
Sun GlassFish Communications
Server 2.0 Developer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0193–10
October 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

091112@22749

Contents

Preface ...19

Part I Development Tasks and Tools ... 25

1 Setting Up a Development Environment .. 27
Installing and Preparing the Server for Development .. 27
The Sailfin Project ... 28
Usage Profiles ... 28
High Availability Features .. 29
Development Tools ... 29

The asadmin Command .. 29
The Admin Console ... 30
The asant Utility .. 30
The verifier Tool .. 30
The NetBeans IDE .. 30
The Migration Tool ... 31
Debugging Tools .. 31
Profiling Tools .. 31
The Eclipse IDE .. 31

Sample Applications .. 31

2 Class Loaders ..33
The Class Loader Hierarchy ... 33
Delegation .. 37
Using the Java Optional Package Mechanism .. 37
Using the Endorsed Standards Override Mechanism ... 37
Class Loader Universes ... 38

3

Application-Specific Class Loading .. 38
Circumventing Class Loader Isolation ... 39

Using the System Class Loader ... 40
Using the Common Class Loader .. 40
Sharing Libraries Across a Cluster ... 40
Packaging the Client JAR for One Application in Another Application 41

▼ To Package the Client JAR for One Application in Another Application 41

3 The asantUtility ..43
Communications Server asant Tasks ... 44

The sun-appserv-deploy Task ... 44
The sun-appserv-undeploy Task ... 48
The sun-appserv-instance Task ... 51
The sun-appserv-component Task ... 54
The sun-appserv-admin Task ... 57
The sun-appserv-jspc Task ... 58
The sun-appserv-update Task ... 60
The wsgen Task ... 60
The wsimport Task .. 62

Reusable Subelements ... 63
The server Subelement .. 63
The component Subelement .. 66
The fileset Subelement .. 68

JBI Tasks ... 68

4 Debugging Applications ..69
Enabling Debugging ... 69

▼ To Set the Server to Automatically Start Up in Debug Mode ... 70
JPDA Options .. 70
Generating a Stack Trace for Debugging .. 71
Application Client Debugging ... 71
Sun GlassFish Message Queue Debugging ... 72
Enabling Verbose Mode ... 72
Communications Server Logging .. 72
SIP Message Inspection Log Adapter .. 73

Contents

Sun GlassFish Communications Server 2.0 Developer's Guide • October 20094

Profiling Tools ... 74
The NetBeans Profiler ... 75
The HPROF Profiler .. 75
The JProbe Profiler .. 76

Part II Developing Applications and Application Components .. 79

5 Securing Applications ...81
Security Goals .. 82
Communications Server Specific Security Features .. 82
Container Security .. 83

Declarative Security ... 83
Programmatic Security .. 84

Roles, Principals, and Principal to Role Mapping ... 84
Realm Configuration .. 86

Supported Realms .. 86
How to Configure a Realm .. 87
How to Set a Realm for an Application or Module ... 87
Creating a Custom Realm ... 87

Using Identity Authentication ... 89
Configuring a Realm for Identity Authentication .. 89
Configuring sip.xml for Identity Authentication ... 89
Configuring sun-sip.xml for Identity Authentication .. 90
Configuring the Identity Message Root Certificate ... 90

Using P-Asserted Identity Authentication ... 91
Configuring a Trust ... 91
Configuring sun-sip.xml for P-Asserted Identity Authentication 91

Creating a Custom Trust Handler for P-Asserted Identity Authentication 92
JACC Support .. 93
Pluggable Audit Module Support .. 93

Configuring an Audit Module .. 93
The AuditModule Class ... 93

The server.policy File ... 95
Default Permissions ... 95
Changing Permissions for an Application .. 95

Contents

5

Enabling and Disabling the Security Manager ... 97
Configuring Message Security for Web Services ... 98

Message Security Providers .. 99
Message Security Responsibilities .. 100
Application-Specific Message Protection ... 102
Understanding and Running the Sample Application .. 105

Programmatic Login ... 107
Programmatic Login Precautions .. 108
Granting Programmatic Login Permission .. 108
The ProgrammaticLogin Class .. 109

User Authentication for Single Sign-on .. 110

6 Developing Web Services ...113
Creating Portable Web Service Artifacts .. 114
Deploying a Web Service .. 114
Web Services Registry ... 115
The Web Service URI, WSDL File, and Test Page ... 116
JBI Runtime .. 117

Using the jbi.xml File .. 118
Using Application Server Descriptors ... 118

Using the Woodstox Parser .. 119

7 Using the Java Persistence API .. 121
Specifying the Database .. 122
Additional Database Properties ... 124
Configuring the Cache .. 124
Setting the Logging Level .. 124
Using Lazy Loading ... 125
Primary Key Generation Defaults ... 125
Automatic Schema Generation .. 126

Annotations .. 126
Supported Data Types ... 127
Generation Options ... 128

Query Hints .. 131
Changing the Persistence Provider ... 132

Contents

Sun GlassFish Communications Server 2.0 Developer's Guide • October 20096

Restrictions and Optimizations ... 133
Extended Persistence Context Failover ... 133
Using @OrderBy with a Shared Session Cache .. 133
Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver .. 134
Database Case Sensitivity .. 134
Sybase Finder Limitation .. 135
MySQL Database Restrictions .. 135

8 Developing Web and SIP Applications ... 139
Using Servlets ... 139

Invoking a Servlet With a URL ... 140
Servlet Output .. 141
Caching Servlet Results ... 141
About the Servlet Engine ... 145

Using JavaServer Pages ... 146
JSP Tag Libraries and Standard Portable Tags ... 147
JSP Caching ... 147
Options for Compiling JSP Files .. 151

Creating and Managing Sessions ... 151
Configuring Sessions ... 151
Session Managers ... 154

Advanced Web Application Features .. 159
Internationalization Issues .. 159
Virtual Servers .. 160
Default Web Modules .. 161
Class Loader Delegation .. 162
Using the default-web.xml File .. 162
Configuring Logging and Monitoring in the Web Container .. 163
Configuring Idempotent URL Requests ... 163
Header Management ... 164
Configuring Valves and Catalina Listeners .. 164
Alternate Document Roots ... 165
Redirecting URLs ... 167
Enabling Comet Support .. 167
Using a context.xml File .. 167

Contents

7

Enabling WebDav .. 168
Using mod_jk ... 169
Advanced JVM Options for SIP Requests ... 171

9 Using Enterprise JavaBeans Technology ...173
Summary of EJB 3.0 Changes ... 173
Value Added Features ... 174

Read-Only Beans .. 174
The pass-by-reference Element ... 175
Pooling and Caching .. 175
Bean-Level Container-Managed Transaction Timeouts .. 176
Priority Based Scheduling of Remote Bean Invocations ... 177
Immediate Flushing ... 177

EJB Timer Service .. 178
Using Session Beans .. 179

About the Session Bean Containers ... 179
Stateful Session Bean Failover .. 180
Session Bean Restrictions and Optimizations .. 185

Using Read-Only Beans .. 186
Read-Only Bean Characteristics and Life Cycle ... 186
Read-Only Bean Good Practices .. 187
Refreshing Read-Only Beans .. 187
Deploying Read-Only Beans .. 189

Using Message-Driven Beans .. 189
Message-Driven Bean Configuration .. 189
Message-Driven Bean Restrictions and Optimizations .. 191

Handling Transactions With Enterprise Beans ... 192
Flat Transactions .. 193
Global and Local Transactions ... 193
Commit Options .. 193
Administration and Monitoring .. 194

10 Using Container-Managed Persistence ...195
Communications Server Support for CMP .. 195
CMP Mapping ... 196

Contents

Sun GlassFish Communications Server 2.0 Developer's Guide • October 20098

Mapping Capabilities .. 196
The Mapping Deployment Descriptor File ... 196
Mapping Considerations .. 197

Automatic Schema Generation for CMP ... 200
Supported Data Types for CMP ... 201
Generation Options for CMP ... 203

Schema Capture ... 206
Automatic Database Schema Capture ... 206
Using the capture-schema Utility ... 206

Configuring the CMP Resource ... 207
Performance-Related Features ... 207

Version Column Consistency Checking ... 208
Relationship Prefetching ... 208
Read-Only Beans .. 209

Default Fetch Group Flags .. 210
Configuring Queries for 1.1 Finders ... 210

About JDOQL Queries .. 210
Query Filter Expression ... 211
Query Parameters .. 212
Query Variables .. 212
JDOQL Examples ... 213

CMP Restrictions and Optimizations ... 214
Disabling ORDER BY Validation .. 214
Setting the Heap Size on DB2 ... 215
Eager Loading of Field State ... 215
Restrictions on Remote Interfaces ... 215
PostgreSQL Case Insensitivity .. 215
No Support for lock-when-loaded on Sybase ... 216
Sybase Finder Limitation .. 216
Date and Time Fields ... 216
Set RECURSIVE_TRIGGERS to false on MSSQL .. 217
MySQL Database Restrictions .. 217

11 Developing Java Clients ...221
Introducing the Application Client Container .. 221

Contents

9

ACC Security .. 221
ACC Naming .. 222
ACC Annotation .. 222
Java Web Start ... 222

Developing Clients Using the ACC ... 223
▼ To Access an EJB Component From an Application Client ... 223
▼ To Access a JMS Resource From an Application Client .. 225

Using Java Web Start ... 226
Running an Application Client Using the appclient Script .. 232
Using the package-appclient Script ... 232
The client.policy File .. 232
Using RMI/IIOP Over SSL .. 232
Connecting to a Remote EJB Module Through a Firewall .. 234

12 Developing Connectors ..235
Connector Support in the Communications Server ... 236

Connector Architecture for JMS and JDBC ... 236
Connector Configuration ... 236

Deploying and Configuring a Stand-Alone Connector Module ... 237
▼ To Deploy and Configure a Stand-Alone Connector Module ... 237

Redeploying a Stand-Alone Connector Module ... 238
Deploying and Configuring an Embedded Resource Adapter .. 238
Advanced Connector Configuration Options ... 239

Thread Pools ... 239
Security Maps ... 239
Overriding Configuration Properties .. 240
Testing a Connector Connection Pool .. 240
Handling Invalid Connections ... 241
Setting the Shutdown Timeout ... 241
Using Last Agent Optimization of Transactions ... 242

Inbound Communication Support ... 242
Configuring a Message Driven Bean to Use a Resource Adapter .. 243

13 Developing Lifecycle Listeners ..247
Server Life Cycle Events .. 247

Contents

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200910

The LifecycleListener Interface ... 248
The LifecycleEvent Class .. 248
The Server Lifecycle Event Context ... 249
Deploying a Lifecycle Module .. 249
Considerations for Lifecycle Modules .. 250

14 Developing Custom MBeans ..251
The MBean Life Cycle ... 252
MBean Class Loading ... 253
Creating, Deleting, and Listing MBeans ... 253

The asadmin create-mbean Command ... 253
The asadmin delete-mbean Command ... 254
The asadmin list-mbeans Command ... 254

The MBeanServer in the Communications Server .. 255
Enabling and Disabling MBeans ... 256
Handling MBean Attributes ... 256

Part III Using Services and APIs ... 259

15 Using the JDBC API for Database Access ... 261
General Steps for Creating a JDBC Resource ... 261

Integrating the JDBC Driver ... 262
Creating a Connection Pool .. 262
Testing a JDBC Connection Pool ... 263
Creating a JDBC Resource .. 263

Creating Applications That Use the JDBC API ... 263
Sharing Connections ... 264
Obtaining a Physical Connection From a Wrapped Connection .. 264
Marking Bad Connections .. 264
Using Non-Transactional Connections .. 265
Using JDBC Transaction Isolation Levels ... 266
Allowing Non-Component Callers ... 267

Restrictions and Optimizations ... 267
Disabling Stored Procedure Creation on Sybase .. 267

Contents

11

16 Using the Transaction Service ...269
Transaction Resource Managers ... 269
Transaction Scope ... 270
Distributed Transaction Recovery .. 271
Configuring the Transaction Service .. 272
The Transaction Manager, the Transaction Synchronization Registry, and
UserTransaction .. 272
Transaction Logging ... 273
Storing Transaction Logs in a Database ... 273
Recovery Workarounds .. 274

17 Using the Java Naming and Directory Interface .. 277
Accessing the Naming Context .. 277

Global JNDI Names ... 278
Accessing EJB Components Using the CosNaming Naming Context 279
Accessing EJB Components in a Remote Application Server ... 279
Naming Environment for Lifecycle Modules ... 280

Configuring Resources ... 281
External JNDI Resources .. 281
Custom Resources .. 281

Using a Custom jndi.properties File .. 282
Mapping References .. 282

18 Using the Java Message Service .. 285
The JMS Provider .. 286
Message Queue Resource Adapter .. 287
Generic Resource Adapter ... 287
Administration of the JMS Service .. 287

Configuring the JMS Service ... 288
The Default JMS Host .. 289
Creating JMS Hosts .. 289
Checking Whether the JMS Provider Is Running .. 289
Creating Physical Destinations .. 289
Creating JMS Resources: Destinations and Connection Factories 290

Restarting the JMS Client After JMS Configuration ... 291

Contents

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200912

JMS Connection Features ... 291
Connection Pooling ... 291
Connection Failover .. 292

Load-Balanced Message Inflow ... 292
Transactions and Non-Persistent Messages ... 293
Authentication With ConnectionFactory .. 293
Message Queue varhome Directory ... 294
Delivering SOAP Messages Using the JMS API ... 294

▼ To Send SOAP Messages Using the JMS API ... 294
▼ To Receive SOAP Messages Using the JMS API ... 296

19 Using the JavaMail API ...297
Introducing JavaMail .. 297
Creating a JavaMail Session .. 298
JavaMail Session Properties .. 298
Looking Up a JavaMail Session .. 298
Sending and Reading Messages Using JavaMail .. 299

▼ To Send a Message Using JavaMail .. 299
▼ To Read a Message Using JavaMail .. 300

20 Using the Application Server Management Extensions ... 301
About AMX .. 302
AMX MBeans .. 303

Configuration MBeans .. 304
Monitoring MBeans .. 304
Utility MBeans ... 304
Java EE Management MBeans .. 304
Other MBeans .. 305
MBean Notifications .. 305
Access to MBean Attributes .. 305

Dynamic Client Proxies .. 306
Connecting to the Domain Administration Server ... 306
Examining AMX Code Samples .. 307

The SampleMain Class ... 307
Connecting to the DAS .. 307

Contents

13

Starting an Communications Server ... 308
Deploying an Archive .. 309
Displaying the AMX MBean Hierarchy .. 309
Setting Monitoring States .. 309
Accessing AMX MBeans ... 309
Accessing and Displaying the Attributes of an AMX MBean ... 309
Listing AMX MBean Properties ... 309
Performing Queries ... 309
Monitoring Attribute Changes ... 310
Undeploying Modules ... 310
Stopping an Communications Server ... 310

Running the AMX Samples .. 310
▼ To Run the AMX Sample .. 310

Index ... 313

Contents

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200914

Tables

TABLE 2–1 Sun GlassFish Communications Server Class Loaders ... 35
TABLE 3–1 The sun-appserv-deploy Subelements ... 45
TABLE 3–2 The sun-appserv-deployAttributes ... 45
TABLE 3–3 The sun-appserv-undeploy Subelements .. 49
TABLE 3–4 The sun-appserv-undeployAttributes ... 49
TABLE 3–5 The sun-appserv-instance Subelements .. 51
TABLE 3–6 The sun-appserv-instanceAttributes ... 51
TABLE 3–7 The sun-appserv-component Subelements .. 55
TABLE 3–8 The sun-appserv-componentAttributes ... 55
TABLE 3–9 The sun-appserv-admin Subelements ... 57
TABLE 3–10 The sun-appserv-adminAttributes ... 57
TABLE 3–11 The sun-appserv-jspcAttributes .. 58
TABLE 3–12 The sun-appserv-updateAttributes ... 60
TABLE 3–13 The wsgenAttributes ... 61
TABLE 3–14 The wsimportAttributes .. 62
TABLE 3–15 The serverAttributes ... 64
TABLE 3–16 The componentAttributes .. 66
TABLE 7–1 Java Type to SQL Type Mappings .. 127
TABLE 7–2 Schema Generation Properties .. 129
TABLE 7–3 The asadmin deploy and asadmin deploydir Generation Options 130
TABLE 7–4 The asadmin undeploy Generation Options .. 131
TABLE 8–1 URL Fields for Servlets Within an Application .. 140
TABLE 8–2 The cacheAttributes ... 149
TABLE 8–3 The flushAttributes ... 150
TABLE 8–4 Object Types Supported for Java EE Web or SIP Application Session State

Failover ... 154
TABLE 9–1 Object Types Supported for Java EE Stateful Session Bean State Failover 181
TABLE 10–1 Java Type to JDBC Type Mappings for CMP ... 201
TABLE 10–2 Mappings of JDBC Types to Database Vendor Specific Types for CMP 202

15

TABLE 10–3 The sun-ejb-jar.xmlGeneration Elements .. 204
TABLE 10–4 The asadmin deploy and asadmin deploydir Generation Options for CMP

.. 204
TABLE 10–5 The asadmin undeploy Generation Options for CMP 205
TABLE 15–1 Transaction Isolation Levels .. 266
TABLE 16–1 Schema for txn_log_table .. 274

Tables

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200916

Figures

FIGURE 2–1 Class Loader Runtime Hierarchy .. 34

17

18

Preface

This Developer's Guide describes how to create and run JavaTM Platform, Enterprise Edition
(Java EE platform) applications that follow the open Java standards model for Java EE
components and APIs in the Sun Java System Communications Server environment. Topics
include developer tools, security, debugging, and creating lifecycle modules. This book is
intended for use by software developers who create, assemble, and deploy Java EE applications
using Sun GlassFish servers and software.

This preface contains information about and conventions for the entire Sun GlassFishTM

Communications Server documentation set.

Communications Server Documentation Set
The Uniform Resource Locator (URL) for Communications Server documentation is
http://docs.sun.com/coll/1343.10. For an introduction to Communications Server, refer
to the books in the order in which they are listed in the following table.

TABLE P–1 Books in the Communications Server Documentation Set

Book Title Description

Documentation Center Communications Server documentation topics organized by task and subject.

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (JDKTM), and database drivers.

Quick Start Guide How to get started with the Communications Server product.

Installation Guide Installing the software and its components.

Application Deployment Guide Deployment of applications and application components to the Communications Server.
Includes information about deployment descriptors.

Developer’s Guide Creating and implementing Java Platform, Enterprise Edition (Java EE platform) applications
intended to run on the Communications Server that follow the open Java standards model for
Java EE components and APIs. Includes information about developer tools, security,
debugging, and creating lifecycle modules.

19

http://docs.sun.com/coll/1343.10

TABLE P–1 Books in the Communications Server Documentation Set (Continued)
Book Title Description

Java EE 5 Tutorial Using Java EE 5 platform technologies and APIs to develop Java EE applications.

Java WSIT Tutorial Developing web applications using the Web Service Interoperability Technologies (WSIT).
Describes how, when, and why to use the WSIT technologies and the features and options
that each technology supports.

Administration Guide System administration for the Communications Server, including configuration, monitoring,
security, resource management, and web services management.

High Availability Administration
Guide

Setting up clusters, working with node agents, and using load balancers.

Administration Reference Editing the Communications Server configuration file, domain.xml.

Performance Tuning Guide Tuning the Communications Server to improve performance.

Reference Manual Utility commands available with the Communications Server; written in man page style.
Includes the asadmin command line interface.

Related Documentation
For documentation about other stand-alone Sun GlassFish server products, go to the following:

■ Message Queue documentation (http://docs.sun.com/coll/1343.4)
■ Identity Server documentation (http://docs.sun.com/app/docs/prod/ident.mgmt#hic)
■ Directory Server documentation (http://docs.sun.com/coll/1224.1)
■ Web Server documentation (http://docs.sun.com/coll/1308.3)

A JavadocTM tool reference for packages provided with the Communications Server is located at
http://glassfish.dev.java.net/nonav/javaee5/api/index.html. Additionally, the
following resources might be useful:

■ The Java EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information on creating enterprise applications in the NetBeansTM Integrated Development
Environment (IDE), see http://www.netbeans.org/kb/55/index.html.

For information about the Java DB database included with the Communications Server, see
http://developers.sun.com/javadb/.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK), and are also available from the GlassFish Samples project page at
https://glassfish-samples.dev.java.net/.

Preface

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200920

http://docs.sun.com/coll/1343.4
http://docs.sun.com/app/docs/prod/ident.mgmt#hic
http://docs.sun.com/coll/1224.1
http://docs.sun.com/coll/1308.3
http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/55/index.html
http://developers.sun.com/javadb/
https://glassfish-samples.dev.java.net/

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
Communications Server.

SolarisTM and Linux installations, non-root user:

user’s-home-directory/SUNWappserver

Solaris and Linux installations, root user:

/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir Represents the directory containing all
domains.

All installations:

as-install/domains/

domain-dir Represents the directory for a domain.

In configuration files, you might see
domain-dir represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-dir

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

samples-dir Represents the directory containing sample
applications.

as-install/samples

docs-dir Represents the directory containing
documentation.

as-install/docs

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Preface

21

TABLE P–3 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200922

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Feedback. In the online form,
provide the document title and part number. The part number is a seven-digit or nine-digit
number that can be found on the title page of the book or at the top of the document.

Preface

23

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

24

Development Tasks and Tools

P A R T I

25

26

Setting Up a Development Environment

This chapter gives guidelines for setting up an application development environment in the Sun
JavaTM System Communications Server. Setting up an environment for creating, assembling,
deploying, and debugging your code involves installing the mainstream version of the
Communications Server and making use of development tools. In addition, sample
applications are available. These topics are covered in the following sections:
■ “Installing and Preparing the Server for Development” on page 27
■ “The Sailfin Project” on page 28
■ “Usage Profiles” on page 28
■ “High Availability Features” on page 29
■ “Development Tools” on page 29
■ “Sample Applications” on page 31

Installing and Preparing the Server for Development
For more information about stand-alone Communications Server installation, see the Sun
GlassFish Communications Server 2.0 Installation Guide.

The following components are included in the full installation.
■ JDK
■ Communications Server core

■ Java 2 Platform, Standard Edition (Java SE) 6
■ Java EE 6 compliant application server
■ Admin Console
■ asadmin utility
■ Other development and deployment tools
■ Sun Java System Message Queue software
■ The Java Business Integration runtime (JBI runtime)
■ Java DB database, based on the Derby database from Apache (http://db.apache.org/

derby/manuals)

1C H A P T E R 1

27

http://docs.sun.com/doc/821-0202
http://docs.sun.com/doc/821-0202
http://db.apache.org/derby/manuals
http://db.apache.org/derby/manuals

■ Load balancer plug-ins for web servers

The NetBeansTM Integrated Development Environment (IDE) bundles the GlassFish edition of
the Communications Server, so information about this IDE is provided as well.

After you have installed Communications Server, you can further optimize the server for
development in these ways:

■ Locate utility classes and libraries so they can be accessed by the proper class loaders. For
more information, see “Using the System Class Loader” on page 40 or “Using the Common
Class Loader” on page 40.

■ Set up debugging. For more information, see Chapter 4, “Debugging Applications.”
■ Configure the Java Virtual Machine (JVMTM) software. For more information, see Chapter

22, “Java Virtual Machine and Advanced Settings,” in Sun GlassFish Communications
Server 2.0 Administration Guide.

The Sailfin Project
Communications Server 2.0 is developed through the Sailfin project open-source community at
https://sailfin.dev.java.net/. The Sailfin project provides a structured process for
developing the Communications Server platform that makes the new features of Java EE 5
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the Communications Server source code and to contribute to
the development of the Communications Server. The Sailfin project is designed to encourage
communication between Sun engineers and the community.

Usage Profiles
When you install a domain, the usage profile you select determines the features that are
available by default. Here is a summary of the usage profiles:

■ developer profile - Provides a lightweight feature set optimized for developers, with one
server instance and no clustering features.

■ cluster profile - Provides the complete GlassFish feature set, including clustering features.

For more information about usage profiles, see “Usage Profiles” in Sun GlassFish
Communications Server 2.0 Administration Guide.

The Sailfin Project

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200928

http://docs.sun.com/doc/821-0200/ablwj?a=view
http://docs.sun.com/doc/821-0200/ablwj?a=view
http://docs.sun.com/doc/821-0200/ablwj?a=view
https://sailfin.dev.java.net/
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view

High Availability Features
High availability features such as load balancing and session failover are discussed in detail in
the Sun GlassFish Communications Server 2.0 High Availability Administration Guide. This
book describes the following features in the following sections:

■ For information about HTTP session persistence, see “Distributed Sessions and Persistence”
on page 153.

■ For information about checkpointing of the stateful session bean state, see “Stateful Session
Bean Failover” on page 180.

■ For information about failover and load balancing for Java clients, see Chapter 11,
“Developing Java Clients.”

■ For information about load balancing for message-driven beans, see “Load-Balanced
Message Inflow” on page 292.

Development Tools
The following general tools are provided with the Communications Server:

■ “The asadmin Command” on page 29
■ “The Admin Console” on page 30
■ “The asant Utility” on page 30
■ “The verifier Tool” on page 30

The following development tools are provided with the Communications Server or
downloadable from Sun:

■ “The NetBeans IDE” on page 30
■ “The Migration Tool” on page 31

The following third-party tools might also be useful:

■ “Debugging Tools” on page 31
■ “Profiling Tools” on page 31
■ “The Eclipse IDE” on page 31

The asadminCommand
The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the Sun GlassFish Communications Server 2.0 Reference Manual.

The asadmin command is located in the as-install/bin directory. Type asadmin help for a list
of subcommands.

Development Tools

Chapter 1 • Setting Up a Development Environment 29

http://docs.sun.com/doc/821-0196
http://docs.sun.com/doc/821-0197

The Admin Console
The Admin Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Admin Console,
click the Help button in the Admin Console. This displays the Communications Server online
help.

To access the Admin Console, type http://host:4848 (developer profile) or
https://host:4848 (cluster profile) in your browser. The host is the name of the machine on
which the Communications Server is running. By default, the host is localhost. For example:

http://localhost:4848

The asantUtility
Apache Ant 1.6.5 is provided with the Communications Server and can be launched from the
bin directory using the command asant. The Communications Server also provides
server-specific tasks for administration and deployment; see Chapter 3, “The asant Utility.”
The sample applications that can be used with the Communications Server use Ant build.xml
files; see “Sample Applications” on page 31.

For more information about Ant, see the Apache Software Foundation web site at
http://ant.apache.org/.

The verifier Tool
The verifier tool checks a Java EE application file, including Java classes and deployment
descriptors, for compliance with Java EE specifications. Java EE application files are Java archive
(JAR), web archive (WAR), resource adapter archive (RAR), or enterprise archive (EAR) files.
Use the verifier tool to check whether an application complies with the Java EE specification
and to make applications portable across application servers. The verifier tool can be
launched from the command line. For more information, see “The verifier Utility” in Sun
GlassFish Communications Server 2.0 Application Deployment Guide.

The NetBeans IDE
The NetBeans IDE allows you to create, assemble, and debug code from a single, easy-to-use
interface. The GlassFish edition of the Communications Server is bundled with the NetBeans
5.5 IDE. To download the NetBeans IDE, see http://www.netbeans.org. This site also
provides documentation on how to use the NetBeans IDE with the bundled Communications
Server.

Development Tools

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200930

http://ant.apache.org/
http://docs.sun.com/doc/821-0195/beadq?a=view
http://docs.sun.com/doc/821-0195/beadq?a=view
http://www.netbeans.org

You can also use the Communications Server with the Sun Java Studio 8 software, which is built
on the NetBeans IDE. For more information, see http://developers.sun.com/prodtech/
javatools/jsenterprise/.

The Migration Tool
The Migration Tool converts and reassembles Java EE applications and modules developed on
other application servers. This tool also generates a report listing how many files are
successfully and unsuccessfully migrated, with reasons for migration failure. For more
information and to download the Migration Tool, see http://java.sun.com/j2ee/tools/
migration/index.html.

Debugging Tools
You can use several debugging tools with the Communications Server. For more information,
see Chapter 4, “Debugging Applications.”

Profiling Tools
You can use several profilers with the Communications Server. For more information, see
“Profiling Tools” on page 74.

The Eclipse IDE
A plug-in for the Eclipse IDE is available at http://glassfishplugins.dev.java.net/. This
site also provides documentation on how to register the Communications Server and use
Sun-specific deployment descriptors.

Sample Applications
Sample applications that you can examine and deploy to the Communications Server are
available. If you installed the Communications Server as part of installing the Java EE 5 SDK
bundle from Java EE 5 Downloads (http://java.sun.com/javaee/5/downloads/), the
samples may already be installed. You can download these samples separately from the Code
Samples (http://java.sun.com/javaee/reference/code/index.jsp) page if you installed
the Communications Server without them initially.

Most Communications Server samples have the following directory structure:
■ The docs directory contains instructions for how to use the sample.

Sample Applications

Chapter 1 • Setting Up a Development Environment 31

http://developers.sun.com/prodtech/javatools/jsenterprise/
http://developers.sun.com/prodtech/javatools/jsenterprise/
http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/j2ee/tools/migration/index.html
http://glassfishplugins.dev.java.net/
http://java.sun.com/javaee/5/downloads/
http://java.sun.com/javaee/reference/code/index.jsp
http://java.sun.com/javaee/reference/code/index.jsp

■ The build.xml file defines asant targets for the sample. See Chapter 3, “The asant Utility.”
■ The src/java directory under each component contains source code for the sample.
■ The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure described
here: http://java.sun.com/blueprints/code/projectconventions.html.

The samples-install-dir/bp-project/main.xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy, and undeploy
sample applications. In most sample applications, the build.xml file imports main.xml.

In addition to the Java EE 5 sample applications, samples are also available on the GlassFish web
site at https://glassfish-samples.dev.java.net/.

Sample Applications

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200932

http://java.sun.com/blueprints/code/projectconventions.html
https://glassfish-samples.dev.java.net/

Class Loaders

Understanding Communications Server class loaders can help you determine where to place
supporting JAR and resource files for your modules and applications. For general information
about J2SE class loaders, see Understanding Network Class Loaders (http://java.sun.com/
developer/technicalArticles/Networking/classloaders/).

In a Java Virtual Machine (JVM), the class loaders dynamically load a specific Java class file
needed for resolving a dependency. For example, when an instance of java.util.Enumeration
needs to be created, one of the class loaders loads the relevant class into the environment. This
section includes the following topics:

■ “The Class Loader Hierarchy” on page 33
■ “Delegation” on page 37
■ “Using the Java Optional Package Mechanism” on page 37
■ “Using the Endorsed Standards Override Mechanism” on page 37
■ “Class Loader Universes” on page 38
■ “Application-Specific Class Loading” on page 38
■ “Circumventing Class Loader Isolation” on page 39

The Class Loader Hierarchy
Class loaders in the Communications Server runtime follow a delegation hierarchy that is
illustrated in the following figure and fully described in Table 2–1.

2C H A P T E R 2

33

http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://java.sun.com/developer/technicalArticles/Networking/classloaders/

The following table describes the class loaders in the Communications Server.

Bootstrap
Class Loader

System
Class Loader

Shared Chain
Class Loader

Common
Class Loader

MBean
Class Loader

Connector
Class Loader

Web
Class Loader

JSP Engine
Class Loader

One class loader instance for each application or stand-alone module

Application
Class Loader

LifeCycleModule
Class Loader

FIGURE 2–1 Class Loader Runtime Hierarchy

The Class Loader Hierarchy

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200934

TABLE 2–1 Sun GlassFish Communications Server Class Loaders

Class Loader Description

Bootstrap The Bootstrap class loader loads the basic runtime classes provided by the JVM, plus
any classes from JAR files present in the system extensions directory. It is parent to the
System class loader. To add JAR files to the system extensions, directory, see “Using the
Java Optional Package Mechanism” on page 37.

System The System class loader loads Communications Server launch classes. It is parent to the
Shared Chain class loader. It is created based on the system-classpath attribute of the
java-config element in the domain.xml file. In the developer profile, select the
Communications Server component in the Admin Console and the JVM Settings tab. In
the cluster profile, select the JVM Settings component under the relevant configuration.
Then select the Path Settings tab and edit the System Classpath field. See “Using the
System Class Loader” on page 40 and “java-config” in Sun GlassFish Communications
Server 2.0 Administration Reference.

Add the classes to the system-classpath attribute of the domain administration server
(DAS) in addition to the system-classpath attribute on the server instances that use
the classes. The default name for the DAS configuration is server-config.

Shared Chain
The Shared Chain class loader loads most of the core Communications Server classes. It
is parent to the MBean class loader and the Common class loader. Classes specified by
the classpath-prefix and classpath-suffix attributes of the java-config element
in the domain.xml file are added to this class loader. In the developer profile, select the
Communications Server component in the Admin Console and the JVM Settings tab. In
the cluster profile, select the JVM Settings component under the relevant configuration.
Then select the Path Settings tab and edit the Classpath Prefix or Classpath Suffix field.

The environment classpath is included if env-classpath-ignored="false" is set in the
java-config element.

Use classpath-prefix to place libraries ahead of Communications Server
implementation classes in the shared chain. The classpath-prefix is ideal for placing
development and diagnostic patches. To avoid overriding implementation classes, use
classpath-suffix to place libraries after implementation classes in the shared chain.

Add the classes to the classpath-prefix or classpath-suffix attribute of the DAS in
addition to the corresponding attribute on the server instances that use the classes. The
default name for the DAS configuration is server-config.

MBean The MBean class loader loads the MBean implementation classes. See “MBean Class
Loading” on page 253.

Common The Common class loader loads classes in the domain-dir/lib/classes directory,
followed by JAR files in the domain-dir/lib directory. It is parent to the Connector class
loader. No special classpath settings are required. The existence of these directories is
optional; if they do not exist, the Common class loader is not created. See “Using the
Common Class Loader” on page 40.

The Class Loader Hierarchy

Chapter 2 • Class Loaders 35

http://docs.sun.com/doc/821-0194/abhcx?a=view
http://docs.sun.com/doc/821-0194/abhcx?a=view

TABLE 2–1 Sun GlassFish Communications Server Class Loaders (Continued)
Class Loader Description

Connector The Connector class loader is a single class loader instance that loads individually
deployed connector modules, which are shared across all applications. It is parent to the
LifeCycleModule class loader and the Application class loader.

LifeCycleModule The LifeCycleModule class loader is created once per lifecycle module. Each
lifecycle-module element’s classpath attribute is used to construct its own class
loader. For more information on lifecycle modules, see Chapter 13, “Developing
Lifecycle Listeners.”

Application The Application class loader loads the classes in a specific enabled individually deployed
module or Java EE application. One instance of this class loader is present in each class
loader universe; see “Class Loader Universes” on page 38. The Application class loader is
created with a list of URLs that point to the locations of the classes it needs to load. It is
parent to the Web class loader.

The Application class loader loads classes in the following order:
1. Classes specified by the library-directory element in the application.xml

deployment descriptor or the –-libraries option during deployment; see
“Application-Specific Class Loading” on page 38

2. Classes specified by the application's or module's location attribute in the
domain.xml file, determined during deployment

3. Classes in the classpaths of the application's sub-modules

4. Classes in the application's or module's stubs directory

The location attribute points to domain-dir/applications/j2ee-apps/app-name or
domain-dir/applications/j2ee-modules/module-name.

The stubs directory is domain-dir/generated/ejb/j2ee-apps/app-name or
domain-dir/generated/ejb/j2ee-modules/module-name.

Web The Web class loader loads the servlets and other classes in a specific enabled web or SIP
module or a Java EE application that contains a web or SIP module. This class loader is
present in each class loader universe that contains a web or SIP module; see “Class
Loader Universes” on page 38. One instance is created for each web or SIP module. The
Web class loader is created with a list of URLs that point to the locations of the classes it
needs to load. The classes it loads are in WEB-INF/classes or WEB-INF/lib/*.jar. It is
parent to the JSP Engine class loader.

JSP Engine The JSP Engine class loader loads compiled JSP classes of enabled JSP files. This class
loader is present in each class loader universe that contains a JSP page; see “Class Loader
Universes” on page 38. The JSP Engine class loader is created with a list of URLs that
point to the locations of the classes it needs to load.

The Class Loader Hierarchy

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200936

Delegation
Note that the class loader hierarchy is not a Java inheritance hierarchy, but a delegation
hierarchy. In the delegation design, a class loader delegates classloading to its parent before
attempting to load a class itself. A class loader parent can be either the System class loader or
another custom class loader. If the parent class loader cannot load a class, the class loader
attempts to load the class itself. In effect, a class loader is responsible for loading only the classes
not available to the parent. Classes loaded by a class loader higher in the hierarchy cannot refer
to classes available lower in the hierarchy.

The Java Servlet specification recommends that the Web class loader look in the local class
loader before delegating to its parent. You can make the Web class loader follow the delegation
inversion model in the Servlet specification by setting delegate="false" in the class-loader
element of the sun-web.xml or sun-sip.xml file. It is safe to do this only for a web or SIP
module that does not interact with any other modules. For details, see “class-loader” in Sun
GlassFish Communications Server 2.0 Application Deployment Guide.

The default value is delegate="true", which causes the Web class loader to delegate in the same
manner as the other class loaders. You must use delegate="true" for a web or SIP application
that accesses EJB components or that acts as a web service client or endpoint. For details about
sun-web.xml or sun-sip.xml, see Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

Using the Java Optional Package Mechanism
Optional packages are packages of Java classes and associated native code that application
developers can use to extend the functionality of the core platform.

To use the Java optional package mechanism, copy the JAR files into the domain-dir/lib/ext
directory, then restart the server.

For more information, see Optional Packages - An Overview (http://java.sun.com/javase/
6/docs/technotes/guides/extensions/extensions.html) and Understanding Extension
Class Loading (http://java.sun.com/docs/books/tutorial/ext/basics/load.html).

Using the Endorsed Standards Override Mechanism
Endorsed standards handle changes to classes and APIs that are bundled in the JDK but are
subject to change by external bodies.

To use the endorsed standards override mechanism, copy the JAR files into the
domain-dir/lib/endorsed directory, then restart the server.

Using the Endorsed Standards Override Mechanism

Chapter 2 • Class Loaders 37

http://docs.sun.com/doc/821-0195/bearq?a=view
http://docs.sun.com/doc/821-0195/bearq?a=view
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195
http://java.sun.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://java.sun.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://java.sun.com/docs/books/tutorial/ext/basics/load.html
http://java.sun.com/docs/books/tutorial/ext/basics/load.html

For more information and the list of packages that can be overridden, see Endorsed Standards
Override Mechanism (http://java.sun.com/javase/6/docs/technotes/guides/
standards/).

Class Loader Universes
Access to components within applications and modules installed on the server occurs within
the context of isolated class loader universes, each of which has its own Application, EJB, Web,
and JSP Engine class loaders.

■ Application Universe – Each Java EE application has its own class loader universe, which
loads the classes in all the modules in the application.

■ Individually Deployed Module Universe – Each individually deployed EJB JAR, web
WAR, SIP SAR, or lifecycle module has its own class loader universe, which loads the classes
in the module.

A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in one of
the following locations:

■ A directory pointed to by the Libraries field or --libraries option used during deployment
■ A directory pointed to by the library-directory element in the application.xml

deployment descriptor
■ A directory pointed to by the class loader’s classpath; for example, the web class loader’s

classpath includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/lib

Application-Specific Class Loading
You can specify application-specific library classes during deployment in one of the following
ways:

■ Use the Admin Console. Open the Applications component, then go to the page for the type
of application or module. Select the Deploy button. Type the comma-separated paths in the
Libraries field. For details, click the Help button in the Admin Console.

■ Use the asadmin deploy command with the --libraries option and specify
comma-separated paths. For details, see the Sun GlassFish Communications Server 2.0
Reference Manual.

Application libraries are included in the Application class loader. Paths to libraries can be
relative or absolute. A relative path is relative to domain-dir/lib/applibs. If the path is
absolute, the path must be accessible to the domain administration server (DAS). The

Class Loader Universes

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200938

http://java.sun.com/javase/6/docs/technotes/guides/standards/
http://java.sun.com/javase/6/docs/technotes/guides/standards/
http://java.sun.com/javase/6/docs/technotes/guides/standards/
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Communications Server automatically synchronizes these libraries to all remote cluster
instances when the cluster is restarted. However, libraries specified by absolute paths are not
guaranteed to be synchronized.

Tip – You can use application-specific class loading to specify a different XML parser than the
default Communications Server XML parser. For details, see http://blogs.sun.com/
sivakumart/entry/classloaders_in_glassfish_an_attempt.

You can also use application-specific class loading to access different versions of a library from
different applications.

If multiple applications or modules refer to the same libraries, classes in those libraries are
automatically shared. This can reduce the memory footprint and allow sharing of static
information. However, applications or modules using application-specific libraries are not
portable. Other ways to make libraries available are described in “Circumventing Class Loader
Isolation” on page 39.

For general information about deployment, see the Sun GlassFish Communications Server 2.0
Application Deployment Guide.

Note – If you see an access control error message when you try to use a library, you may need to
grant permission to the library in the server.policy file. For more information, see “Changing
Permissions for an Application” on page 95.

Circumventing Class Loader Isolation
Since each application or individually deployed module class loader universe is isolated, an
application or module cannot load classes from another application or module. This prevents
two similarly named classes in different applications from interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules
accessed by more than one application, you can include the relevant path to the required classes
in one of these ways:

■ “Using the System Class Loader” on page 40
■ “Using the Common Class Loader” on page 40
■ “Sharing Libraries Across a Cluster” on page 40
■ “Packaging the Client JAR for One Application in Another Application” on page 41

Using the System class loader or Common class loader requires a server restart and makes a
library accessible to all applications or modules deployed on servers that share the same
configuration.

Circumventing Class Loader Isolation

Chapter 2 • Class Loaders 39

http://blogs.sun.com/sivakumart/entry/classloaders_in_glassfish_an_attempt
http://blogs.sun.com/sivakumart/entry/classloaders_in_glassfish_an_attempt
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

Using the System Class Loader
To use the System class loader, do one of the following, then restart the server:

■ Use the Admin Console. In the developer profile, select the Communications Server
component and select the JVM Settings tab. In the cluster profile, select the JVM Settings
component under the relevant configuration. Then select the Path Settings tab and edit the
System Classpath field. For details, click the Help button in the Admin Console.

■ Edit the system-classpath attribute of the java-config element in the domain.xml file.
For details about domain.xml, see the Sun GlassFish Communications Server 2.0
Administration Reference.

Using the System class loader makes an application or module accessible to all applications or
modules deployed on servers that share the same configuration.

Add the classes to the system-classpath attribute of the DAS in addition to the
system-classpath attribute on the server instances that use the classes. The default name for
the DAS configuration is server-config.

Using the Common Class Loader
To use the Common class loader, copy the JAR files into the domain-dir/lib directory or copy
the .class files into the domain-dir/lib/classes directory, then restart the server.

Using the Common class loader makes an application or module accessible to all applications
or modules deployed on servers that share the same configuration.

For example, using the Common class loader is the recommended way of adding JDBC drivers
to the Communications Server. For a list of the JDBC drivers currently supported by the
Communications Server, see the Sun GlassFish Communications Server 2.0 Release Notes. For
configurations of supported and other drivers, see “Configurations for Specific JDBC Drivers”
in Sun GlassFish Communications Server 2.0 Administration Guide.

Sharing Libraries Across a Cluster
To share libraries across a specific cluster, copy the JAR files to the
domain-dir/config/cluster-config-name/lib directory. Then add the path to the JAR files to
the System class loader as explained in “Using the System Class Loader” on page 40 or to the
Shared Chain class loader as explained in Table 2–1.

Circumventing Class Loader Isolation

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200940

http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

Packaging the Client JAR for One Application in
Another Application
By packaging the client JAR for one application in a second application, you allow an EJB or
web component in the second application to call an EJB component in the first (dependent)
application, without making either of them accessible to any other application or module.

As an alternative for a production environment, you can have the Common class loader load
the client JAR of the dependent application as described in “Using the Common Class Loader”
on page 40. Restart the server to make the dependent application accessible to all applications or
modules deployed on servers that share the same configuration.

▼ To Package the Client JAR for One Application in
Another Application

Deploy the dependent application.

Add the dependent application’s client JAR file to the calling application.

■ For a calling EJB component, add the client JAR file at the same level as the EJB component.
Then add a Class-Path entry to the MANIFEST.MF file of the calling EJB component. The
Class-Path entry has this syntax:

Class-Path: filepath1.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the MANIFEST.MF file. For
details, see the Java EE specification.

■ For a calling web component, add the client JAR file under the WEB-INF/lib directory.

If you need to package the client JAR with both the EJB and web components, set
delegate="true" in the class-loader element of the sun-web.xml file.
This changes the Web class loader so that it follows the standard class loader delegation model
and delegates to its parent before attempting to load a class itself.

1

2

3

Circumventing Class Loader Isolation

Chapter 2 • Class Loaders 41

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view

For most applications, packaging the client JAR file with the calling EJB component is sufficient.
You do not need to package the client JAR file with both the EJB and web components unless
the web component is directly calling the EJB component in the dependent application.

Deploy the calling application.
The calling EJB or web component must specify in its sun-ejb-jar.xml or sun-web.xml file the
JNDI name of the EJB component in the dependent application. Using an ejb-link mapping
does not work when the EJB component being called resides in another application.

You do not need to restart the server.

4

Circumventing Class Loader Isolation

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200942

The asantUtility

Apache Ant 1.6.5 is provided with Communications Server and can be launched from the bin
directory using the command asant. The Communications Server also provides server-specific
tasks, which are described in this section.

Make sure you have done these things before using asant:

1. Include as-install/bin in the PATH environment variable (/usr/sfw/bin for Sun JavaTM

Enterprise System, or Java ES, on Solaris). The Ant script provided with the
Communications Server, asant, is located in this directory. For details on how to use asant,
see the Sun GlassFish Communications Server 2.0 Reference Manual.

2. If you are executing platform-specific applications, such as the exec or cvs task, the
ANT_HOME environment variable must be set to the Ant installation directory.
■ The ANT_HOME environment variable for Java ES on Solaris is /usr/sfw and must

include the following paths.
■ /usr/sfw/bin – the Ant binaries (shell scripts)
■ /usr/sfw/doc/ant – HTML documentation
■ /usr/sfw/lib/ant – Java classes that implement Ant

■ The ANT_HOME environment variable for all other platforms is as-install/lib.
3. Set up your password file. The argument for the passwordfile option of each Ant task is a

file. This file contains the password in the following format.

AS_ADMIN_PASSWORD=password

For more information about password files, see the Sun GlassFish Communications
Server 2.0 Reference Manual.

This section covers the following asant-related topics:
■ “Communications Server asant Tasks” on page 44
■ “Reusable Subelements” on page 63
■ “JBI Tasks” on page 68

3C H A P T E R 3

43

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

For more information about Ant, see the Apache Software Foundation web site at
http://ant.apache.org/.

For information about standard Ant tasks, see the Ant documentation at
http://ant.apache.org/manual/.

Note – Variables in the examples in this chapter, such as ${asinstalldir}, reference values
defined in build.xml or properties files.

Communications Server asant Tasks
Use the asant tasks provided by the Communications Server for assembling, deploying, and
undeploying modules and applications, and for configuring the server. The tasks are as follows:

■ “The sun-appserv-deploy Task” on page 44
■ “The sun-appserv-undeploy Task” on page 48
■ “The sun-appserv-instance Task” on page 51
■ “The sun-appserv-component Task” on page 54
■ “The sun-appserv-admin Task” on page 57
■ “The sun-appserv-jspc Task” on page 58
■ “The sun-appserv-update Task” on page 60
■ “The wsgen Task” on page 60
■ “The wsimport Task” on page 62

The sun-appserv-deploy Task
Deploys any of the following to a local or remote Communications Server instance.

■ Enterprise application (EAR file)
■ Web application (WAR file)
■ SIP application (SAR file)
■ Enterprise Java Bean (EJB-JAR file)
■ Enterprise connector (RAR file)
■ Application client

Subelements of sun-appserv-deploy
The following table describes subelements for the sun-appserv-deploy task. These are objects
upon which this task acts.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200944

http://ant.apache.org/
http://ant.apache.org/manual/

TABLE 3–1 The sun-appserv-deploy Subelements

Element Description

“The server Subelement” on page 63 An Communications Server instance

“The component Subelement” on page 66 A component to be deployed

“The fileset Subelement” on page 68 A set of component files that match specified parameters

Attributes of sun-appserv-deploy
The following table describes attributes for the sun-appserv-deploy task.

TABLE 3–2 The sun-appserv-deployAttributes

Attribute Default Description

file none (optional if a component or fileset subelement is present, otherwise required) The
component to deploy. If this attribute refers to a file, it must be a valid archive. If this
attribute refers to a directory, it must contain a valid archive in which all components
have been exploded. If upload is set to false, this must be an absolute path on the
server machine.

name file name without
extension

(optional) The display name for the component being deployed.

force true (optional) If true, the component is overwritten if it already exists on the server. If
false, sun-appserv-deploy fails if the component exists.

retrievestubs client stubs not
saved

(optional) The directory where client stubs are saved. This attribute is inherited by
nested component elements.

precompilejsp false (optional) If true, all JSP files found in an enterprise application (.ear) or web
application (.war) are precompiled. This attribute is ignored for other component
types. This attribute is inherited by nested component elements.

verify false (optional) If true, syntax and semantics for all deployment descriptors are
automatically verified for correctness. This attribute is inherited by nested component

elements.

contextroot file name without
extension

(optional) The context root for a web module (WAR file) or SIP module (SAR file).
This attribute is ignored if the component is not a WAR or SAR file.

Communications Server asant Tasks

Chapter 3 • The asantUtility 45

TABLE 3–2 The sun-appserv-deployAttributes (Continued)
Attribute Default Description

dbvendorname sun-ejb-jar.xml

entry
(optional) The name of the database vendor for which tables can be created. Allowed
values are javadb, db2, mssql, oracle, postgresql, pointbase, derby (also for
CloudScape), and sybase, case-insensitive.

If not specified, the value of the database-vendor-name attribute in
sun-ejb-jar.xml is used.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp-resource element in the sun-ejb-jar.xml file,
and the database vendor name is read. If the connection cannot be established, or if
the value is not recognized, SQL-92 compliance is presumed.

For details, see “Generation Options for CMP” on page 203.

createtables sun-ejb-jar.xml

entry
(optional) If true, causes database tables to be created for beans that need them. If
false, does not create tables. If not specified, the value of the
create-tables-at-deploy attribute in sun-ejb-jar.xml is used.

For details, see “Generation Options” on page 128 and “Generation Options for
CMP” on page 203.

dropandcreatetables sun-ejb-jar.xml

entry
(optional) If true, and if tables were automatically created when this application was
last deployed, tables from the earlier deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the same names as
those that would have been automatically created are found, the deployment
proceeds, but a warning indicates that tables could not be created.

If false, settings of create-tables-at-deploy or drop-tables-at-undeploy in the
sun-ejb-jar.xml file are overridden.

For details, see “Generation Options” on page 128 and “Generation Options for
CMP” on page 203.

uniquetablenames sun-ejb-jar.xml

entry
(optional) If true, specifies that table names are unique within each application server
domain. If not specified, the value of the use-unique-table-names property in
sun-ejb-jar.xml is used.

For details, see “Generation Options for CMP” on page 203.

enabled true (optional) If true, enables the component.

deploymentplan none (optional) A deployment plan is a JAR file containing Sun-specific descriptors. Use
this attribute when deploying an EAR file that lacks Sun-specific descriptors.

availabilityenabled false (optional) If true, enables high availability features, including persistence of HTTP
or SIP sessions and checkpointing of the stateful session bean state.

generatermistubs false (optional) If true, generates the static RMI-IIOP stubs and puts them in the client
JAR file.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200946

TABLE 3–2 The sun-appserv-deployAttributes (Continued)
Attribute Default Description

upload true (optional) If true, the component is transferred to the server for deployment. If the
component is being deployed on the local machine, set upload to false to reduce
deployment time. If a directory is specified for deployment, upload must be false.

virtualservers default virtual
server only

(optional) A comma-separated list of virtual servers to be deployment targets. This
attribute applies only to application (.ear), SIP (.sar), or web (.war) components
and is ignored for other component types. This attribute is inherited by nested
server elements.

user admin (optional) The user name used when logging into the application server
administration instance. This attribute is inherited by nested server elements.

passwordfile none (optional) File containing passwords. The password from this file is retrieved for
communication with the application server administration instance. This attribute is
inherited by nested server elements.

host localhost (optional) Target server. When deploying to a remote server, use the fully qualified
host name. This attribute is inherited by nested server elements.

port 4848 (optional) The administration port on the target server. This attribute is inherited by
nested server elements.

target name of default
instance

(optional) Target application server instance. This attribute is inherited by nested
server elements.

asinstalldir see description (optional) The installation directory for the local Communications Server
installation, which is used to find the administrative classes. If not specified, the
command checks if the asinstalldir parameter has been set. Otherwise,
administrative classes must be in the system classpath.

Examples of sun-appserv-deploy
Here is a simple application deployment script with many implied attributes:

<sun-appserv-deploy

file="${assemble}/simpleapp.ear"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-deploy

file="${assemble}/simpleapp.ear"
name="simpleapp"
force="true"
precompilejsp="false"
verify="false"
upload="true"
user="admin"
passwordfile="${passwordfile}"

Communications Server asant Tasks

Chapter 3 • The asantUtility 47

host="localhost"
port="4848"
target="${default-instance-name}"
asinstalldir="${asinstalldir}" />

This example deploys multiple components to the same Communications Server instance
running on a remote server:

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

This example deploys multiple components to two Communications Server instances running
on remote servers. In this example, both servers are using the same admin password. If this were
not the case, each password could be specified in the server element.

<sun-appserv-deploy passwordfile="${passwordfile}" asinstalldir="/opt/sun" >

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

This example deploys the same components as the previous example because the three
components match the fileset criteria, but note that it is not possible to set some
component-specific attributes. All component-specific attributes (name and contextroot) use
their default values.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<fileset dir="${assemble}" includes="**/*.?ar" />

</sun-appserv-deploy>

The sun-appserv-undeploy Task
Undeploys any of the following from a local or remote Communications Server instance.
■ Enterprise application (EAR file)
■ Web application (WAR file)
■ SIP application (SAR file)
■ Enterprise Java Bean (EJB-JAR file)

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200948

■ Enterprise connector (RAR file)
■ Application client

Subelements of sun-appserv-undeploy
The following table describes subelements for the sun-appserv-undeploy task. These are
objects upon which this task acts.

TABLE 3–3 The sun-appserv-undeploy Subelements

Element Description

“The server Subelement” on page 63 An Communications Server instance

“The component Subelement” on page 66 A component to be deployed

“The fileset Subelement” on page 68 A set of component files that match specified parameters

Attributes of sun-appserv-undeploy
The following table describes attributes for the sun-appserv-undeploy task.

TABLE 3–4 The sun-appserv-undeployAttributes

Attribute Default Description

name file name without
extension

(optional if a component or fileset subelement is present or the file attribute is specified,
otherwise required) The display name for the component being undeployed.

file none (optional) The component to undeploy. If this attribute refers to a file, it must be a valid
archive. If this attribute refers to a directory, it must contain a valid archive in which all
components have been exploded.

droptables sun-ejb-jar.xml

entry
(optional) If true, causes database tables that were automatically created when the bean(s)
were last deployed to be dropped when the bean(s) are undeployed. If false, does not drop
tables.

If not specified, the value of the drop-tables-at-undeploy attribute in sun-ejb-jar.xml

is used.

For details, see “Generation Options” on page 128 and “Generation Options for CMP” on
page 203.

cascade false (optional) If true, deletes all connection pools and connector resources associated with the
resource adapter being undeployed.

If false, undeployment fails if any pools or resources are still associated with the resource
adapter.

This attribute is applicable to connectors (resource adapters) and applications with
connector modules.

Communications Server asant Tasks

Chapter 3 • The asantUtility 49

TABLE 3–4 The sun-appserv-undeployAttributes (Continued)
Attribute Default Description

user admin (optional) The user name used when logging into the application server administration
instance. This attribute is inherited by nested server elements.

passwordfile none (optional) File containing passwords. The password from this file is retrieved for
communication with the application server administration instance. This attribute is
inherited by nested server elements.

host localhost (optional) Target server. When deploying to a remote server, use the fully qualified host
name. This attribute is inherited by nested server elements.

port 4848 (optional) The administration port on the target server. This attribute is inherited by nested
server elements.

target name of default
instance

(optional) Target application server instance. This attribute is inherited by nested server

elements.

asinstalldir see description (optional) The installation directory for the local Communications Server installation,
which is used to find the administrative classes. If not specified, the command checks to see
if the asinstalldir parameter has been set. Otherwise, administrative classes must be in
the system classpath.

Examples of sun-appserv-undeploy
Here is a simple application undeployment script with many implied attributes:

<sun-appserv-undeploy name="simpleapp" passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-undeploy

name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
target="${default-instance-name}"
asinstalldir="${asinstalldir}" />

This example demonstrates using the archive files (EAR and WAR, in this case) for the
undeployment, using the component name (for undeploying the EJB component in this
example), and undeploying multiple components.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200950

As with the deployment process, components can be undeployed from multiple servers in a
single command. This example shows the same three components being removed from two
different instances of the Communications Server. In this example, the passwords for both
instances are the same.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

The sun-appserv-instance Task
Starts, stops, restarts, creates, or removes one or more application server instances.

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

Subelements of sun-appserv-instance
The following table describes subelements for the sun-appserv-instance task. These are
objects upon which this task acts.

TABLE 3–5 The sun-appserv-instance Subelements

Element Description

“The server Subelement” on page 63 An Communications Server instance

Attributes of sun-appserv-instance
The following table describes attributes for the sun-appserv-instance task.

TABLE 3–6 The sun-appserv-instanceAttributes

Attribute Default Description

action none The control command for the target application server. Valid values are start, stop, create, and
delete. A restart sends the stop command followed by the start command. The restart
command is not supported on Windows.

Communications Server asant Tasks

Chapter 3 • The asantUtility 51

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view

TABLE 3–6 The sun-appserv-instanceAttributes (Continued)
Attribute Default Description

debug false (optional) Deprecated. If action is set to start, specifies whether the server starts in debug mode.
This attribute is ignored for other values of action. If true, the instance generates additional
debugging output throughout its lifetime. This attribute is inherited by nested server elements.

nodeagent none (required if action is create, otherwise ignored) The name of the node agent on which the instance
is being created.

cluster none (optional, applicable only if action is create) The clustered instance to be created. The server’s
configuration is inherited from the named cluster.

The config and cluster attributes are mutually exclusive. If both are omitted, a stand-alone server
instance is created.

config none (optional, applicable only if action is create) The configuration for the new stand-alone instance.

The configuration must exist and must not be default-config (the cluster configuration template)
or an already referenced stand-alone configuration (including the administration server
configuration server-config).

The config and cluster attributes are mutually exclusive. If both are omitted, a stand-alone server
instance is created.

property none (optional, applicable only if action is create) Defines system properties for the server instance.
These properties override port settings in the server instance’s configuration. The following
properties are defined: http-listener-1-port, http-listener-2-port, orb-listener-1-port,
SSL-port, SSL_MUTUALAUTH-port, JMX_SYSTEM_CONNECTOR_port.

