

Sun StorageTek[™] SAS RAID HBA 設置マニュアル

8 ポート外部 HBA

Sun Microsystems, Inc. www.sun.com

Part No. 820-5904-10 2008 年 10 月, Revision A Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

本製品には、米国 Sun Microsystems, Inc. (以下、米国 Sun Microsystems 社とします)の秘密情報および企業秘密が含まれています。米国 Sun Microsystems 社の書面により明示された事前の許可なく、使用、開示、または複製することが禁じられます。

この配布には、第三者が開発した構成要素が含まれている可能性があります。

米国 Sun Microsystems, Inc. (以下、米国 Sun Microsystems 社とします)は、本書に記述されている技術に関する知的所有権を有していま す。これら知的所有権には、http://www.sun.com/patents に掲載されているひとつまたは複数の米国特許、および米国ならびにその他の 国におけるひとつまたは複数の特許または出願中の特許が含まれています。

本書およびそれに付属する製品は著作権法により保護されており、その使用、複製、頒布および逆コンパイルを制限するライセンスのもと において頒布されます。サン・マイクロシステムズ株式会社の書面による事前の許可なく、本製品および本書のいかなる部分も、いかなる 方法によっても複製することが禁じられます。

本製品のフォント技術を含む第三者のソフトウェアは、著作権法により保護されており、提供者からライセンスを受けているものです。

本製品の一部は、カリフォルニア大学からライセンスされている Berkeley BSD システムに基づいていることがあります。UNIX は、X/Open Company Limited が独占的にライセンスしている米国ならびに他の国における登録商標です。

本製品は、株式会社モリサワからライセンス供与されたリュウミン L-KL (Ryumin-Light) および中ゴシック BBB (GothicBBB-Medium) の フォント・データを含んでいます。

本製品に含まれるHG明朝LとHGゴシックBは、株式会社リコーがリョービイマジクス株式会社からライセンス供与されたタイプフェー スマスタをもとに作成されたものです。平成明朝体W3は、株式会社リコーが財団法人日本規格協会文字フォント開発・普及センターから ライセンス供与されたタイプフェースマスタをもとに作成されたものです。また、HG明朝LとHGゴシックBの補助漢字部分は、平成明 朝体W3の補助漢字を使用しています。なお、フォントとして無断複製することは禁止されています。

Sun、Sun Microsystems、Netra、Sun Ray、Sun StorEdge、Sun StorageTek、SunSolve、Butterflyのロゴマークは、米国およびその他の国 における米国 Sun Microsystems 社またはその子会社の商標もしくは登録商標です。サンのロゴマークおよび Solaris は、米国 Sun Microsystems 社の登録商標です。

すべての SPARC 商標は、米国 SPARC International, Inc. のライセンスを受けて使用している同社の米国およびその他の国における商標また は登録商標です。SPARC 商標が付いた製品は、米国 Sun Microsystems 社が開発したアーキテクチャーに基づくものです。

OPENLOOK、OpenBoot、JLE は、サン・マイクロシステムズ株式会社の登録商標です。

ATOKは、株式会社ジャストシステムの登録商標です。ATOK8は、株式会社ジャストシステムの著作物であり、ATOK8にかかる著作権その他の権利は、すべて株式会社ジャストシステムに帰属します。ATOK Server/ATOK12は、株式会社ジャストシステムの著作物であり、ATOK Server/ATOK12にかかる著作権その他の権利は、株式会社ジャストシステムおよび各権利者に帰属します。

本書で参照されている製品やサービスに関しては、該当する会社または組織に直接お問い合わせください。

OPEN LOOK および Sun™ Graphical User Interface は、米国 Sun Microsystems 社が自社のユーザーおよびライセンス実施権者向けに開発 しました。米国 Sun Microsystems 社は、コンピュータ産業用のビジュアルまたは グラフィカル・ユーザーインタフェースの概念の研究開 発における米国 Xerox 社の先駆者としての成果を認めるものです。米国 Sun Microsystems 社は米国 Xerox 社から Xerox Graphical User Interface の非独占的ライセンスを取得しており、このライセンスは米国 Sun Microsystems 社のライセンス実施権者にも適用されます。

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

本製品は、米国の輸出規制法に従うものであり、その他の国の輸出または輸入に関する法律が適用される場合もあります。核、ミサイル、 化学生物兵器、または核の海上での最終使用あるいは最終使用者は、直接的または間接的にかかわらず厳重に禁止されています。米国の通 商禁止対象国、または拒否された人物および特別認定国リストにかぎらず、米国の輸出禁止リストに指定されている実体への輸出または再 輸出は、厳重に禁止されています。

予備のCPUの使用または交換は、米国の輸出法に従って輸出された製品に対するCPUの修理または1対1の交換に制限されています。米 国政府の許可なしに、製品のアップグレードにCPUを使用することは、厳重に禁止されています。本書は、「現状のまま」をベースとし て提供され、商品性、特定目的への適合性または第三者の権利の非侵害の黙示の保証を含みそれに限定されない、明示的であるか黙示的で あるかを問わない、なんらの保証も行われないものとします。

本書には、技術的な誤りまたは誤植のある可能性があります。また、本書に記載された情報には、定期的に変更が行われ、かかる変更は本 書の最新版に反映されます。さらに、米国サンまたは日本サンは、本書に記載された製品またはプログラムを、予告なく改良または変更す ることがあります。

本製品が、外国為替および外国貿易管理法(外為法)に定められる戦略物資等(貨物または役務)に該当する場合、本製品を輸出または日本国 外へ持ち出す際には、サン・マイクロシステムズ株式会社の事前の書面による承諾を得ることのほか、外為法および関連法規に基づく輸出 手続き、また場合によっては、米国商務省または米国所轄官庁の許可を得ることが必要です。

原典: Sun StorageTek SAS RAID HBA Installation Guide, Eight-Port, External HBA Part No: 820-1260-12 Revision A

目次

Declaration of Conformity xv

安全のための注意事項 xvii

Regulatory Compliance Statements xxi

はじめに xxiii

1. HBAの概要 1

キットの内容 1

HBA の機能 2

アレイレベルの機能 2

高度なデータ保護機能群 3

コンポーネントの配置 3

オペレーティングシステムおよびテクノロジの要件 5

システムの相互運用性 6

ホストプラットフォームのサポート 6

サーバーのサポート 7

ストレージシステムのサポート 7

ソフトウェアのサポート 8

2. ハードウェアの取り付けと取り外し 9

ESD の監視と取り扱いに関する注意事項 9

ハードウェアの取り付けの準備 10

▼ ハードウェアの取り付けの準備をする 10取り付け作業マップ 11

バッテリバックアップモジュールの取り付け 12

▼ バッテリバックアップモジュールを取り付ける 12
 SPARC システム上の現在のデバイスの確認 14

▼ 現在のデバイスを確認する 14
 HBA の取り付け 15

▼ HBA を取り付ける 15

ディスクドライブ格納装置の接続 17

▼ ディスクドライブ格納装置に接続する 17 HBA の取り付け状態のテスト 17

- ▼ SPARC システムで HBA の取り付け状態をテストする 17
- ▼ x64 システムで HBA の取り付け状態をテストする 20
 次の手順 22

ハードウェアの取り外し 22

- ▼ HBAの取り外しの準備をする 23
- ▼ HBA を取り外す 23
- 3. 既存のオペレーティングシステムでのドライバのインストール 25

HBA ドライバのインストールの準備 25

既存の OS でのドライバのインストール 26

- ▼ Windows OS でドライバをインストールする 26
- ▼ Red Hat または SUSE Linux OS でドライバをインストールする 26
- ▼ x64 システムで Solaris OS にドライバをインストールする 27
- ▼ SPARC システムで Solaris OS にドライバをインストールする 27
- ▼ VMware テクノロジでドライバをインストールする 28

次の手順 28

4. 既知の問題 31

出荷キットの問題 31

一部またはすべての CD が HBA 出荷キットに含まれていない 31

- BIOS ユーティリティーの問題 32
 - BIOS ユーティリティーを使用してアレイを作成すると、BIOS の起動順序が 変更される 32
 - BIOS ユーティリティーでホットプラグ機能が機能しない 32
 - BIOS ユーティリティーに誤った文字が表示される (6582371) 33
 - BIOS ユーティリティーに入ろうとすると、システム BIOS メッセージが表示 される (6574264) 33
 - BIOS ユーティリティーで RAID ボリュームを作成すると、デフォルトの設定 がパフォーマンスに影響を及ぼすことがある (6686894) 33
 - Sun Fire X4600 サーバーに HBA を取り付けたあと、システム BIOS がハング アップする (6656647) 34
 - Sun Fire X4600 に 2 つの HBA が取り付けられている場合、RAID ドライバが 入出力動作中にパニック状態になる (6581059) 34
- パフォーマンスの問題 34
 - 同時書き込みの実行時に ZFS によって HBA の NVRAM が強制的にフラッシュされ、パフォーマンスに影響を与える 34
 - タスクを構築および再構築すると、受信入出力要求が待機状態になる (6735981) 35
- JBOD の問題 35

JBOD のディスクの検出に関する問題 36

- システム起動時間中に、JBOD のアフィリエーションによって HBA が操作不可能になり、システムがパニック状態になる (6723287) 36
- A. 構成規則 37

対象デバイス 37

配線 38

B. HBA の仕様 39

物理的なサイズ 39

環境仕様 40

DC 電源の要件 40

電流の要件 40

性能仕様 40

コネクタピンの定義 41

SAS のピン配列 41

SATA のピン配列 42

C. BIOS RAID 構成ユーティリティーの使用方法 45

BIOS RAID 構成ユーティリティーの概要 46

BIOS RAID 構成ユーティリティーでのホットプラグの制限事項および条件の理 解 46

ホットアンプラグによる取り外しの条件 47

ホットプラグによる追加の条件 47

ホットアンプラグおよびホットプラグによる交換/再挿入の条件 47 BIOS RAID 構成ユーティリティーの実行 48

▼ BIOS RAID 構成ユーティリティーを起動する 48

▼ BIOS RAID 構成ユーティリティーをナビゲートする 49

ACU を使用したアレイの作成と管理 49

- ▼ ACU の使用を開始する 50
- ▼ ACU で新しいアレイを作成する 50
- ▼ ACU で既存のアレイを管理する 51
- ▼ ACU でアレイを起動可能にする 51
- ▼ ACU でディスクドライブを初期化する 52
- ▼ ACU でディスクドライブを再スキャンする 52
- ▼ ACU でディスクドライブのセキュリティー保護消去を実行する 52
- ▼ ACU で実行中のセキュリティー保護消去を停止する 53

-Select ユーティリティーを使用した HBA 設定の変更 53

▼ -Select ユーティリティーの使用を開始する 53

- ▼ 変更を適用して -Select ユーティリティーを終了する 53
- ▼ -Select ユーティリティーで HBA の一般的な設定を変更する 54
- ▼ -Select ユーティリティーで SAS 固有の HBA 設定を変更する 55

ディスクユーティリティーを使用したディスクドライブのフォーマットと検証 56

- ▼ ディスクユーティリティーでディスクドライブのフォーマットまたは検 証を行う 57
- ▼ ディスクユーティリティーでディスクドライブの位置を確認する 57
- ▼ ディスクユーティリティーでディスクドライブを識別する 58

BIOS ベースのイベントログの表示 59

- ▼ BIOS ベースのイベントログを表示する 59
- D. 障害追跡 61

障害追跡のチェックリスト 61

アラームの消音 62

ディスクドライブ障害からの復旧 62

ホットスペアで保護されたディスクドライブの障害 62

▼ 障害から復旧する 62

ホットスペアで保護されていないディスクドライブの障害 63

複数のアレイで同時に発生した障害 63

RAID 0 アレイのディスクドライブ障害 64

同一アレイでの複数の障害 64

- E. 最良事例 65
 - Solaris OS が動作しているシステムに新しい HBA を配置する場合の最良事例 65

ケーブルを切り替えて新しい接続を確立する場合の最良事例 66

あるポートから別のポートへのケーブルの切り替え 66

ケーブルの取り外しと同じポートへの再接続 67

SATA ディスクを格納した JBOD の接続 67

ディスク格納装置に配線する場合の最良事例 67 ハードドライブの障害状態をテストする場合の最良事例 67 パーティションを削除せずに論理ボリュームを削除する場合の最良事例 68 物理ドライブの障害をテストする場合の最良事例 68 ドライブを再スキャンまたは検出する場合の最良事例 69 論理ドライブの起動順序を制御する場合の最良事例 69 RAID 論理デバイスのメンバーを選択する場合の最良事例 70 HBA を交換する場合の最良事例 70 SPARC システムでの HBA の交換 71

x64 システムでの HBA の交換 71

- F. 最適な RAID レベルの選択 73 ドライブセグメントの理解 74 非冗長アレイ (RAID 0) 74 RAID 1 アレイ 75 RAID 1 拡張アレイ 76 RAID 10 アレイ 77 RAID 5 アレイ 78 RAID 5 アレイ 78 RAID 5EE アレイ 79 RAID 50 アレイ 80 RAID 60 アレイ 82 RAID 60 アレイ 83 最適な RAID レベルの選択 84 RAID レベルの移行 85
- G. Serial Attached SCSIの概要 87
 この付録で使用する用語 88
 SAS について 88
 SAS デバイスの通信について 89

phy について 90

SAS ポートについて 90

SAS アドレスについて 91

SAS コネクタについて 91

SAS ケーブルについて 91

SAS でのディスクドライブの識別について 92

SAS 接続のオプションについて 92

直接接続 93

バックプレーン接続 93

SAS エクスパンダ接続 93

SAS とパラレル SCSI の相違点 95

索引 97

図目次

- 図 1-1 Sun StorageTek SAS RAID 外部 HBA コンポーネントの配置 4
- 図 2-1 外付けハードディスクドライブ格納装置への接続に使用する SAS 外部ケーブル (SFF-8088 コネクタ) 11
- 図 2-2 BBU の取り付け 13
- 図 2-3 拡張スロットからのスロットカバーの取り外し 16
- 図 2-4 Sun StorageTek SAS RAID 外部 HBA の取り付け 16
- 図 F-1 RAID 0 アレイ 75
- 図 F-2 RAID 1 アレイ 76
- 図 F-3 RAID 1 拡張アレイ 77
- 図 F-4 RAID 10 アレイ 78
- 図 F-5 RAID 5 アレイ 79
- 図 F-6 RAID 5EE アレイ 80
- 図 F-7 RAID 50 アレイ 81
- 図 F-8 RAID 6 アレイ 83
- 図 G-1 SAS デバイスの通信 89
- 図 G-2 SAS エクスパンダ接続 94

表目次

- 表 1-1 Sun StorageTek SAS RAID 外部 HBA の機能 4
- 表 1-2 サポートされるオペレーティングシステムのバージョン 5
- 表 1-3 サポートされるサーバーおよびワークステーション 7
- 表 1-4 ソフトウェアのサポート 8
- 表 B-1 環境仕様 40
- 表 B-2 SAS のピン配列 41
- 表 B-3 SATA のデータピン配列 42
- 表 B-4 SATA の電源ピン配列 43
- 表 C-1 HBA の一般的な設定 54
- 表 C-2 SAS の HBA 設定 56
- 表 C-3 ディスクユーティリティーで表示される情報 58
- 表 F-1 最適な RAID レベルの選択 84
- 表 F-2 サポートされる RAID レベルの移行 85
- 表 G-1 パラレル SCSI と SAS の相違点 95

Declaration of Conformity

Compliance Model Number:

MV08

Product Family Name:

Sun StorageTek SAS RAID HBA External (SGXPCIESAS-R-EXT-Z)

EMC USA - FCC Class B

This equipment complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1) This equipment may not cause harmful interference. 2) This equipment must accept any interference that may cause undesired operation.

European Union

This equipment complies with the following requirements of the EMC Directive 2004/108/EC:

As Information Technology Equipment (ITE) Class B per (as applicable):

EN 55022:2006	Class B
EN 61000-3-2:2000 +A2:2005	Pass
EN 61000-3-3:1995 +A1:2001	Pass

EN 55024:1998 +A1: 2001 +A2:2003 Required Limits:

IEC 61000-4-2	4 kV (Direct), 8 kV (Air)
IEC 61000-4-3	3 V/m
IEC 61000-4-4	1 kV AC Power Lines, 0.5 kV Signal and DC Power Lines
IEC 61000-4-5	1 kV AC Line-Line and Outdoor Signal Lines, 2 kV AC Line-Gnd, 0.5 kV DC Power Lines
IEC 61000-4-6	3 V
IEC 61000-4-8	1 A/m
IEC 61000-4-11	Pass

<u>Safety</u>

This equipment complies with the following requirements of Low Voltage Directive 2006/95/EC: EC Type Examination Certificates:

EN 60950-1:2001, 1st Edition CB Scheme Certificate No. 43638

IEC 60950-1:2001, 1st Edition

Evaluated to all CB Countries

UL 60950-1:2003, CSA C22.2 No. 60950-03

File: E139761-A80

vol. X11

Supplementary Information: This equipment was tested and complies with all the requirements for the CE Mark. This equipment complies with the Restriction of Hazardous Substances (RoHS) directive 2002/95/EC.

