
achieve much higher performance on frame buffers and graphics display
accelerators in some cases by avoiding IPC communication to the server and
directly accessing the graphics hardware from the client process. Solaris
VISUAL implements Direct Graphics Access (DGA) to take maximum
advantage of high performance graphics devices (see Figure 4). DGA is a set of
shared memory communication and synchronization primitives that allow
foundation libraries and device handlers to bypass the server but still maintain
screen integrity as though all graphics were still rendered by the server.

Client App.

Graphics App. Lib

X Ext. Libs
Xlib

X11R5 Server
+ Extensions

Graphics
Foundation
Libraries

Graphics Hardware

X Protocol
& Exts

(Frame Buffer
or Graphics Display Accelerator)

Direct Graphics Access 7

DGA interfaces include a client interface for writers of foundation libraries and
device handlers and a device porting interface. The client interface is chiefly of
interest to programmers writing device handlers for XGL or XIL, since these
are the foundation libraries which utilize DGA in Solaris 2.4. The device
porting interface must be implemented by IHVs who implement DGA for their
devices, and is part of the X GPI. Both of these interfaces are documented in
the OpenWindows Server Device Developer’s Guide.

An IHV is not required to implement DGA for a device. Some devices may not
see great performance increases from it. On some devices, it may be difficult to
efficiently implement, since it requires device context switching. For more
information, see the section on “Porting Strategies.”

Figure 4 Direct Graphics Access Acceleration for Local Case

DGA

Client App.

Graphics App. Lib

X Ext. Libs Xlib

Graphics Foundation Libs

X Protocol
& Exts

Graphics Hardware

X11R5 Server
+ Extensions

Graphics
Foundation
Libraries

(Frame Buffer or Graphics Display Accelerator)

8 Solaris VISUAL Overview for Driver Developers—August 1994

Graphics Porting Interfaces
Figure 5 illustrates the GPI architecture for Solaris VISUAL. Note that Solaris
2.4 does not contain a PostScript GPI. Instead, PostScript uses the X GPI. The
figure shows how this is possible. The XGL, XIL, and PostScript foundation
libraries all have the ability to render via the X foundation. This capability
establishes the minimal port feature of Solaris VISUAL — it is only necessary
to port DDX in order to get all of Solaris VISUAL running.

Figure 5 Graphics Porting Interfaces

DDX is the “device dependent X” interface defined in the X Consortium
sample server. DDX (the X GPI) is described in the OpenWindows Server Device
Developer’s Guide, which documents all the interfaces SunSoft provides to IHVs
for porting the X11R5-based window server. These interfaces include DDX and
Solaris value-added enhancements to DDX for support of advanced graphics
hardware features. Input device interfaces are covered in that guide as well.

XGL XIL PS X

LI-1

LI-2

LI-3

Molecules

DDX
(Required)

X X X

Atomics &

PS
GPI
(future)

Graphics Porting Interfaces 9

The XIL GPI is documented in the XIL Device Porting and Extensibility Guide.
XIL defines a set of low-level atomic imaging functions. An IHV can replace
atomic memory-based functions with device-specific functions. In addition,
sequences of atomic functions, called molecules, can be provided in optimized
form for use by XIL. These molecules can greatly improve the performance of
an XIL device port.

The XGL GPI consists of three levels of device pipeline interface, called LI-1,
LI-2, and LI-3. These three levels correspond to different cut points in the
typical geometric graphics pipeline. IHVs may implement different GPI
functions at different levels to tailor a port for a particular device. XGL
provides a software pipeline implementation of LI-1 and LI-2 for use by device
porters. The XGL GPI is described in two documents in the DDK. The XGL
Architecture Guide describes the internal XGL architecture as it relates to device
pipelines. The XGL Device Pipeline Porting Guide provides the interface
definitions and detailed explanations for LI-1, LI-2, and LI-3.

Note – All of the GPIs documented in the Solaris 2.4 DDK are ‘‘unstable’’
interfaces. This means that they are not yet mature enough to guarantee binary
or source compatibility from release to release. No gratuitous changes will be
made to the interfaces, but experience and feedback from IHVs may lead to
changes in the interfaces. If you are using these interfaces, you can forward
your comments, feedback, and queries on interface revisions to:

visual-ddk-feedback@sun.com

This allows us to give you timely information on changes that may be made in
future releases of Solaris. SunSoft’s goal is to solidify the interfaces as soon as
feasible, so that both source and binary compatibilty can be guaranteed across
releases. Once this happens, the interfaces will evolve in compatible ways as
new features are added.