System properties can be changed after instance creation using the system property commands. For
details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

user admin (optional) The user name used when logging into the application server administration instance.
This attribute is inherited by nested server elements.

passwordfile none (optional) File containing passwords. The password from this file is retrieved for communication
with the application server administration instance. This attribute is inherited by nested server

elements.

host localhost (optional) Target server. If it is a remote server, use the fully qualified host name. This attribute is
inherited by nested server elements.

port 4848 (optional) The administration port on the target server. This attribute is inherited by nested server

elements.

instance name of
default
instance

(optional) Target application server instance. This attribute is inherited by nested server elements.

asinstalldir see
description

(optional) The installation directory for the local Communications Server installation, which is used
to find the administrative classes. If not specified, the command checks to see if the asinstalldir
parameter has been set. Otherwise, administrative classes must be in the system classpath.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200952

http://docs.sun.com/doc/821-0197

Examples of sun-appserv-instance
This example starts the local Communications Server instance:

<sun-appserv-instance action="start" passwordfile="${passwordfile}"
instance="${default-instance-name}"/>

Here is an equivalent script showing all the implied attributes:

<sun-appserv-instance

action="start"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
instance="${default-instance-name}"
asinstalldir="${asinstalldir}" />

Multiple servers can be controlled using a single command. In this example, two servers are
restarted, and in this case each server uses a different password:

<sun-appserv-instance action="restart"
instance="${default-instance-name}"/>

<server host="greg.sun.com" passwordfile="${password.greg}"/>
<server host="joe.sun.com" passwordfile="${password.joe}"/>
</sun-appserv-instance>

This example creates a new Communications Server instance:

<sun-appserv-instance

action="create" instanceport="8080"
passwordfile="${passwordfile}"
instance="development" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-instance

action="create"
instanceport="8080"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
instance="development"
asinstalldir="${asinstalldir}" />

Instances can be created on multiple servers using a single command. This example creates a
new instance named qa on two different servers. In this case, both servers use the same
password.

Communications Server asant Tasks

Chapter 3 • The asantUtility 53

<sun-appserv-instance

action="create"
instanceport="8080"
instance="qa"
passwordfile="${passwordfile}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
</sun-appserv-instance>

These instances can also be removed from their respective servers:

<sun-appserv-instance

action="delete"
instance="qa"
passwordfile="${passwordfile}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
</sun-appserv-instance>

Different instance names and instance ports can also be specified using attributes of the server
subelement:

<sun-appserv-instance action="create" passwordfile="${passwordfile}>
<server host="greg.sun.com" instanceport="8080" instance="qa"/>
<server host="joe.sun.com" instanceport="9090"

instance="integration-test"/>
</sun-appserv-instance>

The sun-appserv-component Task
Enables or disables the following Java EE component types that have been deployed to the
Communications Server.

■ Enterprise application (EAR file)
■ Web application (WAR file)
■ SIP application (SAR file)
■ Enterprise Java Bean (EJB-JAR file)
■ Enterprise connector (RAR file)
■ Application client

You do not need to specify the archive to enable or disable a component: only the component
name is required. You can use the component archive, however, because it implies the
component name.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200954

Subelements of sun-appserv-component
The following table describes subelements for the sun-appserv-component task. These are
objects upon which this task acts.

TABLE 3–7 The sun-appserv-component Subelements

Element Description

“The server Subelement” on page 63 An Communications Server instance

“The component Subelement” on page 66 A component to be deployed

“The fileset Subelement” on page 68 A set of component files that match specified parameters

Attributes of sun-appserv-component
The following table describes attributes for the sun-appserv-component task.

TABLE 3–8 The sun-appserv-componentAttributes

Attribute Default Description

action none The control command for the target application server. Valid values are enable and disable.

name file name
without
extension

(optional if a component or fileset subelement is present or the file attribute is specified,
otherwise required) The display name for the component being enabled or disabled.

file none (optional) The component to enable or disable. If this attribute refers to a file, it must be a valid
archive. If this attribute refers to a directory, it must contain a valid archive in which all
components have been exploded.

user admin (optional) The user name used when logging into the application server administration instance.
This attribute is inherited by nested server elements.

passwordfile none (optional) File containing passwords. The password from this file is retrieved for communication
with the application server administration instance. This attribute is inherited by nested server

elements.

host localhost (optional) Target server. When enabling or disabling a remote server, use the fully qualified host
name. This attribute is inherited by nested server elements.

port 4848 (optional) The administration port on the target server. This attribute is inherited by nested
server elements.

target name of
default
instance

(optional) Target application server instance. This attribute is inherited by nested server

elements.

Communications Server asant Tasks

Chapter 3 • The asantUtility 55

TABLE 3–8 The sun-appserv-componentAttributes (Continued)
Attribute Default Description

asinstalldir see
description

(optional) The installation directory for the local Communications Server installation, which is
used to find the administrative classes. If not specified, the command checks to see if the
asinstalldir parameter has been set. Otherwise, administrative classes must be in the system
classpath.

Examples of sun-appserv-component
Here is a simple example of disabling a component:

<sun-appserv-component

action="disable"
name="simpleapp"
passwordfile="${passwordfile}" />

Here is a simple example of enabling a component:

<sun-appserv-component

action="enable"
name="simpleapp"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-component

action="enable"
name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
target="${default-instance-name}"
asinstalldir="${asinstalldir}" />

This example demonstrates disabling multiple components using the archive files (EAR and
WAR, in this case) and using the component name (for an EJB component in this example).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

Components can be enabled or disabled on multiple servers in a single task. This example
shows the same three components being enabled on two different instances of the
Communications Server. In this example, the passwords for both instances are the same.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200956

<sun-appserv-component action="enable" passwordfile="${passwordfile}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

The sun-appserv-admin Task
Enables arbitrary administrative commands and scripts to be executed on the Communications
Server. This is useful for cases where a specific Ant task has not been developed or a set of
related commands are in a single script.

Subelements of sun-appserv-admin
The following table describes subelements for the sun-appserv-admin task. These are objects
upon which this task acts.

TABLE 3–9 The sun-appserv-admin Subelements

Element Description

“The server Subelement” on page 63 An Communications Server instance

Attributes of sun-appserv-admin
The following table describes attributes for the sun-appserv-admin task.

TABLE 3–10 The sun-appserv-adminAttributes

Attribute Default Description

command none (exactly one of these is required: command or explicitcommand) The command to execute. If the
user, passwordfile, host, port, or target attributes are also specified, they are automatically
inserted into the command before execution. If any of these options are specified in the
command string, the corresponding attribute values are ignored.

explicitcommand none (exactly one of these is required: command or explicitcommand) The exact command to execute.
No command processing is done, and all other attributes are ignored.

user admin (optional) The user name used when logging into the application server administration
instance. This attribute is inherited by nested server elements.

passwordfile none (optional) File containing passwords. The password from this file is retrieved for
communication with the application server administration instance. This attribute is inherited
by nested server elements.

Communications Server asant Tasks

Chapter 3 • The asantUtility 57

TABLE 3–10 The sun-appserv-adminAttributes (Continued)
Attribute Default Description

host localhost (optional) Target server. If it is a remote server, use the fully qualified host name. This attribute
is inherited by nested server elements.

port 4848 (optional) The administration port on the target server. This attribute is inherited by nested
server elements.

asinstalldir see
description

(optional) The installation directory for the local Communications Server installation, which is
used to find the administrative classes. If not specified, the command checks if the
asinstalldir parameter has been set. Otherwise, administrative classes must be in the system
classpath.

Examples of sun-appserv-admin
Here is an example of executing the create-jms-dest command:

<sun-appserv-admin command="create-jms-dest --desttype topic">

Here is an example of using explicitcommand to execute the create-jms-dest command:

<sun-appserv-admin explicitcommand="create-jms-dest --user adminuser --host localhost

--port 4848 --desttype topic --target server1 simpleJmsDest">

The sun-appserv-jspc Task
Precompiles JSP source code into Communications Server compatible Java code for initial
invocation by Communications Server. Use this task to speed up access to JSP files or to check
the syntax of JSP source code. You can feed the resulting Java code to the javac task to generate
class files for the JSP files.

Attributes of sun-appserv-jspc
The following table describes attributes for the sun-appserv-jspc task.

TABLE 3–11 The sun-appserv-jspcAttributes

Attribute Default Description

destdir none The destination directory for the generated Java source files.

srcdir none (exactly one of these is required: srcdir or webapp) The source directory where the JSP files are
located.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200958

TABLE 3–11 The sun-appserv-jspcAttributes (Continued)
Attribute Default Description

webapp none (exactly one of these is required: srcdir or webapp) The directory containing the web application.
All JSP files within the directory are recursively parsed. The base directory must have a WEB-INF
subdirectory beneath it. When webapp is used, sun-appserv-jspc hands off all dependency
checking to the compiler.

verbose 2 (optional) The verbosity integer to be passed to the compiler.

classpath none (optional) The classpath for running the JSP compiler.

classpathref none (optional) A reference to the JSP compiler classpath.

uribase / (optional) The URI context of relative URI references in the JSP files. If this context does not exist, it
is derived from the location of the JSP file relative to the declared or derived value of uriroot. Only
pages translated from an explicitly declared JSP file are affected.

uriroot see
description

(optional) The root directory of the web application, against which URI files are resolved. If this
directory is not specified, the first JSP file is used to derive it: each parent directory of the first JSP file
is searched for a WEB-INF directory, and the directory closest to the JSP file that has one is used. If no
WEB-INF directory is found, the directory from which sun-appserv-jspc was called is used. Only
pages translated from an explicitly declared JSP file (including tag libraries) are affected.

package none (optional) The destination package for the generated Java classes.

asinstalldir see
description

(optional) The installation directory for the local Communications Server installation, which is
used to find the administrative classes. If not specified, the command checks if the asinstalldir
parameter has been set. Otherwise, administrative classes must be in the system classpath.

Example of sun-appserv-jspc
The following example uses the webapp attribute to generate Java source files from JSP files. The
sun-appserv-jspc task is immediately followed by a javac task, which compiles the generated
Java files into class files. The classpath value in the javac task must be all on one line with no
spaces.

<sun-appserv-jspc

destdir="${assemble.war}/generated"
webapp="${assemble.war}"
classpath="${assemble.war}/WEB-INF/classes"
asinstalldir="${asinstalldir}" />

<javac

srcdir="${assemble.war}/WEB-INF/generated"
destdir="${assemble.war}/WEB-INF/generated"
debug="on"
classpath="${assemble.war}/WEB-INF/classes:${asinstalldir}/lib/
appserv-rt.jar:${asinstalldir}/lib/appserv-ext.jar">

<include name="**/*.java"/>
</javac>

Communications Server asant Tasks

Chapter 3 • The asantUtility 59

The sun-appserv-update Task
Enables deployed applications (EAR files) and modules (EJB JAR, RAR, and WAR files) to be
updated and reloaded for fast iterative development. This task copies modified class files, XML
files, and other contents of the archive files to the appropriate subdirectory of the
domain-dir/applications directory, then touches the .reload file to cause dynamic reloading
to occur.

This is a local task and must be executed on the same machine as the Communications Server.

For more information about dynamic reloading, see the Sun GlassFish Communications
Server 2.0 Application Deployment Guide.

Attributes of sun-appserv-update
The following table describes attributes for the sun-appserv-update task.

TABLE 3–12 The sun-appserv-updateAttributes

Attribute Default Description

file none The component to update, which must be a valid archive.

domain domain1 (optional) The domain in which the application has been previously deployed.

Example of sun-appserv-update
The following example updates the Java EE application foo.ear, which is deployed to the
default domain, domain1.

<sun-appserv-update file="foo.ear"/>

The wsgen Task
Generates JAX-WS portable artifacts used in JAX-WS web services. Reads a web service
endpoint class and generates all the required artifacts for web service deployment and
invocation.

Attributes of wsgen
The following table describes attributes for the wsgen task.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200960

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

TABLE 3–13 The wsgenAttributes

Attribute Default Description

sei none Specifies the name of the service endpoint interface (SEI) class.

destdir current
directory

(optional) Specifies where to place the output generated classes.

classpath system
classpath

(optional) Specifies where to find the input class files. Same as cp
attribute.

cp system
classpath

(optional) Specifies where to find the input class files. Same as
classpath attribute.

resourcedestdir current
directory

(optional) Specifies where to place generated resource files such as
WSDL files. Used only if the genwsdl attribute is set to true.

sourcedestdir current
directory

(optional) Specifies where to place generated source files.

keep false (optional) If true, keeps generated files.

verbose false (optional) If true, outputs compiler messages.

genwsdl true (optional) If true, generates a WSDL file.

protocol soap1.1 (optional) Specifies the protocol to use in the wsdl:binding. Used only
if the genwsdl attribute is set to true.

Allowed values are soap1.1 or Xsoap1.2. Xsoap1.2 is not standard and
is only used if the extension attribute is set to true.

servicename none (optional) Specifies a particular wsdl:service name for the generated
WSDL file. Used only if the genwsdl attribute is set to true. For example:

servicename="{http://mynamespace/}MyService"

portname none (optional) Specifies a particular wsdl:port name for the generated
WSDL. Used only if the genwsdl attribute is set to true. For example:

portname="{http://mynamespace/}MyPort"

extension false (optional) If true, allows vendor extensions not in the specification. Use
of extensions may result in applications that are not portable and may
not interoperate with other implementations.

Example of wsgen
The following example generates portable artifacts for fromjava.server.AddNumbersImpl,
uses compile.classpath as the classpath, and writes the WSDL file to ${wsdl.dir}.

<wsgen

resourcedestdir="${wsdl.dir}"

Communications Server asant Tasks

Chapter 3 • The asantUtility 61

sei="fromjava.server.AddNumbersImpl">
<classpath refid="compile.classpath"/>

</wsgen>

The wsimport Task
Generates JAX-WS portable artifacts for a given WSDL file. Portable artifacts include service
endpoint interfaces (SEIs), services, exception classes mapped from the wsdl:fault and
soap:headerfault tags, asynchronous response beans derived from the wsdl:message tag, and
JAXB generated value types. After generation, these artifacts can be packaged in a WAR file
with the WSDL and schema documents along with the endpoint implementation and then
deployed.

Attributes of wsimport
The following table describes attributes for the wsimport task.

TABLE 3–14 The wsimportAttributes

Attribute Default Description

wsdl none Specifies the name of the WSDL file.

destdir current
directory

(optional) Specifies where to place the output generated classes.

sourcedestdir current
directory

(optional) Specifies where to place generated source files. Used only if the
keep attribute is set to true.

keep false (optional) If true, keeps generated files.

verbose false (optional) If true, outputs compiler messages.

binding none (optional) Specifies external JAX-WS or JAXB binding files. JAX-WS and
JAXB binding files can customize things like package names and bean
names. More information on JAX-WS and JAXB binding files can be found
in the customization documentation included with this release.

extension false (optional) If true, allows vendor extensions not in the specification. Use of
extensions may result in applications that are not portable and may not
interoperate with other implementations.

wsdllocation none (optional) Specifies the value of @WebService.wsdlLocation and
@WebServiceClient.wsdlLocation annotation elements for the generated
SEI and Service interface. This should be set to the URI of the web service
WSDL file.

Communications Server asant Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200962

TABLE 3–14 The wsimportAttributes (Continued)
Attribute Default Description

catalog none (optional) Specifies the catalog file to resolve external entity references.
Supported formats are TR9401, XCatalog, and OASIS XML Catalog.
Additionally, the Ant xmlcatalog type can be used to resolve entities.

package none (optional) Specifies the target package, overriding any WSDL and schema
binding customization for package name, and the default package name
algorithm defined in the JAX-WS specification.

Example of wsimport
The following example generates client-side artifacts for AddNumbers.wsdl and stores .class
files in the ${build.classes.home} directory using the custom.xml customization file.

<wsimport

destdir="${build.classes.home}"
wsdl="AddNumbers.wsdl"
binding="custom.xml">

</wsimport>

Reusable Subelements
Reusable subelements of the Ant tasks for the Communications Server are as follows. These are
objects upon which the Ant tasks act.

■ “The server Subelement” on page 63
■ “The component Subelement” on page 66
■ “The fileset Subelement” on page 68

The server Subelement
Specifies an Communications Server instance. Allows a single task to act on multiple server
instances. The server attributes override corresponding attributes in the parent task; therefore,
the parent task attributes function as default values.

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

Attributes of server
The following table describes attributes for the server element.

Reusable Subelements

Chapter 3 • The asantUtility 63

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view

TABLE 3–15 The serverAttributes

Attribute Default Description

user admin (optional) The user name used when logging into the Communications Server domain
administration server (DAS).

passwordfile none (optional) File containing passwords. The password from this file is retrieved for communication
with the Communications Server DAS.

host localhost (optional) Target server. When targeting a remote server, use the fully qualified host name.

port 4848 (optional) The administration port on the target server.

instance name of
default
instance

(optional) Target application server instance.

instanceport none (applies to “The sun-appserv-instance Task” on page 51 only) Deprecated.

nodeagent none (applies to “The sun-appserv-instance Task” on page 51 only, required if action is create,
otherwise ignored) The name of the node agent on which the instance is being created.

debug false (applies to “The sun-appserv-instance Task” on page 51 only, optional) Deprecated. If action
is set to start, specifies whether the server starts in debug mode. This attribute is ignored for
other values of action. If true, the instance generates additional debugging output throughout
its lifetime.

upload true (applies to “The sun-appserv-deploy Task” on page 44 only, optional) If true, the component is
transferred to the server for deployment. If the component is being deployed on the local
machine, set upload to false to reduce deployment time.

virtualservers default
virtual server
only

(applies to “The sun-appserv-deploy Task” on page 44 only, optional) A comma-separated list
of virtual servers to be deployment targets. This attribute applies only to application (.ear) or
web (.war) components and is ignored for other component types.

Examples of server
You can control multiple servers using a single task. In this example, two servers are started,
each using a different password. Only the second server is started in debug mode.

<sun-appserv-instance action="start">
<server host="greg.sun.com" passwordfile="${password.greg}"/>
<server host="joe.sun.com" passwordfile="${password.joe}"

debug="true"/>
</sun-appserv-instance>

You can create instances on multiple servers using a single task. This example creates a new
instance named qa on two different servers. Both servers use the same password.

<sun-appserv-instance action="create" instanceport="8080"
instance="qa" passwordfile="${passwordfile}>

Reusable Subelements

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200964

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
</sun-appserv-instance>

These instances can also be removed from their respective servers:

<sun-appserv-instance action="delete" instance="qa"
passwordfile="${passwordfile}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
</sun-appserv-instance>

You can specify different instance names and instance ports using attributes of the nested
server element:

<sun-appserv-instance action="create" passwordfile="${passwordfile}>
<server host="greg.sun.com" instanceport="8080" instance="qa"/>
<server host="joe.sun.com" instanceport="9090"

instance="integration-test"/>
</sun-appserv-instance>

You can deploy multiple components to multiple servers (see the “The component Subelement”
on page 66) . This example deploys each component to two Communications Server instances
running on remote servers. Both servers use the same password.

<sun-appserv-deploy passwordfile="${passwordfile}"
asinstalldir="/opt/s1as8" >

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components from multiple servers. This example shows the
same three components being removed from two different instances. Both servers use the same
password.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

You can enable or disable components on multiple servers. This example shows the same three
components being enabled on two different instances. Both servers use the same password.

Reusable Subelements

Chapter 3 • The asantUtility 65

<sun-appserv-component action="enable" passwordfile="${passwordfile}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

The component Subelement
Specifies a Java EE component. Allows a single task to act on multiple components. The
component attributes override corresponding attributes in the parent task; therefore, the parent
task attributes function as default values.

Attributes of component
The following table describes attributes for the component element.

TABLE 3–16 The componentAttributes

Attribute Default Description

file none (optional if the parent task is “The sun-appserv-undeploy Task” on page 48 or “The
sun-appserv-component Task” on page 54) The target component. If this attribute refers to a file,
it must be a valid archive. If this attribute refers to a directory, it must contain a valid archive in
which all components have been exploded. If upload is set to false, this must be an absolute path
on the server machine.

name file name
without
extension

(optional) The display name for the component.

force true (applies to “The sun-appserv-deploy Task” on page 44 only, optional) If true, the component is
overwritten if it already exists on the server. If false, the containing element’s operation fails if
the component exists.

precompilejsp false (applies to “The sun-appserv-deploy Task” on page 44 only, optional) If true, all JSP files found
in an enterprise application (.ear) or web application (.war) are precompiled. This attribute is
ignored for other component types.

retrievestubs client stubs
not saved

(applies to “The sun-appserv-deploy Task” on page 44 only, optional) The directory where
client stubs are saved.

contextroot file name
without
extension

(applies to “The sun-appserv-deploy Task” on page 44 only, optional) The context root for a
web module (WAR file). This attribute is ignored if the component is not a WAR file.

Reusable Subelements

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200966

TABLE 3–16 The componentAttributes (Continued)
Attribute Default Description

verify false (applies to “The sun-appserv-deploy Task” on page 44 only, optional) If true, syntax and
semantics for all deployment descriptors is automatically verified for correctness.

Examples of component
You can deploy multiple components using a single task. This example deploys each
component to the same Communications Server instance running on a remote server.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/s1as8" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components using a single task. This example demonstrates
using the archive files (EAR and WAR, in this case) and the component name (for the EJB
component).

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

You can deploy multiple components to multiple servers. This example deploys each
component to two instances running on remote servers. Both servers use the same password.

<sun-appserv-deploy passwordfile="${passwordfile}" asinstalldir="/opt/s1as8" >

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components to multiple servers. This example shows the same
three components being removed from two different instances. Both servers use the same
password.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>

Reusable Subelements

Chapter 3 • The asantUtility 67

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

You can enable or disable multiple components. This example demonstrates disabling multiple
components using the archive files (EAR and WAR, in this case) and the component name (for
the EJB component).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

You can enable or disable multiple components on multiple servers. This example shows the
same three components being enabled on two different instances. Both servers use the same
password.

<sun-appserv-component action="enable" passwordfile="${passwordfile}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

The fileset Subelement
Selects component files that match specified parameters. When fileset is included as a
subelement, the name and contextroot attributes of the containing element must use their
default values for each file in the fileset. For more information, see http://ant.apache.org/
manual/CoreTypes/fileset.html.

JBI Tasks
The asant utility supports the Java Business Integration (JBI) Ant tasks. The Ant Tasks
Reference is included with the Communications Server at as-install/jbi/doc/antdoc/.

For more information about JBI in the Communications Server, see “JBI Runtime” on page 117.

JBI Tasks

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200968

http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html

Debugging Applications

This chapter gives guidelines for debugging applications in the Sun GlassFish Communications
Server. It includes the following sections:

■ “Enabling Debugging” on page 69
■ “JPDA Options” on page 70
■ “Generating a Stack Trace for Debugging” on page 71
■ “Application Client Debugging” on page 71
■ “Sun GlassFish Message Queue Debugging” on page 72
■ “Enabling Verbose Mode” on page 72
■ “Communications Server Logging” on page 72
■ “SIP Message Inspection Log Adapter” on page 73
■ “Profiling Tools” on page 74

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the --debug option as follows:

asadmin start-domain --user adminuser --debug [domain-name]

You can then attach to the server from the Java Debugger (jdb) at its default Java Platform
Debugger Architecture (JPDA) port, which is 9009. For example, for UNIX® systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

For more information about the jdb debugger, see the following links:

4C H A P T E R 4

69

■ Java Platform Debugger Architecture - The Java Debugger: http://java.sun.com/
products/jpda/doc/soljdb.html

■ Java Platform Debugger Architecture - Connecting with JDB: http://java.sun.com/
products/jpda/doc/conninv.html#JDB

Communications Server debugging is based on the JPDA. For more information, see “JPDA
Options” on page 70.

You can attach to the Communications Server using any JPDA compliant debugger, including
that of NetBeans (http://www.netbeans.org), Sun Java Studio, JBuilder, Eclipse, and so on.

You can enable debugging even when the application server is started without the --debug
option. This is useful if you start the application server from the Windows Start Menu, or if you
want to make sure that debugging is always turned on.

▼ To Set the Server to Automatically Start Up in Debug
Mode
Use the Admin Console. In the developer profile, select the Communications Server component
and the JVM Settings tab. In the cluster profile, select the JVM Settings component under the
relevant configuration.

Check the Debug Enabled box.

To specify a different port (from 9009, the default) to use when attaching the JVM to a debugger,
specify address= port-number in the Debug Options field.

To add JPDA options, add any desired JPDA debugging options in Debug Options. See “JPDA
Options”on page 70.

For details, click the Help button in the Admin Console from the JVM Settings page.

JPDA Options
The default JPDA options in Communications Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM starts.

1

2

3

4

See Also

JPDA Options

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200970

http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/conninv.html#JDB
http://java.sun.com/products/jpda/doc/conninv.html#JDB
http://www.netbeans.org

To specify a different port (from 9009, the default) to use when attaching the JVM to a
debugger, specify address=port-number.

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

Generating a Stack Trace for Debugging
To generate a Java stack trace for debugging, use the asadmin generate-jvm-report
--type=thread command. The stack trace goes to the domain-dir/logs/server.log file and
also appears on the command prompt screen. For more information about the asadmin
generate-jvm-report command, see the Sun GlassFish Communications Server 2.0 Reference
Manual.

Application Client Debugging
When the appclient script executes the java command to run the Application Client
Container (ACC), which in turn runs the client, it includes on the command line the value of
the VMARGS environment variable. You can set this variable to any suitable value. The following
example debugging setup is for Windows systems:

VMARGS=-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8118

The following example debugging setup is for UNIX-based systems:

set VMARGS=-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8118

For debugging an application client, you should set suspend to y so you can connect the
debugger to the client before any code has actually executed. Otherwise, the client may start
running and execute past the point you want to examine.

You should use different ports for the server and client if you are debugging both concurrently.
For details about setting the port, see “JPDA Options” on page 70.

For information about the appclient script, see Sun GlassFish Communications Server 2.0
Reference Manual.

Application Client Debugging

Chapter 4 • Debugging Applications 71

http://java.sun.com/products/jpda/doc/conninv.html#Invocation
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Sun GlassFish Message Queue Debugging
Sun GlassFish Message Queue has a broker logger, which can be useful for debugging Java
Message Service (JMS) applications, including message-driven bean applications. You can
adjust the logger’s verbosity, and you can send the logger output to the broker’s console using
the broker’s -tty option. For more information, see the Sun GlassFish Message Queue 4.4
Administration Guide.

Enabling Verbose Mode
To have the server logs and messages printed to System.out on your command prompt screen,
you can start the server in verbose mode. This makes it easy to do simple debugging using print
statements, without having to view the server.log file every time.

To start the server in verbose mode, use the --verbose option as follows:

asadmin start-domain --user adminuser --verbose [domain-name]

On Windows platforms, you must perform an extra preparation step if you want to use
Ctrl-Break to print a thread dump. In the as-install/asenv.bat file, change
AS_NATIVE_LAUNCHER="false" to AS_NATIVE_LAUNCHER="true".

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on
UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX
platforms, you can also print a thread dump using the jstack command (see
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html) or the
command kill -QUIT process_id.

Communications Server Logging
You can use the Communications Server’s log files to help debug your applications. Use the
Admin Console. In the developer profile, select the Communications Server component. In the
cluster profile, select the Stand-Alone Instances component, and select the instance from the
table. Then click the View Log Files button in the General Information page.

To change logging settings in the developer profile, select the Logging tab. In the cluster profile,
select Logger Settings under the relevant configuration.

For details about logging, click the Help button in the Admin Console.

Sun GlassFish Message Queue Debugging

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200972

http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0027
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html

SIP Message Inspection Log Adapter
You can create your own adapter for logging SIP Message Inspection messages. This adapter
must implement the org.jvnet.glassfish.comms.admin.reporter.
smi.SmiLogMessageAdapter interface. You can use the example
org.jvnet.glassfish.comms.admin.reporter.NullAdapter class as a template:

package org.jvnet.glassfish.comms.admin.reporter;

import javax.servlet.sip.SipServletRequest;

import javax.servlet.sip.SipServletResponse;

public class NullAdapter implements SMILogMessageAdapter {

public String getLogMessageIncomingRequest(SipServletRequest req) {

return null;

}

public String getLogMessageIncomingResponse(SipServletResponse resp) {

return null;

}

public String getLogMessageOutgoingRequest(SipServletRequest req) {

return null;

}

public String getLogMessageOutgoingResponse(SipServletResponse resp) {

return null;

}

public String getLogMessagePostIncomingRequest(SipServletRequest req,

Exception exceptionInCaseOfException) {

return null;

}

public String getLogMessagePostIncomingResponse(SipServletResponse resp,

Exception exceptionInCaseOfException) {

return null;

}

}

An adapter can log servlet or network manager messages. To determine the type of messages
the adapter logs, set SIP Message Inspection properties in one of the following ways:

■ Use the asadmin set command as follows:

SIP Message Inspection Log Adapter

Chapter 4 • Debugging Applications 73

asadmin set config.sip-service.property.smiServletAdapter=classpath;classname
asadmin set config.sip-service.property.smiNetworkManagerAdapter=classpath;classname

The classpath and semicolon delimiter are optional. The classpath can be an additional
classpath outside the container classpath or a local file system path to the class that doesn't
include package names.

The class name must be fully qualified. Periods and other special characters must be
escaped. For example:

asadmin set server-config.sip-service.property.smiServletAdapter=org\.mypkg\.myServletAdapterImpl

For more information, see the Sun GlassFish Communications Server 2.0 Reference Manual.
■ Use the properties table in the SIP Service page in the Admin Console to set the

smiServletAdapter and smiNetworkManagerAdapter properties. For more information,
click the Help button in the Admin Console.

Here are some suggested uses of an adapter for SIP Message Inspection logging:

■ You can log or not for a certain interception method.
■ You can log only for a certain user.
■ You can collect information from some methods, store it temporarily (for example session

attributes), then log it.

For more information about SIP Message Inspection logging, see “SIP Message Inspection” in
Sun GlassFish Communications Server 2.0 Administration Guide.

Profiling Tools
You can use a profiler to perform remote profiling on the Communications Server to discover
bottlenecks in server-side performance. This section describes how to configure these profilers
for use with the Communications Server:

■ “The NetBeans Profiler” on page 75
■ “The HPROF Profiler” on page 75
■ “The JProbe Profiler” on page 76

Information about comprehensive monitoring and management support in the JavaTM 2
Platform, Standard Edition (J2SETM platform) is available at http://java.sun.com/javase/6/
docs/technotes/guides/management/index.html.

Profiling Tools

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200974

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0200/gjgma?a=view
http://docs.sun.com/doc/821-0200/gjgma?a=view
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html

The NetBeans Profiler
For information on how to use the NetBeans profiler, see http://www.netbeans.org and
http://blogs.sun.com/

roller/page/bhavani?entry=analyzing_the_performance_of_java.

The HPROF Profiler
The Heap and CPU Profiling Agent (HPROF) is a simple profiler agent shipped with the Java 2
SDK. It is a dynamically linked library that interacts with the Java Virtual Machine Profiler
Interface (JVMPI) and writes out profiling information either to a file or to a socket in ASCII or
binary format.

HPROF can monitor CPU usage, heap allocation statistics, and contention profiles. In addition,
it can also report complete heap dumps and states of all the monitors and threads in the Java
virtual machine. For more details on the HPROF profiler, see the technical article at
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html.

After HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

▼ To Use HPROF Profiling on UNIX

Use the Admin Console. In the developer profile, select the Communications Server component
and the JVM Settings tab. In the cluster profile, select the JVM Settings component under the
relevant configuration. Then select the Profiler tab.

Edit the following fields:

■ Profiler Name – hprof

■ Profiler Enabled – true

■ Classpath – (leave blank)
■ Native Library Path – (leave blank)
■ JVM Option – Select Add, type the HPROF JVM option in the Value field, then check its

box. The syntax of the HPROF JVM option is as follows:

-Xrunhprof[:help]|[:param=value,param2=value2, ...]

Here is an example of params you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file parameter determines where the stack dump is written.

1

2

Profiling Tools

Chapter 4 • Debugging Applications 75

http://www.netbeans.org
http://blogs.sun.com/roller/page/bhavani?entry=analyzing_the_performance_of_java
http://blogs.sun.com/roller/page/bhavani?entry=analyzing_the_performance_of_java
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

Using help lists parameters that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|old CPU usage off

format=a|b ascii or binary output a

file=<file> write data to file java.hprof

(.txt for ascii)

net=<host>:<port> send data over a socket write to file

depth=<size> stack trace depth 4

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

Note – Do not use help in the JVM Option field. This parameter prints text to the standard
output and then exits.

The help output refers to the parameters as options, but they are not the same thing as JVM
options.

Restart the Communications Server.
This writes an HPROF stack dump to the file you specified using the file HPROF parameter.

The JProbe Profiler
Information about JProbeTM from Sitraka is available at http://www.quest.com/jprobe/.

After JProbe is installed using the following instructions, its libraries are loaded into the server
process.

▼ To Enable Remote Profiling With JProbe

Install JProbe 3.0.1.1.
For details, see the JProbe documentation.

Configure Communications Server using the Admin Console:

a. In the developer profile, select the Communications Server component and the JVM
Settings tab. In the cluster profile, select the JVM Settings component under the relevant
configuration. Then select the Profiler tab.

3

1

2

Profiling Tools

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200976

http://www.quest.com/jprobe/

b. Edit the following fields before selecting Save and restarting the server:

■ Profiler Name – jprobe

■ Profiler Enabled – true

■ Classpath – (leave blank)
■ Native Library Path – JProbe-dir/profiler
■ JVM Option – For each of these options, select Add, type the option in the Value field,

then check its box
-Xbootclasspath/p:JProbe-dir/profiler/jpagent.jar
-Xrunjprobeagent

-Xnoclassgc

Note – If any of the configuration options are missing or incorrect, the profiler might
experience problems that affect the performance of the Communications Server.

When the server starts up with this configuration, you can attach the profiler.

Set the following environment variable:
JPROBE_ARGS_0=-jp_input=JPL-file-path

See Step 6 for instructions on how to create the JPL file.

Start the server instance.

Launch the jpprofiler and attach to Remote Session. The default port is 4444.

Create the JPL file using the JProbe Launch Pad. Here are the required settings:

a. Select Server Side for the type of application.

b. On the Program tab, provide the following details:

■ Target Server – other-server
■ Server home Directory – as-install
■ Server class File – com.sun.enterprise.server.J2EERunner

■ Working Directory – as-install
■ Classpath – as-install/lib/appserv-rt.jar
■ Source File Path – source-code-dir (in case you want to get the line level details)
■ Server class arguments – (optional)
■ Main Package – com.sun.enterprise.server

3

4

5

6

Profiling Tools

Chapter 4 • Debugging Applications 77

You must also set VM, Attach, and Coverage tabs appropriately. For further details, see the
JProbe documentation. After you have created the JPL file, use this an input to
JPROBE_ARGS_0.

Profiling Tools

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200978

Developing Applications and Application
Components

P A R T I I

79

80

Securing Applications

This chapter describes how to write secure Java EE applications, which contain components
that perform user authentication and access authorization for the business logic of Java EE
components.

For information about administrative security for the Communications Server, see Chapter 9,
“Configuring Security,” in Sun GlassFish Communications Server 2.0 Administration Guide.

For general information about Java EE security, see “Chapter 29: Introduction to Security in
Java EE” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/
index.html).

This chapter contains the following sections:

■ “Security Goals” on page 82
■ “Communications Server Specific Security Features” on page 82
■ “Container Security” on page 83
■ “Roles, Principals, and Principal to Role Mapping” on page 84
■ “Realm Configuration” on page 86
■ “Using Identity Authentication” on page 89
■ “Using P-Asserted Identity Authentication” on page 91
■ “Creating a Custom Trust Handler for P-Asserted Identity Authentication” on page 92
■ “JACC Support” on page 93
■ “Pluggable Audit Module Support” on page 93
■ “The server.policy File” on page 95
■ “Configuring Message Security for Web Services” on page 98
■ “Programmatic Login” on page 107
■ “User Authentication for Single Sign-on” on page 110

5C H A P T E R 5

81

http://docs.sun.com/doc/821-0200/ablnk?a=view
http://docs.sun.com/doc/821-0200/ablnk?a=view
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

Security Goals
In an enterprise computing environment, there are many security risks. The goal of the Sun
GlassFish Communications Server is to provide highly secure, interoperable, and distributed
component computing based on the Java EE security model. Security goals include:

■ Full compliance with the Java EE security model. This includes EJB and servlet role-based
authorization.

■ Support for single sign-on across all Communications Server applications within a single
security domain.

■ Support for web services message security.
■ Security support for application clients.
■ Support for several underlying authentication realms, such as simple file and Lightweight

Directory Access Protocol (LDAP). Certificate authentication is also supported for Secure
Socket Layer (SSL) client authentication. For Solaris, OS platform authentication is
supported in addition to these.

■ Support for declarative security through Communications Server specific XML-based role
mapping.

■ Support for Java Authorization Contract for Containers (JACC) pluggable authorization as
included in the Java EE specification and defined by Java Specification Request (JSR) 115
(http://www.jcp.org/en/jsr/detail?id=115).

■ Support for JavaTM Authentication Service Provider Interface for Containers as included in
the Java EE specification and defined by JSR 196 (http://www.jcp.org/en/jsr/
detail?id=196).

■ Support for Web Services Interoperability Technologies (WSIT) as described in The WSIT
Tutorial (https://wsit-docs.dev.java.net/releases/m5/).

■ Support for P-asserted identity authentication as defined in RFC (Request for Comments)
3325 (http://www.ietf.org/rfc/rfc3325.txt).

Communications Server Specific Security Features
The Communications Server supports the Java EE security model, as well as the following
features which are specific to the Communications Server:

■ Message security; see “Configuring Message Security for Web Services” on page 98
■ Single sign-on across all Communications Server applications within a single security

domain; see “User Authentication for Single Sign-on” on page 110
■ Programmatic login; see “Programmatic Login” on page 107

Security Goals

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200982

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
https://wsit-docs.dev.java.net/releases/m5/
https://wsit-docs.dev.java.net/releases/m5/
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3325.txt

Container Security
The component containers are responsible for providing Java EE application security. The
container provides two security forms:

■ “Declarative Security” on page 83
■ “Programmatic Security” on page 84

Annotations (also called metadata) enable a declarative style of programming, and so
encompass both the declarative and programmatic security concepts. Users can specify
information about security within a class file using annotations. When the application is
deployed, this information can either be used by or overridden by the application or module
deployment descriptor.

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the Java EE
application’s security structure, including security roles, access control, and authentication
requirements.

The Communications Server supports the deployment descriptors specified by Java EE and has
additional security elements included in its own deployment descriptors. Declarative security is
the application deployer’s responsibility. For more information about Sun-specific deployment
descriptors, see the Sun GlassFish Communications Server 2.0 Application Deployment Guide.

There are two levels of declarative security, as follows:

■ “Application Level Security” on page 83
■ “Component Level Security” on page 84

Application Level Security
For an application, roles used by any application container must be defined in @DeclareRoles

annotations in the code or role-name elements in the application deployment descriptor
(application.xml). The role names are scoped to the EJB XML deployment descriptors
(ejb-jar.xml and sun-ejb-jar.xml files) and to the servlet XML deployment descriptors
(web.xml and sun-web.xml files). For an individually deployed web or EJB module, you define
roles using @DeclareRoles annotations or role-name elements in the Java EE deployment
descriptor files web.xml or ejb-jar.xml.

To map roles to principals and groups, define matching security-role-mapping elements in
the sun-application.xml, sun-ejb-jar.xml, or sun-web.xml file for each role-name used by
the application. For more information, see “Roles, Principals, and Principal to Role Mapping”
on page 84.

Container Security

Chapter 5 • Securing Applications 83

http://docs.sun.com/doc/821-0195

Component Level Security
Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the
security policy laid out in the servlet XML deployment descriptors (web.xml and sun-web.xml

files).

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml

files).

Programmatic Security
Programmatic security involves an EJB component or servlet using method calls to the security
API, as specified by the Java EE security model, to make business logic decisions based on the
caller or remote user’s security role. Programmatic security should only be used when
declarative security alone is insufficient to meet the application’s security model.

The Java EE specification defines programmatic security as consisting of two methods of the
EJB EJBContext interface and two methods of the servlet HttpServletRequest interface. The
Communications Server supports these interfaces as specified in the specification.

For more information on programmatic security, see the following:

■ The Java EE Specification
■ “Programmatic Login” on page 107

Roles, Principals, and Principal to Role Mapping
For applications, you define roles in @DeclareRoles annotations or the Java EE deployment
descriptor file application.xml. You define the corresponding role mappings in the
Communications Server deployment descriptor file sun-application.xml. For individually
deployed web or EJB modules, you define roles in @DeclareRoles annotations or the Java EE
deployment descriptor files web.xml or ejb-jar.xml. You define the corresponding role
mappings in the Communications Server deployment descriptor files sun-web.xml or
sun-ejb-jar.xml.

For more information regarding Java EE deployment descriptors, see the Java EE Specification.
For more information regarding Communications Server deployment descriptors, see
Appendix A, “Deployment Descriptor Files,” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

Roles, Principals, and Principal to Role Mapping

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200984

http://docs.sun.com/doc/821-0195/beaqi?a=view
http://docs.sun.com/doc/821-0195/beaqi?a=view

Each security-role-mapping element in the sun-application.xml, sun-web.xml, or
sun-ejb-jar.xml file maps a role name permitted by the application or module to principals
and groups. For example, a sun-web.xml file for an individually deployed web module might
contain the following:

<sun-web-app>

<security-role-mapping>

<role-name>manager</role-name>

<principal-name>jgarcia</principal-name>

<principal-name>mwebster</principal-name>

<group-name>team-leads</group-name>

</security-role-mapping>

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name>dsmith</principal-name>

</security-role-mapping>

</sun-web-app>

A role can be mapped to either specific principals or to groups (or both). The principal or group
names used must be valid principals or groups in the realm for the application or module. Note
that the role-name in this example must match the @DeclareRoles annotations or the
role-name in the security-role element of the corresponding web.xml file.

You can also specify a custom principal implementation class. This provides more flexibility in
how principals can be assigned to roles. A user's JAAS login module now can authenticate its
custom principal, and the authenticated custom principal can further participate in the
Communications Server authorization process. For example:

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name class-name="CustomPrincipalImplClass">
dsmith

</principal-name>

</security-role-mapping>

You can specify a default principal and a default principal to role mapping, each of which
applies to the entire Communications Server instance. The default principal to role mapping
maps group principals to named roles. Web or SIP modules that omit the run-as element in
web.xml or sip.xml use the default principal. Applications and modules that omit the
security-role-mapping element use the default principal to role mapping. These defaults are
part of the Security Service, which you can access in the following ways:

■ In the Admin Console, select the Security component under the relevant configuration. For
details, click the Help button in the Admin Console.

■ Use the asadmin set command. For details, see the Sun GlassFish Communications
Server 2.0 Reference Manual. For example, you can set the default principal as follows.

Roles, Principals, and Principal to Role Mapping

Chapter 5 • Securing Applications 85

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

asadmin set --user adminuser server1.security-service.default-principal=dsmith

asadmin set --user adminuser server1.security-service.default-principal-password=secret

You can set the default principal to role mapping as follows.

asadmin set --user adminuser server1.security-service.activate-default-principal-to-role-mapping=true

asadmin set --user adminuser server1.security-service.mapped-principal-class=CustomPrincipalImplClass

Realm Configuration
This section covers the following topics:

■ “Supported Realms” on page 86
■ “How to Configure a Realm” on page 87
■ “How to Set a Realm for an Application or Module” on page 87
■ “Creating a Custom Realm” on page 87

Supported Realms
The following realms are supported in the Communications Server:

■ file – Stores user information in a file. This is the default realm when you first install the
Communications Server.

■ ldap – Stores user information in an LDAP directory.
■ jdbc – Stores user information in a database.

In the JDBC realm, the server gets user credentials from a database. The Application Server
uses the database information and the enabled JDBC realm option in the configuration file.
For digest authentication, a JDBC realm should be created with jdbcDigestRealm as the
JAAS context. The realm must be referenced in a realm-name element in the web.xml or
sip.xml file as is standard practice.
For identity authentication or P-asserted identity authentication, a JDBC realm should be
created with assertedRealm as the JAAS context. The realm must be referenced as
described in “Configuring sun-sip.xml for Identity Authentication” on page 90 or
“Configuring sun-sip.xml for P-Asserted Identity Authentication” on page 91.

■ certificate – Sets up the user identity in the Communications Server security context, and
populates it with user data obtained from cryptographically verified client certificates.

■ solaris – Allows authentication using Solaris username+password data. This realm is only
supported on the Solaris operating system, version 9 and above.

For information about configuring realms, see “How to Configure a Realm” on page 87.

Realm Configuration

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200986

How to Configure a Realm
You can configure a realm in one of these ways:
■ In the Admin Console, open the Security component under the relevant configuration and

go to the Realms page. For details, click the Help button in the Admin Console.
■ Use the asadmin create-auth-realm command to configure realms on local servers. For

details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

How to Set a Realm for an Application or Module
The following deployment descriptor elements have optional realm or realm-name data
subelements or attributes that override the domain’s default realm:
■ sun-application element in sun-application.xml

■ login-config element in web.xml

■ as-context element in sun-ejb-jar.xml

■ client-container element in sun-acc.xml

■ client-credential element in sun-acc.xml

If modules within an application specify realms, these are ignored. If present, the realm defined
in sun-application.xml is used, otherwise the domain’s default realm is used.

For example, a realm is specified in sun-application.xml as follows:

<sun-application>

...

<realm>ldap</realm>

</sun-application>

For more information about the deployment descriptor files and elements, see Appendix A,
“Deployment Descriptor Files,” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

Creating a Custom Realm
You can create a custom realm by providing a custom Java Authentication and Authorization
Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login
modules are not suitable for use with the Communications Server.

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
JAAS provides a pluggable and extensible framework for programmatic user authentication
and authorization. JAAS is a core API and an underlying technology for Java EE security
mechanisms. For more information about JAAS, refer to the JAAS specification for Java SDK,
available at http://java.sun.com/products/jaas/.

Realm Configuration

Chapter 5 • Securing Applications 87

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0195/beaqi?a=view
http://docs.sun.com/doc/821-0195/beaqi?a=view
http://docs.sun.com/doc/821-0195/beaqi?a=view
http://java.sun.com/products/jaas/

For general information about realms and login modules, see “Chapter 29: Introduction to
Security in Java EE” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/
tutorial/doc/index.html).

For Javadoc tool pages relevant to custom realms, go to http://glassfish.dev.java.net/

nonav/javaee5/api/index.html and click on the com.sun.appserv.security package.

Custom login modules must extend the
com.sun.appserv.security.AppservPasswordLoginModule class. This class implements
javax.security.auth.spi.LoginModule. Custom login modules must not implement
LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not
implement any of the other methods, such as login(), logout(), abort(), commit(), or
initialize(). Default implementations are provided in AppservPasswordLoginModule which
hook into the Communications Server infrastructure.

The custom login module can access the following protected object fields, which it inherits from
AppservPasswordLoginModule. These contain the user name and password of the user to be
authenticated:

protected String _username;

protected String _password;

The authenticateUser() method must end with the following sequence:

String[] grpList;

// populate grpList with the set of groups to which

// _username belongs in this realm, if any

commitUserAuthentication(grpList);

Custom realms must extend the com.sun.appserv.security.AppservRealm class and
implement the following methods:

public void init(Properties props) throws BadRealmException,

NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm in domain.xml. The realm can do any
initialization it needs in this method. If the method returns without throwing an exception, the
Communications Server assumes that the realm is ready to service authentication requests. If an
exception is thrown, the realm is disabled.

Realm Configuration

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200988

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this
realm.

public abstract Enumeration getGroupNames(String username) throws

InvalidOperationException, NoSuchUserException

This method returns an Enumeration (of String objects) enumerating the groups (if any) to
which the given username belongs in this realm.

Using Identity Authentication
Identity authentication is based on RFC 4475 and JSR 289. Using identity authentication in a
SIP or converged web/SIP application involves the following tasks:

■ “Configuring a Realm for Identity Authentication” on page 89
■ “Configuring sip.xml for Identity Authentication” on page 89
■ “Configuring sun-sip.xml for Identity Authentication” on page 90
■ “Configuring the Identity Message Root Certificate” on page 90

Configuring a Realm for Identity Authentication
For identity authentication, you use a realm of class jdbcRealm, except that you set the JAAS
context value to assertedRealm. See “How to Configure a Realm” on page 87.

Configuring sip.xml for Identity Authentication
To configure a SIP or converged web/SIP application for identity authentication, specify the
security-role, security-constraint, and login-config elements in the sip.xml file.

Part of specifying a security-constraint element is specifying one or more
resource-collection subelements. In turn, resource-collection elements have optional
sip-method subelements, which specify the SIP methods on those resources within a servlet
application to which a security-constraint applies. If no SIP methods are specified, then the
security constraint applies to all SIP methods.

The login-config element is the only one that has values unique to identity authentication. As
specified in JSR 289, identity authentication is available in two modes: REQUIRED or SUPPORTED.
In the REQUIRED mode, the identity header must be present in the request. In the SUPPORTED
mode, incoming SIP messages are processed as follows:

■ If the identity header is present, it is processed.

Using Identity Authentication

Chapter 5 • Securing Applications 89

■ If the identity header is not present, the authentication method configured in the
auth-method element is applied.

Here is an example login-config with no auth-method or realm-name defined:

<login-config>

<identity-assertion>

<identity-assertion-scheme>Identity</identity-assertion-scheme>

<identity-assertion-support>REQUIRED</identity-assertion-support>

</identity-assertion>

</login-config>

Here is an example login-config with the auth-method and realm-name defined:

<login-config>

<auth-method>DIGEST</auth-method>

<realm-name>MyAssertedAppRealm</realm-name>

<identity-assertion>

<identity-assertion-scheme>Identity</identity-assertion-scheme>

<identity-assertion-support>SUPPORTED</identity-assertion-support>

</identity-assertion>

</login-config>

For more information, see JSR 116 (http://www.jcp.org/en/jsr/detail?id=116), the SIP
Servlet API Specification.

Configuring sun-sip.xml for Identity Authentication
Set the trust-auth-realm-ref property in the sun-sip.xml file. This property refers to the
jdbcRealm that has assertedRealm as its JAAS context value. See “Configuring a Realm for
Identity Authentication” on page 89.

For example:

<sun-sip-app>

...

<property name="trust-auth-realm-ref" value="MyAssertedAppRealm" />

</sun-sip-app>

Configuring the Identity Message Root Certificate
To complete the configuration of identity authentication, add the root certificate (Certificate
Authority) of the public key used in the identity message to the cacerts.jks file. For more
information, see the keytool command description at http://java.sun.com/javase/6/
docs/technotes/tools/solaris/keytool.html.

Using Identity Authentication

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200990

http://www.jcp.org/en/jsr/detail?id=116
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html

Using P-Asserted Identity Authentication
P-asserted identity authentication is based on RFC 3325 and JSR 289. Using P-asserted identity
authentication in a SIP or converged web/SIP application involves the following tasks, the first
two of which are the same as for identity authentication:

■ “Configuring a Realm for Identity Authentication” on page 89
■ “Configuring sip.xml for Identity Authentication” on page 89
■ “Configuring a Trust” on page 91
■ “Configuring sun-sip.xml for P-Asserted Identity Authentication” on page 91

Configuring a Trust
You can create a P-asserted identity trust configuration in one of these ways:

■ In the Admin Console, open the Security component under the relevant configuration and
go to the Trust Configurations page. For details, click the Help button in the Admin
Console.

■ Use the asadmin create-trust-config command to create trust configurations on local
servers. For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

The default trust handler trusts all hosts and maps the P-Asserted-Identity header values to a
format suitable for use in authentication and authorization tasks. For example, Cullen
Jennings is mapped to CullenJ. To create a custom trust handler, see “Creating a Custom
Trust Handler for P-Asserted Identity Authentication” on page 92.

Configuring sun-sip.xml for P-Asserted Identity
Authentication
Set the following properties in the sun-sip.xml file:

■ trust-auth-realm-ref — Refers to the jdbcRealm that has assertedRealm as its JAAS
context value. See “Configuring a Realm for Identity Authentication” on page 89.

■ trust-id-ref — Refers to the name of the trust configuration. See “Configuring a Trust”
on page 91.

For example:

<sun-sip-app>

...

<property name="trust-auth-realm-ref" value="MyAssertedAppRealm" />

<property name="trust-id-ref" value="MyTrustConfig" />

</sun-sip-app>

Using P-Asserted Identity Authentication

Chapter 5 • Securing Applications 91

http://docs.sun.com/doc/821-0197

Creating a Custom Trust Handler for P-Asserted Identity
Authentication

A trust handler is invoked for every SIP message that the Communications Server receives from
or sends to the network. You can create a P-asserted identity trust configuration with a trust
handler in one of these ways:

■ In the Admin Console, open the Security component under the relevant configuration and
go to the Trust Configurations page. To specify a custom trust handler, select Trust Handler
as the Trust Type and enter the name of the trust handler class in the Class Name field. For
details, click the Help button in the Admin Console.

■ Use the asadmin create-trust-config command to create trust configurations on local
servers. To specify a custom trust handler, use the --trusthandler option followed by the
name of the trust handler class. For details, see the Sun GlassFish Communications Server 2.0
Reference Manual.

A custom trust handler must implement the
com.sun.enterprise.security.auth.TrustHandler and
com.sun.enterprise.security.auth.PrincipalMapper interfaces along with the following
methods:

public boolean isTrusted(String asserterAddress, String trustedAs,

X509Certificate securityid, Principal [] pAssertedValues);

This method determines if the container can trust the network entity from which the message
with the P-Asserted-Identity header was received. This method also validates whether the
identity used to secure the message is trusted. If the network entity and identity can both be
trusted, this method returns true. Parameters are as follows:

■ asserterAddress — Specifies the IP address or hostname of the network entity from which
the SIP message was received.

■ trustedAs — A value of INTERMEDIATE specifies that the trust configuration applies to
incoming messages. A value of DESTINATION specifies that the trust configuration applies to
outgoing messages.

■ securityid — Specifies the asserting security identity. If a secure connection is used, it is
the java.security.cert.X509Certificate. Otherwise, it is null.

■ pAssertedValues — Specifies the P-Asserted-Identity header values.

public Principal [] mapIdentity(Principal [] assrtId);

This method accepts P-Asserted-Identity header values and returns them in a format
understood by the SIP container.

Creating a Custom Trust Handler for P-Asserted Identity Authentication

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200992

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

JACC Support
JACC (Java Authorization Contract for Containers) is part of the Java EE specification and
defined by JSR 115 (http://www.jcp.org/en/jsr/detail?id=115). JACC defines an interface
for pluggable authorization providers. Specifically, JACC is used to plug in the Java policy
provider used by the container to perform Java EE caller access decisions. The Java policy
provider performs Java policy decisions during application execution. This provides third
parties with a mechanism to develop and plug in modules that are responsible for answering
authorization decisions during Java EE application execution. The interfaces and rules used for
developing JACC providers are defined in the JACC 1.0 specification.

The Communications Server provides a simple file-based JACC-compliant authorization
engine as a default JACC provider. To configure an alternate provider using the Admin
Console, open the Security component under the relevant configuration, and select the JACC
Providers component. For details, click the Help button in the Admin Console.

Pluggable Audit Module Support
Audit modules collect and store information on incoming requests (servlets, EJB components)
and outgoing responses. You can create a custom audit module. This section covers the
following topics:
■ “Configuring an Audit Module” on page 93
■ “The AuditModule Class” on page 93

For additional information about audit modules, see Audit Callbacks (http://
developers.sun.com/

prodtech/appserver/reference/techart/ws_mgmt3.html#8.2).

Configuring an Audit Module
To configure an audit module, you can perform one of the following tasks:

■ To specify an audit module using the Admin Console, open the Security component under
the relevant configuration, and select the Audit Modules component. For details, click the
Help button in the Admin Console.

■ You can use the asadmin create-audit-module command to configure an audit module.
For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

The AuditModuleClass
You can create a custom audit module by implementing a class that extends
com.sun.appserv.security.AuditModule.

Pluggable Audit Module Support

Chapter 5 • Securing Applications 93

http://www.jcp.org/en/jsr/detail?id=115
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt3.html#8.2
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt3.html#8.2
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt3.html#8.2
http://docs.sun.com/doc/821-0197

For Javadoc tool pages relevant to audit modules, go to http://glassfish.dev.java.net/

nonav/javaee5/api/index.html and click on the com.sun.appserv.security package.

The AuditModule class provides default “no-op” implementations for each of the following
methods, which your custom class can override.

public void init(Properties props)

The preceding method is invoked during server startup when the audit module is initially
loaded. The props argument contains the properties defined for this module in domain.xml.
The module can do any initialization it needs in this method. If the method returns without
throwing an exception, the Communications Server assumes the module realm is ready to
service audit requests. If an exception is thrown, the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for the
given user. The success flag indicates whether the authorization was granted or denied.

public void webInvocation(String user, HttpServletRequest req, String type, boolean success)

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is the
standard HttpServletRequest object for this request. The type string is one of
hasUserDataPermission or hasResourcePermission (see JSR 115 (http://www.jcp.org/en/
jsr/detail?id=115)).

public void ejbInvocation(String user, String ejb, String method, boolean success)

This method is invoked when an EJB container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The ejb and method

strings describe the EJB component and its method that is being invoked.

public void webServiceInvocation(String uri, String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
servlet. The uri is the URL representation of the web service endpoint. The endpoint is the
name of the endpoint representation. The success flag indicates whether the authorization was
granted or denied.

public void ejbAsWebServiceInvocation(String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
stateless session bean. The endpoint is the name of the endpoint representation. The success
flag indicates whether the authorization was granted or denied.

Pluggable Audit Module Support

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200994

http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115

The server.policy File
Each Communications Server domain has its own global J2SE policy file, located in
domain-dir/config. The file is named server.policy.

The Communications Server is a Java EE compliant application server. As such, it follows the
requirements of the Java EE specification, including the presence of the security manager (the
Java component that enforces the policy) and a limited permission set for Java EE application
code.

This section covers the following topics:

■ “Default Permissions” on page 95
■ “Changing Permissions for an Application” on page 95
■ “Enabling and Disabling the Security Manager” on page 97

Default Permissions
Internal server code is granted all permissions. These are covered by the AllPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously. The Communications Server does
not distinguish between EJB and web (or SIP) module permissions. All code is granted the
minimal set of web component permissions (which is a superset of the EJB minimal set). Do not
modify these entries.

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. Java EE
application developers must not rely on these additional permissions. In some cases, deleting
these permissions might be appropriate. For example, one additional permission is granted
specifically for using connectors. If connectors are not used in a particular domain, you should
remove this permission, because it is not otherwise necessary.

Changing Permissions for an Application
The default policy for each domain limits the permissions of Java EE deployed applications to
the minimal set of permissions required for these applications to operate correctly. Do not add
extra permissions to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the applications requiring the extra
permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you
can add the custom permissions that your applications need. The com.sun.aas.instanceRoot
variable refers to the domain-dir. For example:

The server.policy File

Chapter 5 • Securing Applications 95

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/j2ee-apps/-" {

...

}

You can add permissions to stub code with the following grant block:

grant codeBase "file:${com.sun.aas.instanceRoot}/generated/-" {

...

}

In general, you should add extra permissions only to the applications or modules that require
them, not to all applications deployed to a domain. For example:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/j2ee-apps/MyApp/-" {

...

