
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OLIT Reference Manual

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction . 1

Differences From OLIT Release 3.3 . 1

Motif and OPEN LOOK Interoperability Issues 2

2. Common Resources . 5

Resources Summary Tables . 6

Resource Files . 7

Resource File Bindings . 7

OLIT Toolkit Resources . 7

Core Resources . 17

Composite Resources . 23

Primitive Resources . 24

Manager Resources . 31

Shell Resources. 31

WMShell Resources . 35

VendorShell Resources . 42

iv OLIT Reference Manual—August 1994

TransientShell Resources . 50

TopLevelShell Resources . 50

ApplicationShell Resources . 51

Flat Resources. 52

3. Activation Types . 61

Activation Type Description. 61

Common Activation Types . 68

4. Internationalization Features . 71

Introduction . 71

System Requirements . 72

Issues Involved in Internationalizing Applications. 72

Locale Setting . 73

Character Encoding and Text Formats . 74

Localized Text Handling . 79

Input Method . 80

Standards . 89

5. Toolkit Functions . 91

Initialization and Activation Functions 92

Buffer Functions. 95

Cursor and Pixmap Functions . 99

Display Functions . 108

Drag and Drop Functions . 109

Dynamic Resource Functions . 140

Error Functions. 142

Contents v

Help Function. 146

Input Focus Functions . 150

Multiple Visual Functions. 154

Packed Widget Function . 156

Pixel Conversion Functions . 158

Protocol Function. 160

Regular Expression Functions . 161

Text Buffer Functions. 163

Text Buffer Functions for Internationalization 176

Text Selection Operations . 204

Toolkit Resource Functions. 206

Virtual Event Functions. 207

6. Widget Reference (A – C). 217

AbbrevMenuButton Widget . 217

BulletinBoard Widget . 225

Caption Widget . 229

CheckBox Widget . 237

ControlArea Widget . 249

7. Widget Reference (D – F) . 259

DrawArea Widget . 259

DropTarget Widget . 266

Exclusives Widget . 277

FileChooser Widget . 284

FileChooserShell Widget . 311

vi OLIT Reference Manual—August 1994

Flat Widgets . 321

FlatCheckBox Widget . 329

FlatExclusives Widget . 337

FlatNonexclusives Widget . 347

Flat Widget Functions . 354

FontChooser Widget . 357

FontChooserShell Widget . 375

FooterPanel Widget . 381

Form Widget. 385

8. Widget Reference (G – P). 395

Gauge Widget. 395

Gauge Function . 402

MenuButton Widget . 403

MenuShell Widget . 414

Nonexclusives Widget . 428

NoticeShell Widget . 433

NumericField Widget . 443

OblongButton Widget . 464

PopupWindowShell Widget . 475

9. Widget Reference (R – S) . 489

RectButton Widget . 489

RubberTile Widget . 502

Scrollbar Widget . 508

ScrolledWindow Widget . 529

Contents vii

ScrollingList Widget . 547

ScrollingList Functions . 578

Slider Widget . 586

StaticText Widget . 600

Stub Widget . 609

10. Widget Reference (T – Z) . 623

TextEdit Widget . 623

TextEdit Functions . 660

TextField Widget . 665

TextField Functions . 686

TextLine Widget . 688

TextLine Functions. 708

viii OLIT Reference Manual—August 1994

ix

Preface

Who Should Use This Book
This manual is for applications programmers who want to create applications
using the OPEN LOOK ® Intrinsics Toolkit (OLIT™). OLIT is a user interface
toolkit based on the X Window System™ Xt Intrinsics from MIT. OLIT
implements the OPEN LOOK Graphical User Interface (GUI); it consists of a set of
widgets and the Xt Intrinsics version R5.

This manual provides reference information for the widgets and associated
functions of OLIT. It is not intended to provide instruction for first-time OLIT
programmers. Programmers who want to learn how to use OLIT should
consult:

• X Window System Programming and Applications with Xt – OPEN LOOK Edition,
by John Pew, published by Prentice Hall, 1992.

• OLIT Quick Start Programmer’s Guide, Part Number 801-5317-10, Sun
Microsystems, Inc., 1993.

Programmers may also want to consult the following manuals for further
reference information:

• X Window System Toolkit, The Complete Programmer’s Guide and Specification,
Digital Press, 1992.

• X Window System, The Complete Guide to Xlib, X Protocol, ICCCM, XLFD,
Digital Press, 1992.

x OLIT Reference Manual—August 1994

• OPEN LOOK Graphical User Interface Functional Specification, Addison-Wesley
Publishing Company, Inc., 1989.

• User Interface Specification for Mouseless Operation of the OPEN LOOK Graphical
User Interface, Part Number 800-6816-01, Sun Microsystems, Inc., Version 1.0
– August 1, 1991.

The publications that are not Sun reference manuals are available from
SunExpress™ (call 1-800-873-7869) or your local computer bookstore.

How This Book Is Organized
This manual consists of ten chapters. The following is a brief description of
each chapter.

Chapter 1, “Introduction,” contains a description of the differences from OLIT
3.3 to 3.4 and Motif interoperability. It also shows a hierarchy diagram of the
OLIT widget classes.

Chapter 2, “Common Resources,” describes resources that are common to
several widgets.

Chapter 3, “Activation Types,” describes virtual events and activation types
that are common to several widgets.

Chapter 4, “Internationalization Features,” describes how OLIT applications
can be internationalized.

Chapter 5, “Toolkit Functions,” describes functions that are used to
manipulate many of the widgets.

Chapter 6, “Widget Reference (A – C),” is the first of five chapters that
describe the widgets in the OLIT widget set and sets of utility, or convenience,
functions that can be used to interact with certain specific widgets. The
widgets are listed in alphabetical order, with any dedicated functions following
the applicable widgets. Each of the five chapters in this group represents a
range of widgets, divided into alphabetic groups: A–C, D–F, G–P, R–S, and
T–Z.

1

Introduction 1

This chapter describes the differences between OLIT™ releases 3.3 and 3.4 and
OLIT interoperability with Motif. It also presents a diagram of the OLIT widget
class hierarchy.

Differences From OLIT Release 3.3

Solaris x86 Support

OLIT 3.4 now supports Solaris x86, sometimes referred to as “Solaris on Intel”.
Since the keyboards on most non-Sparc systems don’t have a “meta” key,
support for these systems requires some mechanism which lets users generate
a meta-key event without pressing an actual meta key (◊). On non-SPARC
keyboards this is done by pressing the Control and Alt keys at the same time.
This action is functionally identical to pressing the meta key on SPARC
keyboards.

XtNctrlAltMetaKey Resource

A new Toolkit resource has been added which controls the translation of the
Control-Alt key combination into the meta-key event. This resource may be
desirable in conjunction with programs that use menu accelerators or
mnemonics which conflict with the meta key substitute (Control-Alt). See
page 12 for details.

2 OLIT Reference Manual—August 1994

1

Motif and OPEN LOOK Interoperability Issues

Interoperability Between Motif Applications and OPEN LOOK Applications
• XView and OLIT applications do not support Primary copy, move, and link.
• Secondary selections between Motif applications and XView or OLIT

applications do not work.
• Copying or cutting from a Motif application into the Clipboard and then

pasting to an XView text subwindow will not work. Pasting to OLIT
applications or XView panel text fields will work.

• Copying or cutting and pasting Asian text between a Motif application and
an XView or OLIT application does not work.

• Drag and drop between Motif applications and XView or OLIT applications
does not work.

Interoperability Between the Motif Window Manager (mwm) and OPEN
LOOK Applications

• Window manager decorations for some XView and OLIT windows are not
correct. Example: some applications may exhibit extra titles, or extra resize
handles. This does not affect application functionality.

• Executing the window manager function f.kill on base frame windows of
an XView application (typically done by pulling down the default window
menu and selecting Quit or Close) may exit the application without user
confirmation, or any further application-specific processing.

• If the resource keyboardFocusPolicy is set to pointer, then XView or
OLIT applications will get the focus when the mouse is moved into their
windows, but the caret may not always darken. To darken, click inside the
window.

• The default colors for XView and OLIT applications are not those of Motif.
• Dragging and dropping data onto an icon of a closed XView or OLIT

application will not work.

Introduction 3

1

OLIT Class Hierarchy
Object

RectObj

UnNamedObj EventObject

ButtonGadget

MenuButtonGadget

OblongButtonGadget

Core

Primitive

AbbrevMenuButton

Composite

Constraint

OverrideShell WMShell

VendorShell

TransientShell TopLevelShell

ApplicationShell

MenuShell

NoticeShell

PopupWindowShell

Manager

BulletinBoard

DrawArea

Caption

CheckBox

ControlArea

Exclusives

FooterPanel

Form
ScrollingList

Nonexclusives

RubberTile

Help

ScrolledWindow

TextField

Button

MenuButton

OblongButton

RectButton
Flat

FlatExclusives

FlatCheckBox

FlatNonExclusives

Gauge

ListPane

Magnifier

Pixmap

DropTarget

PushPin

ScrollBar

Slider

StaticText

Stub

TextEdit

Legend

OLIT classes

Xt Intrinsics classes (italic)

private or meta classes

Shell

FontChooser
FileChooser

TextLine
NumericField

FileChooserShell

FontChooserShell

4 OLIT Reference Manual—August 1994

1

5

Common Resources 2

This chapter describes resources that are common to several widgets.

The resources are listed according to the classes from which they derive.
A widget inherits resources from an ancestor class in the widget class tree;
see “OLIT Class Hierarchy” on page 3. For example, every widget has the
XtNbackground resource, because all widgets descend from
coreWidgetClass and this resource is defined as a Core resource. Likewise,
widgets that descend from primitiveWidgetClass have Primitive
resources, such as XtNaccelerator .

OLIT Toolkit Resources page 7

Core Resources page 17

Composite Resources page 23

Primitive Resources page 24

Manager Resources page 31

Shell Resources page 31

WMShell Resources page 35

VendorShell Resources page 42

TransientShell Resources page 50

TopLevelShell Resources page 50

ApplicationShell Resources page 51

Flat Resources page 52

6 OLIT Reference Manual—August 1994

2
Resources Summary Tables

In addition to class resources, there are application wide resources that apply
to an entire OLIT application. These resources are called Toolkit Resources and
are also listed in this chapter.

Each widget described in Chapters 6–10 has summary tables listing all the
application-accessible resources for that widget. If a resource is shared, a
detailed description of that resource is in Chapter 2. If the resource is unique to
that widget, or if it has some different use or meaning to that widget, then it is
described in the individual widget section.

Resources Summary Tables
The summary tables in this chapter and the widget descriptions contain the
most commonly sought information about a resource:

• (C-language) type
• Default value (if any)
• Accessibility of the resource

Accompanying the individual description of a resource is a one-line table of
the preceding information, plus the class name of the resource. The class name
of the resource is not repeated in the summary table, and is only found with
the individual description. The values in the “Access” column of the summary
tables are abbreviated as follows:

Abbreviation Meaning

S (Set.) The application can set the resource using XtSetValues() .

G (Get.) The application can get the resource using XtGetValues() .

I (Init.) The application can set the resource when it creates the
widget.

O (Other.) The resource is set or retrieved in some other way,
typically by a function just for this purpose; an explanation of this
is given with the resource description that follows the table.

D (Dynamic.) The resource is updated dynamically when the
window server resource database changes (for example, when
Properties or xrdb is used).

n/a (Not applicable.) The widget does not use this resource and is
unaffected by its value.

Common Resources 7

2
Resource Files

Resource Files
The value taken by a resource can often be set in a resource file, typically
$HOME/.Xdefaults . For further details about resource specification in a
resource file, see Chapter 9 of the Xt Intrinsics Programming Manual.

Resource File Bindings
In many cases the C-language binding for a resource differs from that used in
the resource file. For example, to display keyboard accelerators on controls, a
program would set XtNshowAccelerators to OL_DISPLAY. However, in a
resource file, this would be done by a line such as:

∗showAccelerators: display

To show both the C-language value and the resource file value, this manual
uses the following convention to specify valid values for resources:

OL_DISPLAY/”display”

OLIT Toolkit Resources
OLIT uses several resources on an application-wide basis to determine the state
of an OPEN LOOK application, as shown in Table 2-1. Unlike the other
resources in this chapter, the OLIT Toolkit resources affect an application as a
whole, and are unrelated to the widget class hierarchy. Because of this, these
resources are not repeated in each widget description. These resources are not
retrieved and set in the same manner as the other resources in this manual.
Instead of using XtGetValues() and XtSetValues() , the corresponding
functions OlGetApplicationValues() and OlSetApplicationValues()
are used to retrieve or set the values of these resources. (See “Toolkit Resource
Functions” on page 206.)

Table 2-1 OLIT Toolkit Resources Summary

Name Type Default Access

XtNbeep OlDefine OL_BEEP_ALWAYS SGIO

XtNbeepVolume int 0 SGIO

XtNcolorTupleList OlColorTuple NULL GIO

XtNcontrolName String “Ctrl” IOD

XtNdragRightDistance Dimension 100 (pixels) SGIO

8 OLIT Reference Manual—August 1994

2
OLIT Toolkit Resources

XtNbeep

Synopsis: The type of objects that can generate audible warnings to the user.

XtNgrabPointer Boolean TRUE SGIO

XtNhelpModel OlDefine OL_POINTER SGIO

XtNinputFocusFeedback OlDefine OL_SUPERCARET IO

XtNlockName String “Lock” IOD

XtNmenuMarkRegion Dimension 10 (pixels) SGIO

XtNctrlAltMetaKey Boolean (see description) GI

XtNmnemonicPrefix Modifiers Mod1Mask SGIO

XtNmod1Name String “Meta” IOD

XtNmod2Name String “ModeSwitch” IOD

XtNmod3Name String “NumLock” IOD

XtNmod4Name String “Alt” IOD

XtNmod5Name String “Mod5” IOD

XtNmouseDampingFactor Cardinal 8 (pixels) SGIO

XtNmouseless Boolean FALSE GIO

XtNmultiClickTimeout Cardinal 200 (msec) SGIO

XtNmultiObjectCount Cardinal 3 SGIO

XtNolDefaultFont String Lucida SGIO

XtNscale int 12 SGIO

XtNselectDoesPreview Boolean TRUE SGIO

XtNshiftName String “Shift” IOD

XtNshowAccelerators OlDefine OL_DISPLAY SGIO

XtNshowMnemonics OlDefine OL_UNDERLINE SGIO

XtNthreeD Boolean TRUE SGIO

Class Type Default Access

XtCBeep OlDefine OL_BEEP_ALWAYS SGI

Table 2-1 OLIT Toolkit Resources Summary (Continued)

Name Type Default Access

Common Resources 9

2
OLIT Toolkit Resources

Values: OL_BEEP_NEVER/”never” – Never generate audible warnings.
OL_BEEP_ALWAYS/”always” – Any object can generate audible
warnings.
OL_BEEP_NOTICES/”notices” – Only Notices should generate
audible warnings.

XtNbeepVolume

Synopsis: The percentage of the keyboard’s normal beep to use for audible
warnings.

Values: –100 ≤ XtNbeepVolume ≤ 100

See XBell() in the XLib Reference Manual.

XtNcolorTupleList

Synopsis: The alternative background colors for 3D rendering.
Values: Any valid color value for the display.

The emphasis colors are defined as:

BG0 – highlight color, for emphasis
BG1 – normal background
BG2 – invoked background, for indented and menu choices
BG3 – shadow color, used with highlight for 3D effect

These colors can be specified in a defaults file as tuples (BG0, BG1, BG2, BG3)
of either numeric or character color values, or a mixture of the two.

∗colorTupleList: (#FFFFFF ,#000000 ,#000000 ,#AAAAAA),\
(pink ,gray ,green ,blue)

The effect of the resource is to make the BG0, BG2, and BG3 colors the
highlight, indent, and shadow colors for those widgets whose background
color matches BG1.

This color scheme is slightly different from OPEN LOOK in that BG2 and BG3
are not necessarily derived from BG1 by the addition of gray. This scheme is
intended to provide an alternative to the OPEN LOOK arrangement.

Class Type Default Access

XtCBeepVolume int 0 SGI

Class Type Default Access

XtCColorTupleList OlColorTuple NULL GIO

10 OLIT Reference Manual—August 1994

2
OLIT Toolkit Resources

Normally, the toolkit will compute BG0–BG3 according to the OPEN LOOK
GUI Functional Specification. Where the toolkit fails because it is faced with a
color-poor display, the application can use XtNcolorTupleList to override
the tuple list.

Note – Color tuples cannot be manipulated from a program by ordinary
XtGetValues() and XtSetValues() functions. Instead, the program must
use the XrmQGetResource() and XrmQPutResource() functions defined in
the XLib Reference Manual.

XtNcontrolName

Synopsis: The text printed for the Control Key in an accelerator label.

XtNdragRightDistance

Synopsis: The number of pixels the pointer must be dragged to post the
MenuButton’s submenu.

This resource specifies how far, in pixels, the pointer must be dragged over a
MenuButton with the MENU button depressed to post the MenuButton’s
submenu. The direction of the drag is to the right. This resource only applies to
MenuButtons on press-drag-release menus. See the OPEN LOOK GUI Functional
Specification for a description of press-drag-release menus.

XtNgrabPointer

Synopsis: The enabling of pointer grabs.
Values: TRUE/”true” - Allow pointer grabs.

FALSE/”false” - Do not allow pointer grabs.

Class Type Default Access

XtCControlName String “Ctrl” IOD

Class Type Default Access

XtCDragRightDistance Dimension 100 (pixels) SGI

Class Type Default Access

XtCGrabPointer Boolean TRUE SGI

Common Resources 11

2
OLIT Toolkit Resources

Setting XtNgrabPointer to FALSE prohibits OLIT from making any active
pointer grabs. This is sometimes useful when debugging OLIT applications; for
example, a developer debugging an application that pops up a menu might
want to set this resource to FALSE in order to continue using the mouse while
the menu is popped up.

 (For example, use the

-xrm " ∗grabPointer: false"

argument when running the program.) However, this should be used only for
debugging, since the grab ensures all pointer events get delivered to the menu.

XtNhelpModel

Synopsis: The model of how help functions follow the pointer when the
HELP key is pressed.

Values: OL_POINTER/”pointer” - When the HELP key is pressed, the
item under the pointer is the subject of the help message.
OL_INPUTFOCUS/”inputfocus” - The subject of the help
message is the item with the keyboard input focus.

XtNinputFocusFeedback

Synopsis: The keyboard input focus feedback style.
Values: OL_SUPERCARET/”supercaret” - Display a SuperCaret on the

object with the input focus.
OL_INPUT_FOCUS_COLOR/”inputFocusColor” - Highlight
the object with the input focus in the XtNinputFocusColor (see
page 27).

XtNlockName

Synopsis: The text printed for the caps lock key in an accelerator label.

Class Type Default Access

XtCHelpModel OlDefine OL_POINTER SGI

Class Type Default Access

XtCInputFocusFeedback OlDefine OL_SUPERCARET IO

Class Type Default Access

XtCLockName String “Lock” IOD

12 OLIT Reference Manual—August 1994

2
OLIT Toolkit Resources

XtNmenuMarkRegion

Synopsis: The width (in pixels) of the MenuButton’s menu mark region. If the
pointer is moved into this region with the MENU mouse button
depressed, the MenuButton’s submenu is posted.

XtNctrlAltMetaKey

Synopsis: Controls whether or not the Control-Alt key combination generates
the meta-key event. On systems with keyboards that do not have a
meta key, this resource defaults to TRUE. On systems with
keyboards that do have a meta key, this resource defaults to
FALSE.

XtNmnemonicPrefix

Synopsis: The modifier key that must accompany the mnemonic character
when activating an object from the keyboard, if that object is not on
a menu.

Values: Any valid X11 KeySym value (see the XLib Reference Manual) or any
valid Xt translation syntax for a Key event (see the Xt Intrinsics
Reference Manual).

Class Type Default Access

XtCMenuMarkRegion Dimension 10 (pixels) SGI

Class Type Default Access

XtCCtrlAltMenuKey Boolean (see Synopsis) GI

Class Type Default Access

XtCMnemonicPrefix Modifiers Mod1Mask SGI

Common Resources 13

2
OLIT Toolkit Resources

XtNmod1Name/
XtNmod2Name/
XtNmod3Name/
XtNmod4Name/
XtNmod5Name

Synopsis: The text displayed for the Modifier1 to Modifier5 keys in an
accelerator label.

XtNmouseDampingFactor

Synopsis: The number of pixels the pointer can be moved before a drag
operation is initiated.

XtNmouseless

Synopsis: The enabling of mouseless operations.
Values: TRUE/”true” – Mouseless mode is enabled.

FALSE/”false” – Mouseless mode is disabled.

When XtNmouseless is set to FALSE, only text input objects can acquire
keyboard input focus. The traversal mechanism moves the keyboard input
focus only through the text input objects.

When XtNmouseless is set to TRUE, some widgets, in addition to the text
input objects, also can acquire keyboard input focus. Keyboard input focus
feedback in non-text input objects can be specified through the
XtNinputFocusFeedback resource: by default, a SuperCaret. (See

Class Type Default Access

XtCMod1Name String “Meta” IOD

XtCMod2Name String “ModeSwitch” IOD

XtCMod3Name String “NumLock” IOD

XtCMod4Name String “Alt” IOD

XtCMod5Name String “Mod5” IOD

Class Type Default Access

XtCMouseDampingFactor Cardinal 8 (pixels) SGI

Class Type Default Access

XtCMouseless Boolean FALSE GI

14 OLIT Reference Manual—August 1994

2
OLIT Toolkit Resources

XtNinputFocusFeedback on page 11 and XtNinputFocusColor on
page 27.) Refer to “Input Focus Functions” on page 150 for more information
on the behavior of input focus functions when XtNmouseless is set to FALSE.

XtNmultiClickTimeout

Synopsis: The number of milliseconds that determines a multi-click.

This resource specifies the time interval in milliseconds within which two
successive button clicks are considered a multi-click, as long as the pointer
does not move beyond the XtNmouseDampingFactor value between the
clicks.

XtNmultiObjectCount

Synopsis: The repeat count for OL_MOVE direction keys.

This resource determines the number of times the OL_MULTIRIGHT,
OL_MULTILEFT, OL_MULTIUP, and OL_MULTIDOWN keys repeat the
OL_MOVERIGHT, OL_MOVELEFT, OL_MOVEUP, and OL_MOVEDOWN keys,
respectively. (These actions are normally on the Ctrl+arrow keys.)

XtNolDefaultFont

Synopsis: The value for the XtNfont resource on most widgets that do not
set their own.

Values: Any Font specified in the XLFD format (see the XLib Reference
Manual). If the RESOLUTION_X, RESOLUTION_Y, and PIXEL_SIZE
fields in an XLFD font name are set to ‘∗’, the toolkit attempts to
load a font with RESOLUTION_X and RESOLUTION_Y derived from
the screen resolution of the widget’s screen. If the POINT_SIZE and
PIXEL_SIZE fields are set to ‘∗’, the toolkit attempts to load the
given font with a POINT_SIZE derived from the XtNscale of the
widget (POINT_SIZE = 10 × XtNscale).

Class Type Default Access

XtCMultiClickTimeout Cardinal 200 (msec) SGI

Class Type Default Access

XtCMultiObjectCount Cardinal 3 SGI

Class Type Default Access

XtCOlDefaultFont String Lucida SGI

Common Resources 15

2
OLIT Toolkit Resources

In the C locale, the default value of XtNolDefaultFont is the 75×75
resolution Lucida sans serif font. In other locales, the default value is a font, or
a comma-separated list of fonts, suitable for that locale. The POINT_SIZE is
derived from the XtNscale resource of the widget in all locales.

Note – If a value is specified for the Xt Intrinsics XtNxtDefaultFont (or
XtNxtDefaultFontSet) resource, it may override the XtNolDefaultFont
resource. See “XtNfont” on page 26 for a detailed description of the exact
algorithm used.

XtNscale

Synopsis: The size of graphical elements (widgets), proportioned to the size
of text, measured in points (1/72 inch).

The toolkit supports sizes of 10, 12, 14, 16, 19, 20, and 24 points; other values
may not display correctly.

XtNselectDoesPreview

Synopsis: The behavior of the SELECT mouse button when it is pressed over a
MenuButton or an Abbreviated MenuButton widget.

Values: TRUE/”true” - Pressing SELECT will cause the MenuButton to
preview the submenu’s default item and releasing the SELECT
button will activate the default item.
FALSE/”false” – Pressing SELECT is the same as pressing
MENU.

XtNshiftName

Synopsis: The text printed for the shift key in an accelerator label.

Class Type Default Access

XtCScale int 12 SGI

Class Type Default Access

XtCSelectDoesPreview Boolean TRUE SGI

Class Type Default Access

XtCShiftName String “Shift” IOD

16 OLIT Reference Manual—August 1994

2
OLIT Toolkit Resources

XtNshowAccelerators

Synopsis: The display of keyboard accelerators on controls.
Values: OL_DISPLAY/”display” – Keyboard accelerators are displayed.

OL_INACTIVE/”inactive” – Keyboard accelerators are not
displayed and controls ignore them.
OL_NONE/”none” – Keyboard accelerators are not displayed, but
still work.

XtNshowMnemonics

Synopsis: The display of keyboard mnemonics on controls.
Values: OL_UNDERLINE/”underline ” – Display mnemonics in the

controls by drawing a line under the character in the font color.
OL_DISPLAY/”display” – Same as OL_UNDERLINE.
OL_HIGHLIGHT/”highlight ” - Display the mnemonic
character with background and foreground colors reversed. When
highlighting a character that is displayed on a pixmap background,
the mnemonic character will be drawn in a solid color.
OL_INACTIVE/”inactive ” - Turn off the mnemonic display
and make the mnemonic key inactive.
OL_NONE/”none ” - Do not display mnemonic characters.

XtNthreeD

Synopsis: The rendering method for visuals.
Values: TRUE/”true” – The visuals have a three-dimensional look.

FALSE/”false” - The visuals have a two-dimensional look.

Class Type Default Access

XtCShowAccelerators OlDefine OL_DISPLAY SGI

Class Type Default Access

XtCShowMnemonics OlDefine OL_UNDERLINE SGI

Class Type Default Access

XtCThreeD Boolean TRUE SGI

Common Resources 17

2
Core Resources

Core Resources
These are the resources of the Core class, of which all widget classes are
subclasses. See the diagram in “OLIT Class Hierarchy” on page 3.

XtNaccelerators

Synopsis: The table of accelerator translations for the widget.

Table 2-2 Core Resources Summary

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE GO

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) GI

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Class Type Default Access

XtCAccelerators AcceleratorTable NULL SGI

18 OLIT Reference Manual—August 1994

2
Core Resources

XtNancestorSensitive

Synopsis: TRUE if the immediate parent of the widget will receive input
events.

Note – XtIsSensitive() will return TRUE if both this and XtNsensitive
are TRUE. To preserve data integrity, neither this nor XtNsensitive should
be set directly; use XtSetSensitive() .

XtNbackground

Synopsis: The background color for the widget.
Values: Any Pixel value valid for the current display, or any name from

the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

Note – Widgets do not inherit the background color from their parent. Also,
any color set by the application when a widget is created, or in a later call to
XtSetValues() , will override the colors set by the user. Applications should
consider this and try to allow maximum flexibility for the user.

XtNbackgroundPixmap

Synopsis: The pixmap to be used for tiling the background.

The first tile is placed at the upper left-hand corner of the widget’s window.

Note – This resource takes precedence over the XtNbackground resource.

Class Type Default Access

XtCSensitive Boolean TRUE GO

Class Type Default Access

XtCBackground Pixel XtDefaultBackground SGID

Class Type Default Access

XtCPixmap Pixmap XtUnspecifiedPixmap SGI

Common Resources 19

2
Core Resources

XtNborderColor

Synopsis: The color of the border.
Values: Any Pixel value valid for the current display, or any name from

the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

XtNborderPixmap

Synopsis: The pixmap to be used for tiling the border.

The first tile is placed at the upper left hand corner of the border.

Note – This resource takes precedence over the XtNborderColor resource.

XtNborderWidth

Synopsis: The width in pixels of the border for a widget.
Values: 0 ≤ XtNborderWidth ≤ min(XtNwidth , XtNheight) / 2

A width of zero means no border will show.

XtNcolormap

Synopsis: The colormap used to interpret pixels drawn in the widget’s
window.

Values: Any colormap supported by the current display and compatible
with the widget’s visual resource.

Class Type Default Access

XtCBorderColor Pixel XtDefaultForeground SGID

Class Type Default Access

XtCPixmap Pixmap XtUnspecifiedPixmap SGI

Class Type Default Access

XtCBorderWidth Dimension 1 SGI

Class Type Default Access

XtCColormap Colormap (parent’s) SGI

20 OLIT Reference Manual—August 1994

2
Core Resources

If not initialized, Shell and DrawArea widgets use their visual resource to find
(share or create) the widget’s colormap.

Gadgets do not have a colormap resource. To get the colormap associated with
any object use the function OlColormapOfObject() (see page 155).

XtNdepth

Synopsis: The number of bits used for each pixel in the widget’s window.
Values: Any depth supported by the current display.

The value of this resource is used to set the depth of the widget’s window
when the widget is created.

Gadgets do not have a depth resource. To get the depth associated with any
object use the function OlDepthOfObject() (see page 155).

XtNdestroyCallback

Synopsis: The callback list invoked when a widget is destroyed.

XtNheight

Synopsis: The height of the widget’s window, in pixels, not including the
border.

Values: 0 ≤ XtNheight

Programs may request a value at creation or through later calls to
XtSetValues() , but the request may not succeed because of layout
requirements of the parent widget.

When XtNheight = 0, the widget will select an appropriate default height;
composite widgets will size themselves to fit all of their children.

Class Type Default Access

XtCDepth int (parent‘s) GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCHeight Dimension 0 SGI

Common Resources 21

2
Core Resources

XtNmappedWhenManaged

Synopsis: The responsibility for mapping and managing the widget.
Values: TRUE/”true” – The widget will be mapped (made visible) as

soon as it is both realized and managed.
FALSE/”false” – The program is responsible for mapping and
unmapping the widget.

If the value is changed from TRUE to FALSE after the widget has been realized
and managed, the widget is unmapped. The Xt XtSetMappedWhenManaged()
function can be used to change the value of this resource.

XtNscreen

Synopsis: The screen on which the widget appears.
Values: A pointer to an Xlib Screen data structure.

This resource can only be specified for Shell widgets; all other widgets appear
on the same screen as their parents.

XtNsensitive

Synopsis: The reception of input events by a widget.
Values: TRUE/”true” – The widget will receive input events.

FALSE/”false” – The widget will not receive input events.

If both XtNsensitive and XtNancestorSensitive are TRUE, the widget
will receive keyboard, mouse button, motion, window enter/leave, and focus
events.

Insensitive widgets do not receive these events. Insensitive widgets that appear
on the screen are stippled with a 50% gray pattern to show that they are
inactive. The 50% gray pattern makes every other pixel of the widget the
background color, in a checkerboard pattern.

Class Type Default Access

XtCMappedWhenManaged Boolean TRUE SGI

Class Type Default Access

XtCScreen Screen ∗ (parent’s) GI

Class Type Default Access

XtCSensitive Boolean TRUE GIO

22 OLIT Reference Manual—August 1994

2
Core Resources

An application should use the XtSetSensitive() function to change this
resource, thereby maintaining the integrity of the XtNancestorSensitive
resource.

Note that for Caption and StaticText widgets, if XtNsensitive is set to FALSE,
the label will appear grayed out to indicate this.

XtNtranslations

Synopsis: The mapping of events from the X server to widget and application
functions.

Every widget that descends from the Core class has a default value for this
resource. Setting this resource on a widget may completely override the default
mapping of events to widget functions for the widget. Refer to Chapter 7 of the
Xt Intrinsics Programming Manual for details on events and translations.

XtNwidth

Synopsis: The width of the widget’s window in pixels, not including the
border.

Programs may request a value at creation or through later calls to
XtSetValues() , but the request may not succeed because of layout
requirements of the parent widget.

When XtNwidth = 0, the widget will select an appropriate default width;
composite widgets will size themselves to fit all of their children.

XtNx/
XtNy

Synopsis: The position of the widget’s upper-left corner.

Class Type Default Access

XtCTranslations XtTranslations NULL SGI

Class Type Default Access

XtCWidth Dimension 0 SGI

Class Type Default Access

XtCPosition Position 0 SGI

Common Resources 23

2
Composite Resources

These resources contains the x- and y-coordinates, respectively, of the widget’s
upper-left corner (including the border) relative to its parent widget. Programs
may request a value at creation or through later calls to XtSetValues() , but
the request may not succeed because of layout requirements of the parent
widget.

For Shell widgets, XtNx and XtNy are measured relative to the root window.

Composite Resources
These are the resources of the Composite class, of which all Constraint and
Manager classes are subclasses. See the diagram in “OLIT Class Hierarchy” on
page 3.

XtNchildren

Synopsis: The list of children of the widget.

Note – This resource is intended to be used inside an insert-position procedure.
It should never be set by the application.

XtNinsertPosition

Synopsis: The procedure that determines where a new child is to be inserted
into a list of existing children.

The default procedure inserts the new child at the end of the list.

Table 2-3 Composite Resources Summary

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Class Type Default Access

XtCReadOnly WidgetList NULL G

Class Type Default Access

XtCInsertPosition XtOrderProc NULL SGI

24 OLIT Reference Manual—August 1994

2
Primitive Resources

XtNnumChildren

Synopsis: The number of entries in the list of children of the widget.

Note – This resource is intended to be used inside an insert-position procedure.
It should never be set by the application.

Primitive Resources
The following resources are available to the widgets that are a subclass of the
Primitive class. See the diagram in “OLIT Class Hierarchy” on page 3.

Class Type Default Access

XtCReadOnly Cardinal 0 G

Table 2-4 Primitive Resources Summary

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Common Resources 25

2
Primitive Resources

XtNaccelerator

Synopsis: The single KeyPress event that activates the widget.
Values: A subset of the Xt translation manager syntax described in the XLib

Reference Manual can be used as the string value.

For example, given a button named “File,” the following is a valid accelerator
specification:

∗File.accelerator: Ctrl Shift<Key>f

The button will be activated when the user presses the f key while holding
down both the Meta and Control keys.

Refer to “Activation Type Description” on page 61 for a more complete
description of acceptable syntax.

For compatibility reasons, the previous OLIT accelerator syntax is supported.
There is also a new general OPEN LOOK syntax that can be used to specify
accelerators for OLIT, xview (1), and olwm(1).

XtNacceleratorText

Synopsis: The string describing the associated primitive widget’s accelerator.

For example, a Help button may set the resource to the string F1 to remind the
users that function key 1 is the HELP button. This text will be displayed to the
right of the Primitive’s label or image if the XtNshowAccelerators toolkit
resource is OL_DISPLAY. See page 16.

As a default value, the toolkit attempts to construct a user-readable
representation of the value of XtNaccelerator . However, some language
environments might not provide suitable fonts or character encoding for an
appropriate user-readable form; applications can overcome this problem by
providing a value for XtNacceleratorText . In many language
environments, this resource defaults to the XtNaccelerator string with “–”
characters inserted between multiple key sequences.

Class Type Default Access

XtCAccelerator String NULL SGI

Class Type Default Access

XtCAcceleratorText String NULL SGI

26 OLIT Reference Manual—August 1994

2
Primitive Resources

XtNconsumeEvent

Synopsis: The callback list invoked to consume an XEvent .

Whenever an event is processed by the standard OLIT translation table, the
XtNconsumeEvent list is called for the widget in question, allowing the
application to consume the XEvent .

The call_data for this resource uses data structures of type
OlVirtualEventRec . (See “OlLookupInputEvent” on page 212 for more
detail of this data structure.)

To consume an event, the application should turn on (set to TRUE) the consumed
field in the call_data argument when a given event is processed.

OlAddCallback() must be used instead of XtAddCallback() when adding
callbacks to the XtNconsumeEvent callback list. (It is possible to use
XtAddCallback() for Primitive and Manager widgets, but not for
VendorShell widgets; therefore, it is recommended that applications be written
consistently with the OlAddCallback() function for all widget classes.)

XtNfont

Synopsis: The default font used by labels in a widget.
Values: Any valid XFontStruct pointer or XFontSet value.

The interpretation of this resource is dependent upon the value of the
XtNtextFormat resource of the widget.

If the XtNtextFormat resource has the value OL_SB_STR_REP, then the
XtNfont resources will be an OlFont reference to an XFontStruct ∗; for
other values of the XtNtextFormat resource, the value of the XtNfont
resource will be an OlFont reference to an XFontSet .

The default value for XtNfont is determined using the following algorithm:

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCFont OlFont XtDefaultFont SGID

Common Resources 27

2
Primitive Resources

• If the widget’s text format is OL_SB_STR_REP, and if the
XtNxtDefaultFont resource is specified, an attempt is made to load
XtNxtDefaultFont . If the loading of XtNxtDefaultFont is unsuccessful,
or if XtNxtDefaultFont is not specified, the above step is repeated with
XtNolDefaultFont .

• If the widget’s text format is not OL_SB_STR_REP, and if the
XtNxtDefaultFontSet resource is specified, an attempt is made to load
XtNxtDefaultFontSet . If the loading of XtNxtDefaultFontSet is
unsuccessful, or if XtNxtDefaultFontSet is not specified, the above step
is repeated with XtNolDefaultFont .

XtNfontColor

Synopsis: The font color used by objects that display text.
Values: Any Pixel value valid for the current display, or any name from

the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

XtNforeground

Synopsis: The foreground color used by objects to draw non-textual content,
provided that the value of the XtNinputFocusFeedback toolkit
resource (see page 11) is OL_INPUT_FOCUS_COLOR.

Values: Any Pixel value valid for the current display, or any name from
the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

XtNinputFocusColor

Synopsis: The color used to show that the widget has input focus.

Class Type Default Access

XtCFontColor Pixel XtDefaultForeground SGID

Class Type Default Access

XtCForeground Pixel XtDefaultForeground SGID

Class Type Default Access

XtCInputFocusColor Pixel Red SGID

28 OLIT Reference Manual—August 1994

2
Primitive Resources

Values: Any Pixel value valid for the current display, or any name from
the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

Normally, the color used to show input focus is derived from the value of the
XtNinputFocusColor resource and is dynamically maintained. This dynamic
behavior is abandoned if the application explicitly sets this resource either at
initialization or through a call to XtSetValues() .

For various widgets, the default is dependent on the value of other resources.
For the FileChooser, FontChooser, TextEdit, TextField, and TextLine widgets, if
the application resource XtNmouseless = TRUE and the application resource
XtNinputFocusFeedback = OL_INPUT_FOCUS_COLOR (see page 11),
XtNinputFocusColor defaults to “Red”; otherwise, it defaults to the value of
XtNfontColor .

XtNmnemonic

Synopsis: The mnemonic for keyboard operation.
Values: Any single-byte displayable character that is in the associated

widget’s label, or a character capable of being displayed in the
widget’s label.

Typing this character modified with the XtNmnemonicPrefix is equivalent to
activating the widget with the OL_SELECT activation type.

XtNreferenceName

Synopsis: The position for inserting this widget in the traversal list of its
closest shell ancestor.

Values: The name of a widget already created as a descendant of its closest
shell ancestor.

If the named widget exists in the managing ancestor’s traversal list, this widget
will be inserted in front of it. Otherwise, this widget will be inserted at the end
of the list.

Class Type Default Access

XtCMnemonic unsigned char ‘\0’ SGI

Class Type Default Access

XtCReferenceName String NULL GI

Common Resources 29

2
Primitive Resources

If both the XtNreferenceName and XtNreferenceWidget resources are set,
they must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNreferenceWidget

Synopsis: The position for inserting this widget in the traversal list of its
closest shell ancestor.

Values: The widget ID of a widget already created as a descendant of its
closest shell ancestor.

If the referenced widget is non-null and exists in the managing ancestor’s
traversal list, this widget will be inserted in front of it. Otherwise, this widget
will be inserted at the end of the list.

If both the XtNreferenceName and XtNreferenceWidget resources are set,
they must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNscale

Synopsis: The size of graphical elements (widgets), proportioned to the size
of text, measured in points (1/72 inch).

The toolkit supports sizes of 10, 12, 14, 16, 19, 20, and 24 points; other values
may not display correctly.

XtNtextFormat

Synopsis: The expected data format of all the textual resources of a widget.
Values: OL_SB_STR_REP - Single-byte character representation.

OL_WC_STR_REP - Wide character representation.
OL_MB_STR_REP - Multibyte character representation.

Class Type Default Access

XtCReferenceWidget Widget NULL GI

Class Type Default Access

XtCScale int 12 SGI

Class Type Default Access

XtCTextFormat OlStrRep OL_SB_STR_REP GI

30 OLIT Reference Manual—August 1994

2
Primitive Resources

XtNtextFormat can only be set when the widget is created. This can be
achieved by passing it as an argument to the Xt function used to create the
widget, for example XtVaCreateManagedWidget() . Alternatively, the toolkit
has a built-in default value for this resource, which applications can change
using the function OlSetDefaultTextFormat() . Unless changed by the
application, the default is OL_SB_STR_REP. XtNtextFormat cannot be set with
XtSetValues() .

The widget subsequently manipulates and renders all data specified by the
application for its textual resources, assuming the specified data format. For
instance, if XtNtextFormat is set to OL_MB_STR_REP, the widget might render
a label using the Xlib function XmbDrawString() . If XtNtextFormat were
OL_WC_STR_REP, the widget would use XwcDrawString() .

XtNtraversalOn

Synopsis: The accessibility of this widget through keyboard traversal.
Values: TRUE/”true” – The widget is accessible.

FALSE/”false” – The widget is not accessible.

Note – This resource affects only an individual widget, and in the case of
Manager widgets, their children. Setting ∗traversalOn: false in a resource
control file is not quite equivalent to turning off mouseless operation.

XtNuserData

Synopsis: Storage for application-specific data.

The toolkit does not modify the value in the storage area pointed to by
XtNuserData . The application is responsible for allocating and freeing this
area.

Class Type Default Access

XtCTraversalOn Boolean TRUE SGI

Class Type Default Access

XtCUserData XtPointer NULL SGI

Common Resources 31

2
Manager Resources

Manager Resources
The following resources are available to the widgets that are a subclass of the
Manager class. See the diagram in “OLIT Class Hierarchy” on page 3.

All of these Manager resources are equivalent to those defined in the Primitive
class; see:

“XtNconsumeEvent” on page 26,
“XtNinputFocusColor” on page 27,
“XtNreferenceName” on page 28,
“XtNreferenceWidget” on page 29,
“XtNtraversalOn” on page 30,
“XtNuserData” on page 30.

Shell Resources
These are resources that are common to all widget classes that are subclasses of
Shell. See the diagram in “OLIT Class Hierarchy” on page 3.

Base Windows and Popup Windows

To create OPEN LOOK base windows use OlToolkitInitialize() or
XtCreateApplicationShell() . (FileChooserShell, FontChooserShell,
PopupWindowShell, MenuShell, and NoticeShell widgets are created using
XtCreateApplicationShell() .) An application can define other popup
windows that can be created using XtCreatePopupShell() . The following
resources are typical of base windows and generic popup windows, but not all
are available for the popup windows defined in this toolkit. See the list of

Table 2-5 Manager Resources Summary

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

32 OLIT Reference Manual—August 1994

2
Shell Resources

resources for the PopupWindow, Menu, and Notice widgets to see which are
available. The “Access” column in this table identifies the access for base
windows only.

XtNallowShellResize

Synopsis: The resize results of a child’s geometry request.
Values: TRUE – The widget will attempt to resize itself as requested by the

child. The attempt may be refused by the window manager, which
will cause the shell widget to refuse the geometry management
request of its child. Otherwise, it accepts the request.
FALSE – A Shell widget will immediately refuse the geometry
management request.

XtNcreatePopupChildProc

Synopsis: The single function (not a callback list) called during popup.

The function indicated by this resource is called after the XtNpopupCallback
callbacks are issued (see page 33), but before the shell widget is realized and
mapped. The function is passed a single argument, the ID of the shell widget.

Table 2-6 Shell Resources Summary

Name Type Default Access

XtNallowShellResize Boolean TRUE SGI

XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI

XtNgeometry String NULL GI

XtNoverrideRedirect Boolean FALSE SGI

XtNpopdownCallback XtCallbackList NULL SGIO

XtNpopupCallback XtCallbackList NULL SGIO

XtNsaveUnder Boolean FALSE SGI

XtNvisual Visual ∗ (parent’s) GIO

XtNwidthInc int XtUnspecifiedShellInt SGI

Class Type Default Access

XtCAllowShellResize Boolean TRUE SGI

Class Type Default Access

XtCCreatePopupChildProc XtCreatePopupChildProc TRUE SGI

Common Resources 33

2
Shell Resources

XtNgeometry

Synopsis: The size and position of the shell widget when it pops up.
Values: Any syntactically correct argument to the XParseGeometry()

function (see the XLib Reference Manual).

XtNoverrideRedirect

Synopsis: The manager of a shell widget’s window.
Values: TRUE/”true” – The window manager does not manage the shell

widget’s window.
FALSE/”false” – The window manager manages the shell
widget’s window.

Do not set this resource for any of the OLIT shell widgets: FileChooserShell,
FontChooserShell, MenuShell, NoticeShell, or PopupWindowShell.

XtNpopdownCallback

Synopsis: The callback list invoked just after the shell widget’s window pops
down.

XtNpopupCallback

Synopsis: The callback list invoked just before the shell widget’s window
pops up.

Class Type Default Access

XtCGeometry String NULL GI

Class Type Default Access

XtCOverrideRedirect Boolean FALSE SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

34 OLIT Reference Manual—August 1994

2
Shell Resources

XtNsaveUnder

Synopsis: Whether the shell widget should instruct the server to attempt to
save the contents of windows obscured by the shell when it is
mapped, and to restore the contents when the shell widget is
unmapped.

Values: TRUE/”true” – The server will attempt to save and restore the
contents.
FALSE/”false” – The server will not attempt to save and restore
the contents.

XtNvisual

Synopsis: The visual used to create the widget’s window.
Values: A pointer to any visual structure supported by the current display

and compatible with the widget’s depth and colormap.

Only Shell and DrawArea widgets have a visual resource. All other widgets
are created using their parent’s visual.

If not initialized, Shell and DrawArea widgets use their depth resource and
parent’s visual class to find the widget’s visual.

The preferred method of setting a Shell or DrawArea widget’s visual resource
is to use the Intrinsics typed args interface. A string containing the desired
Visual Class Name should be passed to the String to Visual resource converter.

To get the visual associated with any object use the function
OlVisualOfObject() (see page 156).

Class Type Default Access

XtCSaveUnder Boolean FALSE SGI

Class Type Default Access

XtCVisual Visual ∗ (parent’s) GIO

Common Resources 35

2
WMShell Resources

WMShell Resources
These are resources defined in WMShellWidgetClass . See the diagram in
“OLIT Class Hierarchy” on page 3.