/S/		/S/	
Dennis P. Symanski	DATE	Donald Cameron	DATE
Worldwide Compliance Offic Sun Microsystems, Inc. 4150 Network Circle, MPK15 Santa Clara, CA 95054, USA Tel: 650-786-3255 Fax: 650-786-3723	e 102	Program Manager/Quality Sy Sun Microsystems Scotland, I Blackness Road, Phase I, Mai Springfield, EH49 7LR Scotland, United Kingdom Tel: +44 1 506 672 539 Fax: +44 1 506 670 011	/stems .imited n Bldg

安全のための注意事項

作業を開始する前に、この章を必ずお読みください。以下 では、Sun Microsystems, Inc. の製品を安全に取り扱って いただくための注意事項について説明しています。

取り扱いの注意

システムを設置する場合には、次のことに注意してください。

- 装置上に記載されている注意事項や取り扱い方法に 従ってください。
- ご使用の電源の電圧や周波数が、装置の電気定格表示 と一致していることを確認してください。
- 装置の開口部に物を差し込まないでください。内部は 高電圧になります。金属など導体を入れるとショート して、発火、感電、装置の損傷の原因となることがあ ります。

記号について

このマニュアルでは、以下の記号を使用しています。

注意 – 事故や装置故障が発生する危険性があります。指示に従ってください。

注意 – 表面は高温です。触れないでください。火傷をする危険性があります。

注意 – 高電圧です。感電や怪我を防ぐため、 説明に従ってください。 装置の電源スイッチの種類に応じて、以下のいずれかの記 号を使用しています。

装置の改造

装置に対して機械的または電気的な改造をしないでください。Sun Microsystems, Inc. は、改造された Sun 製品に対して一切の責任を負いません。

Sun 製品の設置場所

なっています。

注意 – Sun 製品の開口部を塞いだり覆ったり しないでください。また、Sun 製品の近くに放 熱機器を置かないでください。このガイドライ ンに従わないと、Sun 製品が過熱し、信頼性が 損われる可能性があります。

騒音の水準

次の騒音放出は、動作時およびアイドリング時の A 重み 付けされた値で、ISO 9296 に従って報告されています。

測定方法および環境		
$L_{wAd} (1B = 10 \text{ dB})$		
25 ℃ 以下の場合	8.0 B	
最高周囲温度の場合	8.4 B	
L _{pAm} スタンバイ時		
25 ℃ 以下の場合	66 dB	
最高周囲温度の場合	69 dB	

SELV 対応

I/O 接続の安全状態は、SELV (Safety Extra Low Voltage) の条件を満たしています。

電源コードの接続

注意 – Sun 製品は、アースされた中性線 (DC 電源の製品ではアースされた帰線)を持つ電力 系を使用する設計になっています。それ以外の 電源に Sun 製品を接続すると、感電や故障の 原因になります。建物に供給されている電力の 種類がわからない場合は、施設の管理者または 有資格の技術者に問い合わせてください。

注意 - 必ずしもすべての電源コードの定格電 流が同じではありません。装置に付属の電源 コードを他の製品や用途に使用しないでくださ い。家庭用の延長コードには過負荷保護がない ため、コンピュータ用として使用できません。 家庭用延長コードを Sun 製品に接続しないで ください。

注意 - 添付の電源コードを他の装置や用途に 使用しない

添付の電源コードは本装置に接続し、使用する ことを目的として設計され、その安全性が確認 されているものです。決して他の装置や用途に 使用しないでください。火災や感電の原因とな る恐れがあります。

次の警告は、スタンバイ電源スイッチのある装置にのみ適 用されます。

注意 - この製品の電源スイッチは、スタンバ イ型の装置としてのみ機能します。システムの 電源を完全に切るためには、電源プラグを抜い てください。設置場所の近くのアースされた電 源コンセントに電源プラグを差し込んでくださ い。システムシャーシから電源装置が取り外さ れた状態で、電源コードを接続しないでくださ い。

以下の注意事項は、複数の電源コードを使用する装置にの み適用されます。

注意 – 複数の電源コードを使用する製品の場 合、システムの電源供給を完全に停止するに は、すべての電源コードを外す必要がありま す。

電池に関する警告

注意 - 電池は、誤操作や不適切な交換により 爆発する危険があります。交換可能な電池を備 えたシステムでは、製品のサービスマニュアル の指示に従って、同じメーカーの同じ種類の電 池か、メーカーが推奨する同等の種類の電池と 交換してください。電池の分解やシステム外で の充電はしないでください。電池を火の中に投 入しないでください。処分の際には、メーカー の指示および各地域で定められている法規に 従って適切に処理してください。Sun の CPU ボード上にあるリアルタイムクロックには、リ チウム電池が埋め込まれています。ユーザー自 身でこのリチウム電池を交換することはできま せん。

システム本体のカバー

カード、メモリー、内部記憶装置を追加するためには、 Sunのシステム本体のカバーを取り外す必要があります。 作業後は、必ずカバーをもとどおりに取り付けてから、電 源を入れてください。

注意 - カバーを閉じてから電源を入れてくだ さい。Sun 製品をカバーを開けたまま使用する のは危険です。傷害や故障の原因になります。

ラックシステムに関する警告

次の警告は、ラックおよびラック搭載型のシステムに適用 されます。

注意 - 安全性を考慮して、装置は常に下から 順に取り付ける必要があります。まず、ラック のもっとも低い位置に装置を取り付けてから、 その上に順にシステムを取り付けていきます。

注意 – 装置の取り付け作業中にラックが倒れ ないように、必ずラックの転倒防止バーを使用 してください。

注意 – ラック内の動作時の温度が過度に上昇 することを防ぐため、最高温度が製品の定格周 囲温度を超えないようにしてください。

注意 – 通気の減少によって動作時の温度が過 度に上昇することを防ぐため、装置が安全に動 作するために必要な通気量を確保する必要があ ります。

レーザー規定適合について

Sun 製品は、レーザー規定クラス1に準拠するレーザー技術を使用しています。

Class 1 Laser Product Luokan 1 Laserlaite Klasse 1 Laser Apparat Laser Klasse 1

CD および DVD 装置

以下の注意事項は、CD、DVD、およびその他の光磁気装 置に適用されます。

注意 – このマニュアルに記載されていない操作を行うと、有害な電波や光線が漏れる可能性があります。

Regulatory Compliance Statements

Sun の製品には、次の適合規制条件のクラスが明記されています。

- 米連邦通信委員会 (FCC) アメリカ合衆国
- カナダ政府通産省デジタル機器工業規格 (ICES-003) カナダ
- 情報処理装置等電波障害自主規制協議会 (VCCI) 日本
- 台湾経済部標準検験局 (BSMI) 台湾

本装置を設置する前に、装置に記載されているマークに従って、該当する節をよくお読みください。

FCC Class B Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Modifications: Any modifications made to this device that are not approved by Sun Microsystems, Inc. may void the authority granted to the user by the FCC to operate this equipment.

ICES-003 Class B Notice - Avis NMB-003, Classe B

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

クラス B VCCI 基準について

クラス B VCCI の表示 🚾 があるワークステーションおよびオプション製品は、クラ スB 情報技術装置です。これらの製品には、下記の項目が該当します。

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラス B情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、 この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起 こすことがあります。取扱説明書に従って正しい取り扱いをしてください。 **GOST-R** Certification Mark

はじめに

この設置マニュアルでは、8 ポートの外部 Sun StorageTek™ SAS RAID HBA (以下、 Sun StorageTek SAS RAID 外部 HBA と呼ぶ)の取り付け方法について説明します。 また、ドライバのインストール方法、SAS (Serial Attached SCSI) および RAID (Redundant Array of Independent Disks) テクノロジの基本的な概要についても説明 します。

お読みになる前に

HBA によって使用されるコンピュータハードウェア、データストレージ、RAID テ クノロジ、および入出力 (I/O) テクノロジ (SAS またはシリアル ATA (SATA)) につい て理解しておいてください。

また、使用しているストレージスペースに適した DAS (Direct-Attached Storage) または NAS (Network-Attached Storage)、および SAN (Storage Area Network)の概念 とテクノロジについても理解しておいてください。

マニュアルの構成

第1章では、HBA 出荷キットの内容と、HBA を正常に取り付けて使用するためのシ ステム要件について説明します。

第2章では、HBA ハードウェアを取り付けてディスクドライブを接続する方法の詳 しい手順について説明します。

第3章では、既存のオペレーティングシステムでの適切なドライバのインストール手順について説明します。

第4章では、この HBA に関する既知の問題について説明します。

付録Aでは、許容されるケーブル長などの構成ルールについて説明します。

付録 B では、技術仕様について説明します。

付録 C では、BIOS RAID 構成ユーティリティーについて説明します。これは、コン トローラ、ディスクドライブなどのデバイスとアレイを作成し管理できる BIOS ベー スのユーティリティーです。

付録 D では、障害追跡および解決方法について説明します。

付録 E では、最良事例に関する情報を示します。

付録 F では、この HBA がサポートするさまざまな RAID レベルについて説明し、使 用しているデータストレージに適した RAID レベルを選択するために役立つ、各レベ ルの概要について説明します。

付録 G では、SAS の概要について説明します。SAS の一般的な用語と、SAS とパラ レル SCSI の相違点を示します。

UNIX コマンド

このドキュメントには、システムの停止、システムの起動、およびデバイスの構成な どに使用する基本的な UNIX[®] コマンドと操作手順に関する説明は含まれていない可 能性があります。これらについては、以下を参照してください。

- 使用しているシステムに付属のソフトウェアドキュメント
- 下記にある SolarisTM オペレーティングシステムのドキュメント http://docs.sun.com

シェルプロンプトについて

シェル	プロンプト	
UNIXのCシェル	machine-name%	
UNIX の Bourne シェルと Korn シェル	\$	
スーパーユーザー (シェルの種類を問わない)	#	

書体と記号について

書体または記号	意味	例
AaBbCc123	コマンド名、ファイル名、ディ レクトリ名、画面上のコン ピュータ出力、コード例。	.login ファイルを編集します。 ls -a を実行します。 % You have mail.
AaBbCc123	ユーザーが入力する文字を、画 面上のコンピュータ出力と区別 して表します。	マシン名% su Password:
AaBbCc123	コマンド行の可変部分。実際の 名前や値と置き換えてくださ い。	rm <i>filename</i> と入力します。
ſ J	参照する書名を示します。	『Solaris ユーザーマニュアル』
ſJ	参照する章、節、または、強調 する語を示します。	第6章「データの管理」を参照。 この操作ができるのは「スーパーユー ザー」だけです。
\	枠で囲まれたコード例で、テキ ストがページ行幅を超える場合 に、継続を示します。	<pre>% grep `^#define \ XV_VERSION_STRING'</pre>

注 – ブラウザの設定に応じて、文字の表示が異なります。文字が正しく表示されない場合は、ブラウザの文字エンコーディングを Unicode UTF-8 に変更してください。

関連マニュアル

次の表に、この製品のドキュメントの一覧を示します。オンラインドキュメントは、 次の URL で参照できます。

http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

用途	タイトル	Part No.	形式	場所
コマンド行 インタ フェース	『Uniform Command-Line Interface User's Guide』	820-2145-nn	PDF HTML	CD、オンライン
RAID 管理	『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』	820-3627-nn	PDF HTML	CD、オンライン
RAID 管理	『Sun StorageTek RAID Manager ソフトウェアリリースノート』	820-3632-nn	PDF HTML	CD、オンライン

マニュアル、ドライバ、サポート、およ びトレーニング

Sun のサービス	URL
マニュアル	http://jp.sun.com/documentation/
ドライバ (Solaris 以外)	http://support.intel.com/support/go/sunraid.htm
サポート	http://jp.sun.com/support/
トレーニング	http://jp.sun.com/training/

Sun 以外の Web サイト

このマニュアルで紹介する Sun 以外の Web サイトが使用可能かどうかについては、 Sun は責任を負いません。このようなサイトやリソース上、またはこれらを経由して 利用できるコンテンツ、広告、製品、またはその他の資料についても、Sun は保証し ておらず、法的責任を負いません。また、このようなサイトやリソース上、またはこ れらを経由して利用できるコンテンツ、商品、サービスの使用や、それらへの依存に 関連して発生した実際の損害や損失、またはその申し立てについても、Sun は一切の 責任を負いません。

コメントをお寄せください

マニュアルの品質改善のため、お客様からのご意見およびご要望をお待ちしておりま す。コメントは下記よりお送りください。

http://www.sun.com/hwdocs/feedback

ご意見をお寄せいただく際には、下記のタイトルと Part No. を記載してください。

『Sun StorageTek SAS RAID HBA 設置マニュアル、8 ポート外部 HBA』、Part No. 820-5904-10

xxviii Sun StorageTek SAS RAID HBA 設置マニュアル、8 ポート外部 HBA • 2008 年 10 月

第1章

HBA の概要

この章では、Adaptec® テクノロジを使用する、8 ポートの外部 Sun StorageTek SAS RAID HBA (以下、Sun StorageTek SAS RAID 外部 HBA と呼ぶ)の概要について説 明します。HBA をサポートする各種のオペレーティングシステム、ホストプラット フォーム、およびインフラストラクチャー構成について説明します。

- この章は、次の節で構成されています。
- 1ページの「キットの内容」
- 2ページの「HBA の機能」
- 5ページの「オペレーティングシステムおよびテクノロジの要件」
- 6ページの「システムの相互運用性」

キットの内容

- Sun StorageTek SAS RAID 外部 HBA
- フルハイトの留め具
- バッテリバックアップ (BBU) モジュールと取り付け用部品
- Sun StorageTek RAID Driver CD
- Sun StorageTek RAID Manager CD (HBA のドキュメントを含む)
- LiveCD

注 – この節に示された CD が出荷キットに含まれていない場合は、次の Web サイト から CD の内容を入手できます。

http://support.intel.com/support/go/sunraid.htm

HBA の機能

外部 Sun StorageTek SAS RAID HBA (SG-XPCIESAS-R-EXT-Z) には、次の機能があ ります。

注 – これらの機能は、オペレーティングシステムによってサポートされている場合 とされていない場合があります。詳細は、『Sun StorageTek RAID Manager ソフト ウェアユーザーズガイド』またはオンラインヘルプを参照してください。

- BIOS 構成ユーティリティーまたは Sun StorageTek RAID Manager グラフィカル ユーザーインタフェース (GUI) を使用して、HBA ファームウェアおよび BIOS を 更新するためのフラッシュ ROM (『Sun StorageTek RAID Manager ソフトウェア ユーザーズガイド』を参照)
- ディスクドライブのホットスワップ (46 ページの「BIOS RAID 構成ユーティリ ティーでのホットプラグの制限事項および条件の理解」の HDD ホットプラグガ イドラインを参照)
- 電子メール、SNMP メッセージなどのイベントログ記録とブロードキャスト
- RAID アレイの作成および管理に使用する Sun StorageTek RAID Manager GUI、 BIOS ベースのユーティリティー、およびコマンド行インタフェース
- SES2 格納装置管理ハードウェアによるディスクドライブ格納装置のサポート
- バッテリバックアップモジュール

アレイレベルの機能

注 – これらの機能は、オペレーティングシステムによってサポートされている場合 とされていない場合があります。詳細は、『Sun StorageTek RAID Manager ソフト ウェアユーザーズガイド』またはオンラインヘルプを参照してください。

- RAID レベル 0、1、1E、10、5、5EE、50、6、60、シンプルボリューム、スパン ボリューム、および RAID ボリューム
- グローバルおよび専用ホットスペアのサポート
- 自動フェイルオーバーのサポートによって、障害が発生したディスクドライブの 交換時にアレイの再作成を自動的に実行 (SES2 または SAF-TE に対応するディス クドライブ格納装置の冗長アレイのみに適用)
- ディスク利用率の最適化によって、ディスクドライブのサイズが異なる場合でも、すべてのディスクドライブの全容量を使用可能

- オンライン容量拡張機能によって、アレイを再作成することなくアレイ容量の増加が可能
- ある RAID レベルから別の RAID レベルへのアレイの移行をサポート

高度なデータ保護機能群

- コピーバックホットスペア この機能を使用すると、障害が発生したディスクド ライブの交換後に、データをホットスペアから元の場所に戻すことができます。
- ストライプ化ミラー (RAID 1E) RAID 1 拡張アレイは RAID 1 アレイに類似していますが、RAID 1E アレイではデータのミラー化とストライプ化の両方が行われ、より多くのディスクドライブを組み込むことができます。
- ホットスペース (RAID 5EE) RAID 5EE アレイは RAID 5 アレイに類似していますが、RAID 5EE アレイには分散スペアがあり、4 台以上のディスクドライブで構築する必要があります。
- デュアルドライブ故障保護 (RAID 6) RAID 6 アレイは RAID 5 に類似していま すが、RAID 6 アレイにはパリティーデータの独立したセットが 1 つではなく 2 つ あります。
- デュアルドライブ故障保護 (RAID 60) RAID 60 アレイは RAID 50 に類似してい ますが、RAID 60 アレイにはパリティーデータの独立したセットが 2 つではなく 4 つあります。

コンポーネントの配置

Sun StorageTek SAS RAID 外部 HBA は SAS RAID HBA で、次の機能があります。

表 1-1 Sun Storage Tek SAS RAID 外部 HBA の機能

機能	仕様
フォームファクタ	ロープロファイル MD2
バス互換性	PCIe
PCIe バスの幅	x8
PCIe バスの速度	2.5 Gbps
PHY の数	8
標準キャッシュ	256M バイト DDR2
コネクタ、外部	Mini-SAS x4 (SFF-8088) 2 🤈
RAID レベル	0、1、1E、10、5、5EE、50、6、60、JBOD
ボリュームの最大数	24
シンプルボリューム	
ディスクドライブ数	SATA、SATA II、SAS
ディスクドライブの最大数	8 (エクスパンダがある場合は最大 100)
ホットスペア	

表 1-1 Sun StorageTek SAS RAID 外部 HBA の機能 (続き)

機能 (続き)	仕様 (続き)
格納装置のサポート	I2C および SGPIO (シリアル汎用出力)
自動フェイルオーバー	
オンボードスピーカ	
警告音	
バッテリバックアップモジュー	ABM-800
<i>I</i> L	

オペレーティングシステムおよびテクノ ロジの要件

この HBA がサポートするオペレーティングシステムおよびテクノロジのバージョン の最小要件は次のとおりです。

表 1-2 サポートされるオペレーティングシステムのバージョン

オペレーティングシステム/ テクノロジ	サポートされるバージョン (最小)
x64 および x86 (32 ビッ トおよび 64 ビット) プ ラットフォーム版 Solaris 10 OS	Solaris 10 8/07 (s10u4)
SPARC (64 ビット) プ ラットフォーム版 Solaris 10 OS	Solaris 10 5/08 (s10u5)
Linux OS	Red Hat Enterprise Linux (RHEL) 4 ES, 32 ビット版および 64 ビット版
	RHEL 4 AS Update 5、32 ビット版および 64 ビット版
	RHEL 5 Server、32 ビット版および 64 ビット版
	RHEL 5 Advanced Platform、32 ビット版および 64 ビット版
	SUSE Linux Enterprise Server (SLES) 9、SP4
	SUSE Linux Enterprise Server (SLES) 10、SP1

表 1-2 サポートされるオペレーティングシステムのバージョン (続き)

オペレーティングシステム/ テクノロジ (続き)	サポートされるバージョン (最小) (続き)
VMware® テクノロジ	ESX Server version 3.0.2、Update 1 (ドライバのサポートのみ。ス トレージ管理はコマンド行インタフェースおよび BIOS ユーティ リティーから実行する必要がある)。詳細は、下記にある 『Uniform Command-Line Interface Users's Guide』を参照して ください。 http://docs.sun.com/app/docs/prod/stortek.raid.hba #hic
Microsoft Windows OS	Windows Server 2003 Enterprise Edition、32 ビット版または 64 ビット版
	Windows Server 2003 Standard Edition、32 ビット版または 64 ビット版
	ビット版

注 - サポートしているオペレーティングシステムのバージョンの最新情報について は、http://support.intel.com/support/go/sunraid.htm を参照してくださ い。

システムの相互運用性

この節では、この HBA と互換性のある、選ばれたプラットフォームおよびストレージシステムについて説明します。この節は、次の項で構成されています。

- 6ページの「ホストプラットフォームのサポート」
- 7ページの「サーバーのサポート」
- 7ページの「ストレージシステムのサポート」
- 8ページの「ソフトウェアのサポート」