}

For a module:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/j2ee-modules/MyModule/-" {

...

}

An alternative way to add permissions to a specific application or module is to edit the
granted.policy file for that application or module. The granted.policy file is located in the
domain-dir/generated/policy/app-or-module-name directory. In this case, you add
permissions to the default grant block. Do not delete permissions from this file.

When the application server policy subsystem determines that a permission should not be
granted, it logs a server.policy message specifying the permission that was not granted and
the protection domains, with indicated code source and principals that failed the protection
check. For example, here is the first part of a typical message:

[#|2005-12-17T16:16:32.671-0200|INFO|sun-appserver-pe9.1|

javax.enterprise.system.core.security|_ThreadID=14;_ThreadName=Thread-31;|

JACC Policy Provider: PolicyWrapper.implies, context(null)-

permission((java.util.PropertyPermission java.security.manager write))

domain that failed(ProtectionDomain

(file:/E:/glassfish/domains/domain1/applications/j2ee-modules/cejug-clfds/ ...)

...

Granting the following permission eliminates the message:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/j2ee-modules/cejug-clfds/-" {

permission java.util.PropertyPermission "java.security.manager", "write";
}

The server.policy File

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200996

Note – Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still get the
performance overhead associated with it.

As noted in the Java EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log.

If this is not sufficient, you can add the -Djava.security.debug=failure JVM option to the
domain. Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options --user adminuser -Djava.security.debug=failure

For more information about the asadmin create-jvm-options command, see the Sun
GlassFish Communications Server 2.0 Administration Reference.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For
more information, see http://java.sun.com/docs/books/tutorial/security1.2/tour2/
index.html.

For detailed information about policy file syntax, see http://java.sun.com/
javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax.

For information about using system properties in the server.policy file, see
http://java.sun.com/

javase/6/docs/technotes/guides/security/PolicyFiles.html#PropertyExp. For
information about Communications Server system properties, see “system-property” in Sun
GlassFish Communications Server 2.0 Administration Reference.

For detailed information about the permissions you can set in the server.policy file, see
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html.

The Javadoc for the Permission class is at http://java.sun.com/javase/6/docs/api/java/
security/Permission.html.

Enabling and Disabling the Security Manager
The security manager is disabled in the developer and cluster profiles by default.

In a production environment, you may be able to safely disable the security manager if all of the
following are true:

The server.policy File

Chapter 5 • Securing Applications 97

http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0194
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#PropertyExp
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#PropertyExp
http://docs.sun.com/doc/821-0194/abhey?a=view
http://docs.sun.com/doc/821-0194/abhey?a=view
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html
http://java.sun.com/javase/6/docs/api/java/security/Permission.html
http://java.sun.com/javase/6/docs/api/java/security/Permission.html

■ Performance is critical
■ Deployment to the production server is carefully controlled
■ Only trusted applications are deployed
■ Applications don't need policy enforcement

Disabling the security manager may improve performance significantly for some types of
applications. To disable the security manager, do one of the following:

■ To use the Admin Console, open the Security component under the relevant configuration,
and uncheck the Security Manager Enabled box. Then restart the server. For details, click
the Help button in the Admin Console.

■ Use the following asadmin delete-jvm-options command, then restart the server:

asadmin delete-jvm-options --user adminuser -Djava.security.manager

To re-enable the security manager, use the corresponding create-jvm-options command.
For more information about the create-jvm-options and asadmin delete-jvm-options

commands, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Configuring Message Security for Web Services
In message security, security information is applied at the message layer and travels along with
the web services message. Web Services Security (WSS) is the use of XML Encryption and XML
Digital Signatures to secure messages. WSS profiles the use of various security tokens including
X.509 certificates, Security Assertion Markup Language (SAML) assertions, and
username/password tokens to achieve this.

Message layer security differs from transport layer security in that it can be used to decouple
message protection from message transport so that messages remain protected after
transmission, regardless of how many hops they travel.

Note – In this release of the Communications Server, message layer annotations are not
supported.

For more information about message security, see the following:

■ The Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/
index.html) chapter titled “Chapter 29: Introduction to Security in Java EE”

■ Chapter 10, “Configuring Message Security,” in Sun GlassFish Communications Server 2.0
Administration Guide

■ JSR 196 (http://www.jcp.org/en/jsr/detail?id=196), Java Authentication Service
Provider Interface for Containers

Configuring Message Security for Web Services

Sun GlassFish Communications Server 2.0 Developer's Guide • October 200998

http://docs.sun.com/doc/821-0197
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://www.jcp.org/en/jsr/detail?id=196

■ The Liberty Alliance Project specifications at http://www.projectliberty.org/
resources/specifications.php

■ The Oasis Web Services Security (WSS) specification at http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

■ The Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP)
specification at http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

■ The XML and Web Services Security page at https://xwss.dev.java.net/
■ The WSIT page at https://wsit.dev.java.net/

The following web services security topics are discussed in this section:

■ “Message Security Providers” on page 99
■ “Message Security Responsibilities” on page 100
■ “Application-Specific Message Protection” on page 102
■ “Understanding and Running the Sample Application” on page 105

Message Security Providers
When you first install the Communications Server, the providers XWS_ClientProvider and
XWS_ServerProvider are configured but disabled. You can enable them in one of the following
ways:

■ To enable the message security providers using the Admin Console, open the Security
component under the relevant configuration, select the Message Security component, and
select SOAP. Then select XWS_ServerProvider from the Default Provider list and
XWS_ClientProvider from the Default Client Provider list. For details, click the Help
button in the Admin Console.

■ You can enable the message security providers using the following commands.

asadmin set --user adminuser

server-config.security-service.message-security-config.SOAP.default_provider=XWS_ServerProvider

asadmin set --user adminuser

server-config.security-service.message-security-config.SOAP.default_client_provider=XWS_ClientProvider

For more information about the asadmin set command, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

The example described in “Understanding and Running the Sample Application” on page 105
uses the ClientProvider and ServerProvider providers, which are enabled when the asant
targets are run. You don’t need to enable these on the Communications Server prior to running
the example.

If you install the Access Manager, you have these additional provider choices:

Configuring Message Security for Web Services

Chapter 5 • Securing Applications 99

http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
https://xwss.dev.java.net/
https://wsit.dev.java.net/
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

■ AMClientProvider and AMServerProvider – These providers secure web services and
Simple Object Access Protocol (SOAP) messages using either WS-I BSP or Liberty ID-WSF
tokens. These providers are used automatically if they are configured as the default
providers. If you wish to override any provider settings, you can configure these providers in
message-security-binding elements in the sun-web.xml, sun-ejb-jar.xml, and
sun-application-client.xml deployment descriptor files.

■ AMHttpProvider – This provider handles the initial end user authentication for securing
web services using Liberty ID-WSF tokens and redirects requests to the Access Manager for
single sign-on. To use this provider, specify it in the httpservlet-security-provider
attribute of the sun-web-app element in the sun-web.xml file.

Liberty specifications can be viewed at http://www.projectliberty.org/resources/
specifications.php. The WS-I BSP specification can be viewed at http://www.ws-i.org/
Profiles/BasicSecurityProfile-1.0.html.

For more information about the Sun-specific deployment descriptor files, see the Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

For information about configuring these providers in the Communications Server, see Chapter
10, “Configuring Message Security,” in Sun GlassFish Communications Server 2.0
Administration Guide. For additional information about overriding provider settings, see
“Application-Specific Message Protection” on page 102.

You can create new message security providers in one of the following ways:
■ To create a message security provider using the Admin Console, open the Security

component under the relevant configuration, and select the Message Security component.
For details, click the Help button in the Admin Console.

■ You can use the asadmin create-message-security-provider command to create a
message security provider. For details, see the Sun GlassFish Communications Server 2.0
Reference Manual.

In addition, you can set a few optional provider properties. For more information, see the
property descriptions under “provider-config” in Sun GlassFish Communications Server 2.0
Administration Reference.

Message Security Responsibilities
In the Communications Server, the system administrator and application deployer roles are
expected to take primary responsibility for configuring message security. In some situations, the
application developer may also contribute, although in the typical case either of the other roles
may secure an existing application without changing its implementation and without involving
the developer. The responsibilities of the various roles are defined in the following sections:
■ “Application Developer” on page 101

Configuring Message Security for Web Services

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009100

http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0194/abhee?a=view
http://docs.sun.com/doc/821-0194/abhee?a=view

■ “Application Deployer” on page 101
■ “System Administrator” on page 101

Application Developer
The application developer can turn on message security, but is not responsible for doing so.
Message security can be set up by the system administrator so that all web services are secured,
or set up by the application deployer when the provider or protection policy bound to the
application must be different from that bound to the container.

The application developer is responsible for the following:
■ Determining if an application-specific message protection policy is required by the

application. If so, ensuring that the required policy is specified at application assembly
which may be accomplished by communicating with the application deployer.

■ Determining if message security is necessary at the Communications Server level. If so,
ensuring that this need is communicated to the system administrator, or taking care of
implementing message security at the Communications Server level.

Application Deployer
The application deployer is responsible for the following:
■ Specifying (at application assembly) any required application-specific message protection

policies if such policies have not already been specified by upstream roles (the developer or
assembler)

■ Modifying Sun-specific deployment descriptors to specify application-specific message
protection policies information (message-security-binding elements) to web service
endpoint and service references

These security tasks are discussed in “Application-Specific Message Protection” on page 102. A
sample application using message security is discussed in “Understanding and Running the
Sample Application” on page 105.

System Administrator
The system administrator is responsible for the following:
■ Configuring message security providers on the Communications Server.
■ Managing user databases.
■ Managing keystore and truststore files.
■ Installing the sample. This is only done if the xms sample application is used to demonstrate

the use of message layer web services security.

A system administrator uses the Admin Console to manage server security settings and uses a
command line tool to manage certificate databases. Certificates and private keys are stored in

Configuring Message Security for Web Services

Chapter 5 • Securing Applications 101

key stores and are managed with keytool. System administrator tasks are discussed in Chapter
10, “Configuring Message Security,” in Sun GlassFish Communications Server 2.0
Administration Guide.

Application-Specific Message Protection
When the Communications Server provided configuration is insufficient for your security
needs, and you want to override the default protection, you can apply application-specific
message security to a web service.

Application-specific security is implemented by adding the message security binding to the web
service endpoint, whether it is an EJB or servlet web service endpoint. Modify Sun-specific XML
files to add the message binding information.

Message security can also be specified using a WSIT security policy in the WSDL file. For
details, see the WSIT page at https://wsit.dev.java.net/.

For more information about message security providers, see “Message Security Providers” on
page 99.

For more details on message security binding for EJB web services, servlet web services, and
clients, see the XML file descriptions in Appendix A, “Deployment Descriptor Files,” in Sun
GlassFish Communications Server 2.0 Application Deployment Guide.
■ For sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” in Sun GlassFish Communications

Server 2.0 Application Deployment Guide.
■ For sun-web.xml, see “The sun-web.xml File” in Sun GlassFish Communications Server 2.0

Application Deployment Guide.
■ For sun-application-client.xml, see “The sun-application-client.xml file” in Sun

GlassFish Communications Server 2.0 Application Deployment Guide.

This section contains the following topics:
■ “Using a Signature to Enable Message Protection for All Methods” on page 102
■ “Configuring Message Protection for a Specific Method Based on Digital Signatures” on

page 103

Using a Signature to Enable Message Protection for All Methods
To enable message protection for all methods using digital signature, update the
message-security-binding element for the EJB web service endpoint in the application’s
sun-ejb-jar.xml file. In this file, add request-protection and response-protection

elements, which are analogous to the request-policy and response-policy elements
discussed in Chapter 10, “Configuring Message Security,” in Sun GlassFish Communications
Server 2.0 Administration Guide. To apply the same protection mechanisms for all methods,

Configuring Message Security for Web Services

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009102

http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view
https://wsit.dev.java.net/
http://docs.sun.com/doc/821-0195/beaqi?a=view
http://docs.sun.com/doc/821-0195/beaqi?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaql?a=view
http://docs.sun.com/doc/821-0195/beaql?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view

leave the method-name element blank. “Configuring Message Protection for a Specific Method
Based on Digital Signatures” on page 103 discusses listing specific methods or using wildcard
characters.

This section uses the sample application discussed in “Understanding and Running the Sample
Application” on page 105 to apply application-level message security to show only the
differences necessary for protecting web services using various mechanisms.

▼ To Enable Message Protection for All Methods Using Digital Signature

In a text editor, open the application’s sun-ejb-jar.xml file.
For the xms example, this file is located in the directory app-dir/xms-ejb/src/conf, where
app-dir is defined in “To Set Up the Sample Application” on page 105.

Modify the sun-ejb-jar.xml file by adding the message-security-binding element as
shown:
<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>

<message-security-binding auth-layer="SOAP">
<message-security>

<request-protection auth-source="content" />

<response-protection auth-source="content"/>
</message-security>

</message-security-binding>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 106.

Configuring Message Protection for a Specific Method Based on Digital
Signatures
To enable message protection for a specific method, or for a set of methods that can be
identified using a wildcard value, follow these steps. As in the example discussed in “Using a
Signature to Enable Message Protection for All Methods” on page 102, to enable message

1

2

3

Configuring Message Security for Web Services

Chapter 5 • Securing Applications 103

protection for a specific method, update the message-security-binding element for the EJB
web service endpoint in the application’s sun-ejb-jar.xml file. To this file, add
request-protection and response-protection elements, which are analogous to the
request-policy and response-policy elements discussed in Chapter 10, “Configuring
Message Security,” in Sun GlassFish Communications Server 2.0 Administration Guide. The
administration guide includes a table listing the set and order of security operations for
different request and response policy configurations.

This section uses the sample application discussed in “Understanding and Running the Sample
Application” on page 105 to apply application-level message security to show only the
differences necessary for protecting web services using various mechanisms.

▼ To Enable Message Protection for a Particular Method or Set of
Methods Using Digital Signature

In a text editor, open the application’s sun-ejb-jar.xml file.
For the xms example, this file is located in the directory app-dir/xms-ejb/src/conf, where
app-dir is defined in “To Set Up the Sample Application” on page 105.

Modify the sun-ejb-jar.xml file by adding the message-security-binding element as
shown:
<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>

<message-security-binding auth-layer="SOAP">
<message-security>

<message>

<java-method>

<method-name>ejbCreate</method-name>

</java-method>

</message>

<message>

<java-method>

<method-name>sayHello</method-name>

</java-method>

</message>

<request-protection auth-source="content" />

<response-protection auth-source="content"/>
</message-security>

1

2

Configuring Message Security for Web Services

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009104

http://docs.sun.com/doc/821-0200/ablrk?a=view
http://docs.sun.com/doc/821-0200/ablrk?a=view

</message-security-binding>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 106.

Understanding and Running the Sample Application
This section discusses the WSS sample application. This sample application is installed on your
system only if you installed the J2EE 1.4 samples. If you have not installed these samples, see
“To Set Up the Sample Application” on page 105.

The objective of this sample application is to demonstrate how a web service can be secured
with WSS. The web service in the xms example is a simple web service implemented using a Java
EE EJB endpoint and a web service endpoint implemented using a servlet. In this example, a
service endpoint interface is defined with one operation, sayHello, which takes a string then
sends a response with Hello prefixed to the given string. You can view the WSDL file for the
service endpoint interface at app-dir/xms-ejb/src/conf/HelloWorld.wsdl, where app-dir is
defined in “To Set Up the Sample Application” on page 105.

In this application, the client looks up the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to
invoke the operation using a given name. For the name Duke, the client gets the response Hello
Duke!

This example shows how to use message security for web services at the Communications
Server level. For information about using message security at the application level, see
“Application-Specific Message Protection” on page 102. The WSS message security
mechanisms implement message-level authentication (for example, XML digital signature and
encryption) of SOAP web services invocations using the X.509 and username/password profiles
of the OASIS WS-Security standard, which can be viewed from the following URL:
http://docs.oasis-open.org/

wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

This section includes the following topics:

■ “To Set Up the Sample Application” on page 105
■ “To Run the Sample Application” on page 106

▼ To Set Up the Sample Application
To have access to this sample application, you must have previously installed the J2EE 1.4
samples. If the samples are not installed, follow the steps in the following section.

3

Before You Begin

Configuring Message Security for Web Services

Chapter 5 • Securing Applications 105

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

After you follow these steps, the sample application is located in the directory
as-install/j2ee14-samples/samples/webservices/security/ejb/apps/xms/ or in a
directory of your choice. For easy reference throughout the rest of this section, this directory is
referred to as simply app-dir.

Go to the J2EE 1.4 download URL (http://java.sun.com/j2ee/1.4/download.html) in your
browser.

Click on the Download button for the Samples Bundle.

Click on Accept License Agreement.

Click on the J2EE SDK Samples link.

Choose a location for the j2eesdk-1_4_03-samples.zip file.
Saving the file to as-install is recommended.

Unzip the file.
Unzipping to the as-install/j2ee14–samples directory is recommended. For example, you can
use the following command.
unzip j2eesdk-1_4_03-samples.zip -d j2ee14-samples

▼ To Run the Sample Application

Make sure that the Communications Server is running.
Message security providers are set up when the asant targets are run, so you do not need to
configure these on the Communications Server prior to running this example.

If you are not running HTTP on the default port of 8080, change the WSDL file for the example to
reflect the change, and change the common.properties file to reflect the change as well.
The WSDL file for this example is located at app-dir/xms-ejb/src/conf/HelloWorld.wsdl.
The port number is in the following section:
<service name="HelloWorld">
<port name="HelloIFPort" binding="tns:HelloIFBinding">
<soap:address location="http://localhost:8080/service/HelloWorld"/>

</port>

</service>

Verify that the properties in the as-install/samples/common.properties file are set properly for
your installation and environment. If you need a more detailed description of this file, refer to
the “Configuration” section for the web services security applications at
as-install/j2ee14–samples/samples/webservices/security/docs/common.html#Logging.

1

2

3

4

5

6

1

2

Configuring Message Security for Web Services

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009106

http://java.sun.com/j2ee/1.4/download.html

Change to the app-dir directory.

Run the following asant targets to compile, deploy, and run the example application:

a. To compile samples:
asant

b. To deploy samples:
asant deploy

c. To run samples:
asant run

If the sample has compiled and deployed properly, you see the following response on your
screen after the application has run:

run:[echo] Running the xms program:[exec] Established message level security :

Hello Duke!

To undeploy the sample, run the following asant target:
asant undeploy

All of the web services security examples use the same web service name (HelloWorld) and web
service ports. These examples show only the differences necessary for protecting web services
using various mechanisms. Make sure to undeploy an application when you have completed
running it. If you do not, you receive an Already in Use error and deployment failures when
you try to deploy another web services example application.

Programmatic Login
Programmatic login allows a deployed Java EE application or module to invoke a login method.
If the login is successful, a SecurityContext is established as if the client had authenticated
using any of the conventional Java EE mechanisms. Programmatic login is supported for servlet
and EJB components on the server side, and for stand-alone or application clients on the client
side. Programmatic login is useful for an application having special needs that cannot be
accommodated by any of the Java EE standard authentication mechanisms.

Note – Programmatic login is specific to the Communications Server and not portable to other
application servers.

This section contains the following topics:

■ “Programmatic Login Precautions” on page 108

3

4

5

Programmatic Login

Chapter 5 • Securing Applications 107

■ “Granting Programmatic Login Permission” on page 108
■ “The ProgrammaticLogin Class” on page 109

Programmatic Login Precautions
The Communications Server is not involved in how the login information (user, password) is
obtained by the deployed application. Programmatic login places the burden on the application
developer with respect to assuring that the resulting system meets security requirements. If the
application code reads the authentication information across the network, the application
determines whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly to the
security service. While flexible, this capability should not be used without some understanding
of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. It is also the application developer’s
responsibility to verify the status of the login attempt and to alter the behavior of the application
accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated using the programmatic login method,
access is denied immediately and the application might fail if not coded to account for this
occurrence. One way to account for this occurrence is to catch the access control or security
exception, perform a programmatic login, and repeat the request.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application if the security manager is enabled. For information about the
security manager, see “The server.policy File” on page 95. This permission is not granted by
default to deployed applications because this is not a standard Java EE mechanism.

To grant the required permission to the application, add the following to the
domain-dir/config/server.policy file:

grant codeBase "file:jar-file-path" {

permission com.sun.appserv.security.ProgrammaticLoginPermission

"login";
};

Programmatic Login

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009108

The jar-file-path is the path to the application’s JAR file.

The ProgrammaticLoginClass
The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically.

For Javadoc tool pages relevant to programmatic login, go to http://

glassfish.dev.java.net/nonav/javaee5/api/index.html and click on the
com.sun.appserv.security package.

The ProgrammaticLogin class has four login methods, two for servlets or JSP files and two for
EJB components.

The login methods for servlets or JSP files have the following signatures:

public java.lang.Boolean login(String user, String password,

javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

public java.lang.Boolean login(String user, String password,

String realm, javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response, boolean errors)

throws java.lang.Exception

The login methods for EJB components have the following signatures:

public java.lang.Boolean login(String user, String password)

public java.lang.Boolean login(String user, String password,

String realm, boolean errors) throws java.lang.Exception

All of these login methods accomplish the following:

■ Perform the authentication
■ Return true if login succeeded, false if login failed

The login occurs on the realm specified unless it is null, in which case the domain’s default
realm is used. The methods with no realm parameter use the domain’s default realm.

If the errors flag is set to true, any exceptions encountered during the login are propagated to
the caller. If set to false, exceptions are thrown.

On the client side, realm and errors parameters are ignored and the actual login does not occur
until a resource requiring a login is accessed. A java.rmi.AccessException with COBRA

NO_PERMISSION occurs if the actual login fails.

The logout methods for servlets or JSP files have the following signatures:

Programmatic Login

Chapter 5 • Securing Applications 109

http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html

public java.lang.Boolean logout(HttpServletRequest request,

HttpServletResponse response)

public java.lang.Boolean logout(HttpServletRequest request,

HttpServletResponse response, boolean errors)

throws java.lang.Exception

The logout methods for EJB components have the following signatures:

public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)

throws java.lang.Exception

All of these logout methods return true if logout succeeded, false if logout failed.

If the errors flag is set to true, any exceptions encountered during the logout are propagated to
the caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on
The single sign-on feature of the Communications Server allows multiple web (or SIP)
applications deployed to the same virtual server to share the user authentication state. With
single sign-on enabled, users who log in to one web application become implicitly logged into
other web applications on the same virtual server that require the same authentication
information. Otherwise, users would have to log in separately to each web application whose
protected resources they tried to access.

A sample application using the single sign-on scenario could be a consolidated airline booking
service that searches all airlines and provides links to different airline web sites. After the user
signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

■ Single sign-on applies to web applications configured for the same realm and virtual server.
The realm is defined by the realm-name element in the web.xml file. For information about
virtual servers, see Chapter 13, “Configuring the HTTP Service,” in Sun GlassFish
Communications Server 2.0 Administration Guide.

■ As long as users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

■ As soon as a user accesses a protected resource in any web application associated with a
virtual server, the user is challenged to authenticate himself or herself, using the login
method defined for the web application currently being accessed.

User Authentication for Single Sign-on

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009110

http://docs.sun.com/doc/821-0200/ablsw?a=view
http://docs.sun.com/doc/821-0200/ablsw?a=view

■ After authentication, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

■ When the user logs out of one web application (for example, by invalidating the
corresponding session), the user’s sessions in all web applications are invalidated. Any
subsequent attempt to access a protected resource in any application requires the user to
authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that support
cookies.

To configure single sign-on, set the following properties in the virtual-server element of the
domain.xml file:

■ sso-enabled - If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is true.

■ sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on record
becomes eligible for purging if no client activity is received. Since single sign-on applies
across several applications on the same virtual server, access to any of the applications keeps
the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values
provide longer single sign-on persistence for the users at the expense of more memory use
on the server.

■ sso-reap-interval-seconds - Specifies the interval between purges of expired single
sign-on records. The default value is 60.

Here is an example configuration with all default values:

<virtual-server id="server" ... >

...

<property name="sso-enabled" value="true"/>
<property name="sso-max-inactive-seconds" value="300"/>
<property name="sso-reap-interval-seconds" value="60"/>

</virtual-server>

User Authentication for Single Sign-on

Chapter 5 • Securing Applications 111

112

Developing Web Services

This chapter describes Communications Server support for web services. JavaTM API for
XML-Based Web Services (JAX-WS) version 2.0 is supported. Java API for XML-Based Remote
Procedure Calls (JAX-RPC) version 1.1 is supported for backward compatibility. This chapter
contains the following sections:

■ “Creating Portable Web Service Artifacts” on page 114
■ “Deploying a Web Service” on page 114
■ “Web Services Registry” on page 115
■ “The Web Service URI, WSDL File, and Test Page” on page 116
■ “JBI Runtime” on page 117
■ “Using the Woodstox Parser” on page 119

“Part Two: Web Services” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/
tutorial/doc/index.html) shows how to deploy simple web services to the Communications
Server. “Chapter 20: Java API for XML Registries” explains how to set up a registry and create
clients that access the registry.

For additional information about JAX-WS and web services, see Java Specification Request
(JSR) 224 (http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html) and
JSR 109 (http://jcp.org/en/jsr/detail?id=109).

For information about web services security, see “Configuring Message Security for Web
Services” on page 98.

For information about web services administration, monitoring, logging, and registries, see
Chapter 16, “Managing Web Services,” in Sun GlassFish Communications Server 2.0
Administration Guide.

The Fast Infoset standard specifies a binary format based on the XML Information Set. This
format is an efficient alternative to XML. For information about using Fast Infoset, see the
following links:

6C H A P T E R 6

113

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/en/jsr/detail?id=109
http://docs.sun.com/doc/821-0200/gbbjk?a=view
http://docs.sun.com/doc/821-0200/gbbjk?a=view

■ Java Web Services Developer Pack 1.6 Release Notes (http://java.sun.com/
webservices/docs/1.6/ReleaseNotes.html)

■ Fast Infoset in Java Web Services Developer Pack, Version 1.6 (http://java.sun.com/
webservices/docs/1.6/jaxrpc/fastinfoset/manual.html)

■ Fast Infoset Project (http://fi.dev.java.net)

Creating Portable Web Service Artifacts
For a tutorial that shows how to use the wsimport and wsgen commands, see “Part Two: Web
Services” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/
index.html). For reference information on these commands, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Deploying a Web Service
You deploy a web service endpoint to the Communications Server just as you would any servlet,
stateless session bean (SLSB), or application. After you deploy the web service, the next step is to
publish it. For more information about publishing a web service, see “Web Services Registry” on
page 115.

You can use the autodeployment feature to deploy a simple JSR 181 (http://jcp.org/en/jsr/
detail?id=181) annotated file. You can compile and deploy in one step, as in the following
example:

javac -cp javaee.jar -d domain-dir/autodeploy MyWSDemo.java

Note – For complex services with dependent classes, user specified WSDL files, or other
advanced features, autodeployment of an annotated file is not sufficient.

The Sun-specific deployment descriptor files sun-web.xml and sun-ejb-jar.xml provide
optional web service enhancements in their webservice-endpoint and
webservice-description elements, including a debugging-enabled subelement that enables
the creation of a test page. The test page feature is enabled by default and described in “The Web
Service URI, WSDL File, and Test Page” on page 116.

For more information about deployment, autodeployment, and deployment descriptors, see
the Sun GlassFish Communications Server 2.0 Application Deployment Guide. For more
information about the asadmin deploy command, see the Sun GlassFish Communications
Server 2.0 Reference Manual.

Creating Portable Web Service Artifacts

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009114

http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://fi.dev.java.net
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Web Services Registry
You deploy a registry to the Communications Server just as you would any connector module,
except that if you are using the Admin Console, you must select a Registry Type value. After
deployment, you can configure a registry in one of the following ways:
■ In the Admin Console, open the Web Services component, and select the Registry tab. For

details, click the Help button in the Admin Console.
■ To configure a registry using the command line, use the following commands.

■ Set the registry type to com.sun.appserv.registry.ebxml or
com.sun.appserv.registry.uddi. Use a backslash before each period as an escape
character. For example:

asadmin create-resource-adapter-config --user adminuser

--property com\.sun\.appserv\.registry\.ebxml=true MyReg

■ Set any properties needed by the registry. For an ebXML registry, set the
LifeCycleManagerURL and QueryManagerURL properties. In the following example, the
system property REG_URL is set to
http\\:\\/\\/siroe.com\\:6789\\/soar\\/registry\\/soap.

asadmin create-connector-connection-pool --user adminuser --raname MyReg

--connectiondefinition javax.xml.registry.ConnectionFactory --property

LifeCycleManagerURL=${REG_URL}:QueryManagerURL=${REG_URL} MyRegCP

■ Set a JNDI name for the registry resource. For example:

asadmin create-connector-resource --user adminuser --poolname MyRegCP jndi-MyReg

For details on these commands, see the Sun GlassFish Communications Server 2.0 Reference
Manual.

After you deploy a web service, you can publish it to a registry in one of the following ways:

■ In the Admin Console, open the Web Services component, select the web service in the
listing on the General tab, and select the Publish tab. For details, click the Help button in the
Admin Console.

■ Use the asadmin publish-to-registry command. For example:

asadmin publish-to-registry --user adminuser --registryjndinames jndi-MyReg --webservicename my-ws#simple

For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

The Sun Java Enterprise System (Java ES) includes a Sun-specific ebXML registry. For more
information about the Java ES registry and registries in general, see “Chapter 20: Java API for
XML Registries” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/
doc/index.html).

Web Services Registry

Chapter 6 • Developing Web Services 115

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

A connector module that accesses UDDI registries is provided with the Communications
Server in the as-install/lib/install/applications/jaxr-ra directory.

You can also use the JWSDP registry available at http://java.sun.com/webservices/jwsdp/
index.jsp or the SOA registry available at http://www.sun.com/products/soa/index.jsp.

The Web Service URI, WSDL File, and Test Page
Clients can run a deployed web service by accessing its service endpoint address URI, which has
the following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the application.xml or web.xml file, and can be overridden in
the sun-application.xml or sun-web.xml file. The servlet-mapping-url-pattern is defined in
the web.xml file.

In the following example, the context-root is my-ws and the servlet-mapping-url-pattern is
/simple:

http://localhost:8080/my-ws/simple

You can view the WSDL file of the deployed service in a browser by adding ?WSDL to the end of
the URI. For example:

http://localhost:8080/my-ws/simple?WSDL

For debugging, you can run a test page for the deployed service in a browser by adding ?Tester
to the end of the URL. For example:

http://localhost:8080/my-ws/simple?Tester

You can also test a service using the Admin Console. Open the Web Services component, select
the web service in the listing on the General tab, and select Test. For details, click the Help
button in the Admin Console.

Note – The test page works only for WS-I compliant web services. This means that the tester
servlet does not work for services with WSDL files that use RPC/encoded binding.

Generation of the test page is enabled by default. You can disable the test page for a web service
by setting the value of the debugging-enabled element in the sun-web.xml and
sun-ejb-jar.xml deployment descriptor to false. For more information, see the Sun
GlassFish Communications Server 2.0 Application Deployment Guide.

The Web Service URI, WSDL File, and Test Page

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009116

http://java.sun.com/webservices/jwsdp/index.jsp
http://java.sun.com/webservices/jwsdp/index.jsp
http://www.sun.com/products/soa/index.jsp
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

JBI Runtime
The Java Business Integration runtime (JBI runtime) provides a distributed infrastructure used
for enterprise integration. It consists of a set of binding components and service engines, which
integrate various types of information technology assets. The binding components and service
engines are interconnected with a normalized message router. Binding components and service
engines adapt information technology assets to a standard services model, based on XML
message exchange using standardized message exchange patterns. The JBI runtime provides
services for transforming and routing messages, as well as the ability to centrally administer the
distributed system.

This JBI runtime incorporates the JSR 208 (http://jcp.org/en/jsr/detail?id=208)
specification for JBI and other open standards. The JBI runtime allows you to integrate web
services and enterprise applications as loosely coupled composite applications within a
Service-Oriented Architecture (SOA).

The distribution of the JBI runtime includes a Java EE service engine, an HTTP SOAP binding
component, a WSDL shared library, and Ant tasks described in “JBI Tasks” on page 68. For
information about JBI administration in the Communications Server, see the Sun GlassFish
Communications Server 2.0 Administration Guide.

Additional components, tools, and documentation are available for download. Refer to Project
Open ESB (https://open-esb.dev.java.net/) for more information on the additional
components, tools, and documentation that are available.

The Java EE Service Engine acts as a bridge between the Java EE and JBI runtime environments
for web service providers and web service consumers. The Java EE Service Engine provides
better performance than a SOAP over HTTP binding component due to in-process
communication between components and additional protocols provided by JBI binding
components such as JMS, SMTP, and File.

The JSR 208 specification allows transactions to be propagated to other components using a
message exchange property specified in the JTA_TRANSACTION_PROPERTY_NAME field. The Java
EE Service Engine uses this property to set and get a transaction object from the JBI message
exchange. It then uses the transaction object to take part in a transaction. This means a Java EE
application or module can take part in a transaction started by a JBI application. Conversely, a
JBI application can take part in a transaction started by a Java EE application or module.

Similarly, the JSR 208 specification allows a security subject to be propagated as a message
exchange property named javax.jbi.security.subject. Thus a security subject can be
propagated from a Java EE application or module to a JBI application or the reverse.

To deploy a Java EE application or module as a JBI service unit, use the Admin Console or the
asadmin deploy-jbi-service-assembly command. For more information about the asadmin
deploy-jbi-service-assembly command, see the Sun GlassFish Communications Server 2.0
Reference Manual.

JBI Runtime

Chapter 6 • Developing Web Services 117

http://jcp.org/en/jsr/detail?id=208
http://docs.sun.com/doc/821-0200
http://docs.sun.com/doc/821-0200
https://open-esb.dev.java.net/
https://open-esb.dev.java.net/
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Using the jbi.xml File
Section 6.3.1 of the JSR 208 specification describes the jbi.xml file. This is a deployment
descriptor, located in the META-INF directory. To deploy a Java EE application or module as a
JBI service unit, you need only specify a small subset of elements in the jbi.xml file. Here is an
example provider:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi" xmlns:ns0="http://ejbws.jbi.misc/">
<services binding-component="false">
<provides endpoint-name="MiscPort" interface-name="ns0:Misc" service-name="ns0:MiscService"/>

</services>

</jbi>

Here is an example consumer:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi" xmlns:ns0="http://message.hello.jbi/">
<services binding-component="false">
<consumes endpoint-name="MsgPort" interface-name="ns0:Msg" service-name="ns0:MsgService"/>

</services>

</jbi>

The Java EE Service Engine enables the endpoints described in the provides section of the
jbi.xml file in the JBI runtime. Similarly, the Java EE Service Engine routes invocations of the
endpoints described in the consumes section from the Java EE web service consumer to the JBI
runtime.

Using Application Server Descriptors
To determine whether a web service endpoint is enabled in the JBI runtime environment, you
can set a jbi-enabled attribute in the Communications Server. This attribute is set to false

(disabled) by default. To enable an endpoint for JBI, set the attribute to true using the asadmin
set command. For example, if an endpoint is bundled as a WAR file named my-ws.war with an
endpoint named simple, use the following command:

asadmin set --user adminuser server.applications.web-module.my-ws.web-service-endpoint.simple.jbi-enabled=true

Determining whether requests from a web service consumer are routed through the Java EE
Service Engine is unnecessary and deprecated, but supported for backward compatibility. You
can set a stub-property named jbi-enabled in the consumer's sun-web.xml or
sun-ejb-jar.xml file. This property is set to true (enabled) by default. Here is an example of
the sun-web.xml file:

JBI Runtime

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009118

<sun-web-app>

<service-ref>

<service-ref-name>sun-web.serviceref/calculator</service-ref-name>

<port-info>

<wsdl-port>

<namespaceURI>http://example.web.service/Calculator</namespaceURI>

<localpart>CalculatorPort</localpart>

</wsdl-port>

<service-endpoint-interface>service.web.example.calculator.Calculator</service-endpoint-interface>

<stub-property name="jbi-enabled" value="true"/>
</port-info>

</service-ref>

</sun-web-app>

For more information about the sun-web.xml and sun-ejb-jar.xml deployment descriptor
files, see the Sun GlassFish Communications Server 2.0 Application Deployment Guide.

Using the Woodstox Parser
The default XML parser in the Communications Server is the Sun GlassFish XML Parser
(SJSXP). Using the Woodstox parser, which is bundled with the Communications Server, may
improve performance. Woodstox and SJSXP both provide implementations of the StAX API.
To enable the Woodstox parser, set the following system properties for the default
server-config configuration in the domain.xml file, then restart the server:

<config name=server-config>

...

<system-property name="javax.xml.stream.XMLEventFactory"
value="com.ctc.wstx.stax.WstxEventFactory"/>

<system-property name="javax.xml.stream.XMLInputFactory"
value="com.ctc.wstx.stax.WstxInputFactory"/>

<system-property name="javax.xml.stream.XMLOutputFactory"
value="com.ctc.wstx.stax.WstxOutputFactory"/>

</config>

In addition, set these properties for any other configurations referenced by server instances or
clusters on which you want to use the Woodstox parser. For more information about the
domain.xml file and system properties, see the Sun GlassFish Communications Server 2.0
Administration Reference.

Using the Woodstox Parser

Chapter 6 • Developing Web Services 119

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0194

Note – If you are using a stand-alone client, you must set these same properties for the client on
the java command line as follows:

-Djavax.xml.stream.XMLInputFactory=com.ctc.wstx.stax.WstxInputFactory

-Djavax.xml.stream.XMLOutputFactory=com.ctc.wstx.stax.WstxOutputFactory

-Djavax.xml.stream.XMLEventFactory=com.ctc.wstx.stax.WstxEventFactory

Setting these properties is not necessary if you are using an application client, which is
recommended and supported.

For more information about the Woodstox parser, see http://woodstox.codehaus.org/. For
more information about the StAX API, see Chapter 17: Streaming API for XML in the Java EE 5
Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Using the Woodstox Parser

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009120

http://woodstox.codehaus.org/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

Using the Java Persistence API

Sun GlassFish Communications Server support for the Java Persistence API includes all
required features described in the Java Persistence Specification. Although officially part of the
Enterprise JavaBeans Specification v3.0, also known as JSR 220 (http://jcp.org/en/jsr/
detail?id=220), the Java Persistence API can also be used with non-EJB components outside
the EJB container.

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. For basic information about the Java Persistence
API, see “Part Four: Persistence” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/
docs/tutorial/doc/index.html).

This chapter contains Communications Server specific information on using the Java
Persistence API in the following topics:

■ “Specifying the Database” on page 122
■ “Additional Database Properties” on page 124
■ “Configuring the Cache” on page 124
■ “Setting the Logging Level” on page 124
■ “Using Lazy Loading” on page 125
■ “Primary Key Generation Defaults” on page 125
■ “Automatic Schema Generation” on page 126
■ “Query Hints” on page 131
■ “Changing the Persistence Provider” on page 132
■ “Restrictions and Optimizations” on page 133

Note – The default persistence provider in the Communications Server is based on Oracle's
TopLink Essentials Java Persistence API implementation. All configuration options in TopLink
Essentials are available to applications that use the Communications Server's default persistence
provider.

7C H A P T E R 7

121

http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

Specifying the Database
The Communications Server uses the bundled Java DB (Derby) database by default. If the
transaction-type element is omitted or specified as JTA and both the jta-data-source and
non-jta-data-source elements are omitted in the persistence.xml file, Java DB is used as a
JTA data source. If transaction-type is specified as RESOURCE_LOCAL and both
jta-data-source and non-jta-data-source are omitted, Java DB is used as a non-JTA data
source.

To use a non-default database, either specify a value for the jta-data-source element, or set
the transaction-type element to RESOURCE_LOCAL and specify a value for the
non-jta-data-source element.

If you are using the default persistence provider, the provider attempts to automatically detect
the database based on the connection metadata. You can specify the optional
toplink.platform.class.name property to guarantee that the database is correct. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em1">
<jta-data-source>jdbc/MyDB2DB</jta-data-source>

<properties>

<property name="toplink.platform.class.name"
value="oracle.toplink.essentials.platform.database.DB2Platform"/>

</properties>

</persistence-unit>

</persistence>

The following toplink.platform.class.name property values are allowed. Supported
platforms have been tested with the Communications Server and are found to be Java EE
compatible.

//Supported platforms

oracle.toplink.essentials.platform.database.DerbyPlatform

oracle.toplink.essentials.platform.database.oracle.OraclePlatform

oracle.toplink.essentials.platform.database.SQLServerPlatform

oracle.toplink.essentials.platform.database.DB2Platform

oracle.toplink.essentials.platform.database.SybasePlatform

oracle.toplink.essentials.platform.database.CloudscapePlatform

oracle.toplink.essentials.platform.database.MySQL4Platform

oracle.toplink.essentials.platform.database.PointBasePlatform

oracle.toplink.essentials.platform.database.PostgreSQLPlatform

//Others available

oracle.toplink.essentials.platform.database.InformixPlatform

oracle.toplink.essentials.platform.database.TimesTenPlatform

Specifying the Database

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009122

oracle.toplink.essentials.platform.database.AttunityPlatform

oracle.toplink.essentials.platform.database.HSQLPlatform

oracle.toplink.essentials.platform.database.SQLAnyWherePlatform

oracle.toplink.essentials.platform.database.DBasePlatform

oracle.toplink.essentials.platform.database.DB2MainframePlatform

oracle.toplink.essentials.platform.database.AccessPlatform

To use the Java Persistence API outside the EJB container (in Java SE mode), do not specify the
jta-data-source or non-jta-data-source elements if the DataSource is not available.
Instead, specify the provider element and any additional properties required by the JDBC
driver or the database. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em2">
<provider>oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider</provider>

<transaction-type>RESOURCE_LOCAL<transaction-type>

<non-jta-data-source>jdbc/MyDB2DB</non-jta-data-source>

<properties>

<property name="toplink.platform.class.name"
value="oracle.toplink.essentials.platform.database.DB2Platform"/>

<!-- JDBC connection properties -->

<property name="toplink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
<property name="toplink.jdbc.url"

value="jdbc:derby://localhost:1527/testdb;retrieveMessagesFromServerOnGetMessage=true;create=true;"/>
<property name="toplink.jdbc.user" value="APP"/>
<property name="toplink.jdbc.password" value="APP"/>

</properties>

</persistence-unit>

</persistence>

For more information about toplink properties, see “Additional Database Properties” on
page 124.

For a list of the JDBC drivers currently supported by the Communications Server, see the Sun
GlassFish Communications Server 2.0 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications
Server 2.0 Administration Guide.

To change the persistence provider, see “Changing the Persistence Provider” on page 132.

Specifying the Database

Chapter 7 • Using the Java Persistence API 123

http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view

Additional Database Properties
If you are using the default persistence provider, you can specify in the persistence.xml file
the database properties listed at Persistence Unit Extensions in TopLink JPA Extensions
Reference (http://www.oracle.com/
technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html).

For schema generation properties, see “Generation Options” on page 128. For query hints, see
“Query Hints” on page 131.

Configuring the Cache
If you are using the default persistence provider, you can configure whether caching occurs, the
type of caching, the size of the cache, and whether client sessions share the cache. Caching
properties for the default persistence provider are described in detail at Extensions for Caching
in TopLink JPA Extensions Reference (http://www.oracle.com/
technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html).

Setting the Logging Level
One of the default persistence provider's database properties that you can set in the
persistence.xml file is toplink.logging.level. For example, setting the logging level to
FINE or higher logs all SQL statements. For details about this property, see Extensions for
Logging inTopLink JPA Extensions Reference (http://www.oracle.com/
technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html).

You can also set the TopLink Essentials logging level globally in the Application Server in any of
the following ways:
■ Set a module-log-levels property using the asadmin command. For example:

asadmin set --user adminuser "server.log-service.module-log-levels.property.oracle\.toplink\.essentials"=FINE

■ Set a JVM option using the asadmin command. For example:

asadmin create-jvm-options --user adminuser -Dtoplink.logging.level=FINE

■ Set a module-log-levels property using the Admin Console. In the developer profile, select
the Application Server component and the Logging tab. In the cluster profile, select the
Logger Settings component under the relevant configuration. Select the Log Levels tab.
Then scroll down to Additional Module Log Level Properties, select Add Property, type
oracle.toplink.essentials in the Name field, and type the desired logging level in the
Value field.

Setting the logging level to OFF disables TopLink Essentials logging. A logging level set in the
persistence.xml file takes precedence over the global logging level.

Additional Database Properties

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009124

http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html

You can set the logging level for Java Persistence in general using the Admin Console. In the
developer profile, select the Application Server component and the Logging tab. In the cluster
profile, select the Logger Settings component under the relevant configuration. Select the Log
Levels tab. Then set the logging level for Persistence. Setting the logging level to OFF disables
Java Persistence logging.

Using Lazy Loading
The default persistence provider treats only OneToOne, ManyToOne, OneToMany, and ManyToMany

mappings specially when they are annotated as LAZY. OneToMany and ManyToMany mappings are
loaded lazily by default in compliance with the Java Persistence Specification. Other mappings
are always loaded eagerly. For OneToOne and ManyToOne mappings, value holder indirection is
used. For OneToMany and ManyToMany mappings, transparent indirection is used.

For basic information about lazy loading, see Lazy Loading in TopLink JPA Extensions
Reference (http://www.oracle.com/
technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html). For
details about indirection, see Indirection in Mapping Concepts (http://www.oracle.com/
technology/products/ias/toplink/doc/10131/main/_html/mapun002.htm).

Primary Key Generation Defaults
In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator

annotations in the Java Persistence Specification, certain defaults are noted as specific to the
persistence provider. The default persistence provider's primary key generation defaults are
listed here.

@GeneratedValue defaults are as follows:

■ Using strategy=AUTO (or no strategy) creates a @TableGenerator named SEQ_GEN with
default settings. Specifying a generator has no effect.

■ Using strategy=TABLE without specifying a generator creates a @TableGenerator named
SEQ_GEN_TABLE with default settings. Specifying a generator but no @TableGenerator

creates and names a @TableGenerator with default settings.
■ Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are

database-specific.
■ For Oracle databases, not specifying a generator creates a @SequenceGenerator named

SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no
@SequenceGenerator creates and names a @SequenceGenerator with default settings.

■ For PostgreSQL databases, a SERIAL column named entity-table_pk-column_SEQ is
created.

Primary Key Generation Defaults

Chapter 7 • Using the Java Persistence API 125

http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/doc/10131/main/_html/mapun002.htm
http://www.oracle.com/technology/products/ias/toplink/doc/10131/main/_html/mapun002.htm

■ For MySQL databases, an AUTO_INCREMENT column is created.
■ For other supported databases, an IDENTITY column is created.

The @SequenceGenerator annotation has one default specific to the default provider. The
default sequenceName is the specified name.

@TableGenerator defaults are as follows:

■ The default table is SEQUENCE.
■ The default pkColumnName is SEQ_NAME.
■ The default valueColumnName is SEQ_COUNT.
■ The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation
The automatic schema generation feature of the Communications Server defines database
tables based on the fields or properties in entities and the relationships between the fields or
properties. This insulates developers from many of the database related aspects of development,
allowing them to focus on entity development. The resulting schema is usable as-is or can be
given to a database administrator for tuning with respect to performance, security, and so on.
This section covers the following topics:

■ “Annotations” on page 126
■ “Supported Data Types” on page 127
■ “Generation Options” on page 128

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. Instead, an error is written to the server log. This is done to allow you to
investigate the problem and fix it manually. You should not rely on the partially created
database schema to be correct for running the application.

Annotations
The following annotations are used in automatic schema generation: @AssociationOverride,
@AssociationOverrides, @AttributeOverride, @AttributeOverrides, @Column,
@DiscriminatorColumn, @DiscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue,
@Id, @IdClass, @JoinColumn, @JoinColumns, @JoinTable, @Lob, @ManyToMany, @ManyToOne,
@OneToMany, @OneToOne, @PrimaryKeyJoinColumn, @PrimaryKeyJoinColumns,

Automatic Schema Generation

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009126

@SecondaryTable, @SecondaryTables, @SequenceGenerator, @Table, @TableGenerator,
@UniqueConstraint, and @Version. For information about these annotations, see the Java
Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic
schema generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the
resulting DDL files.

Supported Data Types
The following table shows mappings of Java types to SQL types when the default persistence
provider and automatic schema generation are used.

TABLE 7–1 Java Type to SQL Type Mappings

Java Type
Java DB, Derby,
CloudScape Oracle DB2 Sybase MS-SQL Server MySQL Server

boolean, java.lang.Boolean SMALLINT NUMBER(1) SMALLINT BIT BIT TINYINT(1)

int, java.lang.Integer INTEGER NUMBER(10) INTEGER INTEGER INTEGER INTEGER

long, java.lang.Long BIGINT NUMBER(19) INTEGER NUMERIC(19) NUMERIC(19) BIGINT

float, java.lang.Float FLOAT NUMBER(19,4) FLOAT FLOAT(16) FLOAT(16) FLOAT

double, java.lang.Double FLOAT NUMBER(19,4) FLOAT FLOAT(32) FLOAT(32) DOUBLE

short, java.lang.Short SMALLINT NUMBER(5) SMALLINT SMALLINT SMALLINT SMALLINT

byte, java.lang.Byte SMALLINT NUMBER(3) SMALLINT SMALLINT SMALLINT SMALLINT

java.lang.Number DECIMAL NUMBER(38) DECIMAL(15) NUMERIC(38) NUMERIC(28) DECIMAL(38)

java.math.BigInteger BIGINT NUMBER(38) BIGINT NUMERIC(38) NUMERIC(28) BIGINT

java.math.BigDecimal DECIMAL NUMBER(38) DECIMAL(15) NUMERIC(38) NUMERIC(28) DECIMAL(38)

java.lang.String VARCHAR(255) VARCHAR(255) VARCHAR(255) VARCHAR(255) VARCHAR(255) VARCHAR(255)

char, java.lang.Character CHAR(1) CHAR(1) CHAR(1) CHAR(1) CHAR(1) CHAR(1)

byte[], java.lang.Byte[],
java.sql.Blob

BLOB(64000) LONG RAW BLOB(64000) IMAGE IMAGE BLOB(64000)

char[],
java.lang.Character[],
java.sql.Clob

CLOB(64000) LONG CLOB(64000) TEXT TEXT TEXT(64000)

Automatic Schema Generation

Chapter 7 • Using the Java Persistence API 127

TABLE 7–1 Java Type to SQL Type Mappings (Continued)

Java Type
Java DB, Derby,
CloudScape Oracle DB2 Sybase MS-SQL Server MySQL Server

java.sql.Date DATE DATE DATE DATETIME DATETIME DATE

java.sql.Time TIME DATE TIME DATETIME DATETIME TIME

java.sql.Timestamp TIMESTAMP DATE TIMESTAMP DATETIME DATETIME DATETIME

Generation Options
Schema generation properties or asadmin command line options can control automatic schema
generation by the following:

■ Creating tables during deployment
■ Dropping tables during undeployment
■ Dropping and creating tables during redeployment
■ Generating the DDL files

Note – Before using these options, make sure you have a properly configured database. See
“Specifying the Database” on page 122.

The following optional schema generation properties control the automatic creation of
database tables at deployment. You can specify them in the persistence.xml file.

Automatic Schema Generation

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009128

TABLE 7–2 Schema Generation Properties

Property Default Description

toplink.ddl-generation none Specifies whether tables and DDL files are created during deployment,
and whether tables are dropped first if they already exist. Allowed
values are create-tables, drop-and-create-tables, and none.

If create-tables is specified, database tables are created for entities
that need them.

If drop-and-create-tables is specified, and if tables were
automatically created when this application was last deployed, tables
from the earlier deployment are dropped and fresh ones are created. If
tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the
same names as those that would have been automatically created are
found, the deployment proceeds, but a warning is thrown to indicate
that tables could not be created.

If none is specified, no tables are created or dropped.

The asadmin generation options listed in Table 7–3 and Table 7–4
override the value of this property.

If you are using persistence outside the EJB container and would like
to create the DDL files without creating tables, additionally define a
Java system property INTERACT_WITH_DB and set its value to false.

toplink.create-ddl-jdbc-file-name createDDL.jdbc Specifies the name of the JDBC file that contains the DDL statements
required to create the required objects (tables, sequences, and
constraints) in the database.

toplink.drop-ddl-jdbc-file-name dropDDL.jdbc Specifies the name of the JDBC file that contains the DDL statements
required to drop the required objects (tables, sequences, and
constraints) from the database.

toplink.application-location . for the current
working directory

Specifies the location where the DDL files are written.

For persistence within the EJB container, if this property is not set,
DDL files are written to one of the following locations, for applications
and modules, respectively:

domain-dir/generated/ejb/j2ee-apps/app-name

domain-dir/generated/ejb/j2ee-modules/mod-name

Automatic Schema Generation

Chapter 7 • Using the Java Persistence API 129

TABLE 7–2 Schema Generation Properties (Continued)
Property Default Description

toplink.ddl-generation.

output-mode

both Specifies the DDL generation target if you are in Java SE mode, outside
the EJB container. Values are as follows:
■ both – Generates SQL files and executes them on the database. If

toplink.ddl-generation is set to create-tables, then
toplink.create-ddl-jdbc-file-name is written to
toplink.application-location and executed on the database. If
toplink.ddl-generation is set to drop-and-create-tables,
then both toplink.create-ddl-jdbc-file-name and
toplink.drop-ddl-jdbc-file-name are written to
toplink.application-location and both SQL files are executed
on the database.

■ database – Executes SQL on the database only (does not generate
SQL files). If toplink.ddl-generation is set to create-tables,
then toplink.create-ddl-jdbc-file-name is executed on the
database. It is not written to toplink.application-location. If
toplink.ddl-generation is set to drop-and-create-tables,
then both toplink.create-ddl-jdbc-file-name and
toplink.drop-ddl-jdbc-file-name are executed on the
database. Neither is written to toplink.application-location.

■ sql-script – Generates SQL files only (does not execute them on
the database). If toplink.ddl-generation is set to
create-tables, then toplink.create-ddl-jdbc-file-name is
written to toplink.application-location. It is not executed on
the database. If toplink.ddl-generation is set to
drop-and-create-tables, then both
toplink.create-ddl-jdbc-file-name and
toplink.drop-ddl-jdbc-file-name are written to
toplink.application-location. Neither is executed on the
database.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment.

TABLE 7–3 The asadmin deploy and asadmin deploydir Generation Options

Option Default Description

--createtables none If true, causes database tables to be created for entities that need them. If false,
does not create tables. If not specified, the value of the toplink.ddl-generation
property in persistence.xml is used.

Automatic Schema Generation

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009130

TABLE 7–3 The asadmin deploy and asadmin deploydir Generation Options (Continued)
Option Default Description

--dropandcreatetables none If true, and if tables were automatically created when this application was last
deployed, tables from the earlier deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the same names as
those that would have been automatically created are found, the deployment
proceeds, but a warning is thrown to indicate that tables could not be created.

If false, the toplink.ddl-generation property setting in persistence.xml is
overridden.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment.

TABLE 7–4 The asadmin undeploy Generation Options

Option Default Description

--droptables none If true, causes database tables that were automatically created when the entities were last
deployed to be dropped when the entities are undeployed. If false, does not drop tables.

If not specified, tables are dropped only if the toplink.ddl-generation property setting in
persistence.xml is drop-and-create-tables.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy

commands, see the Sun GlassFish Communications Server 2.0 Reference Manual.

When asadmin deployment options and persistence.xml options are both specified, the
asadmin deployment options take precedence.

The asant tasks sun-appserv-deploy and sun-appserv-undeploy are equivalent to asadmin

deploy and asadmin undeploy, respectively. These asant tasks also override the
persistence.xml options. For details, see Chapter 3, “The asant Utility.”

Query Hints
Query hints are additional, implementation-specific configuration settings. You can use hints
in your queries in the following format:

setHint("hint-name", hint-value)

For example:

Query Hints

Chapter 7 • Using the Java Persistence API 131

http://docs.sun.com/doc/821-0197

Customer customer = (Customer)entityMgr.

createNamedQuery("findCustomerBySSN").
setParameter("SSN", "123-12-1234").
setHint("toplink.refresh", true).

getSingleResult();

For more information about the query hints available with the default provider, see Query Hints
in TopLink JPA Extensions Reference (http://www.oracle.com/
technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html).

Changing the Persistence Provider

Note – The previous sections in this chapter apply only to the default persistence provider. If you
change the provider for a module or application, the provider-specific database properties,
query hints, and schema generation features described in this chapter do not apply.

The verifier utility always uses the default provider to verify persistence settings. For
information about the verifier utility, see “The verifier Utility” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

You can change the persistence provider for an application in the manner described in the Java
Persistence API Specification.

First, install the provider. Copy the provider JAR files to the domain-dir/lib directory, and
restart the Communications Server. For more information about the domain-dir/lib directory,
see “Using the Common Class Loader” on page 40. The new persistence provider is now
available to all modules and applications deployed on servers that share the same configuration.
However, the default provider remains the same.

In your persistence unit, specify the provider and any properties the provider requires in the
persistence.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em3">
<provider>com.company22.persistence.PersistenceProviderImpl</provider>

<properties>

<property name="company22.database.name" value="MyDB"/>
</properties>

</persistence-unit>

</persistence>

Changing the Persistence Provider

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009132

http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/jpa/essentials/toplink-jpa-extensions.html
http://docs.sun.com/doc/821-0195/beadq?a=view
http://docs.sun.com/doc/821-0195/beadq?a=view

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the Java
Persistence API.

■ “Extended Persistence Context Failover” on page 133
■ “Using @OrderBy with a Shared Session Cache” on page 133
■ “Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver” on page 134
■ “Database Case Sensitivity” on page 134
■ “Sybase Finder Limitation” on page 135
■ “MySQL Database Restrictions” on page 135

Extended Persistence Context Failover
A reference to an extended persistence context in a stateful session bean or an HttpSession

may not fail over successfully.

The Java Persistence API specification is not clear how the container and persistence provider
should work together to passivate a stateful session bean with an extended persistence context
in a stand-alone server instance. This also prevents successful serialization and storage of a
reference to an extended persistence context in an HttpSession.

Even in a single-instance environment, if a stateful session bean is passivated, its extended
persistence context could be lost when the stateful session bean is activated. In this
environment, it is safe to store an extended persistence context in a stateful session bean only if
you can safely disable stateful session bean passivation altogether. This is possible, but
trade-offs in memory utilization must be carefully examined before choosing this option.

In a single-instance environment, it is safe to store a reference to an extended persistence
context in an HttpSession.

Using @OrderBy with a Shared Session Cache
Setting @OrderBy on a ManyToMany or OneToMany relationship field in which a List represents
the Many side doesn't work if the session cache is shared. Use one of the following
workarounds:

■ Have the application maintain the order so the List is cached properly.
■ Refresh the session cache using EntityManager.refresh() if you don't want to maintain

the order during creation or modification of the List.
■ Disable session cache sharing in persistence.xml as follows:

<property name="toplink.cache.shared.default" value="false"/>

Restrictions and Optimizations

Chapter 7 • Using the Java Persistence API 133

Using BLOB or CLOB Types with the Inet Oraxo JDBC
Driver
To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC
Driver for Oracle Databases, you must set the database's streamstolob property value to true.