10 Solaris VISUAL Overview for Driver Developers—August 1994

The GPI interfaces are versioned with major and minor numbers. The
implementation of the versioning has implications for writers of device
handlers. Please consult the documents for each GPI for versioning
information. In Solaris 2.4, the GPI version numbers are as follows:

DDX — 1.1
XGL GPI — 4.0
XIL GPI — 1.2

Porting Tasks
Porting the Solaris VISUAL environment to a new device generally involves
the following tasks:

1. Write a loadable kernel device driver.

2. Write a loadable DDX device handler.

3. Optionally, write loadable XGL and XIL handlers as well for higher
performance on geometric graphics and imaging applications.

4. Provide configuration information for inclusion in configuration files used
by the foundation libraries to locate and load device handlers.

5. Satisfy platform-specific hardware requirements.

The kernel device driver generally handles device functions that cannot be
safely or conveniently done in device handlers. Since device handlers are
loaded into executing processes, they run in user mode, not kernel mode. Actual
graphics rendering is typically not done by the device driver — it is the
responsibility of the handlers. Examples of functions usually performed by a
kernel driver include initializing the device, performing simple (policy- free)
allocation of device resources, mapping the device into user process address
spaces, updating control registers that are unsafe to map into user address
spaces, performing time-critical device update functions (e.g., those which
must synchronize with vertical retrace), tracking hardware cursors, and context
switching stateful graphics devices.

The DDK document Writing Device Drivers provides the information needed to
develop a graphics device driver. The services provided by a device driver are
usually used only by foundation library device handlers for the device. There

Porting Strategies 11

are a small number of ioctl calls used by device-independent code in Solaris
VISUAL. These are discussed in the first document above. Otherwise, the
driver interface is private to the device.

Porting strategies for writing device handlers are covered in the following
section.

Configuration information needed by each foundation library is covered in the
GPI documents referred to earlier. A device porter only needs to provide
configuration information for a foundation library if he provides a device
handler for the library. In Solaris 2.4, only X and XIL define configuration files.

Platform-specific hardware requirements include issues such as bus interfaces
and boot requirements. For SBus-based SPARC® systems, this information is
covered in the OpenBoot Command Reference Manual and Writing FCode
Programs. Note that on x86 platforms, the system is initially booted with the
display adapter in text mode. The X Windows server (DDX device handler) is
responsible for initializing the hardware into the appropriate graphics mode at
server startup. Many x86 display adapters cannot be probed reliably to
determine their physical characteristics and configuration; therefore, this
information is generally stored in the server configuration file, OWconfig . (For
more information on OWconfig , see the OpenWindows Server Device Developer’s
Guide.) Also note that the calls to the PC’s BIOS ROM from a Unix process
such as the server are not supported in this release. Some device initialization
may be performed in the graphics kernel device driver (for example, through
the server invoking ioctl() calls). The manner of partitioning the
initialization roles between the server and the kernel driver is an
implementation choice left to the developer. In all cases, however, the DDX
device handler drives the initialization of the graphics display adapter into
graphics mode, and restores text mode as the server is exited.

Porting Strategies
The Solaris VISUAL libraries and window server are structured such that an
implementation of DDX enables all libraries, the server, and server extensions
to run.

The reason to implement the XGL or XIL GPIs is performance. A simple port of
Solaris VISUAL using only the DDX interface will not perform as well as a
tuned port involving the XGL and XIL GPIs for devices that are able to

12 Solaris VISUAL Overview for Driver Developers—August 1994

accelerate higher-level geometric or imaging functions. The decision about
whether to implement one or both of these GPIs is a tradeoff between porting
effort and performance.

Even within a GPI, several choices are available to an IHV. For example, the
SunSoft DDX interface has several capabilities beyond those of the X
Consortium sample server. These are mostly for support of advanced graphics
hardware with features such as window ids, multiple plane groups, multiple
hardware colormaps, etc. A simple port not utilizing these additional
interfaces is possible even on devices that have one or more of these features.
Addtional effort is required to take advantage of these interfaces.