Table 2-7 WMShell Resources Summary

Name Type Default Access

XtNbaseHeight int XtUnspecifiedShellInt SGI

XtNbaseWidth int XtUnspecifiedShellInt SGI

XtNheightInc int XtUnspecifiedShellInt SGI

XtNiconMask Pixmap NULL SGI

XtNiconPixmap Pixmap NULL SGI

XtNiconWindow Window NULL SGI

XtNiconX int XtUnspecifiedShellInt SGI

XtNiconY int XtUnspecifiedShellInt SGI

XtNinitialState InitialState NormalState SGI

XtNinput Bool FALSE G

XtNmaxAspectX int XtUnspecifiedShellInt SGI

XtNmaxAspectY int XtUnspecifiedShellInt SGI

XtNmaxHeight int OL_IGNORE SGI

XtNmaxWidth int OL_IGNORE SGI

XtNminAspectX int XtUnspecifiedShellInt SGI

XtNminAspectY int XtUnspecifiedShellInt SGI

XtNminHeight int OL_IGNORE SGI

XtNminWidth int OL_IGNORE SGI

XtNtitle String NULL SGI

XtNtitleEncoding Atom XA_STRING SGI

XtNtransient Boolean TRUE SGI

XtNwaitForWm Boolean TRUE SGI

XtNwidthInc int XtUnspecifiedShellInt SGI

XtNwindowGroup Window XtUnspecifiedWindow SGI

XtNwinGravity int XtUnspecifiedShellInt SGI

XtNwmTimeout int 5000 (msec) SGI

36 OLIT Reference Manual—August 1994

2
WMShell Resources

XtNbaseHeight/
XtNbaseWidth

Synopsis: The base values to which the XtNheightInc and XtNwidthInc
size increments are added.

XtNheightInc

Synopsis: The resizing increment for Shell widgets.
Values: 0 ≤ XtNheightInc

This resource defines an arithmetic progression of sizes, from XtNminHeight
to XtNmaxHeight into which the shell widget prefers to be resized by the
window manager.

XtNiconMask

Synopsis: The mask applied to XtNiconPixmap to give the base window’s
icon.

Values: A single plane pixmap.

XtNiconPixmap

Synopsis: The image to be used as the base window’s icon.
Values: A single plane pixmap.

Class Type Default Access

XtCBaseHeight Int XtUnspecifiedShellInt SGI

XtCBaseWidth Int XtUnspecifiedShellInt SGI

Class Type Default Access

XtCHeightInc int XtUnspecifiedShellInt SGI

Class Type Default Access

XtCIconMask Pixmap NULL SGI

Class Type Default Access

XtCIconPixmap Pixmap NULL SGI

Common Resources 37

2
WMShell Resources

XtNiconWindow

Synopsis: The ID of a window to be used as the base window’s icon.
Values: An ID of an existing window.

The XtNiconWindow takes precedence over the XtNiconPixmap resource.

XtNiconX/
XtNiconY

Synopsis: The x- and y-coordinates of where the base window’s icon should
appear.

Values: –1 ≤ XtNiconX
–1 ≤ XtNiconY

If the value of either of these resource is –1, the window manager
automatically picks a value, according to its icon placement requirements.

XtNinitialState

Synopsis: The appearance of the base window (and associated popup
windows) when the application starts up.

Values: NormalState – The application starts up with its base window
open.
IconicState – The application starts up with its base window
closed into an icon.

Other values are defined by the X Window System for this resource, but the
OPEN LOOK window manager recognizes only the iconic and normal states.

Class Type Default Access

XtCIconWindow Window NULL SGI

Class Type Default Access

XtCIconX int XtUnspecifiedShellInt SGI

XtCIconY int XtUnspecifiedShellInt SGI

Class Type Default Access

XtCInitialState InitialState NormalState SGI

38 OLIT Reference Manual—August 1994

2
WMShell Resources

XtNinput

Synopsis: The application’s input focus behavior.

This resource should not be set by an application.

XtNmaxAspectX/
XtNmaxAspectY/
XtNminAspectX/
XtNminAspectY

Synopsis: The range of aspect ratios allowed for the size of the shell widget’s
window.

Values: –1 = XtNmaxAspectX or 1 ≤ XtNmaxAspectX
 –1 = XtNmaxAspectY or 1 ≤ XtNmaxAspectY
 –1 = XtNminAspectX or 1 ≤ XtNminAspectX
 –1 = XtNminAspectY or 1 ≤ XtNminAspectY

Assuming the width and height of the window are given by width and height
the following relation shows how the window size is constrained:

If the user tries to resize the window to a narrower or wider aspect ratio than
allowed by these resources, the window manager adjusts the window to the
closest allowed aspect ratio. If possible, it will do this by increasing the width
or height to compensate.

Class Type Default Access

XtCInput Boolean FALSE G

Class Type Default Access

XtCMaxAspectX int XtUnspecifiedShellInt SGI

XtCMaxAspectY int XtUnspecifiedShellInt SGI

XtCMinAspectX int XtUnspecifiedShellInt SGI

XtCMinAspectY int XtUnspecifiedShellInt SGI

XtNminAspectX
XtNminAspectY

XtNmaxAspectX
XtNmaxAspectY

≤

XtNminAspectX
XtNminAspectY

width
height

XtNmaxAspectX
XtNmaxAspectY

≤ ≤

Common Resources 39

2
WMShell Resources

The XtNmaxHeight and XtNmaxWidth resources may force the window
manager to reduce the width or height instead. If the values of these resources
are –1, the window manager does not constrain the size of the window to any
aspect ratio.

Note – An application should either set all values to –1 (the default) or should
set all to a positive value. An application should never set a value of zero to
any of these resources.

XtNmaxHeight/
XtNmaxWidth/
XtNminHeight/
XtNminWidth

Synopsis: The range allowed for the size of the shell widget’s window.
Values: XtNminHeight ≤ XtNmaxHeight

XtNminWidth ≤ XtNmaxWidth
(or OL_IGNORE for any of these resources)

If the user tries to resize the window smaller or larger than these values allow,
the window manager adjusts the width and/or height to compensate.

The default value of OL_IGNORE keeps the window manager from constraining
the window’s size.

XtNtitle

Synopsis: The title to include in the header of the base or popup window.

Widgets of classes other than Shell may have a resource with this name.

Class Type Default Access

XtCMaxHeight int OL_IGNORE SGI

XtCMaxWidth int OL_IGNORE SGI

XtCMinHeight int OL_IGNORE SGI

XtCMinWidth int OL_IGNORE SGI

Class Type Default Access

XtCTitle String NULL SGI

40 OLIT Reference Manual—August 1994

2
WMShell Resources

XtNtitleEncoding

Synopsis: The character set used in the XtNtitle resource.
Values: ICCCM defines only one valid value for this resource: XA_STRING.

Individual window managers may specify other values.

XtNtransient

Synopsis: The unmapping of a shell widget’s window when the associated
base window is iconified.

Values: TRUE/”true” – The window is unmapped.
FALSE/”false” – The window is mapped.

A transient window is one that is unmapped when its associated base window
is iconified. This resource controls this behavior.

No application should set this resource for any of the OLIT shell widgets. See
XtNwindowGroup on page 41.

XtNwaitForWm

Synopsis: Whether the shell’s geometry manager waits for the window
manager to respond to a request. For details on this resource,
please refer to the Xt Intrinsics Programming Manual.

XtNwidthInc

Synopsis: The resizing increment for Shell widgets.
Values: 0 ≤ XtNwidthInc

Class Type Default Access

XtCTitleEncoding Atom XA_STRING SGI

Class Type Default Access

XtCTransient Boolean TRUE SGI

Class Type Default Access

XtCWaitForWm Boolean TRUE SGI

Class Type Default Access

XtCWidthInc int XtUnspecifiedShellInt SGI

Common Resources 41

2
WMShell Resources

This resource defines the increment in an arithmetic progression of sizes, from
XtNminWidth to XtNmaxWidth , into which the shell widget prefers to be
resized by the window manager.

XtNwindowGroup

Synopsis: The base window associated with this shell widget’s window.
Values: An ID of an existing window

When the user closes the base window, all its associated windows are
unmapped (popup windows or other shell widget windows with
XtNtransient set to TRUE) or closed (base windows with XtNtransient set
to FALSE).

XtNwinGravity

Synopsis: The corner of the application window critical for placement.
Values: WestGravity/”west”

CenterGravity/”center”
NorthGravity/”north”
NorthEastGravity/”northEast”
NorthWestGravity/”northWest”
SouthGravity/”south”
SouthEastGravity/”southEast”
SouthWestGravity/”southWest”

If XtNgeometry is NULL, the default value is NorthWestGravity . If
XtNgeometry is not NULL, the default value is the gravity implied by the
geometry string. Consult the Xt Intrinsics Reference Manual for further details
on XtNwinGravity .

Class Type Default Access

XtCWindowGroup Window XtUnspecifiedWindow SGI

Class Type Default Access

XtCWinGravity int (see description) SGI

42 OLIT Reference Manual—August 1994

2
VendorShell Resources

XtNwmTimeout

Synopsis: The time interval the shell’s geometry manager waits for the
window manager to respond to a request. See “XtNwaitForWm”
on page 40.

VendorShell Resources
Table 2-6 on page 32 listed generic resources available to most shells. Table 2-8,
however, lists resources necessary to support the OPEN LOOK look and feel.
These resources are implemented in the VendorShell widget class; and
therefore, apply only to shells that are subclasses of the VendorShell widget
class (i.e., TransientShell, MenuShell, PopupWindowShell, NoticeShell,
FontChooserShell, TopLevelShell, and ApplicationShell). Since some of these
resources do not apply to all shells (e.g., XtNresizeCorners on menus), see
the individual widget descriptions for more accurate descriptions of the
applicable resources and their default values.

Class Type Default Access

XtCWmTimeout int 5000 (msec) SGI

Table 2-8 VendorShell Resources Summary

Name Type Default Access

XtNbusy Boolean FALSE SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNdefaultImName String NULL SGI

XtNfooterPresent Boolean FALSE SGI

XtNfocusWidget Widget (see description) SGI

XtNimFontSet OlFont XtDefaultFontSet SGI

XtNimStatusStyle OlImStatusStyle OL_NO_STATUS GI

XtNleftFooterString OlStr NULL SGI

XtNleftFooterVisible Boolean TRUE SGI

XtNmenuButton Boolean (see description) GI

XtNmenuType OlDefine (see description) SGI

XtNpushpin OlDefine (see description) SGI

XtNresizeCorners Boolean (see description) SGI

XtNrightFooterString OlStr NULL SGI

XtNrightFooterVisible Boolean TRUE SGI

Common Resources 43

2
VendorShell Resources

XtNbusy

Synopsis: The marking of the shell’s window as busy.
Values: TRUE – Marks as busy the application window associated with this

shell. When a window becomes busy, the window manager grays
the window header (if there is one).
FALSE – Causes the window to return to its normal appearance
and event processing. Neither the window manager nor the toolkit
grabs mouse or keyboard events when an application window
becomes busy.

XtNconsumeEvent

Synopsis: The callback list invoked to consume an XEvent . This resource is
equivalent to the one defined for the Primitive class; see
“XtNconsumeEvent” on page 26.

XtNdefaultImName

Synopsis: The name of the default input method.
Values: Name of an input method suitable for the locale of the application.

See “Input Method” on page 80.

XtNshellTitle OlStr NULL SGI

XtNuserData XtPointer NULL SGI

XtNwindowHeader Boolean (see description) GI

XtNwmProtocol XtCallbackList NULL SGIO

XtNwmProtocolInterested int OL_WM_DELETE_WINDOW
| OL_WM_TAKE_FOCUS

I

Class Type Default Access

XtCBusy Boolean FALSE SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCDefaultImName String NULL SGI

Table 2-8 VendorShell Resources Summary (Continued)

Name Type Default Access

44 OLIT Reference Manual—August 1994

2
VendorShell Resources

XtNfocusWidget

Synopsis: The widget that gets input focus when the user selects a window.

If not initialized by the programmer, this resource defaults to the first widget
created among its descendants capable of accepting input focus.

As focus changes within the shell, this resource is updated to reflect the widget
with focus. Focus will be set to this widget when the VendorShell loses and
then regains focus.

A resource converter will translate widget names specified in a resource file to
a widget ID for this resource.

XtNfooterPresent

Synopsis: The presentation of a shell footer area.
Values: TRUE/”true” – The footer area is created and/or mapped.

FALSE/”false” – If the footer area already exists, it is
unmapped; otherwise, nothing is created.

XtNimFontSet

Synopsis: The font set used by the input method to display status feedback.
Values: Any fontset suitable for the locale of the application.

XtNimStatusStyle

Synopsis: The location of the input method status feedback. See “Setting the
Input Method Pre-Edit and Status Styles (Asian Locales Only)” on
page 82.

Class Type Default Access

XtCFocusWidget Widget (see description) SGI

Class Type Default Access

XtCFooterPresent Boolean FALSE SGI

Class Type Default Access

XtCImFontSet OlFont XtDefaultFontSet SGI

Class Type Default Access

XtCImStatusStyle OlImStatusStyle OL_NO_STATUS GI

Common Resources 45

2
VendorShell Resources

Values: OL_IM_DISPLAYS_IN_CLIENT/”imDisplaysInClient” - The
input method displays the status in the footer of the shell’s
window.
OL_IM_DISPLAYS_IN_ROOT/”imDisplaysInRoot” - The
input method displays the status in a separate window that is a
child of the root window.
OL_NO_STATUS/”none” - The input method provides no status
feedback.

XtNleftFooterString

Synopsis: The left footer string.
Values: Any OlStr value valid in the current locale.

Both XtNfooterPresent and XtNleftFooterVisible must be TRUE for
this string to be visible.

XtNleftFooterVisible

Synopsis: The visibility of the left footer area.
Values: TRUE/”true” – The left footer area is made visible.

FALSE/”false” – The left footer area is made invisible.

If the XtNfooterPresent resource is FALSE, the XtNleftFooterVisible
resource has no effect.

XtNmenuButton

Synopsis: The placement of the menu button decoration in the upper left
corner of the shell window’s header.

Values: TRUE/”true” – The menu button decoration should be drawn.
This is the default for TopLevel shells.
FALSE/”false” – The menu button decoration should not be
drawn. This is the default for Transient shells.

Class Type Default Access

XtCLeftFooterString OlStr NULL SGI

Class Type Default Access

XtCLeftFooterVisible Boolean TRUE SGI

Class Type Default Access

XtCMenuButton Boolean (see description) GI

46 OLIT Reference Manual—August 1994

2
VendorShell Resources

XtNmenuType

Synopsis: The type of window menu that the window manager creates.
Values: OL_MENU_FULL/”full” – This is the default value for a base

shell. This full menu contains the following entries: Close, Full
Size, Move and Resize, Properties, Back, Refresh, and Quit.
OL_MENU_LIMITED/”limited” – Setting this value results in a
window menu with the following buttons: Dismiss (a MenuButton)
Move and Resize, Back, Refresh, Owner?. OL_MENU_LIMITED is
the default for PopupWindow and Help shells.
OL_MENU_CANCEL/”cancel” – This value provides the same
menu as the OL_MENU_LIMITED with the exception that the
Dismiss button is replaced with a Cancel button.
OL_NONE/”none” – The window manager does not create a
menu or a menu mark. The NoticeShell widget sets this value.

XtNpushpin

Synopsis: The inclusion of the pushpin in the window’s decorations.
Values: OL_NONE/”none ” – A pushpin is not included in the window’s

decorations. This is the default for base window shells and
NoticeShells.
OL_OUT/”out ” – A pushpin is included in the window’s
decorations, with its state set to be unpinned. This is the default for
PopupWindowShells.
OL_IN/”in ” – A pushpin is included in the window’s
decorations, with its state set to be pinned. A MenuShell widget
should not set XtNpushpin to OL_IN at initialization time.

Applications can query the state of the pushpin by getting the value of this
resource, since it is updated when the pushpin’s state changes.

If the shell does not have an OPEN LOOK header (XtNwindowHeader is set to
FALSE), then XtNpushpin is always OL_NONE, and attempts to change the
value are ignored.

Class Type Default Access

XtCMenuType OlDefine (see description) SGI

Class Type Default Access

XtCPushPin OlDefine (see description) SGI

Common Resources 47

2
VendorShell Resources

Once created, a widget supports transitions of out-to-in and in-to-out, but
other transitions are implementation dependent.

XtNresizeCorners

Synopsis: The inclusion of resize corners as part of the window decorations.
Values: TRUE – Default for the base shell; resize corners are present.

FALSE – Default for other Shell widgets; resize corners are not
present.

XtNrightFooterString

Synopsis: The right footer string.
Values: Any OlStr value valid in the current locale.

Both XtNfooterPresent and XtNrightFooterVisible must be TRUE for
this string to be visible.

XtNrightFooterVisible

Synopsis: The visibility of the right footer area.
Values: TRUE/”true” – The right footer area is visible.

FALSE/”false” – The right footer area is not visible.

If the XtNfooterPresent resource is FALSE, the XtNrightFooterVisible
resource has no effect.

XtNshellTitle

Synopsis: The title for a shell widget.
Values: Any OlStr value valid in the current locale.

Class Type Default Access

XtCResizeCorners Boolean (see description) SGI

Class Type Default Access

XtCRightFooterString OlStr NULL SGI

Class Type Default Access

XtCRightFooterVisible Boolean TRUE SGI

Class Type Default Access

XtCTitle OlStr NULL SGI

48 OLIT Reference Manual—August 1994

2
VendorShell Resources

The value of this resource is internally kept consistent with the value of the
XtNtitle resource. Changing either of the two resources affects the other. The
essential difference between XtNtitle and XtNshellTitle lies in their
types.

XtNuserData

Synopsis: Storage for application-specific data. This resource is equivalent to
the one defined for the Primitive class; see “XtNuserData” on
page 30.

XtNwindowHeader

Synopsis: The presence of a window header provided by the window
manager.

Values: TRUE/”true” - Default for base windows, PopupWindows, and
Help shells, indicating the window has a header.
FALSE/”false” - Default for Notice shell, indicating the window
has no header.

The header is the area of the window that contains the pushpin, title, and
window mark.

Note – This resource can only be set at initialization.

XtNwmProtocol

Synopsis: The callback list invoked when a vendor shell widget receives
WM_PROTOCOL messages.

This resource controls the action that is taken whenever a shell widget receives
WM_PROTOCOL messages matching the types of protocol messages specified in
the XtNwmProtocolInterested resource. If no callback list is specified, the

Class Type Default Access

XtCUserData XtPointer NULL SGI

Class Type Default Access

XtCWindowHeader Boolean (see description) GI

Class Type Default Access

XtCWMProtocol XtCallbackList NULL SGIO

Common Resources 49

2
VendorShell Resources

shell performs its default action(s). If a callback list is specified, it is invoked
and no default action(s) is taken. The application can, however, simulate the
default action(s) at its convenience by calling OlWMProtocolAction() with
the action parameter set to OL_DEFAULTACTION. (See “Protocol Function” on
page 160 for more information on this routine.)

When the application’s callback list is invoked, the call_data field is a pointer to
the following structure:

typedef struct {
int msgtype ; /* type of WM msg */
XEvent ∗xevent ;

} OlWMProtocolVerify;

The field msgtype is an integer constant indicating the type of protocol message
that invoked the callback and has a range of values of:

OL_WM_TAKE_FOCUS
OL_WM_SAVE_YOURSELF
OL_WM_DELETE_WINDOW

OlAddCallback() must be used instead of XtAddCallback() when adding
callbacks to the XtNwmProtocol callback list.

XtNwmProtocolInterested

Synopsis: The types of protocol messages that interest the application.
Values: The bitwise inclusive OR of the following values:

OL_WM_DELETE_WINDOW -Requests any protocol messages
associated with WM_DELETE_WINDOW. If this value is not set by
the application, undefined results occur.
OL_WM_TAKE_FOCUS -Requests any protocol messages
associated with WM_TAKE_FOCUS. If this value is not set by the
application, undefined results occur.
OL_WM_SAVE_YOURSELF -Requests any protocol messages
associated with WM_SAVE_YOURSELF.

Class Type Default Access

XtCWMProtocolInterested int OL_WM_DELETE_WINDOW
| OL_WM_TAKE_FOCUS

SGI

50 OLIT Reference Manual—August 1994

2
TransientShell Resources

TransientShell Resources
This resource is defined in TransientShellWidgetClass . See the diagram
in “OLIT Class Hierarchy” on page 3.

XtNtransientFor

Synopsis: The widget the shell is a transient for if the shell has the
XtNtransient resource TRUE and is a transient shell.

Values: The widget the shell is transient for.

TopLevelShell Resources
These are resources defined in TopLevelShellWidgetClass . See the
diagram in “OLIT Class Hierarchy” on page 3.

XtNiconic

Synopsis: The iconic state of the base window.
Values: TRUE/”true” – Iconifies the base window.

FALSE/”false” – De-iconifies the base window.

This resource also provides an alternative way to set the XtNinitialState
resource to IconicState .

Table 2-9 TransientShell Resources Summary

Name Type Default Access

XtNtransientFor Widget NULL SGI

Class Type Default Access

XtCTransientFor Widget NULL SGI

Table 2-10 TopLevelShell Resources Summary

Name Type Default Access

XtNiconic Boolean FALSE SGI

XtNiconName String NULL SGI

XtNiconNameEncoding Atom XA_STRING SGI

Class Type Default Access

XtCIconic Boolean FALSE SGI

Common Resources 51

2
ApplicationShell Resources

XtNiconName

Synopsis: The name that the window manager displays in the shell widget’s
icon.

If the XtNtitle resource is not defined or is NULL, this resource is used
instead. If this resource is NULL, the name of the application is used in its
place.

XtNiconNameEncoding

Synopsis: The character set used in the XtNiconName resource.
Values: ICCCM defines only one valid value for this resource: XA_STRING.

Individual window managers may specify other values.

ApplicationShell Resources
These are resources defined in ApplicationShellWidgetClass . See the
diagram in “OLIT Class Hierarchy” on page 3.

XtNargc/
XtNargv

Synopsis: The setting for the WM_COMMAND property.

Class Type Default Access

XtCIconName String NULL SGI

Class Type Default Access

XtCIconNameEncoding Atom XA_STRING SGI

Table 2-11 ApplicationShell Resources Summary

Name Type Default Access

XtNargc int 0 I

XtNargv String ∗ NULL I

Class Type Default Access

XtCArgc int 0 I

XtCArgv String ∗ NULL I

52 OLIT Reference Manual—August 1994

2
Flat Resources

The application shell uses XtNargc and XtNargv to set the WM_COMMAND
property. The WM_COMMAND property specifies the command line used to
invoke the program. If an application uses XtAppInitialize() , the
intrinsics set XtNargc and XtNargv to the values of argc and argv passed to
XtAppInitialize() .

Flat Resources
Flat widgets are described starting on page 321. All of the flat containers have
the same layout characteristics. The superclass of all flat widgets is a generic
row/column manager metaclass called Flat. Although each column has its own
width and each row has its own height, all columns can have the same width
and all rows can have the same height, if desired. The efficiency in both
processing steps and data requirements increases as the grid becomes more
regular in shape. For example, a grid specifying that all rows must have the
same height and all columns must have the same width is the most efficient
configuration. The Flat row/column manager widget lays out the items within
the container, driven by the layout attributes of the container and starting in
the NorthWest corner. Row-major order implies every column in the current
row is filled before filling any columns in the next row. Column-major order
implies every row in the current column is filled before filling any rows in the
next column.

Items of flat containers are placed within the grid. If the item’s width (or
height) is less than the column’s width (or row’s height), the item is positioned
in accordance to the XtNitemGravity resource. The following table lists the
layout resources of all flat containers. See the resource tables for each flat
container widget for a more accurate accounting of the default and allowable
values for each layout resource.

Table 2-12 Flat Resources Summary

Name Type Default Access

XtNgravity int CenterGravity SGI

XtNhPad Dimension 0 SGI

XtNhSpace Dimension 0 SGI

XtNitemFields String ∗ NULL SGI

XtNitemGravity int NorthWestGravity SGI

XtNitemMaxHeight Dimension OL_IGNORE SGI

XtNitemMaxWidth Dimension OL_IGNORE SGI

Common Resources 53

2
Flat Resources

XtNgravity

Synopsis: The locus in the container where an undersized group of items will
be placed during layout.

Values: WestGravity/”west”
CenterGravity/”center”
NorthGravity/”north”
NorthEastGravity/”northEast”
NorthWestGravity/”northWest”
SouthGravity/”south”
SouthEastGravity/”southEast”
SouthWestGravity/”southWest”

The gravity resource specifies the position of all items (i.e., as a group)
whenever a tight-fitting bounding box that surrounds the items has a width, or

XtNitemMinHeight Dimension OL_IGNORE SGI

XtNitemMinWidth Dimension OL_IGNORE SGI

XtNitems XtPointer NULL SGI

XtNitemsTouched Boolean FALSE SG

XtNlabel OlStr NULL SGI

XtNlabelImage XImage ∗ NULL SGI

XtNlabelJustify OlDefine OL_LEFT SGI

XtNlabelTile Boolean FALSE SGI

XtNlayoutHeight OlDefine OL_MINIMIZE SGI

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNlayoutWidth OlDefine OL_MINIMIZE SGI

XtNmeasure int 1 SGI

XtNnumItemFields Cardinal 0 SGI

XtNnumItems Cardinal 0 SGI

XtNsameHeight OlDefine OL_ALL SGI

XtNsameWidth OlDefine OL_COLUMNS SGI

XtNvPad Dimension 0 SGI

XtNvSpace Dimension 4 SGI

Class Type Default Access

XtCGravity int CenterGravity SGI

Table 2-12 Flat Resources Summary (Continued)

Name Type Default Access

54 OLIT Reference Manual—August 1994

2
Flat Resources

height, less than the container’s width or height, respectively. Essentially, this
resource specifies how the items, as a group, float within their container.

XtNhPad/
XtNvPad

Synopsis: The minimum horizontal and vertical space to leave around the
edges of the container.

Values: 0 ≤ XtNhPad
0 ≤ XtNvPad

XtNhSpace/
XtNvSpace

Synopsis: The amount of horizontal and vertical space to leave between
items.

Values: 0 ≤ XtNhSpace
0 ≤ XtNvSpace

If the items are of different sizes in a row or column, the spacing applies to the
widest or tallest dimension of all items in the row or column.

XtNitemFields

Synopsis: The list of resource names used to identify the records in the
XtNitems list.

Values: A pointer to an application-defined structure containing a list of
resources.

The application must ensure that this value points to a static list since flat
containers reference this list after initialization, but do not copy its information.

Class Type Default Access

XtCHPad Dimension 0 SGI

XtCVPad Dimension 0 SGI

Class Type Default Access

XtCHSpace Dimension 0 SGI

XtCVSpace Dimension 4 SGI

Class Type Default Access

XtCItemFields String ∗ NULL SGI

Common Resources 55

2
Flat Resources

XtNitemGravity

Synopsis: The region in its cell within the container in which an undersized
item will be placed during layout.

Values: WestGravity/”west”
CenterGravity/”center”
NorthGravity/”north”
NorthEastGravity/”northEast”
NorthWestGravity/”northWest”
SouthGravity/”south”
SouthEastGravity/”southEast”
SouthWestGravity/”southWest”

This resource is used whenever the item’s width or height is less than the
column width or the row height of the place it is to occupy. The values of the
XtNsameWidth and XtNsameHeight resources govern the column’s width
and the row’s height.

XtNitemMaxHeight/
XtNitemMaxWidth/
XtNitemMinHeight/
XtNitemMinWidth

Synopsis: The maximum/minimum allowable height/width of items.

If any of these resources has the value OL_IGNORE (the default), the
corresponding maximum/minimum height/width constraint is ignored.

Class Type Default Access

XtCItemGravity int NorthWestGravity SGI

Class Type Default Access

XtCItemMaxHeight Dimension OL_IGNORE SGI

XtCItemMaxWidth Dimension OL_IGNORE SGI

XtCItemMinHeight Dimension OL_IGNORE SGI

XtCItemMinWidth Dimension OL_IGNORE SGI

56 OLIT Reference Manual—August 1994

2
Flat Resources

XtNitems

Synopsis: A list of application-defined structures, each representing an item.
Values: A pointer to the list of application-defined item structures.

An item structure contains fields corresponding to the resources in the
XtNitemFields list. The number of items in this list is contained in the
XtNnumItems resource (see page 59).

The application must ensure that this value points to a static list since flat
containers reference this list after initialization, and do not copy its
information.

XtNitemsTouched

Synopsis: The update status of the contents of the container.
Values: TRUE – The contents need updating.

FALSE – The contents do not need updating.

Whenever the application modifies an item list directly, this resource must be
set to TRUE, to signal the flat container widget to update its contents. The flat
container will relayout and redisplay its entire list of items, as if the list were
new. This may result in geometry negotiations with the container’s parent
widget.

After the container completes the processing associated with setting this
resource to TRUE, it will reset the resource value to FALSE, indicating the
integrity of the widget state with what is being displayed. This means
XtGetValues() on XtNitemsTouched will always return FALSE.

It is not necessary to use this resource if the application modifies the list with
the OlFlatSetValues() procedure (see page 354), nor is it necessary to use
this resource whenever the application supplies a new list to the flat container.

Class Type Default Access

XtCItems XtPointer NULL SGI

Class Type Default Access

XtCItemsTouched Boolean FALSE SG

Common Resources 57

2
Flat Resources

XtNlabel

Synopsis: The text string that appears in the item.
Values: Any OlStr value valid in the current locale.

XtNlabelImage

Synopsis: An XImage for display in an item label region.

The toolkit will ignore this resource if XtNlabel is non-NULL. The XImage
will not be copied.

XtNlabelJustify

Synopsis: The justification of the label or image within the item.
Values: OL_LEFT/”left” – Left-justify the label or image.

OL_CENTER/”center” – Center the label or image.
OL_RIGHT/”right” – Right-justify the label or image.

XtNlabelTile

Synopsis: The drawing of the label image as a single image or as a tiled
pattern.

Values: TRUE/”true” – If the image will fit within the item, the label area
will be filled with multiple renditions of the image in a tiled
pattern.
FALSE/”false” – A single image will be drawn as the item’s
label, justified as specified by the XtNlabelJustify resource.

The XtNlabelTile resource is ignored if XtNlabel is non-NULL.

Class Type Default Access

XtCLabel OlStr NULL SG

Class Type Default Access

XtCLabelImage XImage ∗ NULL SGI

Class Type Default Access

XtCLabelJustify OlDefine OL_LEFT SGI

Class Type Default Access

XtCLabelTile Boolean FALSE SGI

58 OLIT Reference Manual—August 1994

2
Flat Resources

XtNlayoutHeight/
XtNlayoutWidth

Synopsis: The resize policy of flat containers when items change.
Values: OL_MINIMIZE/”minimize” – The container will modify its height

or width to be just large enough to tightly wrap around its items.
Thus, the container will grow and shrink depending on the size
needs of its items. This policy will override any width or height
resources that the application has set previously.
OL_MAXIMIZE/”maximize” – The container will increase its
height or width to be just large enough to tightly wrap around its
items, regardless of its current height or width, but will not give up
extra space. Thus, the container will grow, but never shrink,
depending on the size needs of its items.

XtNlayoutType

Synopsis: The axis in the grid of items that is considered the major axis for
the layout policy.

Values: OL_FIXEDCOLS/”fixedcols” – The layout will have a maximum
number of columns equal to the value specified by the
XtNmeasure resource, and there will be enough rows to hold all
items. Items are placed in row-major order; i.e., the columns of the
current row are filled before filling any columns in the next row.
OL_FIXEDROWS/”fixedrows” – The layout will have a maximum
number of rows equal to the value specified by the XtNmeasure
resource, and there will be enough columns to hold all items. Items
are placed in column-major order; i.e., the rows of the current
column are filled before filling any rows in the next column.

Class Type Default Access

XtCLayoutHeight OlDefine OL_MINIMIZE SGI

XtCLayoutWidth OlDefine OL_MINIMIZE SGI

Class Type Default Access

XtCLayoutType OlDefine OL_FIXEDROWS SGI

Common Resources 59

2
Flat Resources

XtNmeasure

Synopsis: The number of items allowed in the major direction for the layout
policy.

Values: 0 < XtNmeasure

The major direction is determined by the XtNlayoutType resource. For a
column-major layout, at most XtNmeasure columns will be displayed, and as
many rows as are needed to display all items within this number of columns.
For a row-major layout, at most XtNmeasure rows will be displayed, and as
many columns as are needed to display all items within this number of rows.

XtNnumItemFields

Synopsis: The number of resource names contained in XtNitemFields .

XtNnumItems

Synopsis: The number of items.
Values: The number of elements in the XtNitems list (see page 56).

XtNsameHeight

Synopsis: The items forced to be the same height within the container.
Values: OL_ALL/”all” – All items will be the same height.

OL_ROWS/”rows” – All items appearing in the same row will be
the same height.
OL_NONE/”none” – Items will be placed in fixed-height rows, but
the height of each item will be unaffected. The height of each row
will be the height of the tallest item.

Class Type Default Access

XtCMeasure int 1 SGI

Class Type Default Access

XtCNumItemFields Cardinal 0 SGI

Class Type Default Access

XtCNumItems Cardinal 0 SGI

Class Type Default Access

XtCSameHeight OlDefine OL_ALL SGI

60 OLIT Reference Manual—August 1994

2
Flat Resources

XtNsameWidth

Synopsis: The items forced to be the same width within the container.
Values: OL_ALL/”all” – All items will be the same width.

OL_COLUMNS/”columns” – All items appearing in the same
column will be the same width.
OL_NONE/”none” – Items will be placed in fixed-width columns,
but the width of each item will be unaffected. The width of each
column will be the width of the widest item.

Class Type Default Access

XtCSameWidth OlDefine OL_COLUMNS SGI

61

Activation Types 3

This chapter explains what Activation Types are, explains how they are used in
the toolkit, and describes those Activation Types that are common to several
OLIT widgets.

Activation Type Description

What is an Activation Type?

OPEN LOOK defines a set of semantics that a user can invoke to control the user
interface. Some examples of these semantics are:

MENU Popup a menu
SCROLLDOWN Scroll the view down one screen
NEXTFIELD Move focus to the next object

See the OPEN LOOK GUI Functional Specification and the OPEN LOOK
Mouseless Specification for more information on GUI semantics.

Currently, OLIT maps these semantics to virtual events inside the toolkit (termed
“virtual” because they do not necessarily correspond to a particular X11 input
event). OLIT’s convention is to add a prefix of “OL_” to the semantic name to
name the type of virtual event, which is called the Activation Type.

62 OLIT Reference Manual—August 1994

3
Activation Type Description

For example, for the semantics listed previously, the corresponding OLIT
Activation Types are:

OL_MENU and OL_MENUKEY (for Mouseless mode)
OL_SCROLLDOWN
OL_NEXTFIELD

Each OLIT widget supports a set of Activation Types for which it knows how to
respond. Some Activation Types are supported by all widgets, such as
OL_HELP, and those used for Mouseless operation (described later in this
chapter), and some are specific to a certain widget.

So, when a user performs an input action, OLIT translates the generated
XEvent (or combination of XEvent s) into an Activation Type defined by a set
of configurable toolkit bindings (described later) and then delivers the
corresponding “virtual event” to the widget. If the widget supports that
Activation Type, it performs the corresponding action. For example, if the user
presses the MENU mouse button on a MenuButton widget, OLIT translates this
to the OL_MENU Activation Type, delivers an OL_MENU activation to the
MenuButton widget, and the MenuButton responds by popping up its menu.

Interposing on Activation Types

If an application wishes to monitor or interpose on the virtual events delivered
to a particular widget, it can register an XtNconsumeEvent callback on the
widget. (For detailed information on this callback, see “XtNconsumeEvent” on
page 26 for the Primitive or Manager classes.) This callback will get called just
before the Activation Type is delivered to the widget. If the application wishes
to prevent this Activation from being delivered to the widget, it can change the
consumed Boolean field in the call_data to TRUE inside the callback. This
callback allows the application to perform some custom action in replacement
of, or in addition to, the standard widget behavior.

Programmatically Activating Widgets

Since the widgets respond to Activation Types (not just X11 events), the
application can easily simulate these user semantics by calling
OlActivateWidget() with the desired Activation Type. For example, if an
application wants text to scroll down in response to an OblongButton being
pressed, it simply needs to put the following statement in the XtNselect
callback for the button:

Activation Types 63

3
Activation Type Description

OlActivateWidget(scrolledwindow, OL_SCROLLDOWN, NULL);

OLIT also supports “associating” widgets with each other such that if a widget
is activated with an Activation Type that it does not support, the Activation
will be automatically passed on to an associated widget, called a “follower.”
Applications can associate widgets using the OlAssociateWidget() routine.
For example, if an application wants any scrolling Activation Types to be
passed from an OblongButton widget to a Scrollbar, the application simply
needs to make the Scrollbar a “follower” of the OblongButton:

OlAssociateWidget(button, scrollbar, FALSE);

See “Initialization and Activation Functions” on page 92 for more information
on programmatically activating widgets.

Mapping X11 Events to Activation Types

By making the widget respond to high-level Activation Types, as opposed to
having it respond to particular X11 input events, this model allows more
flexibility for both the user and the programmer. The Activation Types are
mapped to actual X11 input events through a set of toolkit resources. These
toolkit resources have a set of default bindings that the user can easily change
using the standard resource mechanism. For example, the resources and
default bindings for the Activation Types mentioned previously are the
following:

The syntax of the “Default Bindings” column is explained below. The
OL_MENU Activation Type could be mapped instead to the MENU mouse
button by putting the following line in a Resource file:

∗menuBtn: <Button2>

Activation Type Resource
Default
Binding Description

OL_MENU XtNmenuBtn <Button3> (MENU mouse button)

OL_MENUKEY XtNmenuKey a<Space> (Alt+Space key)

OL_SCROLLDOWN XtNscrollDownKey a<Down> (Alt+R14 key)

OL_NEXTFIELD XtNnextFieldKey <Tab>,c<Tab> (Tab or Control+Tab)

64 OLIT Reference Manual—August 1994

3
Activation Type Description

A complete table of the OLIT Activation Types and their default bindings is in
Table 3-1 on page 65. The following abbreviations for modifier keys are used to
shorten the “Default Bindings” column of the table, and can also be used in
resource specifications:

No Modifiers n Meta key m Mod2 key 2
Alt key a Hyper key h Mod3 key 3
Ctrl key c Super key su Mod4 key 4
Shift key s Mod1 key 1 Mod5 key 5

There are three different ways to specify key bindings (and keyboard
accelerators) in a resource file:

1. A key event specified using a subset of the Xt translation manager syntax.
The syntax is specified in EBNF notation, following the same conventions
used in the Xt Intrinsics Reference Manual, Appendix B.

keyseq = [modifier_list] "<Key>" <keysym_name>
modifier_list = {modifier_name} | "None" | "n"
modifier_name = <see modifier names table above>

2. The existing OLIT syntax, which is similar to the Xt translation manager
syntax and maintained for backward compatibility.

keyseq = [modifier_list] "<" <keysym_name> ">"

3. A general OpenWindows syntax that is understood by OLIT, xview (1), and
olwm(1).

keyseq = {[modifier_name] "+"} <keysym_name>

For example, to bind the SELECTKEY command to be activated when the space
bar is pressed and the Meta modifier key (◊) is held down, any of the
following may be used:

∗selectKey: Meta<Key>space ; Xt translation syntax
∗selectKey: Meta<space> ; OLIT syntax
∗selectKey: Meta+space ; generic syntax

Note – On keyboards that don’t have an actual meta key, the meta-key event is
generated by pressing the Control and Alt keys at the same time.

Up to two bindings may be specified for a virtual event as a comma-separated
list; for example:

∗selectKey: Meta<Key>space, Ctrl<Key>space

Activation Types 65

3
Activation Type Description

Keyboard accelerators may also be specified using any of the three methods,
but only one binding can be associated with an accelerator.

Table 3-1 OLIT Activation Types

Activation Type Semantic Resource Name Default Binding

OL_ADJUST ADJUST XtNadjustBtn <Button2>

OL_ADJUSTKEY ADJUSTKEY XtNadjustKey a<Insert>

OL_CANCEL CANCEL XtNcancelKey <Escape>

OL_CHARBAK CHARBAK XtNcharBakKey <Left>

OL_CHARFWD CHARFWD XtNcharFwdKey <Right>

OL_CONSTRAIN CONSTRAIN XtNconstrainBtn s<Button1>

OL_COPY COPY XtNcopyKey <F16>

OL_CUT CUT XtNcutKey <F20>

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey <Return>, c<Return>

OL_DELCHARBAK DELCHARBAK XtNdelCharBakKey <BackSpace>, <Delete>

OL_DELCHARFWD DELCHARFWD XtNdelCharFwdKey s<BackSpace>, c<d>

OL_DELLINE DELLINE XtNdelLineKey m<BackSpace>, m<Delete>

OL_DELLINEBAK DELLINEBAK XtNdelLineBakKey c<BackSpace>, c<v>

OL_DELLINEFWD DELLINEFWD XtNdelLineFwdKey c<Delete>, c<k>

OL_DELWORDBAK DELWORDBAK XtNdelWordBakKey s<BackSpace>, c<w>

OL_DELWORDFWD DELWORDFWD XtNdelWordFwdKey c s<Delete>

OL_DOCEND DOCEND XtNdocEndKey c<R13>

OL_DOCSTART DOCSTART XtNdocStartKey c<R7>

OL_DRAG DRAG XtNdragKey <F5>

OL_DROP DROP XtNdropKey <F2>

OL_DUPLICATE DUPLICATE XtNduplicateBtn c<Button1>

OL_DUPLICATEKEY DUPLICATEKEY XtNduplicateKey s<space>

OL_HELP HELP XtNhelpKey <Help>

OL_HSBMENU HSBMENU XtNhorizSBMenuKey a<h>

OL_LINEEND LINEEND XtNlineEndKey <R13>, c<e>

66 OLIT Reference Manual—August 1994

3
Activation Type Description

OL_LINESTART LINESTART XtNlineStartKey <R7>, c<a>

OL_MENU MENU XtNmenuBtn <Button3>

OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn c<Button3>

OL_MENUDEFAULTKEY MENUDEFAULTKEY XtNmenuDefaultKey c<space>

OL_MENUKEY MENUKEY XtNmenuKey a<space>

OL_MOVEDOWN MOVEDOWN XtNdownKey <Down>

OL_MOVELEFT MOVELEFT XtNleftKey <Left>

OL_MOVERIGHT MOVERIGHT XtNrightKey <Right>

OL_MOVEUP MOVEUP XtNupKey <Up>

OL_MULTIDOWN MULTIDOWN XtNmultiDownKey c<Down>

OL_MULTILEFT MULTILEFT XtNmultiLeftKey c<Left>

OL_MULTIRIGHT MULTIRIGHT XtNmultiRightKey c<Right>

OL_MULTIUP MULTIUP XtNmultiUpKey c<Up>

OL_NEXT_FIELD NEXT_FIELD XtNnextFieldKey <Tab>, c<Tab>

OL_PAGEDOWN PAGEDOWN XtNpageDownKey a<R15>

OL_PAGELEFT PAGELEFT XtNpageLeftKey a c<R9>

OL_PAGERIGHT PAGERIGHT XtNpageRightKey a c<R15>

OL_PAGEUP PAGEUP XtNpageUpKey a<R9>

OL_PAN PAN XtNpanBtn c s <Button1>

OL_PANEEND PANEEND XtNpaneEndKey c s<R13>

OL_PANESTART PANESTART XtNpaneStartKey c s<R7>

OL_PASTE PASTE XtNpasteKey <F18>, c<y>

OL_PREV_FIELD PREV_FIELD XtNprevFieldKey s<Tab>, c s<Tab>

OL_PROPERTY PROPERTY XtNpropertiesKey <F13>

OL_RETURN RETURN XtNreturnKey <Return>

OL_ROWDOWN ROWDOWN XtNrowDownKey <Down>

OL_ROWUP ROWUP XtNrowUpKey <Up>

Table 3-1 OLIT Activation Types (Continued)

Activation Type Semantic Resource Name Default Binding

Activation Types 67

3
Activation Type Description

OL_SCROLLBOTTOM SCROLLBOTTOM XtNscrollBottomKey a c<R13>

OL_SCROLLDOWN SCROLLDOWN XtNscrollDownKey a<Down>

OL_SCROLLLEFT SCROLLLEFT XtNscrollLeftKey a<Left>

OL_SCROLLLEFTEDGE SCROLLLEFTEDGE XtNscrollLeftEdgeKey a <R7>

OL_SCROLLRIGHT SCROLLRIGHT XtNscrollRightKey a<Right>

OL_SCROLLRIGHTEDGE SCROLLRIGHTEDGE XtNscrollRightEdgeKey a <R13>

OL_SCROLLTOP SCROLLTOP XtNscrollTopKey a c<R7>

OL_SCROLLUP SCROLLUP XtNscrollUpKey a<up>

OL_SELCHARBAK SELCHARBAK XtNselCharBakKey s<Left>, s c

OL_SELCHARFWD SELCHARFWD XtNselCharFwdKey s<Right>, s c<f>

OL_SELECT SELECT XtNselectBtn <Button1>

OL_SELECTKEY SELECTKEY XtNselectKey <space>

OL_SELFLIPENDS SELFLIPENDS XtNselFlipEndsKey a<Insert>

OL_SELLINE SELLINE XtNselLineKey c a<Left>

OL_SELLINEBAK SELLINEBAK XtNselLineBakKey s<R7>, s c<p>

OL_SELLINEFWD SELLINEFWD XtNselLineFwdKey s<R13>, s c<n>

OL_SELWORDBAK SELWORDBAK XtNselWordBakKey c s<Left>

OL_SELWORDFWD SELWORDFWD XtNselWordFwdKey c s<Right>

OL_STOP STOP XtNstopKey <F11>

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey c<t>

OL_UNDO UNDO XtNundoKey <F14>

OL_VSBMENU VSBMENU XtNvertSBMenuKey a<v>

OL_WORDBAK WORDBAK XtNwordBakKey c<Left>

OL_WORDFWD WORDFWD XtNwordFwdKey c<Right>

Table 3-1 OLIT Activation Types (Continued)

Activation Type Semantic Resource Name Default Binding

68 OLIT Reference Manual—August 1994

3
Common Activation Types

Common Activation Types
All OLIT widget classes that accept input focus support the semantics
described in section 2.3 of the OPEN LOOK Mouseless Specification and at least
the Activation Types shown in Table 3-2.

These activation types have the following meanings:

OL_CANCEL
Redirect the OL_CANCEL activation type, delivering it to the first widget
ancestor inclusive of the object receiving the activation that is an instance of
vendorShellWidgetClass or a subclass thereof.

OL_DEFAULTACTION
Redirect the OL_DEFAULTACTION activation type, delivering it to the first
widget ancestor inclusive of the object receiving the activation that is an
instance of vendorShellWidgetClass or a subclass thereof.