Database Case Sensitivity
Mapping references to column or table names must be in accordance with the expected column
or table name case, and ensuring this is the programmer's responsibility. If column or table
names are not explicitly specified for a field or entity, the Communications Server uses upper
case column names by default, so any mapping references to the column or table names must be
in upper case. If column or table names are explicitly specified, the case of all mapping
references to the column or table names must be in accordance with the case used in the
specified names.

The following are examples of how case sensitivity affects mapping elements that refer to
columns or tables. Programmers must keep case sensitivity in mind when writing these
mappings.

Unique Constraints
If column names are not explicitly specified on a field, unique constraints and foreign key
mappings must be specified using uppercase references. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "DEPTNAME" }) })

The other way to handle this is by specifying explicit column names for each field with the
required case. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "deptName" }) })

public class Department{ @Column(name="deptName") private String deptName; }

Otherwise, the ALTER TABLE statement generated by the Communications Server uses the
incorrect case, and the creation of the unique constraint fails.

Foreign Key Mapping
Use @OneToMany(mappedBy="COMPANY") or specify an explicit column name for the Company
field on the Many side of the relationship.

SQL Result Set Mapping
Use the following elements:

Restrictions and Optimizations

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009134

<sql-result-set-mapping name="SRSMName" >

<entity-result entity-class="entities.someEntity" />

<column-result name="UPPERCASECOLUMNNAME" />

</sql-result-set-mapping>

Or specify an explicit column name for the upperCaseColumnName field.

Named Native Queries and JDBC Queries
Column or table names specified in SQL queries must be in accordance with the expected case.
For example, MySQL requires column names in the SELECT clause of JDBC queries to be
uppercase, while PostgreSQL and Sybase require table names to be uppercase in all JDBC
queries.

PostgreSQL Case Sensitivity
PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve
column or table names in lowercase unless the names are quoted. For example:

use aliases Select m.ID AS \"ID\" from Department m

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the Communications
Server for persistence.

■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.

■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

Restrictions and Optimizations

Chapter 7 • Using the Java Persistence API 135

■ The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

■ The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an
example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message.

Restrictions and Optimizations

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009136

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and http://dev.mysql.com/doc/mysql/

en/innodb-foreign-key-constraints.html.

Restrictions and Optimizations

Chapter 7 • Using the Java Persistence API 137

http://bugs.mysql.com/bug.php?id=12449
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

138

Developing Web and SIP Applications

This chapter describes how web and SIP applications are supported in the Sun GlassFish
Communications Server and includes the following sections:

■ “Using Servlets” on page 139
■ “Using JavaServer Pages” on page 146
■ “Creating and Managing Sessions” on page 151
■ “Advanced Web Application Features” on page 159

For general information about web applications, see “Part One: The Web Tier” in the Java EE 5
Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

For general information about SIP applications, see Java Specification Request (JSR) 289
(http://www.jcp.org/en/jsr/detail?id=289).

A module with both web application and SIP application features is a converged web/SIP
module.

You can optionally use a sun-web.xml or sun-sip.xml file, or both, to specify extra deployment
settings. If you use both, the sun-web.xml file configures the web container and the
sun-sip.xml file configures the SIP container. The sun-sip.xml file is a subset of the
sun-web.xml file. For more information, see the Sun GlassFish Communications Server 2.0
Application Deployment Guide.

Using Servlets
Communications Server supports the Java Servlet Specification version 2.5.

Note – Servlet API version 2.5 is fully backward compatible with versions 2.3 and 2.4, so all
existing servlets should work without modification or recompilation.

8C H A P T E R 8

139

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/en/jsr/detail?id=289
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

To develop servlets, use Sun Microsystems’ Java Servlet API. For information about using the
Java Servlet API, see the documentation provided by Sun Microsystems at
http://java.sun.com/products/servlet/index.html.

The Communications Server provides the wscompile and wsdeploy tools to help you
implement a web service endpoint as a servlet. For more information about these tools, see the
Sun GlassFish Communications Server 2.0 Reference Manual.

This section describes how to create effective servlets to control application interactions
running on an Communications Server, including standard-based servlets. In addition, this
section describes the Communications Server features to use to augment the standards.

This section contains the following topics:

■ “Invoking a Servlet With a URL” on page 140
■ “Servlet Output” on page 141
■ “Caching Servlet Results” on page 141
■ “About the Servlet Engine” on page 145

Invoking a Servlet With a URL
You can call a servlet deployed to the Communications Server by using a URL in a browser or
embedded as a link in an HTML or JSP file. The format of a servlet invocation URL is as follows:

http://server:port/context-root/servlet-mapping?name=value

The following table describes each URL section.

TABLE 8–1 URL Fields for Servlets Within an Application

URL element Description

server:port The IP address (or host name) and optional port number.

To access the default web or converged web/SIP module for a virtual server, specify
only this URL section. You do not need to specify the context-root or servlet-name
unless you also wish to specify name-value parameters.

context-root For an application, the context root is defined in the context-root element of the
application.xml, sun-application.xml, or sun-web.xml file. For an individually
deployed web or converged web/SIP module, the context root is specified during
deployment.

For both applications and individually deployed web or converged web/SIP modules,
the default context root is the name of the WAR or SAR file minus the .war or .sar
suffix.

Using Servlets

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009140

http://java.sun.com/products/servlet/index.html
http://docs.sun.com/doc/821-0197

TABLE 8–1 URL Fields for Servlets Within an Application (Continued)
URL element Description

servlet-mapping The servlet-mapping as configured in the web.xml or sip.xml file.

?name=value... Optional request parameters.

In this example, localhost is the host name, MortPages is the context root, and calcMortgage

is the servlet mapping:

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

When invoking a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Servlet Output
ServletContext.log messages are sent to the server log.

By default, the System.out and System.err output of servlets are sent to the server log, and
during startup, server log messages are echoed to the System.err output. Also by default, there
is no Windows-only console for the System.err output.

You can change these defaults using the Admin Console. In the developer profile, select the
Communications Server component and the Logging tab. In the cluster profile, select the
Logger Settings component under the relevant configuration. Then check or uncheck Write to
System Log. If this box is checked, System.out output is sent to the server log. If it is unchecked,
System.out output is sent to the system default location only.

For more information, click the Help button in the Admin Console from the Logging page.

Caching Servlet Results
The Communications Server can cache the results of invoking a servlet, a JSP, or any URL
pattern to make subsequent invocations of the same servlet, JSP, or URL pattern faster. The
Communications Server caches the request results for a specific amount of time. In this way, if
another data call occurs, the Communications Server can return the cached data instead of
performing the operation again. For example, if your servlet returns a stock quote that updates
every 5 minutes, you set the cache to expire after 300 seconds.

Using Servlets

Chapter 8 • Developing Web and SIP Applications 141

Note – Caching does not apply to SIP servlets.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how an Communications Server web application handles response caching, you edit
specific fields in the sun-web.xml file.

Note – A servlet that uses caching is not portable.

For Javadoc tool pages relevant to caching servlet results, go to http://

glassfish.dev.java.net/nonav/javaee5/api/index.html and click on the
com.sun.appserv.web.cache package.

For information about JSP caching, see “JSP Caching” on page 147.

The rest of this section covers the following topics:
■ “Caching Features” on page 142
■ “Default Cache Configuration” on page 143
■ “Caching Example” on page 143
■ “The CacheKeyGenerator Interface” on page 144

Caching Features
The Communications Server has the following web application response caching capabilities:
■ Caching is configurable based on the servlet name or the URI.
■ When caching is based on the URI, this includes user specified parameters in the query

string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

■ Cache size, entry timeout, and other caching behaviors are configurable.
■ Entry timeout is measured from the time an entry is created or refreshed. To override this

timeout for an individual cache mapping, specify the cache-mapping subelement timeout.
■ To determine caching criteria programmatically, write a class that implements the

com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows
when a back end data source was last modified, you can write a helper class to retrieve the
last modified timestamp from the data source and decide whether to cache the response
based on that timestamp.

Using Servlets

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009142

http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html

■ To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See “The
CacheKeyGenerator Interface” on page 144.

■ All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

■ Since newly updated classes impact what gets cached, the web container clears the cache
during dynamic deployment or reloading of classes.

■ The following HttpServletRequest request attributes are exposed.
■ com.sun.appserv.web.cachedServletName, the cached servlet target
■ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

■ Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those
resources. For details, see “cache-mapping” in Sun GlassFish Communications Server 2.0
Application Deployment Guide and “dispatcher” in Sun GlassFish Communications
Server 2.0 Application Deployment Guide. These are elements in the sun-web.xml file.

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

■ The default cache timeout is 30 seconds.
■ Only the HTTP GET method is eligible for caching.
■ HTTP requests with cookies or sessions automatically disable caching.
■ No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
■ The default key consists of the Servlet Path (minus pathInfo and the query string).
■ A “least recently used” list is maintained to evict cache entries if the maximum cache size is

exceeded.
■ Key generation concatenates the servlet path with key field values, if any are specified.
■ Results produced by resources that are the target of a RequestDispatcher.include() or

RequestDispatcher.forward() call are never cached.

Caching Example
Here is an example cache element in the sun-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet-name>

<timeout name="timefield">120</timeout>

Using Servlets

Chapter 8 • Developing Web and SIP Applications 143

http://docs.sun.com/doc/821-0195/bearh?a=view
http://docs.sun.com/doc/821-0195/bearh?a=view
http://docs.sun.com/doc/821-0195/beasp?a=view
http://docs.sun.com/doc/821-0195/beasp?a=view

<http-method>GET</http-method>

<http-method>POST</http-method>

</cache-mapping>

<cache-mapping>

<url-pattern> /catalog/* </url-pattern>

<!-- cache the best selling category; cache the responses to

-- this resource only when the given parameters exist. Cache

-- only when the catalog parameter has ’lilies’ or ’roses’

-- but no other catalog varieties:

-- /orchard/catalog?best&category=’lilies’

-- /orchard/catalog?best&category=’roses’

-- but not the result of

-- /orchard/catalog?best&category=’wild’

-->

<constraint-field name=’best’ scope=’request.parameter’/>

<constraint-field name=’category’ scope=’request.parameter’>

<value> roses </value>

<value> lilies </value>

</constraint-field>

<!-- Specify that a particular field is of given range but the

-- field doesn’t need to be present in all the requests -->

<constraint-field name=’SKUnum’ scope=’request.parameter’>

<value match-expr=’in-range’> 1000 - 2000 </value>

</constraint-field>

<!-- cache when the category matches with any value other than

-- a specific value -->

<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">
bogus

</value>

</constraint-field>

</cache-mapping>

<cache-mapping>

<servlet-name> InfoServlet </servlet-name>

<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>

</cache>

For more information about the sun-web.xml caching settings, see “cache” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

The CacheKeyGenerator Interface
The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

Using Servlets

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009144

http://docs.sun.com/doc/821-0195/beard?a=view
http://docs.sun.com/doc/821-0195/beard?a=view

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

About the Servlet Engine
Servlets exist in and are managed by the servlet engine in the Communications Server. The
servlet engine is an internal object that handles all servlet meta functions. These functions
include instantiation, initialization, destruction, access from other components, and
configuration management. This section covers the following topics:

■ “Instantiating and Removing Servlets” on page 145
■ “Request Handling” on page 145

Instantiating and Removing Servlets
After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init()
method to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy() method in the
servlet so that the servlet can perform any final tasks and deallocate resources. You can override
this method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Request Handling
When a request is made, the Communications Server hands the incoming data to the servlet
engine. The servlet engine processes the request’s input data, such as form data, cookies, session
information, and URL name-value pairs, into an HttpServletRequest or SipServletRequest
request object type.

The servlet engine also creates an HttpServletResponse or SipServletResponse response
object type. The engine then passes both as parameters to the servlet’s service() method.

In an HTTP servlet, the default service() method routes requests to another method based on
the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example,
HTTP POST requests are sent to the doPost() method, HTTP GET requests are sent to the
doGet() method, and so on. This enables the servlet to process request data differently,
depending on which transfer method is used. Since the routing takes place in the service
method, you generally do not override service() in an HTTP servlet. Instead, override
doGet(), doPost(), and so on, depending on the request type you expect.

Using Servlets

Chapter 8 • Developing Web and SIP Applications 145

http://docs.sun.com/doc/821-0195/beasm?a=view
http://docs.sun.com/doc/821-0195/beasm?a=view

To perform the tasks to answer a request, override the service() method for generic servlets,
and the doGet() or doPost() methods for HTTP servlets. Very often, this means accessing EJB
components to perform business transactions, then collating the information in the request
object or in a JDBC ResultSet object.

The service() method of javax.servlet.sip.SipServlet takes both a SipServletRequest
and a SipServletResponse argument, but for every invocation of this method, only one
argument is valid (different from null), depending on whether the incoming SIP message is a
request or a response. If the incoming SIP message is a request, only the SipServletRequest
argument is valid, and the SipServletResponse argument is null. If the incoming SIP message
is a response, only the SipServletResponse argument is valid, and the SipServletRequest
argument is null.

The default implementation of the service() method of javax.servlet.sip.SipServlet
dispatches SIP requests to the appropriate doXXX() method (based on the SIP request method),
and SIP responses to the appropriate doXXXResponse() method (based on the SIP response
status code). The doXXX() methods take a single argument of type SipServletRequest, while
the doXXXResponse() methods take a single argument of type SipServletResponse. For
example, a SIP invite request is dispatched to the doInvite() method, and a SIP response with
a status code in the range between 200 and 300 is dispatched to the doSuccessResponse()
method.

In the same way that web developers typically override the various doXXX() methods of
HttpServlet, and do not modify the default implementation of its service() method (which
contains the dispatch logic to the appropriate doXXX() method), SIP developers typically
override only the doXXX() and doXXXResponse() methods of SipServlet.

Using JavaServer Pages
The Communications Server supports the following JSP features:
■ JavaServer Pages (JSP) Specification version 2.1
■ Precompilation of JSP files, which is especially useful for production servers
■ JSP tag libraries and standard portable tags

For information about creating JSP files, see Sun Microsystem’s JavaServer Pages web site at
http://java.sun.com/products/jsp/index.html.

For information about Java Beans, see Sun Microsystem’s JavaBeans web page at
http://java.sun.com/beans/index.html.

This section describes how to use JavaServer Pages (JSP files) as page templates in an
Communications Server web application. This section contains the following topics:
■ “JSP Tag Libraries and Standard Portable Tags” on page 147
■ “JSP Caching” on page 147

Using JavaServer Pages

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009146

http://java.sun.com/products/jsp/index.html
http://java.sun.com/beans/index.html

■ “Options for Compiling JSP Files” on page 151

JSP Tag Libraries and Standard Portable Tags
Communications Server supports tag libraries and standard portable tags. For more
information, see the JavaServer Pages Standard Tag Library (JSTL) page at
http://java.sun.com/products/jsp/jstl/index.jsp.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP
tag libraries (in as-install/lib) to use JavaServerTM Faces technology or JSTL, respectively. These
tag libraries are automatically available to all web applications.

However, the as-install/lib/appserv-tags.jar tag library for JSP caching is not automatically
available to web applications. See “JSP Caching” on page 147, next.

JSP Caching
JSP caching lets you cache tag invocation results within the Java engine. Each can be cached
using different cache criteria. For example, suppose you have invocations to view stock quotes,
weather information, and so on. The stock quote result can be cached for 10 minutes, the
weather report result for 30 minutes, and so on. JSP caching is described in the following topics:

■ “The appserv-tags.jar File” on page 147
■ “Caching Scope” on page 148
■ “The cache Tag” on page 149
■ “The flush Tag” on page 150

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 141.

The appserv-tags.jar File
JSP caching is implemented by a tag library packaged into the
as-install/lib/appserv-tags.jar file, which you can copy into the WEB-INF/lib directory of
your web application. The appserv-tags.tld tag library descriptor file is in the META-INF
directory of this JAR file.

Note – Web applications that use this tag library without bundling it are not portable.

To allow all web applications to share this tag library, change the following elements in the
domain.xml file. Change this:

Using JavaServer Pages

Chapter 8 • Developing Web and SIP Applications 147

http://java.sun.com/products/jsp/jstl/index.jsp

<jvm-options>

-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar

</jvm-options>

to this:

<jvm-options>

-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar,appserv-tags.jar

</jvm-options>

and this:

<jvm-options>

-Dcom.sun.enterprise.taglisteners=jsf-impl.jar

</jvm-options>

to this:

<jvm-options>

-Dcom.sun.enterprise.taglisteners=jsf-impl.jar,appserv-tags.jar

</jvm-options>

For more information about the domain.xml file, see the Sun GlassFish Communications
Server 2.0 Administration Reference.

Refer to these tags in JSP files as follows:

<%@ taglib prefix="prefix" uri="Sun ONE Application Server Tags" %>

Subsequently, the cache tags are available as <prefix:cache> and <prefix:flush>. For example,
if your prefix is mypfx, the cache tags are available as <mypfx:cache> and <mypfx:flush>.

Caching Scope
JSP caching is available in three different scopes: request, session, and application. The
default is application. To use a cache in request scope, a web application must specify the
com.sun.appserv.web.taglibs.cache.CacheRequestListener in its web.xml deployment
descriptor, as follows:

<listener>

<listener-class>

com.sun.appserv.web.taglibs.cache.CacheRequestListener

</listener-class>

</listener>

Likewise, for a web application to utilize a cache in session scope, it must specify the
com.sun.appserv.web.taglibs.cache.CacheSessionListener in its web.xml deployment
descriptor, as follows:

Using JavaServer Pages

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009148

http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0194

<listener>

<listener-class>

com.sun.appserv.web.taglibs.cache.CacheSessionListener

</listener-class>

</listener>

To utilize a cache in application scope, a web application need not specify any listener. The
com.sun.appserv.web.taglibs.cache.CacheContextListener is already specified in the
appserv-tags.tld file.

The cache Tag
The cache tag caches the body between the beginning and ending tags according to the
attributes specified. The first time the tag is encountered, the body content is executed and
cached. Each subsequent time it is run, the cached content is checked to see if it needs to be
refreshed and if so, it is executed again, and the cached data is refreshed. Otherwise, the cached
data is served.

Attributes of cache

The following table describes attributes for the cache tag.

TABLE 8–2 The cacheAttributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry. The
cache key is suffixed to the servlet path to generate a key to access the
cached entry. If no key is specified, a number is generated according to the
position of the tag in the page.

timeout 60s (optional) The time in seconds after which the body of the tag is executed
and the cache is refreshed. By default, this value is interpreted in seconds.
To specify a different unit of time, add a suffix to the timeout value as
follows: s for seconds, m for minutes, h for hours, d for days. For example,
2h specifies two hours.

nocache false (optional) If set to true, the body content is executed and served as if there
were no cache tag. This offers a way to programmatically decide whether
the cached response is sent or whether the body has to be executed, though
the response is not cached.

refresh false (optional) If set to true, the body content is executed and the response is
cached again. This lets you programmatically refresh the cache
immediately regardless of the timeout setting.

scope application (optional) The scope of the cache. Can be request, session, or
application. See “Caching Scope” on page 148.

Using JavaServer Pages

Chapter 8 • Developing Web and SIP Applications 149

Example of cache

The following example represents a cached JSP file:

<%@ taglib prefix="mypfx" uri="Sun ONE Application Server Tags" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<mypfx:cache key="${sessionScope.loginId}"
nocache="${param.nocache}"
refresh="${param.refresh}"
timeout="10m">

<c:choose>

<c:when test="${param.page == ’frontPage’}">
<%-- get headlines from database --%>

</c:when>

<c:otherwise>

...

</c:otherwise>

</c:choose>

</mypfx:cache>

<mypfx:cache timeout="1h">
<h2> Local News </h2>

<%-- get the headline news and cache them --%>

</mypfx:cache>

The flush Tag
Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no
key is specified, the entire cache is flushed.

Attributes of flush

The following table describes attributes for the flush tag.

TABLE 8–3 The flushAttributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry. The
cache key is suffixed to the servlet path to generate a key to access the
cached entry. If no key is specified, a number is generated according to the
position of the tag in the page.

scope application (optional) The scope of the cache. Can be request, session, or
application. See “Caching Scope” on page 148.

Using JavaServer Pages

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009150

Examples of flush

To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<c:if test="${empty sessionScope.clearCache}">
<mypfx:flush />

</c:if>

Options for Compiling JSP Files
Communications Server provides the following ways of compiling JSP 2.1 compliant source
files into servlets:
■ JSP files are automatically compiled at runtime.
■ The asadmin deploy command has a precompilejsp option. For details, see the Sun

GlassFish Communications Server 2.0 Reference Manual.
■ The sun-appserv-jspc Ant task allows you to precompile JSP files; see “The

sun-appserv-jspc Task” on page 58.
■ The jspc command line tool allows you to precompile JSP files at the command line. For

details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Creating and Managing Sessions
This chapter describes how to create and manage HTTP or SIP sessions that allows users and
transaction information to persist between interactions.

This chapter contains the following sections:
■ “Configuring Sessions” on page 151
■ “Session Managers” on page 154

Configuring Sessions
This section covers the following topics:
■ “HTTP Sessions, Cookies, and URL Rewriting” on page 152
■ “Coordinating Session Access” on page 152
■ “SIP Session Limitation” on page 152
■ “Distributed Sessions and Persistence” on page 153

Creating and Managing Sessions

Chapter 8 • Developing Web and SIP Applications 151

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

HTTP Sessions, Cookies, and URL Rewriting
To configure whether and how HTTP sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elements in the sun-web.xml file for an
individual web application. For more about the properties you can configure, see
“session-properties” in Sun GlassFish Communications Server 2.0 Application Deployment
Guide and “cookie-properties” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

For information about configuring default session properties for the entire web container, see
Chapter 8, “SIP, Web, and EJB Containers,” in Sun GlassFish Communications Server 2.0
Administration Guide and the Sun GlassFish Communications Server 2.0 High Availability
Administration Guide.

Coordinating Session Access
Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways.

This is especially likely to occur in SIP applications where multiple SIP sessions share a SIP
application session, and in converged applications where requests for the same session occur
through HTTP and SIP protocols. It is likely to occur in pure web applications that use HTML
frames where multiple servlets are executing simultaneously on behalf of the same client. A
good solution is to ensure that one of the servlets modifies the session and the others have
read-only access.

SIP Session Limitation
The following JSR 289 API methods are not fully supported in a clustered environment:

javax.servlet.sip.SipSessionsUtil.getApplicationSessionById(String applicationSessionId)

javax.servlet.sip.SipSessionsUtil.getApplicationSessionByKey(String applicationSessionKey,

boolean create)

If the session is not located in the server instance where the method is executed, these methods
return a null result.

If a SIP application session contains application data that must be accessed from anywhere in
the cluster, the application should store that data in a database, using the SIP application ID as
the key. This makes the data easily accessible from JMS handlers, EJB components, or similar
entities whose distribution in the cluster is not correlated with the distribution of SIP
application sessions.

Creating and Managing Sessions

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009152

http://docs.sun.com/doc/821-0195/beaxr?a=view
http://docs.sun.com/doc/821-0195/beaxr?a=view
http://docs.sun.com/doc/821-0195/beash?a=view
http://docs.sun.com/doc/821-0195/beash?a=view
http://docs.sun.com/doc/821-0200/ablms?a=view
http://docs.sun.com/doc/821-0200/ablms?a=view
http://docs.sun.com/doc/821-0196
http://docs.sun.com/doc/821-0196

Distributed Sessions and Persistence

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

A distributed HTTP or SIP session can run in multiple Communications Server instances,
provided the following criteria are met:

■ Each server instance has the same distributable web, SIP, or converged web/SIP application
deployed to it. The web-app element of the web.xml or sip.xmldeployment descriptor file
must have the distributable subelement specified. For a converged web/SIP application to
be treated as distributable, both its web.xml and sip.xml deployment descriptor files must
have the distributable subelement specified.

■ The web, SIP, or converged web/SIP application uses high-availability session persistence. If
a non-distributable web, SIP, or converged web/SIP application is configured to use
high-availability session persistence, a warning is written to the server log, and the session
persistence type reverts to memory. See “The replicated Persistence Type” on page 157.

■ If a converged web/SIP application uses high-availability session persistence for its SIP
sessions, but not its HTTP sessions, or the reverse, a warning is logged, and the persistence
type of both the application's SIP and HTTP sessions reverts to memory.

■ All objects bound into a distributed session must be of the types listed in Table 8–4.
■ The web, SIP, or converged web/SIP application must be deployed using the deploy or

deploydir command with the --availabilityenabled option set to true. See the Sun
GlassFish Communications Server 2.0 Reference Manual.

Note – Contrary to the Servlet 2.5 specification, Communications Server does not throw an
IllegalArgumentException if an object type not supported for failover is bound into a
distributed session.

Keep the distributed session size as small as possible. Session size has a direct impact on overall
system throughput.

In the event of an instance or hardware failure, another server instance can take over a
distributed session, with the following limitations:

■ If a distributable web, SIP, or converged web/SIP application references a Java EE
component or resource, the reference might be lost. See Table 8–4 for a list of the types of
references that HTTPSession or SipApplicationSessionfailover supports.

■ References to open files or network connections are lost.

Creating and Managing Sessions

Chapter 8 • Developing Web and SIP Applications 153

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

■ Session replication occurs asynchronously, so a small number of sessions may be lost on
failure because their state has not propagated to the other instances in the cluster.

For information about how to work around these limitations, see the Sun GlassFish
Communications Server 2.0 Deployment Planning Guide.

In the following table, No indicates that failover for the object type might not work in all cases
and that no failover support is provided. However, failover might work in some cases for that
object type. For example, failover might work because the class implementing that type is
serializable.

For more information about the InitialContext, see “Accessing the Naming Context” on
page 277. For more information about transaction recovery, see Chapter 16, “Using the
Transaction Service.” For more information about Administered Objects, see “Creating
Physical Destinations” on page 289.

TABLE 8–4 Object Types Supported for Java EE Web or SIP Application Session State Failover

Java Object Type Failover Support

Colocated or distributed stateless session, stateful
session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any
prepared global transactions are lost and might not be
correctly rolled back or committed.

JDBC DataSource No

Java Message Service (JMS) ConnectionFactory,
Destination

No

JavaMail Session No

Connection Factory No

Administered Object No

Web service reference No

Serializable Java types Yes

Extended persistence context No

Session Managers
A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

Creating and Managing Sessions

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009154

http://docs.sun.com/doc/821-0190
http://docs.sun.com/doc/821-0190

Communications Server offers these session management options, determined by the
session-manager element’s persistence-type attribute in the sun-web.xml or
sun-sip.xmlfile:

■ “The memory Persistence Type” on page 155, the default
■ “The file Persistence Type” on page 156, which uses a file to store session data, supported

only for pure web applications
■ “The replicated Persistence Type” on page 157, which uses other servers in the cluster for

session persistence

Note – If the session manager configuration contains an error, the error is written to the server
log and the default (memory) configuration is used.

For more information, see “session-manager” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

The memoryPersistence Type
This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, for web applications only, you can
configure it so that the session state in memory is written to the file system prior to server
shutdown.

To specify the memory persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Sun GlassFish Communications
Server 2.0 Reference Manual.

To specify the memory persistence type for a specific web or SIP application, edit the
sun-web.xml or sun-sip.xml file as in the following example. The persistence-type property
is optional, but must be set to memory if included. This overrides the web container availability
settings for the web application.

<sun-web-app>

...

<session-config>

<session-manager persistence-type="memory" />

<manager-properties>

<property name="sessionFilename" value="sessionstate" />

</manager-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

Creating and Managing Sessions

Chapter 8 • Developing Web and SIP Applications 155

http://docs.sun.com/doc/821-0195/beaxq?a=view
http://docs.sun.com/doc/821-0195/beaxq?a=view
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

The only manager property that the memory persistence type supports is sessionFilename, which
is listed under “manager-properties” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide. This property does not apply to SIP applications.

For more information about the sun-web.xml or sun-sip.xml file, see Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

The filePersistence Type
This persistence type provides session persistence to the local file system, and allows a single
server domain to recover the session state after a failure and restart. The session state is
persisted in the background, and the rate at which this occurs is configurable. The store also
provides passivation and activation of the session state to help control the amount of memory
used. This option is not supported in a production environment. However, it is useful for a
development system with a single server instance. This persistence type does not apply to SIP
applications.

Note – Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 95.

To specify the file persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Sun GlassFish Communications
Server 2.0 Reference Manual.

To specify the file persistence type for a specific web application, edit the sun-web.xml file as
in the following example. Note that persistence-type must be set to file. This overrides the
web container availability settings for the web application.

<sun-web-app>

...

<session-config>

<session-manager persistence-type="file">
<store-properties>

<property name="directory" value="sessiondir" />

</store-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

The file persistence type supports all the manager properties listed under
“manager-properties” in Sun GlassFish Communications Server 2.0 Application Deployment
Guide except sessionFilename, and supports the directory store property listed under
“store-properties” in Sun GlassFish Communications Server 2.0 Application Deployment Guide.

Creating and Managing Sessions

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009156

http://docs.sun.com/doc/821-0195/beaum?a=view
http://docs.sun.com/doc/821-0195/beaum?a=view
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0195/beaum?a=view
http://docs.sun.com/doc/821-0195/beaum?a=view
http://docs.sun.com/doc/821-0195/beaxu?a=view

For more information about the sun-web.xml file, see Sun GlassFish Communications Server 2.0
Application Deployment Guide.

The replicatedPersistence Type
The replicated persistence type uses other servers in the cluster for session persistence.
Clustered server instances replicate session state in a predictive manner so that the state is saved
where it is most likely to be needed. Each backup instance stores the replicated data in memory.
This allows sessions to be distributed. For details, see “Distributed Sessions and Persistence” on
page 153. In addition, you can configure the frequency and scope of session persistence. The
other servers are also used as the passivation and activation store. Use this option in a
production environment that requires session persistence.

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

To use the replicated persistence type, you must first enable availability. Select the Availability
Service component under the relevant configuration in the Admin Console. Check the
Availability Service box. To enable availability for the web container, select the Web Container
Availability tab, then check the Availability Service box. To enable availability for the SIP
container, select the SIP Container Availability tab, then check the Availability Service box. All
instances in a Communications Server cluster should have the same availability settings to
ensure consistent behavior. For details, see the Sun GlassFish Communications Server 2.0 High
Availability Administration Guide.

To change settings such as persistence frequency and persistence scope for the entire web
container, use the Persistence Frequency and Persistence Scope drop-down lists on the Web
Container Availability tab in the Admin Console, or use the asadmin set command. For
example:

asadmin set

server-config.availability-service.web-container-availability.persistence-frequency=time-based

For more information, see the description of the asadmin set command in the Sun GlassFish
Communications Server 2.0 Reference Manual.

To specify the replicated persistence type for a specific web application, edit the sun-web.xml
file as in the following example. Note that persistence-type must be set to replicated. This
overrides the web container availability settings for the web application.

<sun-web-app>

...

<session-config>

Creating and Managing Sessions

Chapter 8 • Developing Web and SIP Applications 157

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0196
http://docs.sun.com/doc/821-0196
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

<session-manager persistence-type="replicated">
<manager-properties>

<property name="persistenceFrequency" value="web-method" />

</manager-properties>

<store-properties>

<property name="persistenceScope" value="session" />

</store-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

To specify the replicated persistence type for a specific SIP application, edit the sun-sip.xml
file as in the following example. Note that persistence-type must be set to replicated and
that persistenceFrequency and persistenceScope are not used.

<sun-sip-app>

...

<session-config>

<session-manager persistence-type="replicated"/>
...

</session-config>

...

</sun-sip-app>

For a converged web/SIP application, you must edit both the sun-web.xml file and the
sun-sip.xml file. A converged web/SIP application has two session managers. The HTTP
session manager is configured by sun-web.xml. The SIP session manager is configured by
sun-sip.xml.

For web container session persistence only, the replicated persistence type supports all the
manager properties listed under “manager-properties” in Sun GlassFish Communications
Server 2.0 Application Deployment Guide except sessionFilename, and supports the
persistenceScope store property listed under “store-properties” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

For more information about the sun-web.xml or sun-sip.xml file, see Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

Creating and Managing Sessions

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009158

http://docs.sun.com/doc/821-0195/beaum?a=view
http://docs.sun.com/doc/821-0195/beaum?a=view
http://docs.sun.com/doc/821-0195/beaxu?a=view
http://docs.sun.com/doc/821-0195/beaxu?a=view
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

Advanced Web Application Features
This section includes summaries of the following topics:

■ “Internationalization Issues” on page 159
■ “Virtual Servers” on page 160
■ “Default Web Modules” on page 161
■ “Class Loader Delegation” on page 162
■ “Using the default-web.xml File” on page 162
■ “Configuring Logging and Monitoring in the Web Container” on page 163
■ “Configuring Idempotent URL Requests” on page 163
■ “Header Management” on page 164
■ “Configuring Valves and Catalina Listeners” on page 164
■ “Alternate Document Roots” on page 165
■ “Redirecting URLs” on page 167
■ “Enabling Comet Support” on page 167
■ “Using a context.xml File” on page 167
■ “Enabling WebDav” on page 168
■ “Using mod_jk” on page 169
■ “Advanced JVM Options for SIP Requests” on page 171

Internationalization Issues
This section covers internationalization as it applies to the following:

■ “The Server's Default Locale” on page 159
■ “Servlet Character Encoding” on page 159

The Server's Default Locale
To set the default locale of the entire Communications Server, which determines the locale of
the Admin Console, the logs, and so on, use the Admin Console. In the developer profile, select
the Communications Server component, the Advanced tab, and the Domain Attributes tab. In
the cluster profile, select the domain component. Then type a value in the Locale field. For
details, click the Help button in the Admin Console.

Servlet Character Encoding
This section explains how the Communications Server determines the character encoding for
the servlet request and the servlet response. For encodings you can use, see
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html.

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 159

http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Servlet Request

When processing a servlet request, the server uses the following order of precedence, first to
last, to determine the request character encoding:

■ The getCharacterEncoding() method
■ A hidden field in the form, specified by the form-hint-field attribute of the

parameter-encoding element in the sun-web.xml file
■ The default-charset attribute of the parameter-encoding element in the sun-web.xml

file
■ The default, which is ISO-8859-1

For details about the parameter-encoding element, see “parameter-encoding” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

Servlet Response

When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

■ The setCharacterEncoding() or setContentType() method
■ The setLocale() method
■ The default, which is ISO-8859-1

Virtual Servers
A virtual server, also called a virtual host, is a virtual web server that serves content targeted for
a specific URL. Multiple virtual servers can serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service directs incoming web requests to
different virtual servers based on the URL.

When you first install the Communications Server, a default virtual server is created. You can
also assign a default virtual server to each new HTTP listener you create.

Web applications and Java EE applications containing web components (web modules) can be
assigned to virtual servers during deployment. A web module can be assigned to more than one
virtual server, and a virtual server can have more than one web module assigned to it.

For more information about virtual servers, see “virtual-server” in Sun GlassFish
Communications Server 2.0 Administration Reference.

Advanced Web Application Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009160

http://docs.sun.com/doc/821-0195/beavn?a=view
http://docs.sun.com/doc/821-0195/beavn?a=view
http://docs.sun.com/doc/821-0194/abhfg?a=view
http://docs.sun.com/doc/821-0194/abhfg?a=view

▼ To Assign a Default Virtual Server

In the Admin Console, open the HTTP Service component under the relevant configuration.

Open the HTTP Listeners component under the HTTP Service component.

Select or create a new HTTP listener.

Select from the Default Virtual Server drop-down list.

For more information, see “Default Web Modules” on page 161.

For details, click the Help button in the Admin Console from the HTTP Listeners page.

▼ To Assign Virtual Servers

Deploy the application or web module and assign the desired virtual servers to it.

For more information, see Sun GlassFish Communications Server 2.0 Application Deployment
Guide.

In the Admin Console, open the HTTP Service component under the relevant configuration.

Open the Virtual Servers component under the HTTP Service component.

Select the virtual server to which you want to assign a default web module.

Select the application or web module from the Default Web Module drop-down list.

For more information, see “Default Web Modules” on page 161.

For details, click the Help button in the Admin Console from the Virtual Servers page.

Default Web Modules
A default web module can be assigned to the default virtual server and to each new virtual
server. For details, see “Virtual Servers” on page 160. To access the default web module for a
virtual server, point the browser to the URL for the virtual server, but do not supply a context
root. For example:

http://myvserver:3184/

1

2

3

4

See Also

1

2

3

4

5

See Also

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 161

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

A virtual server with no default web module assigned serves HTML or JavaServer PagesTM

(JSPTM) content from its document root, which is usually domain-dir/docroot. To access this
HTML or JSP content, point your browser to the URL for the virtual server, do not supply a
context root, but specify the target file.

For example:

http://myvserver:3184/hellothere.jsp

Class Loader Delegation
The Servlet specification recommends that the Web class loader look in the local class loader
before delegating to its parent. To make the Web class loader follow the delegation model in the
Servlet specification, set delegate="false" in the class-loader element of the sun-web.xml or
sun-sip.xml file. It’s safe to do this only for a web or SIP module that does not interact with any
other modules.

The default value is delegate="true", which causes the Web class loader to delegate in the same
manner as the other class loaders. Use delegate="true" for a web application that accesses EJB
components or that acts as a web service client or endpoint. For details about sun-web.xmlor
sun-sip.xml , see Sun GlassFish Communications Server 2.0 Application Deployment Guide.

For general information about class loaders, see Chapter 2, “Class Loaders.”

Using the default-web.xml File
You can use the default-web.xml file to define features such as filters and security constraints
that apply to all web applications.

For example, you can disable directory listings for added security. In your domain's
default-web.xml file, search for the definition of the servlet whose servlet-name is equal to
default, and set the value of the init-param named listings to false. Then redeploy your
web application if it has already been deployed.

<init-param>

<param-name>listings</param-name>

<param-value>false</param-value>

</init-param>

The mime-mapping elements in default-web.xml are global and inherited by all web
applications. You can override these mappings or define your own using mime-mapping
elements in your web application's web.xml file. For more information about mime-mapping
elements, see the Servlet specification.

Advanced Web Application Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009162

http://docs.sun.com/doc/821-0195

You can use the Admin Console to edit the default-web.xml file. For details, click the Help
button in the Admin Console. As an alternative, you can edit the file directly using the following
steps.

▼ To Use the default-web.xml File

Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib
directory.

Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

Restart the server.

Configuring Logging and Monitoring in the Web
Container
For information about configuring logging and monitoring in the web container using the
Admin Console, click the Help button in the Admin Console. In the developer profile, Logging
and Monitor tabs are accessible from the Application Server page. In the Cluster profile, select
Logger Settings under the relevant configuration, or select the Stand-Alone Instances
component, select the instance from the table, and select the Monitor tab.

Configuring Idempotent URL Requests
An idempotent request is one that does not cause any change or inconsistency in an application
when retried. To enhance the availability of your applications deployed on an Communications
Server cluster, configure the load balancer to retry failed idempotent HTTP requests on all the
Communications Server instances in a cluster. This option can be used for read-only requests,
for example, to retry a search request.

This section describes the following topics:

■ “Specifying an Idempotent URL” on page 163
■ “Characteristics of an Idempotent URL” on page 164

Specifying an Idempotent URL
To configure idempotent URL response, specify the URLs that can be safely retried in
idempotent-url-pattern elements in the sun-web.xml file. For example:

<idempotent-url-pattern url-pattern="sun_java/*" no-of-retries="10"/>

For details, see “idempotent-url-pattern” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

1

2

3

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 163

http://docs.sun.com/doc/821-0195/beatm?a=view
http://docs.sun.com/doc/821-0195/beatm?a=view

If none of the server instances can successfully serve the request, an error page is returned.

Characteristics of an Idempotent URL
Since all requests for a given session are sent to the same application server instance, and if that
Communications Server instance is unreachable, the load balancer returns an error message.
Normally, the request is not retried on another Communications Server instance. However, if
the URL pattern matches that specified in the sun-web.xml file, the request is implicitly retried
on another Communications Server instance in the cluster.

In HTTP, some methods (such as GET) are idempotent, while other methods (such as POST)
are not. In effect, retrying an idempotent URL should not cause values to change on the server
or in the database. The only difference should be a change in the response received by the user.

Examples of idempotent requests include search engine queries and database queries. The
underlying principle is that the retry does not cause an update or modification of data.

A search engine, for example, sends HTTP requests with the same URL pattern to the load
balancer. Specifying the URL pattern of the search request to the load balancer ensures that
HTTP requests with the specified URL pattern are implicitly retried on another
Communications Server instance.

For example, if the request URL sent to the Communications Server is of the type
/search/something.html, then the URL pattern can be specified as /search/*.

Examples of non-idempotent requests include banking transactions and online shopping. If
you retry such requests, money might be transferred twice from your account.

Header Management
In all Editions of the Communications Server, the Enumeration from request.getHeaders()

contains multiple elements (one element per request header) instead of a single, aggregated
value.

The header names used in HttpServletResponse.addXXXHeader() and
HttpServletResponse.setXXXHeader() are returned as they were created.

Configuring Valves and Catalina Listeners
You can configure custom valves and Catalina listeners for web modules or virtual servers by
defining properties. In the domain.xml file, valve and listener properties look like this:

<web-module ...>

<property name="valve_1" value="org.glassfish.extension.Valve"/>
<property name="listener_1" value="org.glassfish.extension.MyLifecycleListener"/>

</web-module>

Advanced Web Application Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009164

You can define these properties in one of the following ways, then restart the server:
■ You can define properties using the asadmin set command. For example:

asadmin set domain1.applications.web-module.MyWebMod.property.valve_1="org.glassfish.extension.Valve"

asadmin set config1.http-service.virtual-server.MyVS.property.valve_1="org.glassfish.extension.Valve"

■ You can define virtual server properties using the Admin Console. Select the HTTP Service
component under the relevant configuration, select Virtual Servers, and select the desired
virtual server. Select Add Property, enter the property name and value, check the enable box,
and select Save. For details, click the Help button in the Admin Console.

Alternate Document Roots
An alternate document root (docroot) allows a web application to serve requests for certain
resources from outside its own docroot, based on whether those requests match one (or more)
of the URI patterns of the web application's alternate docroots.

To specify an alternate docroot for a web application or a virtual server, use the
alternatedocroot_n property, where n is a positive integer that allows specification of more
than one. This property can be a subelement of a sun-web-app element in the sun-web.xml file
or a virtual-server element in the domain.xml file. For more information about these
elements, see “sun-web-app” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide and “virtual-server” in Sun GlassFish Communications Server 2.0
Administration Reference.

A virtual server's alternate docroots are considered only if a request does not map to any of the
web modules deployed on that virtual server. A web module's alternate docroots are considered
only once a request has been mapped to that web module.

If a request matches an alternate docroot's URI pattern, it is mapped to the alternate docroot by
appending the request URI (minus the web application's context root) to the alternate docroot's
physical location (directory). If a request matches multiple URI patterns, the alternate docroot
is determined according to the following precedence order:
■ Exact match
■ Longest path match
■ Extension match

For example, the following properties specify three docroots. The URI pattern of the first
alternate docroot uses an exact match, whereas the URI patterns of the second and third
alternate docroots use extension and longest path prefix matches, respectively.

<property name="alternatedocroot_1" value="from=/my.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_2" value="from=*.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_3" value="from=/jpg/* dir=/src/images"/>

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 165

http://docs.sun.com/doc/821-0195/beayb?a=view
http://docs.sun.com/doc/821-0195/beayb?a=view
http://docs.sun.com/doc/821-0194/abhfg?a=view
http://docs.sun.com/doc/821-0194/abhfg?a=view

The value of each alternate docroot has two components: The first component, from, specifies
the alternate docroot's URI pattern, and the second component, dir, specifies the alternate
docroot's physical location (directory).

Suppose the above examples belong to a web application deployed at
http://company22.com/myapp. The first alternate docroot maps any requests with this URL:

http://company22.com/myapp/my.jpg

To this resource:

/svr/images/jpg/my.jpg

The second alternate docroot maps any requests with a *.jpg suffix, such as:

http://company22.com/myapp/*.jpg

To this physical location:

/svr/images/jpg

The third alternate docroot maps any requests whose URI starts with /myapp/jpg/, such as:

http://company22.com/myapp/jpg/*

To the same directory as the second alternate docroot.

For example, the second alternate docroot maps this request:

http://company22.com/myapp/abc/def/my.jpg

To:

/srv/images/jpg/abc/def/my.jpg

The third alternate docroot maps:

http://company22.com/myapp/jpg/abc/resource

To:

/srv/images/jpg/abc/resource

If a request does not match any of the target web application's alternate docroots, or if the target
web application does not specify any alternate docroots, the request is served from the web
application's standard docroot, as usual.

Advanced Web Application Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009166

Redirecting URLs
You can specify that a request for an old URL is treated as a request for a new URL. This is called
redirecting a URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where n is a
positive integer that allows specification of more than one. This property is a subelement of a
virtual-server element in the domain.xml file. For more information about this element, see
“virtual-server” in Sun GlassFish Communications Server 2.0 Administration Reference. Each of
these redirect_n properties is inherited by all web applications deployed on the virtual server.

The value of each redirect_n property has two components, which may be specified in any
order:

The first component, from, specifies the prefix of the requested URI to match.

The second component, url-prefix, specifies the new URL prefix to return to the client. The
from prefix is simply replaced by this URL prefix.

For example:

<property name="redirect_1" value="from=/dummy url-prefix=http://etude"/>

Enabling Comet Support
To enable Comet support for an HTTP listener and all its associated web applications, set the
cometSupport property to true. For more information, see “http-listener” in Sun GlassFish
Communications Server 2.0 Administration Reference.

If your servlet or JSP page uses Comet technology, make sure it is initialized when the
Communications Server starts up by adding the load-on-startup element to your web.xml
file. For example:

<servlet>

<servlet-name>CheckIn</servlet-name>

<servlet-class>CheckInServlet</servlet-class>

<load-on-startup>0</load-on-startup>

</servlet>

Using a context.xml File
Use the contextXmlDefault property to specify the location, relative to domain-dir, of the
context.xml file for a virtual server. For more information about virtual servers, see “Virtual
Servers” on page 160. For more information about the context.xml file, see The Context
Container (http://tomcat.apache.org/tomcat-5.5-doc/config/context.html).

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 167

http://docs.sun.com/doc/821-0194/abhfg?a=view
http://docs.sun.com/doc/821-0194/abhco?a=view
http://docs.sun.com/doc/821-0194/abhco?a=view
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html

Enabling WebDav
To enable WebDav in the Communications Server, you edit the web.xml and sun-web.xml files
as follows.

First, enable the WebDav servlet in your web.xml file:

<servlet>

<servlet-name>webdav</servlet-name>

<servlet-class>org.apache.catalina.servlets.WebdavServlet</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

<init-param>

<param-name>readonly</param-name>

<param-value>false</param-value>

</init-param>

</servlet>

Then define the servlet mapping associated with your WebDav servlet in your web.xml file:

<servlet-mapping>

<servlet-name>webdav</servlet-name>

<url-pattern>/webdav/*</url-pattern>

</servlet-mapping>

To protect the WebDav servlet so other users can't modify it, add a security constraint in your
web.xml file:

<security-constraint>

<web-resource-collection>

<web-resource-name>Login Resources</web-resource-name>

<url-pattern>/webdav/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>Admin</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>default</realm-name>

Advanced Web Application Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009168

</login-config>

<security-role>

<role-name>Admin</role-name>

</security-role>

</security-constraint>

Then define a security role mapping in your sun-web.xml file:

<security-role-mapping>

<role-name>Admin</role-name>

<group-name>Admin</group-name>

</security-role-mapping>

If you are using the file realm, create a user and password. For example:

asadmin create-file-user --user admin --host localhost --port 4848 --terse=true

--groups Admin --authrealmname default admin

You can now use any WebDav client by connecting to the WebDav servlet URL, which has this
format:

http://host:port/context-root/webdav/file

For example:

http://localhost:80/glassfish-webdav/webdav/index.html

You can add the WebDav servlet to your default-web.xml file to enable it for all applications,
but you can't set up a security role mapping to protect it.

Using mod_jk
To set up mod_jk, follow these steps:

1. Obtain the following software:
■ Apache 2.0.x
■ Apache Tomcat Connectors (http://www.apache.org/dist/tomcat/

tomcat-connectors/jk/binaries/)
■ Apache Tomcat 5.5.16, needed for just one JAR file (http://archive.apache.org/

dist/tomcat/tomcat-5/v5.5.16/bin/apache-tomcat-5.5.16.tar.gz)
■ Apache Commons Logging 1.0.4 (http://archive.apache.org/

dist/jakarta/commons/logging/binaries/commons-logging-1.0.4.tar.gz)
■ Apache Commons Modeler 1.1 (http://archive.apache.org/

dist/jakarta/commons/modeler/binaries/modeler-1.1.tar.gz)
2. Install mod_jk as described at http://tomcat.apache.org/connectors-doc/

webserver_howto/apache.html.

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 169

http://www.apache.org/dist/tomcat/tomcat-connectors/jk/binaries/
http://www.apache.org/dist/tomcat/tomcat-connectors/jk/binaries/
http://archive.apache.org/dist/tomcat/tomcat-5/v5.5.16/bin/apache-tomcat-5.5.16.tar.gz
http://archive.apache.org/dist/tomcat/tomcat-5/v5.5.16/bin/apache-tomcat-5.5.16.tar.gz
http://archive.apache.org/dist/jakarta/commons/logging/binaries/commons-logging-1.0.4.tar.gz
http://archive.apache.org/dist/jakarta/commons/logging/binaries/commons-logging-1.0.4.tar.gz
http://archive.apache.org/dist/jakarta/commons/modeler/binaries/modeler-1.1.tar.gz
http://archive.apache.org/dist/jakarta/commons/modeler/binaries/modeler-1.1.tar.gz
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html

3. Copy the following Tomcat and Jakarta Commons files to as-install/lib:
■ tomcat-ajp.jar

■ commons-logging.jar

■ commons-modeler.jar

4. Create and configure the following files:
■ /etc/httpd/conf/httpd.conf

■ /etc/httpd/conf/worker.properties or
domain-dir/config/glassfish-jk.properties (to use non-default values of attributes
described at http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html)

Examples of these files are shown after these steps. If you use both worker.properties and
glassfish-jk.properties files, the file referenced by httpd.conf, or referenced by
httpd.conf first, takes precedence.

5. Start httpd.
6. Enable mod_jk using the following command:

asadmin create-jvm-options -Dcom.sun.enterprise.web.connector.enableJK=8009

7. If you are using the glassfish-jk.properties file and not referencing it in httpd.conf,
point to it using the following command:

asadmin create-jvm-options

-Dcom.sun.enterprise.web.connector.enableJK.propertyFile=domain-dir/config/glassfish-jk.properties

8. Restart the Communications Server.

Here is an example httpd.conf file:

LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so

JkWorkersFile /etc/httpd/conf/worker.properties

Where to put jk logs

JkLogFile /var/log/httpd/mod_jk.log

Set the jk log level [debug/error/info]

JkLogLevel debug

Select the log format

JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkOptions indicate to send SSL KEY SIZE,

JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat set the request format

JkRequestLogFormat "%w %V %T"
Send all jsp requests to GlassFish

JkMount /*.jsp worker1

Send all glassfish-test requests to GlassFish

JkMount /glassfish-test/* worker1

Here is an example worker.properties or glassfish-jk.properties file:

Advanced Web Application Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009170

http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html

Define 1 real worker using ajp13

worker.list=worker1

Set properties for worker1 (ajp13)

worker.worker1.type=ajp13

worker.worker1.host=localhost.localdomain

worker.worker1.port=8009

worker.worker1.lbfactor=50

worker.worker1.cachesize=10

worker.worker1.cache_timeout=600

worker.worker1.socket_keepalive=1

worker.worker1.socket_timeout=300

Advanced JVM Options for SIP Requests
You can change the DNS cache size and the number of SIP timer queues, which may improve
the performance of SIP request processing.

The DNS cache ensures that consecutive lookup requests of a certain TEL URI initiated by an
application do not trigger more than one external DNS/ENUM request. To configure the DNS
cache, set the maximum number of cache entries using the asadmin create-jvm-options
command. For example:

asadmin create-jvm-options --user adminuser -Ddns.cache.size=10000

The default value is 50000. A value of -1 is interpreted as setting no limit on the number of
entries.

The number of SIP timer queues is configurable. When the SIP request load is high, adding
more SIP timer queues may improve performance. To set the number of SIP timer queues, use
the asadmin create-jvm-options command. For example:

asadmin create-jvm-options --user adminuser -Dorg.jvnet.glassfish.comms.sip.timer.queues=5

The default value is 1. Allowed values are integers between 1 and 10 inclusive.

Advanced Web Application Features

Chapter 8 • Developing Web and SIP Applications 171

172

Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeansTM (EJBTM) technology is supported in the Sun
GlassFish Communications Server. This chapter addresses the following topics:
■ “Summary of EJB 3.0 Changes” on page 173
■ “Value Added Features” on page 174
■ “EJB Timer Service” on page 178
■ “Using Session Beans” on page 179
■ “Using Read-Only Beans” on page 186
■ “Using Message-Driven Beans” on page 189
■ “Handling Transactions With Enterprise Beans” on page 192

For general information about enterprise beans, see “Part Three: Enterprise Beans” in the Java
EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Summary of EJB 3.0 Changes
The Communications Server supports and is compliant with the Sun Microsystems Enterprise
JavaBeans (EJB) architecture as defined by the Enterprise JavaBeans Specification, v3.0, also
known as JSR 220 (http://jcp.org/en/jsr/detail?id=220).

Note – The Communications Server is backward compatible with 1.1, 2.0, and 2.1 enterprise
beans. However, to take advantage of version 3.0 features, you should develop new beans as 3.0
enterprise beans.

The main changes in the Enterprise JavaBeans Specification, v3.0 that impact enterprise beans
in the Communications Server environment are as follows:

■ Definition of the Java language metadata annotations that can be used to annotate EJB
applications. These metadata annotations are targeted at simplifying the developer's task, at
reducing the number of program classes and interfaces the developer is required to

9C H A P T E R 9

173

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://jcp.org/en/jsr/detail?id=220

implement, at encapsulation of environmental dependencies and JNDI access, and at
eliminating the need for the developer to provide an EJB deployment descriptor.

■ Elimination of the requirement for home or EJB component interfaces for session beans.
The required business interface for a session bean can be a plain Java interface rather than an
EJBObject, EJBLocalObject, or java.rmi.Remote interface.

■ Elimination of all required interfaces for persistent entities. Specification of Java language
metadata annotations and XML deployment descriptor elements for the object/relational
mapping of persistent entities. For details about Java Persistence in the Communications
Server, see Chapter 7, “Using the Java Persistence API.”
Container-managed persistence (CMP) is still supported for EJB 2.1 beans, for backward
compatibility. For details, see Chapter 10, “Using Container-Managed Persistence.”

Value Added Features
The Communications Server provides a number of value additions that relate to EJB
development. These capabilities are discussed in the following sections. References to more
in-depth material are included.
■ “Read-Only Beans” on page 174
■ “The pass-by-reference Element” on page 175
■ “Pooling and Caching” on page 175
■ “Bean-Level Container-Managed Transaction Timeouts” on page 176
■ “Priority Based Scheduling of Remote Bean Invocations” on page 177
■ “Immediate Flushing” on page 177

Read-Only Beans
Another feature that the Communications Server provides is the read-only bean, an EJB 2.1
entity bean that is never modified by an EJB client. Read-only beans avoid database updates
completely.

Note – Read-only beans are specific to the Communications Server and are not part of the
Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a
non-portable application.

To make an EJB 3.0 entity read-only, use @Column annotations to mark its columns
insertable=false and updatable=false.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

Value Added Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009174

The Communications Server provides a number of ways by which a read-only bean’s state can
be refreshed. By setting the refresh-period-in-seconds element in the sun-ejb-jar.xml file
and the trans-attribute element (or @TransactionAttribute annotation) in the
ejb-jar.xml file, it is easy to configure a read-only bean that is one of the following:

■ Always refreshed
■ Periodically refreshed
■ Never refreshed
■ Programmatically refreshed

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 186.

The pass-by-reference Element
The pass-by-reference element in the sun-ejb-jar.xml file allows you to specify the
parameter passing semantics for colocated remote EJB invocations. This is an opportunity to
improve performance. However, use of this feature results in non-portable applications. See
“pass-by-reference” in Sun GlassFish Communications Server 2.0 Application Deployment
Guide.

Pooling and Caching
The EJB container of the Communications Server pools anonymous instances (message-driven
beans, stateless session beans, and entity beans) to reduce the overhead of creating and
destroying objects. The EJB container maintains the free pool for each bean that is deployed.
Bean instances in the free pool have no identity (that is, no primary key associated) and are used
to serve method calls. The free beans are also used to serve all methods for stateless session
beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after ejbCreate
and the business methods run. The size and behavior of each pool is controlled using
pool-related properties in the EJB container or the sun-ejb-jar.xml file.

In addition, the Communications Server supports a number of tunable parameters that can
control the number of “stateful” instances (stateful session beans and entity beans) cached as
well as the duration they are cached. Multiple bean instances that refer to the same database row
in a table can be cached. The EJB container maintains a cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache,
usually when cache overflows. These evicted bean instances return to the free bean pool. The
size and behavior of each cache can be controlled using the cache-related properties in the EJB
container or the sun-ejb-jar.xml file.

Value Added Features

Chapter 9 • Using Enterprise JavaBeans Technology 175

http://docs.sun.com/doc/821-0195/beavo?a=view
http://docs.sun.com/doc/821-0195/beavo?a=view

Pooling and caching parameters for the sun-ejb-jar.xml file are described in “bean-cache” in
Sun GlassFish Communications Server 2.0 Application Deployment Guide.

Pooling Parameters
One of the most important parameters of Communications Server pooling is
steady-pool-size. When steady-pool-size is set to greater than 0, the container not only
pre-populates the bean pool with the specified number of beans, but also attempts to ensure that
this number of beans is always available in the free pool. This ensures that there are enough
beans in the ready to serve state to process user requests.

This parameter does not necessarily guarantee that no more than steady-pool-size instances
exist at a given time. It only governs the number of instances that are pooled over a long period
of time. For example, suppose an idle stateless session container has a fully-populated pool with
a steady-pool-size of 10. If 20 concurrent requests arrive for the EJB component, the
container creates 10 additional instances to satisfy the burst of requests. The advantage of this is
that it prevents the container from blocking any of the incoming requests. However, if the
activity dies down to 10 or fewer concurrent requests, the additional 10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify the
amount of time a bean instance can be idle in the pool. When pool-idle-timeout-in-seconds

is set to greater than 0, the container removes or destroys any bean instance that is idle for this
specified duration.

Caching Parameters
Communications Server provides a way that completely avoids caching of entity beans, using
commit option C. Commit option C is particularly useful if beans are accessed in large number
but very rarely reused. For additional information, refer to “Commit Options” on page 193.

The Communications Server caches can be either bounded or unbounded. Bounded caches
have limits on the number of beans that they can hold beyond which beans are passivated. For
stateful session beans, there are three ways (LRU, NRU and FIFO) of picking victim beans when
cache overflow occurs. Caches can also passivate beans that are idle (not accessed for a specified
duration).