ホストプラットフォームのサポート

この HBA は次のプラットフォームでサポートされています。

- 1G バイト以上の RAM
- PCI Express x8 互換スロットに対応
- 100M バイトの空き領域があるディスクドライブ

サーバーのサポート

表 1-3 に、HBA がサポートするサーバーの一覧を示します。

表 1-3 サポートされるサーバーおよびワークステーション

サーバー/ワークステーション	サポートされる OS/テクノロジ
SPARC サーバーおよびワークステーション	
Sun Fire™ V445 サーバー	Solaris
Sun Fire V215 および V245 サーバー	Solaris
Sun Fire T2000 サーバー	Solaris
Sun SPARC Enterprise M4000/M5000 FF1、FF2	Solaris
Sun SPARC Enterprise M8000/M9000 サーバー 32 ビット版、64 ビット版	Solaris
Sun SPARC Enterprise T5120 および T5220 サー バー	Solaris
Sun SPARC Enterprise T5140 および T5240 サー バー	Solaris
x64 サーバーおよびワークステーション	
Sun Fire X2100 M2 サーバー	Solaris、Linux、VMware、および Windows
Sun Fire X2200 M2 サーバー	Solaris、Linux、VMware、および Windows
Sun Fire X4600 および X4600 M2 サーバー	Solaris、Linux、VMware、および Windows
Sun Fire X4100 M2 および X4200 M2 サーバー	Solaris、Linux、VMware、および Windows

ストレージシステムのサポート

HBA は、次のストレージシステムをサポートします。

- Sun Storage J4200
- Sun Storage J4500

ソフトウェアのサポート

表 1-4 に、この HBA によってサポートされるソフトウェアアプリケーションの一覧 を示します。

表 1-4 ソフトウェアのサポート

ソフトウェア	サポートされる OS
VERITAS Software Foundation 5.0	Solaris
Sun StorEdge Enterprise Backup Software 6.0B/7.0/7.1	Solaris、Linux、および Windows
VERITAS NetBackup 6.0	Solaris、Linux、および Windows
ZFS	Solaris、Linux、および Windows
ハードウェアの取り付けと取り外し

この章では、Sun StorageTek SAS RAID 外部 HBA の取り付けおよび取り外し方法 と、外付けディスクドライブ格納装置の接続方法について説明します。

この章は、次の節で構成されています。

- 9ページの「ESD の監視と取り扱いに関する注意事項」
- 10ページの「ハードウェアの取り付けの準備をする」
- 12ページの「バッテリバックアップモジュールを取り付ける」
- 15 ページの「HBA を取り付ける」
- 17ページの「ディスクドライブ格納装置の接続」
- 17ページの「HBA の取り付け状態のテスト」
- 22ページの「ハードウェアの取り外し」

ESD の監視と取り扱いに関する注意事項

注意 – 不注意な取り扱いまたは静電放電 (ESD) によって、HBA が損傷する場合があ ります。静電気に弱い部品の損傷を防ぐため、HBA は常に注意して取り扱ってくだ さい。

ESD に関連する損傷の可能性を最小限に抑えるため、ワークステーション静電気防止用マットと ESD リストストラップを両方とも使用してください。ESD リストストラップは、信頼できる電器店で購入するか、Sun から直接購入できます (パーツ番号 #250-1007)。ESD による問題を防ぐため、次の注意事項を守ってください。

■ HBA をシステムに取り付ける準備ができるまで、HBA は静電気防止袋に入れておいてください。

- HBA を取り扱う際は、正しく装着しアース処理したリストストラップなどの適切 な ESD 保護処置を行い、適切な ESD アース手法に従ってください。
- HBA を持つときは、コネクタではなく PCB の端を持つようにしてください。
- 静電気防止袋から出した HBA は、適切にアース処理した静電気防止作業面パッドの上に置いてください。

ハードウェアの取り付けの準備

▼ ハードウェアの取り付けの準備をする

- 1. xviiページの「安全のための注意事項」を読みます。
- 2. Sun StorageTek SAS RAID 外部 HBA と、この HBA がサポートする RAID レベルの物理的な特性について理解します。

3ページの「コンポーネントの配置」を参照してください。

3. アレイで使用する RAID レベルに必要な数 (84 ページの「最適な RAID レベルの 選択」を参照)の、サポートされている外付けディスクドライブ格納装置 (7 ペー ジの「ストレージシステムのサポート」を参照)があることを確認します。

すべてのディスクドライブのパフォーマンスレベルが同じである必要がありま す。アレイでは、さまざまなサイズのディスクドライブを使用できますが、アレ イはもっとも小容量で遅いディスクドライブの能力によって制限されます。

詳細は、『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』また はオンラインヘルプを参照してください。

Sun StorageTek SAS RAID 外部 HBA は、SAS ディスクドライブと SATA ディス クドライブの両方をサポートしています。

4. 使用する HBA と外付けディスクドライブ格納装置に適したケーブルがあること を確認します。

HBA に接続するホスト側に x4 SFF-8088 コネクタ付きの SAS ケーブルが 1 本以 上必要です (接続先のコネクタは、ハードディスクドライブ格納装置の接続要件に 応じて異なります)。購入時に Sun システムに付属している、Sun が提供する SAS ケーブルのみを使用するようにしてください。詳細は、Sun の Web サイト http://www.sun.com を参照してください。また、この Web サイトで Sun シ ステム用のケーブルを購入することもできます。ケーブルコネクタには特別な形 状の切り欠けが付いており、向きが誤っていると挿入できないようになっていま す。 図 2-1 外付けハードディスクドライブ格納装置への接続に使用する SAS 外部ケーブ ル (SFF-8088 コネクタ)

 HBA をフルハイトのコンピュータシャーシに取り付ける場合は、元のロープロ ファイルの留め具を、HBA 出荷キットに同梱されているフルハイトの留め具と交換します。

注意 – HBA を取り扱う場合は、留め具または端の部分のみを持つようにしてください。

取り付け作業マップ

次の手順では、既存のオペレーティングシステム (OS) 上で HBA を取り付けるため に実行する作業について説明します。

1. バッテリバックアップモジュール (BBU) を取り付けます。

12ページの「バッテリバックアップモジュールの取り付け」を参照してください。

 x64 システムで取り付けを行なっている場合は、次の手順に進みます。SPARC シ ステムで取り付けを行なっている場合は、Open Boot プロンプト (OBP) を使用し てシステム上の現在のデバイスを書き留めます。

14 ページの「SPARC システム上の現在のデバイスの確認」を参照してください。

- 3. HBA とディスクドライブの取り付けと接続を行います。 15ページの「HBA の取り付け」を参照してください。
- 4. HBA ドライバをインストールします。

25 ページの「既存のオペレーティングシステムでのドライバのインストール」を 参照してください。 Sun StorageTek RAID Manager GUI をインストールし、データストレージの管理 を開始します。

Sun StorageTek RAID Manager ソフトウェアをインストールするには、HBA 出 荷キットに含まれている Sun StorageTek RAID Manager CD を使用します。この ソフトウェアのインストールおよび使用方法については、『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。ソフト ウェアの最新バージョンは、次の Web サイトで入手できます。 http://support.intel.com/support/go/sunraid.htm

バッテリバックアップモジュールの取り 付け

必要な工具類:

- ねじを締めるための小型のプラスのねじ回し
- (推奨) 小型のラジオペンチまたはピンセット
- ESD リストストラップ

▼ バッテリバックアップモジュールを取り付ける

- ESD リストストラップを取り付けます。
 9ページの「ESD の監視と取り扱いに関する注意事項」を参照してください。
- 出荷キットの上部にある四角い発泡スチロールを、平らな面を上にして作業面に 置きます。
- 3. HBA を静電気防止袋から取り出し、発泡スチロールの上に置きます。このとき、 ヒートシンクが上に向くようにします。
- HBA を少し持ち上げて、HBA の下側から、BBU キットの 3 本のプラスチック製 ねじを HBA の次の 3 つの取り付け穴に差し込みます。
 - 下部の2つの穴。HBAの右端から約2.5 cm(約1インチ)と約7.5 cm(約3インチ)の位置にあります。
 - 右上の穴。HBA の右端から約 2.5 cm (約1インチ)の位置にあります。

5. 各ねじの上にスペーサを置きます。

HBAのBBU コネクタは、HBAの右端にもっとも近い2つのねじ穴の間にあります。

- 6. BBU モジュールの BBU コネクタの位置を HBA のコネクタに合わせます。 差し込んだねじの位置が、対応する BBU の穴と一致します。
- 7. コネクタが音を立てて所定の位置に収まるまで、BBU モジュールの右端をゆっく り押します。

注意 – 無理に接続しないでください。軽く押してコネクタが入らない場合は、コン ポーネントの位置を調整してからもう一度やり直してください。

- BBU キットから3つのナットを取り出し、それぞれのナットについて次の手順を 実行します。
 - a. ナットをねじに取り付けて、所定の位置にナットを保持します。
 - b. 片方の手で (または小型のラジオペンチやピンセットを使用して) ナットを所定の位置に保持しながら、プラスのねじ回しを HBA の下側に差し込み、プラスチック製ねじを締め付けてナットに取り付けます。
 - c. 残りのナットについても手順 a ~手順 b を繰り返します。

注 – ヒートシンクの近くのねじにナットを取り付けられない場合は、ラジオペンチ またはピンセットを使用します。

注意 – ナットを締め付けすぎないようにしてください。

SPARC システム上の現在のデバイスの 確認

SPARC 以外のシステムにインストールする場合は、15ページの「HBA の取り付け」に進んでください。

▼ 現在のデバイスを確認する

1. Open Boot プロンプト (OBP) を起動し、show-disks コマンドを使用して現在 のデバイスを表示します。

```
{0} ok show-disks
a) /pci@0/pci@0/pci@2/scsi@0/disk
b) /pci@0/pci@1/pci@0/pci@1/pci@0/usb@0,2/storage@2/disk
q) NO SELECTION
Enter Selection, q to quit: q
{0} ok
```

注 – 使用している SPARC システムやカードが差し込まれている PCI-E スロットに よっては、デバイスパスがこの例と異なる場合があります。

2. デバイスを書き留めます。

これは、HBA を取り付けたあとで、どのデバイスが HBA であるかを判断する場合に役立ちます。

HBA の取り付け

注 – Sun SPARC Enterprise T5120、T5220、T5140、および T5240 サーバーでの HBA の取り付けについては、ご購入先にお問い合わせください。

▼ HBA を取り付ける

- 1. コンピュータの電源を切り、電源コードを抜きます。
- 2. メーカーの指示に従い、キャビネットを開けます。
- 3. この HBA と互換性のある使用可能な x8 PCI Express 拡張スロットを選択し、そのスロットカバーを外します (図 2-3 を参照)。

注意 – アースした金属部品に触れてから、HBA を取り扱ってください。

注 – Sun StorageTek SAS RAID 外部 HBA およびコンピュータシステムハードウェ アは図 2-3 とわずかに異なる場合があります。 図 2-3

 図 2-4 に示すように、HBA を PCI Express 拡張スロットに挿入し、カチッと音が して所定の位置に収まるまで十分に、ゆっくり力を入れて押します。

正しく取り付けられると、HBA は拡張スロットと同じ高さになります。

- 図 2-4 Sun StorageTek SAS RAID 外部 HBA の取り付け
- 5. コンピュータに付属の固定用部品 (ねじ、レバーなど) を使用して、留め具を x8 PCI Express スロットに固定します。
- コンピュータのディスクアクティビティー LED のケーブルを HBA の LED コネ クタへ接続します。

LED ケーブルのプラスのリード線 (通常は赤色または赤色のしま模様が入ったワイヤ) がピン 1 に接続されていることを確認します。

7. コンピュータのキャビネットを閉じて、電源コードを再接続してから、17 ページ の「ディスクドライブ格納装置の接続」に進みます。

ディスクドライブ格納装置の接続

Sun StorageTek SAS RAID 外部 HBA を外付けディスクドライブ格納装置に接続する 場合は、高品質ケーブルを使用する必要があります。Sun が提供するケーブルのみを 使用するようにしてください。詳細は、Sun の Web サイト http://www.sun.com を参照してください。また、この Web サイトでケーブルを購入することもできま す。

▼ ディスクドライブ格納装置に接続する

- 1. 格納装置に付属するドキュメントの手順に従って、外付けディスクドライブ格納 装置に SAS または SATA ディスクドライブを取り付けます。
- HBA を外付けディスクドライブ格納装置に接続する場合は、SAS 外部ケーブル(図 2-1)を使用する必要があります。

HBA の取り付け状態のテスト

この節は、次の項で構成されています。

- 17ページの「SPARC システムで HBA の取り付け状態をテストする」
- 20ページの「x64 システムで HBA の取り付け状態をテストする」

▼ SPARC システムで HBA の取り付け状態をテスト する

- 1. コンピュータとストレージシステムの電源を入れます。
 - a. すべてのハードディスクドライブがしっかり取り付けられていることを確認し ます。
 - b. すべての電源コードをしっかり接続し、適切な電源に差し込みます。
 - c. ディスクドライブ格納装置の電源を入れ、ストレージ格納装置に存在するすべての使用可能な HDD 状態インジケータが正常であることを確認します。
 - d. コンピュータシステムの電源を入れます。

2. Open Boot プロンプト (OBP) を起動し、show-disks コマンドを使用して現在 のデバイスを表示します。

次の例では、HBA は表示された最初のデバイスです。

{0} ok show-disks
a) /pci@0/pci@0/pci@8/pci@0/pci@8/scsi@0/disk
b) /pci@0/pci@0/pci@2/scsi@0/disk
c) /pci@0/pci@1/pci@0/pci@1/pci@0/usb@0,2/storage@2/disk
q) NO SELECTION
Enter Selection, q to quit: Chassis | critical: V_VCORE at /SYS/MB has
exceeded high warning threshold.
valid choice: a...c, q to quit q

注 – 使用している SPARC システムやカードが差し込まれている PCI-E スロットに よっては、デバイスパスがこの例と異なる場合があります。

3. select コマンドを使用して HBA のデバイスノードを選択し、プロンプトが表示 されたら Enter を押して画面上の指示に従います。

注 – このコマンドを実行する場合は、次の例に示すように HBA のデバイスパスから /disk を省きます。

{0} ok select /pci@0/pci@8/pci@0/pci@8/scsi@0
Waiting for AAC Controller to start: Started

Config Changes:

1 ->One or more device either moved or removed or not responding or added Press <ENTER> to accept current config changes - with in 30 seconds (Default - Ignore changes and check the setup)

<ENTER> Pressed. Current Config is accepted

 HBA のファームウェアバージョンを表示するには、show-version コマンドを 使用します。

{0} ok show-version
AAC Kernel Version: 15815

{0} ok

5. 追加の構成情報を表示するには、.properties コマンドを使用してデバイスの プロパティーを表示します。

```
{0} ok .properties
firmware-version 15815
assigned-addresses 820f0010 00000000 00e00000 00000000 00200000
820f0030 0000000 00d00000 0000000 00080000
compatible pciex9005,285.108e.286.9
pciex9005,285.108e.286
pciex9005,285.9
pciex9005,285
pciexclass,010400
pciexclass,0104
model AAC,285
030f0010 0000000 0000000 0000000 00200000
version 0.00.01
wide 00000010
device_type scsi-2
name scsi
fcode-rom-offset 0000fe00
port-type PCIE-Endpoint
interrupts 00000001
cache-line-size 00000010
class-code 00010400
subsystem-id 00000286
subsystem-vendor-id 0000108e
revision-id 00000009
device-id 00000285
vendor-id 00009005
{0} ok
```

6. unselect-dev コマンドを使用して root ノードに戻ります。

{0} ok **unselect-dev**

注 – この時点では、ボリュームは作成されておらず、probe-scsi-all コマンドの 出力にはドライブは表示されません。

エラーや問題が検出されない場合は、22 ページの「次の手順」に進み、取り付け作 業を完了します。問題が検出された場合は、問題を解決して HBA のテストをもう一 度実行してから次に進みます。

▼ x64 システムで HBA の取り付け状態をテストす る

- 1. 次の手順に従って、コンピュータとストレージシステムの電源を入れます。
 - a. すべてのハードディスクドライブがしっかり取り付けられていることを確認し ます。
 - b. すべての電源コードをしっかり接続し、適切な電源に差し込みます。
 - c. 必要に応じて、ディスクドライブ格納装置の電源を入れ、ストレージ格納装置 に存在するすべての使用可能な HDD 状態インジケータが正常であることを確 認します。
 - d. コンピュータシステムの電源を入れます。
- 2. 次の手順に従って、BIOS RAID 構成ユーティリティー (RCU) を起動します。
 - a. POST 中にプロンプトが表示されたら、Ctrl+A を押します。
 - b. コンピュータが起動シーケンスを続行している間に、起動メッセージを確認して HBA のファームウェアバージョンを判断します。

次の例に示すような起動メッセージが表示されます。このメッセージは、 ファームウェアバージョンを示します(次の例では、FW Build 15815)。

Adaptec RAID BIOS V5.3-0 [Build 15815] (c) 1998-2008 Adaptec, Inc. All Rights Reserved <<<Press <Ctrl><A> for Adaptec RAID Adaptec RAID Configuration Utility will be invoked after initialization. Booting the Controller Kernel....Controller started Controller #00: Sun STK RAID EXT at PCI Slot:02, Bus:04, Dev:00, Func:00 Waiting for Controller to Start....Controller started Controller monitor V5.3-0[**15815**], Controller kernel V5.3-0[**15815**] Battery Backup Unit Present Controller POST operation successful Controller Memory Size: 256 MB Controller Serial Number: 00721EC0006 Controller WWN: 5000E0CE21907000 No Logical Drives Found

- c. ユーティリティーの起動時に、コンピュータに取り付けられている HBA の一 覧を確認します。
- d. 複数の HBA が表示されている場合は、テストの対象とする HBA を 1 つ選択 して Enter を押します。
- 「Array Configuration Utility」を強調表示してから Enter を押して、アレイ構成 ユーティリティー (ACU) を起動します。

このあとに、設定の変更を示す画面が表示される場合があります。HBA とター ゲットを新しく取り付けた場合は、この動作は正常です。

- 4. プロンプトで Enter を押します。
- 次の手順に従って、接続されたすべての HDD が HBA によって検出されたことを 確認します。
 - a. メインメニューで「Initialize Drives」を強調表示して、Enter を押します。
 - b. 「Select drives for initialization」列で、接続されたすべての HDD が表示され ていることを確認します。
 - c. 確認のために初期化するドライブを選択します。