OL_HELP
Invoke the system help facility. If the value of the toolkit resource
XtNhelpModel is OL_POINTER, then help will be invoked for the object
currently under the pointer at the time of activation; however, if the value of
XtNhelpModel is OL_INPUTFOCUS, then help will be invoked for the object
that currently holds input focus.

Table 3-2 Common Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Activation Types 69

3
Common Activation Types

OL_MOVEDOWN
Move the input focus from the current object to the object below the current
holder of input focus in the traversal order. The definition of the object below
the current holder of the input focus in the traversal order is context sensitive
and system dependent.

OL_MOVELEFT/
OL_PREVFIELD

Move the input focus from the current object to the previous object in the
traversal order. The definition of the previous object in the traversal order is
context sensitive and system dependent.

OL_MOVERIGHT/
OL_NEXTFIELD

Move the input focus from the current object to the next object in the traversal
order. The definition of the next object in the traversal order is context sensitive
and system dependent.

OL_MOVEUP
Move the input focus from the current object to the object above the current
holder of input focus in the traversal order. The definition of the object above
the current holder of the input focus in the traversal order is context sensitive
and system dependent.

OL_TOGGLEPUSHPIN
Redirect the OL_TOGGLEPUSHPIN activation type, delivering it to the first
widget ancestor inclusive of the object receiving the activation that is an
instance of vendorShellWidgetClass or a subclass thereof.

70 OLIT Reference Manual—August 1994

3
Common Activation Types

71

Internationalization Features 4

This chapter focuses on the general issues of internationalizing applications,
and how OLIT address these issues. It also provides a simple example
application, which demonstrates how OLIT makes it easy to create and use
internationalized applications.

Introduction
As the international market for software becomes increasingly important,
software manufacturers need a way to internationalize their applications
without having to re-engineer or re-compile the application for each language.
Ideally, a single version of an application should be able to support any
number of languages.

Internationalization refers to the ability of a Graphical User Interface (GUI) to
display text in various languages and conventions, and to accept textual input
in those languages. Locale or localization refers to the alphabet and conventions
of a particular language or cultural environment. Date, time, and monetary
format are examples of locale conventions.

The OLIT toolkit, a user-interface toolkit based on the X Window System and
the OPEN LOOK graphical user interface, allows developers to simply and
easily create internationalized applications without having to modify the
source code for each supported language. An application developed and
compiled with OLIT will be able to operate in any of the supported languages
and process data according to the rules of that language.

72 OLIT Reference Manual—August 1994

4
System Requirements

OLIT features that support internationalized applications are referred to as
international OLIT in this chapter. This internationalized version of OLIT
supports both European languages (French, German, Italian, and Swedish) and
Asian languages (Japanese, Korean, Taiwanese Chinese, and PRC Chinese).

Adding new languages to an international OLIT application consists primarily
of setting the default text format and changing messages, labels, and other
strings in resource files. For Asian locales, one must also provide localized
input methods (IM) to allow for multibyte character composition. The input
method is the method by which text is entered into the system. Input methods
are specific to each Asian language and are provided by Sun Microsystems.
They can, however, be redefined and changed by OEMs or independent
software vendors.

System Requirements
The first release of international OLIT enables developers to localize to several
European and Asian languages. To run this release of international OLIT, you
need Solaris®, OpenWindows™, and the Feature Package for the locale in which
you intend to run it. For example, you need the Japanese Feature Package (JFP)
for Japan, the Korean localization package for Korea, and the French
localization package for France. These packages consist of extensions to SunOS
and incorporate numerous facilities for handling local linguistic and cultural
conventions.

Issues Involved in Internationalizing Applications
To internationalize your application, you must address the following issues.

1. Locale Setting. Locale Setting is the method by which the language or
cultural environment is set. See “Locale Setting” on page 73.

2. Character Encoding. Conventional applications use 7-bit ASCII encoding to
represent each character. However, some languages have larger character
sets that require more than the 128 character range permitted by 7-bit
encoding; for example, European locales use an 8-bit encoding and Asian
locales use extended encoding mechanisms. Character encoding is the
method by which a language’s character set is represented. See “Character
Encoding and Text Formats” on page 74 and the Sun Software
Internationalization Guide for further details on character encoding.

Internationalization Features 73

4
Locale Setting

3. Font Set Handling. Font handling is simple for the U.S. and European
languages that OLIT supports because they only use one character set.
However, some languages use multiple character sets and therefore require
multiple fonts or a font set. See “Font Set Handling” on page 77.

4. Localized Text Handling. The developer needs to be able to use application
strings (i.e., error messages, menu text, button text, etc.) in the native
language, and have those strings retrieved in the language specified by the
locale. See “Localized Text Handling” on page 79.

5. Input Method (Asian Locales Only). This is the method by which users
enter the text of a language. To enter data into a conventional application,
the user simply types in the information to be processed. Some languages,
however, consist of multiple alphabets which require several keystrokes to
create one character. This special handling is called the input method. See
“Input Method” on page 80.

6. Standards. Software internationalization is supported by a number of
standards organizations. These include IEEE (POSIX), ANSI,
X/Open, and the MIT X Consortium. In order to make applications portable
across a wide variety of hardware platforms, it is important to use a toolkit
that follows these standards as much possible, as international OLIT does.
See “Standards” on page 89.

This chapter describes each of these issues in detail and discusses how these
issues are addressed by international OLIT.

Locale Setting
The X Toolkit Intrinsics, on which OLIT is layered, provides an application
resource called XnlLanguage (class XnlLanguage) that announces the user’s
locale to the toolkit and the operating system.

The currently supported values for this resource are: de , fr , it , ja , ko , sv , zh ,
and zh_TW. There are three ways to establish the locale, as shown in the
following list:

Resource Type Default Access

XnlLanguage XtNstring NULL I

74 OLIT Reference Manual—August 1994

4
Character Encoding and Text Formats

1. Specify -xnllanguage on the command line of an OLIT application. For
example, to set the locale for an application called myapplication to Korean,
you type:

%myapplication -xnllanguage ko

2. Specify ∗xnlLanguage: language in a X11 Resource Manager database file.
For example, to set the locale to traditional Chinese, you add the following
line to your .Xdefaults file:

*xnlLanguage: zh_TW

3. Set the LANG environment variable in the shell that you are starting the
application from. For example, to set the locale to Japanese, you type the
following:

%setenv LANG ja

To set the locale to French, you type the following:

%setenv LANG fr

Establishing the OS locale is the responsibility of OLIT and Xt. You should not
use the OS function setlocale (3) in your OLIT applications, since OLIT
already calls this function internally.

Character Encoding and Text Formats
OLIT supports three character encoding types, or text formats:

• Single byte, used in the USA and Europe, which represents each character
with one byte

• Multibyte, used in Asian, which represents each character with a variable
number of bytes

• Wide character, used in Asian, which represents each character with a fixed
number of bytes

Applications can create single-byte, multibyte, or wide character OLIT objects,
or a combination of these. If you are writing an application intended for single-
byte locales only, you may want to use single-byte text format to avoid the
performance overhead incurred by processing multibyte text. However, note
that if you use single-byte format, it will be harder to internationalize your
application to Asian locales at a later date.

Internationalization Features 75

4
Character Encoding and Text Formats

The multibyte text format is fully compatible with ASCII. Since each different
character can potentially be a different size, programming with multibyte text
can be difficult. However, the multibyte format uses memory efficiently.

Wide character text format, on the other hand, is easier to program since all
characters are represented with the same number of bytes. However, the wide
character format consumes more storage since it represents all characters with
a fixed number of bytes. If all characters are ASCII, many of the bytes will be
superfluous.

When deciding which text format is appropriate for a user interface, you
should take the following considerations into account:

• Conversion between formats reduces performance.

• OLIT honors the requested text format inside the object implementation.

• Processing multibyte data is inherently more time consuming than
processing single-byte or wide character data. Objects that perform
intensive data manipulation (for example text-editing object such as OLIT’s
TextEdit or TextField widgets) will perform better if created as wide
character objects. (If an object is certain to only handle 8-bit data, the
optimal solution is to create single-byte objects.)

You should design your application so that conversion between formats is
minimized. For example, you may want to decide on an object-by-object basis
whether textual data will be processed intensively and use wide character
format if it is.

Note – The widget makes assumptions based on the text format. For example,
if you specify the single-byte format and supply a wide character label, it
causes an error.

OLIT widget resources for presentation text are of type OlStr . For more
information on this type, see “Setting the Default Text Format for an Entire
Application” on page 76. To provide support for multiple text formats,
international OLIT introduces the XtNtextFormat resource. This resource
allows you to inform widgets what text format to expect for resources
associated with presentation text. This is an interface for programmers only;
there is no equivalent interface for users to specify widget text formats. The
text format of an object is persistent for the lifetime of the object; it is
established at object creation time and cannot be changed.

76 OLIT Reference Manual—August 1994

4
Character Encoding and Text Formats

There are several ways to set the text format:

• Do nothing. If you do nothing, the text format defaults to single byte.

• Set the default text format for the entire application with the
OlSetDefaultTextFormat() function.

• Set the default text format for an individual widget by changing the
widget’s XtNtextFormat resource.

Setting the Default Text Format for an Entire Application

As a convenience, OLIT maintains a default text format, which widgets inherit
when they are created without their text format explicitly specified in the
argument list passed to one of the XtCreateWidget() family of functions.

For compatibility with previous OLIT releases, the default text format is
single-byte unless you change it. To change it, use the
OlSetDefaultTextFormat() function, which is defined as follows:

void OlSetDefaultTextFormat(OlStrRep format);

where format specifies the character representation of the text. The format
argument can have the following values:

Your application should call OlSetDefaultTextFormat() immediately after
OlToolkitInitialize() and before creating the widget hierarchy. Objects
subsequently created will have the text format specified in the most recent call
to OlSetDefaultTextFormat() , unless overridden by explicit arguments.
Note that if the application is single-byte only, it does not need to call
OlSetDefaultTextFormat() .

You can create a widget hierarchy consisting of a combination of multibyte,
wide character, and single byte objects. You can do this either by changing the
default text format between widget creation calls or by specifying an object’s
text format explicitly when creating it.

format Value Meaning
OL_SB_STR_REP Single-byte character representation
OL_WC_STR_REP Wide character representation
OL_MB_STR_REP Multibyte character representation

Internationalization Features 77

4
Character Encoding and Text Formats

Setting the Text Format for an Individual Widget

OLIT provides a resource, XtNtextFormat , which allows you to set the text
format for individual widgets. See “XtNtextFormat” on page 29.

Font Set Handling

To represent data that consists of multiple character sets, Release 5 of the
X Window System provides the notion of a Font Set. An XFontSet is a X11R5
data structure that supports this notion. From the user’s perspective, an
XFontSet represents a list of X11 Logical Font Description (XLFD) fonts that
allows the application to fully represent the characters used in a particular
locale. For full details on Font Sets, refer to the X11R5 documentation.

To specify a font set in a resource file, use a comma-separated list of fonts. For
example, you can enter the following in your .Xdefaults file:

∗font: -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-1, \
-jis-fixed-medium-r-normal--16-150-75-75-c-160-jisx0208.1983-0,\
-misc-fixed-medium-r-normal--0-0-75-75-c-0-jisx0201.1976-0

When you internationalize your application, you should specify fonts in a
resource file. If you specify them within your application, it will be impossible
for others to localize it.

OlFont

OLIT supports both the font and font set notions by introducing the OlFont
type for objects that display text. OlFont is an opaque pointer type whose
interpretation depends on the setting of its associated XtNtextFormat
resource. If you create an object as multibyte or wide character, the value of the
OlFont field will be a valid XFontSet identifier. If you create an object as
single byte, OlFont field will be a valid pointer to an XFontStruct .

If the text format is OL_SB_STR_REP and a font set has been specified (using a
comma-separated list), the first font in the list will be used to construct an
Xfont struct.

78 OLIT Reference Manual—August 1994

4
Character Encoding and Text Formats

Setting the Default Font or Font Set

The OLIT widget set provides an XtNolDefaultFont resource that specifies
the default font or fontset for an application. This resource is discussed in
“XtNolDefaultFont” on page 14.

If no font is specified for a widget’s XtNfont resource, XtNolDefaultFont
determines the widget’s font. In international OLIT, the default value of
XtNolDefaultFont is determined as follows:

• In the C locale and European locales, the default value of
XtNolDefaultFont is Lucida sans serif with Resolution_X and
Resolution_Y set to 75.

• In Asian locales, the default value of XtNolDefaultFont is the font set
required to display all the characters in the code set of the locale.

• An internationalized OLIT application running in Asian locales must define
the XtNolDefaultFont resource in its locale-specific app-defaults file.
If the XtNolDefaultFont resource is not specified with a list of fully-
defined font names the application’s startup time will be increased
significantly. The application’s startup time is dependent on the number of
wildcards in the XLFD font names. Use completely specified XLFD font
names to optimize performance at startup time. The following is an example
of how to set the XtNolDefaultFont resource in the Japanese locale:

*olDefaultFont: \
-sun-gothic-medium-r-normal--16-140-75-75-c-70-jisx0201.1976-0, \
-sun-gothic-medium-r-normal--16-140-75-75-c-140-jisx0208.1983-0

Getting the Default Font or Font Set

The OlGetDefaultFont() convenience routine enables you to get the font or
font set that will be used if you do not set the XtNfont resource for a widget.
The syntax of OlGetDefaultFont() is:

OlFont OlGetDefaultFont(widget w);

where w is a widget in the application for which you want to get the default
font.

If XtNolDefaultFont specifies a font that is not available,
OlGetDefaultFont() returns a null pointer.

Internationalization Features 79

4
Localized Text Handling

Localized Text Handling
OLIT provides resources that enable you to set various text strings (messages,
menu labels, button labels, etc.) in an application. For information on the text
string resources for a particular widget, see the reference section for the
widget. When you create an internationalized application, you should remove
all these resources from your application and keep them in locale-specific
resource files.

Using Internationalized Help

You can register multibyte help text for a widget with OLIT’s
OlRegisterHelp() function. To register single-byte help, use multibyte help.
The OLIT Help API currently supports multibyte only. A wide character API
will be added in the future. The syntax for OlRegisterHelp() is as follows:

void OlRegisterHelp(
OlDefine id_type ,
XtPointer id ,
String tag ,
OlDefine source_type ,
XtPointer source);

To use OlRegisterHelp() with international OLIT, specify one of the
following values for the id_type argument.

If you specify OL_DISK_SOURCE for the source_type argument, you must specify
a single-byte or multibyte filename for the source argument.

Help searches the directories specified by XFILESEARCHPATH for the specified
filename. If you set the filename from within your program as an absolute
path, help ignores XFILESEARCHPATH. If the XFILESEARCHPATH expansion
does not find a file for help, the current directory is searched. Within the value

id_type Value Meaning

OL_WIDGET_HELP Specifies multibyte format help text for an individual
widget (for backward compatibility).

OL_FLAT_HELP Specifies multibyte format help text for a flat widget (for
backward compatibility

80 OLIT Reference Manual—August 1994

4
Input Method

of XFILESEARCHPATH, any instance of the string “%T” is expanded to “help”
and “%N” is expanded to the filename the programmer specifies as the source
parameter to OlRegisterHelp() .

For a description of the other arguments of OlRegisterHelp() , see “Help
Function” on page 146.

Localized Messages

OLIT issues textual error message in the program’s locale at startup. To do this,
OLIT registers a private language procedure with the Intrinsics during
OlToolkitInitialize() ; see page 92.

Do not register an application-specific language procedure. If you do, it will
interfere with OLIT’s locale-announcement mechanism and you will have to
take responsibility for it in your application. If your application requires
processing before OLIT’s language procedure is called, you can provide your
own procedure and call OLIT’s procedure from it. To get the language
procedure registered by OLIT, call:

olit_proc = XtSetLanguageProc(NULL, NULL, NULL);

Multibyte and Wide Character Text Buffer Functions

International OLIT provides multibyte and wide character equivalents to the
single-byte text buffer functions in previous releases. A list of these functions
and their syntax are provided in “Text Buffer Functions for
Internationalization” on page 176.

Input Method
The input method (IM) is the algorithm by which users enter the text of a
language. The input method for each language may be different, depending on
the linguistic structure and conventions of that language.

International OLIT follows the X Window System Version 11, Input Method
Specification, Draft 3.0. This specification was derived as a result of discussions
among X Consortium members on standardizing the input handling of
characters in various languages by X clients.

Internationalization Features 81

4
Input Method

For many languages, there isn’t a one-to-one key to character mapping,
regardless of how the keyboard is configured. In order to support such
languages, an input method is required.

In English and European languages, users enter the desired text by typing in a
sequence of letters to create a word. However, for Asian languages based on
ideographic characters, input is more complicated. For example, there are two
phonetic alphabets in Japanese—Hiragana and Katakana—and the traditional
ideogrammatic alphabet, Kanji. In any piece of writing, all three alphabets may
be used. Japanese words can also be spelled out phonetically in English. This is
called Romaji.

To handle European language characters where there is no key on the standard
keyboard that maps to the desired character, use the Compose key to initiate a
composed character sequence (e.g., Compose key, <letter>, <accent or
diacritical mark>).

To handle languages for which there isn’t a one-to-one key to character
mapping, input methods provide features such as the following:

• A control key sequence, which selects the input mode

• A pre-edit region, which displays characters as the user enters them but
before the user commits them

• A lookup choice region, which displays ideographic characters and allows
the user to choose one

• A status region, which provides information such as whether conversion is
activated and the state or mode of the input method

Text input widgets, in conjunction with some input methods, also can provide
advanced, language-specific, pre-editing features. For instance, the OLIT
TextEdit widget can detect certain conditions under which it will commit any
uncommitted pre-edit text without the user having to take further action. This
technique is known as implicit commit.

Example: In a mail application the user enters a message in Japanese and
presses a “send” button to dispatch the composed message. If there is
uncommitted pre-edit text, the user’s intention is that it be part of the message.
The pre-edit text has not, however, been committed to the text buffer. In this
case it is useful for the toolkit to intervene and cause a commit to occur before
the application processes the buffer to send the message.

82 OLIT Reference Manual—August 1994

4
Input Method

Details of which operations trigger implicit commit semantics in OLIT widgets
can be found in the localization documentation for the appropriate languages.

The use of these features varies with the input method. For more information,
see the documentation for the input method you are using.

Figure 4-1 shows the input method screen regions.

Figure 4-1 Input Method Screen Regions for zh_TW locale

Setting the Input Method Pre-Edit and Status Styles (Asian Locales Only)

There are two aspects of the input method that an OLIT application can control:

• The pre-edit style, which specifies where and how pre-edit data is presented.
The pre-edit style can vary from widget to widget within a shell.

• The status style, which specifies where status feedback is presented. The
status style, unlike the pre-edit, is an attribute of the shell and is expected to
remain the same across all widgets inside the shell.

OLIT provides two new resources that specify the pre-edit and status styles:
XtNimPreeditStyle and XtNimStatusStyle , described in the following
sections.

Lookup

Status Region

Pre-Edit Region

Region
Choice

Internationalization Features 83

4
Input Method

XtNimPreeditStyle (Asian Locales Only)

The XtNimPreeditStyle resource selects the pre-edit style. This resource is
supported by all the OLIT widgets that allow text input. See, for example,
TextEdit (“XtNimPreeditStyle” on page 635).

If the specified style is not supported by the input method, the ability to pre-
edit is lost. The currently supported pre-edit styles are:

The following figure shows an example of the onTheSpot pre-edit style. The
pre-edit data is shown in reverse video. When the user commits the data, it is
sent to the client and displayed in normal video.

Figure 4-2 onTheSpot Pre-Edit Style for ja locale

Resource Type Default Access

XtNimPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

XtNimPreeditStyle Value Meaning
OL_ON_THE_SPOT/
”onTheSpot”

IM directs the application to display the pre-edit data

OL_OVER_THE_SPOT/
”overTheSpot”

IM displays pre-edit data in its own window

OL_ROOT_WINDOW/
”rootWindow”

IM displays pre-edit data outside the application in a
window that is a child of the base window

OL_NO_PREEDIT/”none” IM does not display pre-edit data

84 OLIT Reference Manual—August 1994

4
Input Method

The following figure shows an example of the overTheSpot pre-edit style.

Figure 4-3 overTheSpot Pre-Edit Style for zh locale

The following figure shows an example of the rootWindow pre-edit style.

Figure 4-4 rootWindow Pre-Edit Style for zh locale

See the X11R5 documentation for a full description of each of the pre-edit
styles.

Internationalization Features 85

4
Input Method

XtNimStatusStyle (Asian Locales Only)

The XtNimStatusStyle resource, defined in the VendorShell class,
determines the style of IM status feedback.

The supported styles are:

When XtNimStatusStyle is set to OL_IM_DISPLAYS_IN_CLIENT, a number of
other resources are available to set characteristics of the application footer. See
“Application Resources for the IM Footer (Asian Locales Only)” on page 87.

Resource Type Default Access

XtNimStatusStyle OlImStatusStyle OL_NO_STATUS GI

XtNimStatusStyle Value Meaning
OL_IM_DISPLAYS_IN_CLIENT /
”imDisplaysInClient”

The IM generates status feedback in the footer
of the shell window

OL_IM_DISPLAYS_IN_ROOT/
”imDisplaysInRoot”

The IM generates status feedback in a
separate window

OL_NO_STATUS/”none” The IM doesn’t generates any status feedback

86 OLIT Reference Manual—August 1994

4
Input Method

The following figure shows an example of the imDisplaysInClient status
style.

Figure 4-5 imDisplaysInClient Status Style for ja locale

The following figure shows an example of the imDisplaysInRoot status
style.

Figure 4-6 imDisplaysInRoot Status Style for ko locale

Internationalization Features 87

4
Input Method

Application Resources for the IM Footer (Asian Locales Only)

XtNimFontSet (Asian Locales Only)

The XtNimFontSet resource specifies the internationalization IM status
footer's font set.

XtNdefaultImName

The XtNdefaultImName resource specifies the string to identify the IM Server.

XtNshellTitle

XtNshellTitle is an OlStr resource that allows the title of shell widgets to
be set. The shell being set must be a subclass of VendorShell . The usage of
this resource is analogous to the XtNtitle resource defined by the Intrinsic
classes. XtNshellTitle and XtNtitle are synchronized by OLIT; calling
XtSetValues() on either will cause both to be updated.

Example

To internationalize a simple OLIT application for the European or Asian locales,
you need to:

1. Remove any resources that contain display text from the application code
and put them in a resource file.

2. Specify the text format for widgets that display text (by specifying a
default text format for the application or by specifying the text format for
individual widgets).

3. Specify a font set for resources that contain OlFont values (such as
XtNfont) in the resource file.

Resource Type Default Access

XtNimFontSet OlFont XtDefaultFont SGI

XtNdefaultImName String NULL SGI

88 OLIT Reference Manual—August 1994

4
Input Method

Suppose you want to write an internationalized application that displays a
StaticText widget with some wide character text in it. To do this, you would
write code similar to the following.

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/StaticText.h>

main(argc, argv)
int argc;
char ∗argv[];

{
Widget toplevel, msg_widget;
XtAppContext app;

/* Initialize the OLIT toolkit */
OlToolkitInitialize((XtPointer)NULL);

/* Set the default text format to wide character */
OlSetDefaultTextFormat(OL_WC_STR_REP);

toplevel = XtAppInitialize(&app, "Memo",
(XrmOptionDescList)NULL,
0, &argc, argv, NULL,
(ArgList) NULL, 0);

/* Create a staticText widget. */
msg_widget = XtVaCreateManagedWidget("msg",

staticTextWidgetClass,
toplevel,
NULL);

/* Realize the widgets and enter the event loop. */
XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

Note that this application does not specify the string that appears in the
StaticText widget. You specify this text in the resource file as follows:

∗StaticText.string: <text>

Also note that this application is different from a conventional OLIT application
in that it calls OlSetDefaultTextFormat() to set the default text format.
OlSetDefaultTextFormat() sets the default text format for any widgets in the
application that display text.

Internationalization Features 89

4
Standards

If you only want to set the text format for an individual widget, you set its
XtNtextFormat resource. For example, in the application above you would
create the StaticText widget as follows:

msg_widget = XtVaCreateManagedWidget("msg",
staticTextWidgetClass,
toplevel,
XtNtextFormat, OL_WC_STR_REP,
NULL);

For some locales, you may also need to specify a font set for the application. To
do this, you add the following line to the resources file:

∗StaticText.font: font set

The following figures show the application with Korean and Japanese text.

Figure 4-7 “Hello World” in Korean

Figure 4-8 “Hello World” in Japanese

Standards
There are three standards that international OLIT follows:

• Internationalized UNIX
• MIT X11 Internationalization Standard
• Internationalized Extension of OPEN LOOK Specification

90 OLIT Reference Manual—August 1994

4
Standards

91

Toolkit Functions 5

This chapter describes functions that are not related to any particular widget.

Initialization and Activation Functions page 92

Buffer Functions page 95

Cursor and Pixmap Functions page 99

Display Functions page 108

Drag and Drop Functions page 109

Dynamic Resource Functions page 140

Error Functions page 142

Help Function page 146

Input Focus Functions page 150

Multiple Visual Functions page 154

Packed Widget Function page 156

Pixel Conversion Functions page 158

Protocol Function page 160

Regular Expression Functions page 161

Text Buffer Functions page 163

Text Buffer Functions for Internationalization page 176

Text Selection Operations page 204

Toolkit Resource Functions page 206

Virtual Event Functions page 207

92 OLIT Reference Manual—August 1994

5
Initialization and Activation Functions

Initialization and Activation Functions

OlToolkitInitialize
#include <Xol/OpenLook.h>

void OlToolkitInitialize(
XtPointer NULL);

OlToolkitInitialize() must be called by each application before any
OPEN LOOK widgets are created or other OPEN LOOK routines are used.

The suggested method of initializing an OLIT application is to use
OlToolkitInitialize() followed by some combination of:

• XtAppInitialize()
• XtToolkitInitialize()
• XtCreateApplicationContext()
• XtOpenDisplay() or XtInitializeDisplay()
• XtAppCreateShell()

or the corresponding variable argument functions.

OlInitialize

Note – The following initialization routine is now obsolete:

#include <Xol/OpenLook.h>

void OlInitialize(
String shell_name ,
String application_class ,
XrmOptionDescRec ∗options ,
Cardinal num_options ,
Cardinal ∗argc ,
String argv []);

The arguments to the obsolete OlInitialize() routine were similar to the
arguments to the X Window XtInitialize() routine. Use the
OlToolkitInitialize() routine instead, but note the differences in
arguments in that new version.

Toolkit Functions 93

5
Initialization and Activation Functions

OlActivateWidget
#include <Xol/OpenLook.h>

Boolean OlActivateWidget(
Widget widget ,
OlVirtualName activation_type ,
XtPointer data);

OlActivateWidget() programmatically activates a widget in accordance
with the supplied activation type (see Chapter 3, “Activation Types”). The
precise semantics of activation and activation type are widget-dependent and
are described in each widget section. OlActivateWidget() returns TRUE if
the activation type was accepted by the initially supplied widget, or one of its
associated follower widgets; see OlAssociateWidget() . Otherwise, the
function returns FALSE. If the initially supplied widget does not accept the
activation type, OlActivateWidget() recursively attempts to activate
associated follower widgets until one of them accepts the supplied activation
type.

OlActivateWidget() also accepts gadget arguments.

OlAssociateWidget
#include <Xol/OpenLook.h>

Boolean OlAssociateWidget(
Widget leader ,
Widget follower ,
Boolean disable_traversal)

OlAssociateWidget() associates a widget (the follower) with another widget
(the leader). Associating a widget with a leader widget effectively expands the
number of ways the leader widget can be activated since
OlActivateWidget() automatically activates any follower widgets if the
lead widget does not accept the supplied activation type. This routine returns
TRUE if the association was successful; otherwise, it returns FALSE. Attempts to
create an association-cycle are invalid and produce a warning.

It is typically desirable to prevent keyboard traversal among widgets
associated with one another. The disable_traversal parameter is a convenient
interface for setting the follower widget’s XtNtraversalOn resource to FALSE.

OlAssociateWidget() also accepts gadget arguments.

94 OLIT Reference Manual—August 1994

5
Initialization and Activation Functions

OlUnassociateWidget
#include <Xol/OpenLook.h>

void OlUnassociateWidget(
Widget follower);

OlUnassociateWidget() removes a follower widget from a previous
association with another lead widget. No warning is generated if the supplied
widget was not previously associated with another widget.

OlUnassociateWidget() also accepts gadget arguments.

Toolkit Functions 95

5
Buffer Functions

Buffer Functions
These functions manipulate a generic “Buffer” object.

AllocateBuffer
#include <Xol/buffutil.h>

Buffer ∗AllocateBuffer(
int element_size ,
int initial_size);

AllocateBuffer() allocates a Buffer for elements of the given element_size.
The used member of the Buffer is set to zero and the size member is set to the
value of initial_size. If initial_size is zero, the pointer p is set to NULL; otherwise,
the amount of space required (initial_size × element_size) is allocated and the
pointer p is set to point to this space. The function returns the pointer to the
allocated Buffer. It is the responsibility of the caller to free this storage (using
FreeBuffer()) when it is no longer needed.

The Buffer structure is defined as follows:

typedef struct _Buffer {
int size ;
int used ;
int esize ;
BufferElement ∗p;

} Buffer;

Buffer Macros

The following macros are provided for use with the Buffer functions.

Table 5-1 Buffer Utilities Macros

Macro Returns

BufferFilled(buffer) Indicates whether buffer is filled

BufferLeft(buffer) Evaluates to the number of unused elements in buffer

BufferEmpty(buffer) Indicates whether buffer is empty

96 OLIT Reference Manual—August 1994

5
Buffer Functions

CopyBuffer
#include <Xol/buffutil.h>

Buffer ∗CopyBuffer(
Buffer ∗buffer);

CopyBuffer() allocates a new Buffer with the same attributes as the given
buffer and copies the data associated with the given buffer into the new Buffer.
A pointer to the newly allocated and initialized Buffer is returned. It is the
responsibility of the caller to free this storage (using FreeBuffer()) when it
is no longer needed.

FreeBuffer
#include <Xol/buffutil.h>

void FreeBuffer(
Buffer ∗buffer);

FreeBuffer() deallocates (frees) storage associated with the given buffer
pointer.

GrowBuffer
#include <Xol/buffutil.h>

void GrowBuffer(
Buffer ∗buffer ,
int increment);

GrowBuffer() expands (or compresses) a given buffer size by increment
elements. If the increment is negative, the operation results in a reduction in
the size of the Buffer.

InsertIntoBuffer
#include <Xol/buffutil.h>

int InsertIntoBuffer(
Buffer ∗target ,
Buffer ∗source ,
int offset);

InsertIntoBuffer() inserts the elements stored in the source Buffer into the
target Buffer before the element stored at offset. If the offset is invalid or if the
source Buffer is empty, the function returns zero; otherwise, it returns 1 after

Toolkit Functions 97

5
Buffer Functions

completing the insertion. The GrowBuffer() function will be used as needed
to ensure that the target Buffer is large enough to hold the contents of the source
Buffer.

ReadFileIntoBuffer
#include <Xol/buffutil.h>

int ReadFileIntoBuffer(
FILE ∗fp ,
Buffer ∗buffer);

ReadFileIntoBuffer() reads a previously opened file associated with fp
and adds the characters read to the end of the buffer. The GrowBuffer()
function will be used as needed to ensure that the Buffer is large enough to
hold the contents of the file. The function returns when either an end-of-file is
detected or a newline character is encountered while reading the file. The
function returns EOF if end-of-file is detected and ‘\n’ if a newline character is
encountered.

ReadStringIntoBuffer
#include <Xol/buffutil.h>

int ReadStringIntoBuffer(
Buffer ∗sp ,
Buffer ∗buffer);

ReadStringIntoBuffer() reads a previously opened Buffer (see “stropen”
on page 98) associated with sp and adds the characters read to the end of buffer.
The GrowBuffer() function will be used as needed to ensure that the Buffer
is large enough to hold the data to be copied. The function returns when either
a newline character is encountered or an end-of-buffer condition is detected
while reading the Buffer associated with sp. The function returns a ‘\n’ if it
encounters a newline character and EOF if it detects an end-of-buffer condition.

strclose
#include <Xol/buffutil.h>

void strclose(
Buffer ∗sp);

The strclose() function closes a string Buffer that was opened using the
stropen() function. It frees the Buffer allocated by stropen() .

98 OLIT Reference Manual—August 1994

5
Buffer Functions

strgetc
#include <Xol/buffutil.h>

int strgetc(
Buffer ∗sp);

The strgetc() function reads the next character stored in the string sp. The
function returns the next character in the Buffer. When no characters remain,
the function returns EOF.

stropen
#include <Xol/buffutil.h>

Buffer ∗stropen(
char ∗string);

The stropen() function allocates a Buffer large enough for string and copies
string into this Buffer. A pointer to the newly allocated Buffer is returned. It is
the responsibility of the caller to close this Buffer (using strclose()) when it
is no longer needed.

See Also

“Text Buffer Functions” on page 163,
“Text Buffer Functions for Internationalization” on page 176.

Toolkit Functions 99

5
Cursor and Pixmap Functions

Cursor and Pixmap Functions
These functions fall into several categories:

• OlGet xyzCursor - These are Version 3 functions for obtaining the cursors
defined for Drag and Drop functionality. They take a Widget argument,
unlike the GetOl -style cursor functions. The middle part of the name
indicates the OPEN LOOK-specified function of the cursor. These OlGet ∗
functions are the preferred functions to use in every case, especially if you
are not using the standard colormap for the root window of your display.

• GetOl xyzCursor - These are not the preferred interface, but are included
to provide compatibility with the Version 2 style of functions, taking a
Screen ∗screen argument. They are listed separately, without figures.
The cursors for the GetOl ∗ functions are identical to their OlGet ∗
counterparts.

• Other Version 2 functions, also with names of the form GetOl xyzCursor ,
for cursors unrelated to Drag and Drop. Figures for these cursors are in the
OPEN LOOK GUI Functional Specification.

• Two functions returning gray Pixmap IDs.

Version 3 Cursors

OlGetDataDupeDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataDupeDragCursor(
Widget widget);

OlGetDataDupeDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataDupeDropCursor(
Widget widget);

OlGetDataDupeInsertCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataDupeInsertCursor(
Widget widget);

100 OLIT Reference Manual—August 1994

5
Cursor and Pixmap Functions

OlGetDataDupeNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataDupeNoDropCursor(
Widget widget);

OlGetDataMoveDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataMoveDragCursor(
Widget widget);

OlGetDataMoveDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataMoveDropCursor(
Widget widget);

OlGetDataMoveInsertCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataMoveInsertCursor(
Widget widget);

OlGetDataMoveNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDataMoveNoDropCursor(
Widget widget);

OlGetDocCursor
#include <Xol/OlCursors.h>

Cursor OlGetDocCursor(
Widget widget);

OlGetDocStackCursor
#include <Xol/OlCursors.h>

Cursor OlGetDocStackCursor(
Widget widget);

Toolkit Functions 101

5
Cursor and Pixmap Functions

OlGetDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDropCursor(
Widget widget);

OlGetDupeDocCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeDocCursor(
Widget widget);

OlGetDupeDocDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeDocDragCursor(
Widget widget);

OlGetDupeDocDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeDocDropCursor(
Widget widget);

OlGetDupeDocNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeDocNoDropCursor(
Widget widget);

OlGetDupeStackCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeStackCursor(
Widget widget);

OlGetDupeStackDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeStackDragCursor(
Widget widget);

102 OLIT Reference Manual—August 1994

5
Cursor and Pixmap Functions

OlGetDupeStackDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeStackDropCursor(
Widget widget);

OlGetDupeStackNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetDupeStackNoDropCursor(
Widget widget);

OlGetFolderCursor
#include <Xol/OlCursors.h>

Cursor OlGetFolderCursor(
Widget widget);

OlGetFolderStackCursor
#include <Xol/OlCursors.h>

Cursor OlGetFolderStackCursor(
Widget widget);

OlGetMoveDocCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveDocCursor(
Widget widget);

OlGetMoveDocDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveDocDragCursor(
Widget widget);

OlGetMoveDocDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveDocDropCursor(
Widget widget);

Toolkit Functions 103

5
Cursor and Pixmap Functions

OlGetMoveDocNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveDocNoDropCursor(
Widget widget);

OlGetMoveStackCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveStackCursor(
Widget widget);

OlGetMoveStackDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveStackDragCursor(
Widget widget);

OlGetMoveStackDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveStackDropCursor(
Widget widget);

OlGetMoveStackNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetMoveStackNoDropCursor(
Widget widget);

OlGetNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetNoDropCursor(
Widget widget);

OlGetTextDupeDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextDupeDragCursor(
Widget widget);

104 OLIT Reference Manual—August 1994

5
Cursor and Pixmap Functions

OlGetTextDupeDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextDupeDropCursor(
Widget widget);

OlGetTextDupeInsertCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextDupeInsertCursor(
Widget widget);

OlGetTextDupeNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextDupeNoDropCursor(
Widget widget);

OlGetTextMoveDragCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextMoveDragCursor(
Widget widget);

OlGetTextMoveDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextMoveDropCursor(
Widget widget);

OlGetTextMoveInsertCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextMoveInsertCursor(
Widget widget);

OlGetTextMoveNoDropCursor
#include <Xol/OlCursors.h>

Cursor OlGetTextMoveNoDropCursor(
Widget widget);

Toolkit Functions 105

5
Cursor and Pixmap Functions

Version 2 Drag and Drop Cursors
All of these version 2 drag and drop cursor functions have similar synopses:

#include <Xol/OlCursors.h>

Cursor GetOl <cursor-name> Cursor(
Screen ∗screen);

The functions are:

GetOlDataDupeDragCursor() GetOlFolderCursor()
GetOlDataDupeDropCursor() GetOlFolderStackCursor()
GetOlDataDupeInsertCursor() GetOlMoveDocCursor()
GetOlDataDupeNoDropCursor() GetOlMoveDocDragCursor()
GetOlDataMoveDragCursor() GetOlMoveDocDropCursor()
GetOlDataMoveDropCursor() GetOlMoveDocNoDropCursor()
GetOlDataMoveInsertCursor() GetOlMoveStackCursor()
GetOlDataMoveNoDropCursor() GetOlMoveStackDragCursor()
GetOlDocCursor() GetOlMoveStackDropCursor()
GetOlDocStackCursor() GetOlMoveStackNoDropCursor()
GetOlDropCursor() GetOlNoDropCursor()
GetOlDupeDocCursor() GetOlTextDupeDragCursor()
GetOlDupeDocDragCursor() GetOlTextDupeDropCursor()
GetOlDupeDocDropCursor() GetOlTextDupeInsertCursor()
GetOlDupeDocNoDropCursor() GetOlTextDupeNoDropCursor()
GetOlDupeStackCursor() GetOlTextMoveDragCursor()
GetOlDupeStackDragCursor() GetOlTextMoveDropCursor()
GetOlDupeStackDropCursor() GetOlTextMoveInsertCursor()
GetOlDupeStackNoDropCursor() GetOlTextMoveNoDropCursor()

Other Version 2 Cursors

GetOlBusyCursor
#include <Xol/OlCursors.h>

Cursor GetOlBusyCursor(
Screen ∗screen);

GetOlBusyCursor() obtains the cursor ID for screen that complies with the
OPEN LOOK GUI Functional Specification description of the Busy cursor.

106 OLIT Reference Manual—August 1994

5
Cursor and Pixmap Functions

GetOlDuplicateCursor
#include <Xol/OlCursors.h>

Cursor GetOlDuplicateCursor(
Screen ∗screen);

GetOlDuplicateCursor() obtains the cursor ID for screen that complies
with the OPEN LOOK GUI Functional Specification description of the Duplicate
cursor.

GetOlMoveCursor
#include <Xol/OlCursors.h>

Cursor GetOlMoveCursor(
Screen ∗screen);

GetOlMoveCursor() obtains the cursor ID for screen that complies with the
OPEN LOOK GUI Functional Specification description of the Move cursor.

GetOlPanCursor
#include <Xol/OlCursors.h>

Cursor GetOlPanCursor(
Screen ∗screen);

GetOlPanCursor() obtains the cursor ID for screen that complies with the
OPEN LOOK GUI Functional Specification description of the Pan cursor.

GetOlQuestionCursor
#include <Xol/OlCursors.h>

Cursor GetOlQuestionCursor(
Screen ∗screen);

GetOlQuestionCursor() obtains the cursor ID for screen that complies with
the OPEN LOOK GUI Functional Specification description of the Question
cursor.

GetOlStandardCursor
#include <Xol/OlCursors.h>

Cursor GetOlStandardCursor(
Screen ∗screen);

Toolkit Functions 107

5
Cursor and Pixmap Functions

GetOlStandardCursor() obtains the cursor ID for screen that complies with
the OPEN LOOK GUI Functional Specification description of the Standard
cursor.

GetOlTargetCursor
#include <Xol/OlCursors.h>

Cursor GetOlTargetCursor(
Screen ∗screen);

GetOlTargetCursor() obtains the cursor ID for screen that complies with
the OPEN LOOK GUI Functional Specification description of the Target cursor.

Pixmap Functions

OlGet50PercentGrey
#include <Xol/OlCursors.h>

Pixmap OlGet50PercentGrey(
Screen ∗screen);

OlGet50PercentGrey() obtains the ID of a 50% grey Pixmap for screen.

OlGet75PercentGrey
#include <Xol/OlCursors.h>

Pixmap OlGet75PercentGrey(
Screen ∗screen);

OlGet75PercentGrey() obtains the ID of a 75% grey Pixmap for screen.

Return Values

Each cursor function returns a cursor ID. Each Pixmap function returns a
Pixmap .

See Also

“Drag and Drop Functions” on page 109.

108 OLIT Reference Manual—August 1994

5
Display Functions

Display Functions

OlUpdateDisplay
#include <Xol/OpenLook.h>

void OlUpdateDisplay(
Widget w);

OlUpdateDisplay() processes all pending exposure events so that the
appearance of a given widget can be updated immediately. Normally, an
operation is accomplished by a set of callback functions. If one of the callback
functions performs a time-consuming action, it is possible that some portion of
an application window will not be redrawn right away after an
XtSetValues() call. This is because normal exposure processing does not
occur until all callback functions have been invoked. This situation can be
resolved by calling this function before starting a time-consuming action.

Example
extern Widget status_area; /* a staticText widget */
void fooCB(

Widget w,
XtPointer client_data,
XtPointer call_data);

{
...

Arg args[5];
/* display the status in the footer area */
/* before the actual operation */

XtSetArg(args[0], XtNstring,
"Start the operation, please wait ...");

XtSetValues(status_area, args, 1);
/* show the status in the footer area right away */

OlUpdateDisplay(status_area);
/* now we can start the actual operation */

...
}

See Also

XtSetValues() in Xt Intrinsics Reference Manual.

Toolkit Functions 109

5
Drag and Drop Functions

Drag and Drop Functions
Drag and Drop is a direct-manipulation data transfer operation with the
following steps:

1. The user “picks up” an object (a graphical representation of data inside a
client application) by pressing the SELECT mouse button on the object.

2. The user “drags” the object across the display with the SELECT mouse
button pressed.

3. The user “drops” the object over an eligible drop site by releasing the
SELECT mouse button over the drop site.

An example of a drag and drop operation is picking up a file from a file
manager and dropping it on a trash can icon to delete the file. The terminology
associated with the drag and drop operation is described below in detail.

Drop Rectangle

A drop rectangle is a rectangular area of the screen selected by some
application to be eligible for drops. It is the building block of a drop site. There
may or may not be any graphical feedback associated with a drop rectangle.

Drop Site

A drop site is a list of possibly overlapping drop rectangles. Drop sites need to
be registered with the toolkit before they can participate in the Drag and Drop
“protocol.” A drop site may be registered with the toolkit by calling either of
the functions OlDnDRegisterWidgetDropSite() or
OlDnDRegisterWindowDropSite() .

110 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

Drop Target

A drop target is a visible receptacle for a drop. It is marked by one of the
glyphs (empty or full versions) in the following figure:

Figure 5-1 Drop Target Glyphs

See “DropTarget Widget” on page 266 for details on creating a drop target.

Owner of Drop Site

The owner of a drop site is the window or widget that registered the drop site
with the toolkit. The owner of a drop site is notified (see Preview Message
Notify Procedure) when the user moves the pointer over one of its drop
rectangles during a drag operation. Drop sites die when the owner dies.

Do not confuse the widget owner of a drop site with the widget owner of an
X11 selection (see “Drop and Data Transfer” on page 112).

Preview Message Notify Procedure

When a drop site is registered with the toolkit, the owner of the drop site may
provide Preview Hints (see “OlDnDSitePreviewHints” on page 117) and a
Preview Message Notify Procedure (see “OlDnDPMNotifyProc” on page 119).
During the drag operation, when the user moves the pointer over a drop site,
the drop site’s Preview Message Notify Procedure may be invoked in a manner
consistent with the Preview Hints.

Trigger Message Notify Procedure

When a drop site is registered with the toolkit, the owner of the drop site may
provide a Trigger Message Notify Procedure (see “OlDnDTMNotifyProc” on
page 121). When a drop occurs on the drop site, the toolkit informs the drop
site of the drop by invoking the drop site’s Trigger Message Notify Procedure.

Toolkit Functions 111

5
Drag and Drop Functions

A brief description follows of the interaction between a source and destination
during a Drag and Drop operation.

Setup

Source

The source may or may not be registered with the toolkit. The source must
arrange to be notified of mouse SELECT events in whatever manner it deems
appropriate.

Destination

The destination must register its drop site(s) with the toolkit by calling
OlDnDRegisterWidgetDropSite() if the destination is a widget, or
OlDnDRegisterWindowDropSite() if the destination is a window.
Registering the drop site may involve providing the toolkit with a set of
Preview Hints (see “OlDnDSitePreviewHints” on page 117), a Preview
Message Notify Procedure (see “OlDnDPMNotifyProc” on page 119), and a
Trigger Message Notify Procedure (see “OlDnDTMNotifyProc” on page 121).

Begin Drag

The user “picks” an object by pressing the mouse SELECT button over an
object. The owner of the object is deemed to be the source. With the mouse
SELECT button pressed, the user moves the pointer over the display,
“dragging” the picked object away from the source in search of a destination.

Source

Once the source is notified of a mouse SELECT event and the source is in an
internal state consistent with the beginning of a Drag and Drop operation, the
source should take the following steps:

1. Allocate an X11 selection atom using OlDnDAllocateTransientAtom() .

2. Grab the pointer by calling OlGrabDragPointer() .

112 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

3. Begin the Drag and Drop operation by calling OlDnDDragAndDrop() .
OlDnDDragAndDrop() does not return until a drop occurs or the Drag and
Drop operation is aborted. OlDnDDragAndDrop() returns TRUE if a
successful “drop” occurs. Do not confuse a successful drop with a successful
transfer of data associated with a dropped object.

Destination

The Destination does not exist at this point.