Bean-Level Container-Managed Transaction Timeouts
The default transaction timeout for the domain is specified using the Transaction Timeout
setting of the Transaction Service. A transaction started by the container must commit (or
rollback) within this time, regardless of whether the transaction is suspended (and resumed), or
the transaction is marked for rollback.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds
element in sun-ejb-jar.xml. The default value, 0, specifies that the default Transaction Service

Value Added Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009176

http://docs.sun.com/doc/821-0195/beara?a=view
http://docs.sun.com/doc/821-0195/beara?a=view

timeout is used. The value of cmt-timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

Priority Based Scheduling of Remote Bean Invocations
You can create multiple thread pools, each having its own work queues. An optional element in
the sun-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool that processes the
requests for the bean. The bean must have a remote interface, or use-thread-pool-id is
ignored. You can create different thread pools and specify the appropriate thread pool ID for a
bean that requires a quick response time. If there is no such thread pool configured or if the
element is absent, the default thread pool is used.

Immediate Flushing
Normally, all entity bean updates within a transaction are batched and executed at the end of
the transaction. The only exception is the database flush that precedes execution of a finder or
select query.

Since a transaction often spans many method calls, you might want to find out if the updates
made by a method succeeded or failed immediately after method execution. To force a flush at
the end of a method’s execution, use the flush-at-end-of-method element in the
sun-ejb-jar.xml file. Only non-finder methods in an entity bean can be flush-enabled. (For an
EJB 2.1 bean, these methods must be in the Local, Local Home, Remote, or Remote Home
interface.) See “flush-at-end-of-method” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

Upon completion of the method, the EJB container updates the database. Any exception
thrown by the underlying data store is wrapped as follows:

■ If the method that triggered the flush is a create method, the exception is wrapped with
CreateException.

■ If the method that triggered the flush is a remove method, the exception is wrapped with
RemoveException.

■ For all other methods, the exception is wrapped with EJBException.

All normal end-of-transaction database synchronization steps occur regardless of whether the
database has been flushed during the transaction.

Value Added Features

Chapter 9 • Using Enterprise JavaBeans Technology 177

http://docs.sun.com/doc/821-0195/beatf?a=view
http://docs.sun.com/doc/821-0195/beatf?a=view

EJB Timer Service
The EJB Timer Service uses a database to store persistent information about EJB timers. In the
developer profile, the EJB Timer Service in Communications Server is preconfigured to use an
embedded version of the Java DB database. The EJB Timer Service configuration can store
persistent timer information in any database supported by the Communications Server for
persistence.

For a list of the JDBC drivers currently supported by the Communications Server, see the Sun
GlassFish Communications Server 2.0 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications
Server 2.0 Administration Guide.

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. You must also create the timer database table.
DDL files are located in as-install/lib/install/databases. Ideally, each cluster should have
its own timer table.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager.
If an EJB component or application accesses a database either directly through JDBC or
indirectly (for example, through an entity bean’s persistence mechanism), and also interacts
with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

■ Minimum Delivery Interval - Specifies the minimum time in milliseconds before an
expiration for a particular timer can occur. This guards against extremely small timer
increments that can overload the server. The default is 7000.

■ Maximum Redeliveries - Specifies the maximum number of times the EJB timer service
attempts to redeliver a timer expiration due for exception or rollback. The default is 1.

■ Redelivery Interval - Specifies how long in milliseconds the EJB timer service waits after a
failed ejbTimeout delivery before attempting a redelivery. The default is 5000.

■ Timer DataSource - Specifies the database used by the EJB Timer Service. In the developer
profile, the default is jdbc/__TimerPool.

For information about configuring EJB Timer Service settings, see Chapter 8, “SIP, Web, and
EJB Containers,” in Sun GlassFish Communications Server 2.0 Administration Guide. For
information about the asadmin list-timers and asadmin migrate-timers commands, see
the Sun GlassFish Communications Server 2.0 Reference Manual.

EJB Timer Service

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009178

http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/ablms?a=view
http://docs.sun.com/doc/821-0200/ablms?a=view
http://docs.sun.com/doc/821-0197

Using Session Beans
This section provides guidelines for creating session beans in the Communications Server
environment. This section addresses the following topics:

■ “About the Session Bean Containers” on page 179
■ “Stateful Session Bean Failover” on page 180
■ “Session Bean Restrictions and Optimizations” on page 185

Extensive information on session beans is contained in Chapters 3 and 4 of the Enterprise
JavaBeans Specification, v3.0, EJB Core Contracts and Requirements.

About the Session Bean Containers
Like an entity bean, a session bean can access a database through Java Database Connectivity
(JDBC) calls. A session bean can also provide transaction settings. These transaction settings
and JDBC calls are referenced by the session bean’s container, allowing it to participate in
transactions managed by the container.

A container managing stateless session beans has a different charter from a container managing
stateful session beans. This section addresses the following topics:

■ “Stateless Container” on page 179
■ “Stateful Container” on page 180

Stateless Container
The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Communications
Server specific deployment descriptor file, sun-ejb-jar.xml, contains the properties that
define the pool:

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

The Communications Server provides the wscompile and wsdeploy tools to help you
implement a web service endpoint as a stateless session bean. For more information about these
tools, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Using Session Beans

Chapter 9 • Using Enterprise JavaBeans Technology 179

http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0197

Stateful Container
The stateful container manages the stateful session beans, which, by definition, carry the
client-specific state. There is a one-to-one relationship between the client and the stateful
session beans. At creation, each stateful session bean (SFSB) is given a unique session ID that is
used to access the session bean so that an instance of a stateful session bean is accessed by a
single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session beans
cache are controlled by specifying the following sun-ejb-jar.xml parameters:
■ max-cache-size

■ resize-quantity

■ cache-idle-timeout-in-seconds

■ removal-timeout-in-seconds

■ victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held in
cache. If the cache overflows (when the number of beans exceeds max-cache-size), the
container then passivates some beans or writes out the serialized state of the bean into a file. The
directory in which the file is created is obtained from the EJB container using the configuration
APIs.

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

The passivated beans are stored on the file system. The Session Store Location setting in the EJB
container allows the administrator to specify the directory where passivated beans are stored.
By default, passivated stateful session beans are stored in application-specific subdirectories
created under domain-dir/session-store.

Note – Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 95.

The Session Store Location setting also determines where the session state is persisted if it is not
highly available; see “Choosing a Persistence Store” on page 182.

Stateful Session Bean Failover
An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an
SFSB is saved to the persistent store at predefined points in its life cycle. This is called
checkpointing. If SFSB checkpointing is enabled, checkpointing generally occurs after any
transaction involving the SFSB is completed, even if the transaction rolls back.

Using Session Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009180

http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view

However, if an SFSB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of a bean method. Since the bean’s state might be
undergoing transition as a result of the method invocation, this is not an appropriate instant to
checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end
of the corresponding method, provided the bean is not in the scope of another transaction when
that method ends. If a bean-managed transaction spans across multiple methods,
checkpointing is delayed until there is no active transaction at the end of a subsequent method.

The state of an SFSB is not necessarily transactional and might be significantly modified as a
result of non-transactional business methods. If this is the case for an SFSB, you can specify a list
of checkpointed methods. If SFSB checkpointing is enabled, checkpointing occurs after any
checkpointed methods are completed.

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

The following table lists the types of references that SFSB failover supports. All objects bound
into an SFSB must be one of the supported types. In the table, No indicates that failover for the
object type might not work in all cases and that no failover support is provided. However,
failover might work in some cases for that object type. For example, failover might work
because the class implementing that type is serializable.

TABLE 9–1 Object Types Supported for Java EE Stateful Session Bean State Failover

Java Object Type Failover Support

Colocated or distributed stateless session, stateful
session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any
prepared global transactions are lost and might not be
correctly rolled back or committed.

JDBC DataSource No

Java Message Service (JMS) ConnectionFactory,
Destination

No

JavaMail Session No

Connection Factory No

Administered Object No

Using Session Beans

Chapter 9 • Using Enterprise JavaBeans Technology 181

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view

TABLE 9–1 Object Types Supported for Java EE Stateful Session Bean State Failover (Continued)
Java Object Type Failover Support

Web service reference No

Serializable Java types Yes

Extended persistence context No

For more information about the InitialContext, see “Accessing the Naming Context” on
page 277. For more information about transaction recovery, see Chapter 16, “Using the
Transaction Service.” For more information about Administered Objects, see “Creating
Physical Destinations” on page 289.

Note – Idempotent URLs are supported along the HTTP path, but not the RMI-IIOP path. For
more information, see “Configuring Idempotent URL Requests” on page 163.

If a server instance to which an RMI-IIOP client request is sent crashes during the request
processing (before the response is prepared and sent back to the client), an error is sent to the
client. The client must retry the request explicitly. When the client retries the request, the
request is sent to another server instance in the cluster, which retrieves session state
information for this client.

HTTP and SIP sessions can also be saved in a persistent store in case a server instance fails. In
addition, if a distributable web or SIP application references an SFSB, and the web or SIP
application’s session fails over, the EJB reference is also failed over. For more information, see
“Distributed Sessions and Persistence” on page 153.

If an SFSB that uses session persistence is undeployed while the Communications Server
instance is stopped, the session data in the persistence store might not be cleared. To prevent
this, undeploy the SFSB while the Communications Server instance is running.

Configure SFSB failover by:

■ “Choosing a Persistence Store” on page 182
■ “Enabling Checkpointing” on page 183
■ “Specifying Methods to Be Checkpointed” on page 184 (optional)

Choosing a Persistence Store
The following types of persistent storage are supported for passivation and checkpointing of the
SFSB state:

■ The local file system - Allows a single server instance to recover the SFSB state after a failure
and restart. This store also provides passivation and activation of the state to help control
the amount of memory used. This option is not supported in a production environment that
requires SFSB state persistence. This is the default storage mechanism.

Using Session Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009182

■ Other servers - Uses other server instances in the cluster for session persistence. Clustered
server instances replicate session state in a ring topology. Each backup instance stores the
replicated data in memory.

Choose the persistence store in one of the following ways:
■ To use the local file system, first disable availability. Select the Availability Service

component under the relevant configuration in the Admin Console. Uncheck the
Availability Service box. Then select the EJB Container component and edit the Session
Store Location value. The default is domain-dir/session-store.

■ To use other servers, select the Availability Service component under the relevant
configuration in the Admin Console. Check the Availability Service box. To enable
availability for the EJB container, select the EJB Container Availability tab, then check the
Availability Service box. All instances in an Communications Server cluster should have the
same availability settings to ensure consistent behavior.

For more information, see the Sun GlassFish Communications Server 2.0 High Availability
Administration Guide.

Enabling Checkpointing
The following sections describe how to enable SFSB checkpointing:
■ “Server Instance and EJB Container Levels” on page 183
■ “Application and EJB Module Levels” on page 183
■ “SFSB Level” on page 183

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance or EJB container level, see “Choosing a
Persistence Store” on page 182.

Application and EJB Module Levels

To enable SFSB checkpointing at the application or EJB module level during deployment, use
the asadmin deploy or asadmin deploydir command with the --availabilityenabled
option set to true. For details, see the Sun GlassFish Communications Server 2.0 Reference
Manual.

SFSB Level

To enable SFSB checkpointing at the SFSB level, set availability-enabled="true" in the ejb
element of the SFSB’s sun-ejb-jar.xml file as follows:

<sun-ejb-jar>

...

<enterprise-beans>

Using Session Beans

Chapter 9 • Using Enterprise JavaBeans Technology 183

http://docs.sun.com/doc/821-0196
http://docs.sun.com/doc/821-0196
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

...

<ejb availability-enabled="true">
<ejb-name>MySFSB</ejb-name>

</ejb>

...

</enterprise-beans>

</sun-ejb-jar>

Specifying Methods to Be Checkpointed
If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction
involving the SFSB is completed, even if the transaction rolls back.

To specify additional optional checkpointing of SFSBs at the end of non-transactional business
methods that cause important modifications to the bean’s state, use the
checkpoint-at-end-of-method element within the ejb element in sun-ejb-jar.xml.

For example:

<sun-ejb-jar>

...

<enterprise-beans>

...

<ejb availability-enabled="true">
<ejb-name>ShoppingCartEJB</ejb-name>

<checkpoint-at-end-of-method>

<method>

<method-name>addToCart</method-name>

</method>

</checkpoint-at-end-of-method>

</ejb>

...

</enterprise-beans>

</sun-ejb-jar>

For details, see “checkpoint-at-end-of-method” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

The non-transactional methods in the checkpoint-at-end-of-method element can be the
following:

■ create() methods defined in the home or business interface of the SFSB, if you want to
checkpoint the initial state of the SFSB immediately after creation

■ For SFSBs using container managed transactions only, methods in the remote interface of
the bean marked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER

■ For SFSBs using bean managed transactions only, methods in which a bean managed
transaction is neither started nor committed

Using Session Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009184

http://docs.sun.com/doc/821-0195/bearo?a=view
http://docs.sun.com/doc/821-0195/bearo?a=view

Any other methods mentioned in this list are ignored. At the end of invocation of each of these
methods, the EJB container saves the state of the SFSB to persistent store.

Note – If an SFSB does not participate in any transaction, and if none of its methods are explicitly
specified in the checkpoint-at-end-of-method element, the bean’s state is not checkpointed at
all even if availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods chosen should
accomplish a significant amount of work in the context of the Java EE application or should
result in some important modification to the bean’s state.

Session Bean Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some optimization
guidelines:

■ “Optimizing Session Bean Performance” on page 185
■ “Restricting Transactions” on page 185

Optimizing Session Bean Performance
For stateful session beans, colocating the stateful beans with their clients so that the client and
bean are executing in the same process address space improves performance.

Restricting Transactions
The following restrictions on transactions are enforced by the container and must be observed
as session beans are developed:

■ A session bean can participate in, at most, a single transaction at a time.
■ If a session bean is participating in a transaction, a client cannot invoke a method on the

bean such that the trans-attribute element (or @TransactionAttribute annotation) in
the ejb-jar.xml file would cause the container to execute the method in a different or
unspecified transaction context or an exception is thrown.

■ If a session bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or business interface object, or an exception is thrown.

Using Session Beans

Chapter 9 • Using Enterprise JavaBeans Technology 185

Using Read-Only Beans
A read-only bean is an EJB 2.1 entity bean that is never modified by an EJB client. The data that a
read-only bean represents can be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Note – Read-only beans are specific to the Communications Server and are not part of the
Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a
non-portable application.

To make an EJB 3.0 entity bean read-only, use @Column annotations to mark its columns
insertable=false and updatable=false.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. The following topics are addressed in this section:
■ “Read-Only Bean Characteristics and Life Cycle” on page 186
■ “Read-Only Bean Good Practices” on page 187
■ “Refreshing Read-Only Beans” on page 187
■ “Deploying Read-Only Beans” on page 189

Read-Only Bean Characteristics and Life Cycle
Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, a read-only bean can be used to represent a stock quote for a
particular company, which is updated externally. In such a case, using a regular entity bean
might incur the burden of calling ejbStore, which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:
■ Only entity beans can be read-only beans.
■ Either bean-managed persistence (BMP) or container-managed persistence (CMP) is

allowed. If CMP is used, do not create the database schema during deployment. Instead,
work with your database administrator to populate the data into the tables. See Chapter 10,
“Using Container-Managed Persistence.”

■ Only container-managed transactions are allowed; read-only beans cannot start their own
transactions.

■ Read-only beans don’t update any bean state.
■ ejbStore is never called by the container.
■ ejbLoad is called only when a transactional method is called or when the bean is initially

created (in the cache), or at regular intervals controlled by the bean’s
refresh-period-in-seconds element in the sun-ejb-jar.xml file.

Using Read-Only Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009186

■ The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary keys).

■ If the data that the bean represents can change, then refresh-period-in-seconds must be
set to refresh the beans at regular intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as a victim to make room in the cache, ejbPassivate is called and the
bean is returned to the free pool. When in the free pool, the bean has no identity and is used
only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Read-Only Bean Good Practices
For best results, follow these guidelines when developing read-only beans:

■ Avoid having any create or remove methods in the home interface.
■ Use any of the valid EJB 2.1 transaction attributes for the trans-attribute element.

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same
transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans
There are several ways of refreshing read-only beans as addressed in the following sections:

■ “Invoking a Transactional Method” on page 187
■ “Refreshing Periodically” on page 187
■ “Refreshing Programmatically” on page 188

Invoking a Transactional Method
Invoking any transactional method invokes ejbLoad.

Refreshing Periodically
Use the refresh-period-in-seconds element in the sun-ejb-jar.xml file to refresh a
read-only bean periodically.

■ If the value specified in refresh-period-in-seconds is zero or not specified, which is the
default, the bean is never refreshed (unless a transactional method is accessed).

■ If the value is greater than zero, the bean is refreshed at the rate specified.

Using Read-Only Beans

Chapter 9 • Using Enterprise JavaBeans Technology 187

Note – This is the only way to refresh the bean state if the data can be modified external to the
Communications Server.

By default, a single timer is used for all instances of a read-only bean. When that timer fires, all
bean instances are marked as expired and are refreshed from the database the next time they are
used.

Use the -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true flag to refresh
each bean instance independently upon access if its refresh period has expired. The default is
false. Note that each instance still has the same refresh period. This additional level of
granularity can improve the performance of read-only beans that do not need to be refreshed at
the same time.

To set this flag, use the asadmin create-jvm-options command. For example:

asadmin create-jvm-options --user adminuser -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true

Refreshing Programmatically
Typically, beans that update any data that is cached by read-only beans need to notify the
read-only beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of
read-only beans.

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier extends java.rmi.Remote {

refresh(Object PrimaryKey) throws RemoteException;

}

The implementation of the ReadOnlyBeanNotifier interface is provided by the container. The
bean looks up ReadOnlyBeanNotifier using a fragment of code such as the following example:

com.sun.appserv.ejb.ReadOnlyBeanHelper helper =

new com.sun.appserv.ejb.ReadOnlyBeanHelper();

com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =

helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer");
notifier.refresh(PrimaryKey);

For a local read-only bean notifier, the lookup has this modification:

helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer");

Beans that update any data that is cached by read-only beans need to call the refresh methods.
The next (non-transactional) call to the read-only bean invokes ejbLoad.

For Javadoc tool pages relevant to read-only beans, go to http://glassfish.dev.java.net/

nonav/javaee5/api/index.html and click on the com.sun.appserv.ejb package.

Using Read-Only Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009188

http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html

Deploying Read-Only Beans
Read-only beans are deployed in the same manner as other entity beans. However, in the entry
for the bean in the sun-ejb-jar.xml file, the is-read-only-bean element must be set to true.
That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element in the sun-ejb-jar.xml file can be set to some
value that specifies the rate at which the bean is refreshed. If this element is missing, no refresh
occurs.

All requests in the same transaction context are routed to the same read-only bean instance. Set
the allow-concurrent-access element to either true (to allow concurrent accesses) or false
(to serialize concurrent access to the same read-only bean). The default is false.

For further information on these elements, refer to “The sun-ejb-jar.xml File” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

Using Message-Driven Beans
This section describes message-driven beans and explains the requirements for creating them in
the Communications Server environment. This section contains the following topics:

■ “Message-Driven Bean Configuration” on page 189
■ “Message-Driven Bean Restrictions and Optimizations” on page 191

Message-Driven Bean Configuration
This section addresses the following configuration topics:

■ “Connection Factory and Destination” on page 189
■ “Message-Driven Bean Pool” on page 190
■ “Domain-Level Settings” on page 190

For information about setting up load balancing for message-driven beans, see “Load-Balanced
Message Inflow” on page 292.

Connection Factory and Destination
A message-driven bean is a client to a Connector inbound resource adapter. The
message-driven bean container uses the JMS service integrated into the Communications
Server for message-driven beans that are JMS clients. JMS clients use JMS Connection Factory-
and Destination-administered objects. A JMS Connection Factory administered object is a
resource manager Connection Factory object that is used to create connections to the JMS
provider.

Using Message-Driven Beans

Chapter 9 • Using Enterprise JavaBeans Technology 189

http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view

The mdb-connection-factory element in the sun-ejb-jar.xml file for a message-driven bean
specifies the connection factory that creates the container connection to the JMS provider.

The jndi-name element of the ejb element in the sun-ejb-jar.xml file specifies the JNDI
name of the administered object for the JMS Queue or Topic destination that is associated with
the message-driven bean.

Message-Driven Bean Pool
The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The sun-ejb-jar.xml file contains the elements that define the pool (that
is, the bean-pool element):

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

Domain-Level Settings
You can control the following domain-level message-driven bean settings in the EJB container:

■ Initial and Minimum Pool Size - Specifies the initial and minimum number of beans
maintained in the pool. The default is 0.

■ Maximum Pool Size - Specifies the maximum number of beans that can be created to satisfy
client requests. The default is 32.

■ Pool Resize Quantity - Specifies the number of beans to be created if a request arrives when
the pool is empty (subject to the Initial and Minimum Pool Size), or the number of beans to
remove if idle for more than the Idle Timeout. The default is 8.

■ Idle Timeout - Specifies the maximum time in seconds that a bean can remain idle in the
pool. After this amount of time, the bean is destroyed. The default is 600 (10 minutes). A
value of 0 means a bean can remain idle indefinitely.

For information on monitoring message-driven beans, click the Help button in the Admin
Console. In the developer profile, the Monitor tab is accessible from the Application Server
page. In the Cluster profile, select the Stand-Alone Instances component, select the instance
from the table, and select the Monitor tab.

Using Message-Driven Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009190

http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view

Note – Running monitoring when it is not needed might impact performance, so you might
choose to turn monitoring off when it is not in use. For details, see Chapter 20, “Monitoring
Components and Services,” in Sun GlassFish Communications Server 2.0 Administration Guide.

Message-Driven Bean Restrictions and Optimizations
This section discusses the following restrictions and performance optimizations that pertain to
developing message-driven beans:

■ “Pool Tuning and Monitoring” on page 191
■ “The onMessage Runtime Exception” on page 191

Pool Tuning and Monitoring
The message-driven bean pool is also a pool of threads, with each message-driven bean instance
in the pool associating with a server session, and each server session associating with a thread.
Therefore, a large pool size also means a high number of threads, which impacts performance
and server resources.

When configuring message-driven bean pool properties, make sure to consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server resources
(threads, memory, and so on), and any concurrency requirements and limitations from other
resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS provider
properties for the connection factory used by the container (the mdb-connection-factory
element in the sun-ejb-jar.xml file). For example, you can tune the Sun GlassFish Message
Queue flow control related properties for connection factory in situations where the message
incoming rate is much higher than max-pool-size can handle.

Refer to Chapter 20, “Monitoring Components and Services,” in Sun GlassFish Communications
Server 2.0 Administration Guide for information on how to get message-driven bean pool
statistics.

The onMessageRuntime Exception
Message-driven beans, like other well-behaved MessageListeners, should not, in general, throw
runtime exceptions. If a message-driven bean’s onMessage method encounters a system-level
exception or error that does not allow the method to successfully complete, the Enterprise
JavaBeans Specification, v3.0 provides the following guidelines:

■ If the bean method encounters a runtime exception or error, it should simply propagate the
error from the bean method to the container.

Using Message-Driven Beans

Chapter 9 • Using Enterprise JavaBeans Technology 191

http://docs.sun.com/doc/821-0200/ablur?a=view
http://docs.sun.com/doc/821-0200/ablur?a=view
http://docs.sun.com/doc/821-0200/ablur?a=view
http://docs.sun.com/doc/821-0200/ablur?a=view

■ If the bean method performs an operation that results in a checked exception that the bean
method cannot recover, the bean method should throw the javax.ejb.EJBException that
wraps the original exception.

■ Any other unexpected error conditions should be reported using javax.ejb.EJBException
(javax.ejb.EJBException is a subclass of java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime exception from
a message-driven bean’s onMessage method, the container rolls back the container-started
transaction and the message is redelivered. This is because the message delivery itself is part of
the container-started transaction. By default, the Communications Server container closes the
container’s connection to the JMS provider when the first runtime exception is received from a
message-driven bean instance’s onMessage method. This avoids potential message redelivery
looping and protects server resources if the message-driven bean’s onMessage method
continues misbehaving. To change this default container behavior, use the
cmt-max-runtime-exceptions property of the mdb-container element in the domain.xml file.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime
exceptions allowed from a message-driven bean’s onMessage method before the container starts
to close the container’s connection to the message source. By default this value is 1; -1 disables
this container protection.

A message-driven bean’s onMessage method can use the javax.jms.Message
getJMSRedelivered method to check whether a received message is a redelivered message.

Note – The cmt-max-runtime-exceptions property might be deprecated in the future.

Handling Transactions With Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans programming
model for the Communications Server.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors. This section
provides overview information on the following topics:

■ “Flat Transactions” on page 193
■ “Global and Local Transactions” on page 193
■ “Commit Options” on page 193
■ “Administration and Monitoring” on page 194

Handling Transactions With Enterprise Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009192

Flat Transactions
The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions
Understanding the distinction between global and local transactions is crucial in understanding
the Communications Server support for transactions. See “Transaction Scope” on page 270.

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local transactions
bypass the transaction manager and are faster. For more information, see “The Transaction
Manager, the Transaction Synchronization Registry, and UserTransaction” on page 272.

Commit Options
The EJB protocol is designed to give the container the flexibility to select the disposition of the
instance state at the time a transaction is committed. This allows the container to best manage
caching an entity object’s state and associating an entity object identity with the EJB instances.

There are three commit-time options:

■ Option A – The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent storage.
In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

Note – Commit option A is not supported for this Communications Server release.

■ Option B – The container caches a ready instance between transactions, but the container
does not ensure that the instance has exclusive access to the state of the object in persistent
storage. This is the default.
In this case, the container must synchronize the instance’s state by invoking ejbLoad from
persistent storage at the beginning of the next transaction.

Handling Transactions With Enterprise Beans

Chapter 9 • Using Enterprise JavaBeans Technology 193

■ Option C – The container does not cache a ready instance between transactions, but instead
returns the instance to the pool of available instances after a transaction has completed.
The life cycle for every business method invocation under commit option C looks like this.

ejbActivate → ejbLoad → business method → ejbStore → ejbPassivate

If there is more than one transactional client concurrently accessing the same entity, the first
client gets the ready instance and subsequent concurrent clients get new instances from the
pool.

The Communications Server deployment descriptor has an element, commit-option, that
specifies the commit option to be used. Based on the specified commit option, the appropriate
handler is instantiated.

Administration and Monitoring
An administrator can control a number of domain-level Transaction Service settings. For
details, see “Configuring the Transaction Service” on page 272.

The Transaction Timeout setting can be overridden by a bean. See “Bean-Level
Container-Managed Transaction Timeouts” on page 176.

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions completed,
rolled back, or recovered since server startup, and transactions presently being processed.

For information on administering and monitoring transactions, select the Transaction Service
component under the relevant configuration in the Admin Console and click the Help button.
Also see Chapter 12, “Transactions,” in Sun GlassFish Communications Server 2.0
Administration Guide.

Handling Transactions With Enterprise Beans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009194

http://docs.sun.com/doc/821-0200/ablsn?a=view
http://docs.sun.com/doc/821-0200/ablsn?a=view

Using Container-Managed Persistence

This chapter contains information on how EJB 2.1 container-managed persistence (CMP)
works in the Sun GlassFish Communications Server in the following topics:
■ “Communications Server Support for CMP” on page 195
■ “CMP Mapping” on page 196
■ “Automatic Schema Generation for CMP” on page 200
■ “Schema Capture” on page 206
■ “Configuring the CMP Resource” on page 207
■ “Performance-Related Features” on page 207
■ “Configuring Queries for 1.1 Finders” on page 210
■ “CMP Restrictions and Optimizations” on page 214

Communications Server Support for CMP
Communications Server support for EJB 2.1 CMP beans includes:
■ Full support for the J2EE v1.4 specification’s CMP model. Extensive information on CMP is

contained in chapters 10, 11, and 14 of the Enterprise JavaBeans Specification, v2.1. This
includes the following:
■ Support for commit options B and C for transactions. See “Commit Options” on

page 193.
■ The primary key class must be a subclass of java.lang.Object. This ensures portability,

and is noted because some vendors allow primitive types (such as int) to be used as the
primary key class.

■ The Communications Server CMP implementation, which provides the following:
■ An Object/Relational (O/R) mapping tool that creates XML deployment descriptors for

EJB JAR files that contain beans that use CMP.
■ Support for compound (multi-column) primary keys.
■ Support for sophisticated custom finder methods.

10C H A P T E R 1 0

195

■ Standards-based query language (EJB QL).
■ CMP runtime support. See “Configuring the CMP Resource” on page 207.

■ Communications Server performance-related features, including the following:
■ Version column consistency checking
■ Relationship prefetching
■ Read-Only Beans

For details, see “Performance-Related Features” on page 207.

CMP Mapping
Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields and
CMR fields (relationships) to the database. This section addresses the following topics:

■ “Mapping Capabilities” on page 196
■ “The Mapping Deployment Descriptor File” on page 196
■ “Mapping Considerations” on page 197

Mapping Capabilities
Mapping refers to the ability to tie an object-based model to a relational model of data, usually
the schema of a relational database. The CMP implementation provides the ability to tie a set of
interrelated beans containing data and associated behaviors to the schema. This object
representation of the database becomes part of the Java application. You can also customize this
mapping to optimize these beans for the particular needs of an application. The result is a single
data model through which both persistent database information and regular transient program
data are accessed.

The mapping capabilities provided by the Communications Server include:

■ Mapping a CMP bean to one or more tables
■ Mapping CMP fields to one or more columns
■ Mapping CMP fields to different column types
■ Mapping tables with compound primary keys
■ Mapping tables with unknown primary keys
■ Mapping CMP relationships to foreign keys
■ Mapping tables with overlapping primary and foreign keys

The Mapping Deployment Descriptor File
Each module with CMP beans must have the following files:

CMP Mapping

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009196

■ ejb-jar.xml – The J2EE standard file for assembling enterprise beans. For a detailed
description, see the Enterprise JavaBeans Specification, v2.1.

■ sun-ejb-jar.xml – The Communications Server standard file for assembling enterprise
beans. For a detailed description, see “The sun-ejb-jar.xml File” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

■ sun-cmp-mappings.xml – The mapping deployment descriptor file, which describes the
mapping of CMP beans to tables in a database. For a detailed description, see “The
sun-cmp-mappings.xml File” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

The sun-cmp-mappings.xml file can be automatically generated and does not have to exist prior
to deployment. For details, see “Generation Options for CMP” on page 203.

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the
database. A primary table must be selected for each CMP bean, and optionally, multiple
secondary tables. CMP fields are mapped to columns in either the primary or secondary
table(s). CMR fields are mapped to pairs of column lists (normally, column lists are the lists of
columns associated with primary and foreign keys).

Note – Table names in databases can be case-sensitive. Make sure that the table names in the
sun-cmp-mappings.xml file match the names in the database.

Relationships should always be mapped to the primary key field(s) of the related table.

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping_1_2.dtd file and is
packaged with the user-defined bean classes in the EJB JAR file under the META-INF directory.

The Communications Server creates the mappings in the sun-cmp-mappings.xml file
automatically during deployment if the file is not present.

To map the fields and relationships of your entity beans manually, edit the
sun-cmp-mappings.xml deployment descriptor. Only do this if you are proficient in editing
XML.

The mapping information is developed in conjunction with the database schema (.dbschema)
file, which can be automatically captured when you deploy the bean (see “Automatic Database
Schema Capture” on page 206). You can manually generate the schema using the
capture-schema utility (“Using the capture-schema Utility” on page 206).

Mapping Considerations
This section addresses the following topics:
■ “Join Tables and Relationships” on page 198
■ “Automatic Primary Key Generation” on page 198

CMP Mapping

Chapter 10 • Using Container-Managed Persistence 197

http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqm?a=view
http://docs.sun.com/doc/821-0195/beaqn?a=view
http://docs.sun.com/doc/821-0195/beaqn?a=view
http://docs.sun.com/doc/821-0195/beaqn?a=view

■ “Fixed Length CHAR Primary Keys” on page 198
■ “Managed Fields” on page 198
■ “BLOB Support” on page 199
■ “CLOB Support” on page 200

The data types used in automatic schema generation are also suggested for manual mapping.
These data types are described in “Supported Data Types for CMP” on page 201.

Join Tables and Relationships
Use of join tables in the database schema is supported for all types of relationships, not just
many-to-many relationships. For general information about relationships, see section 10.3.7 of
the Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation
The Communications Server supports automatic primary key generation for EJB 1.1, 2.0, and
2.1 CMP beans. To specify automatic primary key generation, give the prim-key-class
element in the ejb-jar-xml file the value java.lang.Object. CMP beans with automatically
generated primary keys can participate in relationships with other CMP beans. The
Communications Server does not support database-generated primary key values.

If the database schema is created during deployment, the Communications Server creates the
schema with the primary key column, then generates unique values for the primary key column
at runtime.

If the database schema is not created during deployment, the primary key column in the
mapped table must be of type NUMERIC with a precision of 19 or more, and must not be mapped
to any CMP field. The Communications Server generates unique values for the primary key
column at runtime.

Fixed Length CHAR Primary Keys
If an existing database table has a primary key column in which the values vary in length, but the
type is CHAR instead of VARCHAR, the Communications Server automatically trims any extra
spaces when retrieving primary key values. It is not a good practice to use a fixed length CHAR

column as a primary key. Use this feature with schemas that cannot be changed, such as a
schema inherited from a legacy application.

Managed Fields
A managed field is a CMP or CMR field that is mapped to the same database column as another
CMP or CMR field. CMP fields mapped to the same column and CMR fields mapped to exactly
the same column lists always have the same value in memory. For CMR fields that share only a
subset of their mapped columns, changes to the columns affect the relationship fields in
memory differently. Basically, the Communications Server always tries to keep the state of the
objects in memory synchronized with the database.

CMP Mapping

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009198

A managed field can have any fetched-with subelement. If the fetched-with subelement is
<default/>, the -DAllowManagedFieldsInDefaultFetchGroup flag must be set to true. See
“Default Fetch Group Flags” on page 210 and “fetched-with” in Sun GlassFish Communications
Server 2.0 Application Deployment Guide.

BLOB Support
Binary Large Object (BLOB) is a data type used to store values that do not correspond to other
types such as numbers, strings, or dates. Java fields whose types implement
java.io.Serializable or are represented as byte[] can be stored as BLOBs.

If a CMP field is defined as Serializable, it is serialized into a byte[] before being stored in
the database. Similarly, the value fetched from the database is deserialized. However, if a CMP
field is defined as byte[], it is stored directly instead of being serialized and deserialized when
stored and fetched, respectively.

To enable BLOB support in the Communications Server environment, define a CMP field of
type byte[] or a user-defined type that implements the java.io.Serializable interface. If
you map the CMP bean to an existing database schema, map the field to a column of type BLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the Communications Server, see the Sun
GlassFish Communications Server 2.0 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications
Server 2.0 Administration Guide.

For automatic mapping, you might need to change the default BLOB column length for the
generated schema using the schema-generator-properties element in sun-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>

<property>

<name>Employee.voiceGreeting.jdbc-type</name>

<value>BLOB</value>

</property>

<property>

<name>Employee.voiceGreeting.jdbc-maximum-length</name>

<value>10240</value>

</property>

...

</schema-generator-properties>

CMP Mapping

Chapter 10 • Using Container-Managed Persistence 199

http://docs.sun.com/doc/821-0195/beatc?a=view
http://docs.sun.com/doc/821-0195/beatc?a=view
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view

CLOB Support
Character Large Object (CLOB) is a data type used to store and retrieve very long text fields.
CLOBs translate into long strings.

To enable CLOB support in the Communications Server environment, define a CMP field of
type java.lang.String. If you map the CMP bean to an existing database schema, map the
field to a column of type CLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the Communications Server, see the Sun
GlassFish Communications Server 2.0 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications
Server 2.0 Administration Guide.

For automatic mapping, you might need to change the default CLOB column length for the
generated schema using the schema-generator-properties element in sun-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>

<property>

<name>Employee.resume.jdbc-type</name>

<value>CLOB</value>

</property>

<property>

<name>Employee.resume.jdbc-maximum-length</name>

<value>10240</value>

</property>

...

</schema-generator-properties>

Automatic Schema Generation for CMP
The automatic schema generation feature provided in the Communications Server defines
database tables based on the fields in entity beans and the relationships between the fields. This
insulates developers from many of the database related aspects of development, allowing them
to focus on entity bean development. The resulting schema is usable as-is or can be given to a
database administrator for tuning with respect to performance, security, and so on.

This section addresses the following topics:

■ “Supported Data Types for CMP” on page 201
■ “Generation Options for CMP” on page 203

Automatic Schema Generation for CMP

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009200

http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. This is done to allow you to investigate the problem and fix it manually. You
should not rely on the partially created database schema to be correct for running the
application.

Supported Data Types for CMP
CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL types.
Supported JDBC data types are as follows: BIGINT, BIT, BLOB, CHAR, CLOB, DATE,
DECIMAL, DOUBLE, FLOAT, INTEGER, NUMERIC, REAL, SMALLINT, TIME,
TIMESTAMP, TINYINT, VARCHAR.

The following table contains the mappings of Java types to JDBC types when automatic
mapping is used.

TABLE 10–1 Java Type to JDBC Type Mappings for CMP

Java Type JDBC Type Nullability

boolean BIT No

java.lang.Boolean BIT Yes

byte TINYINT No

java.lang.Byte TINYINT Yes

double DOUBLE No

java.lang.Double DOUBLE Yes

float REAL No

java.lang.Float REAL Yes

int INTEGER No

java.lang.Integer INTEGER Yes

long BIGINT No

java.lang.Long BIGINT Yes

short SMALLINT No

Automatic Schema Generation for CMP

Chapter 10 • Using Container-Managed Persistence 201

TABLE 10–1 Java Type to JDBC Type Mappings for CMP (Continued)
Java Type JDBC Type Nullability

java.lang.Short SMALLINT Yes

java.math.BigDecimal DECIMAL Yes

java.math.BigInteger DECIMAL Yes

char CHAR No

java.lang.Character CHAR Yes

java.lang.String VARCHAR or CLOB Yes

Serializable BLOB Yes

byte[] BLOB Yes

java.util.Date DATE (Oracle only)

TIMESTAMP (all other databases)

Yes

java.sql.Date DATE Yes

java.sql.Time TIME Yes

java.sql.Timestamp TIMESTAMP Yes

Note – Java types assigned to CMP fields must be restricted to Java primitive types, Java
Serializable types, java.util.Date, java.sql.Date, java.sql.Time, or
java.sql.Timestamp. An entity bean local interface type (or a collection of such) can be the
type of a CMR field.

The following table contains the mappings of JDBC types to database vendor-specific types
when automatic mapping is used. For a list of the JDBC drivers currently supported by the
Communications Server, see the Sun GlassFish Communications Server 2.0 Release Notes. For
configurations of supported and other drivers, see “Configurations for Specific JDBC Drivers”
in Sun GlassFish Communications Server 2.0 Administration Guide.

TABLE 10–2 Mappings of JDBC Types to Database Vendor Specific Types for CMP

JDBC Type
Java DB, Derby,
CloudScape Oracle DB2 Sybase ASE 12.5 MS-SQL Server

BIT SMALLINT SMALLINT SMALLINT TINYINT BIT

TINYINT SMALLINT SMALLINT SMALLINT TINYINT TINYINT

SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT

Automatic Schema Generation for CMP

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009202

http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view

TABLE 10–2 Mappings of JDBC Types to Database Vendor Specific Types for CMP (Continued)

JDBC Type
Java DB, Derby,
CloudScape Oracle DB2 Sybase ASE 12.5 MS-SQL Server

INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER

BIGINT BIGINT NUMBER BIGINT NUMERIC NUMERIC

REAL REAL REAL FLOAT FLOAT REAL

DOUBLE DOUBLE PRECISION DOUBLE PRECISION DOUBLE DOUBLE PRECISION FLOAT

DECIMAL(p,s) DECIMAL(p,s) NUMBER(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

VARCHAR VARCHAR VARCHAR2 VARCHAR VARCHAR VARCHAR

DATE DATE DATE DATE DATETIME DATETIME

TIME TIME DATE TIME DATETIME DATETIME

TIMESTAMP TIMESTAMP TIMESTAMP(9) TIMESTAMP DATETIME DATETIME

BLOB BLOB BLOB BLOB IMAGE IMAGE

CLOB CLOB CLOB CLOB TEXT NTEXT

Generation Options for CMP
Deployment descriptor elements or asadmin command line options can control automatic
schema generation by the following:

■ Creating tables during deployment
■ Dropping tables during undeployment
■ Dropping and creating tables during redeployment
■ Specifying the database vendor
■ Specifying that table names are unique
■ Specifying type mappings for individual CMP fields

Note – Before using these options, make sure you have a properly configured CMP resource. See
“Configuring the CMP Resource” on page 207.

For a read-only bean, do not create the database schema during deployment. Instead, work with
your database administrator to populate the data into the tables. See “Using Read-Only Beans”
on page 186.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers. See “Version Column Consistency Checking” on page 208.

Automatic Schema Generation for CMP

Chapter 10 • Using Container-Managed Persistence 203

The following optional data subelements of the cmp-resource element in the sun-ejb-jar.xml
file control the automatic creation of database tables at deployment. For more information
about the cmp-resource element, see “cmp-resource” in Sun GlassFish Communications
Server 2.0 Application Deployment Guide and “Configuring the CMP Resource” on page 207.

TABLE 10–3 The sun-ejb-jar.xmlGeneration Elements

Element Default Description

create-tables-at-deploy false If true, causes database tables to be created for beans that are automatically
mapped by the EJB container. If false, does not create tables.

drop-tables-at-undeploy false If true, causes database tables that were automatically created when the bean(s)
were last deployed to be dropped when the bean(s) are undeployed. If false, does
not drop tables.

database-vendor-name none Specifies the name of the database vendor for which tables are created. Allowed
values are javadb, db2, mssql, oracle, postgresql, pointbase, derby (also for
CloudScape), and sybase, case-insensitive.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp-resource element in the sun-ejb-jar.xml file,
and the database vendor name is read. If the connection cannot be established, or
if the value is not recognized, SQL-92 compliance is presumed.

schema-generator-properties none Specifies field-specific column attributes in property subelements. Each property
name is of the following format:

bean-name.field-name.attribute

For example:

Employee.firstName.jdbc-type

Also allows you to set the use-unique-table-names property. If true, this
property specifies that generated table names are unique within each application
server domain. The default is false.

For further information and an example, see “schema-generator-properties” in
Sun GlassFish Communications Server 2.0 Application Deployment Guide.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment.

TABLE 10–4 The asadmin deploy and asadmin deploydir Generation Options for CMP

Option Default Description

--createtables none If true, causes database tables to be created for beans that need them. If false, does
not create tables. If not specified, the value of the create-tables-at-deploy
attribute in sun-ejb-jar.xml is used.

Automatic Schema Generation for CMP

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009204

http://docs.sun.com/doc/821-0195/bearv?a=view
http://docs.sun.com/doc/821-0195/bearv?a=view
http://docs.sun.com/doc/821-0195/beasi?a=view
http://docs.sun.com/doc/821-0195/beasq?a=view
http://docs.sun.com/doc/821-0195/beask?a=view
http://docs.sun.com/doc/821-0195/beaxd?a=view
http://docs.sun.com/doc/821-0195/beaxd?a=view
http://docs.sun.com/doc/821-0195/beaxd?a=view

TABLE 10–4 The asadmin deploy and asadmin deploydir Generation Options for CMP (Continued)
Option Default Description

--dropandcreatetables none If true, and if tables were automatically created when this application was last
deployed, tables from the earlier deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the same names as
those that would have been automatically created are found, the deployment
proceeds, but a warning indicates that tables could not be created.

If false, settings of create-tables-at-deploy or drop-tables-at-undeploy in
the sun-ejb-jar.xml file are overridden.

--uniquetablenames none If true, specifies that table names are unique within each application server domain.
If not specified, the value of the use-unique-table-names property in
sun-ejb-jar.xml is used.

--dbvendorname none Specifies the name of the database vendor for which tables are created. Allowed
values are javadb, db2, mssql, oracle, postgresql, pointbase, derby (also for
CloudScape), and sybase, case-insensitive.

If not specified, the value of the database-vendor-name attribute in
sun-ejb-jar.xml is used.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp-resource element in the sun-ejb-jar.xml file,
and the database vendor name is read. If the connection cannot be established, or if
the value is not recognized, SQL-92 compliance is presumed.

If one or more of the beans in the module are manually mapped and you use any of the asadmin
deploy or asadmin deploydir options, the deployment is not harmed in any way, but the
options have no effect, and a warning is written to the server log.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment.

TABLE 10–5 The asadmin undeploy Generation Options for CMP

Option Default Description

--droptables none If true, causes database tables that were automatically created when the bean(s) were last
deployed to be dropped when the bean(s) are undeployed. If false, does not drop tables.

If not specified, the value of the drop-tables-at-undeploy attribute in sun-ejb-jar.xml is
used.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy

commands, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Automatic Schema Generation for CMP

Chapter 10 • Using Container-Managed Persistence 205

http://docs.sun.com/doc/821-0197

When command line and sun-ejb-jar.xml options are both specified, the asadmin options
take precedence.

The asant tasks sun-appserv-deploy and sun-appserv-undeploy are equivalent to asadmin

deploy and asadmin undeploy, respectively. These asant tasks also override the
sun-ejb-jar.xml options. For details, see Chapter 3, “The asant Utility.”

Schema Capture
This section addresses the following topics:

■ “Automatic Database Schema Capture” on page 206
■ “Using the capture-schema Utility” on page 206

Automatic Database Schema Capture
You can configure a CMP bean in Communications Server to automatically capture the
database metadata and save it in a .dbschema file during deployment. If the
sun-cmp-mappings.xml file contains an empty <schema/> entry, the cmp-resource entry in the
sun-ejb-jar.xml file is used to get a connection to the database, and automatic generation of
the schema is performed.

Note – Before capturing the database schema automatically, make sure you have a properly
configured CMP resource. See “Configuring the CMP Resource” on page 207.

Using the capture-schemaUtility
You can use the capture-schema command to manually generate the database metadata
(.dbschema) file. For details, see the Sun GlassFish Communications Server 2.0 Reference
Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to
provide the persistence engine with information about the structure of the database (the
schema).

Keep the following in mind when using the capture-schema command:

■ The name of a .dbschema file must be unique across all deployed modules in a domain.
■ If more than one schema is accessible for the schema user, more than one table with the

same name might be captured if the -schemaname parameter of capture-schema is not set.
■ The schema name must be upper case.

Schema Capture

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009206

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

■ Table names in databases are case-sensitive. Make sure that the table name matches the
name in the database.

■ PostgreSQL databases internally convert all names to lower case. Before running the
capture-schema command on a PostgreSQL database, make sure table and column names
are lower case in the sun-cmp-mappings.xml file.

■ An Oracle database user running the capture-schema command needs ANALYZE ANY
TABLE privileges if that user does not own the schema. These privileges are granted to the
user by the database administrator.

Configuring the CMP Resource
An EJB module that contains CMP beans requires the JNDI name of a JDBC resource in the
jndi-name subelement of the cmp-resource element in the sun-ejb-jar.xml file. Set
PersistenceManagerFactory properties as properties of the cmp-resource element in the
sun-ejb-jar.xml file. See “cmp-resource” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

In the Admin Console, open the Resources component, then select JDBC. Click the Help button
in the Admin Console for information on creating a new JDBC resource.

For a list of the JDBC drivers currently supported by the Communications Server, see the Sun
GlassFish Communications Server 2.0 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications
Server 2.0 Administration Guide.

For example, if the JDBC resource has the JNDI name jdbc/MyDatabase, set the CMP resource
in the sun-ejb-jar.xml file as follows:

<cmp-resource>

<jndi-name>jdbc/MyDatabase</jndi-name>

</cmp-resource>

Performance-Related Features
The Communications Server provides the following features to enhance performance or allow
more fine-grained data checking. These features are supported only for entity beans with
container managed persistence.

■ “Version Column Consistency Checking” on page 208
■ “Relationship Prefetching” on page 208
■ “Read-Only Beans” on page 209
■ “Default Fetch Group Flags” on page 210

Performance-Related Features

Chapter 10 • Using Container-Managed Persistence 207

http://docs.sun.com/doc/821-0195/bearv?a=view
http://docs.sun.com/doc/821-0195/bearv?a=view
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view

Note – Use of any of these features results in a non-portable application.

Version Column Consistency Checking
The version consistency feature saves the bean state at first transactional access and caches it
between transactions. The state is copied from the cache instead of being read from the
database. The bean state is verified by primary key and version column values at flush for
custom queries (for dirty instances only) and at commit (for clean and dirty instances).

▼ To Use Version Consistency

Create the version column in the primary table.

Give the version column a numeric data type.

Provide appropriate update triggers on the version column.
These triggers must increment the version column on each update of the specified row.

Specify the version column.
This is specified in the check-version-of-accessed-instances subelement of the
consistency element in the sun-cmp-mappings.xml file. See “consistency” in Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

Map the CMP bean to an existing schema.
Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers.

Relationship Prefetching
In many cases when an entity bean’s state is fetched from the database, its relationship fields are
always accessed in the same transaction. Relationship prefetching saves database round trips by
fetching data for an entity bean and those beans referenced by its CMR fields in a single
database round trip.

To enable relationship prefetching for a CMR field, use the default subelement of the
fetched-with element in the sun-cmp-mappings.xml file. By default, these CMR fields are
prefetched whenever findByPrimaryKey or a custom finder is executed for the entity, or when
the entity is navigated to from a relationship. (Recursive prefetching is not supported, because it
does not usually enhance performance.) See “fetched-with” in Sun GlassFish Communications
Server 2.0 Application Deployment Guide.

1

2

3

4

5

Performance-Related Features

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009208

http://docs.sun.com/doc/821-0195/beasd?a=view
http://docs.sun.com/doc/821-0195/beasd?a=view
http://docs.sun.com/doc/821-0195/beatc?a=view
http://docs.sun.com/doc/821-0195/beatc?a=view

To disable prefetching for specific custom finders, use the prefetch-disabled element in the
sun-ejb-jar.xml file. See “prefetch-disabled” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

Multilevel relationship prefetching is supported for CMP 2.1 entity beans. To enable multilevel
relationship prefetching, set the following property using the asadmin create-jvm-options
command:

asadmin create-jvm-options -Dcom.sun.jdo.spi.persistence.support.sqlstore.MULTILEVEL_PREFETCH=true

Read-Only Beans
Another feature that the Communications Server provides is the read-only bean, an entity bean
that is never modified by an EJB client. Read-only beans avoid database updates completely.

Note – Read-only beans are specific to the Communications Server and are not part of the
Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a
non-portable application.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Communications Server provides a number of ways by which a read-only bean’s state can
be refreshed. By setting the refresh-period-in-seconds element in the sun-ejb-jar.xml file
and the trans-attribute element (or @TransactionAttribute annotation) in the
ejb-jar.xml file, it is easy to configure a read-only bean that is one of the following:

■ Always refreshed
■ Periodically refreshed
■ Never refreshed
■ Programmatically refreshed

Access to CMR fields of read-only beans is not supported. Deployment will succeed, but an
exception will be thrown at runtime if a get or set method is invoked.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 186.

Performance-Related Features

Chapter 10 • Using Container-Managed Persistence 209

http://docs.sun.com/doc/821-0195/beavu?a=view
http://docs.sun.com/doc/821-0195/beavu?a=view

Default Fetch Group Flags
Using the following flags can improve performance.

Setting -DAllowManagedFieldsInDefaultFetchGroup=true allows CMP fields that by default
cannot be placed into the default fetch group to be loaded along with all other fields that are
fetched when the CMP state is loaded into memory. These could be multiple fields mapped to
the same column in the database table, for example, an instance field and a CMR. By default this
flag is set to false.

For additional information, see “level” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

Setting -DAllowMediatedWriteInDefaultFetchGroup specifies how updated CMP fields are
written back to the database. If the flag is false, all fields in the CMP bean are written back to
the database if at least one field in the default fetch group has been changed in a transaction. If
the flag is true, only fields modified by the bean are written back to the database. Specifying
true can improve performance, particularly on database tables with many columns that have
not been updated. By default this flag is set to false.

To set one of these flags, use the asadmin create-jvm-options command. For example:

asadmin create-jvm-options --user adminuser -DAllowManagedFieldsInDefaultFetchGroup=true

Configuring Queries for 1.1 Finders
This section contains the following topics:

■ “About JDOQL Queries” on page 210
■ “Query Filter Expression” on page 211
■ “Query Parameters” on page 212
■ “Query Variables” on page 212
■ “JDOQL Examples” on page 213

About JDOQL Queries
The Enterprise JavaBeans Specification, v1.1 does not specify the format of the finder method
description. The Communications Server uses an extension of Java Data Objects Query
Language (JDOQL) queries to implement finder and selector methods. You can specify the
following elements of the underlying JDOQL query:

■ Filter expression - A Java-like expression that specifies a condition that each object
returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.

■ Query parameter declaration - Specifies the name and the type of one or more query input
parameters. Follows the syntax for formal parameters in the Java language.

Default Fetch Group Flags

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009210

http://docs.sun.com/doc/821-0195/beaub?a=view
http://docs.sun.com/doc/821-0195/beaub?a=view

■ Query variable declaration - Specifies the name and type of one or more query variables.
Follows the syntax for local variables in the Java language. A query filter might use query
variables to implement joins.

■ Query ordering declaration - Specifies the ordering expression of the query. Corresponds
to the ORDER BY clause of EJB QL.

The Communications Server specific deployment descriptor (sun-ejb-jar.xml) provides the
following elements to store the EJB 1.1 finder method settings:

query-filter

query-params

query-variables

query-ordering

The bean developer uses these elements to construct a query. When the finder method that uses
these elements executes, the values of these elements are used to execute a query in the database.
The objects from the JDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ejbFind method.

The JDO specification, JSR 12 (http://jcp.org/en/jsr/detail?id=12), provides a
comprehensive description of JDOQL. The following information summarizes the elements
used to define EJB 1.1 finders.

Query Filter Expression
The filter expression is a String containing a Boolean expression evaluated for each instance of
the candidate class. If the filter is not specified, it defaults to true. Rules for constructing valid
expressions follow the Java language, with the following differences:
■ Equality and ordering comparisons between primitives and instances of wrapper classes are

valid.
■ Equality and ordering comparisons of Date fields and Date parameters are valid.
■ Equality and ordering comparisons of String fields and String parameters are valid.
■ White space (non-printing characters space, tab, carriage return, and line feed) is a

separator and is otherwise ignored.
■ The following assignment operators are not supported.

■ Comparison operators such as =, +=, and so on
■ Pre- and post-increment
■ Pre- and post-decrement

■ Methods, including object construction, are not supported, except for these methods.

Collection.contains(Object o)

Collection.isEmpty()

Configuring Queries for 1.1 Finders

Chapter 10 • Using Container-Managed Persistence 211

http://jcp.org/en/jsr/detail?id=12

String.startsWith(String s)

String.endsWith(String e)

In addition, the Communications Server supports the following nonstandard JDOQL
methods.

String.like(String pattern)

String.like(String pattern, char escape)

String.substring(int start, int length)

String.indexOf(String str)

String.indexOf(String str, int start)

String.length()

Math.abs(numeric n)

Math.sqrt(double d)

■ Navigation through a null-valued field, which throws a NullPointerException, is treated as
if the sub-expression returned false.

Note – Comparisons between floating point values are by nature inexact. Therefore, equality
comparisons (== and !=) with floating point values should be used with caution. Identifiers in
the expression are considered to be in the name space of the candidate class, with the addition of
declared parameters and variables. As in the Java language, this is a reserved word, and refers
to the current instance being evaluated.

The following expressions are supported.
■ Relational operators (==, !=, >, <, >=, <=)
■ Boolean operators (&, &&, |, ||, ~, !)
■ Arithmetic operators (+, -, *, /)
■ String concatenation, only for String + String
■ Parentheses to explicitly mark operator precedence
■ Cast operator
■ Promotion of numeric operands for comparisons and arithmetic operations

The rules for promotion follow the Java rules extended by BigDecimal, BigInteger, and numeric
wrapper classes. See the numeric promotions of the Java language specification.

Query Parameters
The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Query Variables
The type declarations follow the Java syntax for local variable declarations.

Configuring Queries for 1.1 Finders

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009212

JDOQL Examples
This section provides a few query examples.

Example 1
The following query returns all players called Michael. It defines a filter that compares the name
field with a string literal:

name == "Michael"

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>

<method-name>findPlayerByName</method-name>

<query-filter>name == "Michael"</query-filter>
</finder>

Example 2
This query returns all products in a specified price range. It defines two query parameters which
are the lower and upper bound for the price: double low, double high. The filter compares the
query parameters with the price field:

low < price && price < high

Query ordering is set to price ascending.

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>

<method-name>findInRange</method-name>

<query-params>double low, double high</query-params>

<query-filter>low < price && price < high</query-filter>

<query-ordering>price ascending</query-ordering>

</finder>

Example 3
This query returns all players having a higher salary than the player with the specified name. It
defines a query parameter for the name java.lang.String name. Furthermore, it defines a
variable to which the player’s salary is compared. It has the type of the persistence capable class
that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState player

The filter compares the salary of the current player denoted by the this keyword with the salary
of the player with the specified name:

Configuring Queries for 1.1 Finders

Chapter 10 • Using Container-Managed Persistence 213

(this.salary > player.salary) && (player.name == name)

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>

<method-name>findByHigherSalary</method-name>

<query-params>java.lang.String name</query-params>

<query-filter>

(this.salary > player.salary) && (player.name == name)

</query-filter>

<query-variables>

mypackage.PlayerEJB_170160966_JDOState player

</query-variables>

</finder>

CMP Restrictions and Optimizations
This section discusses restrictions and performance optimizations that pertain to using CMP.
■ “Disabling ORDER BY Validation” on page 214
■ “Setting the Heap Size on DB2” on page 215
■ “Eager Loading of Field State” on page 215
■ “Restrictions on Remote Interfaces” on page 215
■ “PostgreSQL Case Insensitivity” on page 215
■ “No Support for lock-when-loaded on Sybase” on page 216
■ “Sybase Finder Limitation” on page 216
■ “Date and Time Fields” on page 216
■ “Set RECURSIVE_TRIGGERS to false on MSSQL” on page 217
■ “MySQL Database Restrictions” on page 217

Disabling ORDER BY Validation
EJB QL as defined in the EJB 2.1 Specification defines certain restrictions for the SELECT clause
of an ORDER BY query (see section 11.2.8 ORDER BY Clause). This ensures that a query does
not order by a field that is not returned by the query. By default, the EJB QL compiler checks the
above restriction and throws an exception if the query does not conform.

However, some databases support SQL statements with an ORDER BY column that is not
included in the SELECT clause. To disable the validation of the ORDER BY clause against the
SELECT clause, set the DISABLE_ORDERBY_VALIDATION JVM option as follows:

asadmin create-jvm-options --user adminuser

-Dcom.sun.jdo.spi.persistence.support.ejb.ejbqlc.DISABLE_ORDERBY_VALIDATION=true

The DISABLE_ORDERBY_VALIDATION option is set to false by default. Setting it to true results in
a non-portable module or application.

CMP Restrictions and Optimizations

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009214

Setting the Heap Size on DB2
On DB2, the database configuration parameter APPLHEAPSZ determines the heap size. If you are
using the Sun GlassFish or DataDirect database driver, set this parameter to at least 2048 for
CMP. For more information, see http://publib.boulder.ibm.com/
infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.htm.