ここですべてのドライブを初期化することも、あとでアレイの作成準備ができ てから初期化することもできます。

- 次の手順に従って、すべての HDD がアレイ作成に使用できることを確認します。
 - a. メインメニューページに戻り、「Create Array」を強調表示して、Enter を押します。
 - b. 「Select drives to create Array」列で、接続されたすべての HDD がアレイ作 成に使用できることを確認します。
 - c. 2 ~ 3 台のドライブを強調表示して、スペースバーを押します。 ドライブが右の列に移動し、アレイ作成の準備ができたことを確認します。
- 7. Esc を押して終了します。

アレイの作成はあとで行います。

- 8. 次の手順に従って、HBA のアラームをテストします。
 - a. コントローラの「Options」メニューが表示されるまで Esc を押します。
 - b. 「Serial Select」を強調表示して、Enter を押します。
 - c. 「Controller Configuration」を強調表示して、Enter を押します。
 - d. 「Alarm Control...」を強調表示して、Enter を押します。
 - e. 「Test」を強調表示して、Enter を押します。 アラームが 3 秒間鳴ることを確認します。
- 9. 次の手順に従って、対象となるすべてのデバイスが存在することを確認します。
 - a. コントローラの「Options」メニューが表示されるまで Esc を押します。
 - b. 「Disk Utilities」を強調表示して、Enter を押します。
 HBA が SAS デバイスをスキャンしていることが示されます。
 - c. ストレージ構成に HDD や格納装置管理デバイスが含まれている場合には、ス キャンの完了後、接続されたこれらの対象デバイスがすべて表示されているこ とを確認します。
 - d. Esc を押して終了します。

問題が検出された場合は、問題を解決して HBA のテストをもう一度実行してから次 に進みます。

次の手順

取り付けを完了するには、25ページの「既存のオペレーティングシステムでのドラ イバのインストール」に進みます。

ハードウェアの取り外し

HBA の取り外しに必要な作業の手順を次に示します。障害が発生している HBA を 交換する必要がある場合、この節に示す手順に従い、70 ページの「HBA を交換する 場合の最良事例」を参照して、ハードウェアを取り外します。

注意 – 接続されたアレイが論理ドライブを「縮退」状態から再構築しているときには、HBA を決して取り外さないでください。

▼HBA の取り外しの準備をする

- コンピュータで OS が動作している場合は、HBA でのすべての入出力動作を停止 します。
- HBA によって実行中のすべてのトランザクション (移行、再構築、確認など) を完 了します。
- 3. OS から正常にログアウトして、コンピュータを停止します。
- 4. コンピュータの電源コードを取り外します。
- 5. HBA の外付けディスクドライブ格納装置の電源を切ります。
- 6. HBA から SAS ケーブルを取り外します。

▼ HBA を取り外す

- HBA の留め具をシャーシに固定している固定用部品 (ねじ、クリップなど)を取り 外します。
- 2. 留め具の上部を片手で押さえ、HBA の背面をもう一方の手で押さえます。
- 3. HBA が PCI Express 拡張スロットから外れるまで、まっすぐ引き上げます。
- 4. HBA を持ち上げてコンピュータのシャーシから出します。

第3章

既存のオペレーティングシステムで のドライバのインストール

この章では、既存のオペレーティングシステムで HBA ドライバをインストールする 方法について説明します。

この章は、次の節で構成されています。

- 25 ページの「HBA ドライバのインストールの準備」
- 26 ページの「既存の OS でのドライバのインストール」

HBA ドライバのインストールの準備

最初に次の手順を実行して、ドライバのインストールの準備をします。

1. HBA とディスクドライブの取り付けと接続を行います。

9ページの「ハードウェアの取り付けと取り外し」を参照してください。

注 - サポートしているオペレーティングシステムのバージョンの最新情報について は、http://support.intel.com/support/go/sunraid.htm を参照してくださ い。

 HBA 出荷キットからドライバ CD を取り出すか、 http://support.intel.com/support/go/sunraid.htm で最新バージョンの ドライバを入手します。

既存の OS でのドライバのインストール

ドライバは、各種のオペレーティングシステムでインストールすることができます。 この節は、次の項で構成されています。

- 26 ページの「Windows OS でドライバをインストールする」
- 26 ページの「Red Hat または SUSE Linux OS でドライバをインストールする」
- 27 ページの「x64 システムで Solaris OS にドライバをインストールする」
- 28 ページの「VMware テクノロジでドライバをインストールする」

▼ Windows OS でドライバをインストールする

- Windows を起動または再起動します。
 「Found New Hardware Wizard」が開き、ドライバを検索します。
- 2. ドライバ CD を挿入します。
- 3. ソースを選択して、「Next」をクリックします。
- 4. 「Next」をクリックし、もう一度「Next」をクリックします。
- 5. 画面の指示に従い、ドライバのインストールを完了します。
- 6. ドライバ CD を取り出し、コンピュータを再起動します。
- ハードディスクを構成および管理するには、次の Web サイトにある『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

▼ Red Hat または SUSE Linux OS でドライバをイ ンストールする

- 1. ドライバ CD を挿入します。
- CD をマウントします。
 たとえば、次のように入力して CD をマウントします。
 Red Hat の場合: mount /dev/cdrom /mnt/cdrom
 SUSE の場合: mount /dev/cdrom /media/cdrom

3. モジュール RPM をインストールします。

rpm -Uvh mount-point/xxx/yyy.rpm

ここで、*mount-point* は Linux システムの特定のマウントポイント、*xxx* はドライバのパス、*yyy*.rpm は RPM ファイルを表しています。

- 4. コンピュータを再起動して、ドライバが正常にロードされることを確認します。
- 5. fdisk、mkfs を実行して、すべての新しいディスクドライブのマウントポイント を作成します。
- ハードディスクを構成および管理するには、次の Web サイトにある『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

▼ x64 システムで Solaris OS にドライバをインス トールする

この HBA は x64 ベースのシステムで Solaris 10 8/07 (s10u4) OS 以降をサポートして います。Solaris 10 8/07 OS では、ユーザーの特別な操作は不要です。ただし、 Solaris OS のインストール後は、http://www.sunsolve.com Web サイトから最新 のパッチを入手してインストールしてください。

ハードディスクを構成および管理するには、次の Web サイトにある『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。 http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

▼ SPARC システムで Solaris OS にドライバをイン ストールする

この HBA は SPARC システムで Solaris 10 5/08 (s10u5) OS 以降をサポートしていま す。SPARC システムで Solaris OS にドライバをインストールするには、次の手順を 実行してください。

- 1. ドライバ CD を挿入します。
- 2. CD をマウントします。

詳細は、使用している OS のドキュメントを参照してください。

- 3. aac ドライバをインストールします。
- 4. コンピュータを再起動して、ドライバが正常にロードされることを確認します。

5. ハードディスクを構成および管理するには、次の Web サイトにある『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してくださ い。http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

▼ VMware テクノロジでドライバをインストールす る

注 – VMware ESX Server が提供する組み込みドライバは、ほとんどのアプリケーションに適しています。次の手順は、更新されたドライバが必要な場合に実行します。

- 1. コンピュータを起動してから、ドライバ CD を挿入します。
- VMware ESX Server のコンソール画面で、CD をマウントします。
 たとえば、次のように入力します。
 mount -r /dev/cdrom /mnt/cdrom
- モジュール RPM をインストールします。 rpm -ivh /mnt/cdrom/xxx/yyy.rpm ここで、xxx はドライバのパス、yyy.rpm は RPM ファイルを表しています。
- 4. コンピュータを再起動して、ドライバメディアを取り出します。

注 – Sun StorageTek RAID Manager GUI は、VMware テクノロジではサポートされ ていません。アレイの作成と管理には、コマンド行インタフェースおよび BIOS ユー ティリティーを使用します。次の Web サイトにある『Uniform Command-Line Interface Users's Guide』を参照してください。 http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

次の手順

次のいずれかを実行します。

 (VMware テクノロジを使用していない場合) Sun StorageTek RAID Manager GUI をインストールおよび使用して、ディスク格納装置にアレイを作成します。『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。 ■ x64 システムを使用している場合は、BIOS ユーティリティーを使用してディスク 格納装置にアレイを作成することもできます。45 ページの「BIOS RAID 構成ユー ティリティーの使用方法」を参照してください。

第4章

既知の問題

この章では、このマニュアルのここまでの章の内容に関する最新の補足情報について 説明します。

この章は、次の内容で構成されています。

- 31ページの「出荷キットの問題」
- 32ページの「BIOS ユーティリティーの問題」
- 34ページの「パフォーマンスの問題」
- 35 ページの「JBOD の問題」

出荷キットの問題

この節では、出荷キットの既知の問題について説明します。

一部またはすべての CD が HBA 出荷キットに含まれていない

回避方法 - http://support.intel.com/support/go/sunraid.htm で最新のド ライバとソフトウェアを入手できます。

BIOS ユーティリティーの問題

次に、BIOS RAID 構成ユーティリティーに関する既知の問題を示します。

- 32ページの「BIOS ユーティリティーを使用してアレイを作成すると、BIOS の起動順序が変更される」
- 32 ページの「BIOS ユーティリティーでホットプラグ機能が機能しない」
- 33ページの「BIOS ユーティリティーに誤った文字が表示される (6582371)」
- 33 ページの「BIOS ユーティリティーに入ろうとすると、システム BIOS メッセージが表示される (6574264)」
- 33 ページの「BIOS ユーティリティーで RAID ボリュームを作成すると、デフォルトの設定がパフォーマンスに影響を及ぼすことがある (6686894)」
- 34 ページの「Sun Fire X4600 サーバーに HBA を取り付けたあと、システム BIOS がハングアップする (6656647)」
- 34 ページの「Sun Fire X4600 に 2 つの HBA が取り付けられている場合、RAID ド ライバが入出力動作中にパニック状態になる (6581059)」

BIOS ユーティリティーを使用してアレイを作成 すると、BIOS の起動順序が変更される

回避方法 - アレイを作成したあとに、BIOS の設定を確認して起動順序が正しいこと を確認し、必要に応じて変更します。詳細は、69 ページの「論理ドライブの起動順 序を制御する場合の最良事例」を参照してください。

BIOS ユーティリティーでホットプラグ機能が機能しない

回避方法 - BIOS RAID 構成ユーティリティーでは格納装置のホットプラグはサポー トされていません。SAS/SATA ハードディスクドライブ (HDD) のホットプラグは、 ハードディスク格納装置内および 46 ページの「BIOS RAID 構成ユーティリティーで のホットプラグの制限事項および条件の理解」に示された条件でのみサポートされて います。

BIOS ユーティリティーに誤った文字が表示される (6582371)

プラットフォームのシリアルポートまたは BMC ポートを介して監視する場合、BIOS RAID 構成ユーティリティーの出力に壊れた文字または誤った文字が表示されます。 これらの文字は、最終的には画面全体を上書きして、メニューオプションが読めなく なります。

回避方法 - Java コンソール、またはモニターとキーボードを使用して、BIOS RAID 構成ユーティリティーの出力を表示します。

BIOS ユーティリティーに入ろうとすると、シス テム BIOS メッセージが表示される (6574264)

複数の Sun StorageTek SAS RAID HBA が取り付けられている場合に、POST 中にプロンプトが表示されたところで Ctrl+A を押して BIOS RAID 構成ユーティリティーに入ろうとすると、「Option ROM Memory Space Exhausted」というメッセージが表示されることがあります。

回避方法 - メッセージを無視して続行します。悪影響を及ぼすことはありません。

BIOS ユーティリティーで RAID ボリュームを作 成すると、デフォルトの設定がパフォーマンスに 影響を及ぼすことがある (6686894)

BIOS RAID 構成ユーティリティーで RAID ボリュームを構築すると、ユーティリ ティーのデフォルトの設定によって、Build/Verify 操作の優先度が Low に定義され ます。この設定は、RAID の構成が動作中の OS に与える影響を最小限に抑えます が、ディスク数が多いかディスクサイズが大きい論理ドライブでは、完了までに時間 がかかる原因にもなります。

回避方法 - より高速に RAID を構築する必要がある場合は、次のいずれかの手順を 実行します。

- BIOS ユーティリティーの RAID ボリュームの作成時間で、Build/Verify 操作の優 先度を Low と定義した設定を変更します。
- BIOS ユーティリティーを使用して RAID ボリュームを作成し、RAID ボリュームの起動が終了したら、Sun StorageTek RAID Manager GUI にアクセスして、GUI で優先度 Low の設定を変更します。

Sun Fire X4600 サーバーに HBA を取り付けたあ と、システム BIOS がハングアップする (6656647)

Sun Fire X4600 サーバーのスロット 2/3/4 に HBA を取り付けると、BIOS を version 47 (0ABHA047) にアップグレードしたときに、BIOS がハングアップすることがあります。この BIOS アップグレードを実行したあとは、システムが起動しなくなります。

回避方法 - Sun Fire X4600 サーバーのスロット 5/6/7 に HBA を取り付けます。

Sun Fire X4600 に 2 つの HBA が取り付けられて いる場合、RAID ドライバが入出力動作中にパ ニック状態になる (6581059)

これは、Sun Fire X4600 サーバーの BIOS バージョンが古いために発生します。

回避方法 - Sun Fire X4600 サーバーのシステム BIOS を最新の BIOS バージョンに更新します。

パフォーマンスの問題

この節では、パフォーマンスに関する既知の問題について説明します。

- 34 ページの「同時書き込みの実行時に ZFS によって HBA の NVRAM が強制的に フラッシュされ、パフォーマンスに影響を与える」
- 35 ページの「タスクを構築および再構築すると、受信入出力要求が待機状態になる (6735981)」

同時書き込みの実行時に ZFS によって HBA の NVRAM が強制的にフラッシュされ、パフォーマ ンスに影響を与える

回避方法 - Solaris 10 8/07 (s10u4) では、Solaris の /etc/system ファイルで ZFS グローバル設定を定義することによって、ZFS が HBA の NVRAM に対して SYNCHRONIZE CACHE コマンドを実行するのを防ぐことができます。この設定に よって ZFS のパフォーマンスは向上し、Solaris 10 8/07 には適した設定です。ただ し、Solaris OS の後続のリリースでは、この設定は必要ありません。この設定は、 ZFS によって管理されるすべてのデバイスが非揮発性キャッシュで管理されている場 合にのみ使用する必要があります。

ZFS グローバル設定を定義するには、次の手順を実行します。

1. HBA が取り付けられているシステムで、Solaris の /etc/system ファイルに次 の行を追加します。

set zfs:zfs_nocacheflush=1

注 - このグローバル設定は、HBA が取り付けられているシステム上のすべての ZFS ファイルに影響します。ZFS が揮発性キャッシュで管理しているディスクがある場合には、そのディスクのデータが危険にさらされるため、決してこの設定を定義しないでください。

2. システムを再起動します。

システムを再起動する方法の詳細は、使用しているシステムのドキュメントを参照してください。

タスクを構築および再構築すると、受信入出力要 求が待機状態になる (6735981)

RAID 論理ドライブの複数の構築および再構築を同時に実行すると、その構築および 再構築タスクによって受信入出力要求が待機状態になることがあります。構築および 再構築タスクの実行中は、HBA がハード電源再投入から復旧できなくなる場合があ ります。

回避方法 - 構築のタイミングをずらすことによって、同時に実行する構築の数を減 らします。

JBOD の問題

次に、JBOD に関する既知の問題を示します。

■ 36 ページの「JBOD のディスクの検出に関する問題」

■ 36 ページの「システム起動時間中に、JBOD のアフィリエーションによって HBA が操作不可能になり、システムがパニック状態になる (6723287)」

JBOD のディスクの検出に関する問題

回避方法 - 任意の JBOD のディスクの検出に問題がある場合は、次の手順を実行します。

1. JBOD の電源を切ってすぐに入れ直し、アフィリエーションを確実に解放します。

アフィリエーションの詳細は、67 ページの「SATA ディスクを格納した JBOD の 接続」を参照してください。

- 2. JBOD の電源の再投入が行われていない場合は、JBOD を切り離し、電源を切っ てすぐに入れ直し、ふたたび接続します。
- それでもディスクが検出されない場合には、JBOD を切り離し、JBOD のケーブ ルを外した状態でホストシステムを完全に立ち上げます。
 これによって、カードにディスクがまったく接続されていない状態になります。
- 4. Sun StorageTek RAID Manager GUI を起動し、カードにディスクが接続されてい ないことを GUI で確認します。
- 5. ケーブルを再接続し、ディスクが表示され、カードに再接続されていることを GUI で確認します。

任意のチャネルにより多くのディスクが割り当てられていると、GUI にディスクが表示されるまでの時間が長くなります。これには数分かかる場合もあります。

システム起動時間中に、JBOD のアフィリエー ションによって HBA が操作不可能になり、シス テムがパニック状態になる (6723287)

SATA ディスクを格納した JBOD を HBA に接続すると、JBOD でアフィリエーションが発生し、起動時間中に HBA が操作不可能になり、Solaris システムがパニック状態になることがあります。

回避方法 – SATA ディスクを格納した JBOD を HBA に接続する前に、JBOD の電源 を切ってすぐに入れ直し、アフィリエーションを解放します。JBOD の障害追跡の詳 細は、36 ページの「JBOD のディスクの検出に関する問題」を参照してください。ア フィリエーションの詳細は、67 ページの「SATA ディスクを格納した JBOD の接 続」を参照してください。

付録A

構成規則

この付録では、Sun StorageTek SAS RAID 外部 HBA の構成規則について説明します。

注 – Sun StorageTek SAS RAID 外部 HBA には Sun が認可したデバイスおよび配線のみを使用してください。

この付録は、次の節で構成されています。

- 37ページの「対象デバイス」
- 38ページの「配線」

対象デバイス

サポートされる対象デバイスには、次の規則が適用されます。

- 格納装置:
 - SAS/SATA JBOD
 - SES-2 格納装置管理をサポートする SAS/SATA JBOD
 - Sun Storage J4500 JBOD HBA ごとに最大2台(各ワイドポートに1台)、または HBA ごとに最大2台をカスケード接続(1つのワイドポートから2台をカスケード接続)
 - Sun Storage J4200 JBOD HBA ごとに最大 8 台をカスケード接続 (各ワイド ポートから 4 台をカスケード接続)
- SAS/SATA HDD:
 - SAS エクスパンダを使用して HBA ごとに最大 128 台の HDD

注 – 同じ論理 RAID アレイでの SATA HDD と SAS HDD の混在はサポートされて いません。同じ格納装置内で SAS HDD と SATA HDD が混在する構成も、サポート されている構成ではありますが、使用しないことをお勧めします。

配線

- SAS 外部ケーブル、SFF-8088 のホスト側コネクタ付き (使用するシステムに付属)
- 最長 6 m を推奨

<u>付録B</u>

HBA の仕様

この付録では、Sun StorageTek SAS RAID 外部 HBA の仕様について説明します。この付録は、次の節で構成されています。

- 39ページの「物理的なサイズ」
- 40ページの「環境仕様」
- 40 ページの「DC 電源の要件」
- 40ページの「電流の要件」
- 40 ページの「性能仕様」
- 41 ページの「コネクタピンの定義」