Preview And Animate

Each time the user moves the pointer over a drop site during the drag
operation, the source and the drop site under the pointer may be notified,
depending on whether they have registered suitable notify procedures.

Source

When calling OlDnDDragAndDrop() (see “Begin Drag” on page 111), the
source may provide a Preview and Animate Callback Procedure (see
“OlDnDPreviewAnimateCbP” on page 118). The toolkit calls the source’s
Preview and Animate Callback Procedure as the cursor moves over each
potential drop site, giving the source the opportunity to change the cursor
appearance as needed to provide the appropriate user feedback.

Drop Site Under The Pointer

As the cursor moves over each potential drop site, the toolkit will also call the
Preview Message Notify Procedure of the drop site under the pointer, as
appropriate for the drop site’s Preview Hints. This affords the drop site the
opportunity to change its appearance to indicate its ability (or inability) to
actually receive the drop.

Drop and Data Transfer

A “drop” occurs when the user releases the mouse SELECT button over a drop
site. The drop site over which the drop occurs is deemed to be the destination.

Toolkit Functions 113

5
Drag and Drop Functions

Source

OlDnDDragAndDrop() (see page 124) returns TRUE if a successful drop
occurs. It has three arguments used to return values:

Window ∗window ,
Position ∗x, ∗y

These arguments contain the values of the drop window ID and the x- and y-
coordinates of the drop. At this point the source may:

1. Obtain ownership of the X11 selection atom allocated during the Begin Drag
step. This is done by calling OlDnDOwnSelection() . See page 126.

2. Inform the toolkit of the ID of the X11 selection atom by calling
OlDnDDeliverTriggerMessage() . See page 123.

3. Release the pointer by calling OlUngrabDragPointer() . See page 128.

Destination

When OlDnDDeliverTriggerMessage() is called, the toolkit invokes the
Trigger Message Notify Procedure of the destination drop site, passing along
the ID of the X11 selection atom obtained from the source. If the destination is
interested in the drop, it may call XGetSelection() or
XtGetSelectionValue() to obtain the contents of the selection. Refer to
Section 10.2 of the Xt Intrinsics Reference Manual for details on obtaining the
contents of a selection.

Closing Handshake

Source

The source may provide an OlDnDTransactionStateCallback() function
as an argument to OlDnDOwnSelection() (see “Drop and Data Transfer” on
page 112). This function is invoked by the toolkit with its
OlDnDTransactionState argument set to an appropriate type, when the
destination invokes any of the following functions:

• OlDnDBeginSelectionTransaction()
• OlDnDEndSelectionTransaction()
• OlDnDErrorDuringSelectionTransaction()
• OlDnDDragNDropDone()

114 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

Destination

If the toolkit invokes the Trigger Message Notify Procedure with the
send_done argument set to TRUE, the destination is expected to call
OlDnDBeginSelectionTransaction() at the beginning of the selection
transfer and call OlDnDEndSelectionTransaction() at the end of the
selection transfer. The destination may invoke
OlDnDErrorDuringSelectionTransaction() to indicate an error during
selection transfer.

Cleanup

Source

The source releases the selection with OlDnDDisownSelection() , and frees
the X11 selection atom it originally allocated (see “Setup” on page 111) with
OlDnDFreeTransientAtom() . This is typically done from within the source’s
Transaction State Callback when it is invoked with an
OlDnDTransactionState value of OlDnDTransactionDone .

Destination

The destination calls OlDnDDragNDropDone() . If the source specified a
Transaction State Callback to OlDnDOwnSelection() , the toolkit will now
call it with an OlDnDTransactionState value of OlDnDTransactionDone .

Common Arguments

The following arguments are used in most drag and drop functions. When an
argument to a specific function differs in interpretation from what is listed
here, it is noted for that individual function.

client_data Application-defined data

dropsiteid ID of the drop site over which the drop occurred

detail An XEvent type: either EnterNotify , MotionNotify , or
LeaveNotify

num_sites The number of drop rectangles defining the drop site

operation Either OlDnDTriggerCopyOp or OlDnDTriggerMoveOp

Toolkit Functions 115

5
Drag and Drop Functions

pmnotify A pointer to a Preview Notify Procedure, of type
OlDnDPMNotifyProc() . The Preview Notify Procedure is
given by the destination when it registers its drop site(s). It is
called when the cursor passes over it following the start of a
drag, subject to the conditions given in the preview_hints.

preview_hints An enumerated data type OlDnDSitePreviewHints ; possible
values are listed on page 117.

root The root window.

rootx The horizontal (x-) coordinate at which the drop occurred,
relative to the root window.

rooty The vertical (y-) coordinate at which the drop occurred, relative
to the root window.

selection The X11 selection atom actually used to transfer the data.

site_rects A list of OlDnDSiteRect structures, which defines the drop
rectangles, in the coordinate system of the widget that registers
the drop site.

timestamp The current server time. Often, this argument indicates the time
of an event such as the cursor entering a drop site. In these cases
it will be explicitly noted.

tmnotify A pointer to a Trigger Message Notify Procedure, of type
OlDnDTMNotifyProc() .

widget The widget associated with the owner of a drop site.

window The window associated with the owner of a drop site.

Function Groups

The Drag and Drop API contains the following function groups:

Drop Site Manipulation Functions
OlDnDRegisterWidgetDropSite() Register a widget-based drop site
OlDnDRegisterWindowDropSite() Register a window-based

drop site
OlDnDSetDropSiteInterest() Activate or inactivate a drop site
OlDnDSetInterestInWidgetHier() Activate or inactivate drop sites in

a widget hierarchy

116 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

OlDnDUpdateDropSiteGeometry() Update a drop site’s geometry
OlDnDChangeDropSitePreviewHints() Update a drop site’s preview hints
OlDnDDestroyDropSite() Delete an existing drop site
OlDnDQueryDropSiteInfo() Query a drop site’s geometry
OlDnDGetWindowOfDropSite() Get a window associated with a

drop site
OlDnDGetWidgetOfDropSite() Get a widget associated with a

drop site
OlDnDGetDropSitesOfWidget() Get the drop sites for a widget
OlDnDGetDropSitesOfWindow() Get the drop sites for a window

Message Functions
OlDnDDeliverPreviewMessage()

OlDnDDeliverTriggerMessage()

OlDnDPreviewAndAnimate()

Handshake Functions
OlDnDBeginSelectionTransaction()

OlDnDEndSelectionTransaction()

OlDnDErrorDuringSelectionTransaction()

Selection Functions
OlDnDAllocTransientAtom()

OlDnDDisownSelection()

OlDnDFreeTransientAtom()

OlDnDOwnSelection()

OlDnDOwnSelectionIncremental()

OlDnDGetCurrentSelectionsForWidget()

General Purpose Functions
OlGrabDragPointer()

OlDnDDragAndDrop()

OlUngrabDragPointer()

OlDnDDragNDropDone()

OlDnDWidgetConfiguredInHier()

Toolkit Functions 117

5
Drag and Drop Functions

Data Structures

The following data structures are used by several Drag and Drop functions.

OlDnDDropSiteID
#include <Xol/OlDnDVCX.h>

typedef struct oldnd_drop_site ∗OlDnDDropSiteID;

OlDnDDropSiteID is an opaque reference to a particular instance of a drop
site.

OlDnDSiteRect
#include <Xol/OlDnDVCX.h>

typedef XRectangle OlDnDSiteRect, ∗OlDnDSiteRectPtr;

The OlDnDSiteRect structure describes the drop site rectangle. Drop sites can
include multiple rectangles.

OlDnDSitePreviewHints
#include <Xol/OlDnDVCX.h>

typedef enum oldnd_site_preview_hints {
OlDnDSitePreviewNone,
OlDnDSitePreviewEnterLeave = (1 << 0),
OlDnDSitePreviewMotion = (1 << 1),
OlDnDSitePreviewBoth = (OlDnDSitePreviewEnterLeave |

 OlDnDSitePreviewMotion),
OlDnDSitePreviewDefaultSite = (1 << 2),
OlDnDSitePreviewForwarded = (1 << 3),
OlDnDSitePreviewInsensitive = (1 << 4)

} OlDnDSitePreviewHints;

The OlDnDSitePreviewHints enumerated type specifies the conditions
under which the drop site is interested in receiving notification through its
preview callback:

OlDnDSitePreviewNone The drop site does no previewing; its
callback will not be invoked.

OlDnDSitePreviewEnterLeave The drop site Preview Message Notify
Callback will be invoked for Enter/Leave
events.

118 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

OlDnDSitePreviewMotion The drop site Preview Message Notify
Callback will be invoked for Motion events.

OlDnDSitePreviewBoth The drop site Preview Message Notify
Callback will be invoked for Enter/Leave
and Motion events.

OlDnDSitePreviewDefaultSite The drop site is the default site for drop site
forwarding on this application shell. A
default drop site is the site nominated to
receive drops forwarded by the window
manager decorations or icons.

OlDnDSitePreviewForwarded The drop site is acting as a “proxy” on behalf
of some other object or client.

OlDnDSitePreviewInsensitive The drop site is currently “insensitive”; this
information will be passed to the source’s
Preview Animate Callback so it can animate
the cursor appropriately as it passes over the
drop site.

Notify Procedure Prototypes

OlDnDPreviewAnimateCbP
#include <Xol/OlDnDVCX.h>

typedef void (∗OlDnDPreviewAnimateCbP)(
Widget widget ,
int eventcode ,
Time timestamp ,
Boolean insensitive ,
XtPointer client_data);

eventcode Event code: LeaveNotify , EnterNotify , or MotionNotify .

insensitive TRUE means the drop site under the cursor is insensitive.

client_data Application-defined data passed to OlDnDDragAndDrop() when
the drag and drop operation began.

OlDnDPreviewAnimateCbP is the function prototype for the source’s Preview
and Animate Callback.

Toolkit Functions 119

5
Drag and Drop Functions

OlDnDPMNotifyProc
#include <Xol/OlDnDVCX.h>

typedef void (∗OlDnDPMNotifyProc)(
Widget widget ,
Window window ,
Position root_x ,
Position root_y ,
int detail ,
Time timestamp ,
OlDnDDropSiteID drop_site ,
Boolean forwarded ,
XtPointer client_data);

root_x The root-relative x-coordinate of the preview “event”

root_y The root-relative y-coordinate of the preview “event”

timestamp The time of the preview “event”

drop_site The ID of the drop site on which the preview occurred

forwarded TRUE means the drop has been forwarded to this target from
another drop site

client_data Application-defined data passed to the toolkit when the drop site
was registered.

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDPMNotifyProc is the function prototype for the drop site Preview
Message Notify Procedure. This procedure is associated with a particular drop
site at the time of registration of the drop site with the toolkit. It may be
invoked by the toolkit during a “drag” operation when the pointer enters,
leaves, or moves across the drop site in a manner consistent with the Preview
Hints (see “OlDnDSitePreviewHints” on page 117) of the drop site.

OlDnDProtocolActionCbP
#include <Xol/OlDnDVCX.h>

typedef void (∗OlDnDProtocolActionCbP) (
Widget widget ,
Atom selection ,
OlDnDProtocolAction protocol_action ,
Boolean flag ,
XtPointer client_data);

120 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

protocol_action An enumerated type indicating the protocol action that has
occurred.

success Success/failure flag; if TRUE, the protocol notification was
successfully received.

The other arguments to this function are described in “Common Arguments”
on page 114.

The OlDnDProtocolAction enumerated type is defined as:

typedef enum oldnd_protocol_action {
OlDnDSelectionTransactionBegins,
OlDnDSelectionTransactionEnds,
OlDnDSelectionTransactionError,
OlDnDDragNDropTransactionDone

} OlDnDProtocolAction;

OlDnDProtocolActionCbP the function prototype for a Protocol Action
Callback Procedure. This callback will be invoked by the toolkit to inform the
caller of the success or failure of these selection transaction handshake
functions. It is supplied by the requester of a selection as an argument to the
selection transaction handshake functions (see
“OlDnDBeginSelectionTransaction” on page 128,
“OlDnDEndSelectionTransaction” on page 130,
“OlDnDErrorDuringSelectionTransaction” on page 131, and
“OlDnDDragNDropDone” on page 129).

OlDnDTransactionStateCallback
#include <Xol/OlDnDVCX.h>

typedef void (∗OlDnDTransactionStateCallback) (
Widget widget ,
Atom selection ,
OlDnDTransactionState state ,
Time timestamp ,
XtPointer client_data);

widget The selection holder.

selection The selection atom

state The protocol event that has occurred

timestamp When the event occurred.

client_data Application-defined data passed to OlDnDOwnSelection() or
OlDnDOwnSelectionIncremental() .

Toolkit Functions 121

5
Drag and Drop Functions

The OlDnDTransactionState enumerated type is defined as:

typedef enum oldnd_transaction_state {
OlDnDTransactionBegins,
OlDnDTransactionEnds,
OlDnDTransactionDone,
OlDnDTransactionRequestorError,
OlDnDTransactionRequestorWindowDeath,
OlDnDTransactionTimeout,

} OlDnDTransactionState;

OlDnDOwnSelection() and OlDnDOwnSelectionIncremental() have an
OlDnDTransactionStateCallback() function pointer as one of their
parameters. This function is invoked as a result of drag and drop protocol
events during the drag and drop selection transaction.

The callback is invoked with the following OlDnDTransactionState values
when the requester of the selection (the destination drop site) invokes the
following functions:

If the requesting client is lost during the selection transfer because its window
dies, the state callback will be invoked with a state value of
OlDnDTransactionRequestorWindowDeath.

OlDnDTMNotifyProc
#include <Xol/OlDnDVCX.h>

typedef void (∗OlDnDTMNotifyProc)(
Widget widget ,
Window window ,
Position root_x ,
Position root_y ,
Atom selection ,
Time timestamp ,
OlDnDDropSiteID dropsite ,
OlDnDTriggerOperation operation ,

Function Invoked By Destination OlDnDTransactionState Value

OlDnDBeginSelectionTransaction() OlDnDTransactionBegins

OlDnDEndSelectionTransaction() OlDnDTransactionEnds

OlDnDDragNDropDone() OlDnDTransactionDone

OlDnDErrorDuringSelectionTransaction() OlDnDTransactionRequestorError

122 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

Boolean send_done ,
Boolean forwarded ,
XtPointer client_data);

root_x The root-relative x-coordinate at which the drop occurred

root_y The root-relative y-coordinate at which the drop occurred

timestamp The timestamp of the trigger message

dropsite The ID of the drop site on which the drop occurred

send_done If TRUE, the selection holder expects to be notified at the end of
the selection transaction that it has been completed and that no
further transactions associated with this drop will occur. This
notification is achieved by calling OlDnDDragNDropDone() when
the selection transaction is completed successfully.

forwarded If TRUE, the site rectangle dropped upon is a forwarded site
rectangle associated by a third party (such as a window manager)
with the default drop site of a top level window.

client_data Application-defined data passed to the toolkit when the drop site
was registered.

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDTMNotifyProc is the function prototype for the drop operation Trigger
Message Notify Procedure. This notify procedure, associated with a particular
drop site at registration, is invoked when a drop operation occurs on its
associated drop site.

Source Functions

OlDnDAllocTransientAtom
#include <Xol/OlDnDVCX.h>

Atom OlDnDAllocTransientAtom(
Widget widget);

widget The ID of the widget that will own the transient atom returned by this
call.

OlDnDAllocTransientAtom() allocates a reusable “transient” atom suitable
for use in a drag and drop selection transaction for this widget.

Toolkit Functions 123

5
Drag and Drop Functions

OlDnDClearDragState
#include <Xol/OlDnDVCX.h>

void OlDnDClearDragState(
Widget widget);

widget The widget ID of the selection holder

OlDnDClearDragState() is called upon completion of the previewing phase
of a drag and drop gesture to clear internal state within the drag and drop
system. This function is called implicitly by OlDnDDragAndDrop() and
therefore is not ordinarily called directly by the OLIT programmer.

OlDnDDeliverPreviewMessage
#include <Xol/OlDnDVCX.h>

Boolean OlDnDDeliverPreviewMessage(
Widget widget ,
Window root ,
Position rootx ,
Position rooty ,
Time timestamp);

widget The widget ID of the selection owner.

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDDeliverPreviewMessage() attempts to deliver Enter, Leave, and
Motion events to any drop sites currently under the (rootx,rooty) position on the
root window specified. OlDnDDeliverPreviewMessage() returns TRUE if it
finds a drop site to deliver an event to; otherwise, it returns FALSE.

OlDnDDeliverTriggerMessage
#include <Xol/OlDnDVCX.h>

Boolean OlDnDDeliverTriggerMessage(
Widget widget ,
Window root ,
Position rootx ,
Position rooty ,
Atom selection ,
OlDnDTriggerOperation operation ,
Time timestamp);

124 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

widget The widget ID of the selection holder

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDDeliverTriggerMessage() is called by the dragging client to deliver
a trigger message to a target drop site on the root window at the coordinates
specified.

The calling client is responsible for establishing a timeout period. If the drop
target doesn’t send selection conversion requests during this period, it should
take appropriate action. OlDnDDeliverTriggerMessage() returns TRUE if it
finds a drop site to dispatch a trigger message to at the root (x,y); otherwise, it
returns FALSE.

OlDnDDisownSelection
#include <Xol/OlDnDVCX.h>

void OlDnDDisownSelection(
Widget widget ,
Atom selection ,
Time timestamp);

OlDnDDisownSelection() is identical in semantics to the Xt function
XtDisownSelection() . The source widget should call this function to
relinquish ownership of the selection when the drag and drop operation has
been completed.

OlDnDDragAndDrop
#include <Xol/OlDnDVCX.h>

Boolean OlDnDDragAndDrop(
Widget widget ,
Window ∗window ,
Position ∗x,
Position ∗y,
OlDnDDragDropInfoPtr drop_info ,
OlDnDPreviewAnimateCbP proc ,
XtPointer client_data);

widget The ID of the source widget initiating the drag and drop operation

window Returns the ID of the window containing the cursor (pointer)

x The x-coordinate of the cursor relative to the containing window

Toolkit Functions 125

5
Drag and Drop Functions

y The y-coordinate of the cursor relative to the containing window

drop_info A pointer to a structure of type OlDnDDragNDropInfo
containing information about the location of the drop, root-
relative:

typedef struct _ol_dnd_root_info {
Window root_window ;
Position root_x ;
Position root_y ;
Time drop_timestamp ;

} OlDnDDragNDropInfo, ∗OlDnDDragNDropInfoPtr;

proc The animate function that is called when the cursor enters a
drop site.

client_data Application-defined data to be passed to the animate callback.

OlDnDDragAndDrop() provides a simple interface for processing the mouse
and keyboard events during a drop and drop operation. Before calling this
function, you should call OlGrabDragPointer() or XGrabPointer() to
effectively grab pointer events.

OlDnDDragAndDrop() issues an XGrabKeyboard() to obtain keystrokes
during the drag operation. It then inserts a raw event handler on the widget
specified for the pointer and key events and initializes the drag and drop
system with OlDnDInitializeDragState() . Then it proceeds to process the
event stream, delivering preview messages where appropriate via
OlDnDDeliverPreviewMessage() until the drag completes or is aborted.
The function returns the x, y location and the window that the pointer was in
when the operation completed. It also returns the necessary root information.

OlDnDFreeTransientAtom
#include <Xol/OlDnDVCX.h>

void OlDnDFreeTransientAtom(
Widget widget ,
Atom transient);

widget The widget with which the transient atom was associated.

transient The selection atom.

OlDnDFreeTransientAtom() frees the transient atom obtained from
OlDnDAllocTransientAtom() .

126 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

OlDnDInitializeDragState
#include <Xol/OlDnDVCX.h>

Boolean OlDnDInitializeDragState(
Widget widget);

widget The ID of the source widget initiating the drag and drop operation

OlDnDInitializeDragState() is called prior to commencing delivery of
preview messages to cause the drag and drop system to download drop site
previewing information from the OPEN LOOK Window Manager. It returns
TRUE if the download was successful. Otherwise, it returns FALSE. This
function is called implicitly by OlDnDDragAndDrop() and therefore is not
ordinarily called directly by the OLIT programmer.

OlDnDOwnSelection
#include <Xol/OlDnDVCX.h>

Boolean OlDnDOwnSelection(
Widget widget ,
Atom selection ,
Time timestamp ,
XtConvertSelectionProc convert_proc ,
XtLoseSelectionProc lose_proc ,
XtSelectionDoneProc done_proc ,
OlDnDTransactionStateCallback state_cb ,
XtPointer client_data);

OlDnDOwnSelection() is identical in semantics to the Xt function
XtOwnSelection() except for the additional parameters state_cb and
client_data (see “OlDnDTransactionStateCallback” on page 120).

OlDnDOwnSelectionIncremental
#include <Xol/OlDnDVCX.h>

Boolean OlDnDOwnSelectionIncremental(
Widget widget ,
Atom selection ,
Time timestamp ,
XtConvertSelectionIncrProc convert_incr_proc ,
XtLoseSelectionIncrProc lose_incr_proc ,
XtSelectionDoneIncrProc done_incr_proc ,

Toolkit Functions 127

5
Drag and Drop Functions

XtCancelConvertSelectionProc cancel_proc ,
XtPointer client_data ,
OlDnDTransactionStateCallback state_cb);

OlDnDOwnSelectionIncremental() function is identical in semantics to the
Xt function XtOwnSelectionIncremental() except for the additional
parameter state_cb (see “OlDnDTransactionStateCallback” on page 120).

OlDnDPreviewAndAnimate
#include <Xol/OlDnDVCX.h>

Boolean OlDnDPreviewAnimate(
Widget widget ,
Window root ,
Position rootx ,
Position rooty ,
Time timestamp ,
OlDnDPreviewAnimateCbP animate_proc ,
XtPointer client_data);

animate_proc The animate callback function.

This function is called implicitly by OlDnDDragAndDrop() and therefore is
not ordinarily called by the OLIT programmer directly.

OlGrabDragPointer
#include <Xol/OpenLook.h>

void OlGrabDragPointer(
Widget w,
Cursor cursor ,
Window confine_to_window);

w The ID of the source widget initiating the drag and drop
operation.

cursor The cursor to be displayed.

confine_to_window Specifies the window to confine the drag pointer to, or
None. None is typically what is desired for a drag and drop
operation.

OlGrabDragPointer() effects an active grab of the mouse pointer. This
function is normally called after a mouse drag operation has begun and prior
to calling the OlDnDDragAndDrop() procedure, which is used to monitor the
drag operation.

128 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

OlGrabDragPointer() does not return until it has successfully grabbed the
drag pointer. If another widget in this client application has already grabbed
the pointer, calling this function overrides any such previous grab. If another
client application has already grabbed the pointer, this function blocks until the
other client ungrabs the pointer and this client subsequently grabs the pointer.

OlUngrabDragPointer
#include <Xol/OpenLook.h>

void OlUngrabDragPointer(
Widget w);

OlUngrabDragPointer() relinquishes the active pointer grab that was
initiated by the OlGrabDragPointer() procedure. It simply ungrabs the
pointer.

For OlUngrabDragPointer() to succeed, the widget passed to it must be on
the same display as the widget used to grab the pointer.

Destination Functions

OlDnDBeginSelectionTransaction
#include <Xol/OlDnDVCX.h>

void OlDnDBeginSelectionTransaction(
Widget widget ,
Atom selection ,
Time timestamp ,
OlDnDProtocolActionCbP proc ,
XtPointer client_data);

widget The requesting widget or the drop site owner.

selection The selection atom passed in the trigger notify function.

timestamp The server timestamp for the current time.

proc The callback to inform the requester whether the selection owner has
successfully received the begin notification. When this callback is
invoked, the protocol_action argument (see
“OlDnDProtocolActionCbP” on page 119) is set to
OlDnDSelectionTransactionBegins .

client_data Application-defined data to be passed to proc.

Toolkit Functions 129

5
Drag and Drop Functions

OlDnDBeginSelectionTransaction() is used in conjunction with the
OlDnDEndSelectionTransaction() function to provide a positive
handshake indicating a selection transaction. It invokes the selection holder’s
transaction state callback (specified by the OlDnDOwnSelection() and
OlDnDOwnSelectionIncremental() functions) with a transaction state
parameter value of OlDnDTransactionBegins.

OlDnDChangeDropSitePreviewHints
#include <Xol/OlDnDVCX.h>

Boolean OlDnDChangeDropSitePreviewHints(
OlDnDDropSiteID dropsiteid ;
OlDnDSitePreviewHints preview_hints);

The arguments to this function are described in “Common Arguments” on
page 114.

OlDnDUpdateSitePreviewHints() updates a drop site’s preview hints.
During the lifetime of a drop site it may be necessary to alter the nature of its
previewing interest. Use OlDnDUpdateSitePreviewHints() to overwrite
the existing preview hints for a drop site and update the drop site interest list
appropriately.

OlDnDDestroyDropSite
#include <Xol/OlDnDVCX.h>

void OlDnDDestroyDropSite(
OlDnDDropSiteID dropsiteid);

dropsiteid The ID of the drop site

OlDnDDestroyDropSite() explicitly destroys a drop site. When a drop site’s
widget or window is destroyed, all drop sites associated with that widget or
window are automatically destroyed.

OlDnDDragNDropDone
#include <Xol/OlDnDVCX.h>

void OlDnDDragNDropDone(
Widget widget ,
Atom selection ,

130 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

Time timestamp ,
OlDnDProtocolActionCbP proc ,
XtPointer client_data);

proc The callback to inform the requester whether the selection owner
has successfully received the done notification. When it is
invoked, the protocol_action argument (see
“OlDnDProtocolActionCbP” on page 119) is set to
OlDnDDragNDropTransactionDone .

client_data Application-defined data to be passed to proc.

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDDragNDropDone() is called to inform the source (selection holder) of
the completion of the drag and drop operation; this is a notification to the
source that it may clean up any state associated with the selection atom, as
described in “Cleanup” on page 114. It invokes the source’s transaction
state callback (registered with OlDnDOwnSelection() or
OlDnDOwnSelectionIncremental()) with a transaction state parameter
value of OlDnDTransactionDone .

OlDnDEndSelectionTransaction
#include <Xol/OlDnDVCX.h>

void OlDnDEndSelectionTransaction(
Widget widget ,
Atom selection ,
Time timestamp ,
OlDnDProtocolActionCbP proc ,
XtPointer client_data);

proc The callback to inform the requester whether the selection owner
has successfully received the end notification. When it is
invoked, the protocol_action (see “OlDnDProtocolActionCbP” on
page 119) argument is set to
OlDnDSelectionTransactionEnds .

client_data Application-defined data to be passed to proc.

The other arguments to this function are described in “Common Arguments”
on page 114.

Toolkit Functions 131

5
Drag and Drop Functions

OlDnDEndSelectionTransaction() provides a positive handshake
between the selection requester and holder.

It invokes the selection holder’s transaction state callback (registered with the
OlDnDOwnSelection() and OlDnDOwnSelectionIncremental()
functions) with a transaction state parameter value of
OlDnDTransactionEnds .

OlDnDErrorDuringSelectionTransaction
#include <Xol/OlDnDVCX.h>

void OlDnDErrorDuringSelectionTransaction(
Widget widget ,
Atom selection ,
Time timestamp ,
OlDnDProtocolActionCbP proc ,
XtPointer client_data);

proc The callback to inform the requester whether the selection owner
has successfully received the error notification. When it is
invoked, the protocol_action (see OlDnDProtocolActionCbP)
argument is set to OlDnDSelectionTransactionError .

client_data Application-defined data to be passed to proc.

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDErrorDuringSelectionTransaction() can be called at any time
during the selection transfer by the requester to inform the selection holder
that there is an error. The subsequent behavior of the holder is undefined by
this protocol. OlDnDErrorDuringSelectionTransaction() invokes the
selection holder’s transaction state callback (registered with
OlDnDOwnSelection() or OlDnDOwnSelectionIncremental()) with a
transaction state parameter value of OlDnDTransactionRequestorError .

OlDnDGetCurrentSelectionsForWidget
#include <Xol/OlDnDVCX.h>

Boolean OlDnDGetCurrentSelectionsForWidget(
Widget widget ,
Atom ∗∗atoms_return ,
Cardinal ∗num_sites_return);

132 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

widget The ID of the widget being investigated.

atoms_return Points to an array of atoms currently held as selections by
the widget.

num_sites_return Points to a variable containing the number of atoms
returned.

OlDnDGetCurrentSelectionsForWidget() returns a list of atoms
currently held as drag and drop selections for the specified widget. If
OlDnDGetCurrentSelectionsForWidget() finds any, it returns TRUE;
otherwise, it returns FALSE.

The caller must call XtFree() on the pointer returned in the atoms_return
parameter to free the storage allocated when it is no longer required.

OlDnDGetDropSitesOfWidget
#include <Xol/OlDnDVCX.h>

OlDnDDropSiteID ∗OlDnDGetDropSitesOfWidget(
Widget widget ,
Cardinal ∗num_sites_return);

widget The widget associated with the owner of the drop site.

num_sites_return A pointer to a variable into which the function will return
the number of drop sites.

OlDnDGetDropSitesOfWidget() obtains the currently registered list of drop
sites for a particular widget instance. The function returns a pointer to an
OlDnDDropSiteID array that is an enumeration of the drop sites currently
registered for the widget. Clients should use XtFree() on this return value to
deallocate the array when it is no longer needed. If there are no drop sites
registered or the function fails, OlDnDGetDropSitesOfWidget() returns
NULL.

OlDnDGetDropSitesOfWindow
#include <Xol/OlDnDVCX.h>

OlDnDDropSiteID ∗OlDnDGetDropSitesOfWindow(
Display ∗dpy ,
Window window ,
Cardinal ∗num_sites_return);

Toolkit Functions 133

5
Drag and Drop Functions

dpy The display pointer.

window The window associated with the owner of the drop site.

num_sites_return A pointer to a variable into which the function will return
the number of drop sites.

OlDnDGetDropSitesOfWindow() obtains the currently registered list of drop
sites for a particular window. The function returns a pointer to an
OlDnDDropSiteID array that is an enumeration of the drop sites currently
registered for the window. Clients should use XtFree() on this return value
to deallocate the array when it is no longer needed. If there are no drop sites
registered or the function fails, OlDnDGetDropSitesOfWindow() returns
NULL.

OlDnDGetWidgetOfDropSite
#include <Xol/OlDnDVCX.h>

Widget OlDnDGetWidgetOfDropSite(
OlDnDDropSiteID dropsiteid);

OlDnDGetWidgetOfDropSite() returns the ID of the widget associated with
the drop site, specified by the dropsiteid argument. If the drop site was
registered with OlDnDRegisterWindowDropSite() ,
OlDnDGetWidgetOfDropSite() returns the ID of the widget that is the most
immediate ancestor of the associated window.

OlDnDGetWindowOfDropSite
#include <Xol/OlDnDVCX.h>

Window OlDnDGetWindowOfDropSite(
OlDnDDropSiteID dropsiteid);

OlDnDGetWindowOfDropSite() returns the window ID that the drop site
specified by the dropsiteid argument is associated with. If the drop site was
registered with a gadget, then OlDnDGetWindowOfDropSite() returns the
window ID of the gadget’s windowed parent.

134 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

OlDnDQueryDropSiteInfo
#include <Xol/OlDnDVCX.h>

Boolean OlDnDQueryDropSiteInfo(
OlDnDDropSiteID dropsiteid ,
Widget ∗widget ,
Window ∗window ,
OlDnDSitePreviewHints ∗preview_hints ,
OlDnDSiteRectPtr ∗site_rects ,
unsigned int ∗num_rects ,
Boolean ∗on_interest);

widget The address of a variable of type Widget that returns the ID of
the widget that owns the drop site. Set this parameter to NULL if
no query on the widget ID is required. If the drop site was
registered with OlDnDRegisterWindowDropSite() , this is
the widget ID of the associated window’s most immediate
ancestor.

window The address of a variable of type Window that returns the ID of
the window that owns the drop site. Set this parameter to NULL
if no query on the window ID is required. For gadgets, this is the
window ID of its windowed ancestor.

preview_hints The address of a variable of type OlDnDSitePreviewHints
that returns the current hints for the drop site. Set this parameter
to NULL if no query on the preview hints is required.

site_rects The address of a variable of type OlDnDSiteRectPtr that
returns a pointer to an array that contains the current geometry
of the drop site. This parameter may be set to NULL if no query
on the site geometry is required. Clients must use XtFree() to
deallocate the memory used by the array when they no longer
require it.

num_rects The address of an unsigned int variable that returns the
number of OlDnDSiteRect structures specified for the drop
site. Set this parameter to NULL if no query on the number of
rectangles.

on_interest The address of a Boolean variable that returns a value
indicating whether the drop site is currently active (TRUE) or
inactive (FALSE). Set this parameter to NULL if this value is not
required.

Toolkit Functions 135

5
Drag and Drop Functions

OlDnDQueryDropSiteInfo() retrieves information about the drop site
specified by the dropsiteid argument. The function returns TRUE if the query
was successful; otherwise, it returns FALSE.

OlDnDRegisterWidgetDropSite
#include <Xol/OlDnDVCX.h>

OlDnDDropSiteID OlDnDRegisterWidgetDropSite(
Widget widget ,
OlDnDSitePreviewHints preview_hints ,
OlDnDSiteRectPtr site_rects ,
unsigned int num_sites ,
OlDnDTMNotifyProc tmnotify ,
OlDnDPMNotifyProc pmnotify ,
Boolean on_interest ,
XtPointer client_data);

client_data Application-defined data that is passed to the tmnotify and
pmnotify functions when they are called.

on_interest Specifies whether the drop site is active (i.e., “interested” in
responding to drops). TRUE means the drop site is active, FALSE
means it is inactive. An inactive drop site is ignored during a Drag
and Drop operation; its Preview Message Notify Procedure is not
called when the cursor passes over it, nor is the source’s Preview
Animate Callback. This drop site attribute may be changed at any
time during the existence of the drop site using the function
OlDnDSetDropSiteInterest() .

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDRegisterWidgetDropSite() creates a drop site associated with a
particular widget. The widget must be realized; that is, it must have a window
associated with it before you can create a drop site for it. Gadgets can support
drop sites and use their windowed ancestor’s window in association with the
registered drop site. Drop sites are automatically destroyed when their owning
widgets die.

136 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

OlDnDRegisterWindowDropSite
#include <Xol/OlDnDVCX.h>

OlDnDDropSiteID OlDnDRegisterWindowDropSite(
Display ∗dpy ,
Window window ,
OlDnDSitePreviewHints preview_hints ,
OlDnDSiteRectPtr site_rects ,
unsigned int num_sites ,
OlDnDTMNotifyProc tmnotify ,
OlDnDPMNotifyProc pmnotify ,
Boolean on_interest ,
XtPointer client_data);

dpy The display pointer.

client_data Application-defined data that is passed to the tmnotify and
pmnotify functions when they are called.

The other arguments to this function are described in “Common Arguments”
on page 114.

OlDnDRegisterWindowDropSite() registers a window-based drop site. It
creates a drop site associated with a particular X Window and is useful for
toolkit applications that mix “raw” X windows with widgets. Drop sites are
automatically destroyed when their owning windows die. The window must
be an inferior of a widget’s window.

OlDnDSetDropSiteInterest
#include <Xol/OlDnDVCX.h>

void OlDnDSetDropSiteInterest(
OlDnDDropSiteID dropsiteid ,
Boolean on_interest);

on_interest TRUE means the drop site is made active, FALSE means the drop
site is made inactive.

OlDnDSetDropSiteInterest() activates or inactivates a drop site by
exporting its existence. Active drop sites respond to drops. Inactive drop sites
do not respond to drops.

Toolkit Functions 137

5
Drag and Drop Functions

OlDnDSetInterestInWidgetHier
#include <Xol/OlDnDVCX.h>

void OlDnDSetInterestInWidgetHier(
Widget widget ,
Boolean on_interest);

on_interest TRUE means the drop sites are made active, FALSE means the drop
sites are made inactive.

OlDnDSetInterestInWidgetHier() activates or inactivates all drop sites
belonging to this widget and its children.

OlDnDUpdateDropSiteGeometry
#include <Xol/OlDnDVCX.h>

Boolean OlDnDUpdateDropSiteGeometry(
OlDnDDropSiteID dropsiteid ,
OlDnDSiteRectPtr site_rects ,
unsigned int num_sites);

dropsiteid The ID of the drop site to be updated.

site_rects The new list of site rectangles for the drop site.

num_sites The number of rectangles in the new rectangle list.

OlDnDUpdateDropSiteGeometry() alters the geometry of a drop site.
Changes in the geometry of a drop site are caused by changes in the geometry
of the widget or window that owns the drop site. To reduce client-server
traffic, the toolkit does not automatically track changes in windows that own
drop sites. The creator of a drop site is responsible for maintaining the
geometry of the site to reflect any changes in the widget or window that owns
the site.

OlDnDWidgetConfiguredInHier
#include <Xol/OlDnDVCX.h>

void OlDnDWidgetConfiguredInHier(
Widget widget);

This function is primarily for use by developers of Composite widgets.

138 OLIT Reference Manual—August 1994

5
Drag and Drop Functions

Since drop sites are separate from the server window hierarchy, drop site
owners must attempt to maintain their drop sites clipped to their visible
region(s), as defined by the server window hierarchy associated with the
widget hierarchy that contains the drop sites.

In order to achieve this clipping, Composite widgets and their subclasses
must inform the Drag and Drop system that they have configured some
widgets in their subtree, as a result of a call to that Composite widget’s
ChangeManaged() or GeometryManager() methods (hence potentially
changing the visible region(s) of drop sites in that subtree). Calling this
function will cause the Drag and Drop system to recalculate the clipping
region(s) of any drop sites under the configuring widget in the widget
hierarchy.

In order to eliminate multiple recalculations of drop site clipping region(s) due
to configures propagating down a widget hierarchy, a mechanism exists to
suppress such multiple calculations; developers should take advantage of this
in order to optimize performance.

The following is an example of the usage of this function in a simple geometry
manager:

static XtGeometryResult GeometryManager(
Widget requester;
XtWidgetGeometry ∗request,
XtWidgetGeometry ∗reply);

{
 CompositeWidget comp = requester->core.parent;
 Widget vendor = comp;
 Arg args[2];
 Boolean configured_others = False;

XtSetArg(args[0], XtNconfiguringWidget, (XtPointer)requester);
XtSetArg(args[1], XtNdisableDSClipping, True);

while (!XtIsVendorShell(w))
vendor = vendor->core.parent;

XtSetValues(vendor, args, XtNumber(args));
/* Disable clipping in my subtree while I configure. */
/* Consider the geometry request received and then maybe
 * configure one or more of the managed set and/or perhaps
 * request that my parent reconfigure me as a result of the
 * request being made by the requester widget.
 *

Toolkit Functions 139

5
Drag and Drop Functions

 * Set configured_others True if the Composite made a successful
 * geometry request to its parent, or if it moved siblings of
 * the requester */

if ((request->request_mode & CWX) == CWX)
requester->core.x = request->x;

if ((request->request_mode & CWY) == CWY)
requester->core.y = request->y;

if ((request->request_mode & CWWidth) == CWWidth)
requester->core.width = request->width;

if ((request->request_mode & CWHeight) == CWHeight)
requester->core.height = request->height;

XtSetArg(args[1], XtNdisableDSClipping, False);
XtSetValues(vendor, args, XtNumber(args));

/* enable clipping again */
/* Inform the drag and drop system to clip any drop sites in
 * the widget hierarchy under the configuring widget. */

if (configured_others)
OlDnDWidgetConfiguredInHier((Widget)comp);

else
OlDnDWidgetConfiguredInHier(requester);

return XtGeometryYes;
}

See Also

“Cursor and Pixmap Functions” on page 99,
“DropTarget Widget” on page 266.

140 OLIT Reference Manual—August 1994

5
Dynamic Resource Functions

Dynamic Resource Functions
OLIT supports Dynamic Resources. This means that for selected resource
classes (those resources that include a D in the “Access” column), OLIT will
detect dynamic changes in the server’s resource database (by looking for
updates on the RESOURCE_MANAGER property of the RootWindow) and
automatically update the resource inside the widget.

The following routines allow applications to use this Dynamic Resource
functionality.

Note – The OlGetApplicationResources() and LookupOlColors()
routines previously included with the dynamic settings functions are no longer
supported.

OlCallDynamicCallbacks
#include <Xol/Dynamic.h>

void OlCallDynamicCallbacks(void)

OlCallDynamicCallbacks() triggers the calling of the functions registered
on the dynamic callback list. This procedure is called automatically whenever
the RESOURCE_MANAGER property of the RootWindow is updated. It may also
be called to force a synchronization of the dynamic settings.

OlRegisterDynamicCallback
#include <Xol/Dynamic.h>

void OlRegisterDynamicCallback(
OlDynamicCallbackProc CB,
XtPointer data);

OlRegisterDynamicCallback() adds a function to the list of registered
callbacks to be called whenever the procedure OlCallDynamicCallbacks()
is invoked. OlCallDynamicCallbacks() is invoked whenever the
RESOURCE_MANAGER property of the Root Window is updated.
OlCallDynamicCallbacks() may also be called directly by either the

Toolkit Functions 141

5
Dynamic Resource Functions

application or other routines in the widget libraries. The callbacks registered are
guaranteed to be called in first-in-first-out (FIFO) order of registration and will
be called as:

(∗CB)(data);

OlUnregisterDynamicCallback
#include <Xol/Dynamic.h>

int OlUnregisterDynamicCallback(
OlDynamicCallbackProc CB
XtPointer data);

OlUnregisterDynamicCallback() removes a function from the list of
registered callbacks to be called whenever OlCallDynamicCallbacks() is
invoked. It returns zero if the dynamic callback cannot be removed; otherwise,
it returns 1.

142 OLIT Reference Manual—August 1994

5
Error Functions

Error Functions
The following functions provide error and warning message services.

Most programs should not use OlError() and OlWarning() since they do
not allow for customization or internationalization.

The OpenLook.h header does not include stdarg.h or varargs.h .
An application using OlSetVaDisplayErrorMsgHandler() or
OlSetVaDisplayWarningMsgHandler() should include one of these two
headers before including OpenLook.h to ensure the correct function prototype
will be used for the application’s error/warning handler.

OlError
#include <Xol/OpenLook.h>

void OlError(
String msg);

OlError() writes a string to stderr and then exits.

OlWarning
#include <Xol/OpenLook.h>

void OlWarning(
String msg);

OlWarning() writes a string to stderr and then returns.

OlVaDisplayErrorMsg
#include <Xol/OpenLook.h>

void OlVaDisplayErrorMsg(
Display ∗dpy ,
String name,
String type ,
String class ,
String default_msg ,
...);

OlVaDisplayErrorMsg() writes an error message to stderr and exits. The
error message is looked up in the error database by calling
XtAppGetErrorDatabaseText() using the name, type, and class arguments.

Toolkit Functions 143

5
Error Functions

If no message is found in the error database, the default_msg string is used. The
application context is determined by calling
XtDisplayToApplicationContext() with the supplied Display pointer.
If the display pointer is NULL, the display created at application startup is used
to determine the application context.

OlVaDisplayWarningMsg
#include <Xol/OpenLook.h>

void OlVaDisplayWarningMsg(
Display ∗dpy ,
String name,
String type ,
String class ,
String default_msg ,
...);

OlVaDisplayWarningMsg() has the same semantics as
OlVaDisplayErrorMsg() , except that it returns instead of exiting.

OlSetErrorHandler
#include <Xol/OpenLook.h>

OlErrorHandler OlSetErrorHandler(
OlErrorHandler handler);

OlSetErrorHandler() , OlSetWarningHandler() ,
OlSetVaDisplayErrorMsgHandler() , and
OlSetVaDisplayWarningMsgHandler() allow an application to override
the various warning and error handlers. These routines return a pointer to the
previous handler. If NULL is supplied to any of these routines, the default
handler will be used. Application-supplied error handlers should do the same
since continuation of an application will result in undefined behavior.

OlSetWarningHandler
#include <Xol/OpenLook.h>

OlWarningHandler OlSetWarningHandler(
OlWarningHandler handler);

See OlSetErrorHandler() above.

144 OLIT Reference Manual—August 1994

5
Error Functions

OlSetVaDisplayErrorMsgHandler
#include <Xol/OpenLook.h>

OlVaDisplayErrorMsgHandler OlSetVaDisplayErrorMsgHandler(
OlVaDisplayErrorMsgHandler handler ,
...);

See OlSetErrorHandler() above.

OlSetVaDisplayWarningMsgHandler
#include <Xol/OpenLook.h>

OlVaDisplayWarningMsgHandler OlSetVaDisplayWarningMsgHandler(
OlVaDisplayWarningMsgHandler handler ,
...);

See OlSetErrorHandler() above.

OlErrorHandler
#include <Xol/OpenLook.h>

typedef void (∗OlErrorHandler)(
String msg);

OlWarningHandler
#include <Xol/OpenLook.h>

typedef void (∗OlWarningHandler)(
String msg);

OlVaDisplayErrorMsgHandler
#include <Xol/OpenLook.h>

typedef void (∗OlVaDisplayErrorMsgHandler)(
Display ∗dpy ,
String name,
String type ,
String class ,
String default_msg ,
...);

Toolkit Functions 145

5
Error Functions

OlVaDisplayWarningMsgHandler
#include <Xol/OpenLook.h>

typedef void (∗OlVaDisplayWarningMsgHandler)(
Display ∗dpy ,
String name,
String type ,
String class ,
String default_msg ,
...);

146 OLIT Reference Manual—August 1994

5
Help Function

Help Function
The following function is used to register help.

OlRegisterHelp
#include <Xol/OpenLook.h>

void OlRegisterHelp(
OlDefine id_type ,
XtPointer id ,
String tag ,
OlDefine source_type ,
XtPointer source);

OlRegisterHelp() associates help information with either a widget instance
or a widget class. The widget ID or widget class pointer is given in id, and
id_type identifies whether it is a widget or a widget class using one of the
values OL_WIDGET_HELP or OL_CLASS_HELP, respectively. Use
OL_WIDGET_HELP to register help on gadgets. The other arguments are
explained in “Format of Help” on page 147.

The tag value is shown in the title of the help window, as follows:

app-name:tag Help

where app-name is the name of the application. The tag can be null, in which
case only app-name: Help is printed.

Help for Flat Widgets

To set the same help message for all items in a flat widget container, use the
OlRegisterHelp() routine with id_type set to OL_WIDGET_HELP. To register
help for individual items in a flat widget container, use OlRegisterHelp()
with id_type set to OL_FLAT_HELP. Use the following structure to specify the
object that gets the help message and pass OlRegisterHelp() a pointer to it
in the id parameter:

typedef struct {
Widget widget ;
Cardinal item_index ;

} OlFlatHelpId;

Toolkit Functions 147

5
Help Function

Format of Help

The help message is identified in source; source_type identifies the form of the
help message as one of the following:

OL_STRING_SOURCE

The source is of type String and contains text with embedded newlines.
OlRegisterHelp() does not copy this source; the application is expected to
maintain the original as long as it is registered.