Eager Loading of Field State
By default, the EJB container loads the state for all persistent fields (excluding relationship,
BLOB, and CLOB fields) before invoking the ejbLoad method of the abstract bean. This
approach might not be optimal for entity objects with large state if most business methods
require access to only parts of the state.

Use the fetched-with element in sun-cmp-mappings.xml for fields that are used infrequently.
See “fetched-with” in Sun GlassFish Communications Server 2.0 Application Deployment Guide.

Restrictions on Remote Interfaces
The following restrictions apply to the remote interface of an EJB 2.1 bean that uses CMP:

■ Do not expose the get and set methods for CMR fields or the persistence collection classes
that are used in container-managed relationships through the remote interface of the bean.
However, you are free to expose the get and set methods that correspond to the CMP fields
of the entity bean through the bean’s remote interface.

■ Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

■ Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface, and
can be included in the client EJB JAR file.

PostgreSQL Case Insensitivity
Case-sensitive behavior cannot be achieved for PostgresSQL databases. PostgreSQL databases
internally convert all names to lower case, which makes the following workarounds necessary:

■ In the CMP 2.1 runtime, PostgreSQL table and column names are not quoted, which makes
these names case insensitive.

■ Before running the capture-schema command on a PostgreSQL database, make sure table
and column names are lower case in the sun-cmp-mappings.xml file.

CMP Restrictions and Optimizations

Chapter 10 • Using Container-Managed Persistence 215

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.htm
http://docs.sun.com/doc/821-0195/beatc?a=view

No Support for lock-when-loadedon Sybase
For EJB 2.1 beans, the lock-when-loaded consistency level is implemented by placing update
locks on the data corresponding to a bean when the data is loaded from the database. There is
no suitable mechanism available on Sybase databases to implement this feature. Therefore, the
lock-when-loaded consistency level is not supported on Sybase databases. See “consistency” in
Sun GlassFish Communications Server 2.0 Application Deployment Guide.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

To avoid this error, make sure the finder method input is less than 255 characters.

Date and Time Fields
If a field type is a Java date or time type (java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp), make sure that the field value exactly matches the value in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())

BeanA.create(myDate, ...);

For some databases, this code results in only the year, month, and date portion of the field value
being stored in the database. Later if the client tries to find this bean by primary key as follows,
the bean is not found in the database because the value does not match the one that is stored in
the database.

myBean = BeanA.findByPrimaryKey(myDate);

Similar problems can happen if the database truncates the timestamp value while storing it, or if
a custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date, java.sql.Date,
and java.sql.Time are mapped to Oracle’s DATE data type. Fields of type
java.sql.Timestamp are mapped to Oracle’s TIMESTAMP(9) data type.

CMP Restrictions and Optimizations

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009216

http://docs.sun.com/doc/821-0195/beasd?a=view
http://docs.sun.com/doc/821-0195/beasd?a=view

Set RECURSIVE_TRIGGERS to falseon MSSQL
For version consistency triggers on MSSQL, the property RECURSIVE_TRIGGERS must be set to
false, which is the default. If set to true, triggers throw a java.sql.SQLException.

Set this property as follows:

EXEC sp_dboption ’database-name’, ’recursive triggers’, ’FALSE’

go

You can test this property as follows:

SELECT DATABASEPROPERTYEX(’database-name’, ’IsRecursiveTriggersEnabled’)

go

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the Communications
Server for persistence.

■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.

■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

■ The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

■ The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

CMP Restrictions and Optimizations

Chapter 10 • Using Container-Managed Persistence 217

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ Change the trigger create format from the following:

CREATE TRIGGER T_UNKNOWNPKVC1

BEFORE UPDATE ON UNKNOWNPKVC1

FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)

BEGIN

:NEW.VERSION := :OLD.VERSION + 1;

END;

/

To the following:

DELIMITER |

CREATE TRIGGER T_UNKNOWNPKVC1

BEFORE UPDATE ON UNKNOWNPKVC1

FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)

BEGIN

:NEW.VERSION := :OLD.VERSION + 1;

END

|

DELIMITER ;

For more information, see http://dev.mysql.com/doc/mysql/en/create-trigger.html.
■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an

example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

CMP Restrictions and Optimizations

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009218

http://forums.mysql.com/read.php?39,31326,31404
http://dev.mysql.com/doc/mysql/en/create-trigger.html

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and http://dev.mysql.com/doc/mysql/

en/innodb-foreign-key-constraints.html.
■ When an SQL script has foreign key constraints defined, capture-schema fails to capture

the table information correctly. To work around the problem, remove the constraints and
then run capture-schema. Here is an example that illustrates the issue.

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,

OWNER VARCHAR(256),

FK_FOR_ACCESSPRIVILEGES VARCHAR(256),

CONSTRAINT FK_ACCESSPRIVILEGE FOREIGN KEY (FK_FOR_ACCESSPRIVILEGES)

REFERENCES ACCESSPRIVILEGESBEANTABLE (ROOT)

) ENGINE=InnoDB;

To resolve this issue, change the table creation script to the following:

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,

OWNER VARCHAR(256),

FK_FOR_ACCESSPRIVILEGES VARCHAR(256)

) ENGINE=InnoDB;

CMP Restrictions and Optimizations

Chapter 10 • Using Container-Managed Persistence 219

http://bugs.mysql.com/bug.php?id=12449
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

220

Developing Java Clients

This chapter describes how to develop, assemble, and deploy Java clients in the following
sections:

■ “Introducing the Application Client Container” on page 221
■ “Developing Clients Using the ACC” on page 223

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and other files
that are required for and distributed with Java client programs that execute in their own Java
Virtual Machine (JVM). The ACC manages the execution of Java EE application client
components (application clients), which are used to access a variety of Java EE services (such as
JMS resources, EJB components, web services, security, and so on.) from a JVM outside the Sun
GlassFish Communications Server.

The ACC communicates with the Communications Server using RMI-IIOP protocol and
manages the details of RMI-IIOP communication using the client ORB that is bundled with it.
Compared to other Java EE containers, the ACC is lightweight.

For information about debugging application clients, see “Application Client Debugging” on
page 71.

Note – Interoperability between application clients and Communications Servers running under
different major versions is not supported.

ACC Security
The ACC determines when authentication is needed. This typically occurs when the client
refers to an EJB component or when annotations in the client's main class trigger injection

11C H A P T E R 1 1

221

which, in turn, requires contact with the Communications Server's naming service. To
authenticate the end user, the ACC prompts for any required information, such as a username
and password. The ACC itself provides a very simple dialog box to prompt for and read these
values.

The ACC integrates with the Communications Server’s authentication system. It also supports
SSL (Secure Socket Layer)/IIOP if configured and when necessary; see “Using RMI/IIOP Over
SSL” on page 232.

You can provide an alternate implementation to gather authentication information, tailored to
the needs of the application client. To do so, include the class to perform these duties in the
application client and identify the fully-qualified name of this class in the callback-handler
element of the application-client.xml descriptor for the client. The ACC uses this class
instead of its default class for asking for and reading the authentication information. The class
must implement the javax.security.auth.callback.CallbackHandler interface. See the
Java EE specification, section 9.2, Application Clients: Security, for more details.

Application clients can use “Programmatic Login” on page 107.

For more information about security for application clients, see the Java EE 5 Specification,
Section EE.9.7, “Java EE Application Client XML Schema.”

ACC Naming
The client container enables the application clients to use the Java Naming and Directory
Interface (JNDI) to look up Java EE services (such as JMS resources, EJB components, web
services, security, and so on.) and to reference configurable parameters set at the time of
deployment.

ACC Annotation
Annotation is supported for application clients. For more information, see section 9.4 of the
Java EE 5 Specification and “Java EE Standard Annotation” in Sun GlassFish Communications
Server 2.0 Application Deployment Guide.

Java Web Start
Java Web Start allows your application client to be easily launched and automatically
downloaded and updated. It is enabled for all application clients by default. For more
information, see “Using Java Web Start” on page 226.

Introducing the Application Client Container

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009222

http://docs.sun.com/doc/821-0195/gatsc?a=view
http://docs.sun.com/doc/821-0195/gatsc?a=view

Developing Clients Using the ACC
This section describes the procedure to develop, assemble, and deploy client applications using
the ACC. This section describes the following topics:
■ “To Access an EJB Component From an Application Client” on page 223
■ “To Access a JMS Resource From an Application Client” on page 225
■ “Using Java Web Start” on page 226
■ “Running an Application Client Using the appclient Script” on page 232
■ “Using the package-appclient Script” on page 232
■ “The client.policy File” on page 232
■ “Using RMI/IIOP Over SSL” on page 232
■ “Connecting to a Remote EJB Module Through a Firewall” on page 234

▼ To Access an EJB Component From an Application
Client

In your client code, reference the EJB component by using an @EJB annotation or by looking up
the JNDI name as defined in the ejb-jar.xml file.
For more information about annotations in application clients, see section 9.4 of the Java EE 5
Specification.

For more information about naming and lookups, see “Accessing the Naming Context” on
page 277.

If load balancing is enabled as in Step 7 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:
corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

Define the @EJB annotations or the ejb-ref elements in the application-client.xml file.
Define the corresponding ejb-ref elements in the sun-application-client.xml file.
For more information on the application-client.xml file, see the Java EE 5 Specification,
Section EE.9.7, “Java EE Application Client XML Schema.”

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide. For a general explanation of how to map JNDI names using reference
elements, see “Mapping References” on page 282.

Deploy the application client and EJB component together in an application.
For more information on deployment, see the Sun GlassFish Communications Server 2.0
Application Deployment Guide. To get the client JAR file, use the --retrieve option of the
asadmin deploy command.

1

2

3

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 223

http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

To retrieve the stubs and ties whether or not you requested their generation during deployment,
use the asadmin get-client-stubs command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Ensure that the client JAR file includes the following files:

■ A Java class to access the bean.
■ application-client.xml - (optional) Java EE application client deployment descriptor.

For information on the application-client.xml file, see the Java EE 5 Specification,
Section EE.9.7, “Java EE Application Client XML Schema.”

■ sun-application-client.xml - (optional) Communications Server specific client
deployment descriptor. For information on the sun-application-client.xml file, see
“The sun-application-client.xml file” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

■ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

Prepare the client machine. This step is not needed for Java Web Start.

If you are using the appclient script, either package the application client to run on a remote
client system using the package-appclient script, or copy the following JAR files to the client
machine manually and include them in the classpath on the client side:

■ appserv-rt.jar - available at as-install/lib
■ javaee.jar - available at as-install/lib
■ The client JAR file

For more information, see “Using the package-appclient Script” on page 232.

To access EJB components that are residing in a remote system, make the following changes to
the sun-acc.xml file. This step is not needed for Java Web Start.

■ Define the target-server element’s address attribute to reference the remote server
machine. See “target-server” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

■ Define the target-server element’s port attribute to reference the ORB port on the remote
server.

This information can be obtained from the domain.xml file on the remote system. For more
information on domain.xml file, see the Sun GlassFish Communications Server 2.0
Administration Reference.

To set up load balancing and failover of remote EJB references, define at least two
target-server elements in the sun-acc.xml file. This step is not needed for Java Web Start.

4

5

6

7

Developing Clients Using the ACC

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009224

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaye?a=view
http://docs.sun.com/doc/821-0195/beaye?a=view
http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0194

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

If the Communications Server instance on which the application client is deployed participates
in a cluster, the ACC finds all currently active IIOP endpoints in the cluster automatically.
However, a client should have at least two endpoints specified for bootstrapping purposes, in
case one of the endpoints has failed.

The target-server elements specify one or more IIOP endpoints used for load balancing. The
address attribute is an IPv4 address or host name, and the port attribute specifies the port
number. See “client-container” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

Run the application client.
See “Using Java Web Start” on page 226 or “Running an Application Client Using the appclient
Script” on page 232.

▼ To Access a JMS Resource From an Application Client
Create a JMS client.
For detailed instructions on developing a JMS client, see “Chapter 33: The Java Message Service
API” in the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/
index.html).

Next, configure a JMS resource on the Communications Server.
For information on configuring JMS resources, see “Creating JMS Resources: Destinations and
Connection Factories” on page 290.

Define the @Resource or @Resources annotations or the resource-ref elements in the
application-client.xml file. Define the corresponding resource-ref elements in the
sun-application-client.xml file.
For more information on the application-client.xml file, see the Java EE 5 Specification,
Section EE.9.7, “Java EE Application Client XML Schema.”

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide. For a general explanation of how to map JNDI names using reference
elements, see “Mapping References” on page 282.

Ensure that the client JAR file includes the following files:

8

1

2

3

4

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 225

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0195/bearr?a=view
http://docs.sun.com/doc/821-0195/bearr?a=view
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view

■ A Java class to access the resource.
■ application-client.xml - (optional) Java EE application client deployment descriptor.

For information on the application-client.xml file, see the Java EE 5 Specification,
Section EE.9.7, “Java EE Application Client XML Schema.”

■ sun-application-client.xml - (optional) Communications Server specific client
deployment descriptor. For information on the sun-application-client.xml file, see
“The sun-application-client.xml file” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

■ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

Prepare the client machine. This step is not needed for Java Web Start.

If you are using the appclient script, either package the application client to run on a remote
client system using the package-appclient script, or copy the following JAR files to the client
machine manually and include them in the classpath on the client side:

■ appserv-rt.jar - available at as-install/lib
■ javaee.jar - available at as-install/lib
■ imqjmsra.jar - available at as-install/lib/install/aplications/jmsra
■ The client JAR file

For more information, see “Using the package-appclient Script” on page 232.

Run the application client.

See “Using Java Web Start” on page 226 or “Running an Application Client Using the appclient
Script” on page 232.

Using Java Web Start
Java Web Start allows your application client to be easily launched and automatically
downloaded and updated. General information about Java Web Start is available at
http://java.sun.com/products/javawebstart/reference/api/index.html.

Java Web Start is discussed in the following topics:

■ “Enabling and Disabling Java Web Start” on page 227
■ “Downloading and Launching an Application Client” on page 227
■ “The Application Client URL” on page 228
■ “Signing JAR Files Used in Java Web Start” on page 229
■ “Error Handling” on page 231
■ “Vendor Icon, Splash Screen, and Text” on page 231

5

6

Developing Clients Using the ACC

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009226

http://docs.sun.com/doc/821-0195/beaqo?a=view
http://docs.sun.com/doc/821-0195/beaqo?a=view
http://java.sun.com/products/javawebstart/reference/api/index.html

Enabling and Disabling Java Web Start
Java Web Start is enabled for all application clients by default.

The application developer or deployer can specify that Java Web Start is always disabled for an
application client by setting the value of the eligible element to false in the
sun-application-client.xml file. See the Sun GlassFish Communications Server 2.0
Application Deployment Guide.

The Communications Server administrator can disable Java Web Start for a previously
deployed eligible application client using the asadmin set command.

To disable Java Web Start for all eligible application clients in an application, use the following
command:

asadmin set --user adminuser

domain1.applications.j2ee-application.app-name.java-web-start-enabled="false"

To disable Java Web Start for a stand-alone eligible application client, use the following
command:

asadmin set --user adminuser

domain1.applications.appclient-module.module-name.java-web-start-enabled="false"

Setting java-web-start-enabled="true" re-enables Java Web Start for an eligible application
client. For more information about the asadmin set command, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Downloading and Launching an Application Client
If Java Web Start is enabled for your deployed application client, you can launch it for testing.
Simply click on the Launch button next to the application client or application's listing on the
App Client Modules page in the Admin Console.

On other machines, you can download and launch the application client using Java Web Start in
the following ways:

■ Using a web browser, directly enter the URL for the application client. See “The Application
Client URL” on page 228.

■ Click on a link to the application client from a web page.
■ Use the Java Web Start command javaws, specifying the URL of the application client as a

command line argument.
■ If the application has previously been downloaded using Java Web Start, you have

additional alternatives.
■ Use the desktop icon that Java Web Start created for the application client. When Java

Web Start downloads an application client for the first time it asks you if such an icon
should be created.

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 227

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

■ Use the Java Web Start control panel to launch the application client.

When you launch an application client, Java Web Start contacts the server to see if a newer
client version is available. This means you can redeploy an application client without having to
worry about whether client machines have the latest version.

The Application Client URL
The default URL for an application or module generally is as follows:

http://host:port/context-root

The default URL for a stand-alone application client module is as follows:

http://host:port/appclient-module-id

The default URL for an application client module embedded within an application is as follows.
Note that the relative path to the application client JAR file is included.

http://host:port/application-id/appclient-path

If the context-root, appclient-module-id, or application-id is not specified during deployment,
the name of the JAR or EAR file without the extension is used. If the application client module
or application is not in JAR or EAR file format, an appclient-module-id or application-id is
generated.

Regardless of how the context-root or id is determined, it is written to the server log. For details
about naming, see “Naming Standards” in Sun GlassFish Communications Server 2.0
Application Deployment Guide.

To set a different URL for an application client, use the context-root subelement of the
java-web-start-access element in the sun-application-client.xml file. This overrides the
appclient-module-id or application-id. See Sun GlassFish Communications Server 2.0
Application Deployment Guide.

You can also pass arguments to the ACC or to the application client's main method as query
parameters in the URL. If multiple application client arguments are specified, they are passed in
the order specified.

A question mark separates the context root from the arguments. Ampersands (&) separate the
arguments and their values. Each argument and each value must begin with arg=. Here is an
example URL with a -color argument for a stand-alone application client. The -color
argument is passed to the application client's main method.

http://localhost:8080/testClient?arg=-color&arg=red

Developing Clients Using the ACC

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009228

http://docs.sun.com/doc/821-0195/beacz?a=view
http://docs.sun.com/doc/821-0195/beacz?a=view
http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

Note – If you are using the javaws URL command to launch Java Web Start with a URL that
contains arguments, enclose the URL in double quotes (") to avoid breaking the URL at the
ampersand (&) symbol.

Ideally, you should build your production application clients with user-friendly interfaces that
collect information which might otherwise be gathered as command-line arguments. This
minimizes the degree to which users must customize the URLs that launch application clients
using Java Web Start. Command-line argument support is useful in a development
environment and for existing application clients that depend on it.

Signing JAR Files Used in Java Web Start
Java Web Start enforces a security sandbox. By default it grants any application, including
application clients, only minimal privileges. Because Java Web Start applications can be so
easily downloaded, Java Web Start provides protection from potentially harmful programs that
might be accessible over the network. If an application requires a higher privilege level than the
sandbox permits, the code that needs privileges must be in a JAR file that was signed. When Java
Web Start downloads such a signed JAR file, it displays information about the certificate that
was used to sign the JAR, and it asks you whether you want to trust that signed code. If you
agree, the code receives elevated permissions and runs. If you reject the signed code, Java Web
Start does not start the downloaded application.

The Communications Server serves two types of signed JAR files in response to Java Web Start
requests. One type is a JAR file installed as part of the Communications Server, which starts an
application client during a Java Web Start launch: as-install/lib/appserv-jwsacc.jar.

The other type is a generated application client JAR file. As part of deployment, the
Communications Server generates a new application client JAR file that contains classes,
resources, and descriptors needed to run the application client on end-user systems. When you
deploy an application with the asadmin deploy command's --retrieve option, use the
asadmin get-client-stubs command, or select the Generate RMIStubs option from the EJB
Modules deployment page in the Admin Console, this is the JAR file retrieved to your system.
Because application clients need access beyond the minimal sandbox permissions to work in
the Java Web Start environment, the generated application client JAR file must be signed before
it can be downloaded to and executed on an end-user system.

A JAR file can be signed automatically or manually. The following sections describe the ways of
signing JAR files.

■ “Automatically Signing JAR Files” on page 230
■ “Manually Signing appserv-jwsacc.jar” on page 230
■ “Manually Signing the Generated Application Client JAR File” on page 230

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 229

Automatically Signing JAR Files
The Communications Server automatically creates a signed version of the required JAR file if
none exists. When a Java Web Start request for the appserv-jwsacc.jar file arrives, the
Communications Server looks for domain-dir/java-web-start/appserv-jwsacc.jar. When
a request for an application's generated application client JAR file arrives, the Communications
Server looks in the directory domain-dir/java-web-start/app-name for a file with the same
name as the generated JAR file created during deployment.

In either case, if the requested signed JAR file is absent or older than its unsigned counterpart,
the Communications Server creates a signed version of the JAR file automatically and deposits
it in the relevant directory. Whether the Communications Server just signed the JAR file or not,
it serves the file from the domain-dir/java-web-start directory tree in response to the Java
Web Start request.

To sign these JAR files, the Communications Server uses its self-signed certificate. When you
create a new domain, either by installing the Communications Server or by using the asadmin
create-domain command, the Communications Server creates a self-signed certificate and
adds it to the domain's key store.

A self-signed certificate is generally untrustworthy because no certification authority vouches
for its authenticity. The automatic signing feature uses the same certificate to create all required
signed JAR files. To sign different JAR files with different certificates, do the signing manually.

Manually Signing appserv-jwsacc.jar

You can sign the appserv-jwsacc.jar file manually any time after you have installed the
Communications Server. Copy the unsigned file from as-install/lib to a different working
directory and use the jarsigner command provided with the JDK to create a signed version of
exactly the same name using your certificate. Then manually copy the signed file into
domain-dir/java-web-start. From then on, the Communications Server serves the JAR file
signed with your certificate whenever a Java Web Start request asks that domain for the
appserv-jwsacc.jar file. Note that you can sign each domain's appserv-jwsacc.jar file
differently.

Remember that if you create a new domain and do not sign appserv-jwsacc.jar manually for
that domain, the Communications Server creates an auto-signed version of it for use by the new
domain. Also, if you create a domain-specific signed appserv-jwsacc.jar, delete the domain,
and then create a new domain with the same name as the just-deleted domain, the
Communications Server does not remember the earlier signed appserv-jwsacc.jar. You must
recreate the manually signed version.

Manually Signing the Generated Application Client JAR File
You can sign the generated application client JAR file for an application any time after you have
deployed the application. As you deploy the application, you can specify the asadmin deploy
command's --retrieve option or select the Generate RMIStubs option on the EJB Modules

Developing Clients Using the ACC

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009230

deployment page in the Admin Console. Doing either of these tasks returns a copy of the
generated application client JAR file to a directory you specify. Or, after you have deployed an
application, you can download the generated application client JAR file using the asadmin
get-client-stubs command.

Once you have a copy of the generated application client JAR file, you can sign it using the
jarsigner tool and your certificate. Then place the signed JAR file in the
domain-dir/java-web-start/app-name directory. You do not need to restart the server to
start using the new signed JAR file.

Error Handling
When an application client is launched using Java Web Start, any error that the application
client logic does not catch and handle is written to System.err and displayed in a dialog box.
This display appears if an error occurs even before the application client logic receives control.
It also appears if the application client code does not catch and handle errors itself.

Vendor Icon, Splash Screen, and Text
To specify a vendor-specific icon, splash screen, text string, or a combination of these for Java
Web Start download and launch screens, use the vendor element in the
sun-application-client.xml file. The complete format of this element's data is as follows:

<vendor>icon-image-URI::splash-screen-image-URI::vendor-text</vendor>

The following example vendor element contains an icon, a splash screen, and a text string:

<vendor>images/icon.jpg::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains an icon and a text string:

<vendor>images/icon.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains a splash screen and a text string; note the initial
double colon:

<vendor>::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains only a text string:

<vendor>MyCorp, Inc.</vendor>

The default value is the text string Application Client.

For more information about the sun-application-client.xml file, see the Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 231

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

Running an Application Client Using the appclient
Script
To run an application client that does not have Java Web Start enabled, you can launch the ACC
using the appclient script. This is optional. This script is located in the as-install/bin
directory. For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Using the package-appclient Script
You can package an application client that does not have Java Web Start enabled into a single
appclient.jar file using the package-appclient script. This is optional. This script is located
in the as-install/bin directory. For details, see the Sun GlassFish Communications Server 2.0
Reference Manual.

The client.policy File
The client.policy file is the J2SE policy file used by the application client. Each application
client has a client.policy file. The default policy file limits the permissions of Java EE
deployed application clients to the minimal set of permissions required for these applications to
operate correctly. If an application client requires more than this default set of permissions, edit
the client.policy file to add the custom permissions that your application client needs. Use
the J2SE standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, see http://java.sun.com/docs/books/
tutorial/security1.2/tour2/index.html.

For more information about the permissions you can set in the client.policy file, see
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html.

Using RMI/IIOP Over SSL
You can configure RMI/IIOP over SSL in two ways: using a username and password, or using a
client certificate.

To use a username and password, configure the ior-security-config element in the
sun-ejb-jar.xml file. The following configuration establishes SSL between an application
client and an EJB component using a username and password. The user has to login to the ACC
using either the sun-acc.xml mechanism or the “Programmatic Login” on page 107
mechanism.

<ior-security-config>

<transport-config>

<integrity>required</integrity>

Developing Clients Using the ACC

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009232

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html

<confidentiality>required</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>none</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>username_password</auth-method>

<realm>default</realm>

<required>true</required>

</as-context>

<sas-context>

<caller-propagation>none</caller-propagation>

</sas-context>

</ior-security-config>

For more information about the sun-ejb-jar.xml and sun-acc.xml files, see the Sun GlassFish
Communications Server 2.0 Application Deployment Guide.

To use a client certificate, configure the ior-security-config element in the
sun-ejb-jar.xml file. The following configuration establishes SSL between an application
client and an EJB component using a client certificate.

<ior-security-config>

<transport-config>

<integrity>required</integrity>

<confidentiality>required</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>required</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>none</auth-method>

<realm>default</realm>

<required>false</required>

</as-context>

<sas-context>

<caller-propagation>none</caller-propagation>

</sas-context>

</ior-security-config>

To use a client certificate, you must also specify the system properties for the keystore and
truststore to be used in establishing SSL. To use SSL with the Application Client Container
(ACC), you need to set VMARGS environment variable in one of the following ways:
■ Set the environment variable VMARGS in the shell. For example, in the ksh or bash shell, the

command to set this environment variable would be as follows:

export VMARGS="-Djavax.net.ssl.keyStore=${keystore.db.file}
-Djavax.net.ssl.trustStore=${truststore.db.file}

-Djavax.net.ssl.keyStorePass word=${ssl.password}

-Djavax.net.ssl.trustStorePassword=${ssl.password}"

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 233

http://docs.sun.com/doc/821-0195
http://docs.sun.com/doc/821-0195

■ Set the env element in the asant script (see Chapter 3, “The asant Utility”). For example:

<target name="runclient">
<exec executable="${S1AS_HOME}/bin/appclient">
<env key="VMARGS" value=" -Djavax.net.ssl.keyStore=${keystore.db.file}

-Djavax.net.ssl.trustStore=${truststore.db.file}

-Djavax.net.ssl.keyStorePasword=${ssl.password}

-Djavax.net.ssl.trustStorePassword=${ssl.password}"/>
<arg value="-client"/>
<arg value="${appClient.jar}"/>

</exec>

</target>

Connecting to a Remote EJB Module Through a
Firewall
To deploy and run an application client that connects to an EJB module on a Communications
Server instance that is behind a firewall, you must set ORB Virtual Address Agent
Implementation (ORBVAA) options. Use the asadmin create-jvm-options command as
follows:

asadmin create-jvm-options --user adminuser -Dcom.sun.corba.ee.ORBVAAHost=public-IP-adress
asadmin create-jvm-options --user adminuser -Dcom.sun.corba.ee.ORBVAAPort=public-port
asadmin create-jvm-options --user adminuser

-Dcom.sun.corba.ee.ORBUserConfigurators.com.sun.corba.ee.impl.plugin.hwlb.VirtualAddressAgentImpl=x

Set the ORBVAAHost and ORBVAAPort options to the host and port of the public address. The
ORBUserConfigurators option tells the ORB to create an instance of the
VirtualAddressAgentImpl class and invoke the configure method on the resulting object,
which must implement the com.sun.corba.ee.spi.orb.ORBConfigurator interface. The
ORBUserConfigurators value doesn't matter. Together, these options create an ORB that in
turn creates Object references (the underlying implementation of remote EJB references)
containing the public address, while the ORB listens on the private address specified for the
IIOP port in the Communications Server configuration.

Developing Clients Using the ACC

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009234

Developing Connectors

This chapter describes Sun GlassFish Communications Server support for the J2EETM 1.5
Connector Architecture (CA).

The J2EE Connector Architecture provides a Java solution to the problem of connectivity
between multiple application servers and existing enterprise information systems (EISs). By
using the J2EE Connector architecture, EIS vendors no longer need to customize their product
for each application server. Application server vendors who conform to the J2EE Connector
architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms refer to
a resource adapter module that is developed in conformance with the J2EE Connector
Specification.

For more information about connectors, see J2EE Connector Architecture
(http://java.sun.com/j2ee/connector/) and “Chapter 37: J2EE Connector Architecture” in
the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

For connector examples, see http://developers.sun.com/prodtech/appserver/reference/
techart/as8_connectors.

This chapter includes the following topics:

■ “Connector Support in the Communications Server” on page 236
■ “Deploying and Configuring a Stand-Alone Connector Module” on page 237
■ “Redeploying a Stand-Alone Connector Module” on page 238
■ “Deploying and Configuring an Embedded Resource Adapter” on page 238
■ “Advanced Connector Configuration Options” on page 239
■ “Inbound Communication Support” on page 242
■ “Configuring a Message Driven Bean to Use a Resource Adapter” on page 243

12C H A P T E R 1 2

235

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors

Connector Support in the Communications Server
The Communications Server supports the development and deployment of resource adapters
that are compatible with Connector specification (and, for backward compatibility, the
Connector 1.0 specification).

The Connector 1.0 specification defines the outbound connectivity system contracts between
the resource adapter and the Communications Server. The Connector 1.5 specification
introduces major additions in defining system level contracts between the Communications
Server and the resource adapter with respect to the following:
■ Inbound connectivity from an EIS - Defines the transaction and message inflow system

contracts for achieving inbound connectivity from an EIS. The message inflow contract also
serves as a standard message provider pluggability contract, thereby allowing various
providers of messaging systems to seamlessly plug in their products with any application
server that supports the message inflow contract.

■ Resource adapter life cycle management and thread management - These features are
available through the lifecycle and work management contracts.

Connector Architecture for JMS and JDBC
In the Admin Console, connector, JMS, and JDBC resources are handled differently, but they
use the same underlying Connector architecture. In the Communications Server, all
communication to an EIS, whether to a message provider or an RDBMS, happens through the
Connector architecture. To provide JMS infrastructure to clients, the Communications Server
uses the Sun GlassFish Message Queue software. To provide JDBC infrastructure to clients, the
Communications Server uses its own JDBC system resource adapters. The application server
automatically makes these system resource adapters available to any client that requires them.

For more information about JMS in the Communications Server, see Chapter 18, “Using the
Java Message Service.” For more information about JDBC in the Communications Server, see
Chapter 15, “Using the JDBC API for Database Access.”

Connector Configuration
The Communications Server does not need to use sun-ra.xml, which previous
Communications Server versions used, to store server-specific deployment information inside
a Resource Adapter Archive (RAR) file. (However, the sun-ra.xml file is still supported for
backward compatibility.) Instead, the information is stored in the server configuration. As a
result, you can create multiple connector connection pools for a connection definition in a
functional resource adapter instance, and you can create multiple user-accessible connector
resources (that is, registering a resource with a JNDI name) for a connector connection pool. In
addition, dynamic changes can be made to connector connection pools and the connector
resource properties without restarting the Communications Server.

Connector Support in the Communications Server

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009236

Deploying and Configuring a Stand-Alone Connector Module
You can deploy a stand-alone connector module using the Admin Console or the asadmin
command. For information about using the Admin Console, click the Help button in the
Admin Console. For information about using the asadmin command, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Deploying a stand-alone connector module allows multiple deployed Java EE applications to
share the connector module. A resource adapter configuration is automatically created for the
connector module.

▼ To Deploy and Configure a Stand-Alone Connector
Module
Deploy the connector module in one of the following ways.

■ In the Admin Console, open the Applications component and select Connector Modules.
When you deploy the connector module, a resource adapter configuration is automatically
created for the connector module.

■ Use the asadmin deploy or asadmin deploydir command. To override the default
configuration properties of a resource adapter, if necessary, use the asadmin
create-resource-adapter-config command.

Configure connector connection pools for the deployed connector module in one of the
following ways:

■ In the Admin Console, open the Resources component, select Connectors, and select
Connector Connection Pools.

■ Use the asadmin create-connector-connection-pool command.

Configure connector resources for the connector connection pools in one of the following ways.

■ In the Admin Console, open the Resources component, select Connectors, and select
Connector Resources.

■ Use the asadmin create-connector-resource command.

This associates a connector resource with a JNDI name.

Create an administered object for an inbound resource adapter, if necessary, in one of the
following ways:

■ In the Admin Console, open the Resources component, select Connectors, and select
Admin Object Resources.

■ Use the asadmin create-admin-object command.

1

2

3

4

Deploying and Configuring a Stand-Alone Connector Module

Chapter 12 • Developing Connectors 237

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Redeploying a Stand-Alone Connector Module
Redeployment of a connector module maintains all connector connection pools, connector
resources, and administered objects defined for the previously deployed connector module.
You need not reconfigure any of these resources.

However, you should redeploy any dependent modules. A dependent module uses or refers to a
connector resource of the redeployed connector module. Redeployment of a connector module
results in the shared class loader reloading the new classes. Other modules that refer to the old
resource adapter classes must be redeployed to gain access to the new classes. For more
information about class loaders, see Chapter 2, “Class Loaders.”

During connector module redeployment, the server log provides a warning indicating that all
dependent applications should be redeployed. Client applications or application components
using the connector module’s resources may throw class cast exceptions if dependent
applications are not redeployed after connector module redeployment.

To disable automatic redeployment, set the --force option to false. In this case, if the
connector module has already been deployed, the Communications Server provides an error
message.

Deploying and Configuring an Embedded Resource Adapter
A connector module can be deployed as a Java EE component in a Java EE application. Such
connectors are only visible to components residing in the same Java EE application. Simply
deploy this Java EE application as you would any other Java EE application.

You can create new connector connection pools and connector resources for a connector
module embedded within a Java EE application by prefixing the connector name with
app-name#. For example, if an application appX.ear has jdbcra.rar embedded within it, the
connector connection pools and connector resources refer to the connector module as
appX#jdbcra.

However, an embedded connector module cannot be undeployed using the name
app-name#connector-name. To undeploy the connector module, you must undeploy the
application in which it is embedded.

The association between the physical JNDI name for the connector module in the
Communications Server and the logical JNDI name used in the application component is
specified in the Communications Server specific XML descriptor sun-ejb-jar.xml.

Redeploying a Stand-Alone Connector Module

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009238

Advanced Connector Configuration Options
You can use these advanced connector configuration options:

■ “Thread Pools” on page 239
■ “Security Maps” on page 239
■ “Overriding Configuration Properties” on page 240
■ “Testing a Connector Connection Pool” on page 240
■ “Handling Invalid Connections” on page 241
■ “Setting the Shutdown Timeout” on page 241
■ “Using Last Agent Optimization of Transactions” on page 242

Thread Pools
Connectors can submit work instances to the Communications Server for execution. By
default, the Communications Server services work requests for all connectors from its default
thread pool. However, you can associate a specific user-created thread pool to service work
requests from a connector. A thread pool can service work requests from multiple resource
adapters. To create a thread pool:

■ In the Admin Console, select Thread Pools under the relevant configuration. For details,
click the Help button in the Admin Console.

■ Use the asadmin create-threadpool command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

To associate a connector with a thread pool:

■ In the Admin Console, open the Applications component and select Connector Modules.
Deploy the module, or select the previously deployed module. Specify the name of the
thread pool in the Thread Pool ID field. For details, click the Help button in the Admin
Console.

■ Use the --threadpoolid option of the asadmin create-resource-adapter-config
command. For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

If you create a resource adapter configuration for a connector module that is already deployed,
the connector module deployment is restarted with the new configuration properties.

Security Maps
Create a security map for a connector connection pool to map an application principal or a user
group to a back end EIS principal. The security map is usually used in situations where one or
more EIS back end principals are used to execute operations (on the EIS) initiated by various
principals or user groups in the application.

Advanced Connector Configuration Options

Chapter 12 • Developing Connectors 239

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

To create or update security maps for a connector connection pool:

■ In the Admin Console, open the Resources component, select Connectors, select Connector
Connection Pools, and select the Security Maps tab. For details, click the Help button in the
Admin Console.

■ Use the asadmin create-connector-security-map command. For details, see the Sun
GlassFish Communications Server 2.0 Reference Manual.

If a security map already exists for a connector connection pool, the new security map is
appended to the previous one. The connector security map configuration supports the use of
the wildcard asterisk (*) to indicate all users or all user groups.

When an application principal initiates a request to an EIS, the Communications Server first
checks for an exact match to a mapped back end EIS principal using the security map defined
for the connector connection pool. If there is no exact match, the Communications Server uses
the wild card character specification, if any, to determined the mapped back end EIS principal.

Overriding Configuration Properties
You can override the properties (config-property elements) specified in the ra.xml file of a
resource adapter. Use the asadmin create-resource-adapter-config command to create a
configuration for a resource adapter. Use this command’s --property option to specify a
name-value pair for a resource adapter property.

You can use the asadmin create-resource-adapter-config command either before or after
resource adapter deployment. If it is executed after deploying the resource adapter, the existing
resource adapter is restarted with the new properties. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

You can also use token replacement for overriding resource adapter configuration properties in
individual server instances when the resource adapter is deployed to a cluster. For example, for
a property called inboundPort, you can assign the value ${inboundPort}. You can then assign a
different value to this property for each server instance. Changes to system properties take effect
upon server restart.

Testing a Connector Connection Pool
After configuring a connector connection pool, use the asadmin ping-connection-pool
command to test the health of the underlying connections. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Advanced Connector Configuration Options

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009240

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Handling Invalid Connections
If a resource adapter generates a ConnectionErrorOccured event, the Communications Server
considers the connection invalid and removes the connection from the connection pool.
Typically, a resource adapter generates a ConnectionErrorOccured event when it finds a
ManagedConnection object unusable. Reasons can be network failure with the EIS, EIS failure,
fatal problems with resource adapter, and so on. If the fail-all-connections property in the
connection pool configuration is set to true, all connections are destroyed and the pool is
recreated.

The is-connection-validation-required property specifies whether connections have to be
validated before being given to the application. If a resource’s validation fails, it is destroyed,
and a new resource is created and returned.

You can set the fail-all-connections and is-connection-validation-required

configuration properties during creation of a connector connection pool. Or, you can use the
asadmin set command to dynamically reconfigure a previously set property. For details, see
the Sun GlassFish Communications Server 2.0 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The Communications
Server checks if the resource adapter implements this interface, and if it does, invalid
connections are removed when the connection pool is resized.

Setting the Shutdown Timeout
According to the Connector specification, while an application server shuts down, all resource
adapters should be stopped. A resource adapter might hang during shutdown, since shutdown
is typically a resource intensive operation. To avoid such a situation, you can set a timeout that
aborts resource adapter shutdown if exceeded. The default timeout is 30 seconds per resource
adapter module. To configure this timeout:

■ In the Admin Console, select Connector Service under the relevant configuration and edit
the shutdown Timeout field. For details, click the Help button in the Admin Console.

■ Use the following command:

asadmin set --user adminuser server1.connector-service.shutdown-timeout-in-seconds="num-secs"

For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

The Communications Server deactivates all message-driven bean deployments before stopping
a resource adapter.

Advanced Connector Configuration Options

Chapter 12 • Developing Connectors 241

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Using Last Agent Optimization of Transactions
Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resources must be XA. For more information about
transactions in the Communications Server, see Chapter 16, “Using the Transaction Service.”

The Connector specification requires that if a resource adapter supports XATransaction, the
ManagedConnection created from that resource adapter must support both distributed and
local transactions. Therefore, even if a resource adapter supports XATransaction, you can
configure its connector connection pools as non-XA or without transaction support for better
performance. A non-XA resource adapter becomes the last agent in the transactions in which it
participates.

The value of the connection pool configuration property transaction-support defaults to the
value of the transaction-support property in the ra.xml file. The connection pool
configuration property can override the ra.xml file property if the transaction level in the
connection pool configuration property is lower. If the value in the connection pool
configuration property is higher, it is ignored.

Inbound Communication Support
The Connector specification defines the transaction and message inflow system contracts for
achieving inbound connectivity from an EIS. The message inflow contract also serves as a
standard message provider pluggability contract, thereby allowing various message providers to
seamlessly plug in their products with any application server that supports the message inflow
contract. In the inbound communication model, the EIS initiates all communication to an
application. An application can be composed of enterprise beans (session, entity, or
message-driven beans), which reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven bean.
This message-driven bean asynchronously consumes messages from a message provider. An
application can also synchronously send and receive messages directly using messaging style
APIs.

A resource adapter supporting inbound communication provides an instance of an
ActivationSpec JavaBean class for each supported message listener type. Each class contains a
set of configurable properties that specify endpoint activation configuration information
during message-driven bean deployment. The required config-property element in the
ra.xml file provides a list of configuration property names required for each activation
specification. An endpoint activation fails if the required property values are not specified.
Values for the properties that are overridden in the message-driven bean’s deployment
descriptor are applied to the ActivationSpec JavaBean when the message-driven bean is
deployed.

Inbound Communication Support

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009242

Administered objects can also be specified for a resource adapter, and these JavaBeans are
specific to a messaging style or message provider. For example, some messaging styles may need
applications to use special administered objects (such as Queue and Topic objects in JMS).
Applications use these objects to send and synchronously receive messages using connection
objects using messaging style APIs. For more information about administered objects, see
Chapter 18, “Using the Java Message Service.”

Configuring a Message Driven Bean to Use a Resource Adapter
The Connectors specification’s message inflow contract provides a generic mechanism to plug
in a wide-range of message providers, including JMS, into a Java-EE-compatible application
server. Message providers use a resource adapter and dispatch messages to message endpoints,
which are implemented as message-driven beans.

The message-driven bean developer provides activation configuration information in the
message-driven bean’s ejb-jar.xml file. Configuration information includes
messaging-style-specific configuration details, and possibly message-provider-specific details as
well. The message-driven bean deployer uses this configuration information to set up the
activation specification JavaBean. The activation configuration properties specified in
ejb-jar.xml override configuration properties in the activation specification definition in the
ra.xml file.

According to the EJB specification, the messaging-style-specific descriptor elements contained
within the activation configuration element are not specified because they are specific to a
messaging provider. In the following sample message-driven bean ejb-jar.xml, a
message-driven bean has the following activation configuration property names:
destinationType, SubscriptionDurability, and MessageSelector.

<!-- A sample MDB that listens to a JMS Topic -->

<!-- message-driven bean deployment descriptor -->

...

<activation-config>

<activation-config-property>

<activation-config-property-name>

destinationType

</activation-config-property-name>

<activation-config-property-value>

javax.jms.Topic

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

SubscriptionDurability

</activation-config-property-name>

<activation-config-property-value>

Configuring a Message Driven Bean to Use a Resource Adapter

Chapter 12 • Developing Connectors 243

Durable

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

MessageSelector

</activation-config-property-name>

<activation-config-property-value>

JMSType = ’car’ AND color = ’blue’

</activation-config-property-value>

</activation-config-property>

...

</activation-config>

...

When the message-driven bean is deployed, the value for the resource-adapter-mid element
in the sun-ejb-jar.xml file is set to the resource adapter module name that delivers messages
to the message endpoint (to the message-driven bean). In the following example, the jmsra JMS
resource adapter, which is the bundled resource adapter for the Sun GlassFish Message Queue
message provider, is specified as the resource adapter module identifier for the SampleMDB bean.

<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>SampleMDB</ejb-name>

<jndi-name>SampleQueue</jndi-name>

<!-- JNDI name of the destination from which messages would be

delivered from MDB needs to listen to -->

...

<mdb-resource-adapter>

<resource-adapter-mid>jmsra</resource-adapter-mid>

<!-- Resource Adapter Module Id that would deliver messages to

this message endpoint -->

</mdb-resource-adapter>

...

</ejb>

...

</enterprise-beans>

...

</sun-ejb-jar>

When the message-driven bean is deployed, the Communications Server uses the
resourceadapter-mid setting to associate the resource adapter with a message endpoint
through the message inflow contract. This message inflow contract with the application server
gives the resource adapter a handle to the MessageEndpointFactory and the ActivationSpec
JavaBean, and the adapter uses this handle to deliver messages to the message endpoint
instances (which are created by the MessageEndpointFactory).

Configuring a Message Driven Bean to Use a Resource Adapter

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009244

When a message-driven bean first created for use on the Communications Server 7 is deployed,
the Connector runtime transparently transforms the previous deployment style to the current
connector-based deployment style. If the deployer specifies neither a resource-adapter-mid
property nor the Message Queue resource adapter’s activation configuration properties, the
Connector runtime maps the message-driven bean to the jmsra system resource adapter and
converts the JMS-specific configuration to the Message Queue resource adapter’s activation
configuration properties.

Configuring a Message Driven Bean to Use a Resource Adapter

Chapter 12 • Developing Connectors 245

246

Developing Lifecycle Listeners

Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the application server environment, such as instantiation of singletons or RMI servers.
These modules are automatically initiated at server startup and are notified at various phases of
the server life cycle.

All lifecycle module classes and interfaces are in the as-install/lib/appserv-ext.jar file.

For Javadoc tool pages relevant to lifecycle modules, go to http://glassfish.dev.java.net/

nonav/javaee5/api/index.html and click on the com.sun.appserv.server package.

The following sections describe how to create and use a lifecycle listener module:

■ “Server Life Cycle Events” on page 247
■ “The LifecycleListener Interface” on page 248
■ “The LifecycleEvent Class” on page 248
■ “The Server Lifecycle Event Context” on page 249
■ “Deploying a Lifecycle Module” on page 249
■ “Considerations for Lifecycle Modules” on page 250

Server Life Cycle Events
A lifecycle module listens for and performs its tasks in response to the following events in the
server life cycle:

■ After the INIT_EVENT, the server reads the configuration, initializes built-in subsystems
(such as security and logging services), and creates the containers.

■ After the STARTUP_EVENT, the server loads and initializes deployed applications.
■ After the READY_EVENT, the server is ready to service requests.
■ After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.

13C H A P T E R 1 3

247

http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://glassfish.dev.java.net/nonav/javaee5/api/index.html

■ After the TERMINATION_EVENT, the server closes the containers, the built-in subsystems, and
the server runtime environment.

These events are defined in the LifecycleEvent class.

The lifecycle modules that listen for these events implement the LifecycleListener interface.

The LifecycleListener Interface
To create a lifecycle module is to configure a customized class that implements the
com.sun.appserv.server.LifecycleListener interface. You can create and simultaneously
execute multiple lifecycle modules.

The LifecycleListener interface defines this method:

public void handleEvent(com.sun.appserv.server.LifecycleEvent event)

throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the
LifecycleListenerImpl.java file, which you can use for testing lifecycle events.

The LifecycleEventClass
The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event. The
following methods are associated with the event:

■ public java.lang.Object getData()

This method returns an instance of java.util.Properties that contains the properties
defined for the lifecycle module in the domain.xml file. For more information about the
domain.xml file, see the Sun GlassFish Communications Server 2.0 Administration Reference.

■ public int getEventType()

This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT,
READY_EVENT, SHUTDOWN_EVENT, or TERMINATION_EVENT.

■ public com.sun.appserv.server.LifecycleEventContext

getLifecycleEventContext()

This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

The LifecycleListener Interface

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009248

http://docs.sun.com/doc/821-0194

The Server Lifecycle Event Context
The com.sun.appserv.server.LifecycleEventContext interface exposes runtime
information about the server. The lifecycle event context is created when the LifecycleEvent
class is instantiated at server initialization. The LifecycleEventContext interface defines these
methods:

■ public java.lang.String[] getCmdLineArgs()

This method returns the server startup command-line arguments.
■ public java.lang.String getInstallRoot()

This method returns the server installation root directory.
■ public java.lang.String getInstanceName()

This method returns the server instance name.
■ public javax.naming.InitialContext getInitialContext()

This method returns the initial JNDI naming context. The naming environment for lifecycle
modules is installed after the STARTUP_EVENT. A lifecycle module can look up any resource
by its jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It can use
the getInitialContext() method to get the initial context to which all the resources are
bound.

Deploying a Lifecycle Module
You can deploy a lifecycle module using the following tools:

■ In the Admin Console, open the Applications component and go to the Lifecycle Modules
page. For details, click the Help button in the Admin Console.

■ Use the asadmin create-lifecycle-module command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

You do not need to specify a classpath for the lifecycle module if you place it in the
domain-dir/lib or domain-dir/lib/classes directory for the Domain Administration Server.
Do not place it in the lib directory for a particular instance, or it will be deleted when that
instance synchronizes with the Domain Administration Server.

After you deploy a lifecycle module, you must restart the server to activate it. The server
instantiates it and registers it as a lifecycle event listener at server initialization.

Deploying a Lifecycle Module

Chapter 13 • Developing Lifecycle Listeners 249

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Note – If the is-failure-fatal setting is set to true (the default is false), lifecycle module
failure prevents server initialization or startup, but not shutdown or termination.

Considerations for Lifecycle Modules
The resources allocated at initialization or startup should be freed at shutdown or termination.
The lifecycle module classes are called synchronously from the main server thread, therefore it
is important to ensure that these classes don’t block the server. Lifecycle modules can create
threads if appropriate, but these threads must be stopped in the shutdown and termination
phases.

The LifeCycleModule class loader is the parent class loader for lifecycle modules. Each lifecycle
module’s classpath in domain.xml is used to construct its class loader. All the support classes
needed by a lifecycle module must be available to the LifeCycleModule class loader or its parent,
the Connector class loader.

You must ensure that the server.policy file is appropriately set up, or a lifecycle module
trying to perform a System.exec() might cause a security access violation. For details, see “The
server.policy File” on page 95.

The configured properties for a lifecycle module are passed as properties after the INIT_EVENT.
The JNDI naming context is not available before the STARTUP_EVENT. If a lifecycle module
requires the naming context, it can get this after the STARTUP_EVENT, READY_EVENT, or
SHUTDOWN_EVENT.

Considerations for Lifecycle Modules

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009250

Developing Custom MBeans

An MBean is a managed Java object, similar to a JavaBeanTM, that follows the design patterns set
forth in the instrumentation level of the JavaTM Management Extensions (JMXTM) specification.
An MBean can represent a device, an application, or any resource that needs to be managed.
MBeans expose a management interface: a set of readable and/or writable attributes and a set of
invokable operations, along with a self-description. The actual runtime interface of an MBean
depends on the type of that MBean. MBeans can also emit notifications when certain defined
events occur. Unlike other components, MBeans have no annotations or deployment
descriptors.

The Sun GlassFish Communications Server supports the development of custom MBeans as
part of the self-management infrastructure or as separate applications. All types of MBeans
(standard, dynamic, open, and model) are supported. For more about self-management, see
Chapter 20, “Using the Application Server Management Extensions,” and Chapter 21,
“Configuring Management Rules,” in Sun GlassFish Communications Server 2.0 Administration
Guide.

For general information about JMX technology, including how to download the JMX
specification, see http://java.sun.com/products/JavaManagement/index.jsp.

For a useful overview of JMX technology, see http://java.sun.com/
javase/6/docs/technotes/guides/jmx/overview/JMXoverviewTOC.html.

For a tutorial of JMX technology, see http://java.sun.com/
javase/6/docs/technotes/guides/jmx/tutorial/tutorialTOC.html.

This chapter includes the following topics:

■ “The MBean Life Cycle” on page 252
■ “MBean Class Loading” on page 253
■ “Creating, Deleting, and Listing MBeans” on page 253
■ “The MBeanServer in the Communications Server” on page 255
■ “Enabling and Disabling MBeans” on page 256
■ “Handling MBean Attributes” on page 256

14C H A P T E R 1 4

251

http://docs.sun.com/doc/821-0200/gbnfd?a=view
http://docs.sun.com/doc/821-0200/gbnfd?a=view
http://docs.sun.com/doc/821-0200/gbnfd?a=view
http://java.sun.com/products/JavaManagement/index.jsp
http://java.sun.com/javase/6/docs/technotes/guides/jmx/overview/JMXoverviewTOC.html
http://java.sun.com/javase/6/docs/technotes/guides/jmx/overview/JMXoverviewTOC.html
http://java.sun.com/javase/6/docs/technotes/guides/jmx/tutorial/tutorialTOC.html
http://java.sun.com/javase/6/docs/technotes/guides/jmx/tutorial/tutorialTOC.html

The MBean Life Cycle
The MBean life cycle proceeds as follows:

1. The MBean's class files are installed in the Communications Server. See “MBean Class
Loading” on page 253.

2. The MBean is deployed using the asadmin create-mbean command or the Admin Console.
See “Creating, Deleting, and Listing MBeans” on page 253.

3. The MBean class is loaded. This also results in loading of other classes. The delegation
model is used. See the class loader diagram in “The Class Loader Hierarchy” on page 33.

4. The MBean is instantiated. Its default constructor is invoked reflectively. This is why the
MBean class must have a default constructor.

5. The MBean's ObjectName is determined according to the following algorithm.
■ If you specify the ObjectName, it is used as is. The domain must be user:. The property

name server is reserved and cannot be used.
The Communications Server automatically appends server=target to the ObjectName
when the MBean is registered, where the target is the name of the server instance or
cluster to which the MBean is deployed.

■ If the MBean implements the MBeanRegistration interface, it must provide an
ObjectName in its preregister() method that follows the same rules.

■ If the ObjectName is not specified directly or through the MBeanRegistration interface,
the default is user:type=impl-class-name.

6. All attributes are set using setAttribute calls in the order in which the attributes are
specified. Attempting to specify a read-only attribute results in an error.
If attribute values are set during MBean deployment, these values are passed in as String
objects. Therefore, attribute types must be Java classes having constructors that accept
String objects. If you specify an attribute that does not have such a constructor, an error is
reported.
Attribute values specified during MBean deployment are persisted to the Communications
Server configuration. Changes to attributes after registration through a JMX connector such
as JConsole do not affect the Communications Server configuration. To change an attribute
value in the Communications Server configuration, use the asadmin set command. See
“Handling MBean Attributes” on page 256.

7. If the MBean is enabled, the MBeanServer.registerMBean(Object, ObjectName) method
is used to register the MBean in the MBeanServer. This is the only method called by the
Communications Server runtime. See “The MBeanServer in the Communications Server”
on page 255.
MBeans are enabled by default. Disabling an MBean deregisters it. See “Enabling and
Disabling MBeans” on page 256.

8. The MBean is automatically loaded, instantiated, and registered upon each server restart.

The MBean Life Cycle

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009252

9. When the MBean is deleted using the asadmin delete-mbean command or the Admin
Console, the MBean is first deregistered if it is enabled, then the MBean definition is deleted
from the configuration. The class files are not deleted, however.

MBean Class Loading
After you develop a custom MBean, copy its class files (or JAR file) into the MBean class loader
directory, domain-dir/applications/mbeans. You have two choices of where to place any
dependent classes:

■ Common class loader – Copy the classes as JAR files into the domain-dir/lib directory, or
copy the classes as .class files into the domain-dir/lib/classes directory. The classes are
loaded when you restart the Communications Server. The classes are available to all other
MBeans, applications, and modules deployed on servers that share the same configuration.

■ MBean class loader – Copy the classes into the domain-dir/applications/mbeans
directory. No restart is required. The classes are available to all other MBeans deployed on
servers that share the same configuration, but not to applications and modules.

After copying the classes, register the MBean using the asadmin create-mbean command. See
“The asadmin create-mbean Command” on page 253.

For general information about Communications Server class loaders, see Chapter 2, “Class
Loaders.”

Creating, Deleting, and Listing MBeans
This section describes the following commands:

■ Use the asadmin create-mbean command to deploy, or register, an MBean.
■ Use the asadmin delete-mbean command to undeploy an MBean.
■ Use the asadmin list-mbeans command to list deployed MBeans.

To perform these tasks using the Admin Console, open the Custom MBeans component. For
details, click the Help button in the Admin Console.

The asadmin create-mbean Command
After installing the MBean classes as explained in “MBean Class Loading” on page 253, use the
asadmin create-mbean command to deploy the MBean. This registers the MBean in the
MBeanServer that is part of the Communications Server runtime environment. For more
information about the MBeanServer, see “The MBeanServer in the Communications Server” on
page 255.

Creating, Deleting, and Listing MBeans

Chapter 14 • Developing Custom MBeans 253

Here is a simple example of an asadmin create-mbean command in which TextPatterns is the
implementation class. The --attributes and --target options are not required.

asadmin create-mbean --user adminuser --target server1 --attributes color=red:font=Times TextPatterns

Other options not included in the example are as follows:

■ --name defaults to the implementation class name
■ --objectname is explained in “The MBean Life Cycle” on page 252
■ --enabled defaults to true and is explained in “Enabling and Disabling MBeans” on

page 256

All options must precede the implementation class.

For full details on the asadmin create-mbean command, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

For more information about MBean attributes, see “Handling MBean Attributes” on page 256.

Note – To redeploy an MBean, simply install its new classes into the Communications Server as
described in “MBean Class Loading” on page 253. Then either restart the server or use asadmin
delete-mbean followed by asadmin create-mbean.

The asadmin delete-mbean Command
To undeploy an MBean, use the asadmin delete-mbean command. This removes its
registration from the MBeanServer, but does not delete its code. Here is an example asadmin
delete-mbean command in which TextPatterns is the implementation class. The --target
option is not required.

asadmin delete-mbean --user adminuser --target server1 TextPatterns

For full details on the asadmin delete-mbean command, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

The asadmin list-mbeans Command
To list MBeans that have been deployed, use the asadmin list-mbeans command. Note that
this command only lists the MBean definitions and not the MBeans registered in the
MBeanServer. Here is an example asadmin list-mbeans command. The --target option is
not required.

asadmin list-mbeans --user adminuser --target server1

Creating, Deleting, and Listing MBeans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009254

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

The output of the asadmin list-mbeans command lists the following information:

■ Implementation class – The name of the implementation class without the extension.
■ Name – The name of the registered MBean, which defaults to but may be different from the

implementation class name.
■ Object name – The ObjectName of the MBean, which is explained in “The MBean Life

Cycle” on page 252.
■ Object type – For custom MBeans, the object type is always user. System MBeans have

other object types.
■ Enabled – Whether the MBean is enabled. MBeans are enabled by default. See “Enabling

and Disabling MBeans” on page 256.

For full details on the asadmin list-mbeans command, see the Sun GlassFish Communications
Server 2.0 Reference Manual.

The MBeanServer in the Communications Server
Custom MBeans are registered in the PlatformMBeanServer returned by the
java.lang.management.ManagementFactory.getPlatformMBeanServer() method. This
MBeanServer is associated with a standard JMX connector server.

You can use any JMX connector to look up MBeans in this MBeanServer just as you would any
other MBeanServer. If your JMX connector is remote, you can connect to this MBeanServer
using the following information:

■ Host name of the Communications Server machine
■ MBeanServer port, which is 8686 by default
■ Administrator username
■ Administrator password

For example, if you use JConsole, you can enter this information under the Remote tab.
JConsole is a generic JMX connector you can use to look up and manage MBeans. For more
information about JConsole, see http://java.sun.com/developer/technicalArticles/
J2SE/jconsole.html, the JMX tutorial at http://java.sun.com/
javase/6/docs/technotes/guides/jmx/tutorial/tutorialTOC.html, and “Using
JConsole” in Sun GlassFish Communications Server 2.0 Administration Guide.