物理的なサイズ

PCI ロープロファイル MD2 仕様に準拠しています。

- 高さ: 67 mm
- 長さ:167 mm

環境仕様

注 - バッテリバックアップユニット (BBU) を使用する場合は、周囲温度が 40 ℃ を 超えないようにしてください。

表 B-1 環境仕様

強制通気がない場合の周囲温度	$0\sim 40~^\circ\mathrm{C}$
強制通気がある場合の周囲温度	$0\sim 55~{}^\circ\!{ m C}$
相対湿度	10~90%、結露なし
高度	最高 3000 m

注 – 強制通気を行うことを推奨します。

DC 電源の要件

PCI-Express、DC 電圧 3.3 V ± 9%、12 V ± 8%

電流の要件

DC 3.3 V 時に 1.04 A、DC 12.0 V 時に 0.98 A

性能仕様

Serial Attached SCSI (SAS) バスでは、次の各層が定義されています。

■ 物理層: 2 セットの差動型ライン (受信セット1つと送信セット1つの、合計4ワ イヤ)で構成されます。この層では、ケーブル、コネクタ、送受信器 (送信器 / 受 信器)の特性が定義されています。

- PHY 層: 差動型送受信器回路 (IC) を物理層に接続します。
- リンク層
- ポート層
- アプリケーション層

外部コネクタは4つの物理リンクを受け付け、ケーブルは1~4本の物理リンクを保持できます。内部コネクタが定義されています。また、100 Ω (+ 15 Ω)の差動型インピーダンスケーブルを介して、1.5 Gbps と 3.0 Gbps の 2 つのデータ転送速度が定義されています。

SAS では、コネクタ受容体およびコネクタプラグを含めて、Serial ATA 物理インタフェースを使用しています。SAS は、最高電圧レベル 1.2 V (Tx 電圧 = 800 ~ 1600 mV、Rx 電圧 = 275 ~ 1600mV) で、8B/10B を使用してデータを転送します。バイト順序は、SAS ではビッグエンディアン、SATA ではリトルエンディアンです。SAS は 32 ビット CRC を使用します。SAS は LVDS を使用します。

コネクタピンの定義

SAS のピン配列

2 種類のポートが定義されています。ナローポートはナローリンクを介して通信を行い、送受信ペアは1つのみです。ワイドポートはワイドリンクを介して通信を行い、送受信ペアは複数あります。これらのポートは PHY 層にあり、リンクは物理層にあります。

表 B-2 SAS のピン配列

信号名	物理リンク1本	物理リンク2本	物理リンク3本	物理リンク 4 本
Rx 0+	S1	S1	S1	S1
Rx 0-	S2	S2	S2	S2
Rx 1+	なし	S3	S3	S3
Rx 1-	なし	S4	S4	S4
Rx 2+	なし	なし	S5	S5
Rx 2-	なし	なし	S6	S6
Rx 3+	なし	なし	なし	S7
Rx 3-	なし	なし	なし	S8

信号名	物理リンク1本	物理リンク2本	物理リンク3本	物理リンク 4 本
Tx 3-	なし	なし	なし	S9
Tx 3+	なし	なし	なし	S10
Tx 2-	なし	なし	S11	S11
Tx 2+	なし	なし	S12	S12
Tx 1-	なし	S13	S13	S13
Tx 1+	なし	S14	S14	S14
Tx 0-	S15	S15	S15	S15
Tx 0+	S16	S16	S16	S16
Signal Ground	$G1 \sim G9$	$G1 \sim G9$	$G1 \sim G9$	$G1 \sim G9$
Chassis Ground	ハウジング	ハウジング	ハウジング	ハウジング

表 B-2 SAS のピン配列 (続き)

SATA のピン配列

Serial ATA (SATA) バスは、データライン用コネクタ1 つと電力ライン用コネクタ1 つの、2 つの独立したコネクタにわたって定義されています。また、SATA ハードド ライブには従来の PATA 電源接続に使用する3 つめのコネクタがある場合もありま す。SATA 電源の代わりに PATA 電源コネクタを使用して、SATA-1 電源接続より耐 久性と信頼性の高い接続を行うこともできます。

表 B-3 SATA のデータピン配列

ピン番号	信号名	信号の説明
1	GND	アース
2	A+	送信 +
3	A-	送信 -
4	GND	アース
5	В-	受信 -
6	B+	受信 +
7	GND	アース

表 B-4 SATA の電源ピン配列

ピン番号	信号名	信号の説明
1	V33	3.3 V 電源
2	V33	3.3 V 電源
3	V33	3.3 V 電源、プリチャージ、第 2 メイト
4	Ground	第1メイト
5	Ground	第2メイト
6	Ground	第3メイト
7	V5	5 V 電源、プリチャージ、第 2 メイト
8	V5	5 V 電源
9	V5	5 V 電源
10	Ground	第2メイト
11	予約済み	-
12	Ground	第1メイト
13	V12	12 V 電源、プリチャージ、第 2 メイト
14	V12	12 V 電源
15	V12	12 V 電源
付録C

BIOS RAID 構成ユーティリティー の使用方法

BIOS RAID 構成ユーティリティーは BIOS ベースのユーティリティーで、コント ローラ、ディスクドライブなどのデバイスおよびアレイの作成と管理に使用できま す。

注 – SPARC システムを使用している場合は、BIOS RAID 構成ユーティリティーを使用できません。代わりに、Sun StorageTek RAID Manager グラフィカルユーザーインタフェース (GUI) を使用してください。詳細は、次の Web サイトにある『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』参照してください。 http://docs.sun.com/app/docs/prod/stortek.raid.hba#hic

注 - コンピュータの BIOS に精通した上級ユーザーでない場合は、BIOS RAID 構成 ユーティリティーのツールを使用しないでください。代わりに、Sun StorageTek RAID Manager グラフィカルユーザーインタフェースを使用してください。

この付録は、次の節で構成されています。

- 46 ページの「BIOS RAID 構成ユーティリティーの概要」
- 46ページの「BIOS RAID 構成ユーティリティーでのホットプラグの制限事項および条件の理解」
- 48 ページの「BIOS RAID 構成ユーティリティーの実行」
- 49 ページの「ACU を使用したアレイの作成と管理」
- 53 ページの「-Select ユーティリティーを使用した HBA 設定の変更」
- 56ページの「ディスクユーティリティーを使用したディスクドライブのフォーマットと検証」
- 57 ページの「ディスクユーティリティーでディスクドライブの位置を確認する」
- 58 ページの「ディスクユーティリティーでディスクドライブを識別する」
- 59 ページの「BIOS ベースのイベントログの表示」

BIOS RAID 構成ユーティリティーの概 要

BIOS RAID 構成ユーティリティーは、次のツールで構成されています。

- アレイ構成ユーティリティー (ACU) アレイの作成と管理、ディスクドライブの 初期化と再スキャンに使用します。49 ページの「ACU を使用したアレイの作成と 管理」を参照してください。
- -Select ユーティリティー SerialSelect または SATASelect で、HBA とディスクド ライブの設定の変更に使用します。53 ページの「-Select ユーティリティーを使用 した HBA 設定の変更」を参照してください。
- ディスクユーティリティー ディスクドライブのフォーマットと検証に使用します。56 ページの「ディスクユーティリティーを使用したディスクドライブのフォーマットと検証」を参照してください。

BIOS RAID 構成ユーティリティーでの ホットプラグの制限事項および条件の理 解

ハードディスク格納装置のホットプラグは、BIOS RAID 構成ユーティリティーでは サポートされていません。ただし、SAS/SATA ハードディスクドライブ (HDD) の ホットプラグ操作は、ハードディスク格納装置内でのみサポートされていますが、次 に指定した条件を満たす必要があります。

- 47 ページの「ホットアンプラグによる取り外しの条件」
- 47 ページの「ホットプラグによる追加の条件」
- 47 ページの「ホットアンプラグおよびホットプラグによる交換/再挿入の条件」

注 - コントローラが論理ドライブ上で処理 (RAID ボリュームの構築、再構築、また は移行)を実行中でビジー状態である間は、ハードディスクドライブのホットプラグ はサポートされません。

ホットアンプラグによる取り外しの条件

HDD のホットアンプラグ(取り外し)は、次の条件下でサポートされています。

- 取り外すハードディスクドライブが論理ドライブの一部ではなく、状態が 「available」である必要があります。
- 格納装置からハードディスクドライブを取り外したあとに、アレイ構成ユーティ リティー (ACU)のメインメニューから「Rescan Drives」オプションを使用して、 バスのスキャンを実行する必要があります。
- ディスクユーティリティーによって、接続された対象デバイスの正しい構成が報告されていることを確認する必要があります。

ホットプラグによる追加の条件

HDD のホットプラグ (追加) は、次の条件下でサポートされています。

- ハードディスクドライブを格納装置に追加したあとに、ACUのメインメニューから「Rescan Drives」オプションを使用して、バスのスキャンを実行する必要があります。
- ディスクユーティリティーによって、接続された対象デバイスの正しい構成が報告されていることを確認する必要があります。

ホットアンプラグおよびホットプラグによる交換/ 再挿入の条件

HDD のホットアンプラグおよびプラグ (交換/再挿入) は、次の条件下でサポートされています。

- 取り外すハードディスクドライブが論理ドライブの一部ではなく、状態が 「available」である必要があります。
- ハードディスクドライブを取り外し、同じディスクドライブまたは新しいディス クドライブを同じスロットまたは別の未使用のスロットのいずれかに挿入する場 合は、次のように、取り外しと交換の手順の間にバスのスキャンを実行する必要 があります。
 - a. 選択したハードディスクドライブを取り外します。
 - b. ACU の「Rescan Drives」オプションを使用してバスのスキャンを完了しま す。
 - c. ディスクユーティリティーによって、接続された対象デバイスの正しい構成が 報告されていることを確認します。

- d. ハードディスク (新しいものまたは同じもの) を格納装置のスロット (同じス ロットまたは別の未使用スロット) に交換/再挿入します。
- e. ACU の「Rescan Drives」オプションを使用してバスのスキャンを完了しま す。
- f. ディスクユーティリティーによって、接続された対象デバイスの正しい構成が 報告されていることを確認します。

BIOS RAID 構成ユーティリティーの実 行

この節では、BIOS RAID 構成ユーティリティーの起動とナビゲートの方法について 説明します。この節は、次の項で構成されています。

- 48 ページの「BIOS RAID 構成ユーティリティーを起動する」
- 49 ページの「BIOS RAID 構成ユーティリティーをナビゲートする」

▼BIOS RAID 構成ユーティリティーを起動する

- 1. HBA が RAID 格納装置に接続されている場合は、コンピュータの電源を入れる前 に接続先のすべての格納装置の電源を入れます。
- 2. コンピュータを起動または再起動します。
- 3. プロンプトが表示されたら、Ctrl+A を押します。

起動時にシステムのメモリーが不足していると、次のメッセージが表示されます。

BIOS RAID Configuration Utility will load after system initialization. Please wait... Or press <Enter> Key to attempt loading the utility forcibly [Generally, not recommended]

注 – 新しい HBA を取り付けたあと、最初にコンピュータの電源を入れたときに、 BIOS にシステムの構成と一致しない構成が表示される場合があります。これは正常 です。

- ▼ BIOS RAID 構成ユーティリティーをナビゲートす る
 - ユーティリティーのメニューのナビゲートには、キーボードの矢印、Enter、Esc などのキーを使用します。

BIOS RAID 構成ユーティリティーのツールはすべてメニューから使用でき、作業 を完了するために必要な指示が画面上に表示されます。

ACU を使用したアレイの作成と管理

ACU は BIOS RAID 構成ユーティリティーのツールの1つで、アレイの作成と管理 に使用します。この節は、次の項で構成されています。

- 50 ページの「ACU の使用を開始する」
- 50 ページの「ACU で新しいアレイを作成する」
- 51 ページの「ACU で既存のアレイを管理する」
- 51 ページの「ACU でアレイを起動可能にする」
- 52 ページの「ACU でディスクドライブを初期化する」
- 52 ページの「ACU でディスクドライブを再スキャンする」
- 52 ページの「ACU でディスクドライブのセキュリティー保護消去を実行する」
- 53 ページの「ACU で実行中のセキュリティー保護消去を停止する」

▼ ACU の使用を開始する

- ACU を開くには、BIOS RAID 構成ユーティリティーを起動します。
 48 ページの「BIOS RAID 構成ユーティリティーの実行」を参照してください。
- 複数の HBA を使用している場合は、管理対象の HBA を選択して Enter を押します。
- 3. 「Array Configuration Utility」を選択して、Enter を押します。
- 画面の指示に従い、アレイの作成および管理と、ディスクドライブの初期化、再 スキャン、および消去を行います。
- ▼ACU で新しいアレイを作成する

注 – ACU および Sun StorageTek RAID Manager グラフィカルユーザーインタ フェース (GUI) を使用して、アレイを作成できます。ただし、アレイを作成する場 合、ACU よりも GUI を使用した方が迅速に処理することができます。ACU を使用 したアレイの作成では、GUI を使用したアレイの作成よりも 2 ~ 3 倍の時間がかか る場合があります。詳細は、『Sun StorageTek RAID Manager ソフトウェアユー ザーズガイド』参照してください。

1. ACU のメインメニューで「Create Arrays」を選択します。

選択画面には、新しいアレイに使用できるディスクドライブのみが表示されま す。ディスクドライブをアレイで使用できるようにするには、ディスクドライブ を初期化する必要があります。詳細は、52ページの「ACUでディスクドライブ を初期化する」を参照してください。

2. 「Array Properties」メニューで、アレイの RAID レベル、サイズ、名前、ストラ イプのサイズ、キャッシュの設定を変更します。

注 – RAID レベルと、ディスクドライブを使用してアレイを作成する方法の詳細は、 73 ページの「最適な RAID レベルの選択」を参照してください。

注 – 新しいアレイを作成すると、BIOSの起動順序が変わる場合があります。BIOS の設定をチェックして、起動順序が正しいことを確認します。詳細は、69ページの 「論理ドライブの起動順序を制御する場合の最良事例」を参照してください。

▼ACU で既存のアレイを管理する

- 1. ACU のメインメニューで「Manage Arrays」を選択します。
- 2. 「Manage Arrays」メニューで、次のいずれかの作業を行います。
- アレイのプロパティーを参照します。

注 - 障害の発生したドライブは、異なる色の文字で表示されます。

- アレイを起動可能にします。51 ページの「ACU でアレイを起動可能にする」を参照してください。
- ホットスペアの割り当てまたは解除を行います。
- アレイを削除します。

注意 – データが完全に失われることがないように、アレイを削除する前にデータを バックアップしてください。

▼ACU でアレイを起動可能にする

注 – システム BIOS で起動順序の変更が必要になる場合があります。詳細は、使用しているコンピュータのドキュメントまたは 69 ページの「論理ドライブの起動順序を 制御する場合の最良事例」を参照してください。

Sun StorageTek SAS RAID 外部 HBA は、常に番号がもっとも小さいアレイを起動アレイとして使用します。

- 1. ACU のメインメニューで「Manage Arrays」を選択します。
- 2. 起動可能にするアレイを選択して、Ctrl+Bを押します。

注 - 構築、検証、再構築のいずれかの処理を実行しているアレイを起動可能にする ことはできません。

アレイの番号が Array 00 に変更され、このアレイが HBA の起動アレイになります。

3. コンピュータを再起動します。

▼ACU でディスクドライブを初期化する

灰色で表示されているディスクドライブは、新しいアレイには使用できないもので、 初期化する必要があります。

● ACU のメインメニューで「Initialize Drives」を選択します。

注意 – アレイの一部になっているディスクドライブは初期化しないでください。アレイの一部になっているディスクドライブを初期化すると、アレイが使用できなくなる場合があります。ディスクドライブを初期化する前に、ディスクドライブ内のすべてのデータをバックアップしてください。

▼ACU でディスクドライブを再スキャンする

● ACU のメインメニューで「Rescan Drives」を選択します。

▼ACU でディスクドライブのセキュリティー保護消 去を実行する

ディスクドライブのセキュリティー保護消去を実行すると、そのディスクドライブの すべてのデータが完全に消去され、元に戻すことができなくなります。セキュリ ティー保護消去では、単に0を書き込むのではなく、3種類の異なる書き込み処理を 消去対象のディスクドライブに対して実行します。

セキュリティー保護消去の実行には、ディスクドライブをクリアーする(0を書き込む)場合と比べて、最大で6倍の時間がかかります。セキュリティー保護消去は、機密情報が格納されているディスクドライブに対してのみ実行するようにしてください。

注 - 機密以外の情報が格納されたディスクドライブに0を書き込んでデータを消去 するには、ディスクドライブをフォーマットするか(56ページの「ディスクユーティ リティーを使用したディスクドライブのフォーマットと検証」を参照)、または Sun StorageTek RAID Manager ソフトウェアを使用してクリアーします。いずれの場合 も、所要時間はセキュリティー保護消去に比べて大幅に短くなります。

● ACU のメインメニューで「Secure Erase」を選択して、「Y」(はい)を選択しま す。

セキュリティー保護消去の開始後に ACU のメインメニューに戻るには、Esc を押 します。選択されたディスクドライブは、消去処理が完了するまで使用できません。

▼ACU で実行中のセキュリティー保護消去を停止す る

- 1. ACU のメインウィンドウで「Secure Erase」を選択します。
- 2. セキュリティー保護消去を実行中のディスクドライブを選択して、Ctrl+Q を押し ます。

セキュリティー保護消去が停止し、ACU はメインウィンドウに戻ります。

-Select ユーティリティーを使用した HBA 設定の変更

BIOS RAID 構成ユーティリティーには、HBA および HBA に接続されているディス クドライブの設定を変更するためのツールがあります。このユーティリティーは Serial Select または SATA Select と呼ばれます。この節は、次の項で構成されていま す。

- 53 ページの「-Select ユーティリティーの使用を開始する」
- 53 ページの「変更を適用して -Select ユーティリティーを終了する」
- 54 ページの「-Select ユーティリティーで HBA の一般的な設定を変更する」
- 55 ページの「-Select ユーティリティーで SAS 固有の HBA 設定を変更する」

▼-Select ユーティリティーの使用を開始する

 ● BIOS RAID 構成ユーティリティーを起動して (48 ページの「BIOS RAID 構成 ユーティリティーの実行」を参照)、「- Select utility」を選択し、Enter を押しま す。