The XIL GPI offers several opportunities for optimizing performance on
particular devices. Any of the atomic imaging operations can be implemented
in a device handler. Furthermore, sequences of operations, called molecules,
can be selected for device-specific implementation. The best choices for
performance are highly device-dependent, and each atomic function or
molecule represents additional porting effort. The XIL Device Porting and
Extensibility Guide provides advice on making these choices.

The XGL GPI offers interfaces appropriate for devices ranging from dumb
frame buffers to high-end accelerators. The selection of the LI-1, LI-2, or LI-3
interfaces is not a global decision — it can be made for each primitive. Thus,
an IHV can do a tuned port for a device in an efficient manner, and can start
with a simple port and optimize later.

The Solaris DDK includes sample code for several device ports of each GPI.
These are intended to get device porters started on their ports.

One implication of porting either the XGL or XIL GPIs to a frame buffer or
graphics display accelerator is that an IHV must also implement the DGA
functionality in the DDX GPI, because both XGL and XIL GPIs require the
client DGA interface referred to above. A further choice for IHVs utilizing
DGA is whether to implement graphics device context switching. Generally,
devices for which XGL or XIL ports are worthwhile will have device state.
Since DGA allows multiple processes to access the device, some form of
context management must be implemented (see the next paragraph for
exceptions to this). The Writing Device Drivers document describes system
facilities that may be used to implement graphics context switching in a kernel
device driver (although an IHV could implement context switching in some
other fashion than through these facilities).

Porting Environment 13

One circumstance for which device context switching is not required is devices
that are purely dumb frame buffers, i.e., a device handler does not need to set
up state for graphics operations. Another example is a device for which an
IHV cannot easily provide context switching between multiple processes
because of device limitations (e.g., write-only device registers), but which has
functionality that can greatly accelerate XGL or XIL. In a future release of
Solaris, IHVs will be able to choose to support DGA, but to disable it for any
process except the window server. This means, for example, that both DDX
and XGL device handlers could be active in the server process, but no other
process would load device handlers for the device (client processes would use
X11 or extension protocols to communicate graphics requests to the server,
even when on the local machine). In this case, the device handlers within a
single process would cooperate to maintain the device state, but only a single
process would touch the device. This could make sense for an XGL handler as
a way to accelerate the PEX extension in the server. This choice is not available
to IHVs in Solaris 2.4.

Porting Environment
The Solaris DDK provides sample Makefiles along with the sample code.

For DDX porting, an ANSI C compiler is required. Test programs can be
written using the include files and documentation for Xlib and DPSlib
provided in the Solaris runtime product.

For XGL or XIL porting using the Solaris 2.4 DDK, the SPARCompiler™ 2.0.1
C++ compiler or ProCompiler™ 2.0.1 C++ compiler is required, since these
GPIs are C++ interfaces. In addition, the Solaris Software Developer Kit (SDK)
is needed for writing test programs, since it contains the necessary API
include files and documentation.

Testing a Device Handler
Test suites are also provided in the DDK for XGL and XIL device handlers.
These are described in the XGL Test Suite User’s Guide and the XIL Test Suite
User’s Guide, respectively.

Xlib test suites (which exercise DDX device handlers) are publicly available.
See the OpenWindows Server Device Developer’s Guide.

14 Solaris VISUAL Overview for Driver Developers—August 1994

Software Distribution
Device drivers and handlers developed by IHVs should be distributed to
customers as a set of Solaris 2.x packages. For general information on creating
packages, see the Application Packaging Developer’s Guide.

Specific information on naming conventions and installation directories for
kernel drivers, DDX handlers, XGL handlers, and XIL handlers is provided in
Writing Device Drivers, OpenWindows Server Device Developer’s Guide, XGL
Device Pipeline Porting Guide, and the XIL Device Porting and Extensibility Guide,
respectively.

References
The following references are all included as part of the Solaris 2.4
documentation:

• Solaris VISUAL White Paper

• OpenWindows Server Device Developer’s Guide

• XIL Device Porting and Extensibility Guide

• XGL Architecture Guide

• XGL Device Pipeline Porting Guide

• Writing Device Drivers

• OpenBoot Command Reference Manual

• Writing FCode Programs

• XGL Test Suite User’s Guide

• XIL Test Suite User’s Guide

• Application Packaging Developer’s Guide