The connection to this MBeanServer is non-SSL by default for the developer profile and SSL by
default for the cluster profile.

If SSL is enabled, you must provide the location of the truststore that contains the server
certificate that the JMX connector should trust. For example, if you are using JConsole, you
supply this location at the command line as follows:

jconsole -J-Djavax.net.ssl.trustStore=home-directory/.asadmintruststore

The MBeanServer in the Communications Server

Chapter 14 • Developing Custom MBeans 255

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/javase/6/docs/technotes/guides/jmx/tutorial/tutorialTOC.html
http://java.sun.com/javase/6/docs/technotes/guides/jmx/tutorial/tutorialTOC.html
http://docs.sun.com/doc/821-0200/ablwi?a=view
http://docs.sun.com/doc/821-0200/ablwi?a=view

Look up the MBean by its name. By default, the name is the same as the implementation class.

You can reconfigure the JMX connector server's naming service port in one of the following
ways:

■ In the Admin Console, open the Admin Service component under the relevant
configuration, select the system subcomponent, edit the Port field, and select Save. For
details, click the Help button in the Admin Console.

■ Use the asadmin set command as in the following example:

asadmin set --user adminuser server1.admin-service.jmx-connector.system.port=8687

For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Enabling and Disabling MBeans
A custom MBean is enabled by default. You can disable an MBean during deployment by using
the asadmin create-mbean command's optional --enabled=false option. See “The asadmin
create-mbean Command” on page 253.

After deployment, you can disable an MBean using the asadmin set command. For example:

asadmin set --user adminuser server1.applications.mbean.TextPatterns.enabled=false

If the MBean name is different from the implementation class, you must use the name in the
asadmin set command. In this example, the name is TextPatterns.

For full details on the asadmin set command, see the Sun GlassFish Communications Server 2.0
Reference Manual.

Handling MBean Attributes
You can set MBean attribute values that are not read-only in the following ways:

■ In the MBean code itself, which does not affect the Communications Server configuration
■ During deployment using the asadmin create-mbean command
■ During deployment using the Custom MBeans component in the Admin Console
■ Using the asadmin set command
■ Using a JMX connector such as JConsole, which does not affect the Communications Server

configuration

In the Communications Server configuration, MBean attributes are stored as properties.
Therefore, using the asadmin set command means editing properties. For example:

Enabling and Disabling MBeans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009256

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

asadmin set --user adminuser server1.applications.mbean.TextPatterns.property.color=blue

If the MBean name is different from the implementation class, you must use the MBean name
in the asadmin set command. In this example, the name is TextPatterns.

For full details on the asadmin set command, see the Sun GlassFish Communications Server 2.0
Reference Manual.

Handling MBean Attributes

Chapter 14 • Developing Custom MBeans 257

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

258

Using Services and APIs

P A R T I I I

259

260

Using the JDBC API for Database Access

This chapter describes how to use the JavaTM Database Connectivity (JDBCTM) API for database
access with the Sun GlassFish Communications Server. This chapter also provides high level
JDBC implementation instructions for servlets and EJB components using the
Communications Server. If the JDK version 1.6 is used, the Communications Server supports
the JDBC 4.0 API, which encompasses the JDBC 3.0 API and the JDBC 2.0 Optional Package
API.

The JDBC specifications are available at http://java.sun.com/products/jdbc/
download.html.

A useful JDBC tutorial is located at http://java.sun.com/docs/books/tutorial/jdbc/
index.html.

Note – The Communications Server does not support connection pooling or transactions for an
application’s database access if it does not use standard Java EE DataSource objects.

This chapter discusses the following topics:
■ “General Steps for Creating a JDBC Resource” on page 261
■ “Creating Applications That Use the JDBC API” on page 263
■ “Restrictions and Optimizations” on page 267

General Steps for Creating a JDBC Resource
To prepare a JDBC resource for use in Java EE applications deployed to the Communications
Server, perform the following tasks:
■ “Integrating the JDBC Driver” on page 262
■ “Creating a Connection Pool” on page 262
■ “Testing a JDBC Connection Pool” on page 263

15C H A P T E R 1 5

261

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

■ “Creating a JDBC Resource” on page 263

For information about how to configure some specific JDBC drivers, see “Configurations for
Specific JDBC Drivers” in Sun GlassFish Communications Server 2.0 Administration Guide.

Integrating the JDBC Driver
To use JDBC features, you must choose a JDBC driver to work with the Communications
Server, then you must set up the driver. This section covers these topics:

■ “Supported Database Drivers” on page 262
■ “Making the JDBC Driver JAR Files Accessible” on page 262

Supported Database Drivers
Supported JDBC drivers are those that have been fully tested by Sun. For a list of the JDBC
drivers currently supported by the Communications Server, see the Sun GlassFish
Communications Server 2.0 Release Notes. For configurations of supported and other drivers,
see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications Server 2.0
Administration Guide.

Note – Because the drivers and databases supported by the Communications Server are
constantly being updated, and because database vendors continue to upgrade their products,
always check with Sun technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible
To integrate the JDBC driver into a Communications Server domain, copy the JAR files into the
domain-dir/lib directory, then restart the server. This makes classes accessible to all
applications or modules deployed on servers that share the same configuration. For more
information about Communications Server class loaders, see Chapter 2, “Class Loaders.”

Creating a Connection Pool
When you create a connection pool that uses JDBC technology (a JDBC connection pool) in the
Communications Server, you can define many of the characteristics of your database
connections.

You can create a JDBC connection pool in one of these ways:

■ In the Admin Console, open the Resources component, open the JDBC component, and
select Connection Pools. For details, click the Help button in the Admin Console.

■ Use the asadmin create-jdbc-connection-pool command. For details, see the Sun
GlassFish Communications Server 2.0 Reference Manual.

General Steps for Creating a JDBC Resource

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009262

http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

For a complete description of JDBC connection pool features, see the Sun GlassFish
Communications Server 2.0 Administration Guide

Testing a JDBC Connection Pool
You can test a JDBC connection pool for usability in one of these ways:

■ In the Admin Console, open the Resources component, open the JDBC component, select
Connection Pools, and select the connection pool you want to test. Then select the Ping
button in the top right corner of the page. For details, click the Help button in the Admin
Console.

■ Use the asadmin ping-connection-pool command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

For information about how to tune a connection pool, see the Sun GlassFish Communications
Server 2.0 Performance Tuning Guide.

Creating a JDBC Resource
A JDBC resource, also called a data source, lets you make connections to a database using
getConnection(). Create a JDBC resource in one of these ways:

■ In the Admin Console, open the Resources component, open the JDBC component, and
select JDBC Resources. For details, click the Help button in the Admin Console.

■ Use the asadmin create-jdbc-resource command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

Creating Applications That Use the JDBC API
An application that uses the JDBC API is an application that looks up and connects to one or
more databases. This section covers these topics:

■ “Sharing Connections” on page 264
■ “Obtaining a Physical Connection From a Wrapped Connection” on page 264
■ “Marking Bad Connections” on page 264
■ “Using Non-Transactional Connections” on page 265
■ “Using JDBC Transaction Isolation Levels” on page 266
■ “Allowing Non-Component Callers” on page 267

Creating Applications That Use the JDBC API

Chapter 15 • Using the JDBC API for Database Access 263

http://docs.sun.com/doc/821-0200
http://docs.sun.com/doc/821-0200
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0191
http://docs.sun.com/doc/821-0191
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Sharing Connections
When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by
the Java EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLs, see Chapter 3, “JDBC Resources,”
in Sun GlassFish Communications Server 2.0 Administration Guide.

Obtaining a Physical Connection From a Wrapped
Connection
The DataSource implementation in the Communications Server provides a getConnection
method that retrieves the JDBC driver’s SQLConnection from the Communications Server’s
Connection wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)

throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con);

// Do db operations.

// Do not close driver connection.

con.close(); // return wrapped connection to pool.

Marking Bad Connections
The DataSource implementation in the Communications Server provides a
markConnectionAsBad method. A marked bad connection is removed from its connection pool
when it is closed. The method signature is as follows:

public void markConnectionAsBad(java.sql.Connection con)

Creating Applications That Use the JDBC API

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009264

http://docs.sun.com/doc/821-0200/ablih?a=view
http://docs.sun.com/doc/821-0200/ablih?a=view

For example:

com.sun.appserv.jdbc.DataSource ds=

(com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();

Statement stmt = null;

try{

stmt = con.createStatement();

stmt.executeUpdate("Update");
}

catch (BadConnectionException e){

dataSource.markConnectionAsBad(con) //marking it as bad for removal

}

finally{

stmt.close();

con.close(); //Connection will be destroyed during close.

}

Using Non-Transactional Connections
You can specify a non-transactional database connection in any of these ways:
■ Check the Non-Transactional Connections box on the JDBC Connection Pools page in the

Admin Console. The default is unchecked. For more information, click the Help button in
the Admin Console.

■ Specify the --nontransactionalconnections option in the asadmin
create-jdbc-connection-pool command. For more information, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

■ Use the DataSource implementation in the Communications Server, which provides a
getNonTxConnection method. This method retrieves a JDBC connection that is not in the
scope of any transaction. There are two variants.

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)

throws java.sql.SQLException

■ Create a resource with the JNDI name ending in __nontx. This forces all connections looked
up using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such

Creating Applications That Use the JDBC API

Chapter 15 • Using the JDBC API for Database Access 265

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Using JDBC Transaction Isolation Levels
For general information about transactions, see Chapter 16, “Using the Transaction Service,”
and Chapter 12, “Transactions,” in Sun GlassFish Communications Server 2.0 Administration
Guide. For information about last agent optimization, which can improve performance, see
“Transaction Scope” on page 270.

Not all database vendors support all transaction isolation levels available in the JDBC API. The
Communications Server permits specifying any isolation level your database supports. The
following table defines transaction isolation levels.

TABLE 15–1 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITTED Dirty reads, non-repeatable reads, and phantom reads can occur.

TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are prevented.

Note that you cannot call setTransactionIsolation() during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see
“Creating a Connection Pool” on page 262.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel() method in
java.sql.DatabaseMetaData, as shown in the following example:

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("jdbc/MyBase");

Creating Applications That Use the JDBC API

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009266

http://docs.sun.com/doc/821-0200/ablsn?a=view
http://docs.sun.com/doc/821-0200/ablsn?a=view

Connection con = ds.getConnection();

DatabaseMetaData dbmd = con.getMetaData();

if (dbmd.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC API
specification.

Note – Applications that change the isolation level on a pooled connection programmatically
risk polluting the pool, which can lead to errors.

Allowing Non-Component Callers
You can allow non-Java-EE components, such as servlet filters, lifecycle modules, and third
party persistence managers, to use this JDBC connection pool. The returned connection is
automatically enlisted with the transaction context obtained from the transaction manager.
Standard Java EE components can also use such pools. Connections obtained by
non-component callers are not automatically closed at the end of a transaction by the container.
They must be explicitly closed by the caller.

You can enable non-component callers in the following ways:

■ Check the Allow Non Component Callers box on the JDBC Connection Pools page in the
Admin Console. The default is false. For more information, click the Help button in the
Admin Console.

■ Specify the --allownoncomponentcallers option in the asadmin
create-jdbc-connection-pool command. For more information, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

■ Create a JDBC resource with a __pm suffix.

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the JDBC
API.

Disabling Stored Procedure Creation on Sybase
By default, DataDirect and Sun GlassFish JDBC drivers for Sybase databases create a stored
procedure for each parameterized PreparedStatement. On the Communications Server,
exceptions are thrown when primary key identity generation is attempted. To disable the
creation of these stored procedures, set the property PrepareMethod=direct.

Restrictions and Optimizations

Chapter 15 • Using the JDBC API for Database Access 267

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

268

Using the Transaction Service

The Java EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses Java EE transactions and
transaction support in the Sun GlassFish Communications Server.

This chapter contains the following sections:

■ “Transaction Resource Managers” on page 269
■ “Transaction Scope” on page 270
■ “Distributed Transaction Recovery” on page 271
■ “Configuring the Transaction Service” on page 272
■ “The Transaction Manager, the Transaction Synchronization Registry, and

UserTransaction” on page 272
■ “Transaction Logging” on page 273
■ “Storing Transaction Logs in a Database” on page 273
■ “Recovery Workarounds” on page 274

For more information about the JavaTM Transaction API (JTA) and Java Transaction Service
(JTS), see Chapter 12, “Transactions,” in Sun GlassFish Communications Server 2.0
Administration Guide and the following sites: http://java.sun.com/products/jta/ and
http://java.sun.com/products/jts/.

You might also want to read “Chapter 35: Transactions” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Transaction Resource Managers
There are three types of transaction resource managers:

■ Databases - Use of transactions prevents databases from being left in inconsistent states due
to incomplete updates. For information about JDBC transaction isolation levels, see “Using
JDBC Transaction Isolation Levels” on page 266.

16C H A P T E R 1 6

269

http://docs.sun.com/doc/821-0200/ablsn?a=view
http://docs.sun.com/doc/821-0200/ablsn?a=view
http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

The Communications Server supports a variety of JDBC XA drivers. For a list of the JDBC
drivers currently supported by the Communications Server, see the Sun GlassFish
Communications Server 2.0 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” in Sun GlassFish Communications
Server 2.0 Administration Guide.

■ Java Message Service (JMS) Providers - Use of transactions ensures that messages are
reliably delivered. The Communications Server is integrated with Sun GlassFish Message
Queue, a fully capable JMS provider. For more information about transactions and the JMS
API, see Chapter 18, “Using the Java Message Service.”

■ J2EE Connector Architecture (CA) components - Use of transactions prevents legacy EIS
systems from being left in inconsistent states due to incomplete updates. For more
information about connectors, see Chapter 12, “Developing Connectors.”

For details about how transaction resource managers, the transaction service, and applications
interact, see Chapter 12, “Transactions,” in Sun GlassFish Communications Server 2.0
Administration Guide.

Transaction Scope
A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific
to the resource manager and is transparent to the Java EE application.

In the Communications Server, a JDBC resource is non-XA if it meets any of the following
criteria:

■ In the JDBC connection pool configuration, the DataSource class does not implement the
javax.sql.XADataSource interface.

■ The Global Transaction Support box is not checked, or the Resource Type setting does not
exist or is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:

■ One and only one non-XA resource is used. If any additional non-XA resource is used, the
transaction is aborted.

■ No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resourced must be XA. The
use-last-agent-optimization property is set to true by default. For details about how to set
this property, see “Configuring the Transaction Service” on page 272.

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

Transaction Scope

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009270

http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0199
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/beamw?a=view
http://docs.sun.com/doc/821-0200/ablsn?a=view
http://docs.sun.com/doc/821-0200/ablsn?a=view

A two-phase commit protocol between the transaction manager and all the resources enlisted
for a transaction ensures that either all the resource managers commit the transaction or they all
abort. When the application requests the commitment of a transaction, the transaction
manager issues a PREPARE_TO_COMMIT request to all the resource managers involved. Each of
these resources can in turn send a reply indicating whether it is ready for commit (PREPARED) or
not (NO). Only when all the resource managers are ready for a commit does the transaction
manager issue a commit request (COMMIT) to all the resource managers. Otherwise, the
transaction manager issues a rollback request (ABORT) and the transaction is rolled back.

Distributed Transaction Recovery

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

To enable cluster-wide automatic recovery, you must first facilitate storing of transaction logs
in a shared file system. You can do this in one of these ways:

■ Set the Communications Server's log-root attribute to a shared file system base directory
and set the transaction service's tx-log-dir attribute to a relative path.

■ Set tx-log-dir to an absolute path to a shared file system directory, in which case log-root
is ignored for transaction logs.

■ Set a system-property called TX-LOG-DIR in the domain.xml file to a shared file system
directory.

<server config-ref="server-config" name="server">
<system-property name="TX-LOG-DIR"

value="/net/tulsa/nodeagents/na/instance1/logs" />

</server>

Next, you must set the transaction service's delegated-recovery property to true (the default
is false).

For information about setting tx-log-dir and delegated-recovery, see “Configuring the
Transaction Service” on page 272. For information about setting log-root and other general
logging settings, see Chapter 19, “Configuring Logging,” in Sun GlassFish Communications
Server 2.0 Administration Guide. For information about system-property and the domain.xml
file, see the Sun GlassFish Communications Server 2.0 Administration Reference.

Distributed Transaction Recovery

Chapter 16 • Using the Transaction Service 271

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/abluj?a=view
http://docs.sun.com/doc/821-0200/abluj?a=view
http://docs.sun.com/doc/821-0194

Configuring the Transaction Service
You can configure the transaction service in the Communications Server in the following ways:
■ To configure the transaction service using the Admin Console, open the Transaction Service

component under the relevant configuration. For details, click the Help button in the
Admin Console.

■ To configure the transaction service, use the asadmin set command to set the following
attributes.

server.transaction-service.automatic-recovery = false

server.transaction-service.heuristic-decision = rollback

server.transaction-service.keypoint-interval = 2048

server.transaction-service.retry-timeout-in-seconds = 600

server.transaction-service.timeout-in-seconds = 0

server.transaction-service.tx-log-dir = domain-dir/logs

You can also set these properties:

server.transaction-service.property.oracle-xa-recovery-workaround = false

server.transaction-service.property.disable-distributed-transaction-logging = false

server.transaction-service.property.xaresource-txn-timeout = 600

server.transaction-service.property.pending-txn-cleanup-interval = 60

server.transaction-service.property.use-last-agent-optimization = true

server.transaction-service.property.db-logging-resource = jdbc/TxnDS

server.transaction-service.property.delegated-recovery = false

server.transaction-service.property.wait-time-before-recovery-insec = 60

server.transaction-service.property.xa-servername = myserver

You can use the asadmin get command to list all the transaction service attributes and
properties. For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction

You can access the Communications Server transaction manager, a javax.transaction.
TransactionManager implementation, using the JNDI subcontext java:comp/
TransactionManager or java:appserver/TransactionManager. You can access the
Communications Server transaction synchronization registry, a javax.transaction.
TransactionSynchronizationRegistry implementation, using the JNDI subcontext
java:comp/TransactionSynchronizationRegistry or java:appserver/
TransactionSynchronizationRegistry. You can also request injection of a
TransactionManager or TransactionSynchronizationRegistry object using the @Resource
annotation. Accessing the transaction synchronization registry is recommended. For details,
see Java Specification Request (JSR) 907 (http://www.jcp.org/en/jsr/detail?id=907).

Configuring the Transaction Service

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009272

http://docs.sun.com/doc/821-0197
http://www.jcp.org/en/jsr/detail?id=907

You can also access java:comp/UserTransaction.

Transaction Logging
The transaction service writes transactional activity into transaction logs so that transactions
can be recovered. You can control transaction logging in these ways:

■ Set the location of the transaction log files using the Transaction Log Location setting in the
Admin Console, or set the tx-log-dir attribute using the asadmin set command.

■ Turn off transaction logging by setting the disable-distributed-transaction-logging
property to true and the automatic-recovery attribute to false. Do this only if
performance is more important than transaction recovery.

Storing Transaction Logs in a Database
For multi-core machines, logging transactions to a database may be more efficient.

To log transactions to a database, follow these steps:

1. Create a JDBC connection Pool, and set the non-transactional-connections attribute to
true.

2. Create a JDBC resource that uses the connection pool and note the JNDI name of the JDBC
resource.

3. Create a table named txn_log_table with the schema shown in Table 16–1.

4. Add the db-logging-resource property to the transaction service. For example:

asadmin set --user adminuser server1.transaction-service.property.db-logging-resource="jdbc/TxnDS"

The property's value should be the JNDI name of the JDBC resource configured previously.

5. To disable file synchronization, use the following asadmin create-jvm-options

command:

asadmin create-jvm-options --user adminuser -Dcom.sun.appserv.transaction.nofdsync

6. Restart the server.

For information about JDBC connection pools and resources, see Chapter 15, “Using the JDBC
API for Database Access.” For more information about the asadmin create-jvm-options
command, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Storing Transaction Logs in a Database

Chapter 16 • Using the Transaction Service 273

http://docs.sun.com/doc/821-0197

TABLE 16–1 Schema for txn_log_table

Column Name JDBC Type

LOCALTID BIGINT

SERVERNAME VARCHAR(n)

GTRID VARBINARY

The size of the SERVERNAME column should be at least the length of the Communications Server
host name plus 10 characters.

The size of the GTRID column should be at least 64 bytes.

To define the SQL used by the transaction manager when it is storing its transaction logs in the
database, use the following flags:

-Dcom.sun.jts.dblogging.insertquery=sql statement
-Dcom.sun.jts.dblogging.deletequery=sql statement

The default statements are as follows:

-Dcom.sun.jts.dblogging.insertquery=insert into txn_log_table values (?, ? , ?)

-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where localtid = ? and servername = ?

To set one of these flags using the asadmin create-jvm-options command, you must quote
the statement. For example:

create-jvm-options ’-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid = ?’

You can also set JVM options in the Admin Console. In the developer profile, select the
Application Server component and the JVM Settings tab. In the cluster profile, select the JVM
Settings component under the relevant configuration. These flags and their statements must
also be quoted in the Admin Console. For example:

’-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid = ?’

Recovery Workarounds
The Communications Server provides workarounds for some known issues with the recovery
implementations of the following JDBC drivers. These workarounds are used unless explicitly
disabled.

In the Oracle thin driver, the XAResource.recover method repeatedly returns the same set of
in-doubt Xids regardless of the input flag. According to the XA specifications, the Transaction
Manager initially calls this method with TMSTARTSCAN and then with TMNOFLAGS
repeatedly until no Xids are returned. The XAResource.commit method also has some issues.

Recovery Workarounds

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009274

To disable the Communications Server workaround, set the oracle-xa-recovery-workaround
property value to false. For details about how to set this property, see “Configuring the
Transaction Service” on page 272.

Note – These workarounds do not imply support for any particular JDBC driver.

Recovery Workarounds

Chapter 16 • Using the Transaction Service 275

276

Using the Java Naming and Directory Interface

A naming service maintains a set of bindings, which relate names to objects. The Java EE
naming service is based on the Java Naming and Directory InterfaceTM (JNDI) API. The JNDI
API allows application components and clients to look up distributed resources, services, and
EJB components. For general information about the JNDI API, see http://java.sun.com/
products/jndi/.

You can also see the JNDI tutorial at http://java.sun.com/products/jndi/tutorial/.

This chapter contains the following sections:
■ “Accessing the Naming Context” on page 277
■ “Configuring Resources” on page 281
■ “Using a Custom jndi.properties File” on page 282
■ “Mapping References” on page 282

Accessing the Naming Context
The Communications Server provides a naming environment, or context, which is compliant
with standard Java EE requirements. A Context object provides the methods for binding names
to objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the Java EE naming service that application components and
clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization
of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

The rest of this section covers these topics:
■ “Global JNDI Names” on page 278
■ “Accessing EJB Components Using the CosNaming Naming Context” on page 279

17C H A P T E R 1 7

277

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

■ “Accessing EJB Components in a Remote Application Server” on page 279
■ “Naming Environment for Lifecycle Modules” on page 280

Note – Each resource within a server instance must have a unique name. However, two resources
in different server instances or different domains can have the same name.

Global JNDI Names
Global JNDI names are assigned according to the following precedence rules:

1. A global JNDI name assigned in the sun-ejb-jar.xml, sun-web.xml, or
sun-application-client.xml deployment descriptor file has the highest precedence. See
“Mapping References” on page 282.

2. A global JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml, or
application-client.xml deployment descriptor file has the second highest precedence.
The following elements have mapped-name subelements: resource-ref,
resource-env-ref, ejb-ref, message-destination, message-destination-ref,
session, message-driven, and entity.

3. A global JNDI name assigned in a mappedName attribute of an annotation has the third
highest precedence. The following annotations have mappedName attributes:
@javax.annotation.Resource, @javax.ejb.EJB, @javax.ejb.Stateless,
@javax.ejb.Stateful, and @javax.ejb.MessageDriven.

4. A default global JNDI name is assigned in some cases if no name is assigned in deployment
descriptors or annotations.
■ For an EJB 2.x dependency or a session or entity bean with a remote interface, the default

is the fully qualified name of the home interface.
■ For an EJB 3.0 dependency or a session bean with a remote interface, the default is the

fully qualified name of the remote business interface.
■ If both EJB 2.x and EJB 3.0 remote interfaces are specified, or if more than one 3.0

remote interface is specified, there is no default, and the global JNDI name must be
specified.

■ For all other component dependencies that must be mapped to global JNDI names, the
default is the name of the dependency relative to java:comp/env. For example, in the
@Resource(name="jdbc/Foo") DataSource ds; annotation, the global JNDI name is
jdbc/Foo.

Accessing the Naming Context

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009278

Accessing EJB Components Using the CosNaming
Naming Context
The preferred way of accessing the naming service, even in code that runs outside of a Java EE
container, is to use the no-argument InitialContext constructor. However, if EJB client code
explicitly instantiates an InitialContext that points to the CosNaming naming service, it is
necessary to set the java.naming.factory.initial property to com.sun.jndi.cosnaming.

CNCtxFactory in the client JVM when accessing EJB components. You can set this property as a
command-line argument, as follows:

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

Or you can set this property in the code, as follows:

Properties properties = null;

try {

properties = new Properties();

properties.put("java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

...

The java.naming.factory.initial property applies to only one instance; it is not
cluster-aware.

Accessing EJB Components in a Remote Application
Server
The recommended approach for looking up an EJB component in a remote Communications
Server from a client that is a servlet or EJB component is to use the Interoperable Naming
Service syntax. Host and port information is prepended to any global JNDI names and is
automatically resolved during the lookup. The syntax for an interoperable global name is as
follows:

corbaname:iiop:host:port#a/b/name

This makes the programming model for accessing EJB components in another
Communications Server exactly the same as accessing them in the same server. The deployer
can change the way the EJB components are physically distributed without having to change the
code.

For Java EE components, the code still performs a java:comp/env lookup on an EJB reference.
The only difference is that the deployer maps the ejb-reference element to an interoperable
name in an Communications Server deployment descriptor file instead of to a simple global
JNDI name.

Accessing the Naming Context

Chapter 17 • Using the Java Naming and Directory Interface 279

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo, and
the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in sun-web.xml looks like this:

<ejb-ref>

<ejb-ref-name>ejb/Foo</ejb-ref-name>

<jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
<ejb-ref>

The code looks like this:

Context ic = new InitialContext();

Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a Java EE container, the code just uses the interoperable
global name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();

Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-specific (java:comp/env)
naming contexts are transient. On each server startup or application reloading, all relevant
objects are re-bound to the namespace.

Naming Environment for Lifecycle Modules
Lifecycle listener modules provide a means of running short or long duration tasks based on
Java technology within the application server environment, such as instantiation of singletons
or RMI servers. These modules are automatically initiated at server startup and are notified at
various phases of the server life cycle. For details about lifecycle modules, see Chapter 13,
“Developing Lifecycle Listeners.”

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial JNDI naming context is not available until server
initialization is complete. A lifecycle module can get the InitialContext for lookups using the
method LifecycleEventContext.getInitialContext() during, and only during, the
STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Accessing the Naming Context

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009280

Configuring Resources
The Communications Server exposes the following special resources in the naming
environment. Full administration details are provided in the following sections:

■ “External JNDI Resources” on page 281
■ “Custom Resources” on page 281

External JNDI Resources
An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI parent
context for external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:

■ To create an external JNDI resource using the Admin Console, open the Resources
component, open the JNDI component, and select External Resources. For details, click the
Help button in the Admin Console.

■ To create an external JNDI resource, use the asadmin create-jndi-resource command.
For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Custom Resources
A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent context for
external JNDI resources, except for the standard java:comp/env/.

Create a custom resource in one of these ways:

■ To create a custom resource using the Admin Console, open the Resources component,
open the JNDI component, and select Custom Resources. For details, click the Help button
in the Admin Console.

■ To create a custom resource, use the asadmin create-custom-resource command. For
details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

Configuring Resources

Chapter 17 • Using the Java Naming and Directory Interface 281

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Using a Custom jndi.properties File
To use a custom jndi.properties file, specify the path to the file in one of the following ways:
■ Use the Admin Console. In the developer profile, select the Communications Server

component and select the JVM Settings tab. In the cluster profile, select the JVM Settings
component under the relevant configuration. Then select the Path Settings tab and edit the
Classpath Prefix field. For details, click the Help button in the Admin Console.

■ Edit the classpath-prefix attribute of the java-config element in the domain.xml file.
For details about domain.xml, see the Sun GlassFish Communications Server 2.0
Administration Reference.

This adds the jndi.properties file to the Shared Chain class loader. For more information
about class loading, see Chapter 2, “Class Loaders.”

For each property found in more than one jndi.properties file, the Java EE naming service
either uses the first value found or concatenates all of the values, whichever makes sense.

Mapping References
The following XML elements in the Communications Server deployment descriptors map
resource references in application client, EJB, and web or SIP application components to JNDI
names configured in the Communications Server:
■ resource-env-ref - Maps the @Resource or @Resources annotation (or the

resource-env-ref element in the corresponding Java EE XML file) to the absolute JNDI
name configured in the Communications Server.

■ resource-ref - Maps the @Resource or @Resources annotation (or the resource-ref
element in the corresponding Java EE XML file) to the absolute JNDI name configured in
the Communications Server.

■ ejb-ref - Maps the @EJB annotation (or the ejb-ref element in the corresponding Java EE
XML file) to the absolute JNDI name configured in the Communications Server.
JNDI names for EJB components must be unique. For example, appending the application
name and the module name to the EJB name is one way to guarantee unique names. In this
case, mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the
module pkgingEJB.jar, which is packaged in the pkging.ear application.

These elements are part of the sun-web.xml, sun-ejb-ref.xml, and
sun-application-client.xml deployment descriptor files. For more information about how
these elements behave in each of the deployment descriptor files, see Appendix A, “Deployment
Descriptor Files,” in Sun GlassFish Communications Server 2.0 Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories. The same principle is applicable to all resources (such as JMS destinations,
JavaMail sessions, and so on).

Using a Custom jndi.properties File

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009282

http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0194
http://docs.sun.com/doc/821-0195/beaqi?a=view
http://docs.sun.com/doc/821-0195/beaqi?a=view

The @Resource annotation in the application code looks like this:

@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;

This references a resource with the JNDI name of java:comp/env/jdbc/helloDbDs. If this is
the JNDI name of the JDBC resource configured in the Communications Server, the annotation
alone is enough to reference the resource.

However, you can use an Communications Server specific deployment descriptor to override
the annotation. For example, the resource-ref element in the sun-web.xml file maps the
res-ref-name (the name specified in the annotation) to the JNDI name of another JDBC
resource configured in the Communications Server.

<resource-ref>

<res-ref-name>jdbc/helloDbDs</res-ref-name>

<jndi-name>jdbc/helloDbDataSource</jndi-name>

</resource-ref>

Mapping References

Chapter 17 • Using the Java Naming and Directory Interface 283

284

Using the Java Message Service

This chapter describes how to use the JavaTM Message Service (JMS) API. The Sun Java System
Communications Server has a fully integrated JMS provider: the Sun Java System Message
Queue software.

For general information about the JMS API, see “Chapter 31: The Java Message Service API” in
the Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

For detailed information about JMS concepts and JMS support in the Communications Server,
see Chapter 4, “Configuring Java Message Service Resources,” in Sun GlassFish Communications
Server 2.0 Administration Guide.

This chapter contains the following sections:

■ “The JMS Provider” on page 286
■ “Message Queue Resource Adapter” on page 287
■ “Generic Resource Adapter” on page 287
■ “Administration of the JMS Service” on page 287
■ “Restarting the JMS Client After JMS Configuration” on page 291
■ “JMS Connection Features” on page 291
■ “Load-Balanced Message Inflow” on page 292
■ “Transactions and Non-Persistent Messages” on page 293
■ “Authentication With ConnectionFactory” on page 293
■ “Message Queue varhome Directory” on page 294
■ “Delivering SOAP Messages Using the JMS API” on page 294

18C H A P T E R 1 8

285

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0200/abljw?a=view

The JMS Provider
The Communications Server support for JMS messaging, in general, and for message-driven
beans, in particular, requires messaging middleware that implements the JMS specification: a
JMS provider. The Communications Server uses the Sun GlassFish Message Queue software as
its native JMS provider. The Message Queue software is tightly integrated into
theCommunications Server, providing transparent JMS messaging support. This support is
known within Communications Server as the JMS Service. The JMS Service requires only
minimal administration.

The relationship of the Message Queue software to the Communications Server can be one of
these types: EMBEDDED, LOCAL, or REMOTE. The effects of these choices on the Message Queue
broker life cycle are as follows:
■ If the type is EMBEDDED, the Communications Server and Message Queue software run in the

same JVM, and the networking stack is bypassed. The Message Queue broker is started and
stopped automatically by the Communications Server. This is the default for the Domain
Administration Server (DAS).
Lazy initialization starts the default embedded broker on the first access of JMS services
rather than at Communications Server startup. EMBEDDED mode is not a supported
configuration for a cluster.

■ If the type is LOCAL, the Message Queue broker starts when the Communications Server
starts. This is the default for all Communications Server instances except the DAS.
The LOCAL setting implicitly sets up a 1:1 relationship between an Communications Server
instance and a Message Queue broker. When you create an Communications Server cluster,
a Message Queue cluster is automatically created as well. During cluster creation, each
instance in the Communications Server cluster is automatically configured with a broker in
the Message Queue cluster, and a unique broker port is determined.
The first Communications Server instance's Message Queue broker is set as the master
broker. If you delete the first Communications Server instance, you must use Message
Queue administration tools to migrate the master broker. For details, see “Managing a
Conventional Cluster’s Configuration Change Record” in Sun GlassFish Message Queue 4.4
Administration Guide.

■ If the type is REMOTE, the Message Queue broker must be started separately. For information
about starting the broker, see the Sun GlassFish Message Queue 4.4 Administration Guide.

For more information about setting the type and the default JMS host, see “Configuring the JMS
Service” on page 288.

For more information about the Message Queue software, refer to the documentation at
http://docs.sun.com/coll/1343.10.

For general information about the JMS API, see the JMS web page at http://java.sun.com/
products/jms/index.html.

The JMS Provider

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009286

http://docs.sun.com/doc/821-0027/aeoih?a=view
http://docs.sun.com/doc/821-0027/aeoih?a=view
http://docs.sun.com/doc/821-0027/aeoih?a=view
http://docs.sun.com/doc/821-0027
http://docs.sun.com/coll/1343.10
http://java.sun.com/products/jms/index.html
http://java.sun.com/products/jms/index.html

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

Message Queue Resource Adapter
The Sun GlassFish Message Queue software is integrated into the Communications Server
using a resource adapter that is compliant with the Connector specification. The module name
of this system resource adapter is jmsra. Every JMS resource is converted to a corresponding
connector resource of this resource adapter as follows:

■ Connection Factory – A connector connection pool with a max-pool-size of 250 and a
corresponding connector resource

■ Destination (Topic or Queue) – A connector administered object

You use connector configuration tools to manage JMS resources. For more information, see
Chapter 12, “Developing Connectors.”

Generic Resource Adapter
The Communications Server provides a generic resource adapter for JMS, for those who want
to use a JMS provider other than Sun GlassFish Message Queue. For details, see
http://genericjmsra.dev.java.net/ and “Configuring the Generic Resource Adapter for
JMS” in Sun GlassFish Communications Server 2.0 Administration Guide.

Administration of the JMS Service
To configure the JMS Service and prepare JMS resources for use in applications deployed to the
Communications Server, you must perform these tasks:

■ “Configuring the JMS Service” on page 288
■ “The Default JMS Host” on page 289
■ “Creating JMS Hosts” on page 289
■ “Checking Whether the JMS Provider Is Running” on page 289
■ “Creating Physical Destinations” on page 289
■ “Creating JMS Resources: Destinations and Connection Factories” on page 290

For more information about JMS administration tasks, see Chapter 4, “Configuring Java
Message Service Resources,” in Sun GlassFish Communications Server 2.0 Administration Guide
and the Sun GlassFish Message Queue 4.4 Administration Guide.

Administration of the JMS Service

Chapter 18 • Using the Java Message Service 287

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view
http://genericjmsra.dev.java.net/
http://docs.sun.com/doc/821-0200/gbtvg?a=view
http://docs.sun.com/doc/821-0200/gbtvg?a=view
http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0027

Configuring the JMS Service
The JMS Service configuration is available to all inbound and outbound connections pertaining
to the Communications Server cluster or instance. You can edit the JMS Service configuration
in the following ways:

■ To edit the JMS Service configuration using the Admin Console, open the Java Message
Service component under the relevant configuration. For details, click the Help button in
the Admin Console.

■ To configure the JMS service, use the asadmin set command to set the following attributes:

server.jms-service.init-timeout-in-seconds = 60

server.jms-service.type = EMBEDDED

server.jms-service.start-args =

server.jms-service.default-jms-host = default_JMS_host

server.jms-service.reconnect-interval-in-seconds = 60

server.jms-service.reconnect-attempts = 3

server.jms-service.reconnect-enabled = true

server.jms-service.addresslist-behavior = random

server.jms-service.addresslist-iterations = 3

server.jms-service.mq-scheme = mq

server.jms-service.mq-service = jms

You can also set these properties:

server.jms-service.property.instance-name = imqbroker

server.jms-service.property.instance-name-suffix =

server.jms-service.property.append-version = false

server.jms-service.property.user-name =

server.jms-service.property.password =

You can use the asadmin get command to list all the JMS service attributes and properties.
For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

You can override the JMS Service configuration using JMS connection factory settings. For
details, see Chapter 4, “Configuring Java Message Service Resources,” in Sun GlassFish
Communications Server 2.0 Administration Guide.

Note – The Communications Server instance must be restarted after configuration of the JMS
Service.

Administration of the JMS Service

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009288

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0200/abljw?a=view

The Default JMS Host
A JMS host refers to a Sun GlassFish Message Queue broker. A default JMS host for the JMS
service is provided, named default_JMS_host. This is the JMS host that the Communications
Server uses for performing all Message Queue broker administrative operations, such as
creating and deleting JMS destinations.

If you have created a multi-broker cluster in the Message Queue software, delete the default JMS
host, then add the Message Queue cluster’s brokers as JMS hosts. In this case, the default JMS
host becomes the first JMS host in the AddressList. For more information about the
AddressList, see “JMS Connection Features” on page 291. You can also explicitly set the default
JMS host; see “Configuring the JMS Service” on page 288.

When the Communications Server uses a Message Queue cluster, it executes Message Queue
specific commands on the default JMS host. For example, when a physical destination is created
for a Message Queue cluster of three brokers, the command to create the physical destination is
executed on the default JMS host, but the physical destination is used by all three brokers in the
cluster.

Creating JMS Hosts
You can create additional JMS hosts in the following ways:
■ Use the Admin Console. Open the Java Message Service component under the relevant

configuration, then select the JMS Hosts component. For details, click the Help button in the
Admin Console.

■ Use the asadmin create-jms-host command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

For machines having more than one host, use the Host field in the Admin Console or the
-–mqhost option of create-jms-host to specify the address to which the broker binds.

Checking Whether the JMS Provider Is Running
You can use the asadmin jms-ping command to check whether a Sun GlassFish Message
Queue instance is running. For details, see the Sun GlassFish Communications Server 2.0
Reference Manual.

Creating Physical Destinations
Produced messages are delivered for routing and subsequent delivery to consumers using
physical destinations in the JMS provider. A physical destination is identified and encapsulated

Administration of the JMS Service

Chapter 18 • Using the Java Message Service 289

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

by an administered object (a Topic or Queue destination resource) that an application
component uses to specify the destination of messages it is producing and the source of
messages it is consuming.

If a message-driven bean is deployed and the Queue physical destination it listens to doesn’t
exist, the Communications Server automatically creates the physical destination and sets the
value of the property maxNumActiveConsumers to -1 (see “Load-Balanced Message Inflow” on
page 292). However, it is good practice to create the Queue physical destination beforehand.

You can create a JMS physical destination in the following ways:

■ Use the Admin Console. Open the Resources component, open the JMS Resources
component, then select Physical Destinations. For details, click the Help button in the
Admin Console.

■ Use the asadmin create-jmsdest command. This command acts on the default JMS host
of its target. For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

To purge all messages currently queued at a physical destination, use the asadmin
flush-jmsdest command. This deletes the messages before they reach any message
consumers. For details, see the Sun GlassFish Communications Server 2.0 Reference Manual.

To create a destination resource, see “Creating JMS Resources: Destinations and Connection
Factories” on page 290.

Creating JMS Resources: Destinations and Connection
Factories
You can create two kinds of JMS resources in the Communications Server:

■ Connection Factories – administered objects that implement the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interfaces.

■ Destination Resources – administered objects that implement the Queue or Topic
interfaces.

In either case, the steps for creating a JMS resource are the same. You can create a JMS resource
in the following ways:

■ To create a JMS resource using the Admin Console, open the Resources component, then
open the JMS Resources component. Click Connection Factories to create a connection
factory, or click Destination Resources to create a queue or topic. For details, click the Help
button in the Admin Console.

■ A JMS resource is a type of connector. To create a JMS resource using the command line, see
“Deploying and Configuring a Stand-Alone Connector Module” on page 237.

Administration of the JMS Service

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009290

http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

Note – All JMS resource properties that used to work with version 7 of the Communications
Server are supported for backward compatibility.

Restarting the JMS Client After JMS Configuration
When a JMS client accesses a JMS administered object for the first time, the client JVM retrieves
the JMS service configuration from the Communications Server. Further changes to the
configuration are not available to the client JVM until the client is restarted.

JMS Connection Features
The Sun GlassFish Message Queue software supports the following JMS connection features:

■ “Connection Pooling” on page 291
■ “Connection Failover” on page 292

Both these features use the AddressList configuration, which is populated with the hosts and
ports of the JMS hosts defined in the Communications Server. The AddressList is updated
whenever a JMS host configuration changes. The AddressList is inherited by any JMS resource
when it is created and by any MDB when it is deployed.

Note – In the Sun GlassFish Message Queue software, the AddressList property is called
imqAddressList.

Connection Pooling
The Communications Server pools JMS connections automatically.

To dynamically modify connection pool properties using the Admin Console, go to either the
Connection Factories page (see “Creating JMS Resources: Destinations and Connection
Factories” on page 290) or the Connector Connection Pools page (see “Deploying and
Configuring a Stand-Alone Connector Module” on page 237).

To use the command line, use the asadmin create-connector-connection-pool command to
manage the pool (see “Deploying and Configuring a Stand-Alone Connector Module” on
page 237.

For the developer profile, the addresslist-behavior JMS service attribute is set to random by
default. This means that each ManagedConnection (physical connection) created from the
ManagedConnectionFactory selects its primary broker in a random way from the AddressList.

JMS Connection Features

Chapter 18 • Using the Java Message Service 291

For the cluster profile, the addresslist-behavior JMS service attribute is set to priority by
default. This means that the first broker in the AddressList is selected first. This first broker is
the local colocated Message Queue broker. If this broker is unavailable, connection attempts are
made to brokers in the order in which they are listed in the AddressList. This ensures
colocated production and consumption of messages and equitable load distribution across the
Message Queue broker cluster.

When a JMS connection pool is created, there is one ManagedConnectionFactory instance
associated with it. If you configure the AddressList as a ManagedConnectionFactory property,
the AddressList configuration in the ManagedConnectionFactory takes precedence over the
one defined in the Communications Server.

Connection Failover
To specify whether the Communications Server tries to reconnect to the primary broker if the
connection is lost, set the reconnect-enabled attribute in the JMS service. To specify the
number of retries and the time between retries, set the reconnect-attempts and
reconnect-interval-in-seconds attributes, respectively.

If reconnection is enabled and the primary broker goes down, the Communications Server tries
to reconnect to another broker in the AddressList. The AddressList is updated whenever a
JMS host configuration changes. The logic for scanning is decided by two JMS service
attributes, addresslist-behavior and addresslist-iterations.

You can override these settings using JMS connection factory settings. For details, see Chapter
4, “Configuring Java Message Service Resources,” in Sun GlassFish Communications Server 2.0
Administration Guide.

The Sun GlassFish Message Queue software transparently transfers the load to another broker
when the failover occurs. JMS semantics are maintained during failover.

Load-Balanced Message Inflow
You can configure ActivationSpec properties of the jmsra resource adapter in the
sun-ejb-jar.xml file for a message-driven bean using activation-config-property
elements. Whenever a message-driven bean (EndPointFactory) is deployed, the connector
runtime engine finds these properties and configures them accordingly in the resource adapter.
See “activation-config-property” in Sun GlassFish Communications Server 2.0 Application
Deployment Guide.

The Communications Server transparently enables messages to be delivered in random fashion
to message-driven beans having same ClientID. The ClientID is required for durable
subscribers.

Load-Balanced Message Inflow

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009292

http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0200/abljw?a=view
http://docs.sun.com/doc/821-0195/beaqt?a=view
http://docs.sun.com/doc/821-0195/beaqt?a=view

For nondurable subscribers in which the ClientID is not configured, all instances of a specific
message-driven bean that subscribe to same topic are considered equal. When a
message-driven bean is deployed to multiple instances of the Communications Server, only one
of the message-driven beans receives the message. If multiple distinct message-driven beans
subscribe to same topic, one instance of each message-driven bean receives a copy of the
message.

To support multiple consumers using the same queue, set the maxNumActiveConsumers
property of the physical destination to a large value. If this property is set, the Sun GlassFish
Message Queue software allows multiple message-driven beans to consume messages from
same queue. The message is delivered randomly to the message-driven beans. If
maxNumActiveConsumers is set to -1, there is no limit to the number of consumers.

To ensure that local delivery is preferred, set addresslist-behavior to priority. This setting
specifies that the first broker in the AddressList is selected first. This first broker is the local
colocated Message Queue instance. If this broker is unavailable, connection attempts are made
to brokers in the order in which they are listed in the AddressList. This setting is the default for
Communications Server instances that belong to a cluster.

Note – Some topics in the documentation pertain to features that are available only in domains
that are configured to support clusters. Examples of domains that support clusters are domains
that are created with the cluster profile. For information about profiles, see “Usage Profiles” in
Sun GlassFish Communications Server 2.0 Administration Guide.

Transactions and Non-Persistent Messages
During transaction recovery, non-persistent messages might be lost. If the broker fails between
the transaction manager’s prepare and commit operations, any non-persistent message in the
transaction is lost and cannot be delivered. A message that is not saved to a persistent store is
not available for transaction recovery.

Authentication With ConnectionFactory

If your web, EJB, or client module has res-auth set to Container, but you use the
ConnectionFactory.createConnection("user","password") method to get a connection, the
Communications Server searches the container for authentication information before using the
supplied user and password. Version 7 of the Communications Server threw an exception in
this situation.

Authentication With ConnectionFactory

Chapter 18 • Using the Java Message Service 293

http://docs.sun.com/doc/821-0200/gelvk?a=view
http://docs.sun.com/doc/821-0200/gelvk?a=view

Message Queue varhomeDirectory
The Sun GlassFish Message Queue software uses a default directory for storing data such as
persistent messages and its log file. This directory is called varhome. The Communications
Server uses domain-dir/imq as the varhome directory if the type of relationship between the
Communications Server and the Message Queue software is LOCAL or EMBEDDED. If the
relationship type is REMOTE, the Message Queue software determines the varhome location. For
more information about the types of relationships between the Communications Server and
Message Queue, see “The JMS Provider” on page 286.

When executing Message Queue scripts such as as-install/imq/bin/imqusermgr, use the
-varhome option to point the scripts to the Message Queue data if the relationship type is LOCAL
or EMBEDDED. For example:

imqusermgr -varhome $AS_INSTALL/domains/domain1/imq add -u testuser

For more information about the Message Queue software, refer to the documentation at
http://docs.sun.com/coll/1343.10.

Delivering SOAP Messages Using the JMS API
Web service clients use the Simple Object Access Protocol (SOAP) to communicate with web
services. SOAP uses a combination of XML-based data structuring and Hyper Text Transfer
Protocol (HTTP) to define a standardized way of invoking methods in objects distributed in
diverse operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site at http://xml.apache.org/
soap/index.html.

You can take advantage of the JMS provider’s reliable messaging when delivering SOAP
messages. You can convert a SOAP message into a JMS message, send the JMS message, then
convert the JMS message back into a SOAP message. The following sections explain how to do
these conversions:
■ “To Send SOAP Messages Using the JMS API” on page 294
■ “To Receive SOAP Messages Using the JMS API” on page 296

▼ To Send SOAP Messages Using the JMS API
Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. You can then send a JMS message containing a SOAP payload as if it were a normal
JMS message.

1

Message Queue varhomeDirectory

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009294

http://docs.sun.com/coll/1343.10
http://xml.apache.org/soap/index.html
http://xml.apache.org/soap/index.html

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and publisher.
tcf = new TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

publisher = session.createPublisher(topic);

Construct a SOAP message using the SOAP with Attachments API for Java (SAAJ).
/*construct a default soap MessageFactory */

MessageFactory mf = MessageFactory.newInstance();

* Create a SOAP message object.*/

SOAPMessage soapMessage = mf.createMessage();

/** Get SOAP part.*/

SOAPPart soapPart = soapMessage.getSOAPPart();

/* Get SOAP envelope. */

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

/* Get SOAP body.*/

SOAPBody soapBody = soapEnvelope.getBody();

/* Create a name object. with name space */

/* http://www.sun.com/imq. */

Name name = soapEnvelope.createName("HelloWorld", "hw",
"http://www.sun.com/imq");
* Add child element with the above name. */

SOAPElement element = soapBody.addChildElement(name)

/* Add another child element.*/

element.addTextNode("Welcome to Sun Java System Web Services.");

/* Create an atachment with activation API.*/

URL url = new URL ("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler (url);

AttachmentPart ap = soapMessage.createAttachmentPart(dh);

/*set content type/ID. */

ap.setContentType("text/html");
ap.setContentId("cid-001");
/** add the attachment to the SOAP message.*/

soapMessage.addAttachmentPart(ap);

soapMessage.saveChanges();

Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage() method.
Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage,

session);

Publish the JMS message.
publisher.publish(m);

Close the JMS connection.
tc.close();

2

3

4

5

6

Delivering SOAP Messages Using the JMS API

Chapter 18 • Using the Java Message Service 295

▼ To Receive SOAP Messages Using the JMS API
Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. The JMS message containing the SOAP payload is received as if it were a normal JMS
message.

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, TopicSubscriber,
and Topic.
messageFactory = MessageFactory.newInstance();

tcf = new com.sun.messaging.TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

tc.start();

Use the OnMessagemethod to receive the message. Use the SOAPMessageFromJMSMessage
method to convert the JMS message to a SOAP message.
public void onMessage (Message message) {

SOAPMessage soapMessage =

MessageTransformer.SOAPMessageFromJMSMessage(message,

messageFactory); }

Retrieve the content of the SOAP message.

1

2

3

4

Delivering SOAP Messages Using the JMS API

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009296

Using the JavaMail API

This chapter describes how to use the JavaMailTM API, which provides a set of abstract classes
defining objects that comprise a mail system.

This chapter contains the following sections:

■ “Introducing JavaMail” on page 297
■ “Creating a JavaMail Session” on page 298
■ “JavaMail Session Properties” on page 298
■ “Looking Up a JavaMail Session” on page 298
■ “Sending and Reading Messages Using JavaMail” on page 299

Introducing JavaMail
The JavaMail API defines classes such as Message, Store, and Transport. The API can be
extended and can be subclassed to provide new protocols and to add functionality when
necessary. In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet mail
protocols and conform to the RFC822 and RFC2045 specifications. The JavaMail API includes
support for the IMAP4, POP3, and SMTP protocols.

The JavaMail architectural components are as follows:

■ The abstract layer declares classes, interfaces, and abstract methods intended to support
mail handling functions that all mail systems support.

■ The internet implementation layer implements part of the abstract layer using the RFC822
and MIME internet standards.

■ JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message data and to
handle commands intended to interact with that data.

For more information, see Chapter 5, “Configuring JavaMail Resources,” in Sun GlassFish
Communications Server 2.0 Administration Guide and the JavaMail specification at

19C H A P T E R 1 9

297

http://docs.sun.com/doc/821-0200/ablkr?a=view
http://docs.sun.com/doc/821-0200/ablkr?a=view

http://java.sun.com/products/javamail/. A useful JavaMail tutorial is located at
http://java.sun.com/developer/onlineTraining/JavaMail/.

Creating a JavaMail Session
You can create a JavaMail session in the following ways:

■ In the Admin Console, open the Resources component and select JavaMail Sessions. For
details, click the Help button in the Admin Console.

■ Use the asadmin create-javamail-resource command. For details, see the Sun GlassFish
Communications Server 2.0 Reference Manual.

JavaMail Session Properties
You can set properties for a JavaMail Session object. Every property name must start with a
mail- prefix. The Communications Server changes the dash (-) character to a period (.) in the
name of the property and saves the property to the MailConfiguration and JavaMail Session
objects. If the name of the property doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail.from in a JavaMail Session object, first
define the property as follows:

■ Name – mail-from

■ Value – john.doe@sun.com

Looking Up a JavaMail Session
The standard Java Naming and Directory Interface (JNDI) subcontext for JavaMail sessions is
java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace, or in one of
its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file system’s
directory structure, so it is easy to find and nest references. A JavaMail session is bound to a
logical JNDI name. The name identifies a subcontext, mail, of the root context, and a logical
name. To change the JavaMail session, you can change its entry in the JNDI namespace without
having to modify the application.

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

Creating a JavaMail Session

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009298

http://java.sun.com/products/javamail/
http://java.sun.com/developer/onlineTraining/JavaMail/
http://docs.sun.com/doc/821-0197
http://docs.sun.com/doc/821-0197

For more information about the JNDI API, see Chapter 17, “Using the Java Naming and
Directory Interface.”

Sending and Reading Messages Using JavaMail
The following sections describe how to send and read messages using the JavaMail API:

■ “To Send a Message Using JavaMail” on page 299
■ “To Read a Message Using JavaMail” on page 300

▼ To Send a Message Using JavaMail
Import the packages that you need.
import java.util.*;

import javax.activation.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.naming.*;

Look up the JavaMail session.
InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 298.

Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();

props.put("mail.from", "user2@mailserver.com");

Create a MimeMessage.
The msgRecipient, msgSubject, and msgTxt variables in the following example contain input
from the user:
Message msg = new MimeMessage(session);

msg.setSubject(msgSubject);

msg.setSentDate(new Date());

msg.setFrom();

msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(msgRecipient, false));

msg.setText(msgTxt);

1

2

3

4

Sending and Reading Messages Using JavaMail

Chapter 19 • Using the JavaMail API 299

Send the message.
Transport.send(msg);

▼ To Read a Message Using JavaMail
Import the packages that you need.
import java.util.*;

import javax.activation.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.naming.*;

Look up the JavaMail session.
InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 298.

Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();

props.put("mail.from", "user2@mailserver.com");

Get a Store object from the Session, then connect to the mail server using the Store object’s
connect()method.
You must supply a mail server name, a mail user name, and a password.
Store store = session.getStore();

store.connect("MailServer", "MailUser", "secret");

Get the INBOX folder.
Folder folder = store.getFolder("INBOX");

It is efficient to read the Message objects (which represent messages on the server) into an array.
Message[] messages = folder.getMessages();

5

1

2

3

4

5

6

Sending and Reading Messages Using JavaMail

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009300

Using the Application Server Management
Extensions

Sun GlassFish Communications Server uses Communications Server Management eXtensions
(AMX) (http://glassfish.dev.java.net/javaee5/amx/index.html) for management and
monitoring purposes. AMX technology exposes managed resources for remote management as
the JavaTM Management eXtensions (JMXTM) API.

The Communications Server incorporates the JMX 1.2 Reference Implementation
(http://java.sun.com/products/JavaManagement/index.jsp), which was developed by the
Java Community Process as Java Specification Request (JSR) 3 (http://jcp.org/en/jsr/
detail?id=3), and the JMX Remote API 1.0 Reference Implementation , which is JSR 160
(http://jcp.org/en/jsr/detail?id=160).

This chapter assumes some familiarity with the JMX technology, but the AMX interfaces can be
used for the most part without understanding JMX. For more information about JMX, see the
JMX specifications and Reference Implementations (http://java.sun.com/products/
JavaManagement/download.html).

For information about creating custom MBeans, see Chapter 14, “Developing Custom
MBeans.”

This chapter contains the following topics:

■ “About AMX” on page 302
■ “AMX MBeans” on page 303
■ “Dynamic Client Proxies” on page 306
■ “Connecting to the Domain Administration Server” on page 306
■ “Examining AMX Code Samples” on page 307
■ “Running the AMX Samples” on page 310

20C H A P T E R 2 0

301

http://glassfish.dev.java.net/javaee5/amx/index.html
http://glassfish.dev.java.net/javaee5/amx/index.html
http://java.sun.com/products/JavaManagement/index.jsp
http://java.sun.com/products/JavaManagement/index.jsp
http://jcp.org/en/jsr/detail?id=3
http://jcp.org/en/jsr/detail?id=3
http://jcp.org/en/jsr/detail?id=160
http://jcp.org/en/jsr/detail?id=160
http://java.sun.com/products/JavaManagement/download.html
http://java.sun.com/products/JavaManagement/download.html

About AMX
AMX is an API that exposes all of the Communications Server configuration, monitoring and
JSR 77 MBeans as easy-to-use client-side dynamic proxies implementing the AMX interfaces.
To understand the design and implementation of the AMX API, you can get started with this
white paper (http://glassfish.dev.java.net/nonav/javaee5/amx/amx.html).

Complete API documentation for AMX is provided in the Communications Server package
(http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/index.html).

com.sun.appserv.management

The code samples in this section are taken from the package:

com.sun.appserv.management.sample

The Communications Server is based around the concept of administration domains. Each
domain consists of one or more managed resources. A managed resource can be an
Communications Server instance, a cluster of such instances, or a manageable entity within a
server instance. A managed resource is of a particular type, and each resource type exposes a set
of attributes and administrative operations that change the resource’s state.

Managed resources are exposed as JMX management beans, or MBeans. While the MBeans can
be accessed using standard JMX APIs (for example, MBeanServerConnection), most users find
the use of the AMX client-side dynamic proxies much more convenient.

Virtually all components of the Communications Server are visible for monitoring and
management through AMX. You can use third-party tools to perform all common
administrative tasks programmatically, based on the JMX and JMX Remote API standards.

The AMX API consists of a set of interfaces. The interfaces are implemented by client-side
dynamic proxies (http://glassfish.dev.java.net/nonav/javaee5/amx/
amx.html#AMXDynamicClientProxy), each of which is associated with a server-side MBean in
the Domain Administration Server (DAS). AMX provides routines to obtain proxies for
MBeans, starting with the DomainRoot interface (see http://glassfish.dev.java.net/
nonav/javaee5/amx/javadoc/com/sun/appserv/management/DomainRoot.html).

Note – The term AMX interface in the context of this document should be understood as
synonymous with a client-side dynamic proxy implementing that interface.