▼変更を適用して -Select ユーティリティーを終了 する

終了するためのプロンプトが表示されるまで Esc を押します。 設定を変更した場合は、終了する前に変更の保存を求めるプロンプトが表示されます。

Yes」を選択して終了し、いずれかのキーを押してコンピュータを再起動します。
 変更した設定はコンピュータの再起動後に有効になります。

▼-Select ユーティリティーで HBA の一般的な設定 を変更する

注 - HBA のデフォルトの設定は、ほとんどのコンピュータに適したものです。デフォルトの設定を変更しないでください。

-Select ユーティリティーのメインメニューで「Controller Configuration」を選択し、次の表に示すように設定を変更します。

一部のオプションは、この HBA には適用されない場合があります。

注 - デフォルトの設定は太字で示します。

表 U-1 HBA の一般的な設	表 C-1	HBA の一般自	的な設定	Ž
------------------	-------	----------	------	---

オプション	説明
Drive's Write Cache	enabled に設定すると、ディスクドライブで書き込みキャッシュが 有効になります。disabled に設定すると、ディスクドライブで書き 込みキャッシュが使用されません。ディスクドライブでは書き込み キャッシュを無効にすることをお勧めします。 注意 - 書き込みキャッシュを有効にすると、停電時にデータの損 失や破損が発生する場合があります。
Runtime BIOS	enabled に設定すると、Sun StorageTek SAS RAID 外部 HBA BIOS によって、この HBA が起動デバイスとして動作できるようになり ます。disabled に設定すると、ほかの HBA が起動デバイスとして 動作できるようになります。
Automatic Failover	enabled に設定すると、障害の発生したディスクドライブの交換時 に、Sun StorageTek SAS RAID 外部 HBA が自動的にアレイを再作 成します。disabled に設定した場合、アレイの再作成は手動で行う 必要があります。
Array Background Consistency Check	enabled に設定すると、Sun StorageTek SAS RAID 外部 HBA は冗 長アレイを常時確認するようになります。この場合、パフォーマン スが大幅に低下する可能性があります。デフォルトは disabled で す。

表 C-1 HBA の一般的な設定

オプション	説明	
BBS Support	BBS をサポートしているシステムで enabled に設定すると、Sun StorageTek SAS RAID 外部 HBA が BIOS の起動デバイスとして表 示されるようになります。	
Array-based BBS Support	BBS をサポートしているシステムで enabled に設定すると、Sun StorageTek SAS RAID 外部 HBA に接続された起動デバイスが BIOS の起動デバイス選択画面に表示されるようになります。これ は論理アレイに関連する設定です。デフォルトは disabled です。	
physical Drives Display During POST	enabled に設定すると、接続されたディスクドライブがシステムの 電源投入時自己診断 (POST) 中に表示されるようになります。ディ スクドライブを表示する場合、POST 全体の所要時間が数秒長くな ります。デフォルトは disabled です。	
CD-ROM Boot Support	enabled に設定すると、システムを起動 CD から起動できるように なります。	
	注 – CD は、現在のソフトワェアではサポートされていません。	
Removable Media Devices Boot Support	enabled に設定すると、CD ドライブなどのリムーバブルメディア デバイスがサポートされるようになります。	
Alarm Control	enabled に設定すると、アラーム音が鳴ります。デフォルトは enabled です。 注 - アラームをオフ (disabled) にしても、再起動後すると自動的 にオンに戻ります。	
SATA Native Command Queuing (NCQ)	enabled に設定すると、NCQ が有効になります。48 台を超える SATA II ディスクドライブを接続する場合は、この機能を disabled にします。SATA II ディスクドライブにのみ設定できます。	

▼ -Select ユーティリティーで SAS 固有の HBA 設 定を変更する

54 ページの「-Select ユーティリティーで HBA の一般的な設定を変更する」で説明 した一般的な設定のほか、Sun StorageTek SAS RAID 外部 HBA には SAS 固有の設 定があり、必要に応じて変更できます。SAS については、87 ページの「Serial Attached SCSI の概要」を参照してください。

Serial Select ユーティリティーのメインメニューで「PHY Configuration」を選択して、次の表に示すように設定を変更します。

注 - デフォルトの設定は太字で示します。

表 C-2 SAS の HBA 設定

オプション	説明
PHY Rate	HBA とデバイスの間でのデータ転送速度です。デフォルトの設定は Auto で、この設定では SAS カードが、必要に応じてデータ転送速度を調整できます。
CRC Checking	有効に設定すると、HBA がシリアルバスのデータ転送の精度を検証しま す。デフォルトの設定は Yes (有効) です。HBA が CRC チェックをサポート していないデバイスに接続されている場合にのみ、No (無効) を設定してく ださい。
SAS Address	 HBA 上の PHY がそれぞれ異なる SAS ドメインに属するようにする場合に、この設定を使用して各 PHY の World Wide Name を指定します。デフォルトは 0 です。 注: この設定は SAS アドレスの競合を解決する場合にのみ使用します。それ以外の場合は、デフォルトの値のままにしてください。

ディスクユーティリティーを使用した ディスクドライブのフォーマットと検証

ディスクユーティリティーを使用して、ディスクドライブの低レベルフォーマットまたは検証を実行できます。新しいディスクドライブは、出荷時に低レベルフォーマットされているため、あらためて低レベルフォーマットを行う必要はありません。

注意 – ディスクドライブをフォーマットする前に、すべてのデータをバックアップ してください。フォーマットを行うと、ディスクドライブのすべてのデータが破棄さ れます。

この節は、次の項で構成されています。

- 57ページの「ディスクユーティリティーでディスクドライブのフォーマットまた は検証を行う」
- 57 ページの「ディスクユーティリティーでディスクドライブの位置を確認する」
- 58 ページの「ディスクユーティリティーでディスクドライブを識別する」

▼ディスクユーティリティーでディスクドライブの フォーマットまたは検証を行う

- 1. BIOS RAID 構成ユーティリティーを起動します。 48 ページの「BIOS RAID 構成ユーティリティーの実行」を参照してください。
- 2. 対象とする HBA を選択して、Enter を押します。
- 3. 「Disk Utilities」を選択します。
- 4. 対象とするディスクドライブを選択して、Enterを押します。
- 5. 「Format Disk」または「Verify Disk Media」を選択します。

▼ディスクユーティリティーでディスクドライブの 位置を確認する

注 – この機能は、アクティビティー LED の付いたディスクドライブでのみ有効です。

このドライブ識別機能を使用すると、LED の点滅によってディスクドライブの物理的な位置を確認できます。

- BIOS RAID 構成ユーティリティーを起動します。
 48 ページの「BIOS RAID 構成ユーティリティーの実行」を参照してください。
- 2. 対象とする HBA を選択して、Enter を押します。
- 3. 「Disk Utilities」を選択します。
- 4. 対象とするディスクドライブを選択して、Enter を押します。
- 5. 「Identify Drive」を選択して、「Enter」を押します。
- ディスクドライブの位置の確認が完了したら、任意のキーを押して点滅を停止します。

▼ディスクユーティリティーでディスクドライブを 識別する

システム上のディスクドライブの一覧を参照することによって、ディスクドライブを 識別できます。POST 中に表示される物理ドライブのみが表示されます。

1. BIOS RAID 構成ユーティリティーを起動します。

48ページの「BIOS RAID 構成ユーティリティーの実行」を参照してください。

- 2. 対象とする HBA を選択して、Enter を押します。
- 3. 「Disk Utilities」を選択します。

「Disk Utilities」ビューに次の情報が表示されます。

表 C-3 ディスクユーティリティーで表示される情報

Location	Model	Rev#	Speed	Size
CN1=DEV1 Box0=Slot0 Exp0=phy0	メーカーの情報。	ディスクドライ ブのバージョン 番号。	ディスクドライ ブの速度。	ディスクドライ ブのサイズ。

ディスクドライブの位置の情報は、次の3種類の接続で表されます。

- 直接接続ドライブ この接続は、デバイスに接続されているケーブルで表されます。たとえば、CN1 (コネクタ1)は DEV1 (デバイス1) に接続されています。詳細は、93 ページの「直接接続」を参照してください。
- ストレージ格納装置プロセッサ (SEP) で管理されているデバイス この接続は、アクティブなバックプレーンで表されます。Box0 (格納装置 0) は slot0 (格納装置のディスクドライブスロット 0) に接続されています。詳細は、93ページの「バックプレーン接続」を参照してください。
- エクスパンダ この接続は、エクスパンダで表されます。Exp0 (エクスパン ダ 0) は phy0 (コネクタの phy 0) に接続されています。詳細は、93 ページの 「SAS エクスパンダ接続」を参照してください。

注 – ディスクドライブ以外のデバイス (CD-ROM、テープドライブなど) は、システ ムディスクドライブのあとに順番に表示されます。

BIOS ベースのイベントログの表示

BIOS ベースのイベントログには、構成の変更、アレイの作成、起動動作などの、すべてのファームウェアのイベントが記録されます。

一部のイベントは恒久的には保存されません。つまり、コンピュータを再起動するたびに、継続中でないイベントはすべてイベントログから消去されます。また、ログがいっぱいになると、古いイベントは新しいイベントによって上書きされます。

▼ BIOS ベースのイベントログを表示する

- 1. BIOS RAID 構成ユーティリティーを起動します。 48 ページの「BIOS RAID 構成ユーティリティーの実行」を参照してください。
- 2. 対象とする HBA を選択して、Enter を押します。
- BIOS RAID 構成ユーティリティーのメニューが表示されたら、Ctrl+P を押します。
- 4. 「Controller Log Information」を選択して、Enter を押します。 現在のイベントログが表示されます。

付録D

障害追跡

この付録では、基本的な障害追跡情報と、HBA に関する問題の解決方法について説明します。この付録は、次の節で構成されています。

- 61 ページの「障害追跡のチェックリスト」
- 62 ページの「アラームの消音」
- 62ページの「ディスクドライブ障害からの復旧」

障害追跡のチェックリスト

Sun StorageTek SAS RAID 外部 HBA の取り付けまたは使用に関する問題が発生した 場合は、まず次の事項を確認してください。

■ コンピュータの電源を切り、各ディスクドライブ、電源装置、LED コネクタなど への接続を確認します。

Sun StorageTek SAS RAID 外部 HBA からディスクドライブを切り離して、ふたたび 接続します。

- HBA が互換性のある拡張スロット (x8 PCI-Express) に取り付けられていることを 確認します。
- HBA が拡張スロットにしっかり取り付けられ、固定されていることを確認します。
- HBA がシステム起動時に検出されない場合は、互換性のある別の拡張スロットに 取り付けてみます。
- ドライバが正しくインストールされていることを確認します。
- 外付けディスクドライブまたはその他のデバイスがある場合は、それらの電源が入っていることを確認します。

それでも問題が解決しない場合は、http://www.sun.com で障害追跡の追加情報お よび対策を参照できます。

アラームの消音

エラーが発生すると、アラーム音が鳴ります。アラーム音を消すには、BIOS RAID 構成ユーティリティーを使用します。45 ページの「BIOS RAID 構成ユーティリ ティーの使用方法」を参照してください。

ディスクドライブ障害からの復旧

この節では、次の状況でディスクドライブに障害が発生した場合の復旧方法について 説明します。

- アレイがホットスペアで保護されていた場合(62ページの「ホットスペアで保護されたディスクドライブの障害」を参照)。
- アレイがホットスペアで保護されていなかった場合(63ページの「ホットスペアで 保護されていないディスクドライブの障害」を参照)。
- 複数のアレイで同時にディスクドライブ障害が発生した場合(63ページの「複数の アレイで同時に発生した障害」を参照)。
- RAID 0 アレイの場合 (64 ページの「RAID 0 アレイのディスクドライブ障害」を 参照)。
- 同一アレイ内で複数のディスクドライブに障害が発生した場合(64ページの「同一 アレイでの複数の障害」を参照)。

ホットスペアで保護されたディスクドライブの障 害

アレイがホットスペアで保護されている場合は、そのアレイ内のディスクドライブで 障害が発生すると、ホットスペアが自動的にアレイに組み込まれ、障害の発生したド ライブの処理を引き継ぎます。

▼ 障害から復旧する

- メーカーの指示に従い、障害の発生したディスクドライブを取り外して交換します。
- 2. 次から、適切な手順を選択します。

- コピーバックが有効になっていない場合 Sun StorageTek RAID Manager のグラ フィカルユーザーインタフェース (GUI) で、元のホットスペア (アレイに組み込ま れたディスクドライブ)から「ホットスペア」の指定を解除します。次に、新しい ホットスペアを指定して、その HBA 上のアレイを保護します。
- コピーバックが有効になっている場合 障害の発生したドライブが交換されたこ とを HBA が検出すると、データが自動的に元の位置に戻されます。操作は不要で す。

ホットスペアで保護されていないディスクドライ ブの障害

アレイがホットスペアで保護されていない場合は、そのアレイ内のディスクドライブ で障害が発生したら、障害の発生したディスクドライブを取り外して交換します。 Sun StorageTek SAS RAID 外部 HBA は新しいディスクドライブを検出して、アレイ の再構築を開始します。

HBA がアレイの再構築に失敗した場合は、ケーブル、ディスクドライブ、および HBA が適切に取り付けられ、接続されていることを確認します。次に、必要に応じ て、Sun StorageTek RAID Manager の GUI を使用してアレイを再構築します。手順 については、『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』ま たはオンラインヘルプを参照してください。

複数のアレイで同時に発生した障害

複数のアレイ内で同時にディスクドライブの障害が発生し (アレイごとに1台の障害)、アレイがホットスペアによって保護されている場合は、HBA がアレイを再構築する際に次の制限があります。

- ホットスペアのサイズは、障害が発生した交換対象のディスクドライブのサイズ 以上である必要があります。
- 障害が発生したディスクドライブは、障害が発生した順にホットスペアに置き換えられます。前述した適切なホットスペアが使用可能であれば、最初に障害が発生したディスクドライブが存在するアレイが最初に再構築されます。

障害が発生したディスクドライブの数がホットスペアの数よりも多い場合は、「ホットスペアで保護されていないディスクドライブの障害」を参照してください。

コピーバックが有効な場合は、障害の発生したドライブが交換されたことを HBA が 検出すると、データが元の位置に戻されます。

RAID 0 アレイのディスクドライブ障害

RAID 0 ボリュームには冗長性がないため、RAID 0 アレイ内のディスクドライブに 障害が発生した場合には、データを復旧することができません。

障害の原因を解決するか、障害の発生したディスクドライブを交換してください。次 に、可能であれば、データを復元します。

同一アレイでの複数の障害

RAID 6 および RAID 60 アレイ (73 ページの「最適な RAID レベルの選択」を参照) 以外では、同じアレイ内の複数のディスクドライブで同時に障害が発生した場合に、 データを復旧することはできません。

障害の原因を解決するか、障害の発生したディスクドライブを交換してください。次 に、可能であれば、データを復元します。

注 – 場合によっては、RAID 10 および RAID 50 アレイでも、どのディスクドライブ に障害が発生したかによって複数のディスクドライブの障害に対応できる場合があり ます。詳細は、『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』 またはオンラインヘルプを参照してください。

付録E

最良事例

この付録では、全般的なユーザー体験を向上するために、Sun StorageTek SAS RAID HBA をもっとも効果的に使用する方法について説明します。この付録は、次の節で 構成されています。

- 65ページの「Solaris OS が動作しているシステムに新しい HBA を配置する場合の最良事例」
- 66 ページの「ケーブルを切り替えて新しい接続を確立する場合の最良事例」
- 67 ページの「ディスク格納装置に配線する場合の最良事例」
- 67 ページの「ハードドライブの障害状態をテストする場合の最良事例」
- 68 ページの「パーティションを削除せずに論理ボリュームを削除する場合の最良 事例」
- 68ページの「物理ドライブの障害をテストする場合の最良事例」
- 69ページの「ドライブを再スキャンまたは検出する場合の最良事例」
- 69 ページの「論理ドライブの起動順序を制御する場合の最良事例」
- 70 ページの「RAID 論理デバイスのメンバーを選択する場合の最良事例」
- 70 ページの「HBA を交換する場合の最良事例」

Solaris OS が動作しているシステムに新 しい HBA を配置する場合の最良事例

Solaris OS が動作しているシステムに新しい HBA を取り付けた場合、システムが新 しく取り付けた HBA を検出しないことがあります。

システムが HBA を検出したかどうかを確認するには、次の手順を実行します。

- 端末ウィンドウで arcconf getversion コマンドを実行します。
 新しく取り付けた HBA がシステムに取り付けられている唯一の HBA である場合、arcconf getversion コマンドの出力には1つのアダプタが表示されます。
- 2. arcconf getversion コマンドの出力を確認して、次のいずれかを実行しま す。
 - 出力に1つのアダプタが表示されている場合は、システムがHBAを検出しているので、これ以上の対処は必要ありません。
 - 出力にアダプタが表示されていない場合は、/usr/sbin/devfsadm コマンド を実行してシステムに HBA を強制的に検出させてから、次の手順に進みま す。
- 3. 手順1を繰り返して、システムが HBA を検出したことを確認します。

ケーブルを切り替えて新しい接続を確立 する場合の最良事例

この節は、次の内容で構成されています。

- 66 ページの「あるポートから別のポートへのケーブルの切り替え」
- 67 ページの「ケーブルの取り外しと同じポートへの再接続」
- 67 ページの「SATA ディスクを格納した JBOD の接続」

あるポートから別のポートへのケーブルの切り替 え

同じ HBA または同じ JBOD で、あるポートから別のポートにケーブルを切り替える 必要がある場合は、最初にケーブルを取り外したあと、グラフィカルユーザーインタ フェース (GUI) およびコマンド行インタフェース (CLI) の表示からすべての物理ハー ドドライブが削除されるまで待ちます。最初にケーブルを取り外したあとで待機する ことによって、コントローラがドライブを削除しようとしながら、同時にほかのポー トに同じドライブをふたたび追加することを防止できます。ディスプレイを使用でき ない場合は、ケーブルを取り外したあと2分以上待機してから、ほかのポートにケー ブルを再接続します。

ケーブルの取り外しと同じポートへの再接続

ケーブルを取り外したあとは、2 分以上待機してから HBA または JBOD の同じポートにケーブルを再接続します。コントローラに混乱が生じるのを防ぐため、GUI および CLI の表示から物理ドライブが削除されるまで待ちます。

SATA ディスクを格納した JBOD の接続

SATA ディスクを格納した JBOD を HBA に接続するとき、その JBOD が以前に別の HBA に接続されていた場合には接続の問題が発生することがあります。これは、 「アフィリエーション」と呼ばれる SAS の機能によるものです。アフィリエーショ ンは SAS プロトコルによって使用される機能で、SATA ドライブとの通信時に複数 の SAS イニシエータ (HBA) が競合することを防ぐために使用されます。この接続の 問題を防ぐには、JBOD を新しい HBA に接続する前に JBOD の電源を切ってすぐに 入れ直し、アフィリエーションを解除します。