OL_DISK_SOURCE

The source is also of type String , but contains the name of a file that contains
the help text. OlRegisterHelp() does not copy this filename; the application
is expected to maintain the original as long as it is registered. The file content
is expected to be text with embedded newlines.

OL_INDIRECT_SOURCE

The source is of type void(∗)() and is a pointer to an application-defined
routine to be called by OLIT. This routine is called after HELP has been clicked.
The application is expected to define the type of the help source in the routine;
after it has returned, the help information will be displayed.

The routine is called as follows:

(∗source)(id_type , id , src_x , src_y , & source_type , & source);

id_type and id The values for the widget class or widget instance that
was under the pointer when HELP was pressed. These
are the same values previously registered with
OlRegisterHelp() .

src_x and src_y The coordinates of the pointer when HELP was pressed.
These are relative to the upper-left corner of the window.

source_type and source Pointers to values the application’s routine should set
for the help source it wants to display. The only
source_type values accepted are OL_STRING_SOURCE and
OL_DISK_SOURCE.

148 OLIT Reference Manual—August 1994

5
Help Function

OL_TRANSPARENT_SOURCE

The source is of type void(∗)() and is a pointer to an application-defined
routine. The routine is called after HELP has been invoked. The application is
expected to handle the HELP event completely. This might be used by an
application that does not want the standard help window (for example,
xterm (1) simply generates an escape sequence).

The routine is called as follows:

(∗source)(id_type , id , src_x , src_y);

id_type and id The values for the widget class or widget instance that was
under the pointer when HELP was pressed. These are the same
values registered with OlRegisterHelp() .

src_x and src_y The coordinates of the pointer when HELP was pressed. These
are relative to the upper-left corner of the window.

The help window is automatically popped up for the OL_STRING_SOURCE,
OL_DISK_SOURCE, and OL_INDIRECT_SOURCE help sources. (It is popped up
after the application routine returns for the OL_INDIRECT_SOURCE help
source.) The application is responsible for popping up a help window (if
needed) for the OL_TRANSPARENT_SOURCE help source.

Handling the Help Key Event

When the user clicks HELP, if the event occurs within a widget or window
registered with the OlRegisterHelp() routine, the corresponding help
message is automatically displayed (for source types OL_STRING_SOURCE and
OL_DISK_SOURCE) or the application routine is called (for source types
OL_INDIRECT_SOURCE and OL_TRANSPARENT_SOURCE). If the event occurs
elsewhere, a default help message is displayed.

If the help key is pressed on a widget, the help routine looks for help registered
on that widget of type OL_WIDGET_HELP. If no help is found, the help routine
searches up the widget tree (i.e., goes to the widget’s parents up to a widget
which is a subclass of shell) looking for the first widget that has help of type
OL_WIDGET_HELP registered. If it finds help registered on one of the ancestors
of the original widget, the help message for that widget will be used. If help is
not found, the help routine looks for help of type OL_CLASS_HELP on the
original widget. If no help is found, the default message is used.

Toolkit Functions 149

5
Help Function

The use of OlRegisterHelp() is considered across all applications. In other
words, even though a regular application does not register help for the root
window (the “workspace”), it does not mean that pressing HELP on the root
window causes a default message. Another application (typically the
workspace manager) may have registered the help.

Separate Help per Application

An application will have, at most, one help message displayed. However,
several applications can display their separate help messages simultaneously,
in different help windows.

Displaying the Help Message

A help source of type OL_STRING_SOURCE and OL_DISK_SOURCE is displayed
in a help window that is 50 ens wide and 10 lines tall. (An en is S/2 points,
where S is the current point size.)

Lines longer than the help window width are wrapped at the space(s) between
words, or at the nearest character boundary if there is no space at which to
wrap. Lines are also wrapped at embedded newlines, regardless of their
lengths.

Only spaces and newlines are recognized for format control; all other non-
printable characters are silently ignored.

Up to ten lines of the message are visible at once. Messages longer than ten
lines have a scrollbar control that allows scrolling non-visible lines into view.

Static Variables

The tag and source values should be statically defined (or allocated and not
freed). Using automatic variables here will almost always fail.

150 OLIT Reference Manual—August 1994

5
Input Focus Functions

Input Focus Functions
Each of these utility routines works with widgets or gadgets to manipulate
input focus.

OlCallAcceptFocus
#include <Xol/OpenLook.h>

Boolean OlCallAcceptFocus(
Widget w,
Time time);

OlCallAcceptFocus() sets the focus to a specified widget. If widget w
currently is capable of accepting input focus, OlCallAcceptFocus() assigns
focus to w and it returns TRUE; otherwise, it returns FALSE. See the
XtCallAcceptFocus() function in the Xt Intrinsics Reference Manual for
further details about the time argument.

Note – OlCallAcceptFocus() will be declared obsolete in a future version
of OLIT. You should use the XtCallAcceptFocus() for all new applications.

OlCanAcceptFocus
#include <Xol/OpenLook.h>

Boolean OlCanAcceptFocus(
Widget w,
Time time);

OlCanAcceptFocus() tests whether a widget can accept focus. If it can
accept focus, it returns TRUE; otherwise, it returns FALSE. Acceptance of focus
is determined by all of the following being true:

• The widget is not being destroyed.

• The widget is managed.

• The widget is mapped when managed (if it is not a gadget).

• The widget is realized, or for a gadget, the gadget’s parent are realized.

• The widget and its ancestors are sensitive.

Toolkit Functions 151

5
Input Focus Functions

• A query for the widget’s Window attributes is successful and the widget’s
window is viewable (i.e., the window and all its ancestor windows are
mapped).

• The XtNmouseless resource is TRUE or the widget is a shell or text input
widget.

OlSetInputFocus
#include <Xol/OpenLook.h>

void OlSetInputFocus(
Widget w,
int revert_to ,
Time time);

OlSetInputFocus() sets focus to a widget. Applications should use this
routine instead of XSetInputFocus() ; see the description of
XSetInputFocus() in the XLib Reference Manual for further details about the
revert_to and time arguments. If XtNmouseless is FALSE,
OlSetInputFocus() is ignored unless the widget is a text input or shell
widget.

OlGetCurrentFocusWidget
#include <Xol/OpenLook.h>

Widget OlGetCurrentFocusWidget(
Widget w);

OlGetCurrentFocusWidget() returns the widget that currently has focus in
the window group of the specified widget. If no widget in the window group
has focus, OlGetCurrentFocusWidget() returns NULL.

OlHasFocus
#include <Xol/OpenLook.h>

Boolean OlHasFocus(
Widget w);

OlHasFocus() returns TRUE if the specified widget has focus. OlHasFocus()
simply calls OlGetCurrentFocusWidget() and compares its return value to
the supplied widget.

152 OLIT Reference Manual—August 1994

5
Input Focus Functions

OlMoveFocus
#include <Xol/OpenLook.h>

Widget OlMoveFocus(
Widget w,
OlVirtualName direction ,
Time time);

OlMoveFocus() moves the input focus relative to the widget w, as indicated
by direction, and returns the new focus widget. It calls OlCallAcceptFocus()
to move the input focus. If OlCallAcceptFocus() is unable to move input
focus, OlMoveFocus() returns NULL. It will also return NULL if
XtNmouseless is set to FALSE and the widget is not a text input widget. When
moving input focus between widgets contained within an Exclusives or
Nonexclusives widget, valid values for direction are shown in the following
list. For the OL_MULTI directions below, the value of m is the value of the toolkit
resource XtNmultiObjectCount . See the description of XSetInputFocus()
in the XLib Reference Manual for further details about the time argument.

OL_IMMEDIATE Set focus to the next widget that will accept it, starting with
w.

OL_MOVERIGHT Set focus to the widget in the next column (and same row)
that will accept it, starting with the first column after w’s
column. If w is located in the extreme right column, focus is
set to the widget in the extreme left column of the same row.

OL_MOVELEFT Set focus to the widget in the previous column (and same
row) that will accept it, starting with the first column before
w’s column. If w is located on the extreme left column, focus
is set to the widget in the extreme right column of the same
row.

OL_MOVEUP Set focus to the widget in the previous row (and same
column) that will accept it, starting with the first row before
w’s row. If w is located in the top row, focus is set to the
widget in the bottom row of the same column.

OL_MOVEDOWN Set focus to the widget in the next row (and same column)
that will accept it, starting with the first row after w’s row. If
w is located in the bottom row, focus is set to the widget in
the top row of the same column.

OL_MULTIRIGHT Set focus to the widget in the next column (and same row)
that will accept it, starting with the first column m columns
after w’s column. If m is greater than the number of objects

Toolkit Functions 153

5
Input Focus Functions

between w and the extreme right column, focus is set to the
widget in the extreme left column of the same row.

OL_MULTILEFT Set focus to the widget in the previous column (and same
row) that will accept it, starting with the first column m
columns before w’s column. If m is greater than the number
of objects between w and the extreme left column, focus is set
to the widget in the extreme right column of the same row.

OL_MULTIUP Set focus to the widget in the previous row (and same
column) that will accept it, starting with the first row m rows
before w’s row. If m is greater than the number of objects
between w and the extreme top row, focus is set to the widget
in the extreme bottom row of the same column.

OL_MULTIDOWN Set focus to the widget in the next row (and same column)
that will accept it, starting with the first row m rows after w’s
row. If m is greater than the number of objects between w and
the extreme bottom row, focus is set to the widget in the
extreme top row of the same column.

When moving between widgets in a base window or popup window, focus is
moved according to the order defined by the traversal list. The default traversal
order is determined by the order in which widgets are created. Valid values for
direction are:

OL_IMMEDIATE Set focus to the next object that will accept it, starting with w.

OL_NEXTFIELD, OL_MOVERIGHT, OL_MOVEDOWN
Set focus to the next object that will accept it, starting with
the first object after w.

OL_PREVFIELD, OL_MOVELEFT, OL_MOVEUP
Set focus to the next object that will accept it, starting with
the first object before w. (The list is searched in reverse
order.)

OL_MULTIRIGHT, OL_MULTIDOWN
Set focus to the next object that will accept it, starting with
the first m objects after w.

OL_MULTILEFT, OL_MULTIUP
Set focus to the next object that will accept it, starting with
the first m objects before w. (The list is searched in reverse
order.)

154 OLIT Reference Manual—August 1994

5
Multiple Visual Functions

Multiple Visual Functions
The following functions are used to work with multiple visuals.

A visual is specified by a depth (for example, 8 bits) and a visual class (for
example, PseudoColor) .

A shell widget or a DrawArea widget can have a nondefault visual. Other
widgets use the visuals of their nearest shell or DrawArea ancestor. An
application in which eligible widgets have nondefault visuals is termed a
multi-visual application.

You must specify the visual class when you specify the depth, or the depth will
be ignored. Specifically, you should use the XtVaTypedArg interface with
XtVaCreateManagedWidget() , rather than XMatchVisualinfo() .
(The argument list interface implicitly invokes the resource converter, while
XMatchVisualinfo() does not. Trying to set the depth without also setting
the visual class and running the resource converter can create problems.)

For example, in creating a DrawArea widget using this interface, you might
use something like:

drawarea = XtVaCreateManagedWidget("drawarea",
drawAreaWidgetClass, toplevel,
XtVaTypedArg, XtNvisual, XtRString,
VisualClassName, sizeof(VisualClassName),
XtNlayout, OL_IGNORE,
XtNheight, Height,
XtNwidth, Width,
NULL);

Each multiple visual function returns a characteristic of either a widget or
gadget.

Multiple visuals are meant to run on machines with hardware colormaps;
otherwise, serious flashing results when the mouse pointer moves between
applications or widgets with different visuals.

OlBlackPixel
#include <Xol/OpenLook.h>

Pixel OlBlackPixel(
 Widget w);

Toolkit Functions 155

5
Multiple Visual Functions

OlBlackPixel() returns the black pixel for the colormap associated with the
given widget. Use this function instead of the macro BlackPixel() , in OLIT
applications that use multiple colormaps and/or multiple visuals.

OlColormapOfObject
#include <Xol/OpenLook.h>

Colormap OlColormapOfObject(
Widget object);

OlColormapOfObject() obtains the colormap associated with the object.

OlDepthOfObject
#include <Xol/OpenLook.h>

int OlDepthOfObject(
Widget object);

OlDepthOfObject() obtains the depth associated with the object.

OlInternAtom
#include <Xol/RootShell.h>

Atom OlInternAtom(
Display ∗dpy ,
String atom_name);

OlInternAtom () uses the Intrinsics XtRString -to-XtRAtom resource
converter and the converter cache to store Atoms in the resource cache on a per
display basis.

You should use this function to cache Atoms across displays, especially for
applications using multiple displays.

For efficient use of the resource converter cache, the string atom_name should
be the same physical string for each invocation. For example:

OlInternAtom(dpy, "foo");
OlInternAtom(dpy, "foo");

results in two entries in the resource converter cache, while the following
results in only one cache entry:

156 OLIT Reference Manual—August 1994

5
Packed Widget Function

char ∗foo = "foo";
OlInternAtom(dpy, foo);
OlInternAtom(dpy, foo);

OlVisualOfObject
#include <Xol/OpenLook.h>

Visual ∗OlVisualOfObject(
Widget object);

OlVisualOfObject() obtains the visual associated with the object.

OlWhitePixel
#include <Xol/OpenLook.h>

Pixel OlWhitePixel(
 Widget w);

OlWhitePixel() returns the white pixel for the colormap associated with the
given widget. Use this function instead of the macro WhitePixel() , in OLIT
applications that use multiple colormaps and/or multiple visuals.

Packed Widget Function
The following function creates a widget (sub)tree in one call.

OlCreatePackedWidgetList
#include <Xol/OpenLook.h>

Widget OlCreatePackedWidgetList(
OlPackedWidgetList ∗pw_list ,
Cardinal num_pw);

OlCreatePackedWidgetList() and its associated OlPackedWidget
structure allow an application to create a widget tree or subtree in one call.

pw_list A pointer to an OlPackedWidget array. It creates widgets starting
from the first element in the array.

num_pw The number of elements in the array pw_list

OlCreatePackedWidgetList() returns the widget ID of the first element in
the array pw_list.

Toolkit Functions 157

5
Packed Widget Function

The OlPackedWidget structure contains all the information needed to create a
new widget. It is defined as:

typedef struct {
Widget widget ;
String name;
WidgetClass ∗class_ptr ;
Widget ∗parent_ptr ;
String descendant ;
ArgList resources ;
Cardinal num_resources ;
Boolean managed;

} OlPackedWidget, ∗OlPackedWidgetList;

widget Contains the ID of the newly created widget.

name The name of the widget that will be created.

class_ptr A pointer to the WidgetClass pointer for the new widget. This
gives the class of widget to create. It is a pointer to the pointer
because typically the pointer itself is an external value that is not
suitable for using in an array initialization.

parent_ptr A pointer to the widget ID of the intended parent of the new
widget or the ID of an indirect widget that “knows who the
parent is” (see below). This value may point to a widget member
in another PackedWidget item; if the parent is an indirect
widget, it must appear earlier in the list.

descendant The name of a resource available in the widget identified by
parent_ptr. The value of this resource is the ID of the real parent
for the new widget. If the descendant value is not zero, parent is
expected to identify an indirect parent that is interrogated for the
ID of the real parent. If this value is zero, parent is expected to
identify the real parent.

resources The resource array to use when creating the new widget.

num_resources The number of resources in the array.

managed TRUE if the new widget should be managed when created, FALSE
otherwise.

158 OLIT Reference Manual—August 1994

5
Pixel Conversion Functions

Pixel Conversion Functions
The following routines convert pixel dimensions to other measurements.

#include <Xol/OpenLook.h>

Screen ∗OlDefaultScreen;
Display ∗OlDefaultDisplay;

Axis axis;
Screen screen;

OlMMToPixel(axis , millimeters);
Ol_MMToPixel(axis , millimeters);

OlPointToPixel(axis , points);
Ol_PointToPixel(axis , points);

OlScreenMMToPixel(axis , millimeters , screen);
Ol_ScreenMMToPixel(axis , millimeters , screen);

OlScreenPointToPixel(axis , points , screen);
Ol_ScreenPointToPixel(axis , points , screen);

OlPixelToMM(axis , pixels);
Ol_PixelToMM(axis , pixels);

OlPixelToPoint(axis , pixels);
Ol_PixelToPoint(axis , pixels);

OlScreenPixelToPoint(axis , pixels , screen);
Ol_ScreenPixelToPoint(axis , pixels , screen);

OlScreenPixelToMM(axis , pixels , screen);
Ol_ScreenPixelToMM(axis , pixels , screen);

All the X-based OPEN LOOK widgets refer to pixels in coordinates and
dimensions for compatibility with other X Window System widgets.

This puts the burden on the application programmer to convert between
externally useful measures, such as points or millimeters, and pixels as applied
to the screen at hand. These routines examine the data structures that describe
the physical dimensions and the pixel resolution of a screen and convert
among millimeters, points, and pixels for that screen.

Toolkit Functions 159

5
Pixel Conversion Functions

Screen Selection
The shorter forms of these routines (the ones without the word Screen in their
names) work for the default screen. This is the screen that is active when the
X-Toolkit Intrinsics are started. The longer forms of these routines take a
Screen ∗ type argument that refers to a particular screen. The macros
OlDefaultScreen and OlDefaultDisplay identify the current screen and
display being used by the Intrinsics.

Use After Toolkit Initialization
These routines make use of data structures that are initialized when the Toolkit
is initialized (see Initialization and Activation Functions on page 92).
Therefore, using them before toolkit initialization (for example, as an initial
value to a statically defined variable) will result in a run-time error.

Axis Argument
The first argument of all the routines is the direction in which the measurement
is made. This is necessary because not all screens have equivalent resolution in
the horizontal and vertical axes. The axis argument can take one of the two
values: OL_HORIZONTAL or OL_VERTICAL. These routines are not directly
usable in computing a diagonal measure. (Find the diagonal with the
Pythagorean Theorem: a2 + b2 = c2).

Implemented as Macros
All these routines are implemented as macros, so they can take any reasonable
type value for the millimeters, points, and pixels. The macros cast the values
into the proper type needed for the conversion. However, only a single type
value can be “returned.”

The routines without an underscore in their names produce values of type int
(the values are rounded to the nearest integer). The routines with an
underscore in their names produce values of type double (these values have
not been rounded, leaving it up to the application to round up, round down, or
truncate as needed). Given the small size of the units involved, the integer-
returning routines should be sufficient for many applications.

Because these routines are implemented as macros, there are no function
addresses available.

160 OLIT Reference Manual—August 1994

5
Protocol Function

Protocol Function

OlWMProtocolAction

OlWMProtocolAction() simulates a response to any window manager’s
protocol messages.

#include <Xol/OpenLook.h>

void OlWMProtocolAction(
Widget w,
OlWMProtocolVerify ∗st ,
OlDefine action)

The w parameter must be a widget that is a subclass of VendorShell .
Otherwise, no action will be taken.

The OlWMProtocolVerify structure is defined as follows:

typedef struct {
unsigned long msgtype ;
XEvent ∗xevent ;

} OlWMProtocolVerify;

Its msgtype field is an integer constant indicating the type of protocol message
that invoked the callback; it will be one of the following values:

OL_WM_TAKE_FOCUS
OL_WM_SAVE_YOURSELF
OL_WM_DELETE_WINDOW

The action parameter can be:

OL_QUIT Quit the application immediately.

OL_DEFAULTACTION Perform the action that is appropriate for each subclass
of VendorShell .

OL_DESTROY Destroy the shell widget.

OL_DISMISS Dismiss or unmap the shell widget.

Toolkit Functions 161

5
Regular Expression Functions

Regular Expression Functions
The following functions scan strings using a form of regular expressions.
Unlike the regular expressions supported by ed(1) or egrep (1), these functions
use a regular expression notation consisting of:

streexp
#include <Xol/regexp.h>

char ∗streexp(void);

The streexp() function returns the pointer of the last character in a match
found following a strexp() or strrexp() function call.

strexp
#include <Xol/regexp.h>

char ∗strexp(
char ∗string ,
char ∗curp ,
char ∗expression);

The strexp() function performs a regular expression forward scan of string
for expression starting at curp.

NULL is returned if expression cannot be found in string; otherwise, a pointer to
the first character in the substring that matches expression is returned. The
streexp() function can be used to get the pointer to the last character in the
match.

Table 5-2 Regular Expression Notation

Element Meaning

c Match the character c

[<set>] Match any character in <set> (where <set> is one or more
characters concatenated into a string; range expressions, such as
[a-z] , are not supported)

[!<set>] Match any character not in <set>

∗ Match any character(s) (one or more)

^ When the circumflex is the first character in the regular expression,
the match must start at curp

162 OLIT Reference Manual—August 1994

5
Regular Expression Functions

strrexp
#include <Xol/regexp.h>

char ∗strrexp(
char ∗string ,
char ∗curp ,
char ∗expression);

The strrexp() function performs a regular expression backward scan of
string for expression starting at curp.

NULL is returned if expression cannot be found in string; otherwise, a pointer to
the first character in the substring that matches expression is returned. The
streexp() function can be used to get the pointer to the last character in the
match.

See Also

“Buffer Functions” on page 95,
“TextField Functions” on page 686.

Toolkit Functions 163

5
Text Buffer Functions

Text Buffer Functions
A TextBuffer is a data structure used by every single-byte TextEdit widget to
store and manipulate its data. For internationalized TextBuffers, see page 176.
The functions in this section can be used to manipulate a TextBuffer.

TextLocation Structure

A number of the functions in this section refer to a TextLocation structure. It
is defined as follows:

typedef struct _TextLocation {
TextLine line ;
TextPosition offset ;
BufferElement ∗buffer ;

} TextLocation;

AllocateTextBuffer
#include <Xol/textbuff.h>

TextBuffer ∗AllocateTextBuffer(
char ∗filename ,
TextUpdateFunction f ,
XtPointer d);

AllocateTextBuffer() allocates a new TextBuffer structure, initializes the
members of the structure, does one more step described below, and returns a
pointer to the newly allocated structure.

It is possible to register one or more text update functions (of type
TextUpdateFunction) with a TextBuffer. As the name suggests, the text
update functions are invoked by the toolkit when the TextBuffer is updated. In
the course of registering a text update function, a possibly NULL client data (of
type XtPointer) must be provided with the function. The client data is
passed to the associated text update function when the function is invoked by
the toolkit. See “ReplaceBlockInTextBuffer” on page 172 for more details of the
TextUpdateFunction .

The argument f above is a text update function that together with its associated
client data d is registered with the newly allocated TextBuffer, before
AllocateTextBuffer() returns. The programmer must use

164 OLIT Reference Manual—August 1994

5
Text Buffer Functions

FreeTextBuffer() function to free the TextBuffer. The filename argument is
used by the SaveTextBuffer() function (see page 174) if it is called with a
NULL filename argument.

BackwardScanTextBuffer
#include <Xol/textbuff.h>
ScanResult BackwardScanTextBuffer(

TextBuffer ∗text,
char ∗exp ,
TextLocation ∗location);

BackwardScanTextBuffer() scans towards the beginning of the buffer for a
given expression in the TextBuffer starting at location. The exp string is
interpreted as described in “Regular Expression Functions” on page 161. A
ScanResult is returned, which indicates:

SCAN_NOTFOUND The scan wrapped without finding a match.

SCAN_WRAPPED A match was found at a location after the start
location.

SCAN_FOUND A match was found at a location before the start
location.

SCAN_INVALID Either the location or the exp was invalid.

CopyTextBufferBlock
#include <Xol/textbuff.h>

int CopyTextBufferBlock(
TextBuffer ∗text ,
char ∗buffer ,
TextPosition start_position ,
TextPosition end_position);

CopyTextBufferBlock() copies a text block from the text TextBuffer into
buffer. The block is defined as the characters between start_position and
end_position inclusive. It returns the number of bytes copied; if the parameters
are invalid, the return value is zero.

Note – The storage for the copy is allocated by the caller. It is the responsibility
of the caller to ensure that enough storage is allocated to copy end_position –
start_position + 1 bytes.

Toolkit Functions 165

5
Text Buffer Functions

EndCurrentTextBufferWord
#include <Xol/textbuff.h>

TextLocation EndCurrentTextBufferWord(
TextBuffer ∗textBuffer ,
TextLocation current);

EndCurrentTextBufferWord() locates the end of a word in the TextBuffer
relative to a given current location. The function returns the location of the end
of the current word. Note: this return value will equal the given current value
if the current location is already at the end of a word.

FreeTextBuffer
#include <Xol/textbuff.h>

void FreeTextBuffer(
TextBuffer ∗text ,
TextUpdateFunction f ,
XtPointer d);

FreeTextBuffer() deallocates storage associated with a given TextBuffer.
Note: the storage is not actually freed if the TextBuffer is still associated with
other update function/data pairs. See “ReplaceBlockInTextBuffer” on page 172
for more details of the TextUpdateFunction .

ForwardScanTextBuffer
#include <Xol/textbuff.h>
ScanResult ForwardScanTextBuffer(TextBuffer ∗text,

char ∗exp ,
TextLocation ∗location);

ForwardScanTextBuffer() scans towards the end of the buffer for a given
expression in the TextBuffer starting at location. The exp string is interpreted as
described in “Regular Expression Functions” on page 161. A ScanResult is
returned, which indicates:

SCAN_NOTFOUND The scan wrapped without finding a match.
SCAN_WRAPPED A match was found at a location before the start

location.
SCAN_FOUND A match was found at a location after the start

location.
SCAN_INVALID Either the location or the expression was invalid.

166 OLIT Reference Manual—August 1994

5
Text Buffer Functions

GetTextBufferBlock
#include <Xol/textbuff.h>

char ∗GetTextBufferBlock(
TextBuffer ∗text ,
TextLocation start_location ,
TextLocation end_location);

GetTextBufferBlock() retrieves a text block from the text TextBuffer. The
block is defined as the characters between start_location and end_location
inclusive. It returns a pointer to a string containing the copy. If the parameters
are invalid, NULL is returned.

Note – The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

GetTextBufferBuffer
#include <Xol/textbuff.h>

Buffer ∗GetTextBufferBuffer(
TextBuffer ∗text ,
TextLine line);

GetTextBufferBuffer() retrieves a pointer to the Buffer stored in
TextBuffer text for line. This pointer is volatile; subsequent calls to any
TextBuffer routine may make it invalid. If a more permanent copy of this Buffer
is required, the CopyTextBufferBlock() function (see page 164) can be used
to create a private copy of it.

GetTextBufferChar
#include <Xol/textbuff.h>

int GetTextBufferChar(
TextBuffer ∗text ,
TextLocation location);

GetTextBufferChar() retrieves a character stored in the text TextBuffer at
location. It returns either the character itself or EOF if location is outside the
range of valid locations within the TextBuffer.

Toolkit Functions 167

5
Text Buffer Functions

GetTextBufferLine
#include <Xol/textbuff.h>

char ∗GetTextBufferLine(
TextBuffer ∗text ,
TextLine lineindex);

GetTextBufferLine() retrieves the contents of string containing the copy of
the contents of the line or NULL if the lineindex is outside the range of valid
lines in text.

Note – The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

GetTextBufferLocation
#include <Xol/textbuff.h>

char ∗GetTextBufferLocation(
TextBuffer ∗text ,
TextLine line_number ,
TextLocation ∗location);

GetTextBufferLocation() retrieves the contents of the given line within
the TextBuffer. It returns a pointer to the character string. If the line number is
invalid, a NULL pointer is returned. If a non-NULL TextLocation pointer is
supplied in the argument list, the contents of this structure are modified to
reflect the values corresponding to the given line.

IncrementTextBufferLocation
#include <Xol/textbuff.h>

TextLocation IncrementTextBufferLocation(
TextBuffer ∗text ,
TextLocation location ,
TextLine line ,
TextPosition offset);

IncrementTextBufferLocation() increments a location by either line lines
and/or offset characters. It returns the new location. If line or offset are negative,
the function performs a decrement operation. If the starting location or the
resulting location is invalid, the starting location is returned without
modification; otherwise, the new location is returned.

168 OLIT Reference Manual—August 1994

5
Text Buffer Functions

LastTextBufferLocation
#include <Xol/textbuff.h>

TextLocation LastTextBufferLocation(
TextBuffer ∗text);

LastTextBufferLocation() returns the last valid TextLocation in the
TextBuffer associated with text.

LastTextBufferPosition
#include <Xol/textbuff.h>

TextPosition LastTextBufferPosition(
TextBuffer ∗text);

LastTextBufferPosition() returns the last valid TextPosition in the
TextBuffer associated with text.

LineOfPosition
#include <Xol/textbuff.h>

int LineOfPosition(
TextBuffer ∗text ,
TextPosition position);

The LineOfPosition() function returns the line number in which position
occurs. If position is invalid, it returns EOF.

LocationOfPosition
#include <Xol/textbuff.h>

TextLocation LocationOfPosition(
TextBuffer ∗text ,
TextPosition position);

LocationOfPosition() translates a position in the text TextBuffer to a
TextLocation (see page 163). It returns the translated TextLocation . If the
position is invalid, the buffer pointer in the TextLocation struct is set to NULL
and the line and offset members in the TextLocation struct are set the last
valid location in the TextBuffer; otherwise, buffer is set to a non-NULL (though
useless) value.

Toolkit Functions 169

5
Text Buffer Functions

NextLocation
#include <Xol/textbuff.h>

TextLocation NextLocation(
TextBuffer ∗textBuffer ,
TextLocation current);

NextLocation() returns the TextLocation that follows the given current
location in a TextBuffer. If the current location points to the end of the
TextBuffer, this function wraps to the beginning of the TextBuffer.

NextTextBufferWord
#include <Xol/textbuff.h>

TextLocation NextTextBufferWord(
TextBuffer ∗textBuffer ,
TextLocation current);

NextTextBufferWord() locates the beginning of the next word from a given
current location in a TextBuffer. If the current location is within the last word in
the TextBuffer, the function wraps to the beginning of the TextBuffer.

PositionOfLine
#include <Xol/textbuff.h>

TextPosition PositionOfLine(
TextBuffer ∗text ,
TextLine lineindex);

The PositionOfLine() function returns the TextPosition corresponding
to lineindex. If lineindex is invalid, it returns EOF.

PositionOfLocation
#include <Xol/textbuff.h>

TextPosition PositionOfLocation(
TextBuffer ∗text ,
TextLocation location);

The PositionOfLocation() function returns the TextPosition
corresponding to location. If location is invalid, it returns EOF.

170 OLIT Reference Manual—August 1994

5
Text Buffer Functions

PreviousLocation
#include <Xol/textbuff.h>

TextLocation PreviousLocation(
TextBuffer ∗textBuffer ,
TextLocation current);

The PreviousLocation() function returns the TextLocation (see
page 163) that precedes the given current location in a TextBuffer. If the current
location points to the beginning of the TextBuffer, this function wraps to the
end of the TextBuffer.

PreviousTextBufferWord
#include <Xol/textbuff.h>

TextLocation PreviousTextBufferWord(
TextBuffer ∗textBuffer ,
TextLocation current);

PreviousTextBufferWord() locates the beginning of a word in a TextBuffer
relative to a given current location. It returns the location of the beginning of
the word that precedes the given current location. If the current location is
within a word, this function returns beginning of the current word.

ReadFileIntoTextBuffer
#include <Xol/textbuff.h>

TextBuffer ∗ReadFileIntoTextBuffer(
char ∗filename ,
TextUpdateFunction f ,
XtPointer d);

ReadFileIntoTextBuffer() allocates a new TextBuffer and reads the file
denoted by the given filename into it. The supplied text update function f and
the client data d are associated with the newly allocated TextBuffer. The
function returns a pointer to this TextBuffer. See “ReplaceBlockInTextBuffer”
on page 172 for more details of the TextUpdateFunction .

Toolkit Functions 171

5
Text Buffer Functions

ReadStringIntoTextBuffer
#include <Xol/textbuff.h>

TextBuffer ∗ReadStringIntoTextBuffer(
char ∗string ,
TextUpdateFunction f ,
XtPointer d);

ReadStringIntoTextBuffer() allocates a new TextBuffer and copies the
given string into it. The supplied TextUpdateFunction and data pointer are
associated with this TextBuffer. The function returns a pointer to this
TextBuffer. See “ReplaceBlockInTextBuffer” on page 172 for more details of the
TextUpdateFunction .

RegisterTextBufferScanFunctions
#include <Xol/textbuff.h>

void RegisterTextBufferScanFunctions(
char ∗(∗forward) () ,
char ∗(∗backward) ());

RegisterTextBufferScanFunctions() provides the capability to replace
the default scan functions used by the ForwardScanTextBuffer() and
BackwardScanTextBuffer() functions. These functions are called as:

(∗forward)(string, curp, expression);
(∗backward)(string, curp, expression);

and are responsible for returning either a pointer to the beginning of a match
for the expression or NULL. Calling RegisterTextBufferScanFunctions()
with NULL function pointers reinstates the default regular expression facility,
as described in “Regular Expression Functions” on page 161.

RegisterTextBufferWordDefinition
#include <Xol/textbuff.h>

void RegisterTextBufferWordDefinition(
int (∗word_definition) ()) ;

RegisterTextBufferWordDefinition() provides the capability to replace
the default word definition function used by the TextBuffer functions in this
section. This function is called as:

(∗word_definition)(c);

172 OLIT Reference Manual—August 1994

5
Text Buffer Functions

The function is responsible for returning nonzero if the character c is
considered a character that can occur in a word, and zero otherwise. Calling
RegisterTextBufferWordDefinition() with NULL reinstates the default
word definition, which allows the following set of characters: a-z, A-Z, 0-9_

RegisterTextBufferUpdate
#include <Xol/textbuff.h>

void RegisterTextBufferUpdate(
TextBuffer ∗text ,
TextUpdateFunction f ,
XtPointer d);

RegisterTextBufferUpdate() associates the TextUpdateFunction f and
data pointer d with the given TextBuffer text. This update function will be
called whenever an update operation is performed on the TextBuffer. See
“ReplaceBlockInTextBuffer” on page 172 for more details of the
TextUpdateFunction .

Note – Calling RegisterTextBufferUpdate() increments a reference count
mechanism used to determine when to actually free the TextBuffer. Calling the
function with a NULL value for the function circumvents this mechanism.

ReplaceBlockInTextBuffer
#include <Xol/textbuff.h>

EditResult ReplaceBlockInTextBuffer(
TextBuffer ∗text ,
TextLocation ∗startloc ,
TextLocation ∗endloc ,
char ∗string ,
TextUpdateFunction f ,
XtPointer d);

ReplaceBlockInTextBuffer() updates the contents of the TextBuffer text.
The characters stored between startloc (inclusive) and endloc (exclusive) are
deleted and the string is inserted after startloc. If the edit succeeds and if
TextUpdateFunction f is associated with TextBuffer text, then f is called with
the following parameters:

(∗f)(XtPointer d, TextBuffer ∗text , EDIT_SUCCESS)

Toolkit Functions 173

5
Text Buffer Functions

All the other text update functions associated with TextBuffer text are called
with the following parameters:

(XtPointer d, TextBuffer ∗text , EDIT_FAILURE)

ReplaceBlockInTextBuffer() stores the details of the editing operation it
performs in text-> deleted and text-> insert TextUndoItem structures. The
contents of these structures may be used for implementing an Undo
mechanism. The hints provided in text-> deleted.hint and text-> insert.hint are an
inclusive OR of:

#define TEXT_BUFFER_NOP (0)
#define TEXT_BUFFER_DELETE_START_LINE (1L<<0)
#define TEXT_BUFFER_DELETE_START_CHARS (1L<<1)
#define TEXT_BUFFER_DELETE_END_LINE (1L<<2)
#define TEXT_BUFFER_DELETE_END_CHARS (1L<<3)
#define TEXT_BUFFER_DELETE_JOIN_LINE (1L<<4)
#define TEXT_BUFFER_DELETE_SIMPLE (1L<<5)
#define TEXT_BUFFER_INSERT_SPLIT_LINE (1L<<6)
#define TEXT_BUFFER_INSERT_LINE (1L<<7)
#define TEXT_BUFFER_INSERT_CHARS (1L<<8)

The meaning of each of these values is described below:

TEXT_BUFFER_NOP No edit operation.

TEXT_BUFFER_DELETE_START_LINE The deleted block started at beginning of
some line.

TEXT_BUFFER_DELETE_START_CHARS The deleted block did not start at the
beginning of some line.

TEXT_BUFFER_DELETE_END_LINE The end of the deleted block coincided with
the end of some line.

TEXT_BUFFER_DELETE_END_CHARS Some characters were deleted from the end
of some line.

TEXT_BUFFER_DELETE_JOIN_LINE Some characters were deleted and two lines
were joined into a single line.

TEXT_BUFFER_DELETE_SIMPLE The whole of the deleted block was
confined to a single line.

174 OLIT Reference Manual—August 1994

5
Text Buffer Functions

ReplaceCharInTextBuffer
#include <Xol/textbuff.h>

EditResult ReplaceCharInTextBuffer(
TextBuffer ∗text ,
TextLocation ∗location ,
int c,
TextUpdateFunction f ,
XtPointer d);

ReplaceCharInTextBuffer() replaces the character in the TextBuffer text
at location with the character c. Everything described in
“ReplaceBlockInTextBuffer” on page 172 about text update functions also
applies to this function.

SaveTextBuffer
#include <Xol/textbuff.h>

SaveResult SaveTextBuffer(
TextBuffer ∗text ,
char ∗filename);

SaveTextBuffer() writes the contents of the text TextBuffer to the file
filename. If filename is NULL, it uses the filename argument that was given to the
AllocateTextBuffer() function (see page 163).

SaveTextBuffer() returns a SaveResult , which can be SAVE_FAILURE or
SAVE_SUCCESS.

TEXT_BUFFER_INSERT_SPLIT_LINE One line was split into two lines and some
characters were inserted at the split
location.

TEXT_BUFFER_INSERT_LINE A line was inserted without spliting an
existing line.

TEXT_BUFFER_INSERT_CHARS Some characters were inserted at the
beginning of some existing line.

Toolkit Functions 175

5
Text Buffer Functions

StartCurrentTextBufferWord
#include <Xol/textbuff.h>

TextLocation StartCurrentTextBufferWord(
TextBuffer ∗textBuffer ,
TextLocation current);

StartCurrentTextBufferWord() locates the beginning of a word in the
TextBuffer relative to a given current location. The function returns the location
of the beginning of the current word. Note: this return value will equal the
given current value if the current location is the beginning of a word.

UnregisterTextBufferUpdate
#include <Xol/textbuff.h>

int UnregisterTextBufferUpdate(
TextBuffer ∗text ,
TextUpdateFunction f ,
XtPointer d);

The UnregisterTextBufferUpdate() function disassociates the
TextUpdateFunction f and data pointer d with the given TextBuffer text. If
the function/data pointer pair is not associated with the given TextBuffer, zero
is returned; otherwise, the association is dissolved and one is returned. See
“ReplaceBlockInTextBuffer” on page 172 for more details of the
TextUpdateFunction .

TextBuffer Macros

The macros described in “Buffer Macros” on page 95 can also be used with the
text buffer functions in this section.

See Also

Buffer Functions on page 95,
Regular Expression Functions on page 161,
“Text Buffer Functions for Internationalization” on page 176.

176 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Text Buffer Functions for Internationalization
The text buffer functions in this section provide multibyte equivalents to the
single-byte OLIT text buffer functions in the previous section.

OlAllocateTextBuffer
#include <Xol/Oltextbuff.h>

OlTextBufferPtr OlAllocateTextBuffer(
OlStrRep strrep ,
char ∗filename ,
TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlAllocateTextBuffer() allocates a new TextBuffer structure, initializes
the members of the structure, does one more step described below, and returns
a pointer to the newly allocated structure.

It is possible to register one or more text update functions (of type
TextUpdateFunction) with a TextBuffer . As the name suggests, the text
update functions are invoked by the toolkit when the TextBuffer is updated.
In the course of registering a text update function, a client data (of type
XtPointer) must be provided with the function; this client data can be NULL.
The client data is passed to the associated text update function when the
function is invoked by the toolkit (See “OlReplaceBlockInTextBuffer” on
page 197).

The argument update_func is a text update function that, together with its
associated client data data, is registered with the newly allocated TextBuffer,
before AllocateTextBuffer() returns. The programmer must use
OlFreeTextBuffer() function to free the TextBuffer.

strrep Specifies the text format
filename Specifies the filename
update_func The update function
data Client data

Toolkit Functions 177

5
Text Buffer Functions for Internationalization

The strrep argument can have the following values:

See Also
“OlFreeTextBuffer” on page 180,
“OlReadFileIntoTextBuffer” on page 193,
“OlReadStringIntoTextBuffer” on page 194.

OlBackwardScanTextBuffer
#include <Xol/Oltextbuff.h>

ScanResult OlBackwardScanTextBuffer(
OlTextBufferPtr text ,
OlStr exp ,
TextLocation ∗l ocation);

Arguments

OlBackwardScanTextBuffer() scans towards the beginning of the buffer
for a given expression in the OlTextBuffer starting at location. The
ScanResult can have the following values:

SCAN_NOTFOUND The scan wrapped without finding a match.

SCAN_WRAPPED A match was found at a location after the start location

SCAN_FOUND A match was found at a location before the start location

SCAN_INVALID Either the location or the expression was invalid

See Also
“OlForwardScanTextBuffer” on page 179.

Value Meaning
OL_SB_STR_REP Single-byte character representation
OL_WC_STR_REP Wide character representation
OL_MB_STR_REP Multibyte character representation

text The text buffer
exp The expression to scan for
location The location to start scanning at

178 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

OlCopyTextBufferBlock
#include <Xol/Oltextbuff.h>

int OlCopyTextBufferBlock(
OlTextBufferPtr text ,
OlStr outbuffer ,
int num_bytes ,
TextPosition start_position ,
TextPosition end_position);

Arguments

OlCopyTextBufferBlock() retrieves a text block from the OlTextBuffer .
The block is defined as the characters between start_position and end_position
inclusive. If num_bytes is not sufficient, OlCopyTextBufferBlock() returns
- 1; otherwise, it returns actual bytes used.

Note – The storage for the copy is allocated by the caller. It is the responsibility
of the caller to ensure that enough storage is allocated to copy
(end_position – start_position) + (bytes to store null character).

See Also
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferCharAtLoc” on page 182,
“OlGetTextBufferLine” on page 183.

OlEndCurrentTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation ∗OlEndCurrentTextBufferWord(
OlTextBufferPtr text ,
TextLocation ∗current);

text The text buffer
outbuffer The buffer to output the text to
num_bytes Size of the text block
start_position Beginning of text block
end_position End of text block

Toolkit Functions 179

5
Text Buffer Functions for Internationalization

Arguments

OlEndCurrentTextBufferWord() locates the end of a word in the
OlTextBuffer relative to a given current location. It returns the location of
the end of the current word. The return value will equal the given current
value if the current location is already at the end of a word. If the location is
not in a word, it returns the end of the “not word” region it is in.

Note – The location passed to OlEndCurrentTextBufferWord() is
modified. It contains the end of the current buffer word (or “not word”) at the
end of the call.

See Also
“OlPreviousTextBufferWord” on page 192,
“OlNextTextBufferWord” on page 189.

OlForwardScanTextBuffer
#include <Xol/Oltextbuff.h>

ScanResult OlForwardScanTextBuffer(
OlTextBufferPtr text ,
OlStr exp ,
TextLocation ∗location);

Arguments

OlForwardScanTextBuffer() scans towards the end of the buffer, for a
given expression in the OlTextBuffer starting at location . A ScanResult is
returned, which indicates the following:

SCAN_NOTFOUND The scan wrapped without finding a match.

SCAN_WRAPPED A match was found at a location before the start location.

SCAN_FOUND A match was found at a location after the start location.

SCAN_INVALID Either the location or the expression was invalid

text The text buffer
current Specifies current location

text The text buffer
exp Specifies the expression to scan for
location The location to start scanning at

180 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

See Also
“OlBackwardScanTextBuffer” on page 177.

OlFreeTextBuffer
#include <Xol/Oltextbuff.h>

void OlFreeTextBuffer(
OlTextBufferPtr text ,
TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlFreeTextBuffer() deallocates storage associated with a given
OlTextBuffer . See “OlReplaceBlockInTextBuffer” on page 197 for more
details of the TextUpdateFunction.

Note – The storage is not actually freed if the OlTextBuffer is still associated
with other update function/data pairs.

See Also
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197.

OlGetTextBufferBlock
#include <Xol/Oltextbuff.h>

OlStr OlGetTextBufferBlock(
OlTextBufferPtr text ,
TextLocation ∗start_location ,
TextLocation ∗end_location);

text The text buffer to free
exp The update function
data Data

Toolkit Functions 181

5
Text Buffer Functions for Internationalization

Arguments

OlGetTextBufferBlock() retrieves a text block from the text TextBuffer. The
block is defined as the characters between start_location and end_location
inclusive. It returns a pointer to a string containing the copy. If the parameters
are invalid NULL is returned.

Note – The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

See Also
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferCharAtLoc” on page 182,
“OlGetTextBufferLine” on page 183.

OlGetTextBufferBuffer
#include <Xol/Oltextbuff.h>

Buffer ∗OlGetTextBufferBuffer(
OlTextBufferPtr text ,
TextLine line);

Arguments

OlGetTextBufferBuffer() retrieves a pointer to the Buffer stored in
OlTextBuffer text for a line. This pointer is volatile; subsequent calls to any
OlTextBuffer routine may make it invalid. If a more permanent copy of this
Buffer is required the buffer utility, CopyBuffer() can be used to create a
private copy of it.

text The text buffer to retrieve block from
start_location Start of the text block
end_location End of the text block

text The text buffer
line The line to retrieve a pointer for

182 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

See Also
“OlGetTextBufferBlock” on page 180,
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197.

OlGetTextBufferCharAtLoc
#include <Xol/Oltextbuff.h>

OlStr OlGetTextBufferCharAtLoc(
OlTextBufferPtr text ,
TextLocation ∗location);

Arguments

OlGetTextBufferCharAtLoc() retrieves a character stored in the
OlTextBuffer at location. It returns either the pointer to the character itself or
NULL if location is outside the range of valid locations within the
OlTextBuffer .

See Also
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferBlock” on page 180,
“OlGetTextBufferLine” on page 183.

OlGetTextBufferFileName
#include <Xol/Oltextbuff.h>

String OlGetTextBufferFileName(
OlTextBufferPtr text);

Arguments

OlGetTextBufferFileName() returns the file name associated with the
buffer. Otherwise, it returns NULL.

text The text buffer
location The location at which to get a character

text The text buffer for which to get a filename.

Toolkit Functions 183

5
Text Buffer Functions for Internationalization

OlGetTextBufferLine
#include <Xol/Oltextbuff.h>

OlStr OlGetTextBufferLine(
OlTextBufferPtr text ,
TextLine lineindex);

Arguments

OlGetTextBufferLine() retrieves the contents of line from the
OlTextBuffer . It returns a pointer to a string containing the copy of the
contents of the line or NULL if the line is outside the range of valid lines in text.