You can navigate generically through the MBean hierarchy using the
com.sun.appserv.management.base.Container interface (see http://
glassfish.dev.java.net/

nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/Container.html).
When using AMX, the interfaces defined are implemented by client-side dynamic proxies, but

About AMX

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009302

http://glassfish.dev.java.net/nonav/javaee5/amx/amx.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/index.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/index.html
http://glassfish.dev.java.net/nonav/javaee5/amx/amx.html#AMXDynamicClientProxy
http://glassfish.dev.java.net/nonav/javaee5/amx/amx.html#AMXDynamicClientProxy
http://glassfish.dev.java.net/nonav/javaee5/amx/amx.html#AMXDynamicClientProxy
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/DomainRoot.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/DomainRoot.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/Container.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/Container.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/Container.html

they also implicitly define the MBeanInfo that is made available by the MBean or MBeans
corresponding to it. Certain operations defined in the interface might have a different return
type or a slightly different name when accessed through the MBean directly. This results from
the fact that direct access to JMX requires the use of ObjectName, whereas the AMX interfaces
use strongly typed proxies implementing the interface(s).

AMX MBeans
All AMX MBeans are represented as interfaces in a subpackage of
com.sun.appserv.management (see http://glassfish.dev.java.net/
nonav/javaee5/amx/javadoc/com/sun/appserv/management/package-summary.html) and
are implemented by dynamic proxies on the client-side. Note that client-side means any client,
wherever it resides. AMX may be used within the server itself such as in a custom MBean. While
you can access AMX MBeans directly through standard JMX APIs, most users find the use of
AMX interface (proxy) classes to be most convenient.

An AMX MBean belongs to an Communications Server domain. There is exactly one domain
per DAS. Thus all MBeans accessible through the DAS belong to a single Communications
Server administrative domain. All MBeans in an Communications Server administrative
domain, and hence within the DAS, belong to the JMX domain amx. All AMX MBeans can be
reached by navigating through the DomainRoot.

Note – Any MBeans that do not have the JMX domain amx are not part of AMX, and are neither
documented nor supported for use by clients.

AMX defines different types of MBean, namely, configuration MBeans, monitoring MBeans,
utility MBeans and Java EE management JSR 77 (http://jcp.org/en/jsr/detail?id=77)
MBeans. These MBeans are logically related in the following ways:

■ They all implement the com.sun.appserv.management.base.AMX interface (see
http://glassfish.dev.java.net/

nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/AMX.html).
■ They all have a j2eeType and name property within their ObjectName. See

com.sun.appserv.management.base.XTypes (http://glassfish.dev.java.net/
nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/XTypes.html) and
com.sun.appserv.management.j2ee.J2EETypes (http://glassfish.dev.java.net/
nonav/javaee5/amx/javadoc/com/sun/appserv/management/j2ee/J2EETypes.html) for
the available values of the j2eeType property.

■ All MBeans that logically contain other MBeans implement the
com.sun.appserv.management.base.Container interface.

AMX MBeans

Chapter 20 • Using the Application Server Management Extensions 303

http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/package-summary.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/package-summary.html
http://jcp.org/en/jsr/detail?id=77
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/AMX.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/AMX.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/XTypes.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/base/XTypes.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/j2ee/J2EETypes.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/j2ee/J2EETypes.html

■ JSR 77 MBeans that have a corresponding configuration or monitoring peer expose it using
getConfigPeer() or getMonitoringPeer(). However, there are many configuration and
monitoring MBeans that do not correspond to JSR 77 MBeans.

Configuration MBeans
Configuration information for a given Communications Server domain is stored in a central
repository that is shared by all instances in that domain. The central repository can only be
written to by the DAS. However, configuration information in the central repository is made
available to administration clients through AMX MBeans.

The configuration MBeans are those that modify the underlying domain.xml or related files.
Collectively, they form a model representing the configuration and deployment repository and
the operations that can be performed on them.

The Group Attribute of configuration MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_CONFIGURATION.

Monitoring MBeans
Monitoring MBeans provide transient monitoring information about all the vital components
of the Communications Server.

The Group Attribute of monitoring MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_MONITORING.

Utility MBeans
Utility MBeans provide commonly used services to the Communications Server.

The Group Attribute of utility MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_UTILITY.

Java EE Management MBeans
The Java EE management MBeans implement, and in some cases extend, the management
hierarchy as defined by JSR 77 (http://jcp.org/en/jsr/detail?id=77), which specifies the
management model for the whole Java EE platform.

The AMX JSR 77 MBeans offer access to configuration and monitoring MBeans using the
getMonitoringPeer() and getConfigPeer() methods.

AMX MBeans

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009304

http://jcp.org/en/jsr/detail?id=77

The Group Attribute of Java EE management MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_JSR77.

Other MBeans
MBeans that do not fit into one of the above four categories have the value
com.sun.appserv.management.base.AMX.GROUP_OTHER. One such example is
com.sun.appserv.management.deploy.DeploymentMgr (see http://
glassfish.dev.java.net/

nonav/javaee5/amx/javadoc/com/sun/appserv/management/deploy/

DeploymentMgr.html).

MBean Notifications
All AMX MBeans that emit Notifications place a java.util.Map within the UserData field of a
standard JMX Notification, which can be obtained using Notification.getUserData().
Within the map are one or more items, which vary according to the Notification type. Each
Notification type, and the data available within the Notification, is defined in the Javadoc of the
MBean (AMX interface) that emits it.

Note that certain standard Notifications, such as
javax.management.AttributeChangeNotification (see http://java.sun.com/
javase/6/docs/api/javax/management/AttributeChangeNotification.html) do not and
cannot follow this behavior.

Access to MBean Attributes
An AMX MBean Attribute is accessible in three ways:

■ Dotted names using MonitoringDottedNames and ConfigDottedNames

■ Attributes on MBeans using getAttribute(s) and setAttributes(s) (from the standard
JMX API)

■ Getters/setters within the MBean’s interface class, for example, getPort(), setPort(), and
so on

All dotted names that are accessible through the command line interface are available as
Attributes within a single MBean. This includes properties, which are provided as Attributes
beginning with the prefix property., for example, server.property.myproperty.

AMX MBeans

Chapter 20 • Using the Application Server Management Extensions 305

http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/deploy/DeploymentMgr.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/deploy/DeploymentMgr.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/deploy/DeploymentMgr.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/deploy/DeploymentMgr.html
http://java.sun.com/javase/6/docs/api/javax/management/AttributeChangeNotification.html
http://java.sun.com/javase/6/docs/api/javax/management/AttributeChangeNotification.html

Note – Certain attributes that ought to be of a specific type, such as int, are declared as
java.lang.String. This is because the value of the attribute may be a template of a form such
as ${HTTP_LISTENER_PORT}.

Dynamic Client Proxies
Dynamic Client Proxies are an important part of the AMX API, and enhance ease-of-use for the
programmer.

JMX MBeans can be used directly by an MBeanServerConnection (see http://java.sun.com/
javase/6/docs/api/javax/management/MBeanServerConnection.html) to the server.
However, client proxies greatly simplify access to Attributes and operations on MBeans,
offering get/set methods and type-safe invocation of operations. Compiling against the AMX
interfaces means that compile-time checking is performed, as opposed to server-side runtime
checking, when invoked generically through MBeanServerConnection.

See the API documentation for the com.sun.appserv.management package and its
sub-packages for more information about using proxies. The API documentation explains the
use of AMX with proxies. If you are using JMX directly (for example, by
usingMBeanServerConnection), the return type, argument types, and method names might
vary as needed for the difference between a strongly-typed proxy interface and generic
MBeanServerConnection/ObjectName interface.

Connecting to the Domain Administration Server
As stated in “Configuration MBeans” on page 304, the AMX API allows client applications to
connect to Communications Server instances using the DAS. All AMX connections are
established to the DAS only: AMX does not support direct connections to individual server
instances. This makes it simple to interact with all servers, clusters, and so on, with a single
connection.

Sample code for connecting to the DAS is shown in “Connecting to the DAS” on page 307. The
com.sun.appserv.management.helper.Connect class (see http://
glassfish.dev.java.net/

nonav/javaee5/amx/javadoc/com/sun/appserv/management/helper/Connect.html) is also
available.

Dynamic Client Proxies

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009306

http://java.sun.com/javase/6/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/javase/6/docs/api/javax/management/MBeanServerConnection.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/helper/Connect.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/helper/Connect.html
http://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/helper/Connect.html

Examining AMX Code Samples
An overview of the AMX API and code samples that demonstrate various uses of the AMX API
can be found at http://glassfish.dev.java.net/nonav/javaee5/amx/samples/javadoc/
index.html and http://glassfish.dev.java.net/

nonav/javaee5/amx/samples/javadoc/amxsamples/Samples.html.

The sample implementation is based around the SampleMain class. The principal uses of AMX
demonstrated by SampleMain are the following:
■ “Starting an Communications Server” on page 308
■ “Deploying an Archive” on page 309
■ “Displaying the AMX MBean Hierarchy” on page 309
■ “Setting Monitoring States” on page 309
■ “Accessing AMX MBeans” on page 309
■ “Accessing and Displaying the Attributes of an AMX MBean” on page 309
■ “Listing AMX MBean Properties” on page 309
■ “Performing Queries” on page 309
■ “Monitoring Attribute Changes” on page 310
■ “Undeploying Modules” on page 310
■ “Stopping an Communications Server” on page 310

All of these actions are performed by commands that you give to SampleMain. Although these
commands are executed by SampleMain, they are defined as methods of the class Samples,
which is also found in the com.sun.appserv.management.sample package.

The SampleMainClass
The SampleMain class creates a connection to a DAS, and creates an interactive loop in which
you can run the various commands defined in Samples that demonstrate different uses of AMX.

Connecting to the DAS
The connection to the DAS is shown in the following code.

[...]

public static AppserverConnectionSource

connect(

final String host,

final int port,

final String user,

final String password,

final TLSParams tlsParams)

throws IOException

Examining AMX Code Samples

Chapter 20 • Using the Application Server Management Extensions 307

http://glassfish.dev.java.net/nonav/javaee5/amx/samples/javadoc/index.html
http://glassfish.dev.java.net/nonav/javaee5/amx/samples/javadoc/index.html
http://glassfish.dev.java.net/nonav/javaee5/amx/samples/javadoc/amxsamples/Samples.html
http://glassfish.dev.java.net/nonav/javaee5/amx/samples/javadoc/amxsamples/Samples.html

{

final String info = "host=" + host + ", port=" + port +

", user=" + user + ", password=" + password +

", tls=" + (tlsParams != null);

SampleUtil.println("Connecting...:" + info);

final AppserverConnectionSource conn =

new AppserverConnectionSource(

AppserverConnectionSource.PROTOCOL_RMI,

host, port, user, password, tlsParams, null);

conn.getJMXConnector(false);

SampleUtil.println("Connected: " + info);

return(conn);

}

[...]

A connection to the DAS is obtained using an instance of the
com.sun.appserv.management.client.AppserverConnectionSource class. For the
connection to be established, you must know the name of the host and port number on which
the DAS is running, and have the correct user name, password and TLS parameters.

After the connection to the DAS is established, DomainRoot is obtained as follows:

DomainRoot domainRoot = appserverConnectionSource.getDomainRoot();

This DomainRoot instance is a client-side dynamic proxy to the MBean
amx:j2eeType=X-DomainRoot,name=amx.

See the API documentation for
com.sun.appserv.management.client.AppserverConnectionSource for further details
about connecting to the DAS using the AppserverConnectionSource class.

However, if you prefer to work with standard JMX, instead of getting DomainRoot, you can get
the MBeanServerConnection or JMXConnector, as shown:

MBeanServerConnection conn =

appserverConnectionSource.getMBeanServerConnection(false);

JMXConnector jmxConn =

appserverConnectionSource.getJMXConnector(false);

Starting an Communications Server
The Samples.startServer method demonstrates how to start an Communications Server.

Examining AMX Code Samples

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009308

In this sample AMX implementation, all the tasks are performed by the command
start-server when you run SampleMain. See the startServer method to see how this
command is implemented. Click the method name to see the source code.

Deploying an Archive
The Samples.uploadArchive() and deploy methods demonstrate how to upload and deploy a
Java EE archive file.

Displaying the AMX MBean Hierarchy
The Samples.displayHierarchy method demonstrates how to display the AMX MBean
hierarchy.

Setting Monitoring States
The Samples.setMonitoring method demonstrates how to set monitoring states.

Accessing AMX MBeans
The Samples.handleList method demonstrates how to access many (but not all) configuration
elements.

Accessing and Displaying the Attributes of an AMX
MBean
The Samples.displayAllAttributes method demonstrates how to access and display the
attributes of an AMX MBean.

Listing AMX MBean Properties
The Samples.displayAllProperties method demonstrates how to list AMX MBean
properties.

Performing Queries
The Samples.demoQuery method demonstrates how to perform queries.

Examining AMX Code Samples

Chapter 20 • Using the Application Server Management Extensions 309

The demoQuery() method uses other methods that are defined by Samples, namely
displayWild(), and displayJ2EEType().

Monitoring Attribute Changes
The Samples.demoJMXMonitor method demonstrates how to monitor attribute changes.

Undeploying Modules
The Samples.undeploy method demonstrates how to undeploy a module.

Stopping an Communications Server
The Samples.stopServer method demonstrates how to stop an Communications Server. The
stopServer method simply calls the Samples.getJ2EEServer method on a given server
instance, and then calls J2EEServer.stop.

Running the AMX Samples
The following section lists the steps to run the AMX samples.

▼ To Run the AMX Sample
Ensure that the JAR file appserv-ext.jar has been added to your classpath. Some examples
also require that j2ee.jarbe present.

Define a SampleMain.properties file, which provides the parameters required by
AppserverConnectionSource to connect to the DAS.
The file SampleMain.properties file should use the following format:
connect.host=localhost

connect.port=8686

connect.user=admin

connect.password=admin123

connect.truststore=sample-truststore

connect.truststorePassword=changeme

connect.useTLS=true

Scripts are provided in the com.sun.appserv.management.sample package to run the AMX
samples.
Start SampleMain by running the appropriate script for your platform:

1

2

3

Running the AMX Samples

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009310

■ run-samples.sh on UNIX or Linux platforms
■ run-samples.bat on Microsoft Windows platforms

After SampleMain is running, you can interact with it by typing the commands examined above:

■ Enter Command> start-server serverName
■ Enter Command> list-attributes

You see output like this:

--- Attributes for X-DomainRoot=amx ---

AttributeNames=[...]

BulkAccessObjectName=amx:j2eeType=X-BulkAccess,name=na

DomainConfigObjectName=amx:j2eeType=X-DomainConfig,name=na

MBeanInfoIsInvariant=true

J2EEDomainObjectName=amx:j2eeType=J2EEDomain,name=amx

AppserverDomainName=amx

ObjectName=amx:j2eeType=X-DomainRoot,name=amx

[...]

■ Enter Command> show-hierarchy

You see output like this:

X-DomainRoot=amx

X-ConfigDottedNames

X-SystemInfo

X-QueryMgr

X-DeploymentMgr

X-UploadDownloadMgr

X-BulkAccess

X-MonitoringDottedNames

X-JMXMonitorMgr

X-Sample

X-DomainConfig

X-WebModuleConfig=admingui

X-WebModuleConfig=adminapp

X-WebModuleConfig=com_sun_web_ui

X-JDBCResourceConfig=jdbc/__default

X-JDBCResourceConfig=jdbc/__TimerPool

X-J2EEApplicationConfig=MEjbApp

[...]

■ Enter Command> list

You see output like this:

--- Top-level ---

ConfigConfig: [server2-config, default-config, server-config,

server3-config]

4

Running the AMX Samples

Chapter 20 • Using the Application Server Management Extensions 311

ServerConfig: [server3, server, server2]

StandaloneServerConfig: [server3, server, server2]

ClusteredServerConfig: []

ClusterConfig: []

[...]

■ Enter Command> list-properties

You see output like this:

Properties for:

amx:j2eeType=X-JDBCConnectionPoolConfig,name=DerbyPool

Password=pbPublic

DatabaseName=jdbc:derby://localhost:9092/sun-appserv-samples

User=pbPublic

[...]

■ Enter Command> query

You see output like this:

--- Queried for j2eeType=X-*ResourceConfig ---

j2eeType=X-JDBCResourceConfig,name=jdbc/__default

j2eeType=X-JDBCResourceConfig,name=jdbc/__TimerPool

[...]

■ And so on for the other commands:
Enter Command> demo-jmx-monitor

Enter Command> set-monitoring monitoringLevel (one of HIGH, LOW or OFF)
Enter Command> stop-server serverName
Enter Command> quit

Running the AMX Samples

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009312

Index

Numbers and Symbols
@OrderBy and session cache sharing, 133

A
ACC, 221-222

annotation, 222
naming, 222
security, 221-222, 232-234

ACC clients
appclient script, 232
failover, 224
invoking a JMS resource, 225-226
invoking an EJB component, 223-225
Java Web Start, 226-231
load balancing, 224
making a remote call, 224
package-appclient script, 232
running, 226-231, 232
SSL, 221-222, 232-234

action attribute, 51, 55
activation-config-property element, 292-293
ActivationSpec properties, 292-293
AddressList

and connections, 291-292
and default JMS host, 289

Admin Console, 30
Admin Object Resources page, 237
Admin Service page, 256
App Client Modules page, 227
Audit Modules page, 93

Admin Console (Continued)
Classpath Prefix and Suffix fields, 35
Classpath Prefix for jndi.properties, 282
CMP resource configuration, 207
Connector Connection Pools page, 237
Connector Modules page, 237
Connector Resources page, 237
Connector Service page

Shutdown Timeout field, 241
connector thread pool assignment, 239
Custom MBeans page, 253
Debug Enabled field, 70
Default Virtual Server field, 161
Generate RMIStubs field, 229
HPROF configuration, 75
JACC Providers page, 93
JavaMail Sessions page, 298
JDBC Connection Pools page, 262

Allow Non Component Callers field, 267
Non-Transactional Connections field, 265
Ping button, 263

JDBC Resources page, 263
JMS Hosts page, 289
JMS Resources page, 290
JMS Service page, 288
JNDI page

Custom Resources page, 281
External Resources page, 281

JProbe configuration, 76
Libraries field, 38
Lifecycle Modules page, 249
Locale field, 159

313

Admin Console (Continued)
Logging tab, 72, 163
Message Security page

creating providers, 100
enabling providers, 99

Monitor tab, 163
online help for, 30
Physical Destinations page, 290
Realms page, 87
role mapping configuration, 85
Security Manager Enabled field, 98
Security Maps tab, 240
SIP Service page

SIP Message Inspection properties, 74
System Classpath field, 35, 40
Thread Pools page, 239
Transaction Log Location field, 273
Transaction Service page, 272
Trust Configurations page, 91, 92
Virtual Servers page, 161
Web Services page

Publish tab, 115
Registry tab, 115
Test button, 116

Write to System Log field, 141
administered objects, 290

and connectors, 237
allow-concurrent-access element, 189
AllowManagedFieldsInDefaultFetchGroup flag, 210
AllowMediatedWriteInDefaultFetchGroup flag, 210
alternate document roots, 165-166
AMX

about, 302-303
MBeans, 303-306
proxies, 306
samples, 307-310

running, 310-312
annotation

application clients, 222
EJB 3.0 specification, 173
JNDI names, 278
message layer, 98
schema generation, 126-127
security, 83

Ant, 30, 43-68
ANT_HOME environment variable, 43
Apache Ant, 30, 43-68
appclient script, 232
Application class loader, 36
Application Client Container, See ACC
Application Server Management eXtensions, See AMX
applications

disabling, 54-57
examples, 31-32

appserv-ext.jar file, 247
appserv-jwsacc.jar file, 229
appserv-tags.jar file, 147
appserv-tags.tld file, 147-148
AppservPasswordLoginModule class, 88
AppservRealm class, 88
asadmin command, 29

create-admin-object, 237
create-audit-module, 93
create-auth-realm, 87
create-connector-connection-pool, 237, 291
create-connector-resource, 237
create-connector-security-map, 240
create-custom-resource, 281
create-domain, 230
create-javamail-resource, 298
create-jdbc-connection-pool, 262

--allownoncomponentcallers option, 267
--nontransactionalconnections option, 265

create-jdbc-resource, 263
create-jms-host, 289
create-jmsdest, 290
create-jndi-resource, 281
create-jvm-options, 188, 210

com.sun.appserv.transaction.nofdsync
option, 273

java.security.debug option, 97
create-lifecycle-module, 249
create-mbean, 253-254
create-message-security-provider, 100
create-resource-adapter-config, 237, 239, 240
create-threadpool, 239
create-trust-config, 91, 92

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009314

asadmin command (Continued)
delete-jvm-options

java.security.manager option, 98
delete-mbean, 254
deploy

and connectors, 237
--availabilityenabled option, 183
--libraries option, 38
--precompilejsp option, 151
--retrieve option, 223, 229
schema generation, 130, 204

deploy-jbi-service-assembly, 117
deploydir

and connectors, 237
--availabilityenabled option, 183
schema generation, 130, 204

flush-jmsdest, 290
generate-jvm-report, 71
get, 272, 288
get-client-stubs, 224, 229
jms-ping, 289
list-mbeans, 254-255
list-timers, 178
migrate-timers, 178
ping-connection-pool, 240, 263
publish-to-registry, 115
set

custom MBean attributes, 256
custom MBean disabling, 256
default message security provider, 99
default principal settings, 85
java-web-start-enabled attribute, 227
jbi-enabled property, 118
JMS service settings, 288
JMX connector port, 256
SIP Message Inspection properties, 73
transaction service settings, 272

undeploy
schema generation, 131, 205

asant script, 30, 43-68
Application Server specific tasks, 44-63
disabling deployed applications and modules, 54-57
updating deployed applications and modules, 60
using for deployment, 44-48

asant script (Continued)
using for JSP precompilation, 58-59
using for server administration, 51-54, 57-58
using for undeployment, 48-51

asinstalldir attribute
sun-appserv-admin task, 58
sun-appserv-component task, 56
sun-appserv-deploy task, 47
sun-appserv-instance task, 52
sun-appserv-jspc task, 59
sun-appserv-undeploy task, 50

audit modules, 93-94
AuditModule class, 93-94
authentication

application clients, 221-222
audit modules, 94
JAAS, 87-89
JMS, 293
message-level, 105
P-asserted identity, 82, 92
programmatic login, 107
realms, 86
single sign-on, 110-111

authorization
audit modules, 94
JAAS, 87-89
JACC, 93
roles, 84-86

automatic schema generation
for CMP, 200-206
Java Persistence options, 128-131

availability
configuring HTTP session persistence, 157-158
configuring SIP session persistence, 157-158
feature summary, 29
for ACC clients, 224
for SIP modules, 153-154
for stateful session beans, 180-185
for web modules, 153-154
of message-driven beans, 292-293

availabilityenabled attribute, 46

Index

315

B
bin directory, 43
binding attribute, 62
BLOB support, 199
Bootstrap class loader, 35
build.xml file, 30, 32

C
cache for servlets

default configuration, 143
example configuration, 143
helper class, 142, 144

cache sharing and @OrderBy, 133
cache tag, 149-150
CacheHelper interface, 144
cacheKeyGeneratorAttrName property, 145
caching

a bean's state using version consistency, 208
data using a non-transactional connection, 266
EJB components, 175
entities, 193
JSP files, 147-151
read-only beans, 187
servlet results, 141-145
stateful session beans, 180
using a read-only bean for, 174, 188, 209

capture-schema command, 206-207
cascade attribute, 49
Catalina listeners, defining custom, 164-165
catalog attribute, 63
certificate realm, 86
checkpoint-at-end-of-method element, 184
checkpointing, 180

selecting methods for, 184
class-loader element, 37, 162
class loaders, 33-42

application-specific, 38-39
circumventing isolation, 39-42
delegation hierarchy, 33-36
isolation, 38

classpath, changing, 35
classpath attribute, 59, 61
classpath-prefix attribute, 35

classpath-suffix attribute, 35
classpathref attribute, 59
client JAR file, 41
client.policy file, 232
CLOB support, 200
cluster attribute, 52
CMP, See container-managed persistence
cmp-resource element, 207
cmt-max-runtime-exceptions property, 192
Comet support, 167
command attribute, 57
command-line server configuration, See asadmin

command
commit options, 193
Common class loader, 35

using to circumvent isolation, 40
compiling JSP files, 151
component subelement, 66-68
config attribute, 52
connection factory, 189
ConnectionFactory interface, 290
Connector class loader, 36, 250
connectors, 235-245

administered objects, 237
and JDBC, 236
and JMS, 236
and message-driven beans, 243-245
and transactions, 270
configuration options, 239-242
configuring, 236
connection pools, 237
deployment, 237
embedded, 238
generic JMS, 287
inbound connectivity, 242-243
invalid connections, 241
last agent optimization, 242
redeployment, 238
resources, 237
shutdown timeout, 241
Sun Java System Application Server support, 236
testing connection pools, 240
thread pools, 239

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009316

container-managed persistence
configuring 1.1 finders, 210-211
data types for mapping, 201-203
deployment descriptor, 196-197
mapping, 196
performance features, 207-209
prefetching, 208-209
resource manager, 207
restrictions, 214-219
support, 195-196
version consistency, 208

context, for JNDI naming, 277-280
context root, 140
context.xml file, 167
contextroot attribute, 45, 66
converged web/SIP module, 139
CosNaming naming service, 279
cp attribute, 61
create-admin-object command, 237
create-audit-module command, 93
create-auth-realm command, 87
create-connector-connection-pool command, 237, 291
create-connector-resource command, 237
create-connector-security-map command, 240
create-custom-resource command, 281
create-domain command, 230
create-javamail-resource command, 298
create-jdbc-connection-pool command, 262

--allownoncomponentcallers option, 267
--nontransactionalconnections option, 265

create-jdbc-resource command, 263
create-jms-host command, 289
create-jmsdest command, 290
create-jndi-resource command, 281
create-jvm-options command, 188, 210

com.sun.appserv.transaction.nofdsync option, 273
java.security.debug option, 97

create-lifecycle-module command, 249
create-mbean command, 253-254
create-message-security-provider command, 100
create-resource-adapter-config command, 237, 239,

240
create-threadpool command, 239
create-trust-config command, 91, 92

createtables attribute, 46
custom MBeans

deployment or registration, 253-254
enabling and disabling, 256
handling attributes of, 256-257
life cycle, 252-253
listing information about, 254-255
location and classloading, 253
redeployment, 254
the MBeanServer, 255-256
undeployment, 254

custom resource, 281

D
DAS, connecting to, 306
data types

for CMP mapping, 201-203
for schema generation, 127-128

database properties, 124
databases

as transaction resource managers, 269
CMP resource manager, 207
properties, 124
schema capture, 206
specifying for Java Persistence, 122-123
supported, 262

dbvendorname attribute, 46
debug attribute, 52, 64
debugging, 69-78

enabling, 69-70
generating a stack trace, 71
JPDA options, 70-71

DeclareRoles annotation, 84-86
default virtual server, 161
default web module, 140, 161-162
default-web.xml file, 162-163
delegation, class loader, 37
delete-jvm-options command, java.security.manager

option, 98
delete-mbean command, 254
demoQuery method, 309-310
deploy command

and connectors, 237

Index

317

deploy command (Continued)
--availabilityenabled option, 183
--libraries option, 38
--precompilejsp option, 151
--retrieve option, 223, 229
schema generation, 130, 204

deploy-jbi-service-assembly command, 117
deploydir command

and connectors, 237
--availabilityenabled option, 183
schema generation, 130, 204

deployment
disabling deployed applications and modules, 54-57
read-only beans, 189
undeploying an application or module, 48
using asant script, 44-48

deployment descriptor files, 282
deploymentplan attribute, 46
destdir attribute, 58, 61, 62
destinations

destination resources, 290
physical, 289-290

destroy method, 145
development environment

creating, 27-32
tools for developers, 29-31

digest authentication, 86
directory listings, disabling, 162
displayHierarchy method, 309
distributable SIP application, 153
distributable web application, 153
distributed HTTP sessions, 153-154
distributed SIP sessions, 153-154
dns-cache-size JVM option, 171
document root, 160, 162
document roots, alternate, 165-166
doGet method, 145, 146
Domain Administration Server, See DAS
domain attribute, 60
domain.xml file

configuring single sign-on, 111
Shared Chain class loader, 282
System class loader, 35, 40

doPost method, 145, 146

dropandcreatetables attribute, 46
droptables attribute, 49

E
EJB 3.0

Java Persistence, 121-137
summary of changes, 173

EJB components
caching, 175-176
calling from a different application, 41
flushing, 177
pooling, 175-176, 179
remote bean invocations, 177
security, 84
thread pools, 177

EJB QL queries, 210-211
ejb-ref element, 282
ejb-ref mapping, using JNDI name instead, 42
EJB reference failover, 224
EJB Timer Service, 178
ejbPassivate, 187
enabled attribute, 46
encoding, of servlets, 159-160
endorsed standards override mechanism, 37-38
Enterprise Service Bus (ESB), 117-119
env-classpath-ignored attribute, 35
events, server life cycle, 247
example applications, 31-32
explicitcommand attribute, 57
extension attribute, 61, 62
external JNDI resource, 281

F
fail-all-connections property, 241
failover

for ACC clients, 224
JMS connection, 292
object types supported for, 154, 181-182
of SIP module sessions, 153-154
of stateful session bean state, 180-185
of web module sessions, 153-154

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009318

fetch group, options for, 210
file attribute

component element, 66
sun-appserv-component task, 55
sun-appserv-deploy task, 45
sun-appserv-undeploy task, 49
sun-appserv-update task, 60

file realm, 86
fileset subelement, 68
finder limitation for Sybase, 135, 216
finder methods, 210-211
flat transactions, 193
flush-jmsdest command, 290
flush tag, 150-151
flushing of EJB components, 177
force attribute, 45, 66

G
generate-jvm-report command, 71
generatermistubs attribute, 46
generic JMS resource adapter, 287
genwsdl attribute, 61
get-client-stubs command, 224, 229
get command, 272, 288
getCharacterEncoding method, 160
getCmdLineArgs method, 249
getConnection method, 264
getData method, 248
getEventType method, 248
getHeaders method, 164
getInitialContext method, 249, 280
getInstallRoot method, 249
getInstanceName method, 249
getLifecycleEventContext method, 248
GlassFish project, 28

H
handling requests, 145
header management, 164
help for Admin Console tasks, 30
high availability, See availability

host attribute
server element, 64
sun-appserv-component task, 55
sun-appserv-deploy task, 47
sun-appserv-instance task, 52
sun-appserv-undeploy task, 50

HPROF profiler, 75-76
HTTP sessions, 151-158

cookies, 152
distributed, 153-154
object types supported for failover, 154
session managers, 154-158
URL rewriting, 152

HttpServletRequest, 143

I
idempotent requests, 163
IMAP4 protocol, 297-298
inbound connectivity, 242-243
Inet Oracle JDBC driver, 134, 199, 200
INIT_EVENT, 247
init method, 145
InitialContext naming service handle, 277-280
installation, 27-28
instance attribute, 52, 64
instanceport attribute, 64
instantiating servlets, 145
internationalization, 159
Interoperable Naming Service, 279-280
is-connection-validation-required property, 241
is-failure-fatal attribute, 250
is-read-only-bean element, 189
isolation of class loaders, 38, 39-42

J
J2EE Connector architecture, 235-245
J2SE policy file, 232
JACC, 93
JAR file, client for a deployed application, 41
Java Authentication and Authorization Service

(JAAS), 87-89

Index

319

Java Authorization Contract for Containers, See JACC
Java Business Integration (JBI), 117-119

Ant tasks for, 68
java-config element, 35
Java Database Connectivity, See JDBC
Java DB database, 122-123
Java Debugger (jdb), 69
Java EE, security model, 82
Java EE Service Engine, 117-119
Java EE tutorial, 139
Java Management Extensions

See JMX
Java Message Service

See JMS
Java Naming and Directory Interface, See JNDI
Java optional package mechanism, 37
Java Persistence, 121-137

annotation for schema generation, 126-127
changing the provider, 132
data types for schema generation, 127-128
database for, 122-123
deployment options for schema

generation, 128-131
restrictions, 133-137

Java Platform Debugger Architecture, See JPDA
Java Servlet API, 140
Java Transaction API (JTA), 269-275
Java Transaction Service (JTS), 269-275
Java Web Start, 226-231

signing client JAR files, 229-231
JavaBeans, 146
JavaMail

and JNDI lookups, 298-299
architecture, 297
creating sessions, 298
defined, 297-300
messages

reading, 300
sending, 299-300

session properties, 298
specification, 297

JConsole, 255
JDBC

connection pool creation, 262-263

JDBC (Continued)
Connection wrapper, 264
creating resources, 263
integrating driver JAR files, 40, 262
non-component callers, 267
non-transactional connections, 265-266
restrictions, 267
sharing connections, 264
specification, 261
supported drivers, 262
transaction isolation levels, 266
tutorial, 261

jdbc realm, 86
JDOQL, 210-211
JMS, 189, 285-296

and transactions, 270
authentication, 293
checking if provider is running, 289
configuring, 288-289
connection failover, 292
connection pooling, 291-292
creating hosts, 289
creating resources, 290-291
debugging, 72
default host, 289
generic resource adapter, 287
JMS Service administration, 287-291
load balancing, 292-293
provider, 286-287
restarting the client, 291
SOAP messages, 294-296
system connector for, 287
transactions and non-persistent messages, 293

jms-ping command, 289
jmsra system JMS connector, 287
JMX, 251-257, 301-312
JNDI

and EJB components, 282
and JavaMail, 298-299
and lifecycle modules, 249, 250, 280
custom resource, 281
defined, 277-283
external JNDI resources, 281
for message-driven beans, 190

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009320

JNDI (Continued)
global names, 278
mapping references, 282-283
name for container-managed persistence, 207
tutorial, 277
using instead of ejb-ref mapping, 42

join tables, 198
JPDA debugging options, 70-71
JProbe profiler, 76-78
JSP Engine class loader, 36
JSP files

caching, 147-151
command-line compiler, 151
precompiling, 45, 58-59, 151
specification, 146
tag libraries, 147

jspc command, 151
JSR 109, 113
JSR 115, 82, 93, 94
JSR 12, 211
JSR 160, 301
JSR 181, 114
JSR 196, 82, 98
JSR 220, 121, 173
JSR 224, 113
JSR 289, 139
JSR 3, 301
JSR 77, 303-306
JSR 907, 272-273

K
keep attribute, 61, 62
key attribute

of cache tag, 149
of flush tag, 150

L
last agent optimization, 242, 270
ldap realm, 86
lib directory

and the Common class loader, 35

lib directory (Continued)
for a web application, 41

libraries, 38-39, 39
lifecycle modules, 247

allocating and freeing resources, 250
and class loaders, 250
and the server.policy file, 250
deployment, 249-250
naming environment, 280

LifecycleEvent class, 248
LifecycleEventContext interface, 249
LifecycleListener interface, 248
LifecycleListenerImpl.java file, 248
LifeCycleModule class loader, 36, 250
list-mbeans command, 254-255
list-timers command, 178
listeners, Catalina, defining custom, 164-165
load balancing

and idempotent requests, 163
of ACC clients, 224
of message-driven beans, 292-293

load-on-startup element in web.xml, 167
locale, setting default, 159
lock-when-loaded consistency level, 216
log adapter, SIP Message Inspection, 73-74
logging, 72

in the web container, 163
login, programmatic, 107
login method, 109
LoginModule, 88

M
main.xml file, 32
managed fields, 198-199
mapping for container-managed persistence

considerations, 197-200
data types, 201-203
features, 196

mapping resource references, 282-283
markConnectionAsBad method, 264-265
MBean class loader, 35
MBeans

accessing, 309

Index

321

MBeans (Continued)
AMX, 302-303, 303-306
attributes, 305-306
configuration, 304
custom

See custom MBeans
definition, 251-257
displaying attributes, 309
Java EE management, 304-305
listing properties, 309
monitoring, 304
notifications, 305
other types, 305
proxies, 306
querying, 309-310
undeploying, 310
using to stop a server instance, 310
utility, 304

mdb-connection-factory element, 190, 191
message-driven beans, 72, 189

administering, 190
connection factory, 189
load balancing, 292-293
monitoring, 190
onMessage runtime exception, 191-192
pool monitoring, 191
pooling, 190
restrictions, 191-192
using with connectors, 243-245

message security, 98-107
application-specific, 102-105
responsibilities, 100
sample application, 105-107

migrate-timers command, 178
Migration Tool, 31
mime-mapping element, 162
modules

disabling, 54-57
lifecycle, 247

monitoring in the web container, 163
MSSQL version consistency triggers, 217
MySQL database restrictions, 135-137, 217-219

N
naming service, 277-283
native library path

configuring for hprof, 75
configuring for JProbe, 77

nested transactions, 193
NetBeans

about, 30
profiler, 75

nocache attribute, of cache tag, 149
nodeagent attribute, 52, 64

O
Oasis Web Services Security, See message security
object references supported for failover, 154, 181-182
online help, 30
onMessage method, 191, 296
Open ESB Starter Kit, 117-119
Oracle automatic mapping of date and time fields, 216
Oracle Inet JDBC driver, 134, 199, 200
Oracle Thin Type 4 Driver, workaround for, 274
Oracle TopLink Essentials, 121
oracle-xa-recovery-workaround property, 275
ORDER BY validation, disabling, 214
output from servlets, 141

P
P-asserted identity authentication, 82, 92
package-appclient script, 232
package attribute, 59, 63
pass-by-reference element, 175
permissions

changing in server.policy, 95-97
default in server.policy, 95

persistence store
for HTTP sessions, 153-154, 157-158
for SIP sessions, 153-154, 157-158
for stateful session bean state, 180-185

persistence.xml file, 122-123, 128
physical destinations, 289-290
ping-connection-pool command, 240, 263

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009322

pool monitoring for MDBs, 191
pooling, 187
POP3 protocol, 297-298
port attribute

server element, 64
sun-appserv-component task, 55
sun-appserv-deploy task, 47
sun-appserv-instance task, 52
sun-appserv-undeploy task, 50

portname attribute, 61
precompilejsp attribute, 45, 66
precompiling JSP files, 151
prefetching, 208-209
primary key, 195, 198
profilers, 74-78
programmatic login, 107
ProgrammaticLogin class, 109
ProgrammaticLoginPermission permission, 108-109
property attribute, 52
protocol attribute, 61
proxies, AMX, 306
publish-to-registry command, 115

Q
query hints, 131-132
Queue interface, 290
QueueConnectionFactory interface, 290

R
read-only beans, 174-175, 186-189, 209

deploying, 189
refreshing, 187-188

readonly.relative.refresh.mode flag, 188
ReadOnlyBeanNotifier, 188
READY_EVENT, 247
realms

application-specific, 87
configuring, 87
custom, 87-89
supported, 86

redirecting a URL, 167

references supported for failover, 154, 181-182
refresh attribute, of cache tag, 149
refresh-period-in-seconds element, 187
removing servlets, 145
request object, 145
res-sharing-scope deployment descriptor setting, 264
resource-adapter-mid element, 244
resource adapters, See connectors
resource-env-ref element, 282
resource managers, 269-270
resource-ref element, 282
resource references, mapping, 282-283
resourcedestdir attribute, 61
retrievestubs attribute, 45, 66
RFC 3325, 82
RMI/IIOP over SSL, 232-234
roles, 84-86

S
sample applications, 31-32
schema capture, 206
schema generation

automatic for CMP, 200-206
Java Persistence options for automatic, 128-131

scope attribute
of cache tag, 149
of flush tag, 150

secondary table, 197
security, 81-111

ACC, 221-222, 232-234
annotations, 83
application level, 83
audit modules, 93-94
declarative, 83
disabling directory listings, 162
EJB components, 84
goals, 82
JACC, 93
Java EE model, 82
JMS, 293
message security, 98-107
of containers, 83-84
programmatic, 84

Index

323

security (Continued)
programmatic login, 107
roles, 84-86
server.policy file, 95-98
Sun Java System Application Server features, 82
web applications, 84

security manager, enabling and disabling, 97-98
security map, 239-240
sei attribute, 61
server

administering instances using asant, 51-54
changing the classpath of, 35
installation, 27-28
lib directory of, 35, 43
life cycle events, 247
optimizing for development, 28
stopping an instance using an MBean, 310
using asant script to control, 57-58
value-added features, 174-177

server.policy file, 95-98
and lifecycle modules, 250
changing permissions, 95-97
default permissions, 95
ProgrammaticLoginPermission, 108

server subelement, 63-66
ServerLifecycleException, 248
service method, 145, 146

of SipServlet, 146
servicename attribute, 61
ServletContext.log messages, 141
servlets, 139-146

caching, 141-145
character encoding, 159-160
destroying, 145
engine, 145
instantiating, 145
invoking using a URL, 140-141
output, 141
removing, 145
request handling, 145
specification, 140

class loading, 162
mime-mapping, 162
object unsupported for failover, 153

session beans, 179
container for, 179-180
optimizing performance, 185
restrictions, 185

session cache sharing and @OrderBy, 133
session managers, 154-158
session persistence

for SIP modules, 153-154
for stateful session beans, 180-185
for web modules, 153-154
object types supported, 154, 181-182

set command
custom MBean attributes, 256
custom MBean disabling, 256
default message security provider, 99
default principal settings, 85
java-web-start-enabled attribute, 227
jbi-enabled property, 118
JMS service settings, 288
JMX connector port, 256
SIP Message Inspection properties, 73
transaction service settings, 272

setCharacterEncoding method, 160
setContentType method, 160
setLocale method, 160
setMonitoring method, 309
setTransactionIsolation method, 266
Shared Chain class loader, 35
SHUTDOWN_EVENT, 247
signing client JAR files, 229-231
Simple Object Access Protocol, See SOAP messages
single sign-on, 110-111
SIP applications, 139-171

distributable, 153
SIP Message Inspection log adapter, 73-74
SIP Message Inspection properties, 73-74
SIP sessions

distributed, 153-154
object types supported for failover, 154

sip.timer.queue JVM option, 171
Sitraka web site, 76-78
SJSXP parser, 119
SMTP protocol, 297-298
SOAP messages, 294-296

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009324

SOAP with Attachments API for Java (SAAJ), 295
solaris realm, 86
sourcedestdir attribute, 61, 62
specification

application clients, 222
connectors, 235
EJB 2.1 and CMP, 195
EJB 2.1 and JDOQL queries, 210
EJB 3.0, 173
JAAS, 87
Java Persistence, 121
JavaBeans, 146
JDBC, 261
JMX, 251, 301
JSP, 146
Liberty Alliance Project, 99
programmatic security, 84
security manager, 95
servlet, 140

class loading, 37
WSS, 99

srcdir attribute, 58
stack trace, generating, 71
STARTUP_EVENT, 247, 249
stateful session beans, 180

object references supported for failover, 181-182
session persistence, 180-185

stateless session beans, 179
StAX API, 119
stubs

keeping, 45, 66
sun-appserv-admin task, 57-58
sun-appserv-component task, 54-57
sun-appserv-deploy task, 44-48
sun-appserv-instance task, 51-54
sun-appserv-jspc task, 58-59
sun-appserv-undeploy task, 48-51
sun-appserv-update task, 60
sun-cmp-mappings.xml file, 197
sun-ejb-jar.xml file, 183, 184
Sun Java Studio, 31
Sun Java System Message Queue, 72, 286-287

checking to see if running, 289
connector for, 287

Sun Java System Message Queue (Continued)
varhome directory, 294

sun-ra.xml file, 236
sun-sip.xml file, and class loaders, 37
sun-web.xml file

and class loaders, 37, 162
supportsTransactionIsolationLevel method, 266
Sybase

finder limitation, 135, 216
lock-when-loaded limitation, 216

System class loader, 35
using to circumvent isolation, 40

system-classpath attribute, 35

T
tag libraries, 147
tags for JSP caching, 147-151
target attribute, 47, 50, 55
tasks, asant script, 44-63
TERMINATION_EVENT, 248
thread pools

and connectors, 239
for bean invocation scheduling, 177

timeout attribute, of cache tag, 149
tools, for developers, 29-31
Topic interface, 290
TopicConnectionFactory interface, 290
toplink.application-location property, 129
toplink.create-ddl-jdbc-file-name property, 129
toplink.ddl-generation.output-mode property, 130
toplink.ddl-generation property, 129
toplink.drop-ddl-jdbc-file-name property, 129
TopLink Essentials, See Oracle TopLink Essentials
toplink.platform.class.name property, 122
transaction-support property, 242
transactions, 269-275

administration and monitoring, 194
and EJB components, 192
and non-persistent JMS messages, 293
and session persistence, 181, 184
commit options, 193
configuring, 272
flat, 193

Index

325

transactions (Continued)
global, 193
in the Java EE tutorial, 269-275
JDBC isolation levels, 266
local, 193
local or global scope of, 270-271
logging for recovery, 273
logging to a database, 273-274
nested, 193
resource managers, 269-270
timeouts, 176
transaction manager, 272-273
transaction synchronization registry, 272-273
UserTransaction, 272-273

trust handler, 92

U
undeploy command

schema generation, 131, 205
undeployment, using asant script, 48-51
uniquetablenames attribute, 46
upload attribute, 47, 64
uribase attribute, 59
uriroot attribute, 59
URL, redirecting, 167
URL rewriting, 152
use-thread-pool-id element, 177
use-unique-table-names property, 204
user attribute

server element, 64
sun-appserv-component task, 55
sun-appserv-deploy task, 47
sun-appserv-instance task, 52
sun-appserv-undeploy task, 50

utility classes, 38-39, 39

V
valves, defining custom, 164-165
varhome directory, 294
verbose attribute, 59, 61, 62
verbose mode, 72

verify attribute, 45, 67
version consistency, 208

triggers, 217
virtual servers, 160-161

default, 161
virtualservers attribute, 47, 64

W
web applications, 139-171

default, 140, 161-162
distributable, 153
security, 84

Web class loader, 36
changing delegation in, 37, 162

web container, logging and monitoring, 163
web services, 113-120

creating portable artifacts, 114
debugging, 114, 116
deployment, 114
in the Java EE tutorial, 113
Open ESB and JBI, 117-119
registry, 115-116
security

See message security
test page, 116
URL, 116
WSDL file, 116

webapp attribute, 59
WebDav, 168-169
Woodstox parser, 119
wsdl attribute, 62
wsdllocation attribute, 62
WSIT, 82
WSS, See message security

X
XA resource, 270-271
XML parser, 119

specifying alternative, 39

Index

Sun GlassFish Communications Server 2.0 Developer's Guide • October 2009326

	Sun GlassFish Communications Server 2.0 Developer's Guide
	Preface
	Communications Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Development Tasks and Tools
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	The Sailfin Project
	Usage Profiles
	High Availability Features
	Development Tools
	The asadmin Command
	The Admin Console
	The asant Utility
	The verifier Tool
	The NetBeans IDE
	The Migration Tool
	Debugging Tools
	Profiling Tools
	The Eclipse IDE

	Sample Applications

	Class Loaders
	The Class Loader Hierarchy
	Delegation
	Using the Java Optional Package Mechanism
	Using the Endorsed Standards Override Mechanism
	Class Loader Universes
	Application-Specific Class Loading
	Circumventing Class Loader Isolation
	Using the System Class Loader
	Using the Common Class Loader
	Sharing Libraries Across a Cluster
	Packaging the Client JAR for One Application in Another Application
	To Package the Client JAR for One Application in Another Application

	The asant Utility
	Communications Server asant Tasks
	The sun-appserv-deploy Task
	Subelements of sun-appserv-deploy
	Attributes of sun-appserv-deploy
	Examples of sun-appserv-deploy

	The sun-appserv-undeploy Task
	Subelements of sun-appserv-undeploy
	Attributes of sun-appserv-undeploy
	Examples of sun-appserv-undeploy

	The sun-appserv-instance Task
	Subelements of sun-appserv-instance
	Attributes of sun-appserv-instance
	Examples of sun-appserv-instance

	The sun-appserv-component Task
	Subelements of sun-appserv-component
	Attributes of sun-appserv-component
	Examples of sun-appserv-component

	The sun-appserv-admin Task
	Subelements of sun-appserv-admin
	Attributes of sun-appserv-admin
	Examples of sun-appserv-admin

	The sun-appserv-jspc Task
	Attributes of sun-appserv-jspc
	Example of sun-appserv-jspc

	The sun-appserv-update Task
	Attributes of sun-appserv-update
	Example of sun-appserv-update

	The wsgen Task
	Attributes of wsgen
	Example of wsgen

	The wsimport Task
	Attributes of wsimport
	Example of wsimport

	Reusable Subelements
	The server Subelement
	Attributes of server
	Examples of server

	The component Subelement
	Attributes of component
	Examples of component

	The fileset Subelement

	JBI Tasks

	Debugging Applications
	Enabling Debugging
	To Set the Server to Automatically Start Up in Debug Mode

	JPDA Options
	Generating a Stack Trace for Debugging
	Application Client Debugging
	Sun GlassFish Message Queue Debugging
	Enabling Verbose Mode
	Communications Server Logging
	SIP Message Inspection Log Adapter
	Profiling Tools
	The NetBeans Profiler
	The HPROF Profiler
	To Use HPROF Profiling on UNIX

	The JProbe Profiler
	To Enable Remote Profiling With JProbe

	Developing Applications and Application Components
	Securing Applications
	Security Goals
	Communications Server Specific Security Features
	Container Security
	Declarative Security
	Application Level Security
	Component Level Security

	Programmatic Security

	Roles, Principals, and Principal to Role Mapping
	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for an Application or Module
	Creating a Custom Realm

	Using Identity Authentication
	Configuring a Realm for Identity Authentication
	Configuring sip.xml for Identity Authentication
	Configuring sun-sip.xml for Identity Authentication
	Configuring the Identity Message Root Certificate

	Using P-Asserted Identity Authentication
	Configuring a Trust
	Configuring sun-sip.xml for P-Asserted Identity Authentication

	Creating a Custom Trust Handler for P-Asserted Identity Authentication
	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	Changing Permissions for an Application
	Enabling and Disabling the Security Manager

	Configuring Message Security for Web Services
	Message Security Providers
	Message Security Responsibilities
	Application Developer
	Application Deployer
	System Administrator

	Application-Specific Message Protection
	Using a Signature to Enable Message Protection for All Methods
	To Enable Message Protection for All Methods Using Digital Signature

	Configuring Message Protection for a Specific Method Based on Digital Signatures
	To Enable Message Protection for a Particular Method or Set of Methods Using Digital Signature

	Understanding and Running the Sample Application
	To Set Up the Sample Application
	To Run the Sample Application

	Programmatic Login
	Programmatic Login Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on

	Developing Web Services
	Creating Portable Web Service Artifacts
	Deploying a Web Service
	Web Services Registry
	The Web Service URI, WSDL File, and Test Page
	JBI Runtime
	Using the jbi.xml File
	Using Application Server Descriptors

	Using the Woodstox Parser

	Using the Java Persistence API
	Specifying the Database
	Additional Database Properties
	Configuring the Cache
	Setting the Logging Level
	Using Lazy Loading
	Primary Key Generation Defaults
	Automatic Schema Generation
	Annotations
	Supported Data Types
	Generation Options

	Query Hints
	Changing the Persistence Provider
	Restrictions and Optimizations
	Extended Persistence Context Failover
	Using @OrderBy with a Shared Session Cache
	Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver
	Database Case Sensitivity
	Unique Constraints
	Foreign Key Mapping
	SQL Result Set Mapping
	Named Native Queries and JDBC Queries
	PostgreSQL Case Sensitivity

	Sybase Finder Limitation
	MySQL Database Restrictions

	Developing Web and SIP Applications
	Using Servlets
	Invoking a Servlet With a URL
	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	The CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	The appserv-tags.jar File
	Caching Scope
	The cache Tag
	Attributes of cache
	Example of cache

	The flush Tag
	Attributes of flush
	Examples of flush

	Options for Compiling JSP Files

	Creating and Managing Sessions
	Configuring Sessions
	HTTP Sessions, Cookies, and URL Rewriting
	Coordinating Session Access
	SIP Session Limitation
	Distributed Sessions and Persistence

	Session Managers
	The memory Persistence Type
	The file Persistence Type
	The replicated Persistence Type

	Advanced Web Application Features
	Internationalization Issues
	The Server's Default Locale
	Servlet Character Encoding
	Servlet Request
	Servlet Response

	Virtual Servers
	To Assign a Default Virtual Server
	To Assign Virtual Servers

	Default Web Modules
	Class Loader Delegation
	Using the default-web.xml File
	To Use the default-web.xml File

	Configuring Logging and Monitoring in the Web Container
	Configuring Idempotent URL Requests
	Specifying an Idempotent URL
	Characteristics of an Idempotent URL

	Header Management
	Configuring Valves and Catalina Listeners
	Alternate Document Roots
	Redirecting URLs
	Enabling Comet Support
	Using a context.xml File
	Enabling WebDav
	Using mod_jk
	Advanced JVM Options for SIP Requests

	Using Enterprise JavaBeans Technology
	Summary of EJB 3.0 Changes
	Value Added Features
	Read-Only Beans
	The pass-by-reference Element
	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	Bean-Level Container-Managed Transaction Timeouts
	Priority Based Scheduling of Remote Bean Invocations
	Immediate Flushing

	EJB Timer Service
	Using Session Beans
	About the Session Bean Containers
	Stateless Container
	Stateful Container

	Stateful Session Bean Failover
	Choosing a Persistence Store
	Enabling Checkpointing
	Server Instance and EJB Container Levels
	Application and EJB Module Levels
	SFSB Level

	Specifying Methods to Be Checkpointed

	Session Bean Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read-Only Beans

	Using Message-Driven Beans
	Message-Driven Bean Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Domain-Level Settings

	Message-Driven Bean Restrictions and Optimizations
	Pool Tuning and Monitoring
	The onMessage Runtime Exception

	Handling Transactions With Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Commit Options
	Administration and Monitoring

	Using Container-Managed Persistence
	Communications Server Support for CMP
	CMP Mapping
	Mapping Capabilities
	The Mapping Deployment Descriptor File
	Mapping Considerations
	Join Tables and Relationships
	Automatic Primary Key Generation
	Fixed Length CHAR Primary Keys
	Managed Fields
	BLOB Support
	CLOB Support

	Automatic Schema Generation for CMP
	Supported Data Types for CMP
	Generation Options for CMP

	Schema Capture
	Automatic Database Schema Capture
	Using the capture-schema Utility

	Configuring the CMP Resource
	Performance-Related Features
	Version Column Consistency Checking
	To Use Version Consistency

	Relationship Prefetching
	Read-Only Beans

	Default Fetch Group Flags
	Configuring Queries for 1.1 Finders
	About JDOQL Queries
	Query Filter Expression
	Query Parameters
	Query Variables
	JDOQL Examples
	Example 1
	Example 2
	Example 3

	CMP Restrictions and Optimizations
	Disabling ORDER BY Validation
	Setting the Heap Size on DB2
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	PostgreSQL Case Insensitivity
	No Support for lock-when-loaded on Sybase
	Sybase Finder Limitation
	Date and Time Fields
	Set RECURSIVE_TRIGGERS to false on MSSQL
	MySQL Database Restrictions

	Developing Java Clients
	Introducing the Application Client Container
	ACC Security
	ACC Naming
	ACC Annotation
	Java Web Start

	Developing Clients Using the ACC
	To Access an EJB Component From an Application Client
	To Access a JMS Resource From an Application Client
	Using Java Web Start
	Enabling and Disabling Java Web Start
	Downloading and Launching an Application Client
	The Application Client URL
	Signing JAR Files Used in Java Web Start
	Automatically Signing JAR Files
	Manually Signing appserv-jwsacc.jar
	Manually Signing the Generated Application Client JAR File

	Error Handling
	Vendor Icon, Splash Screen, and Text

	Running an Application Client Using the appclient Script
	Using the package-appclient Script
	The client.policy File
	Using RMI/IIOP Over SSL
	Connecting to a Remote EJB Module Through a Firewall

	Developing Connectors
	Connector Support in the Communications Server
	Connector Architecture for JMS and JDBC
	Connector Configuration

	Deploying and Configuring a Stand-Alone Connector Module
	To Deploy and Configure a Stand-Alone Connector Module

	Redeploying a Stand-Alone Connector Module
	Deploying and Configuring an Embedded Resource Adapter
	Advanced Connector Configuration Options
	Thread Pools
	Security Maps
	Overriding Configuration Properties
	Testing a Connector Connection Pool
	Handling Invalid Connections
	Setting the Shutdown Timeout
	Using Last Agent Optimization of Transactions

	Inbound Communication Support
	Configuring a Message Driven Bean to Use a Resource Adapter

	Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Developing Custom MBeans
	The MBean Life Cycle
	MBean Class Loading
	Creating, Deleting, and Listing MBeans
	The asadmin create-mbean Command
	The asadmin delete-mbean Command
	The asadmin list-mbeans Command

	The MBeanServer in the Communications Server
	Enabling and Disabling MBeans
	Handling MBean Attributes

	Using Services and APIs
	Using the JDBC API for Database Access
	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Supported Database Drivers
	Making the JDBC Driver JAR Files Accessible

	Creating a Connection Pool
	Testing a JDBC Connection Pool
	Creating a JDBC Resource

	Creating Applications That Use the JDBC API
	Sharing Connections
	Obtaining a Physical Connection From a Wrapped Connection
	Marking Bad Connections
	Using Non-Transactional Connections
	Using JDBC Transaction Isolation Levels
	Allowing Non-Component Callers

	Restrictions and Optimizations
	Disabling Stored Procedure Creation on Sybase

	Using the Transaction Service
	Transaction Resource Managers
	Transaction Scope
	Distributed Transaction Recovery
	Configuring the Transaction Service
	The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction
	Transaction Logging
	Storing Transaction Logs in a Database
	Recovery Workarounds

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Global JNDI Names
	Accessing EJB Components Using the CosNaming Naming Context
	Accessing EJB Components in a Remote Application Server
	Naming Environment for Lifecycle Modules

	Configuring Resources
	External JNDI Resources
	Custom Resources

	Using a Custom jndi.properties File
	Mapping References

	Using the Java Message Service
	The JMS Provider
	Message Queue Resource Adapter
	Generic Resource Adapter
	Administration of the JMS Service
	Configuring the JMS Service
	The Default JMS Host
	Creating JMS Hosts
	Checking Whether the JMS Provider Is Running
	Creating Physical Destinations
	Creating JMS Resources: Destinations and Connection Factories

	Restarting the JMS Client After JMS Configuration
	JMS Connection Features
	Connection Pooling
	Connection Failover

	Load-Balanced Message Inflow
	Transactions and Non-Persistent Messages
	Authentication With ConnectionFactory
	Message Queue varhome Directory
	Delivering SOAP Messages Using the JMS API
	To Send SOAP Messages Using the JMS API
	To Receive SOAP Messages Using the JMS API

	Using the JavaMail API
	Introducing JavaMail
	Creating a JavaMail Session
	JavaMail Session Properties
	Looking Up a JavaMail Session
	Sending and Reading Messages Using JavaMail
	To Send a Message Using JavaMail
	To Read a Message Using JavaMail

	Using the Application Server Management Extensions
	About AMX
	AMX MBeans
	Configuration MBeans
	Monitoring MBeans
	Utility MBeans
	Java EE Management MBeans
	Other MBeans
	MBean Notifications
	Access to MBean Attributes

	Dynamic Client Proxies
	Connecting to the Domain Administration Server
	Examining AMX Code Samples
	The SampleMain Class
	Connecting to the DAS
	Starting an Communications Server
	Deploying an Archive
	Displaying the AMX MBean Hierarchy
	Setting Monitoring States
	Accessing AMX MBeans
	Accessing and Displaying the Attributes of an AMX MBean
	Listing AMX MBean Properties
	Performing Queries
	Monitoring Attribute Changes
	Undeploying Modules
	Stopping an Communications Server

	Running the AMX Samples
	To Run the AMX Sample

	Index