ディスク格納装置に配線する場合の最良 事例

この HBA は、RAID カードと JBOD との間で単一の接続 (パス) の使用をサポートします。そのため、RAID カードをディスク格納装置に接続する場合には、1 本のケーブルのみを使用してください。複数のケーブルを使用しても冗長性は実現されません。

ハードドライブの障害状態をテストする 場合の最良事例

障害状態をテストするためにハードドライブのホットプラグ操作を行う場合は、ドラ イブを取り外したあと1分以上待機してから、ドライブをふたたび挿入します。1分 間待機することで、コントローラにハードドライブの取り外しを認識するための時間 を与えます。実際に障害が発生している場合は、取り外したドライブを別のハードド ライブと交換します。テストを行なっていて、同じドライブをふたたび挿入する場合 には、挿入する前に1分間の待機時間が必要です。

パーティションを削除せずに論理ボ リュームを削除する場合の最良事例

論理ボリュームを削除しようとすると、Sun StorageTek RAID Manager のグラフィ カルユーザーインタフェース (GUI) によって、ドライブの削除を可能にするために論 理ドライブ上のパーティションの削除を求められる場合があります。これは、有効な データが含まれるドライブを誤って削除することを防ぐための安全機能です。

事前に OS からパーティションを削除することなく論理ボリュームを削除する必要が ある場合は、arcconf コマンド行インタフェース (CLI) を使用します。この CLI を 使用すると、事前にパーティションを削除することなく論理ボリュームを削除できま す。

パーティションを削除せずに CLI で論理ボリュームを削除するには、コマンドプロ ンプトで次のコマンドを入力します。

arcconf DELETE controller-number **LOGICALDRIVE** logical-drive-number

次の例に示す警告メッセージが表示されます。

WARNING: Logical device z may contain a partition. All data in logical device z will be lost. Delete the logical device? Press v, then ENTER to continue or press ENTER to abort:

物理ドライブの障害をテストする場合の 最良事例

テストのために、Sun StorageTek RAID Manager GUI を使用して論理ドライブを障 害状態にすると、そのドライブは交換するまで実行可能状態に戻らなくなります。テ ストシナリオでは、テストの実行のみが目的で、ドライブの物理的な交換は不要であ る場合があります。

このシナリオでは、arcconf CLI を使用すると、実際にドライブを交換することな くドライブを実行可能状態に戻すことができます。

これには、コマンドプロンプトで次のように入力します。

arcconf SETSTATE controller-number **DEVICE** drive-channel-number drive-ID-number **RDY**

このコマンドを入力すると、GUI で障害状態のドライブが実行可能状態に戻ります。

ドライブを再スキャンまたは検出する場 合の最良事例

新しい格納装置を既存のカードに追加した場合、またはカードの再スキャンを開始 し、再スキャンによってカードで新しい物理ディスクドライブが検出された場合に、 Sun StorageTek RAID Manager GUI に新しく検出されたドライブが障害が発生した ドライブとして表示される(ドライブに赤色のXが付く)ことがあります。GUI に障 害が発生したドライブとして表示されると、これによってシステムメッセージファイ ルに複数のメッセージが生成されます。これらのメッセージは、障害が発生したドラ イブがあり、このドライブを取り外す必要があること、またはドライブが応答してい ないことを示す可能性があります。

これは GUI の正常な動作で、この現象が発生しても、これ以上の対処は不要です。 ドライブを障害が発生したものとすることで、GUI は新たに検出された状態不明の ドライブをもっとも安全に取り扱うことができます。しばらくの時間のあと、GUI がドライブには異常がないと判断すると、障害を示すマーカーが削除されてドライブ は正常に動作できるようになります。

新しく追加された格納装置に最大数のドライブが格納されていると、GUI が各ドラ イブの障害を示すマーカーを削除するまでに数分かかることがあります。これは、検 出にかかる時間が、格納装置によって追加されるドライブの数に比例するためです。

論理ドライブの起動順序を制御する場合 の最良事例

RAID HBA を取り付けて1つ以上の論理ドライブを作成すると、ホストシステム上の BIOS が、ハードディスクドライブの起動順序で、そのドライブを既存のシステムディスクの前に挿入することがあります。新しく作成した論理ドライブにブートセクターがないと、次に再起動したときにホストシステムを起動できなくなります。論理ドライブからの起動を計画していて、内蔵 RAID HBA を取り付ける場合には、これは問題にはなりません。しかし、外部 RAID HBA を取り付ける場合には、ドライブの起動順序がほかのシステム起動ドライブに悪影響を及ぼすことがあります。

ホストシステムの論理ドライブの起動順序を制御するには、次の手順を実行します。

- 1. ホストシステムの BIOS を起動し、「boot」を選択して「Hard Disk Drives」のエントリを確認します。
- RAID カードの論理ドライブが、リストの先頭のドライブであるかどうかを確認 します。
- リストの先頭のドライブが元のシステム起動ドライブである場合は、これ以上の 対処を行う必要はありません。リストの先頭に RAID カードの論理ドライブが表 示されている場合は、リストを変更して、元の起動ドライブがリストの先頭に表 示されるようにします。
- 4. 設定を保存するには、次のいずれかを実行します。
 - ILOM 遠隔コンソール上で操作している場合は、ウィンドウの上部に表示されている「ILOM Keyboard」メニューに移動して「F10」を選択します。
 - 別の種類のシステムまたはコンソール上で操作している場合は、Esc を押します。

これで、意図したとおりにシステムを起動できるようになります。

RAID 論理デバイスのメンバーを選択す る場合の最良事例

RAID 論理デバイスのメンバーにする物理ドライブを選択するときは、単一の論理デ バイスの単一の格納装置からドライブを選択してください。これは、一時的または永 続的に格納装置全体を切り離す状況 (ファームウェアのアップグレード、単一の格納 装置の電源オフ、2 台の電源装置の障害など) が発生した場合に、1 台の格納装置に 含まれている特定の RAID 論理デバイスのドライブの台数に応じて、再構築、縮退状 態、および完全な障害が発生する可能性があるためです。この操作のリスクを理解し ている RAID の上級ユーザーでない場合は、複数の格納装置にまたがる論理デバイス を構築しないでください。

HBA を交換する場合の最良事例

この節は、次の内容で構成されています。

- 71 ページの「SPARC システムでの HBA の交換」
- 71ページの「x64 システムでの HBA の交換」

SPARC システムでの HBA の交換

SPARC システムで既存の HBA カードを新しいカードと交換すると、新しいカード は取り付け時に既存の構成を自動的に検出するため、それ以上の対処は必要ありませ ん。ただし、新しい HBA が既存の構成内の1つ以上のボリュームを認識していない 場合は、これらのボリュームを検出できるように再スキャンを実行します。

x64 システムでの HBA の交換

x64 システムで既存の HBA カードを新しいカードに交換すると、新しいカードの初 期化プロセス中に、BIOS RAID 構成ユーティリティーからユーザーに構成の変更を 知らせる警告メッセージが送信されます。警告メッセージに示された構成の変更を受 け入れるまで、構成内の既存のドライブおよびボリュームは新しいカードでは使用で きません。.

既存のドライブおよびボリュームを新しいカードで使用できるようにするには、次の いずれかを実行します。

- 構成の変更を知らせる警告メッセージを受信したとき、Enter を押して構成の変更 を受け入れます。
- BIOS 構成ユーティリティーを使用して (POST 時にプロンプトが表示されたら Ctrl+A を押して)構成の変更を確認し、ユーティリティーで変更を受け入れま す。

付録F

最適な RAID レベルの選択

Sun StorageTek SAS RAID External HBA で使用するアレイ (または論理ドライブ) を 作成したら、データを保護するための RAID レベルを割り当てることができます。

各 RAID レベルでは、パフォーマンスと冗長性の固有の組み合わせが提供されます。 RAID レベルは、サポートされるディスクドライブの数によっても異なります。

この付録では、この HBA でサポートされるすべての RAID レベルについて説明し、 データストレージの保護に最適なレベルを選択できるように、各レベルの基本的な概 要を示します。

この付録は、次の節で構成されています。

- 74ページの「ドライブセグメントの理解」
- 74 ページの「非冗長アレイ (RAID 0)」
- 75 ページの「RAID 1 アレイ」
- 76 ページの「RAID 1 拡張アレイ」
- 77 ページの「RAID 10 アレイ」
- 78 ページの「RAID 5 アレイ」
- 79 ページの「RAID 5EE アレイ」
- 80 ページの「RAID 50 アレイ」
- 82 ページの「RAID 6 アレイ」
- 83 ページの「RAID 60 アレイ」
- 84 ページの「最適な RAID レベルの選択」
- 85 ページの「RAID レベルの移行」

ドライブセグメントの理解

「ドライブセグメント」とは、アレイの作成に使用されるディスクドライブ、または ディスクドライブの一部です。ディスクドライブには、「RAID セグメント」(アレ イの一部であるセグメント)と利用可能なセグメントの両方を含めることができま す。各セグメントが属することができる論理デバイスは、一度に1つのみです。ディ スクドライブがどの論理デバイスにも含まれていない場合は、ディスク全体が利用可 能なセグメントになります。

非冗長アレイ (RAID 0)

RAID 0 が割り当てられたアレイには 2 つ以上のディスクドライブが含まれ、複数の ディスクドライブにわたって、同じサイズのセクションにデータが均等に分散される データのストライプ化を提供します。ただし、**RAID 0** アレイは冗長データを保持し ないため、データ保護は得られません。

同一サイズの独立したディスクのグループと比較すると、RAID 0 アレイでは I/O パフォーマンスが向上します。

ドライブセグメントのサイズの上限は、アレイ内で最小のディスクドライブのサイズ です。たとえば、2 台の 250G バイトのディスクドライブと 2 台の 400G バイトの ディスクドライブで構成されるアレイでは、次の図に示すように 250G バイトの RAID 0 ドライブセグメント (合計 1000G バイトのボリューム)を作成することがで きます。

RAID1アレイ

RAID1アレイは、2つのディスクドライブで構成され、一方のディスクドライブは もう一方の「ミラー」になって、各ディスクドライブに同じデータが格納されます。 独立したディスクドライブと比較すると、RAID1アレイではパフォーマンスが向上 し、読み取り速度は単独ディスクの2倍、書き込み速度は同等です。ただし、容量は 独立したディスクドライブの50%しかありません。

RAID1アレイがサイズの異なるディスクドライブで構成される場合、空き領域、ドライブセグメントのサイズは、次の図に示すように小さい方のディスクドライブのサイズになります。

RAID1拡張アレイ

RAID 1 拡張 (RAID 1E) アレイは、「ストライプ化されたミラー」とも呼ばれます。 RAID 1 アレイに似ていますが、データのミラー化とストライプ化の両方が行われ、 より多くのディスクドライブを含めることができる点が異なります。RAID 1E アレ イは、3 台以上のディスクドライブで構成できます。

次の例では、大きく太字の数字がストライプ化されたデータを表し、小さく太字では ない数字がミラー化されたデータストライプを表します。

RAID 10 アレイ

RAID 10 アレイは、同じサイズの 2 つ以上の **RAID 1** アレイで構成できます。**RAID** 10 アレイ内のデータに対しては、ストライプ化とミラー化の両方が行われます。ミラー化によってデータ保護が実現され、ストライプ化によってパフォーマンスの向上が実現されます。

ドライブセグメントのサイズの上限は、アレイ内で最小のディスクドライブのサイズ です。たとえば、2 台の 250G バイトのディスクドライブと 2 台の 400G バイトの ディスクドライブで構成されるアレイでは、次の図に示すように 250G バイトのミ ラー化ドライブセグメント 2 つ (アレイで合計 500G バイト)を作成することができま す。

RAID 5 アレイ

RAID5アレイは、3台以上のディスクドライブで構成され、データのストライプ化およびパリティーデータを使用して冗長性を提供します。パリティーデータを使用することで、データ保護と、ストライプ化によるパフォーマンス向上が実現されます。

パリティーデータは、ディスクドライブに障害が発生した場合にデータを再作成する ために使用される、エラー訂正のための冗長データです。RAID5アレイでは、格納 データとともに、パリティーデータ(次の図でPで表す)がディスクドライブ間で均 等にストライプ化されます。

ドライブセグメントのサイズの上限は、アレイ内で最小のディスクドライブのサイズ です。たとえば、2 台の 250G バイトのディスクドライブと 2 台の 400G バイトの ディスクドライブで構成されるアレイでは、次の図に示すように 750G バイトの格納 データと 250G バイトのパリティーデータを含めることができます。

RAID 5EE アレイ

RAID 5EE アレイは、「ホットスペース」とも呼ばれます。**RAID 5** アレイに似てい ますが、「分散スペア」ドライブが含まれ、4 台以上のディスクドライブで構成する 必要がある点が異なります。

ホットスペアとは異なり、分散スペアではディスクドライブ間で均等に格納データお よびパリティーデータがストライプ化されており、ほかの論理ディスクドライブとは 共有できません。分散スペアにより、ディスクドライブの障害後にアレイが再構成さ れる際の速度が向上します。

RAID 5EE アレイでは、データが保護され、読み取りおよび書き込みの速度が向上します。ただし、パリティーデータおよびスペアデータ用に領域が使用されるため、ディスクドライブ2台分の容量が減少します。

この図でSは分散スペアを表し、Pは分散パリティーデータを表します。

RAID 50 アレイ

RAID 50 アレイは、2 つ以上の RAID 5 アレイとして設定された 6 ~ 48 台のディス クドライブで構成されます。両方の RAID 5 アレイのすべてのディスクドライブ間 で、格納データおよびパリティーデータがストライプ化されます。詳細は、78 ペー ジの「RAID 5 アレイ」を参照してください。

パリティーデータを使用することで、データ保護と、ストライプ化によるパフォーマンス向上が実現されます。RAID 50 アレイでは高いデータ転送速度も実現されます。

ドライブセグメントのサイズの上限は、アレイ内で最小のディスクドライブのサイズ です。たとえば、3 台の 250G バイトのディスクドライブと 3 台の 400G バイトの ディスクドライブで、格納データ用に 500G バイト、パリティーデータ用に 250G バ
イトを提供する、2 つの同じサイズの RAID 5 アレイを構成します。つまり、この RAID 50 アレイには、1000G バイト (500G バイト× 2) の格納データと、500G バイ トのパリティーデータを含めることができます。

この図で、Pは分散パリティーデータを表します。

図 F-7 RAID 50 アレイ

RAID 6 アレイ

RAID 6 アレイは、「デュアルドライブ故障保護」とも呼ばれます。データのストラ イプ化およびパリティーデータを使用して冗長性を実現する点が RAID 5 アレイに似 ています。ただし RAID 6 アレイには、パリティーデータの独立したセットが 1 つで はなく 2 つ含まれます。パリティーデータの両方のセットは、アレイ内のすべての ディスクドライブ間で別々にストライプ化されます。

RAID 6 アレイでは、2 つのディスクドライブで同時に障害が発生しても回復可能で あるため、高いデータ保護が実現されます。ただし、追加で発生するパリティー計算 により、RAID 5 アレイと比較してパフォーマンスが低下します。

RAID6アレイは、4台以上のディスクドライブで構成する必要があります。最大ストライプサイズは、アレイ内のディスクドライブ数に応じて異なります。

RAID 60 アレイ

RAID 50 アレイと同様に (80 ページの「RAID 50 アレイ」を参照)、RAID 60 アレイ は「デュアルドライブ故障保護」とも呼ばれます。8 台のディスクドライブで構成さ れ、これらから 2 つ以上の RAID 6 アレイが作成されます。両方の RAID 6 アレイ内 のすべてのディスクドライブ間で、格納データおよび 2 セットのパリティーデータが ストライプ化されます。

2 セットのパリティーデータによってデータ保護の強化が実現され、ストライプ化に よってパフォーマンスの向上が実現されます。RAID 60 アレイでは高いデータ転送速 度も実現されます。

最適な RAID レベルの選択

次の表を使用すると、利用可能なディスクドライブ数およびパフォーマンスと信頼性 に関する要件に基づいて、使用しているストレージスペースの論理ドライブに最適な RAID レベルを選択できます。

表 F-1 最適な RAID レベルの選択

RAID レベル	冗長性	ディスク ドライブ の使用率	読み取り パフォー マンス	書き込み パフォー マンス	組み込み のホット スペア	最小限の ディスク ドライブ数
RAID 0	なし	100%	www	www	なし	2
RAID 1	あり	50%	ww	ww	なし	2
RAID 1E	あり	50%	ww	ww	なし	3
RAID 10	あり	50%	ww	ww	なし	4
RAID 5	あり	$67 \sim 94\%$	www	w	なし	3
RAID 5EE	あり	$50\sim 88\%$	www	w	あり	4
RAID 50	あり	$67 \sim 94\%$	www	w	なし	6
RAID 6	あり	$50 \sim 88\%$	WW	w	なし	4
RAID 60	あり	$50\sim 88\%$	ww	w	なし	8

ディスクドライブの使用率、読み取りパフォーマンス、および書き込みパフォーマンスは、論理ドライブ内のドライブ数に応じて異なります。一般に、ドライブ数が多くなるとパフォーマンスが向上します。

RAID レベルの移行

ストレージスペースの変化に応じて、既存の RAID レベルを、ストレージの必要性に 一層適合した新しい RAID レベルへと移行できます。このような移行は、Sun StorageTek RAID Manager ソフトウェアを使用して実行できます。詳細は、『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。 表 F-2 に、サポートされる RAID レベルの移行の一覧を示します。

表 F-2 サポートされる RAID レベルの移行

既存の RAID レベル	サポートされる移行 RAID レベル		
シンプルボリューム	RAID 1		
RAID 0	• RAID 5		
	• RAID 10		
RAID 1	• シンプルボリューム		
	• RAID 0		
	• RAID 5		
	• RAID 10		
RAID 5	• RAID 0		
	• RAID 5EE		
	• RAID 6		
	• RAID 10		
RAID 6	RAID 5		
RAID 10	• RAID 0		
	• RAID 5		

<u>付録G</u>

Serial Attached SCSI の概要

この付録では、SAS (Serial Attached SCSI) の主な機能の概要、一般的な SAS の用 語、および SAS とパラレル SCSI の相違点について説明します。

注 – この付録の情報は、Sun StorageTek SAS RAID 外部 HBA に固有のものではあ りません。この付録では、一般的な情報を示します。図は参考例であり、Sun StorageTek SAS RAID 外部 HBA がサポートする特定の構成を表すものではありませ ん。

SAS に関する技術的な記事およびチュートリアルについては、SCSI Trade Association (STA[™])の Web サイトである www.scsita.org を参照してください。