Note – The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

See Also
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferCharAtLoc” on page 182,
“OlGetTextBufferBlock” on page 180.

OlGetTextUndoDeleteItem
#include <Xol/Oltextbuff.h>

OlTextUndoItem OlGetTextUndoDeleteItem(
OlTextBufferPtr text);

Arguments

OlGetTextUndoDeleteItem() returns a OlTextUndoItem struct containing
the value of “deleted” undo item. A copy of the deleted string is provided in
the returned struct.

text The text buffer
lineindex Index of the line to retrieve the contents for

text The text buffer for which to get the undo delete item.

184 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

OlGetTextUndoInsertItem
#include <Xol/Oltextbuff.h>

OlTextUndoItem OlGetTextUndoInsertItem(
OlTextBufferPtr text);

Arguments

OlGetTextUndoInsertItem() returns a OlTextUndoItem struct containing
the value of “insert” undo item. A copy of the insert string is provided in the
returned struct.

OlIncrementTextBufferLocation
#include <Xol/Oltextbuff.h>

TextLocation ∗OlIncrementTextBufferLocation(
OlTextBufferPtr text ,
TextLocation ∗location ,
TextLine line ,
TextPosition offset);

Arguments

OlIncrementTextBufferLocation() increments a location by lines and/or
offset characters. It returns a pointer to the modified starting location. If line or
offset are negative, the function performs a decrement operation. If the starting
location is NULL, NULL is returned. If the starting location or the resulting
location is invalid the pointer to the starting location is returned without
modification; otherwise, the starting location is modified and a pointer to the
starting location is returned.

Note – Do not expect the location passed to this function to remain unchanged.

text The text buffer for which to get the undo insert item

text The text buffer
location The location to increment
line The lines to increment by
offset The character offset to increment by

Toolkit Functions 185

5
Text Buffer Functions for Internationalization

See Also
“OlNextLocation” on page 189,
“OlPreviousLocation” on page 192.

OlIsTextBufferEmpty
#include <Xol/Oltextbuff.h>

Boolean OlIsTextBufferEmpty(
OlTextBufferPtr text);

Arguments

OlIsTextBufferEmpty() returns TRUE if the text buffer is empty. Otherwise,
it returns FALSE.

OlIsTextBufferModified
#include <Xol/Oltextbuff.h>

Boolean OlIsTextBufferModified(
OlTextBufferPtr text);

Arguments

OlIsTextBufferModified() returns TRUE if the text buffer has been
modified since the last save. Otherwise, it returns FALSE.

OlLastCharInTextBufferLine
#include <Xol/Oltextbuff.h>

int OlLastCharInTextBufferLine(
OlTextBufferPtr text ,
TextLine line);

text The text buffer to test

text The text buffer

186 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Arguments

OlLastCharInTextBufferLine() returns the character offset of the last
character in the text buffer line.

OlLastTextBufferLine
#include <Xol/Oltextbuff.h>

TextLine OlLastTextBufferLine(
OlTextBufferPtr text);

Arguments

OlLastTextBufferLine() returns the last text buffer line number.

OlLastTextBufferLocation
#include <Xol/Oltextbuff.h>

TextPosition OlLastTextBufferLocation(
OlTextBufferPtr text);
TextLocation ∗last);

Arguments

OlLastTextBufferLocation() returns the pointer to the last valid
TextLocation in the OlTextBuffer associated with text. If the last
argument is NULL, space for last TextLocation is allocated; otherwise, the
last argument contains the last valid TextLocation .

See Also
“OlLastTextBufferPosition” on page 187.

text The text buffer
line The line to find the last character offset for

text The text buffer for which to find the last line number

text The text buffer
last Address to return the last location to

Toolkit Functions 187

5
Text Buffer Functions for Internationalization

OlLastTextBufferPosition
#include <Xol/Oltextbuff.h>

TextPosition OlLastTextBufferPosition(
OlTextBufferPtr text);

Arguments

OlLastTextBufferPosition() returns the last valid TextPosition in the
OlTextBuffer associated with text.

See Also
“OlLastTextBufferLocation” on page 186.

OlLineOfPosition
#include <Xol/Oltextbuff.h>

TextLine OlLineOfPosition(
OlTextBufferPtr text ,
TextPosition position);

Arguments

OlLineOfPosition() translates a position in the OlTextBuffer to a line
index. It returns the translated line index, or EOF if the position is invalid.

See Also
“OlLineOfPosition” on page 187,
“OlPositionOfLocation” on page 191,
“OlLocationOfPosition” on page 188.

OlLinesInTextBuffer
#include <Xol/Oltextbuff.h>

int OlLinesInTextBuffer(
OlTextBufferPtr text);

text The text buffer

text The text buffer

188 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Arguments

OlLinesInTextBuffer() returns the number of lines in the given
OlTextBuffer .

OlLocationOfPosition
#include <Xol/Oltextbuff.h>

TextLocation ∗OlLocationOfPosition(
OlTextBufferPtr text ,
TextPosition position ,
TextLocation ∗location);

Arguments

OlLocationOfPosition() translates a position in the OlTextBuffer to a
TextLocation . It expects a pointer to a TextLocation in the location
argument to deposit the translated TextLocation . If the location argument is
NULL, it allocates space. It returns a pointer to the allocated TextLocation or
the passed TextLocation , with the translated value deposited in it. If the
position is invalid, the Buffer pointer buffer is set to NULL and the line and
offset members are set to the last valid location in the OlTextBuffer ;
otherwise, the buffer is set to a non-NULL (though useless) value.

Note – The storage space for TextLocation , if not provided by the caller, is
allocated by this function.

See Also
“OlLineOfPosition” on page 187,
“OlPositionOfLocation” on page 191,
“OlLocationOfPosition” on page 188.

text The text buffer to get the number of lines for

text The text buffer
position The position to translate to a TextLocation

location The address to store the translated TextLocation

Toolkit Functions 189

5
Text Buffer Functions for Internationalization

OlNextLocation
#include <Xol/Oltextbuff.h>

TextLocation ∗OlNextLocation(
OlTextBufferPtr text ,
TextLocation ∗current);

Arguments

OlNextLocation() returns the pointer to the TextLocation that follows
the given current location in an OlTextBuffer . If the current location points
to the end of the OlTextBuffer , this function wraps to the beginning of the
OlTextBuffer .

Note – The location passed to this function is modified. It contains the next
location at the end of the call.

See Also
“OlPreviousLocation” on page 192.

OlNextTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation ∗OlNextTextBufferWord(
OlTextBufferPtr text ,
TextLocation ∗current);

Arguments

OlNextTextBufferWord() locates the beginning of the next word from a
given current location in an OlTextBuffer . If the current location is within
the last word in the OlTextBuffer , the function wraps to the beginning of the
OlTextBuffer .

text The text buffer
current The current location

text The text buffer
current The current location

190 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Note – The location passed to this function is modified. It contains the start of
the next buffer word at the end of the call.

See Also
“OlPreviousTextBufferWord” on page 192,
“OlStartCurrentTextBufferWord” on page 201.

OlNumBytesInTextBufferLine
#include <Xol/Oltextbuff.h>

int OlNumBytesInTextBufferLine(
OlTextBufferPtr text ,
TextLine line);

Arguments

OlNumBytesInTextBufferLine() returns the number of bytes in line.

OlNumCharsInTextBufferLine
#include <Xol/Oltextbuff.h>

int OlNumCharsInTextBufferLine(
OlTextBufferPtr text ,
TextLine line);

Arguments

OlNumCharsInTextBufferLine() returns the number of characters in the
specified line.

text The text buffer
line The line to get the number of bytes for

text The text buffer
line The line for which to get the number of chars

Toolkit Functions 191

5
Text Buffer Functions for Internationalization

OlNumUnitsInTextBufferLine
#include <Xol/Oltextbuff.h>

int OlNumUnitsInTextBufferLine(
OlTextBufferPtr text ,
TextLine line);

Arguments

OlNumCharsInTextBufferLine() returns the number of units in the
specified line.

OlPositionOfLine()
#include <Xol/Oltextbuff.h>

TextPosition OlPositionOfLine(
OlTextBufferPtr text ,
TextLine lineindex);

Arguments

OlPositionOfLine() translates a lineindex in the OlTextBuffer to a
TextPosition . It returns the translated TextPosition or EOF if the lineindex
is invalid.

OlPositionOfLocation
#include <Xol/Oltextbuff.h>

TextPosition OlPositionOfLocation(
OlTextBufferPtr text ,
TextLocation ∗location);

Arguments

text The text buffer
line The line for which to get the number of units

text The text buffer
lineindex The line index to translate into a text position

text The text buffer
location The location to translate to a TextPosition

192 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

OlPositionOfLocation() translates a location in the OlTextBuffer to a
TextPosition . It returns the translated TextPosition or EOF if the location
is invalid.

OlPreviousLocation
#include <Xol/Oltextbuff.h>

TextLocation ∗OlPreviousLocation(
OlTextBufferPtr text ,
TextLocation ∗current);

Arguments

OlPreviousLocation() function the pointer to the TextLocation that
precedes the given current location in a OlTextBuffer . If the current location
points to the beginning of the OlTextBuffer , this function wraps to the end
of the OlTextBuffer .

Note – The current location is modified. It contains the previous location at the
end of the call.

See Also
“OlNextLocation” on page 189.

OlPreviousTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation ∗OlPreviousTextBufferWord(
OlTextBufferPtr text ,
TextLocation ∗current);

Arguments

text The text buffer
current The current location

text The text buffer
current The current location

Toolkit Functions 193

5
Text Buffer Functions for Internationalization

OlPreviousTextBufferWord() locates the beginning of a word in a
OlTextBuffer relative to a given current location. It returns the location of
the beginning of the word that precedes the given current location. If the
current location is within a word, this function will skip over the current word.
If the current word is the first word in the OlTextBuffer , the function wraps
to the end of the OlTextBuffer .

Note – The location passed to this function is modified. It contains the start of
the previous buffer word at the end of the call.

See Also
“OlPreviousTextBufferWord” on page 192

OlReadFileIntoTextBuffer
#include <Xol/Oltextbuff.h>

OlTextBufferPtr OlReadFileIntoTextBuffer(
OlStrRep strrep ,
char ∗filename ,
TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlReadFileIntoTextBuffer() reads the given file into a newly allocated
OlTextBuffer . The supplied TextUpdateFunction and data pointer are
associated with this OlTextBuffer . See “OlReplaceBlockInTextBuffer” on
page 197 for more details of the TextUpdateFunction .

See Also
“OlReadStringIntoTextBuffer” on page 194.

strrep The string representation (OL_SB_STR_REP, OL_WC_STR_REP, or
OL_MB_STR_REP)

filename The file to be read
update_func The update function
data Data

194 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

OlReadStringIntoTextBuffer
#include <Xol/Oltextbuff.h>
OlTextBufferPtr OlReadStringIntoTextBuffer(

OlStrRep strrep ,
char ∗string ,
TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlReadStringIntoTextBuffer() copies the given string into a newly
allocated OlTextBuffer . The supplied TextUpdateFunction and data
pointer are associated with this OlTextBuffer . See
“OlReplaceBlockInTextBuffer” on page 197 for more details of the
TextUpdateFunction .

See Also
“OlReadFileIntoTextBuffer” on page 193.

OlRegisterAllTextBufferScanFunctions
#include <Xol/Oltextbuff.h>

void OlRegisterAllTextBufferScanFunctions(
OlStrRep strrep ,
OlStrScanDefFunc forward_scan_func ,
OlStrScanDefFunc backward_scan_func);

Arguments

strrep The string representation (OL_SB_STR_REP,
OL_WC_STR_REP, or OL_MB_STR_REP

string The string to be read
update_func The update function
data Data

strrep The string representation (OL_SB_STR_REP,
OL_WC_STR_REP, or OL_MB_STR_REP

forward_scan_func The forward scan function to be used by all OlTextBuffers
backward_scan_func The backward scan function to be used by all OlTextBuffers

Toolkit Functions 195

5
Text Buffer Functions for Internationalization

The forward_scan_func and backward_scan_func arguments specify
OlStrScanDefFunc() functions. OlStrScanDefFunc is defined as:

typedef XtPointer (∗OlStrScanDefFunc)(
OlStr string ,
OlStr curp ,
OlStr expression);

OlRegisterAllTextBufferWordDefinition() provides the capability to
replace the text buffer functions used by all OlTextBuffers .

OlRegisterAllTextBufferWordDefinition
#include <Xol/Oltextbuff.h>

void OlRegisterAllTextBufferWordDefinition(
OlStrRep strrep ,
OlStrWordDefFunc word_definition_func);

Arguments

The word_definition_func argument specifies an OlStrWordDefFunc() , which
is defined as:

typedef Boolean (∗OlStrWordDefFunc)(OlStr rc);

OlRegisterAllTextBufferWordDefinition() provides the capability to
replace the word definition function used by all OlTextBuffers . These
functions are responsible for returning TRUE if the character that rc points to
can occur in a word, and FALSE otherwise. Calling this function with NULL
reinstates the default word definition function associated with the text format.

OlRegisterPerTextBufferScanFunctions
#include <Xol/Oltextbuff.h>

void OlRegisterPerTextBufferScanFunctions(
OlTextBufferPtr text ,
OlStrScanDefFunc forward_scan_func ,
OlStrScanDefFunc backward_scan_func);

strrep The string representation
word_definition_func The word definition function used by all OlTextBuffers

196 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Arguments

The arguments forward_scan_func and backward_scan_func specify
OlStrScanDefFunc() functions. OlStrScanDefFunc is defined as:

typedef XtPointer (∗OlStrScanDefFunc)(
OlStr string ,
OlStr curp ,
OlStr expression);

OlRegisterPerTextBufferScanFunctions() provides the capability to
replace the scan functions used by the OlForwardScanTextBuffer() and
OlBackwardScanTextBuffer() functions, as applied to the passed
OlTextBuffer only.

OlRegisterAllTextBufferScanFunctions() provides the capability to
replace the scan functions used by the OlForwardScanTextBuffer() and
OlBackwardScanTextBuffer() functions, as applied to all
OlTextBuffers . These functions are responsible for returning either a pointer
to the beginning of a match for the expression or NULL. Calling this procedure
with NULL function pointers reinstates the default regular expression facility
associated with the text format.

OlRegisterPerTextBufferWordDefinition
#include <Xol/Oltextbuff.h>

void OlRegisterPerTextBufferWordDefinition(
OlTextBufferPtr text ,
OlStrWordDefFunc word_definition_func);

Arguments

The word_definition_func argument specifies an OlStrWordDefFunc() , which
is defined as:

typedef Boolean (∗OlStrWordDefFunc)(OlStr rc);

strrep The string representation (OL_SB_STR_REP,
OL_WC_STR_REP, or OL_MB_STR_REP)

forward_scan_func The forward scan function used by OlTextBuffers
backward_scan_func The backward scan function used by OlTextBuffers

text The text buffer
word_definition_func The new word definition function

Toolkit Functions 197

5
Text Buffer Functions for Internationalization

OlRegisterPerTextBufferWordDefinition() provides the capability to
replace the word definition function used by the passed OlTextBuffer .

OlRegisterTextBufferUpdate
#include <Xol/Oltextbuff.h>

void OlRegisterTextBufferUpdate(
OlTextBufferPtr text ,
TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlRegisterTextBufferUpdate() associates the TextUpdateFunction
update_func and data pointer data with the given OlTextBuffer text. This
update function will be called whenever an update operation is performed on
the OlTextBuffer . See “OlReplaceBlockInTextBuffer” on page 197 for more
details of the TextUpdateFunction .

Note – Calling this function increments a reference count mechanism used to
determine when to actually free the OlTextBuffer . Calling the function with
a NULL value for the function circumvents this mechanism.

See Also
“OlUnregisterTextBufferUpdate” on page 203,
“OlReadStringIntoTextBuffer” on page 194,
“OlReadFileIntoTextBuffer” on page 193.

OlReplaceBlockInTextBuffer
#include <Xol/Oltextbuff.h>

EditResult OlReplaceBlockInTextBuffer(
OlTextBufferPtr text ,
TextLocation ∗startloc ,
TextLocation ∗endloc ,
OlStr string ,

text The text buffer
update_func The update function
data Data

198 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlReplaceBlockInTextBuffer() updates the contents of the TextBuffer
text. The characters stored between startloc (inclusive) and endloc (exclusive) are
deleted and the string is inserted after startloc. If the edit succeeds and if
TextUpdateFunction update_func is associated with TextBuffer text, then
update_func is called with the following parameters:

(∗update_func)(XtPointer d, TextBuffer ∗text , EDIT_SUCCESS)

All the other text update functions associated with TextBuffer text are called
with the following parameters:

(XtPointer data , TextBuffer ∗text , EDIT_FAILURE)

OlReplaceBlockInTextBuffer() stores the details of the editing operation
it performs in text->deleted and text->insert OlTextUndoItem structures. The
contents of these structures may be used for implementing an Undo
mechanism. The hints provided in text->deleted.hint and text->insert.hint are an
inclusive OR of:

#define TEXT_BUFFER_NOP (0)
#define TEXT_BUFFER_DELETE_START_LINE (1L<<0)
#define TEXT_BUFFER_DELETE_START_CHARS (1L<<1)
#define TEXT_BUFFER_DELETE_END_LINE (1L<<2)
#define TEXT_BUFFER_DELETE_END_CHARS (1L<<3)
#define TEXT_BUFFER_DELETE_JOIN_LINE (1L<<4)
#define TEXT_BUFFER_DELETE_SIMPLE (1L<<5)
#define TEXT_BUFFER_INSERT_SPLIT_LINE (1L<<6)
#define TEXT_BUFFER_INSERT_LINE (1L<<7)
#define TEXT_BUFFER_INSERT_CHARS (1L<<8)

text The text buffer
startloc The start location
endloc the end location
string The string to replace the block with
update_func The update function
data Data

Toolkit Functions 199

5
Text Buffer Functions for Internationalization

The meaning of each of these values is described below:

See Also
“OlReplaceCharInTextBuffer” on page 199.

OlReplaceCharInTextBuffer
#include <Xol/Oltextbuff.h>

EditResult OlReplaceCharInTextBuffer(
OlTextBufferPtr text ,
TextLocation ∗location ,
OlStr c ,
TextUpdateFunction update_func ,
XtPointer data);

TEXT_BUFFER_NOP No edit operation.

TEXT_BUFFER_DELETE_START_LINE The deleted block started at beginning of some
line.

TEXT_BUFFER_DELETE_START_CHARS The deleted block did not start at the
beginning of some line.

TEXT_BUFFER_DELETE_END_LINE The end of the deleted block coincided with
the end of some line.

TEXT_BUFFER_DELETE_END_CHARS Some characters were deleted from the end of
some line.

TEXT_BUFFER_DELETE_JOIN_LINE Some characters were deleted and two lines
were joined into a single line.

TEXT_BUFFER_DELETE_SIMPLE The whole of the deleted block was confined to
a single line.

TEXT_BUFFER_INSERT_SPLIT_LINE One line was split into two lines and some
characters were inserted at the split location.

TEXT_BUFFER_INSERT_LINE A line was inserted without spliting an
existing line.

TEXT_BUFFER_INSERT_CHARS Some characters were inserted at the beginning
of some existing line.

200 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Arguments

OlReplaceCharInTextBuffer() replaces the character in the
OlTextBuffer .

See Also
“OlReplaceBlockInTextBuffer” on page 197.

OlSaveTextBuffer
#include <Xol/Oltextbuff.h>

SaveResult OlSaveTextBuffer(
OlTextBufferPtr text ,
char ∗filename);

Arguments

OlSaveTextBuffer() writes the contents of the OlTextBuffer to the file
filename. It returns a SaveResult , which can be SAVE_FAILURE or
SAVE_SUCCESS.

OlSetTextUndoDeleteItem
#include <Xol/Oltextbuff.h>

void OlSetTextUndoDeleteItem(
OlTextBufferPtr text ,
OlTextUndoItem text_undo_deleted);

Arguments

text The text buffer
location The location of text
c replacement buffer
update_func The update function
data Data

text The text buffer
filename The filename to write the text buffer to

text The text buffer
text_undo_deleted The item for which the delete was undone

Toolkit Functions 201

5
Text Buffer Functions for Internationalization

OlSetTextUndoDeleteItem() sets the “deleted” OlTextUndoItem of the
OlTextBuffer to the value of the passed OlTextUndoItem . The “deleted”
string is copied in. OlTextUndoItem is defined as:

typedef struct _OlTextUndoItem {
OlStr string ;
TextLocation start ;
TextLocation end ;
TextUndoHint hint ;

} OlTextUndoItem;

OlSetTextUndoInsertItem
#include <Xol/Oltextbuff.h>

void OlSetTextUndoInsertItem(
OlTextBufferPtr text ,
OlTextUndoItem text_undo_insert);

Arguments

OlSetTextUndoInsertItem() sets the “insert” OlTextUndoItem of the
OlTextBuffer to the value of the passed OlTextUndoItem . The “insert”
string is copied in.

OlStartCurrentTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation ∗OlStartCurrentTextBufferWord(
OlTextBufferPtr text ,
TextLocation ∗current);

Arguments

OlStartCurrentTextBufferWord() locates the beginning of a word in the
OlTextBuffer relative to a given current location. It returns the location of
the beginning of the current word.

text The text buffer
text_undo_insert The item for which the insert was undone

text The text buffer
current The location

202 OLIT Reference Manual—August 1994

5
Text Buffer Functions for Internationalization

Note – This return value will equal the given current value if the current
location is the beginning of a word. If the location is not in a word, it returns
the start of the “not word” region it is in. The location passed to this function
is modified. It contains the start of the current buffer word (or “not word”) at
the end of the call.

See Also
“OlPreviousTextBufferWord” on page 192,
“OlNextTextBufferWord” on page 189.

OlTextEditOlTextBuffer
#include <Xol/buffutil.h>
#include <Xol/Oltextbuff.h>
#include <Xol/Dynamic.h>
#include <Xol/TextEdit.h>

OlTextBufferPtr OlTextEditOlTextBuffer(
TextEditWidget ctx);

OlTextEditOlTextBuffer() retrieves the OlTextBufferPtr associated
with the TextEdit widget ctx. This buffer exists only when the value of
XtNtextFormat for the widget is not OL_SB_STR_REP. This pointer can be
used to access the facilities provided by the multibyte functions. In case
XtNtextFormat is OL_SB_STR_REP, this function returns a NULL pointer.

OlUnitOffsetOfLocation
#include <Xol/Oltextbuff.h>

UnitPosition OlUnitOffsetOfLocation(
OlTextBufferPtr text ,
TextLocation ∗loc);

Arguments

OlUnitOffsetOfLocation() returns the font offset corresponding to the
TextLocation offset passed to it. The units are char for single-byte and
multi-byte and wchar_t for wide character.

text The text buffer
loc The location

Toolkit Functions 203

5
Text Buffer Functions for Internationalization

OlUnregisterTextBufferUpdate
#include <Xol/Oltextbuff.h>

int OlUnregisterTextBufferUpdate(
OlTextBufferPtr text ,
TextUpdateFunction update_func ,
XtPointer data);

Arguments

OlUnregisterTextBufferUpdate() disassociates the
TextUpdateFunction and data pointer data with the given OlTextBuffer
text. If the function/data pointer pair is not associated with the given
OlTextBuffer , zero is returned; otherwise, the association is dissolved and 1
is returned. See “OlReplaceBlockInTextBuffer” on page 197 for more details of
the TextUpdateFunction .

See Also
“OlRegisterTextBufferUpdate” on page 197,
“OlFreeTextBuffer” on page 180.

text The text buffer
update_func The update function to disassociate
data Data

204 OLIT Reference Manual—August 1994

5
Text Selection Operations

Text Selection Operations
The Caption, NumericField, StaticText, TextEdit, TextField, and TextLine
widgets use the following operations to copy and move text.

Setting Insert Point

Clicking SELECT sets the insert point at the boundary between two characters
or spaces nearest the pointer. This makes an inactive caret active and highlights
the header of the main window (base window or popup window) containing
the specific text widget, to show which window has the input focus. Any active
selection on the screen is deselected.

Wipethrough Selection

Pressing and dragging SELECT marks the bounds of a new selection and
highlights it, and deselects any other active selection on the screen. While
SELECT is pressed, the active or inactive caret that marks the insert point is
invisible, but when SELECT is released, the insert point is left at the position of
the release. This does not make the insert point (caret) active if it is not already
active.

The selection starts with the character where SELECT is pressed and extends to
the character where SELECT is released. If the pointer moves outside the widget
and the widget can scroll in that direction (i.e., there is a scrollbar for that
direction), the widget scrolls additional text into the widget and adds it to the
selection. The rate at which text scrolls into the widget is the same rate at
which pressing SELECT on the arrows of the Scrollbar scrolls the widget.

Deletion of the New Selection

If new text is entered from the keyboard or pasted from the CLIPBOARD, it
replaces the selection.

Toolkit Functions 205

5
Text Selection Operations

Adjusted Selection

Clicking SELECT, moving the pointer, and clicking ADJUST marks the bounds of
a selection and highlights it. A subsequent click of ADJUST changes the end
bound of the selection. The ADJUST may also follow a wipe-through selection.
The selection starts with the character where SELECT was clicked and extends
to the character where ADJUST is clicked. The insert point is moved to the
position of the ADJUST. As above, deletion of the new selection is pending.

Multiclick Selection

Double-clicking SELECT selects the word nearest the pointer. In case of a tie,
the word to the left is selected. Triple-clicking SELECT selects the entire line,
and quadruple-clicking selects the entire content. The selection is highlighted
and the insert point is left at the position of the multi-click.

• Copying Text – Using COPY copies any selected text to the CLIPBOARD and
deselects it.

• Cutting Text – Using CUT moves any selected text to the CLIPBOARD and
deletes it from the Input Field.

• Pasting Text – After setting the insert point, using PASTE copies text from the
CLIPBOARD as though it were typed in, leaving the insert point at the end of
the pasted text. This will replace any text currently selected in the widget.
Note that the data on the CLIPBOARD may have come from outside the
input field, but it must be text. If the CLIPBOARD is empty, the system beeps.

206 OLIT Reference Manual—August 1994

5
Toolkit Resource Functions

Toolkit Resource Functions

OlGetApplicationValues
#include <Xol/OpenLook.h>

void OlGetApplicationValues(
Widget widget ,
ArgList args ,
Cardinal num_args);

OlGetApplicationValues() retrieves the value of any of the OLIT Toolkit
Resources listed in Table 2-1 on page 7. OLIT toolkit resources have an
application-wide scope. The widget argument is used to derive the screen and
display. The args argument is a list of name/address pairs that contain the
resource names and the addresses into which the resource values are to be
stored. The num_args argument specifies the number of name/address pairs in
args. If the resource name supplied in the args list is not recognized by the
toolkit, the corresponding supplied address is not accessed by the toolkit. An
application should query the value of an OLIT toolkit resource each time it
needs it.

OlSetApplicationValues
#include <Xol/OpenLook.h>

void OlSetApplicationValues(
Widget widget ,
ArgList args ,
Cardinal num_args);

OlSetApplicationValues() sets the OLIT toolkit resources values. The
widget and num_args arguments are used as in OlGetApplicationValues() .
The args argument is a list of name/value pairs that contain the resource
names and the values; as with XtSetValues() , if a resource name does not fit
into an XtArgVal , the corresponding args value field contains a pointer to the
resource value.

See Also

XtGetValues() and XtSetValues() in the Xt Intrinsics Reference Manual.

Toolkit Functions 207

5
Virtual Event Functions

Virtual Event Functions
For all functions discussed here, the registration order determines the search
order when doing a lookup.

LookupOlInputEvent
#include <Xol/Dynamic.h>

OlInputEvent LookupOlInputEvent(
Widget w,
XEvent ∗event ,
KeySym ∗keysym ,
char ∗∗buffer ,
int ∗length);

LookupOlInputEvent() decodes the event for widget w to an
OlInputEvent . See the table of OLIT Activation Types (Table 3-1 on page 65)
for a list of the OlInputEvent values (listed in the “Activation Type” column)
this function may return. The event passed should be a ButtonPress,
ButtonRelease, or KeyPress event. LookupOlInputEvent() attempts to
decode this event based on the settings of the OPEN LOOK defined dynamic
mouse and keyboard settings.

If the event is a KeyPress, the function may return the keysym, buffer, and/or
length of the buffer returned from a call to XLookupString() . It returns these
values if non-NULL values are provided by the caller.

OlDetermineMouseAction
#include <Xol/Dynamic.h>

ButtonAction OlDetermineMouseAction(
Widget w,
XEvent ∗event);

OlDetermineMouseAction() determines the kind of mouse gesture that is
being attempted: it will return one of the values MOUSE_CLICK,
MOUSE_MULTI_CLICK, or MOUSE_MOVE. This function is normally called
immediately upon receipt of a mouse button press event. It uses the current
settings for the XtNmouseDampingFactor and XtNmultiClickTimeout
resources to determine the kind of gesture being made.

208 OLIT Reference Manual—August 1994

5
Virtual Event Functions

OlDetermineMouseAction() performs an active pointer grab. This grab is
released for the CLICK type actions, but not for MOUSE_MOVE. It is the
responsibility of the caller to ungrab the pointer if the action is MOUSE_MOVE.

Example
static void ButtonConsumeCB (w, client_data, call_data)
widget w;
XtPointer client_data;
XtPointer call_data;
{
Position x, y;
OlVirtualEvent ve;

ve = (OlVirtualEvent) call_data;

switch (ve->virtual_name) {
case OL_SELECT:

switch(OlDetermineMouseAction(widget, event)) {
case MOUSE_MOVE:

OlGrabDragPointer(widget,
OlGetMoveCursor(XtScreen(widget), None);

OlDragAndDrop(widget, &drop_window, &x, &y);
DropOn(widget, drop_window, x, y,);
OlUngrabDragPointer(widget);
break;

case MOUSE_CLICK:
ClickSelect(widget,);
break;

case MOUSE_MULTI_CLICK:
MultiClickSelect(widget,);
break;

}
break;

default:
OlReplayBtnEvent(widget, NULL, event);
break;

}
}

Toolkit Functions 209

5
Virtual Event Functions

OlReplayBtnEvent
#include <Xol/Dynamic.h>

void OlReplayBtnEvent(
Widget w,
caddr_t client_data ,
XEvent ∗event);

OlReplayBtnEvent() replays a button press event to the next window
(towards the root) that is interested in button events. This provides a means of
propagating events up a window tree.

OlClassSearchIEDB
#include <Xol/OpenLook.h>

void OlClassSearchIEDB(
WidgetClass wc;
OlVirtualEventTable db);

OlClassSearchIEDB() registers a given database on a specific widget class.
The db value was returned from a call to OlCreateInputEventDB() . Once a
database is registered with a given widget class, the OlLookupInputEvent()
procedure (if db_flag is OL_DEFAULT_IE or OLTEXT_IE) will include this
database in the search stack if the given widget ID is a subclass of this widget
class.

Example
/* To create a client application database */

/* start with a big value to avoid */
/* the "virtual_name" collision */

#define OL_MY_BASE 1000
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNmyDrawLineBtn "myDrawLineBtn"
#define XtNmyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartKey "mySavePartKey"

static OlKeyOrBtnRec OlMyBtnInfo[] = {
 /*name default_value virtual_name */

};

210 OLIT Reference Manual—August 1994

5
Virtual Event Functions

static OlKeyOrBtnRec OlMyKeyInfo[] = {
 /*name default_value virtual_name */

 { XtNmyRedisplayKey, "c<F5>", OL_MY_REDISPLAYKEY },
 { XtNmySavePartKey, "c<F5>", OL_MY_SAVEPARTKEY },
};

static OlVirtualEventTable OlMyDB;

...
OlMyDB = OlCreateInputEventDB(
 w,
 OlMyKeyInfo, XtNumber(OlMyKeyInfo),
 OlMyBtnInfo, XtNumber(OlMyBtnInfo)
);

...
 /* assume: all stub widgets are interested in OlMyDB */
OlClassSearchIEDB(stubWidgetClass, OlMyDB);
 /* once this step is done, all stub widget instances */
 /* will receive the OlMyDB commands after a call to */
 /* OlLookupInputEvent() , or in the XtNconsumeEvent */
 /* callback’s OlVirtualEvent structure supplied with */
 /* the call_data field. */

OlClassSearchTextDB
#include <Xol/OpenLook.h>

void OlClassSearchTextDB(
WidgetClass wc);

OlClassSearchTextDB() registers the OPEN LOOK TEXT database on a
specific widget class. Once the OPEN LOOK TEXT database is registered with a
given widget class, the OlLookupInputEvent() procedure (if db_flag is
OL_DEFAULT_IE or OLTEXT_IE) will include this database in the search stack if
the given widget ID is a subclass of this widget class.

Example
/* assume: all stub widgets are interested in the */
/* OPEN LOOK TEXT database */

OlClassSearchTextDB(stubWidgetClass);
/* once this step is done, all stub widget instances */
/* will receive OPEN LOOK TEXT commands after a */

Toolkit Functions 211

5
Virtual Event Functions

/* call to OlLookupInputEvent() , or in the */
/* XtNconsumeEvent callback’s OlVirtualEvent */
/* structure supplied with the call_data field. */

OlCreateInputEventDB
#include <Xol/OpenLook.h>

OlVirtualEventTable OlCreateInputEventDB(
Widget w,
OlKeyOrBtnInfo key_info ,
int num_key_info ,
OlKeyBtnInfo btn_info ,
int num_btn_info);

OlCreateInputEventDB() creates a client specific Key and/or Button
database. This function returns a database pointer if the call to this function is
successful; otherwise, a NULL pointer is returned. Mapping for a new virtual
command can be composed from the mappings of a previously defined virtual
command. The returned value from this function is an opaque pointer
(OlVirtualEventTable). A client application should use this pointer when
registering and/or looking up this database.

typedef struct _OlVirtualEventInfo ∗OlVirtualEventTable;

The key_info and btn_info parameters are pointers to an OlKeyOrBtnRec
structure.

typedef struct {
String name;
String default_value ; /* comma-separated string */
OlVirtualName virtual_name ;

} OlKeyOrBtnRec, ∗OlKeyOrBtnInfo;

Note – A client application can create a Key-only database by specifying a
NULL btn_info. The same applies to a Button-only database. Each virtual
command can have two different bindings because the OLIT toolkit allows the
alternate key or button sequence. The OLIT toolkit already has a set of
predefined OPEN LOOK virtual names. It is important that the virtual_name
value of a client application database starts with a big value to avoid a virtual
name collision.

212 OLIT Reference Manual—August 1994

5
Virtual Event Functions

Example
/* To create a client application database */
/* start with a big value to avoid */
/* the "virtual_name" collision */

#define OL_MY_BASE 1000
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNmyDrawLineBtn "myDrawLineBtn"
#define XtNmyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartKey "mySavePartKey"

static OlKeyOrBtnRec OlMyBtnInfo[] = {
 /*name default_value virtual_name */

};

static OlKeyOrBtnRec OlMyKeyInfo[] = {
 /*name default_value virtual_name */

 { XtNmyRedisplayKey, "c<F5>", OL_MY_REDISPLAYKEY },
 { XtNmySavePartKey, "c<F5>", OL_MY_SAVEPARTKEY },
};

static OlVirtualEventTable OlMyDB;

...
OlMyDB = OlCreateInputEventDB(

w,
OlMyKeyInfo, XtNumber(OlMyKeyInfo),
OlMyBtnInfo, XtNumber(OlMyBtnInfo)

);
...

OlLookupInputEvent
#include <Xol/OpenLook.h>

void OlLookupInputEvent(
Widget w,
XEvent ∗xevent ,
OlVirtualEvent virtual_event_ret ,
XtPointer db_flag);

OlLookupInputEvent() translates an X event to an OPEN LOOK virtual
event. The X event (xevent) could be a KeyPress, ButtonPress, ButtonRelease,
EnterNotify, LeaveNotify, or MotionNotify event. The procedure attempts to
translate this event based on the setting of the OPEN LOOK-defined dynamic

Toolkit Functions 213

5
Virtual Event Functions

databases. The virtual_event_ret parameter is a pointer to an
OlVirtualEventRec structure in which the OPEN LOOK virtual event is
returned:

typedef struct {
Boolean consumed ;
XEvent ∗xevent ;
Modifiers dont_care ;
OlVirtualName virtual_name ;
KeySym keysym ;
String buffer ;
Cardinal length ;
Cardinal item_index ;

} OlVirtualEventRec, ∗OlVirtualEvent;

(This structure is also used by the XtNconsumeEvent resource’s callbacks.)

See the table of OLIT Activation Types (Table 3-1 on page 65) for a list of the
values (listed in the “Activation Type” column) that may be returned in the
virtual_name member of the virtual_event_rec. If the X event is a KeyPress, the
keysym, buffer, and length information will be included in virtual_event_ret;
OlLookupInputEvent() obtains these values from XLookupString() .

The (w, db_flag) pair determines the searching database(s). Valid values for the
db_flag parameter are OL_DEFAULT_IE, OL_CORE_IE, and OL_TEXT_IE. If the
db_flag value is not OL_DEFAULT_IE, then only the given database (for example,
OL_TEXT_IE means: search the OPEN LOOK TEXT database) will be searched;
otherwise, a search stack will be built. This stack is based on the widget
information (w) and the registering order to determine the searching
database(s). Once this stack is built, the procedure searches in a LIFO (Last In
First Out) manner.

Most OLIT widgets have an XtNconsumeEvent callback. When this callback is
called, the call_data field is a pointer to an OlVirtualEventRec structure that
is filled in with the results of calling OlLookupInputEvent() with the db_flag
set to OL_DEFAULT_IE.

Example
OlVirtualEventRec ve;

 /* To look up the OPEN LOOK CORE database */
OlLookupInputEvent(w, xevent, &ve, OL_CORE_IE);
switch (ve.virtual_name) {

case OL_UNKNOWN_INPUT:

214 OLIT Reference Manual—August 1994

5
Virtual Event Functions

...
case OL_UNKNOWN_KEY_INPUT:

...
case OL_ADJUST:

printf ("pressed the adjustBtn\n");
...

case OL_ADJUSTKEY:
printf ("pressed the adjustKey\n");
...

}

...
OlVirtualEventRec ve;
 /* To look up the OPEN LOOK TEXT database */
OlLookupInputEvent(w, xevent, &ve, OLTEXT_IE);
switch (ve.virtual_name) {

...
case OL_DOCEND:

printf ("pressed the docEndKey\n");
...

case OL_LINEEND:
printf ("pressed the lineEndKey\n");
...

}
...

OlVirtualEventRec ve;
 /* To look up all possible databases */
 /* assume: "w" is a textfield widget */
OlLookupInputEvent(w, xevent, &ve, OL_DEFAULT_IE);
switch (ve.virtual_name) {

...
case OL_ADJUST:

printf ("pressed the adjustBtn\n");
...

case OL_ADJUSTKEY:
printf ("pressed the adjustKey\n");
...

case OL_DOCEND:
printf ("pressed the docEndKey\n");
...

case OL_LINEEND:
printf ("pressed the lineEndKey\n");
...

}

Toolkit Functions 215

5
Virtual Event Functions

OlWidgetSearchIEDB
#include <Xol/OpenLook.h>

void OlWidgetSearchIEDB(
Widget w,
OlVirtualEventTable db);

OlWidgetSearchIEDB() registers a given database on a specific widget
instance. The db value was returned from a call to
OlCreateInputEventDB() . Once a database is registered with a given
widget instance, the OlLookupInputEvent() procedure (if db_flag is
OL_DEFAULT_IE or OL_TEXT_IE) will include this database in the search stack if
the given widget ID is this widget instance.

Example
/* To create a client application database */
/* start with a big value to avoid */
/* the "virtual_name" collision */

#define OL_MY_BASE 1000
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNmyDrawLineBtn "myDrawLineBtn"
#define XtNmyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartKey "mySavePartKey"

static OlKeyOrBtnRec OlMyBtnInfo[] = {
 /*name default_value virtual_name */

};

static OlKeyOrBtnRec OlMyKeyInfo[] = {
 /*name default_value virtual_name */

 { XtNmyRedisplayKey, "c<F5>", OL_MY_REDISPLAYKEY },
 { XtNmySavePartKey, "c<F5>", OL_MY_SAVEPARTKEY },
};

static OlVirtualEventTable OlMyDB;
...

OlMyDB = OlCreateInputEventDB(
w,
OlMyKeyInfo, XtNumber(OlMyKeyInfo),
OlMyBtnInfo, XtNumber(OlMyBtnInfo)

);
...

216 OLIT Reference Manual—August 1994

5
Virtual Event Functions

 /* Assume: "w" is a stub widget that is interested in */
 /* OlMyDB */
OlWidgetSearchIEDB(w, OlMyDB);
 /* Once this step is done, this widget instance will */
 /* receive OlMyDB commands after a call to */
 /* OlLookupInputEvent(), or in the XtNconsumeEvent */
 /* callback’s OlVirtualEvent structure supplied with */
 /* the call_data field. */

OlWidgetSearchTextDB
#include <Xol/OpenLook.h>

void OlWidgetSearchTextDB(
OlVirtualEventTable w);

OlWidgetSearchTextDB() is used to register the OPEN LOOK TEXT database
on a given widget instance.

Once the OPEN LOOK TEXT database is registered with a given widget instance,
the OlLookupInputEvent() procedure (if db_flag is OL_DEFAULT_IE or
OL_TEXT_IE) will include this database in the search stack if the given widget
ID is this widget instance.

Example
/* assume: “w” is a stub widget that is interested in */
/* the OPEN LOOK TEXT database */

OlWidgetSearchTextDB(w);

/* Once this step is done, this widget instance will */
/* receive OPEN LOOK TEXT commands after a call */
/* to OlLookupInputEvent(), or in the XtNconsumeEvent */
/* callbacks OlVirtualEvent structure supplied with */
/* the call_data field. */

See Also

Chapter 3, “Activation Types.”

217

Widget Reference (A – C) 6

Chapters 6 to 10 describe the widgets in the OLIT widget set and functions that
augment the specific widgets. (For functions that are not specific to a widget,
see Chapter 5, “Toolkit Functions.”)

AbbrevMenuButton Widget

Class
Class Name: AbbrevMenuButton
Class Pointer: abbrevMenuButtonWidgetClass

Ancestry

Core-Primitive-AbbrevMenuButton

Required Header Files
#include <Xol/OpenLook>
#include <Xol/AbbrevMenu.h>

Description

The AbbrevMenuButton widget is used to create a popup menu that also
provides current selection viewing to the user. When the user invokes the

218 OLIT Reference Manual—August 1994

6
AbbrevMenuButton Widget

MENU command on the AbbrevMenuButton, a menu pops up. Once the user
makes a selection off the menu, the selected item should be displayed next to
the AbbrevMenuButton. The AbbrevMenuButton also provides the features of
the MenuButton widget (menu default selection, menu previewing, menu
selection).

Components

The AbbrevMenuButton consists of a square button containing an arrow
(menumark) with a popup menu attached. An application should create and
identify an additional component, the Current Selection Widget, which is used
to display previewing and also to display the current selection off the menu.
Each AbbrevMenuButton also has the components of the MenuShell widget.

Figure 6-1 AbbrevMenuButton Widget

Subwidget

The AbbrevMenuButton widget automatically creates and attaches a
MenuShell widget. An application can add menu items to this menu by
obtaining the value of the XtNmenuPane resource and adding children to this
widget.

Figure 6-2 AbbrevMenuButton Subwidget

Current Selection Widget

The Current Selection Widget is created by the application. This widget should
be a StaticText, TextField, or TextLine widget. Typically, the Current Selection
Widget and the AbbrevMenuButton widget are placed together in a composite

Current Selection Widget

Abbreviated Menu Button

AbbrevMenuButton

MenuShell
(XtNmenuPane)

Widget Reference (A – C) 219

6
AbbrevMenuButton Widget

widget that manages their side-by-side placement. The AbbrevMenuButton
widget uses the Current Selection Widget only for previewing the default item
in the menu. The application is responsible for using it to display the current
selection, and if the Current Selection Widget is an editable field, for adding
the new item to the menu as appropriate.

Coloration

For 3D, AbbrevMenuButton coloration is defined by the OPEN LOOK GUI
Functional Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BG1.

For 2D, XtNbackground and XtNforeground are used to render the
AbbrevMenuButton as described by the OPEN LOOK GUI Functional
Specification, Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the AbbrevMenuButton will be drawn with the value of
XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as XtNbackground , then the widget
inverts XtNforeground and XtNbackground . Once the input focus leaves the
widget, the original coloration is restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE. The
AbbrevMenuButton responds to the following navigation keys:

• SELECTKEY: The response depends on the value of the toolkit resource
XtNselectDoesPreview . If XtNselectDoesPreview is TRUE, this key
activates the default item in the Menu. If XtNselectDoesPreview is
FALSE, this key pops up the Menu and transfers the keyboard focus to the
default item in the Menu.

• MENUKEY: Pops up the Menu and transfers the keyboard focus to the
default item in the Menu.

• MOVEDOWN: Pops up the Menu and transfers the keyboard focus to the
default item in the Menu.

220 OLIT Reference Manual—August 1994

6
AbbrevMenuButton Widget

• NEXTFIELD and MOVERIGHT move to the next traversable widget in the
shell.

• PREVFIELD, MOVEUP, and MOVELEFT move to the previous traversable
widget in the shell.

• NEXTWINDOW moves to the next window in the application.

• PREVWINDOW moves to the previous window in the application.

• NEXTAPP moves to the first window in the next application.

• PREVAPP moves to the first window in the previous application.

• The response of the Menu associated with the AbbrevMenuButton is
specified in the MenuShell widget’s description. See page 414.

Keyboard Mnemonic Display

The AbbrevMenuButton does not display the mnemonic accelerator. If the
AbbrevMenuButton is the child of a Caption widget, the Caption widget can
be used to display the mnemonic.

Keyboard Accelerator Display

The AbbrevMenuButton does not display the keyboard accelerator. If the
AbbrevMenuButton is a child of a Caption widget, the Caption widget can be
used to display the accelerator as part of the label.

Resources

Table 6-1 AbbrevMenuButton Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

Widget Reference (A – C) 221

6
AbbrevMenuButton Widget

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 6-2 AbbrevMenuButton Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 6-3 AbbrevMenuButton Resources

Name Type Default Access

XtNmenuPane Widget (special) G

XtNpreviewWidget Widget NULL SGI

Table 6-1 AbbrevMenuButton Core Resources (Continued)

Name Type Default Access

222 OLIT Reference Manual—August 1994

6
AbbrevMenuButton Widget

The following table lists the AbbrevMenuButton resources that are propagated
to the MenuShell subwidget.

XtNmenuPane

Synopsis: The widget where menu items can be added.
Values: ID of the menupane widget contained in the AbbrevMenuButton’s

MenuShell.

The value of this resource is available once the AbbrevMenuButton widget has
been created.

XtNpreviewWidget

Synopsis: The Current Selection Widget that the AbbrevMenuButton can use
for previewing the Default Item.

1. These subwidget resources are described in the sections “ControlArea Widget” on page 249 and “MenuShell
Widget” on page 414.