- この付録は、次の節で構成されています。
- 88ページの「この付録で使用する用語」
- 88 ページの「SAS について」
- 89ページの「SAS デバイスの通信について」
- 90 ページの「phy について」
- 90 ページの「SAS ポートについて」
- 91 ページの「SAS アドレスについて」
- 91 ページの「SAS コネクタについて」
- 91 ページの「SAS ケーブルについて」
- 92 ページの「SAS でのディスクドライブの識別について」
- 92 ページの「SAS 接続のオプションについて」
- 95 ページの「SAS とパラレル SCSI の相違点」

この付録で使用する用語

便宜上、この付録では、SAS HBA および SAS RAID HBA を総称して「SAS カード」と呼びます。HBA、RAID HBA、ディスクドライブ、および外付けディスクドライブ格納装置は「エンドデバイス」、エクスパンダは「エクスパンダデバイス」と呼びます。

便宜上、この付録では、エンドデバイスおよびエクスパンダデバイスを総称して「SAS デバイス」と呼びます。

SAS について

従来のパラレル SCSI は、コンピュータ、ディスクドライブなどのデバイスを相互に 通信させるためのインタフェースです。パラレル SCSI は、SCSI コマンドセットを使 用して、複数ビットのデータを並列で同時に移動します。

SAS は、パラレル SCSI をポイントツーポイントのシリアルインタフェースに進化さ せたものです。SAS でも SCSI コマンドセットを使用しますが、複数ビットのデータ を一度に1 ビットずつ移動します。SAS は、直接接続またはエクスパンダデバイス を介してエンドデバイスに接続します。

SAS カードは、通常、最大で 128 台のエンドデバイスをサポートし、SAS および SATA のどちらのデバイスとも通信できます。SAS エクスパンダを使用すると、128 台以上のエンドデバイスを追加できます。93 ページの「SAS エクスパンダ接続」を 参照してください。

注 – 同じ「SAS ドメイン」では SAS および SATA の両方のディスクドライブを使用 できますが (93 ページの「SAS エクスパンダ接続」を参照)、同じアレイまたは同じ 論理ドライブでは SAS と SATA ディスクドライブを混在させないことをお勧めしま す。2 種類のディスクドライブのパフォーマンスの違いが、アレイのパフォーマンス に悪影響を及ぼす可能性があります。

データは SAS 接続(以下、「リンク」と呼ぶ。89 ページの「SAS デバイスの通信について」を参照)内を同時に双方向に移動できます。リンクの速度は半二重モードで300M バイト/秒です。したがって、8 つのリンクを持つ SAS カードは、2400M バイト/秒の帯域幅があります。

これらはどちらも SCSI コマンドセットを使用しますが、SAS の概念はパラレル SCSI とは物理的に異なり、この章で後述する独自のタイプのコネクタ、ケーブル、接続オ プション、および用語を使用します。

SAS とパラレル SCSI との比較については、95 ページの「SAS とパラレル SCSI の相 違点」を参照してください。

SAS デバイスの通信について

SAS デバイスは、リンクを介して相互に通信します。リンクとは、2 つの phy の間 の物理的な接続です。

次の図に示すように、SAS デバイスにはポート (90 ページの「SAS ポートについて」 を参照) があり、ポートには phy があり、各 phy には送信器と受信器、つまり「送 受信器」が 1 つずつあります。1 つの phy は、1 つのポートにのみ属することができ ます。

phy について

phy は、SAS デバイス間の物理的な通信接続の一部です。各 phy には、SAS デバイ ス間でデータをやりとりする送受信器があります。

2 つのエンドデバイス間で接続が形成されると、一方のポートの phy からもう一方の ポートの phy までのリンクが確立されます。前の図に示すように、ワイドポートは 複数の独立したリンクを同時にサポートします。

phy は、SAS コネクタの内部に実装されています (91 ページの「SAS コネクタについ て」を参照)。

SAS ケーブルは、一方の SAS デバイス上の1つ以上の phy を、もう一方の SAS デバイスの1つ以上の phy に物理的に接続します。

SAS ポートについて

注 – SAS デバイス間の物理的なリンクは、ポート間ではなく phy 間に確立されるため、「ポート」という用語はより仮想的な概念を意味し、別の種類の RAID HBA や ストレージデバイスで一般的にポートと見なされているものとは異なります。

ポートは、1 つ以上の phy です。「ナローポート」には、phy が 1 つあります。「ワ イドポート」には、通常、phy が 4 つあります。

各ポートには固有の SAS アドレス (92 ページの「SAS でのディスクドライブの識別 について」を参照) があり、ポート上のすべての phy が同じ SAS アドレスを共有し ます。

SAS カードにはさまざまなポートオプションがあります。4 つの phy を持つ SAS カードは、1 つのワイドポートとしても、2 つの phy で構成された 2 つのワイドポートとしても、それぞれ 1 つの phy で構成された 4 つのナローポートとしても設定可能です。4 phy のワイドポートを「4 ワイド」または「4x」のポートと呼びます。

SAS アドレスについて

各 SAS ポートは固有の SAS アドレスで識別され、それをポート上のすべての phy が 共有します。

たとえば、SAS ディスクドライブにナローポートが2つあるとします。各ポートに は、固有のSAS アドレスが1つあります。各ポートの1つのphyは、そのポートの SAS アドレスを使用します。

別の例として、SAS デバイスに 4 ワイドポートが 1 つあるとします。そのポートには SAS アドレスが 1 つあり、ポート上の 4 つの phy が共有します。

SCSI デバイスおよび SCSI ID とは異なり、SAS デバイスは SAS アドレスを自動で設定します。ユーザーが SAS アドレスの設定を要求されることはなく、SAS アドレスを変更することはできません。

SAS コネクタについて

SAS または Mini-SAS コネクタは、SAS デバイス上にある物理的なプラグまたは受容体です。これが SAS ケーブルの接続先、または接続する SAS ケーブルの端になります。

コネクタは、phy 間の物理的なリンクを形成するものです。一部の SAS コネクタ は、複数のリンクをサポートできます。SAS コネクタがサポートできるリンクの数 を、「ワイド」と呼びます。「ナロー」コネクタは1つのリンクをサポートし、「ワ イド」コネクタは複数のリンクをサポートします。

1 つの SAS デバイスには、1 つ以上のコネクタがある場合があります。1 つの SAS コ ネクタを、3 つ以上の SAS デバイス間のリンクの形成に使用できる場合がありま す。

SAS ケーブルについて

標準の内部 SAS ケーブルは、内部パラレル SCSI ケーブルよりも幅の狭いケーブルで す。コネクタのサイズはサポートするリンクの数によって異なり、シングルリンクコ ネクタから、4 ワイド以上のコネクタまであります。内部ファンアウトケーブルは、 ディスクドライブ 4 台を、1 つの 4 ワイドコネクタに接続できます。 Mini-SAS コネクタは、内部および外部 SAS 接続の両方をサポートします。Mini-SAS コネクタは、標準の SAS 内部および外部コネクタよりも小さいコネクタです。 Mini-SAS コネクタは、シングルおよびマルチリンクをサポートし、将来実現される 速度にも対応できる能力があります。

SAS でのディスクドライブの識別につ いて

BIOS および管理ユーティリティーでは (58 ページの「ディスクユーティリティーで ディスクドライブを識別する」を参照)、ディスクドライブは次の形式で識別されま す。

- CNX:DevY = デバイス Y がコネクタ X に接続 (詳細は、後述の「直接接続」を参照)
- BoxX:SlotX = 格納装置 X がディスクドライブのスロット X に接続 (詳細は、後述の「バックプレーン接続」を参照)
- ExpX:PhyX = エクスパンダ X が Phy X に接続 (詳細は、後述の「SAS エクスパン ダ接続」を参照)

X は通番です。

注 – ディスクドライブ以外のデバイス (CD-ROM、テープドライブなど) は、システ ムディスクドライブのあとに順番に表示されます。

パラレル SCSI では、XX はディスクドライブのチャネル番号、YY はターゲット番号、ZZ は LUN です。

SAS 接続のオプションについて

エンドデバイスは、直接ケーブル接続およびバックプレーン接続を介して相互に接続 できます。1つ以上のエクスパンダデバイス (93 ページの「SAS エクスパンダ接続」 を参照)を使用すると、大規模な構成を作成できます。

直接接続

直接接続では、SAS または SATA ディスクドライブは、SAS または Mini-SAS ケー ブルを使用して SAS カードに直接接続されます。1 台のディスクドライブを、1 本の SAS/Mini-SAS ケーブルによって、1 つの SAS/Mini-SAS コネクタに接続するか、複 数のディスクドライブを、1 本のファンアウトケーブルによって、1 つの SAS/Mini-SAS コネクタに接続します。

直接接続ディスクドライブの数は、SAS カードがサポートする phy の数までに制限 されます。1 つのコネクタに複数の phy がある場合もあります。93 ページの「SAS エクスパンダ接続」を参照してください。

バックプレーン接続

バックプレーン接続では、ディスクドライブと SAS カードは、システムバックプレーンを介して接続され相互に通信します。

バックプレーン接続には「パッシブ」と「アクティブ」の2種類があります。いずれ のバックプレーンに接続する際も、ディスクドライブの状態を識別するために、ディ スクドライブ LED を正しく接続することが重要です。RAID HBA のアクティビ ティー LED の接続および位置については、3ページの「コンポーネントの配置」を 参照してください。

バックプレーンに接続する際は、Sun StorageTek RAID Manager を使用してシステムのディスクドライブを管理できます。『Sun StorageTek RAID Manager ソフトウェアユーザーズガイド』を参照してください。

エンドデバイスの数は、バックプレーンで使用可能なスロットの数によって制限され ます。たとえば、エクスパンダを組み込んだ Sun S50 格納装置は、最大で 12 台の SAS または SATA ディスクドライブをサポートするバックプレーン接続になりま す。

一部のバックプレーンは、ほかのバックプレーンへのデイジーチェーン拡張をサポートしています。たとえば、ホストシステムの1枚の SAS カードに、最大で9台のSun S50 格納装置をデイジーチェーン接続 (1 台を次の1 台に接続) することができます。

SAS エクスパンダ接続

SAS エクスパンダデバイスは、一緒に接続できるエンドデバイスの数を、文字どおり エクスパンド (拡張) します。エクスパンダデバイスは、通常、システムバックプ レーン (93 ページの「バックプレーン接続」を参照) に組み込まれており、SAS カー

ド、SAS ディスクドライブ、SATA ディスクドライブなどの SAS エンドデバイスの 大規模構成をサポートします。エクスパンダデバイスを使用すると、大規模で複雑な ストレージトポロジを構築できます。

SAS エクスパンダには、「ファンアウトエクスパンダ」と「エッジエクスパンダ」の 2種類があります。それぞれが、ストレージシステム内で異なる役割を果たします。 SAS エクスパンダの働きについては、STA の Web サイトである www.scsita.org を参 照してください。

エッジエクスパンダには、最大で128 個の SAS ポートを接続できます。そのため、1 つのエッジエクスパンダは最大 128 個の SAS アドレスをサポートします。

ファンアウトエクスパンダには、最大で128個のエッジエクスパンダを接続できま す。

SAS「ドメイン」は、SATA に適用される場合もある、SAS のエンドデバイスおよび エクスパンダデバイスのトポロジで、SAS ドメイン1つには、1つのファンアウトエ クスパンダのみを使用できます。そのため、1 つの SAS ドメインは最大 16.384 個の SAS ポート、つまりファンアウトエクスパンダを含めて最大 16,384 個の SAS アドレ スで構成できます。

次の図は、基本的な用語で SAS ドメインを図解したもので、SAS カード、SAS およ び SATA ディスクドライブ、エクスパンダデバイスで大規模なデータストレージトポ ロジを構成する方法について説明しています。

図 G-2 SAS エクスパンダ接続

SAS ドメイン

SAS とパラレル SCSI の相違点

簡単に言うと、SAS とパラレル SCSI はどちらも SCSI コマンドセットを使用します が、データをある場所から別の場所に移動する方法が大きく異なります。SAS は、ポ イントツーポイントのシリアルデータ転送をサポートするために、新しいタイプのコ ネクタ、ケーブル、接続オプション、および用語を導入しています。

一般的に、SAS はパラレル SCSI よりも高速で柔軟性があり、ストレージスペースを 構築するためにより多くのオプションを使用できると言われています。SAS を使用す ると、SAS ディスクドライブと SATA ディスクドライブを組み合わせることで、は るかに多くのデバイスを接続できるようになります。

次の表に、2つのインタフェースの主な相違点を示します。

表 G-1	パラレル	SCSI &	SAS	の相違点
-1X O I			0110	- × / 1日だEハ

パラレル SCSI	SAS
パラレルインタフェース	シリアルインタフェース
バス上のすべてのデバイスが共有する最高 速度は 320M バイト/秒	半二重モードでの phy ごとの最高速度は 300M バイト/秒
SCSI デバイスのみをサポート	SATA および SAS ディスクドライブを同時にサ ポート
SCSI チャネルごとに最大 16 台のデバイス	エクスパンダを使用した場合、SAS カードごと に 100 台を超えるディスクドライブ (93 ページ の「SAS エクスパンダ接続」を参照)、または 50 台の SATAII ディスクドライブ
シングルポートデバイスのみをサポート	シングルおよびデュアルポートのデバイスをサ ポート
SCSI ID を使用して同一アダプタに接続さ れたデバイスを区別	固有の SAS アドレスを使用してデバイスを区 別
SCSI ID の設定にユーザーの操作が必要	SAS デバイスが SAS アドレスを自動設定
バスの終端処理が必要	バスの終端処理は不要
標準 SCSI コネクタ	SAS コネクタ

索引

A

ACU, 49 アレイの管理, 51 アレイの作成, 50 起動アレイの作成, 51 ディスクドライブの再スキャン, 52 ディスクドライブの初期化, 52 ディスクドライブのセキュリティー保護消去 , 52
Adaptec RAID 構成ユーティリティー, 45~59 「Alarm Control」設定, 55
「Array Background Consistency Check」設定, 54
「Array-based BBS Support」設定, 55
「Automatic Failover」設定, 54

В

「BBS Support」設定, 55

С

「CD-ROM Boot Support」設定,55 「CRC Checking」設定,56

D

「Drive's Write Cache」設定,54

L

Linux サポートされるバージョン, 5 ドライバのインストール, 26

Μ

Mini-SAS 概要, 92

Ρ

phy, 90 「phy Rate」設定, 56 「physical Drives Display During POST」設定, 55

R

RAID, xxiii RAID 0, 74 RAID 1, 75 RAID 10, 77 RAID 1E, 3, 76 RAID 5, 78 RAID 50, 80 RAID 5EE, 3, 79 RAID 6, 3, 82 RAID 60, 3,83 非冗長アレイ,74 RAID コントローラ、「コントローラ」を参照 Red Hat ドライバのインストール,26 Redundant Array of Independent Disks, 「RAID」 を参照 「Removable Media Devices Boot Support」 設定 , 55 「Runtime BIOS」設定,54

S

SAS 4ワイドポート,90 phy, 90 SASアドレス,91 SAS カード, 88 SAS デバイス, 88 SAS ドメイン, 94 エクスパンダ接続,93 エクスパンダデバイス.88 エッジエクスパンダ.94 エンドデバイス,88 コネクタ,91 説明,88 送受信器, 89 直接接続,93 ディスクドライブ,92 ディスクドライブ識別子,92 ナローコネクタ,91 ナローポート,90 バックプレーン接続,93 パラレル SCSI との比較, 95 ファンアウトエクスパンダ,94 ポート, 89,90 用語,88 リンク,89 リンクの速度,88 ワイドコネクタ,91 ワイドポート,90 「SAS Address」設定, 56 SAS コントローラ 「CRC Checking」設定, 56 「phy Rate」設定, 56 「SAS Address」設定, 56 -Select ユーティリティーによる変更, 55 ディスクドライブの接続,17 SAS デバイス,88 SATA, xxiii SATASelect. 53 SCSI SAS との比較, 95 -Select ユーティリティー, 53 開始,53

終了,53 変更の適用,53 Serial Select,53 Solaris ドライバのインストール,27 Solaris OS サポートされるバージョン,5 パッチ,5 SUSE ドライバのインストール,26

۷

VMWare ドライバのインストール,28

W

Windows ドライバのインストール, 26 Windows 2003 OS サポートされるバージョン, 6

あ

アラーム音,62 アレイ ACU での管理, 51 RAID 1, 75 RAID 10, 77 RAID 1E, 76 RAID 5, 78 RAID 50, 80 **RAID 5EE**, 79 RAID 6, 82 RAID 60, 83 起動アレイの作成,51 作成 (ACU), 50 非冗長,74 アレイ構成ユーティリティー、「ACU」を参照 アレイの移行,3

い

イベントログ, 59 インストール ドライバ, 25~28

え

エクスパンダ接続,93 エクスパンダデバイス,88 エンドデバイス,88

お

オンライン拡張,3

き

起動アレイ 作成,51

こ

高度なデータ保護,3 コネクタ, 58,92 コピーバック.3 コントローラ 「Alarm Control」設定, 55 「Array Background Consistency Check」設定 , 54 「Array-based BBS Support」設定, 55 「Automatic Failover」設定,54 「BBS Support」設定, 55 「CD-ROM Boot Support」 設定, 55 「Drive's Write Cache」設定,54 「physical Drives Display During POST」設定 , 55 「Removable Media Devices Boot Support」 設 定,55 「Runtime BIOS」設定, 54 -Select ユーティリティーによる設定の変更,53 アレイレベルの機能,2 一般的な設定の変更,54 イベントログ,59 データ保護,3 標準機能,2

L

システム要件,6 自動フェイルオーバー,2 障害の発生したディスクドライブ,62 RAID0アレイ,64 複数のアレイ,63 複数のディスクドライブ, 64 ホットスペアなし, 63 障害の発生したディスクドライブの交換, 62 シリアル ATA、「SATA」を参照

ち

直接接続,93

τ

ディスクドライブ SAS, 92 SAS コントローラへの接続,17 SAS 識別子, 92 検証,56 再スキャン,52 識別,58 障害からの復旧, 62 障害復旧 RAID0アレイ,64 複数のアレイ,63 複数のディスクドライブ,64 ホットスペアあり, 62 ホットスペアなし, 63 初期化,52 セキュリティー保護消去,52 接続,58 接続の種類,58 フォーマット,56 ディスクドライブ障害からの復旧, 62 ディスクドライブの検証,56 ディスクドライブの再スキャン,52 ディスクドライブの初期化,52 ディスクドライブのセキュリティー保護消去,52 ディスクドライブのフォーマット,56

لح

ドライバ Linux でのインストール, 26 Solaris でのインストール, 27 VMware でのインストール, 28 Windows でのインストール, 26 ドライバのインストール, 25~28 ドライブの要件, 10

取り付け

ディスクドライブ (SAS), 17

は

バックプレーン接続,93

ひ

非冗長アレイ,74

ほ

ホットスペア,2

よ

要件, 6 ドライブ, 10 用語 SAS, 88

IJ

リンク (SAS), 89