2. These resources can only be set programmatically via XtCreateWidget, XtVaCreateWidget, etc. Application
resource file settings will not apply to these resources.

Table 6-4 AbbrevMenuButton Subwidget Resources1

Name Type Default Access

XtNcenter Boolean TRUE I

XtNhPad Dimension 4 I

XtNhSpace Dimension 4 I

XtNlayoutType OlDefine OL_FIXEDROWS I2

XtNmeasure int 1 I2

XtNpushpin OlDefine OL_NONE I

XtNpushpinDefault Boolean FALSE I

XtNsameSize OlDefine OL_COLUMNS I

XtNshellTitle OlStr (widget name) SGI

XtNvPad Dimension 4 I

XtNvSpace Dimension 4 I

Class Type Default Access

XtCMenuPane Widget (special) G

Class Type Default Access

XtCPreviewWidget Widget NULL SGI

Widget Reference (A – C) 223

6
AbbrevMenuButton Widget

Values: ID of an existing widget; this should be a StaticText, TextField, or
TextLine widget.

When the user presses SELECT over the AbbrevMenuButton widget, it uses the
location and size of the Current Selection Widget to display the label of the
Default Item. The preview is constrained to be within the height and width of
the Current Selection Widget. If the Current Selection Widget is not defined or
is not mapped, previewing does not take place.

Activation Types

The following table lists the activation types used by the AbbrevMenuButton.

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_MENU

The OL_MENU activation type can be used to pop up the menu in two different
modes: press-drag-release and click-move-click. These modes are described in
the OPEN LOOK GUI Functional Specification section “Using Menu Buttons” in
Chapter 15. The position of the menu depends on the space available on the

Table 6-5 AbbrevMenuButton Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

224 OLIT Reference Manual—August 1994

6
AbbrevMenuButton Widget

screen and is described in the OPEN LOOK GUI Functional Specification section
“Menu Placement” in Chapter 15.

OL_MENUKEY

The OL_MENUKEY activation type can be used to pop up the menu according
to the OPEN LOOK Mouseless Specification section 4.2.

OL_SELECT

The activation of the AbbrevMenuButton widget with the SELECT button
depends on the value of the toolkit resources XtNselectDoesPreview . When
the resource XtNselectDoesPreview is FALSE, this activation type will
behave exactly as the OL_MENU activation type described previously. When
XtNselectDoesPreview is TRUE, the SELECT action can be used as a shortcut
to display and activate the menu default as described in the OPEN LOOK GUI
Functional Specification section “Button Controls” in Chapter 4.

OL_SELECTKEY

When the AbbrevMenuButton has keyboard focus, the OL_SELECTKEY
activation type can be used to pop up the menu according to the OPEN LOOK
Mouseless Specification section 4.2.

See Also

“ControlArea Widget” on page 249,
“MenuButton Widget” on page 403,
“MenuShell Widget” on page 414.

Widget Reference (A – C) 225

6
BulletinBoard Widget

BulletinBoard Widget

Class
Class Name: BulletinBoard
Class Pointer: bulletinBoardWidgetClass

Ancestry

 Core-Composite-Constraint-Manager-BulletinBoard

Required Header Files
#include <Xol/OpenLook>
#include <Xol/BulletinBo.h>

Description

The BulletinBoard widget is a composite widget that enforces no ordering on
its children. It is up to the application to specify the x- and y-coordinates of
each child inserted. Otherwise, it will be placed in the upper left corner of the
BulletinBoard widget. The BulletinBoard can be mapped with no children. It
displays an empty space which can be surrounded by a border.

Keyboard Traversal

The BulletinBoard widget is a Composite widget and cannot be accessed via
keyboard traversal. Input focus moves between the Primitive children of this
widget.

226 OLIT Reference Manual—August 1994

6
BulletinBoard Widget

Coloration

The following diagram illustrates the resources used for BulletinBoard
coloration.

Figure 6-3 BulletinBoard Coloration

Resources

Table 6-6 BulletinBoard Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNborderColor

XtNbackground

(Child Widgets Colored Independently)

Widget Reference (A – C) 227

6
BulletinBoard Widget

XtNlayout

Synopsis: The layout policy the BulletinBoard widget is to follow.

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 6-7 BulletinBoard Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 6-8 BulletinBoard Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red n/a

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 6-9 BulletinBoard Resources

Name Type Default Access

XtNlayout OlDefine OL_MINIMIZE SGI

Class Type Default Access

XtCLayout OlDefine OL_MINIMIZE SGI

Table 6-6 BulletinBoard Core Resources (Continued)

Name Type Default Access

228 OLIT Reference Manual—August 1994

6
BulletinBoard Widget

Values: OL_MINIMIZE/”minimize” - The BulletinBoard widget will
always be just large enough to contain all its children, regardless of
any provided width and height values. Thus, the BulletinBoard
widget will grow and shrink depending on the size needs of its
children.
OL_IGNORE/”ignore” - The BulletinBoard widget will honor
its own width and height; it will not grow or shrink in response to
the addition, deletion, or alteration of its children.
OL_MAXIMIZE/”maximize” - The BulletinBoard widget will
grow as required due to new or altered children, but will not
shrink.

Activation Types

The following table lists the activation types used by the BulletinBoard.

The BulletinBoard widget has no activation types besides the ones in “Common
Activation Types” on page 68.

Table 6-10 BulletinBoard Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (A – C) 229

6
Caption Widget

Caption Widget

Class
Class Name: Caption
Class Pointer: captionWidgetClass

Ancestry

Core-Composite-Constraint-Manager-Caption

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Caption.h>

Description

The Caption composite widget provides a convenient way to label an arbitrary
widget.

Components

The Caption widget has two parts: the label and the child widget.

Figure 6-4 Caption Widget

Caption:

Label Child Widget

Caption Widget

230 OLIT Reference Manual—August 1994

6
Caption Widget

Layout Control

The application can specify that the label goes above, below, to the left, or to
the right of the child, and how far away the label is to be placed.

Child Constraints

The Caption composite allows only one child; attempts to add more than one
are refused with a warning. If the Caption widget is mapped without a child
widget, or if the child widget is not managed, only the label is shown.

Coloration

The following diagram illustrates the resources used for Caption coloration.

Figure 6-5 Caption Coloration

Keyboard Traversal

The Caption is a special Manager widget that can be used to display the
mnemonic for its single child. However, the label used as a caption to the child
is not accessible via keyboard traversal.

The action of a mnemonic on a Caption widget is used for traversal as well as
performing a SELECT on the Caption widget’s child widget.

Caption:

XtNfontColor
Coloration of
Child Widget

Parent's XtNbackground
(XtNbackgroundPixmap)

Widget Reference (A – C) 231

6
Caption Widget

Keyboard Mnemonic Display

The Caption widget displays its mnemonic as part of its label. If the mnemonic
character is in the label, then that character is marked according to the value of
the toolkit resource XtNshowMnemonics . If the mnemonic character is not in
the label, it is displayed to the right of the label in parentheses and marked
according to the value of XtNshowMnemonics .

If truncation is necessary, the mnemonic displayed in parentheses is truncated
as a unit.

Keyboard Accelerator Display

The Caption widget displays the keyboard accelerator for its child as part of its
label. The string in the XtNacceleratorText resource is displayed to the
right of the label (or mnemonic), right justified, and separated by at least one
space.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator
is truncated before the mnemonic or the label.

Resources

Table 6-11 Caption Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

232 OLIT Reference Manual—August 1994

6
Caption Widget

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 6-12 Caption Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 6-13 Caption Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 6-14 Caption Resources

Name Type Default Access

XtNalignment OlDefine OL_CENTER SGI

XtNfont OlFont OlDefaultBoldFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNlabel OlStr (instance name) SGI

XtNmnemonic unsigned char ‘\0’ SGI

XtNposition OlDefine OL_LEFT SGI

Table 6-11 Caption Core Resources (Continued)

Name Type Default Access

Widget Reference (A – C) 233

6
Caption Widget

XtNalignment

Synopsis: The alignment of the label relative to the child widget.
Values: OL_BOTTOM/”bottom” - Align the bottom edge of the label with

the bottom edge of the child widget.
OL_CENTER/”center” - Align the center of the label with the
center of the child widget.
OL_LEFT/”left” - Align the left edge of the label with the left
edge of the child widget.
OL_RIGHT/”right” - Align the right edge of the label with the
right edge of the child widget.
OL_TOP/”top” - Align the top edge of the label with the top
edge of the child widget.

The XtNalignment and XtNposition resources interact in the following
way. If XtNposition is OL_LEFT or OL_RIGHT, then the alignment can be
OL_TOP, OL_CENTER, or OL_BOTTOM. If XtNposition is OL_TOP or
OL_BOTTOM, then the alignment can be OL_LEFT, OL_CENTER, or OL_RIGHT.

XtNfont

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNfont” on page 26.

XtNfontColor

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNfontColor” on page 27.

XtNrecomputeSize Boolean TRUE SGI

XtNspace Dimension 4 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

Class Type Default Access

XtCAlignment OlDefine OL_CENTER SGI

Class Type Default Access

XtCFont OlFont OlDefaultBoldFont SGID

Class Type Default Access

XtCFontColor Pixel XtDefaultForeground SGID

Table 6-14 Caption Resources (Continued)

Name Type Default Access

234 OLIT Reference Manual—August 1994

6
Caption Widget

XtNlabel

Synopsis: The label text.
Values: Any OlStr value valid in the current locale. NULL is the same as

the empty string.

The label is displayed as given; no punctuation (such as a colon) is added.
Control characters (other than spaces) are ignored without warning. For
example, embedded newlines do not cause line breaks.

XtNmnemonic

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNmnemonic” on page 28.

XtNposition

Synopsis: The placement of the label in relation to the child widget.
Values: OL_BOTTOM/”bottom” - The label is below the child widget.

OL_LEFT/”left” - The label is to the left of the child widget.
OL_RIGHT/”right” - The label is to the right of the child
widget.
OL_TOP/”top” - The label is above the child widget.

XtNrecomputeSize

Synopsis: The widget resize policy.
Values: TRUE/”true” – The widget resizes itself to accommodate

changes in its children’s sizes due to changes in resources such as
fonts or labels.
FALSE/”false” – The widget does not resize itself.

Class Type Default Access

XtCLabel OlStr (instance name) SGI

Class Type Default Access

XtCMnemonic unsigned char ‘\0’ SGI

Class Type Default Access

XtCPosition OlDefine OL_LEFT SGI

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Widget Reference (A – C) 235

6
Caption Widget

XtNspace

Synopsis: The separation of the label from the child widget, in pixels.
Values: 0 ≤ XtNspace

The separation of the label and child widget is shown in the following figure.

Figure 6-6 Label and Child Widget Spacing

XtNtextFormat

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNtextFormat” on page 29.

Activation Types

The following table lists the activation types used by the Caption.

Class Type Default Access

XtCSpace Dimension 4 SGI

Class Type Default Access

XtCTextFormat OlStrRep OL_SB_STR_REP GI

Table 6-15 Caption Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

XtNspace

XtNspace

Label Bounds

Label Bounds

Child Widget Bounds

236 OLIT Reference Manual—August 1994

6
Caption Widget

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_SELECT/
OL_SELECTKEY

The Caption widget does not respond to any user gestures, but a client can
activate it with OlActivateWidget() and an activation type of OL_SELECT
or OL_SELECTKEY. When so activated, the Caption widget will move focus to
its child widget and then activate the child with the OL_SELECT activation
type.

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Table 6-15 Caption Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (A – C) 237

6
CheckBox Widget

CheckBox Widget

Class
Class Name: CheckBox
Class Pointer: checkBoxWidgetClass

Ancestry

Core-Composite-Constraint-Manager-CheckBox

Required Header Files
#include <Xol/OpenLook>
#include <Xol/CheckBox.h>

Description

The CheckBox widget is similar in function to the RectButton widget. Several
CheckBoxes are typically used together to provide the user with a set of
options that can be toggled on or off.

Components

The CheckBox widget consists of a label next to a Check Box; the Check Box
will have a Check Mark, if selected.

Figure 6-7 CheckBox Widget

CheckBox Widget

Label Check Box
Check Mark

238 OLIT Reference Manual—August 1994

6
CheckBox Widget

The following figure shows several buttons, in unselected and selected, as well
as normal and dim states.

Figure 6-8 Check Boxes in Various States

Typical Use

Check Boxes may be used alone, but are usually used in the Nonexclusives
composite widget, where they are used to implement a several-of-many
selection. Making the CheckBox widget a child of a different composite widget
will not produce an error, but proper behavior is not guaranteed.

Operations

A CheckBox widget has two states: “set” and “not set.” When set, the Check
Mark is visible. Toggling this state alternates a resource (XtNset) between
logical TRUE and FALSE and starts an action associated with the check box.
Clicking SELECT on a check box toggles the state associated with it. Pressing
SELECT, or moving the pointer into the check box while SELECT is pressed,
adds or removes the Check Mark to reflect the state the check box would be in
if SELECT was released. Releasing SELECT toggles the state. Moving the pointer
off the check box before releasing SELECT restores the original Check Box, but
does not toggle the state. Clicking or pressing MENU does not do anything in
the CheckBox widget; the event is passed up to an ancestor widget.

Bounds on SELECT

Only the Check Box and Check Mark respond to SELECT, as shown in the
following figure.

Figure 6-9 CheckBox Widget

Value

Current Value Current Value

Value

CheckBox Widget

Active Region

Widget Reference (A – C) 239

6
CheckBox Widget

Coloration

For both 3D and 2D, the background of the CheckBox widget is drawn in the
parent’s XtNbackground resource. The label is drawn using XtNfontColor .
The checkmark is drawn using XtNforeground .

For 3D, the check box component coloration is defined by the OPEN LOOK
GUI Functional Specification, Chapter 9, “Color and Three-Dimensional Design.”
The parent’s XtNbackground is used for BG1, and the BG2 (pressed-in), BG3
(shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNforeground is used to render the outline of the check box
component as described by the OPEN LOOK GUI Functional Specification,
Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the check box component will be drawn with the value of
XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as the parent’s XtNbackground , then the
widget inverts XtNforeground and the parent’s XtNbackground inside the
check box component. Once the input focus leaves the widget, the original
coloration is restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE. The CheckBox
widget responds to the following keyboard navigation keys:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• MOVEUP moves to the CheckBox above the current widget in the

Nonexclusives composite
• MOVEDOWN moves to the CheckBox below the current widget in the

Nonexclusives composite
• MOVELEFT moves to the CheckBox to the left of the current widget in the

Nonexclusives composite
• MOVERIGHT moves to the CheckBox to the right of the current widget in the

Nonexclusives composite
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application

240 OLIT Reference Manual—August 1994

6
CheckBox Widget

Keyboard Mnemonic Display

The CheckBox widget displays its mnemonic as part of its label. If the
mnemonic character is in the label, then that character is marked according to
the value of the toolkit resource XtNshowMnemonics . If the mnemonic
character is not in the label, it is displayed to the right of the label in
parentheses and marked according to the value of XtNshowMnemonics .

If truncation is necessary, the mnemonic displayed in parentheses is truncated
as a unit.

Keyboard Accelerator Display

The CheckBox widget displays the keyboard accelerator as part of its label. The
string in the XtNacceleratorText resource is displayed to the right of the
label (or mnemonic) separated by at least one space. The accelerator text is
right justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator
is truncated before the mnemonic or the label.

CheckBox Appearance

The XtNdim and XtNset resources can be set independently, as shown in the
following state table.

Table 6-16 CheckBox Appearance with Set/Default/Dim

XtNset XtNdim Check Box Appearance

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

Widget Reference (A – C) 241

6
CheckBox Widget

Label Resource Interactions

The XtNwidth , XtNheight , XtNrecomputeSize , and XtNlabelJustify
resources interact to produce a truncated, clipped, centered, left-justified, or
right-justified Label and Check Box as shown in the table below.

Table 6-17 CheckBox Label and Check Box Appearance

When the label is left-justified, right-justified, or centered the extra space is
filled with the background color of the CheckBox widget’s parent, as
determined by the XtNbackground and XtNbackgroundPixmap resources of
the parent. See also the XtNlabelTile resource for how it affects the
appearance of a label.

Resources

Table 6-18 CheckBox Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNwidth XtNrecomputeSize XtNlabelJustify Result

any value

needed
for label

>

>

needed
for label

needed
for label

needed
for label

needed
for label

any value

XtNheight XtNrecomputerSize XtNlabelJustify

>

<

<

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

any

any

any

any

any

OL_LEFT

OL_RIGHT

Just Fits

Left Justified

Just Fits

Result

Truncated

Right Justified

Centered

Clipped

242 OLIT Reference Manual—August 1994

6
CheckBox Widget

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 6-19 CheckBox Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 6-20 CheckBox Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 6-18 CheckBox Core Resources (Continued)

Name Type Default Access

Widget Reference (A – C) 243

6
CheckBox Widget

XtNaccelerator

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNaccelerator” on page 25.

XtNacceleratorText

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNacceleratorText” on
page 25.

Table 6-21 CheckBox Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNdim Boolean FALSE SGI

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNlabel OlStr (instance name) SGI

XtNlabelImage XImage ∗ NULL SGI

XtNlabelJustify OlDefine OL_LEFT SGI

XtNlabelTile Boolean FALSE SGI

XtNlabelType OlDefine OL_STRING SGI

XtNmnemonic unsigned char ‘\0’ SGI

XtNposition OlDefine OL_LEFT SGI

XtNrecomputeSize Boolean TRUE SGI

XtNscale int 12 SGI

XtNselect XtCallbackList NULL SGIO

XtNset Boolean FALSE SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNunselect XtCallbackList NULL SGIO

Class Type Default Access

XtCAccelerator String NULL SGI

Class Type Default Access

XtCAcceleratorText String NULL SGI

244 OLIT Reference Manual—August 1994

6
CheckBox Widget

XtNdim

Synopsis: The visual appearance of the CheckBox in reflecting the state of
associated objects.

Values: TRUE/”true” - The check box border is dimmed to show that
the check box represents the state of one or more of several objects
that, as a group, are in different states.
FALSE/”false” - The border does not show the state of
underlying objects.

XtNfont

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfont” on page 26.

XtNfontColor

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfontColor” on page 27.

XtNforeground

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNforeground” on page 27.

XtNlabel

Synopsis: The text for the label.
Values: Any OlStr value valid in the current locale.

Class Type Default Access

XtCDim Boolean FALSE SGID

Class Type Default Access

XtCFont OlFont XtDefaultFont SGID

Class Type Default Access

XtCFontColor Pixel XtDefaultForeground SGID

Class Type Default Access

XtCForeground Pixel XtDefaultForeground SGID

Class Type Default Access

XtCLabel OlStr (instance name) SGI

Widget Reference (A – C) 245

6
CheckBox Widget

The default value is the name of the widget as specified in the
XtCreateWidget() routine. This resource will be ignored if the
XtNlabelType resource has the value OL_IMAGE.

XtNlabelImage

Synopsis: The image for the label of the CheckBox widget.

This resource will be ignored unless the XtNlabelType resource has the value
OL_IMAGE. If the image is smaller than the space available for it next to the
check box, it will be right- or left-justified horizontally, depending on the value
of the XtNlabelJustify resource. If the image is larger than the space
available for it, it will be clipped so that it does not display outside the space.
See, however, XtNlabelTile for alternative behavior.

XtNlabelJustify

Synopsis: The justification of the label, if the XtNwidth resource gives more
space than needed.

Values: OL_LEFT/”left” - Left-justify the label.
OL_RIGHT/”right” - Right-justify the label.

The label will be justified within the space available next to the Check Box.

XtNlabelTile

Synopsis: The tiling of the background of the CheckBox rectangle.
Values: TRUE/”true” - The label area is tiled with the image to fill the

background if the image is smaller than the background of the
subobject.
FALSE/”false” - The label area is placed as described by the
XtNlabelImage resource.

This resource augments the XtNlabelImage resource to allow tiling of the
background. The XtNlabelTile resource is ignored for text labels.

Class Type Default Access

XtCLabelImage XImage ∗ NULL SGI

Class Type Default Access

XtCLabelJustify OlDefine OL_LEFT SGI

Class Type Default Access

XtCLabelTile Boolean FALSE SGI

246 OLIT Reference Manual—August 1994

6
CheckBox Widget

XtNlabelType

Synopsis: The form that the label takes.
Values: OL_STRING/”string” - The label is a text string.

OL_IMAGE/”image” - The label is an image.

XtNmnemonic

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNmnemonic” on page 28.

XtNposition

Synopsis: On which side of the CheckBox the label will be placed.
Values: OL_LEFT/”left” - Place the label on the left.

OL_RIGHT/”right” - Place the label on the right.

XtNrecomputeSize

Synopsis: Whether the CheckBox widget should calculate its size.
Values: TRUE/”true” – The CheckBox widget will do normal size

calculations that may cause its geometry to change, and
automatically set the XtNheight and XtNwidth resources.
FALSE/”false” – The CheckBox widget will leave its size
unchanged; this may cause truncation of the visible image being
shown by the CheckBox widget if the fixed size is too small, or
may cause padding if the fixed size is too large. The location of the
padding is determined by the XtNlabelJustify resource.

Class Type Default Access

XtCLabelType OlDefine OL_STRING SGI

Class Type Default Access

XtCMnemonic unsigned char ‘\0’ SGI

Class Type Default Access

XtCPosition OlDefine OL_LEFT SGI

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Widget Reference (A – C) 247

6
CheckBox Widget

XtNscale

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNscale” on page 29.

XtNselect

Synopsis: The callback list invoked when the user toggles the widgetinto
“set” mode, making XtNset be TRUE. Simply setting XtNset to
TRUE with a call to XtSetValues() does not issue the
XtNselect callbacks.

XtNset

Synopsis: The current state of the check box.
Values: TRUE/”true” - The check mark will be present.

FALSE/”false” - The check mark will not be present.

XtNtextFormat

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNtextFormat” on page 29.

XtNunselect

Synopsis: The callback list invoked when the user toggles the widget into
“unset” mode, making XtNset be FALSE. Simply setting XtNset to
FALSE with a call to XtSetValues() does not issue the
XtNunselect callbacks.

Class Type Default Access

XtCScale int 12 SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCSet Boolean FALSE SGI

Class Type Default Access

XtCTextFormat OlStrRep OL_SB_STR_REP GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

248 OLIT Reference Manual—August 1994

6
CheckBox Widget

Activation Types

The following table lists the activation types used by the CheckBox.

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_SELECT/
OL_SELECTKEY

The activation of a CheckBox is described in the OPEN LOOK GUI Functional
Specification section “Check Boxes” in Chapter 4. When the CheckBox is
activated with either OL_SELECT or OL_SELECTKEY, the state of the XtNset
resource will be reversed. When the XtNset resource goes to FALSE, the
XtNunselect callback will be called; when the XtNset resource goes to TRUE,
the XtNselect callback will be called.

See Also

“RectButton Widget” on page 489.

Table 6-22 CheckBox Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (A – C) 249

6
ControlArea Widget

ControlArea Widget

Class
Class Name: ControlArea
Class Pointer: controlAreaWidgetClass

Ancestry

Core-Composite-Constraint-Manager-ControlArea

Required Header Files
#include <Xol/OpenLook>
#include <Xol/ControlAre.h>

Description

The ControlArea is a composite widget that organizes its child controls in rows
and columns.

Components

The ControlArea widget has zero or more child widgets and an optional
border. The ControlArea can also provide changebars alongside a child.
Changebars are provided by the OPEN LOOK GUI Functional Specification as a
means of feedback that a change has occurred in the corresponding object.

Layout Control

The application can choose one of four simple layout schemes:

• Fixed number of columns in the control pane
• Fixed number of rows
• Fixed overall width of the control area
• Fixed overall height

The application can also specify the inter-control spacing and the size of the
margin around the children.

250 OLIT Reference Manual—August 1994

6
ControlArea Widget

The children in each row align at the top of the row. The distance between the
top of one row and the next is the height of the tallest child in the row plus the
application-specified inter-row spacing.

Coloration

The following diagram illustrates the resources used for ControlArea
coloration.

Figure 6-10 ControlArea Coloration

Resources

Table 6-23 ControlArea Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

(Child Widgets Colored
Independently)

Widget Reference (A – C) 251

6
ControlArea Widget

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 6-24 ControlArea Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 6-25 ControlArea Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 6-26 ControlArea Resources

Name Type Default Access

XtNalignCaptions Boolean FALSE SGI

XtNallowChangeBars Boolean FALSE SGI

XtNcenter Boolean FALSE SGI

Table 6-23 ControlArea Core Resources (Continued)

Name Type Default Access

252 OLIT Reference Manual—August 1994

6
ControlArea Widget

XtNallowChangeBars

Synopsis: Whether the ControlArea displays changebars.
Values: TRUE/”true” – The ControlArea displays changebars.

FALSE/”false” – The ControlArea does not display
changebars.

The ControlArea supports changebars only if the XtNlayoutType resource
value is OL_FIXEDCOLS or OL_FIXEDROWS.

XtNalignCaptions

Synopsis: The alignment of Caption widgets in the ControlArea.
Values: TRUE/”true” – The ControlArea aligns all Caption widgets in

each column so that their captions are right- or left-justified,
depending on the position of the Caption’s label (see Figure 6-11 on
page 253). This may affect the width calculation for a column.
FALSE/”false” – The ControlArea aligns all Caption widgets
the same as other widgets—by their overall width.

XtNhPad Dimension 4 SGI

XtNhSpace Dimension 4 SGI

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNmeasure int 1 SGI

XtNsameSize OlDefine OL_COLUMNS SGI

XtNvPad Dimension 4 SGI

XtNvSpace Dimension 4 SGI

Table 6-27 ControlArea Subwidget Resources

Name Type Default Access

XtNchangeBar OlDefine OL_NONE SGI

Class Type Default Access

XtCAllowChangeBars Boolean FALSE SGI

Class Type Default Access

XtCAlignCaptions Boolean FALSE SGI

Table 6-26 ControlArea Resources (Continued)

Name Type Default Access

Widget Reference (A – C) 253

6
ControlArea Widget

XtNalignCaptions takes precedence over the XtNcenter resource, but only
for Caption widgets.

The effective width for the Caption widgets in a column becomes the sum of
the width of the widest caption, plus the largest caption/child widget
separation and child widget width. This alignment is only for groups of
Caption widgets with all their captions on the left or the right.

Mixed orientation, or captions above or below, cannot be aligned well.

Figure 6-11 Aligning Captions

XtNchangeBar

Synopsis: The type of change bar to be displayed. This resource should be set
for the child that requires the changebar.

Values: OL_NONE/”none” - Do not display any change bar
OL_NORMAL/”normal” - Display a solid vertical line.
OL_DIM/”dim” - Display a dimmed vertical line.

XtNcenter

Synopsis: The orientation of each widget within a ControlArea column.
Values: TRUE/”true” – Center each widget within each column.

FALSE/”false” – Left-justify each widget within each column,
except where the XtNalignCaptions resource applies.

Class Type Default Access

XtCChangeBar OlDefine OL_NONE SGI

Class Type Default Access

XtCCenter Boolean FALSE SGI

Caption Three

Caption Two

Caption One Caption Five

Caption Four Caption Six

All captions on left,
alignment OK

All captions on right,
alignment OK

Mixed caption orientation,
alignment not OK

254 OLIT Reference Manual—August 1994

6
ControlArea Widget

XtNhPad/
XtNvPad

Synopsis: The amount of padding, in pixels, to leave around the edges of the
control area.

Values: 0 ≤ XtNhPad
0 ≤ XtNvPad

The action of these resources is illustrated by the following figure.

Figure 6-12 ControlArea Padding Around Controls

XtNhSpace/
XtNvSpace

Synopsis: The amount of space, in pixels, to leave between controls.
Values: 0 ≤ XtNhSpace

0 ≤ XtNvSpace

Class Type Default Access

XtCHPad Dimension 4 SGI

XtCVPad Dimension 4 SGI

Class Type Default Access

XtCHSpace Dimension 4 SGI

XtCVSpace Dimension 4 SGI

XtNhPad XtNhPad

XtNvPad

XtNvPad

Widget Reference (A – C) 255

6
ControlArea Widget

If the controls are of different sizes in a row or column, the spacing applies to
the widest or tallest dimension of all the controls.

Figure 6-13 Spacing Between Controls

XtNlayoutType

Synopsis: The layout of the child widgets by the ControlArea.
Values: OL_FIXEDROWS/”fixedrows” - The layout will have a fixed

number of rows and enough columns to hold all the controls;
OL_FIXEDCOLS/”fixedcols” - The layout will have a fixed
number of columns and enough rows to hold all the controls;
OL_FIXEDWIDTH/”fixedwidth” - The layout will be of a fixed
width, but tall enough to hold all the controls;
OL_FIXEDHEIGHT/”fixedheight” - The layout will be of a
fixed height, but wide enough to hold all the controls.

The XtNmeasure resource gives the number of rows or columns or the fixed
height or width, in pixels.

The choices are to specify the number of rows or columns, or to specify the
overall height or width of the layout area. Only one of these dimensions can be
specified directly; the other is determined by the number of controls added.

For instance, if the application specifies that the control area should have four
columns, the number of rows will be the number of controls divided by four.

Class Type Default Access

XtCLayoutType OlDefine OL_FIXEDROWS SGI

XtNvSpace

XtNhSpace

256 OLIT Reference Manual—August 1994

6
ControlArea Widget

XtNmeasure

Synopsis: The number of rows or columns in the layout of the child widgets,
or the fixed width or height of the control area.

Values: 0 < XtNmeasure

If XtNlayoutType is OL_FIXEDROWS or OL_FIXEDCOLS, then the default is 1.
If XtNlayoutType is OL_FIXEDWIDTH or OL_FIXEDHEIGHT, then the default is
the width or height of the widest or tallest widget, depending on
XtNlayoutType .

When XtNlayoutType is OL_FIXEDWIDTH or OL_FIXEDHEIGHT, the measure
includes the padding on both edges and the inter-control spacing, as suggested
by the following figure.

Figure 6-14 XtNmeasure

XtNsameSize

Synopsis: The controls within the ControlArea widget that are forced to be
the same width (if any).

Values: OL_NONE/”none” - The controls are placed in fixed-width
columns, but the size of each control is left alone. The width of
each column is the width of the widest control in the column.
OL_COLUMNS/”columns” - Controls in each column are made
the same width as the widest of them. The width of each column is

Class Type Default Access

XtCMeasure int 1 SGI

Class Type Default Access

XtCSameSize OlDefine OL_COLUMNS SGI

XtNmeasure
(OL_FIXEDWIDTH)

XtNmeasure
(OL_FIXEDHEIGHT)

Line

Square Circle

Rectangle

Widget Reference (A – C) 257

6
ControlArea Widget

thus the width of the widest control in the column.
OL_ALL/”all” - All controls are made the same width, the
width of the widest control in the ControlArea widget.

Note – The ControlArea widget does not resize its children when it gets
resized. Use the Form or RubberTile widget if the children need to be resized.

Activation Types

The following table lists the activation types used by the ControlArea.

The ControlArea widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“BulletinBoard Widget” on page 225,
“Caption Widget” on page 229,
“Form Widget” on page 385,
“RubberTile Widget” on page 502.

Table 6-28 ControlArea Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

258 OLIT Reference Manual—August 1994

6
ControlArea Widget

259

Widget Reference (D – F) 7

DrawArea Widget

Class
Class Name: DrawArea
Class Pointer: drawAreaWidgetClass

Ancestry

Core-Composite-Constraint-Manager-BulletinBoard-DrawArea

Required Header Files
#include <Xol/OpenLook>
#include <Xol/DrawArea.h>

Description

The DrawArea widget provides a window on which an application can render
images using Xlib calls. The DrawArea widget uses callbacks to notify the
application that the image needs to be redrawn. To get the window associated
with the DrawArea widget, the application can use the XtWindow() function;
see the Xt Intrinsics Programming Manual for details on this function.

260 OLIT Reference Manual—August 1994

7
DrawArea Widget

The DrawArea widget is a composite widget that enforces no ordering on its
children. It is up to the application to specify the x- and y-coordinates of each
child inserted; otherwise, a child will be placed in the upper left corner of the
DrawArea widget.

The DrawArea widget can be mapped with no children. It displays an empty
space, possibly surrounded by a border.

Multiple Visuals Support

The DrawArea widget can be created with a nondefault depth, visual, and
colormap. This can be done by setting the XtNdepth , XtNvisual , or
XtNcolormap resources of the widget.

If XtNdepth is not specified, a DrawArea widget will use the depth of its
parent. If XtNvisual is not specified, a DrawArea widget will use the visual
of its parent. If XtNcolormap is not specified, a DrawArea widget will use its
visual resource to find (share or create) the colormap of the widget.

Coloration

The following diagram illustrates the resources used for DrawArea coloration.

Figure 7-1 DrawArea Coloration

Keyboard Traversal

The DrawArea widget is a composite widget and cannot be accessed via
keyboard traversal. Input focus moves between the children of this widget.

XtNborderColor

XtNbackground

(Child Widgets Colored Independently)

Widget Reference (D – F) 261

7
DrawArea Widget

Resources

Table 7-1 DrawArea Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-2 DrawArea Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-3 DrawArea Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red (n/a)

262 OLIT Reference Manual—August 1994

7
DrawArea Widget

XtNexposeCallback

Synopsis: The callback list invoked whenever the DrawArea widget gets an
expose event.

The call_data parameter is a pointer to an OlDrawAreaCallbackStruct
structure:

typedef struct {
int reason ;
XEvent ∗event ;
Position x;

1. This resource is described in “BulletinBoard Widget” on page 225.

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 7-4 DrawArea BulletinBoard Resources1

Name Type Default Access

XtNlayout OlDefine OL_MINIMIZE SGI

Table 7-5 DrawArea Resources

Name Type Default Access

XtNexposeCallback XtCallbackList NULL SGIO

XtNforeground Pixel XtDefaultForeground SGID

XtNgraphicsExposeCallback XtCallbackList NULL SGIO

XtNresizeCallback XtCallbackList NULL SGIO

XtNvisual Visual ∗ (parent’s) GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Table 7-3 DrawArea Manager Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 263

7
DrawArea Widget

Position y;
Dimension width ;
Dimension height ;
Region region ;

} OlDrawAreaCallbackStruct;

reason OL_REASON_EXPOSE, indicating the validity of the remaining
fields of the OlDrawAreaCallbackStruct structure.

event A pointer to the XEvent that triggered the callback.

x, y The upper left corner of the rectangle enclosing the exposed
region.

width, height The dimensions of the rectangle enclosing the exposed region.

region A union of all the areas obscured.

XtNforeground

Synopsis: The foreground color used by objects to draw widget contents.
Values: Any Pixel value valid for the current display, or any name from

the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

XtNgraphicsExposeCallback

Synopsis: The callback list invoked whenever the DrawArea widget gets a
graphics expose event. Graphics expose events are generated when
a XCopyArea or XCopyPlane fails to copy the entire source area
because part of the source area was obscured.

The call_data parameter is a pointer to an OlDrawAreaCallbackStruct
structure, as shown in “XtNexposeCallback” on page 262. The members are:

reason OL_REASON_EXPOSE, indicating the validity of the remaining
fields of the OlDrawAreaCallbackStruct structure.

event A pointer to the XEvent that triggered the callback.
x, y The upper left corner of the rectangle enclosing the obscured

region.

Class Type Default Access

XtCForeground Pixel XtDefaultForeground SGID

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

264 OLIT Reference Manual—August 1994

7
DrawArea Widget

width, height The dimensions of the rectangle enclosing the obscured region.
region A union of all the areas obscured.

XtNresizeCallback

Synopsis: The callback list invoked whenever the DrawArea widget gets a
resize event.

The call_data parameter is a pointer to an OlDrawAreaCallbackStruct
structure, as shown in “XtNexposeCallback” on page 262. The members are:

reason OL_REASON_RESIZE, indicating the validity of the remaining
fields of the OlDrawAreaCallbackStruct structure.

event Invalid field.
x, y The upper left corner of the rectangle enclosing the obscured

region.
width, height The dimensions of the DrawArea.
region Invalid field.

XtNvisual

Synopsis: The visual used to create the widget’s window.
Values: A pointer to any visual structure supported by the current display

and compatible with the widget’s depth and colormap.

Only Shell and DrawArea Widgets have a visual resource. All other widgets
are created using their parent’s visual. If XtNvisual is not specified, Shell and
DrawArea widgets inherit their parent’s visual.

The recommended method of setting a Shell or DrawArea widget’s visual
resource is to use the Intrinsics typed args interface. A string containing the
desired Visual Class Name should be passed to the String-to-Visual resource
converter.

To get the visual associated with any widget or gadget, use the function
OlVisualOfObject() .

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCVisual Visual ∗ (parent’s) GI

Widget Reference (D – F) 265

7
DrawArea Widget

Activation Types

The following table lists the activation types used by the DrawArea.

The DrawArea widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“BulletinBoard Widget” on page 225.

Table 7-6 DrawArea Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

266 OLIT Reference Manual—August 1994

7
DropTarget Widget

DropTarget Widget

Class
Class Name: DropTarget
Class Pointer: dropTargetWidgetClass

Ancestry

Core-Primitive-Pixmap-DropTarget

Required Header Files
#include <Xol/OpenLook>
#include <Xol/DropTarget.h>

Description

The DropTarget widget provides an alternative to the Drag and Drop utility
functions. It is intended for those cases where an application does not have an
obvious drop site.

The DropTarget associates one drop site with a single drop rectangle,
providing visual indication of the progress of the Drag and Drop operation.

This differs from the Drag and Drop utility function library in that the utilities
allow multiple drop rectangles to be associated with one drop site, and the
utilities provide no visual indication.

See “Drag and Drop Functions” on page 109 for more information on
terminology.

Coloration

DropTarget coloration is defined by the “User Interface Specification for Drag
and Drop in the OPEN LOOK GUI.” XtNforeground is used to render the
“full” pixmap inside the DropTarget.

For 3D, XtNbackground is used for BG1 (the interior region of the
DropTarget). The BG3 (shadow) and Highlight colors are derived by the toolkit

Widget Reference (D – F) 267

7
DropTarget Widget

from BG1 and are used to draw the three-dimensional outline around the
DropTarget.

For 2D, XtNforeground is used to render the two-dimensional outline of the
DropTarget.

Figure 7-2 Drop Target Coloration

Resources

Table 7-7 DropTarget Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 0 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

268 OLIT Reference Manual—August 1994

7
DropTarget Widget

Table 7-8 DropTarget Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean FALSE SGI

XtNuserData XtPointer NULL SGI

Table 7-9 DropTarget Pixmap Resources

Name Type Default Access

XtNpixmap Pixmap XtUnspecifiedPixmap SGI

XtNrecomputeSize Boolean FALSE SGI

Table 7-10 DropTarget Resources

Name Type Default Access

XtNbusyPixmap Pixmap XtUnspecifiedPixmap SGI

XtNdndAcceptCursor Cursor NULL SGI

XtNdndAnimateCallback XtCallbackList NULL SGI

XtNdndCopyCursor Cursor openlook SGI

XtNdndMoveCursor Cursor openlook SGI

XtNdndPreviewHints OlDnDSitePreviewHints OlDnDSitePreviewNone SGI

XtNdndPreviewCallback XtCallbackList NULL SGI

XtNdndRejectCursor Cursor NULL SGI

Widget Reference (D – F) 269

7
DropTarget Widget

OlDropTargetCallbackStruct

The following structure is used by all of the callbacks for the DropTarget
widget.

typedef struct {
int reason ;
Widget widget ;
Window window ;
Position root_x ;
Position root_y ;
Atom selection ;
Time time ;
OlDnDDropSiteID dropsiteid ;
OlDnDTriggerOperation operation ;
Boolean send_done ;
Boolean forwarded ;
int eventcode ;
Boolean sensitivity ;

} OlDropTargetCallbackStruct;

reason Supplies information necessary for the callback to make use of
the remaining fields in the structure. This field can be one of the
following values:

OL_REASON_NONE
OL_REASON_EXPOSE
OL_REASON_GRAPHICS_EXPOSE
OL_REASON_RESIZE
OL_REASON_DND_PREVIEW
OL_REASON_DND_TRIGGER
OL_REASON_DND_OWNSELECTION
OL_REASON_DND_ANIMATE

widget The owning widget of the drop site
window The owning window of the drop site
root_x The root-relative x-coordinate at which the drop occurred

XtNdndTriggerCallback XtCallbackList NULL SGI

XtNfull Boolean FALSE SGI

XtNownSelectionCallback XtCallbackList NULL SGI

XtNselectionAtom Atom NULL SGI

Table 7-10 DropTarget Resources (Continued)

Name Type Default Access

270 OLIT Reference Manual—August 1994

7
DropTarget Widget

root_y The root-relative y-coordinate at which the drop occurred
selection The Selection Atom for the selection transfer of the drop

information
time The timestamp of the pertinent event; for example, the trigger or

preview
dropsiteid The ID of the drop site on which the drop occurred
operation One of the following values:

OlDnDTriggerCopyOp The object is copied
OlDnDTriggerMoveOp The object is moved

send_done If TRUE, the selection holder expects to be notified at the end of
the selection transaction that it has been completed and that no
further transactions associated with this drop will occur. This
notification is achieved by calling OlDnDDragNDropDone()
when the selection transaction is completed successfully.

forwarded The drop has been forwarded to this target by another drop site.

eventcode One of the following values:

LeaveNotify The cursor has left a drop site
EnterNotify The cursor has entered a drop site
MotionNotify The cursor is moving within a drop site

sensitivity Indicates whether the drop site the cursor has entered is
interested in receiving drops.

Since OlDropTargetCallbackStruct is shared among all the callbacks of
the DropTarget widget, not all the fields of OlDropTargetCallbackStruct
are valid for all the callbacks of the DropTarget widget. For example, the
selection field has no relevance for XtNpreviewCallback . The following table
enumerates the validity of various fields of OlDropTargetCallbackStruct
for all the callbacks of the DropTarget widget. The rows of the table contain
fields of OlDropTargetCallbackStruct . The columns of the table contain
the callbacks of the DropTarget widget. A ‘+’ in a cell indicates the field in that
row is relevant for the callback in that column, a ‘–’ indicates that the field in
that row should not be accessed by the callback in that column.

Table 7-11 OlDropTargetCallbackStruct Field Validity

Field Preview Trigger Ownselection Animate

reason + + + +
widget + + + +

Widget Reference (D – F) 271

7
DropTarget Widget

XtNbusyPixmap

Synopsis: The image displayed when the DropTarget is busy.

XtNdndAcceptCursor

Synopsis: The cursor used to indicate visually that the destination drop site
will accept a drop.

Values: Any valid cursor, but the value is OPEN LOOK specified.

This resource is used by source DropTarget widgets only. It defines the cursor
displayed when the mouse pointer moves over a drop site (during a drag
operation) that is willing to accept a drop.

In a Drag and Drop operation, it is the responsibility of the source to change the
cursor feedback as the mouse pointer moves over the various drop sites on the
display (see XtNdndAnimateCallback).

window + + – –
root_x + + – –
root_y + + – –
selection – + – –
time + + + +
dropsiteid + + – –
operation – + – –
send_done – + – –
forwarded + + – –
eventcode + – – +
sensitivity – – – +

Class Type Default Access

XtCBusyPixmap Pixmap XtUnspecifiedPixmap SGI

Class Type Default Access

XtCCursor Cursor NULL SGI

Table 7-11 OlDropTargetCallbackStruct Field Validity (Continued)

Field Preview Trigger Ownselection Animate

272 OLIT Reference Manual—August 1994

7
DropTarget Widget

XtNdndAnimateCallback

Synopsis: The callback list used by a source DropTarget to indicate the
readiness of the destination.

This callback list is used by the source DropTarget widget. A callback procedure
registered on this callback list is invoked for animating the drag cursor as the
mouse pointer moves over the various drop sites on a display. The callback
should make sure that the feedback of the drag cursor reflects the willingness
of the drop site under the mouse pointer to accept a drop. (See
XtNdndAcceptCursor and XtNdndRejectCursor .)

XtNdndCopyCursor

Synopsis: The cursor used to indicate visually that the drop operation is a
copy.

Values: Any valid cursor, but the value is OPEN LOOK specified.

This resource is used by source DropTarget widgets to indicate whether the
operation is a copy (or a move).

XtNdndMoveCursor

Synopsis: The cursor used to indicate visually that the drop operation is a
move.

Values: Any valid cursor, but the value is OPEN LOOK specified.

This resource is used by source DropTarget widgets to indicate whether the
operation is a copy (or a move).

XtNdndPreviewHints

Synopsis: When a DropTarget preview callback is activated.
Values: One of the following values:

Class Type Default Access

XtCCallback XtCallbackList NULL SGI

Class Type Default Access

XtCCursor Cursor openlook SGI

Class Type Default Access

XtCCursor Cursor openlook SGI

Class Type Default Access

XtCDndPreviewHints OlDnDSitePreviewHints OlDnDSitePreviewNone SGI

Widget Reference (D – F) 273

7
DropTarget Widget

OlDnDSitePreviewNone
OlDnDSitePreviewEnterLeave
OlDnDSitePreviewMotion
OlDnDSitePreviewBoth
OlDnDSitePreviewDefaultSite
OlDnDSitePreviewForwarded
OlDnDSitePreviewInsensitive

This resource is used by destination DropTarget widgets only.

See “Drag and Drop Functions” for more details, in particular the section
“OlDnDSitePreviewHints” on page 117.

XtNdndPreviewCallback

Synopsis: The callback list used by the destination DropTarget to indicate the
readiness of the destination.

This callback list is used by a destination DropTarget widget. A callback
procedure registered on this callback list is invoked for changing the feedback
of the destination widget (usually by changing the background pixmap) as a
mouse pointer moves over it during a drag operation. The callback should
make sure that the feedback of the destination widget reflects the willingness of
the destination to accept a drop (see XtNbusyPixmap).

XtNdndRejectCursor

Synopsis: The cursor used to indicate visually that the source DropTarget will
reject a drop.

Values: Any valid cursor, but the value is OPEN LOOK specified.

This resource is used by source DropTarget widgets only. It defines the cursor
displayed when the mouse pointer moves over a drop site (during a drag
operation) that is not willing to accept a drop. In a Drag and Drop operation it
is the responsibility of the source to change the cursor feedback as the mouse
pointer moves over the various drop sites on the display (see
XtNdndAnimateCallback).

Class Type Default Access

XtCCallback XtCallbackList NULL SGI

Class Type Default Access

XtCCursor Cursor NULL SGI

274 OLIT Reference Manual—August 1994

7
DropTarget Widget

XtNdndTriggerCallback

Synopsis: The callback list invoked by the destination DropTarget to perform
the data transfer.

This callback list is used by a destination DropTarget widget only. A callback
procedure registered on this callback list is invoked after a drop has occurred
on the destination widget. The callback procedure is responsible for initiating
the data transfer associated with the drop.

A callback procedure on the XtNdndTriggerCallback list is invoked after all
the callback procedures on the XtNownSelectionCallback callback list of
the source DropTarget widget have been invoked (see
XtNownSelectionCallback).

XtNfull

Synopsis: The eligibility of this DropTarget to be source.
Values: TRUE/”true” – This DropTarget is “full” of data and can be the

source of a Drag and Drop operation. The pixmap specified by the
XtNpixmap resource is displayed.
FALSE/”false” – The DropTarget is “empty” and cannot be a
source. No pixmap is displayed.

XtNownSelectionCallback

Synopsis: The callback list used for the Selection Atom to send data.

This callback list is used by a source DropTarget widget. A callback procedure
registered on this callback list is invoked after a drop has occurred on some
destination. The callback procedure must perform the following actions:

1. Allocate an X11 selection atom using OlDnDAllocTransientAtom() (see
page 122).

Class Type Default Access

XtCCallback XtCallbackList NULL SGI

Class Type Default Access

XtCFull Boolean FALSE SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGI

Widget Reference (D – F) 275

7
DropTarget Widget

2. Set its XtNselectionAtom resource to the ID of the atom allocated in
step 1. The ID of the selection atom is passed along to the destination by the
toolkit. This in turn allows the destination to initiate the data transfer
operation associated with the drop.

3. Obtain ownership of the X11 selection atom allocated in step 1 by calling
OlDnDOwnSelection() (see page 126).

XtNrecomputeSize

Synopsis: The size of the DropTarget widget.
Values: TRUE/”true” – The DropTarget has the height and width of the

pixmap specified by XtNpixmap . In this case the XtNheight and
XtNwidth resources are ignored.
FALSE/”false” – The DropTarget has the default height and
width specified by OPEN LOOK.

XtNselectionAtom

Synopsis: The Selection Atom used to carry the data object.

This resource is used by source DropTarget widgets only. The atom is obtained
by the XtNownSelectionCallback , which also sets this resource.

Class Type Default Access

XtCRecomputeSize Boolean FALSE SGI

Class Type Default Access

XtCSelectionAtom Atom NULL SGI

276 OLIT Reference Manual—August 1994

7
DropTarget Widget

Activation Types

The following table lists the activation types used by the DropTarget.

The DropTarget widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“Drag and Drop Functions” on page 109.

Table 7-12 DropTarget Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 277

7
Exclusives Widget

Exclusives Widget

Class
Class Name: Exclusives
Class Pointer: exclusivesWidgetClass

Ancestry

Core-Composite-Constraint-Manager-Exclusives

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Exclusives.h>

Description

The Exclusives widget provides a simple way to build a one-of-many button
selection object. It provides layout management for a set of rectangular
buttons.

Grid Layout and Button Labels

Sample exclusive button widgets are shown in the following figure.

Figure 7-3 Exclusive Buttons Example

The Exclusives widget lays out the rectangular buttons in a grid in the order
they were added as child widgets by the application. The number of rows or
columns in this grid can be controlled by the application.

If the grid has more than one row, the Exclusives widget forces the buttons in
each column to be the same size as the widest in the column.

278 OLIT Reference Manual—August 1994

7
Exclusives Widget

If the grid has a single row, each button will be only as wide as necessary to
display the label.

Selection Control
• When XtNnoneSet is FALSE, exactly one button in an Exclusives widget

must be set (its XtNset resource is set to TRUE). An error is generated if an
Exclusives is configured with two or more rectangular buttons set or with
no button set. The Exclusives widget maintains this condition by ensuring
that when a button is set by the user clicking SELECT over it, the button that
was set is cleared and its XtNunselect callbacks are invoked. However,
clicking SELECT over a button that was already set does nothing.

• When XtNnoneSet is TRUE, at most one button in an Exclusives widget can
be set. An error is generated if an Exclusives is configured with two or more
rectangular buttons set, but not if configured with no button set. The
Exclusives widget maintains this condition by ensuring that when a button
is set by the user clicking SELECT over it, any button that was previously set
is cleared. Also, clicking SELECT over a button that was already set will
unset it. Clearing a button in either case invokes its XtNunselect callbacks.

Menu Use

The Exclusives widget can be added as a single child to a menu pane to
implement a one-of-many menu choice.

Child Constraint

The Exclusives widget constrains its child widgets to be of the class
rectButtonWidgetClass .

Coloration

When the Exclusives widget manages a number of children that is not a
multiple of XtNmeasure , the empty space is colored with the value of the
XtNbackground or XtNbackgroundPixmap resource.

Widget Reference (D – F) 279

7
Exclusives Widget

Keyboard Traversal

The Exclusives widget manages the traversal between a set of RectButton
widgets. When the user traverses to an Exclusives widget, the first RectButton
in the set will receive input focus.

The MOVEUP, MOVEDOWN, MOVERIGHT, and MOVELEFT keys move the input
focus between the RectButtons. To traverse out of the Exclusives widget, the
following keys can be used:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application
• SELECTKEY acts as if the SELECT button had been clicked on the RectButton

with input focus
• MENUKEY acts as if the MENU button had been clicked on the RectButton

with input focus

Resources

Table 7-13 Exclusives Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

280 OLIT Reference Manual—August 1994

7
Exclusives Widget

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-14 Exclusives Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-15 Exclusives Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 7-16 Exclusives Resources

Name Type Default Access

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNmeasure int 1 SGI

XtNnoneSet Boolean FALSE SGI

XtNrecomputeSize Boolean TRUE SGI

Table 7-13 Exclusives Core Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 281

7
Exclusives Widget

XtNlayoutType

Synopsis: The type of layout of child widgets.
Values: OL_FIXEDROWS/”fixedrows” - The layout should have a fixed

number of rows
OL_FIXEDCOLS/”fixedcols” - The layout should have a fixed
number of columns.

The choices are to specify the number of rows or the number of columns. Only
one of these dimensions can be specified directly; the other is determined by
the number of child widgets added, and will always be enough to show all the
child widgets.

XtNmeasure

Synopsis: The number of rows or columns in the layout of child widgets.
Values: 0 < XtNmeasure

If there are not enough child widgets to fill a row or column, the remaining
space is left blank.

XtNnoneSet

Synopsis: Whether the buttons controlled by the Exclusives composite can be
toggled into an unset mode directly.

Values: TRUE/”true” - (None Set.) At most one button in an Exclusives
widget can be set. An error will be generated if an Exclusives is
configured with two or more rectangular buttons set, but not if
configured with no button set. The Exclusives widget will maintain
this condition by ensuring that when a button is set by the user
clicking SELECT over it, any button that was previously set will be
cleared. Also, clicking SELECT over a button that was already set
will unset it. Clearing a button in either case will invoke its
XtNunselect callbacks.
FALSE/”false” - (One Set.) Exactly one button in an Exclusives
widget is required to be set (its XtNset resource is set to TRUE).

Class Type Default Access

XtCLayoutType OlDefine OL_FIXEDROWS SGI

Class Type Default Access

XtCMeasure int 1 SGI

Class Type Default Access

XtCNoneSet Boolean FALSE SGI

282 OLIT Reference Manual—August 1994

7
Exclusives Widget

An error will be generated if an Exclusives is configured with two
or more rectangular buttons set or with no button set. The
Exclusives widget will maintain this condition by ensuring that
when a button is set by the user clicking SELECT over it, the button
that was set is cleared and its XtNunselect callbacks are invoked.
However, clicking SELECT over a button that was already set will
do nothing.

XtNrecomputeSize

Synopsis: Whether the widget resizes itself.
Values: TRUE/”true” – The widget resizes itself to accommodate

changes in its children’s sizes due to changes in resources such as
fonts or labels.
FALSE/”false” – The widget does not resize itself.

Activation Types

The following table lists the activation types used by the Exclusives.

The Exclusives widget has no activation types besides the ones in “Common
Activation Types” on page 68.

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Table 7-17 Exclusives Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 283

7
Exclusives Widget

See Also

“RectButton Widget” on page 489,
“FlatExclusives Widget” on page 337,
“Nonexclusives Widget” on page 428.

284 OLIT Reference Manual—August 1994

7
FileChooser Widget

FileChooser Widget

Class
Class Name: FileChooser
Class Pointer: fileChooserWidgetClass

Ancestry

Core-Composite-Constraint-Manager-RubberTile-FileChooser

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FileCh.h>

Description

The FileChooser widget allows the user to traverse directories (folders), view
the files (documents) and subdirectories (folders) in them, and select files
(documents).

Although an application may use a file chooser panel embedded in a multi-
category property sheet, typically it would use a popup window file chooser.
The OLIT FileChooserShell widget class implements such a popup window file
chooser as defined in the OPEN LOOK GUI Functional Specification (see
“FileChooserShell Widget” on page 311 for more details).

The look and feel of this widget has four variants, depending on the operation
it is intended to perform: Open, Save, Save As, or Include. These variants are
implemented as a single modal widget class (see “XtNoperation” on page 291).

Note – Only a single instance of a particular file chooser variant is allowed per
application. It is the responsibility of the application to uphold this UI policy.

The API specification that follows provides for a default behavior that complies
with the OPEN LOOK GUI Functional Specification. However, it also offers
features beyond, and the flexibility to depart from, the prescriptions of the
OPEN LOOK GUI Functional Specification.

Widget Reference (D – F) 285

7
FileChooser Widget

Note – The OPEN LOOK GUI Functional Specification calls for no more then a
single set of file chooser instances (Open, Save, Save As) to be created and
made available to the user. It is the responsibility of the application to enforce
this policy.

Coloration

See the Coloration section of the FileChooserShell widget on page 312.

Known Deficiencies

When the root directory (/) of the file system is browsed using the FileChooser,
the first item in the scrolling list does not function properly. At that time this
item is preselected (instead of the usual “Go Up One Folder” item, which is not
applicable in this situation), but attempting to open the folder or file that it
represents will not work. A workaround is for the user to first select another
item in the list and then select the first active item.

FileChooser does not support wide character string formats. The application
should use the multibyte interface as a workaround.

Resources

Table 7-18 FileChooser Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel (parent’s) SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 0 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

286 OLIT Reference Manual—August 1994

7
FileChooser Widget

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-19 FileChooser Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-20 FileChooser Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel (calculated; see page 27) SGID

XtNpostSelect XtCallbackList NULL SGIO

XtNpreSelect XtCallbackList NULL SGIO

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 7-21 FileChooser RubberTile Resources

Name Type Default Access

XtNorientation OlDefine OL_VERTICAL SGI

Table 7-18 FileChooser Core Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 287

7
FileChooser Widget

Table 7-22 FileChooser Resources

Name Type Default Access

XtNapplicationFolders OlFolderList NULL SGI

XtNapplicationFoldersMaxCount Cardinal 5 GI

XtNcancelAccelerator String NULL SGI

XtNcancelButtonWidget Widget (calculated) G

XtNcancelCallback XtCallbackList NULL SGIO

XtNcancelLabel OlStr “Cancel” SGI

XtNcancelMnemonic OlMnemonic ‘\0’ SGI

XtNcommandButtonWidget Widget (calculated) G

XtNcomparisonFunc OlComparisonFunc (string case-insensitive
ascending)

SGI

XtNcurrentFolder String (see 1) SGI

XtNcurrentFolderLabelString OlStr “Current Folder:” SGI

XtNcurrentFolderLabelWidget Widget (calculated) G

XtNcurrentFolderWidget Widget (calculated) G

XtNdefaultDocumentName OlStr “Untitled1” SGI

XtNdefaultDocumentSuffix OlStr “.1” SGI

XtNdocumentListWidget Widget (calculated) G

XtNdocumentNameLabelWidget Widget (calculated) G

XtNdocumentNameTypeInWidget Widget (calculated) G

XtNexpandTilde Boolean TRUE SGI

XtNextensionClass WidgetClass (formWidgetClass) GI

XtNextensionName String NULL GI

XtNextensionWidget Widget NULL G

XtNfolderOpenedCallback XtCallbackList NULL SGIO

XtNfolderPromptString OlStr “Select a folder and click %.” SGI

XtNfollowSymlinks Boolean TRUE SGI

XtNfont OlFont XtDefaultFont SGI

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNgotoButtonWidget Widget (calculated) G

XtNgotoHomeAccelerator String NULL SGI

XtNgotoHomeButtonWidget Widget (calculated) G

288 OLIT Reference Manual—August 1994

7
FileChooser Widget

XtNgotoHomeLabel OlStr “Home” SGI

XtNgotoHomeMnemonic OlMnemonic ‘\0’ SGI

XtNgotoLabel OlStr “Go To” SGI

XtNgotoMenuWidget Widget (calculated) G

XtNgotoPromptString OlStr “Type in the path to the folder
and press Return.”

SGI

XtNgotoPromptWidget Widget (calculated) G

XtNgotoTypeInWidget Widget (calculated) G

XtNgoUpOneFolderLabel OlStr “...Go up one folder...” SGI

XtNhideDotFiles Boolean TRUE SGI

XtNhistoryFoldersMaxCount Cardinal 15 GI

XtNhistoryFoldersMinCount Cardinal 3 GI

XtNhomeFolder String (user’s UNIX home directory) SGI

XtNincludeAccelerator String NULL SGI

XtNincludeLabel OlStr “Include” SGI

XtNincludeMnemonic OlMnemonic ‘\0’ SGI

XtNinputDocumentCallback XtCallbackList NULL SGIO

XtNinputFocusColor Pixel (see page 27) SGI

XtNlastDocumentName String NULL SGI

XtNlistChoiceCallback XtCallbackList NULL SGIO

XtNlistPromptWidget Widget (calculated) G

XtNlistVisibleItemCount Cardinal 10 GI

XtNlistVisibleItemMinCount Cardinal 3 GI

XtNnoTypeInAcceleration Boolean FALSE SGI

XtNopenAccelerator String NULL SGI

XtNopenButtonWidget Widget (calculated) G

XtNopenFolderAccelerator String NULL SGI

XtNopenFolderCallback XtCallbackList NULL SGIO

XtNopenFolderLabel OlStr “Open Folder” SGI

XtNopenFolderMnemonic OlMnemonic ‘\0’ SGI

XtNopenLabel OlStr “Open” SGI

XtNopenMnemonic OlMnemonic ‘\0’ SGI

XtNopenPromptString OlStr “Select a document or folder
and click %.”

SGI

Table 7-22 FileChooser Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 289

7
FileChooser Widget

The widget resources in Table 7-22 fall into three categories:

• Base Resources
• Internationalization
• State parameters
• Standard callbacks (and associated callback structures)
• Goto control

• Customization Resources
• Sorting
• Path name processing
• User feedback
• User customization: accelerators and mnemonics

• Extensibility Resources (resources provided for application programmers
wishing to extend the FileChooser)
• Extension container
• Component access
• Extensibility callbacks
• Control of labels

1. The application’s current working directory at the time the resource is initialized or set.

2. The default scale for this widget’s screen, if available; otherwise, 12 points.

XtNoperation OlDefine OL_OPEN GI

XtNoutputDocumentCallback XtCallbackList NULL SGIO

XtNsaveAccelerator String NULL SGI

XtNsaveAsAccelerator String NULL SGI

XtNsaveAsLabel OlStr “Save As” SGI

XtNsaveAsMnemonic OlMnemonic ‘\0’ SGI

XtNsaveLabel OlStr “Save” SGI

XtNsaveMnemonic OlMnemonic ‘\0’ SGI

XtNscale int (see 2) SGI

XtNshowGlyphs Boolean TRUE SGI

XtNshowInactive Boolean TRUE SGI

XtNsubstituteShellVariables Boolean TRUE SGI

XtNtextFormat OlStrRep OlDefaultTextFormat GI

XtNuserFolders OlFolderList NULL SGI

XtNuserFoldersMaxCount Cardinal 5 GI

Table 7-22 FileChooser Resources (Continued)

Name Type Default Access

290 OLIT Reference Manual—August 1994

7
FileChooser Widget

Base Resources

XtNcurrentFolder

Synopsis: The directory name to display, or that is being displayed, as a
result of the user’s navigation with the file chooser.

Values: Relative and absolute fully specified pathname (i.e., no wild cards);
“.” and “..” are accepted.

The default is to display the application’s current working directory at the time
the resource is initialized or set, which for many applications is the directory
from which the application was invoked.

Every time this resource is set, the file list view is updated and the
XtNopenFolderCallback is called.

XtNfollowSymlinks

Synopsis: The traversal of symbolic links, rather that of actual folders, when
a “Go up one folder” command is executed.

Values: TRUE/”true” – Enable traversing the parent of the symbolic
link.
FALSE/”false” – Enable traversing the parent of the actual
folder.

XtNfont

The FileChooser widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfont” on page 26.

XtNfontColor

The FileChooser widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfontColor” on page 27.

Class Type Default Access

XtCFolderName String (see text) SGI

Class Type Default Access

XtCFollowSymlinks Boolean TRUE SGI

Class Type Default Access

XtCFont OlFont XtDefaultFont SGI

Class Type Default Access

XtCFontColor Pixel XtDefaultForeground SGID

Widget Reference (D – F) 291

7
FileChooser Widget

XtNforeground

The FileChooser widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNforeground” on page 27.

XtNlastDocumentName

Synopsis: The root of the base file name to be used in the “Save As” type-in
field.

XtNlistVisibleItemCount

Synopsis: The preferred number of files and folders to show in the list.
Values: 0 < XtNlistVisibleItemCount

The list will always show at least XtNlistVisibleItemMinCount entries.

XtNlistVisibleItemMinCount

Synopsis: The minimum value for XtNlistVisibleItemCount .

XtNoperation

Synopsis: The operation to be performed.
Values: OL_OPEN/”open”

OL_SAVE/”save”
OL_SAVE_AS/”save_as”
OL_INCLUDE/”include”

The four values correspond to the standard operations provided by the OPEN
LOOK GUI Functional Specification.

Class Type Default Access

XtCForeground Pixel XtDefaultForeground SGI

Class Type Default Access

XtCDocumentName String NULL SGI

Class Type Default Access

XtCVisibleItemCount Cardinal 10 GI

Class Type Default Access

XtCVisibleItemMinCount Cardinal 3 GI

Class Type Default Access

XtCOperation OlDefine OL_OPEN GI

292 OLIT Reference Manual—August 1994

7
FileChooser Widget

XtNscale

The FileChooser widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNscale” on page 29.

XtNshowGlyphs

Synopsis: The display of glyphs in the folder content list.
Values: TRUE/”true” – Glyphs are displayed in the folder content list.

FALSE/”false” – Glyphs are not displayed in the folder content
list.

XtNtextFormat

The FileChooser widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNtextFormat” on page 29.

The values of the all messages are stored in string catalogs for localization
purposes, including:

• All status, including error, messages
• All state messages

Standard Callbacks

The generic call_data structure for all FileChooser callbacks is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtVersionType version ;
XtPointer extension ;
OlDefine operation ;
String current_folder ;

} OlFileChGenericCallbackStruct;

Class Type Default Access

XtCScale int (see text) SGI

Class Type Default Access

XtCBooleanDefault Boolean TRUE SGI

Class Type Default Access

XtCTextFormat OlStrRep OlDefaultTextFormat GI

Widget Reference (D – F) 293

7
FileChooser Widget

Fields in the generic call_data structure are:

reason Can be any one of:
OL_REASON_OPEN_FOLDER
OL_REASON_OPEN_DOCUMENT
OL_REASON_OUTPUT_DOCUMENT
OL_REASON_FILTER
OL_REASON_LIST_CHOICE
OL_REASON_FOLDER_OPENED
OL_REASON_CANCEL

version Version of the FileChooser

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in currently (absolute path
name)

XtNinputDocumentCallback

Synopsis: The input document callback.

In an Open or Include operation, this callback list is invoked when

• A document item in the list has been selected, and the Open or Include
button is depressed, or

• A document item in the list is double-clicked, or

• XtNnoTypeInAcceleration is set to false and a pathname expression that
resolves to a unique document pathname is entered into the Goto type-in
(by following it with an OL_ENTER action).

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

294 OLIT Reference Manual—August 1994

7
FileChooser Widget

The call_data structure is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtVersionType version ;
XtPointer extension ;
OlDefine operation ;
String current_folder ;

/* Callback-dependent fields */
String request_document_folder ;
String request_document ;
OlFNavNode request_document_node ;

} OlFileChDocumentCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_INPUT_DOCUMENT or
OL_REASON_OUTPUT_DOCUMENT

version Version of the FileChooser

extension Reserved for future use

operation OL_OPEN or OL_INCLUDE

current_folder The folder that the FileChooser is in currently
(absolute pathname)

request_document_folder The folder in which the FileChooser has been
requested for a document (absolute pathname)

request_document The base document name being requested

request_document_node A struct of type OlFNavNode ; see below.

The OlFNavNode struct type describes the folder or document currently
selected in the folder content list. Fields in the structure are:

name The name of the file (a folder or document)

is_folder TRUE if the file is a folder

operational Not used

filtered Not used

active TRUE is the file is selected

glyph The glyph used in the content list

sbufp A pointer to the struct stat buffer, if it has been obtained

Widget Reference (D – F) 295

7
FileChooser Widget

XtNopenFolderCallback

Synopsis: The open folder callback.

For all operations, this callback is invoked when:

• A folder item in the list has been selected, and the Open or Open Folder
button is depressed, or

• A folder item in the list is double-clicked, or
• XtNnoTypeInAcceleration is set to FALSE and a pathname expression

that resolves to a unique folder pathname is entered into the Goto type-in
(either by following it with an OL_ENTER action or by depressing the Goto
button), or

• An item is selected in the Goto Menu, or
• The XtNcurrentFolder resource is set

In a Save or Save As operation, this callback is invoked when:

• XtNnoTypeInAcceleration is set to FALSE and a pathname expression
that resolves to a unique folder pathname is entered into the Save or Save
As type-in (by following it with an OL_ENTER action).

In all cases, the client may override the requested directory change by
manipulating the request_folder field of the callback structure. If the latter is set
to NULL, the current directory remains unchanged. A successful change causes
the value of XtNcurrentFolder to be updated.

The call_data structure is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtVersionType version ;
XtPointer extension ;
OlDefine operation ;
String current_folder ;

/* Callback-dependent fields */
String request_folder ;
OlFNavNode request_folder_node ;

} OlFileChFolderCallbackStruct;

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

296 OLIT Reference Manual—August 1994

7
FileChooser Widget

Fields in the call_data structure are:

reason OL_REASON_OPEN_FOLDER

version Version of the FileChooser

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in currently (absolute
pathname)

request_folder The folder that the FileChooser has been requested to
move to. This field is NULL if the request is for the
current_folder.

request_folder_node A struct of type OlFNavNode ; see
“XtNinputDocumentCallback” on page 293

XtNoutputDocumentCallback

Synopsis: The output document callback.

In a Save or Save As operation, this callback list is invoked when:

• A name expression is entered into the Save or Save As type-in (by following
it with an OL_ENTER action).

The call_data structure is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtVersionType version ;
XtPointer extension ;
OlDefine operation ;
String current_folder ;

/* Callback-dependent fields */
String request_document_folder ;
String request_document ;
OlFNavNode request_document_node ;

} OlFileChDocumentCallbackStruct;

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (D – F) 297

7
FileChooser Widget

Fields in the call_data structure are:

reason OL_REASON_OUTPUT_DOCUMENT

version Version of the FileChooser

extension Reserved for future use

operation OL_SAVE or OL_SAVE_AS

current_folder The folder that the FileChooser is in currently
(absolute pathname)

request_document_folder The folder in which the FileChooser has been
requested for a document (absolute pathname).

request_document The base document name being requested

request_document_node A struct of type OlFNavNode ; see
“XtNinputDocumentCallback” on page 293

File Filtering

XtNfilterProc

Synopsis: The callback called for each filtered (i.e., matching
XtNfilterString) file in the list. Allows the application to
specify custom glyphs for filtered files.

The call_data structure is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtVersionType version ;
XtPointer extension ;
XtPointer user_data ;
OlDefine operation ;
String current_folder ;

} OlFiChFilterCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_FILTER

version Version of the FileChooser

Class Type Default Access

XtCCallback XtCallbackList NULL SGI

298 OLIT Reference Manual—August 1994

7
FileChooser Widget

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in currently (absolute
pathname)

XtNfilterString

Synopsis: An ed(1)-like regular expression string used to filter document
names from the list (except if they are directory names).

Those files that are filtered will be displayed as inactive (“grayed-out”) if the
XtNshowInactive resource is set to TRUE, and will not be displayed at all if
that resource is set to FALSE.

The expression “.∗” causes the XtNfilterProc to be called for all files in the
list. No callbacks are performed if the expression is empty (““) or NULL.

XtNhideDotFiles

Synopsis: The display dot-files in the list.
Values: TRUE/”true” – Display names with leading dots.

FALSE/”false” – Do not display names with leading dots.

XtNshowInactive

Synopsis: The display of filtered-out entries in the list.
Values: TRUE/”true” – Display filtered-out entries in the list as inactive

(grayed-out).
FALSE/”false” – Do not display filtered-out entries.

Class Type Default Access

XtCFilterString String NULL SGI

Class Type Default Access

XtCBooleanDefault Boolean TRUE SGI

Class Type Default Access

XtCBooleanDefault Boolean TRUE SGI

Widget Reference (D – F) 299

7
FileChooser Widget

GoTo Control

XtNapplicationFolders

Synopsis: The list of application specific folder names to be added to the
GoTo menu.

Items in the list exceeding the value of XtNapplicationFoldersMaxCount
are ignored. The syntax of the Intrinsics Translation Manager is used. For
example:

“~/folder1 \n
 ~/folder2 \n
 /folder/subfolder “

The datatype OlFolderList is defined as:

typedef String ∗OlFolderList;

and is expected to be terminated by a NULL string.

Note – This resource should be in sync with its equivalent in the
OpenWindows WorkSpace resources, when available.

XtNapplicationFoldersMaxCount

Synopsis: The maximum allowed number of application folders. The actual
count of these folders may not exceed this value and is determined
by the value of the XtNapplicationFolders list.

XtNhistoryFoldersMaxCount/
XtNhistoryFoldersMinCount

Synopsis: The maximum (minimum) allowed number of history folders. The
actual count of these folders may not exceed (be less than) this

Class Type Default Access

XtCFolders OlFolderList NULL SGI

Class Type Default Access

XtCFolderMaxCount Cardinal 5 GI

Class Type Default Access

XtCFolderMaxCount Cardinal 15 GI

XtCFolderMinCount Cardinal 3 GI

300 OLIT Reference Manual—August 1994

7
FileChooser Widget

value and is determined by the value of the XtNhistoryFolders
list.

If the value of XtNhistoryFoldersMaxCount is less than that of
XtNhistoryFoldersMinCount , the former is reset to the latter.

Note – Setting both of these resources to zero disables the folder history
mechanism.

XtNhomeFolder

Synopsis: The pathname of a folder to be used as the HOME folder in the
“Go To:” menu.

XtNuserFolders

Synopsis: The list of user-specific folder names to be added to the GoTo
menu.

Items in the list exceeding the value of XtNuserFoldersMaxCount are
ignored. The syntax of the Intrinsics Translation Manager is used. For example:

“~/folder1 \n
 ~/folder2 \n
 /folder/subfolder “

The datatype OlFolderList is defined as:

typedef String ∗OlFolderList;

and is expected to be terminated by a NULL string.

Note – This resource should be in sync with its equivalent in the
OpenWindows WorkSpace resources, when available.

Class Type Default Access

XtCHomeFolder String (HOME directory of uid) SGI

Class Type Default Access

XtCFolders OlFolderList NULL G

Widget Reference (D – F) 301

7
FileChooser Widget

XtNuserFoldersMaxCount

Synopsis: The maximum allowed number of user folders.

The actual count of these folders may not exceed this value and is determined
by the value of the XtNuserFolders list.

Customization Resources

Sorting

XtNcomparisonFunc

Synopsis: The string comparison function used to sort the directory entries in
the list display.

OlStrComparisonFunc() compares its arguments and returns an integer
greater than, equal to, or less than zero if left_string is lexicographically greater
than, equal to, or less than right_string. It is defined as:

typedef int (∗OlStrComparisonFunc)(
const OlStr left_string ,
const OlStr right_string);

OlComparisonFunc() compares its arguments and returns an integer greater
than, equal to, or less than 0, if left_key is greater than, equal to, or less than
right_key, where the meaning or order is application-specified, as is the choice
of key field within the unspecified structures of the arguments. It is defined as:

typedef int (∗OlComparisonFunc)(
const XtPointer left_key ,
const XtPointer right_key);

Class Type Default Access

XtCFolderMaxCount Cardinal 5 GI

Class Type Default Access

XtCComparisonFunc OlComparisonFunc (string case-insensitive
ascending)

SGI

302 OLIT Reference Manual—August 1994

7
FileChooser Widget

The following sorting styles are provided by the toolkit and may be specified
with these symbolic constants:

By default, sorting of the file list is performed according to the collation
sequence specified in the locale’s LC_COLLATE value.

Pathname Processing

XtNexpandTilde

Synopsis: The treatment of the tilde (~) character.
Values: TRUE/”true” – The tilde is expanded according to the csh (1) or

ksh (1) rules.
FALSE/”false” – The tilde is treated as a literal ~ character.

XtNsubstituteShellVariables

Synopsis: The expansion of shell variables (such as $OPENWINHOME).
Values: TRUE/”true” – Shell variables are recognized and expanded to

their string values.
FALSE/”false” – Shell variables are not expanded.

Table 7-23 FileChooser Sorting Styles

Sort Style OlComparisonFunc()

case-sensitive ascending OL_SORT_STR_CASE_ASCENDING

case-sensitive descending OL_SORT_STR_CASE_DESCENDING

case-insensitive ascending OL_SORT_STR_NO_CASE_ASCENDING

case-insensitive descending OL_SORT_STR_NO_CASE_DESCENDING

Class Type Default Access

XtCBooleanDefault Boolean TRUE SGI

Class Type Default Access

XtCBooleanDefault Boolean TRUE SGI

Widget Reference (D – F) 303

7
FileChooser Widget

Accelerators

XtNcancelAccelerator /
XtNgotoHomeAccelerator /
XtNincludeAccelerator /
XtNopenAccelerator /
XtNopenFolderAccelerator /
XtNsaveAccelerator /
XtNsaveAsAccelerator

Synopsis: The accelerators for the Cancel button, the Home item in the Go To:
menu, and the Include, Open, Open Folder, Save, and Save As
buttons, respectively.

See “XtNaccelerator” on page 25 for more information on accelerators.

Note – In OLIT, accelerators are restricted to 7-bit single-byte characters.

Mnemonics

XtNcancelMnemonic /
XtNgotoHomeMnemonic /
XtNincludeMnemonic /
XtNopenFolderMnemonic /
XtNopenMnemonic /
XtNsaveAsMnemonic /
XtNsaveMnemonic

Synopsis: The mnemonics for the Cancel button, the Home item in the Go To:
menu, and the Include, Open, Open Folder, Save As, and Save
buttons, respectively.

Note – In OLIT, mnemonics are restricted to 7-bit single-byte characters.

Class Type Default Access

XtCAccelerator String NULL SGI

Class Type Default Access

XtCMnemonic OlMnemonic ‘\0’ SGI

304 OLIT Reference Manual—August 1994

7
FileChooser Widget

Extensibility Resources

Extension Container

XtNextensionName

Synopsis: The application-specified instance name of the extension container
widget instance used to parent additional controls provided by the
application.

In an Open operation, this container widget extends between the file scrolling
list and the command buttons at the bottom of the file chooser panel. In a Save
or Save As operation, this container widget extends between the Save type-in
field and the command buttons at the bottom of the file chooser panel

The container is created by the FileChooser widget on behalf of the application,
if, and only if, this instance name is not NULL. This extension container is not
intended to resize.

This instance name may be used for resource settings in a defaults file.

XtNextensionClass

Synopsis: The class name requested by the application for the extension
container widget.

XtNextensionWidget

Synopsis: The toolkit-provided widget ID of the extension container instance,
if present.

Component Access

These resources are used to access a component within a FileChooser. They
may be used by the client to unmanage unwanted components. An application

Class Type Default Access

XtCExtensionName String NULL GI

Class Type Default Access

XtCExtensionClass WidgetClass (formWidgetClass) G

Class Type Default Access

XtCExtensionWidget Widget NULL G

Widget Reference (D – F) 305

7
FileChooser Widget

should not assume that the returned widget ID will be of any particular class.
See also XtNextensionWidget .

XtNcancelButtonWidget /
XtNcommandButtonWidget /
XtNcurrentFolderLabelWidget /
XtNcurrentFolderWidget /
XtNdocumentListWidget /
XtNdocumentNameLabelWidget /
XtNdocumentNameTypeInWidget /
XtNopenButtonWidget /
XtNgotoButtonWidget /
XtNgotoHomeButtonWidget /
XtNgotoMenuWidget /
XtNgotoPromptWidget /
XtNgotoTypeInWidget /
XtNlistPromptWidget

Synopsis: The IDs for various widgets, as follows:

Class Type Default Access

XtCComponentWidget Widget (calculated) G

XtNcancelButtonWidget The Cancel button widget

XtNcommandButtonWidget The Open, Save, Save As, or Include button
widget

XtNcurrentFolderLabelWidget The Current Folder: label widget

XtNcurrentFolderWidget The widget displaying the pathname of the
current folder

XtNdocumentListWidget The folder content scrolling list widget

XtNdocumentNameLabelWidget The label widget of the document name type-in
field (in the Save and Save As operations)

XtNdocumentNameTypeInWidget The initial input focus of this widget in an Open
operation; an OL_DEFAULT action for the
FileChooser resolves to the verification callback
of this field

XtNopenButtonWidget The Open button widget

XtNgotoButtonWidget The Go To: button widget

XtNgotoHomeButtonWidget The Home button widget in the Go To: menu

XtNgotoMenuWidget The Go To: menu widget

306 OLIT Reference Manual—August 1994

7
FileChooser Widget

Extensibility Callbacks

These resources are provided to augment the standard internal callbacks for
the benefit of applications that need to extend the standard file chooser
behavior.

XtNcancelCallback

Synopsis: In all operations, a callback list invoked when the Cancel button is
depressed.

The call_data structure is a OlFileChGenericCallbackStruct , as shown in
“Standard Callbacks” on page 292. Fields in the generic call_data structure are:

reason OL_REASON_CANCEL

version Version of the FileChooser

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in currently (absolute
pathname)

XtNfolderOpenedCallback

Synopsis: The callback invoked after a directory change has been performed.

The call_data structure is a OlFileChGenericCallbackStruct , as shown in
“Standard Callbacks” on page 292. Fields in the generic call_data structure are:

reason OL_REASON_FOLDER_OPENED

XtNgotoPromptWidget The prompt widget for Go To: function

XtNgotoTypeInWidget The initial input focus of this widget in a Save
or Save As operation; an OL_DEFAULT action
for the FileChooser resolves to the verification
callback of this field

XtNlistPromptWidget The widget prompting for the folder content list

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (D – F) 307

7
FileChooser Widget

version Version of the FileChooser

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in currently (absolute
pathname)

XtNlistChoiceCallback

Synopsis: The callback invoked in addition to the standard callback when an
entry is selected in the list.

The call_data structure is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtVersionType version ;
XtPointer extension ;
OlDefine operation ;
String current_folder ;

/* Callback-dependent fields */
String chosen_item ;
OlFNavNode chosen_item_node ;

} OlFileChListChoiceCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_LIST_CHOICE

version Version of the FileChooser

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in currently (absolute
pathname)

chosen_item Label of the item selected in the list

chosen_item_node A struct of type OlFNavNode ; see
“XtNinputDocumentCallback” on page 293

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

308 OLIT Reference Manual—August 1994

7
FileChooser Widget

Labels

The default values for the following resources pertaining to labels are stored in
string catalogs for localization purposes. These resources allow applications to
override the default labels prescribed in the functional specification for the
four standard operations (Open, Save, Save As, and Include). These resources
will be modified to accomplish other operations not directly supported, for
example: Print, Browse, Compile, etc.

XtNgotoPromptString /
XtNopenPromptString /
XtNfolderPromptString

Synopsis: The prompt string used in the “Go To:” function, the OL_OPEN
operation, and the OL_SAVE/OL_SAVE_AS operations, respectively.

Values: Any OlStr value valid in the current locale.

‘%’ in the string is replaced with the label of the appropriate button. For
example, in an OL_OPEN operation the default label of the save button is
“Open”, and is the string used in deriving the list prompt. But, if the label had
been customized to “Browse”, the latter string would be used. Hence, in the
examples above the list prompt would be

“Select a document or folder and click Open.”

“Select a document or folder and click Browse.”

Class Type Default Access

XtCPromptString OlStr “Type in the path to the folder and
press Return.”

SGI

XtCPromptString OlStr “Select a document or folder and
click %.”

SGI

XtCPromptString OlStr “Select a folder and click %.” SGI

Widget Reference (D – F) 309

7
FileChooser Widget

XtNgotoLabel /
XtNgotoHomeLabel /
XtNgoUpOneFolderLabel /
XtNopenFolderLabel /
XtNcancelLabel /
XtNcurrentFolderLabelString /
XtNopenLabel /
XtNsaveLabel /
XtNsaveAsLabel /
XtNincludeLabel

Synopsis: The strings used as prompts for various operations: the Go To:
button; the Home button in the Go To: menu; the “Go up one
folder” item (the first item) in the folder content list; the Open
Folder button; the Cancel button; the string in the current folder
item; and the Open, Save, Save As, and Include buttons,
respectively.

Values: Any OlStr value valid in the current locale.

XtNdefaultDocumentName

Synopsis: In a Save operation, the root of the base name of the default
document name in the Save type-in field.

Values: Any OlStr value valid in the current locale.

Class Type Default Access

XtCLabel OlStr “Go To” SGI

XtCLabel OlStr “Home” SGI

XtCLabel OlStr ...Go up one folder... SGI

XtCLabel OlStr “Open Folder” SGI

XtCLabel OlStr “Cancel” SGI

XtCLabel OlStr “Current Folder:” SGI

XtCLabel OlStr “Open” SGI

XtCLabel OlStr “Save” SGI

XtCLabel OlStr “Save As” SGI

XtCLabel OlStr “Include” SGI

Class Type Default Access

XtCDefaultDocumentName OlStr “Untitled1” SGI

310 OLIT Reference Manual—August 1994

7
FileChooser Widget

XtNdefaultDocumentSuffix

Synopsis: In a Save As operation, the suffix to be used with the default
document name in the Save As type-in field.

Values: Any OlStr value valid in the current locale.

Activation Types

The following table lists the activation types used by the FileChooser.

The FileChooser widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“FileChooserShell Widget” on page 311.

Class Type Default Access

XtCDefaultDocumentSuffix OlStr “.1” SGI

Table 7-24 FileChooser Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 311

7
FileChooserShell Widget

FileChooserShell Widget

Class
Class Name: FileChooserShell
Class Pointer: fileChooserShellWidgetClass

Ancestry

Core-Composite-Shell-WMShell-VendorShell-TransientShell-FileChooserShell

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FileChSh.h>

Description

The FileChooserShell widget class implements the OPEN LOOK file chooser GUI
object. The core of the functionality is encapsulated in the FileChooser widget,
which is instantiated by the FileChooserShell (see “FileChooser Widget” on
page 284 for more details).

As called for by the OPEN LOOK GUI Functional Specification, the
FileChooserShell derives its header from the title of the application and the
name of the file chooser operation it is performing. The title of the application
is obtained from the main top level window of the application. This string may
either have been provided by the application (e.g., “Foo Text Editor”), or, it
may be the name of the executable used to invoke the application (e.g.,
“footextedit”). The name of the operation is taken from the string used to label
the button used to perform that operation in the file chooser panel. For
example, in a OL_SAVE operation the default label of the save button is “Save”,
and is the string used in deriving the FileChooserShell header. But, if the label
had been customized to “Write”, the latter string would be used.

Therefore, in the examples above the header displayed would be one of:

“Foo Text Editor: Save”
“footextedit: Save”
“Foo Text Editor: Write”
“footextedit: Write”

312 OLIT Reference Manual—August 1994

7
FileChooserShell Widget

Coloration

Figure 7-4 FileChooserShell Appearance (Open, Include Operations)

Widget Reference (D – F) 313

7
FileChooserShell Widget

Figure 7-5 FileChooserShell Appearance (Save, Save As Operations)

314 OLIT Reference Manual—August 1994

7
FileChooserShell Widget

Resources

Table 7-25 FileChooserShell Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 0 SGI

XtNcolormap Colormap (see description) GI

XtNdepth int (parent’s or default
depth of screen)

GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SG

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) GI

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SG

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-26 FileChooserShell Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-27 FileChooserShell Shell Resources

Name Type Default Access

XtNallowShellResize Boolean TRUE SGI

Widget Reference (D – F) 315

7
FileChooserShell Widget

XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI

XtNgeometry String NULL GI

XtNoverrideRedirect Boolean FALSE SGI

XtNpopdownCallback XtCallbackList NULL SGIO

XtNpopupCallback XtCallbackList NULL SGIO

XtNsaveUnder Boolean FALSE SGI

XtNvisual Visual ∗ (parent’s) GIO

XtNwidthInc int XtUnspecifiedShellInt SGI

Table 7-28 FileChooserShell WMShell Resources

Name Type Default Access

XtNbaseHeight int XtUnspecifiedShellInt GI
XtNbaseWidth int XtUnspecifiedShellInt GI
XtNheightInc int XtUnspecifiedShellInt GI
XtNiconMask Pixmap NULL SGI
XtNiconPixmap Pixmap NULL SGI
XtNiconWindow Window NULL SGI
XtNiconX int XtUnspecifiedShellInt GI
XtNiconY int XtUnspecifiedShellInt GI
XtNinitialState InitialState NormalState GI
XtNinput Bool FALSE G
XtNmaxAspectX int XtUnspecifiedShellInt GI
XtNmaxAspectY int XtUnspecifiedShellInt GI
XtNmaxHeight int XtUnspecifiedShellInt GI
XtNmaxWidth int XtUnspecifiedShellInt GI
XtNminAspectX int XtUnspecifiedShellInt GI
XtNminAspectY int XtUnspecifiedShellInt GI
XtNminHeight int 315 GI
XtNminWidth int 197 GI
XtNtitle String (see1) SGI
XtNtitleEncoding Atom (see2) SGI
XtNtransient Boolean (see3) SGI
XtNwaitForWm Boolean TRUE GI
XtNwidthInc int XtUnspecifiedShellInt GI

Table 7-27 FileChooserShell Shell Resources (Continued)

Name Type Default Access

316 OLIT Reference Manual—August 1994

7
FileChooserShell Widget

1. The application’s icon name, if specified; otherwise, the application’s name.

2. XA_STRING if the language procedure is not NULL; otherwise, None.

3. TRUE for a TransientShell; otherwise, FALSE.

4. DEFAULT_WM_TIMEOUT, if specified; otherwise, 5 seconds.

1. The default is the “Go To:” type-in field, if the operation is OL_OPEN or OL_INCLUDE; the “Save:”/”Save
As” type-in field, if the operation is OL_SAVE/OL_SAVE_AS, respectively.

XtNwindowGroup Window XtUnspecifiedWindow GI
XtNwinGravity int XtUnspecifiedShellInt GI
XtNwmTimeout int (see4) GI

Table 7-29 FileChooserShell VendorShell Resources

Name Type Default Access

XtNbusy Boolean FALSE SGI
XtNdefaultImName String NULL SGI
XtNfooterPresent Boolean TRUE SGI
XtNfocusWidget Widget (see 1) SGI
XtNimFontSet OlFont XtDefaultFontSet SGI
XtNimStatusStyle OlImStatusStyle OL_NO_STATUS GI
XtNleftFooterString OlStr NULL SGI
XtNleftFooterVisible Boolean TRUE SGI
XtNmenuButton Boolean FALSE GI
XtNmenuType OlDefine OL_MENU_LIMITED SGI
XtNpushpin OlDefine OL_OUT SGI
XtNresizeCorners Boolean TRUE SGI
XtNrightFooterString OlStr NULL SGI
XtNrightFooterVisible Boolean TRUE SGI
XtNshellTitle OlStr (see Description) SGI
XtNtextFormat OlStrRep (default text format) SGI
XtNuserData XtPointer NULL SGI
XtNwindowHeader Boolean TRUE GI
XtNwinType OlDefine OL_WT_CMD GI
XtNwmProtocolInterested int OL_WM_DELETE_WINDOW

| OL_WM_TAKE_FOCUS
I

Table 7-28 FileChooserShell WMShell Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 317

7
FileChooserShell Widget

XtNfileChooserWidget

Synopsis: The FileChooser child widget that can be accessed for setting or
getting its resources; see “FileChooser Widget” on page 284 for its
resources.

XtNoperation

Synopsis: The operation to be performed.
Values: OL_OPEN/”open”

OL_SAVE/”save”
OL_SAVE_AS/”save_as”
OL_INCLUDE/”include”

The four values correspond to the standard operations provided by the OPEN
LOOK GUI Functional Specification.

Table 7-30 FileChooserShell TransientShell Resources

Name Type Default Access

XtNtransientFor Widget NULL SGI

Table 7-31 FileChooserShell Resources

Name Type Default Access

XtNfileChooserWidget Widget (calculated) G

XtNoperation OlDefine OL_OPEN GI

XtNpointerWarping Boolean TRUE SGI

XtNtextFormat OlStrRep (default text format) GI

XtNverifyCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCComponentWidget Widget (calculated) G

Class Type Default Access

XtCOperation OlDefine OL_OPEN GI

318 OLIT Reference Manual—August 1994

7
FileChooserShell Widget

XtNpointerWarping

Synopsis: The pointer warping of the file chooser upon popup.
Values: TRUE/”true” – The pointer is warped.

FALSE/”false” – The pointer is not warped.

XtNtextFormat

Synopsis: The expected data format of all the textual resources of a widget.
Values: OL_SB_STR_REP - Single-byte character representation.

OL_WC_STR_REP - Wide character representation.
OL_MB_STR_REP - Multibyte character representation.

See “XtNtextFormat” on page 29 for details of initialization and the default
value.

Note – Wide character string representation, OL_WC_STR_REP, is not supported
in this release.

The values of the all messages are stored in string catalogs for localization
purposes, including:

• All status, including error, messages
• All state messages

XtNverifyCallback

Synopsis: The callback list to be invoked when popping down a
FileChooserShell widget. It allows interposing regardless of the
cause of the popdown action (Open, Save, Save As, Cancel,
Include, pin-out, dismiss).

Setting the accept_verify field to FALSE will defeat the popdown.

Class Type Default Access

XtCPointerWarping Boolean TRUE SGI

Class Type Default Access

XtCTextFormat OlStrRep (default text format) GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (D – F) 319

7
FileChooserShell Widget

The call_data structure is:

typedef struct {
/* OLIT standard fields */
int reason ;

/* FileChooser standard fields */
XtPointer extension ;
OlDefine operation ;
String current_folder ;

/* Callback-dependent fields */
Boolean accept_verify ;

} OlFileChShVerifyCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_VERIFY

extension Reserved for future use

operation Can be any one of OL_OPEN, OL_SAVE, OL_SAVE_AS, or
OL_INCLUDE

current_folder The folder that the FileChooser is in (absolute pathname)

accept_verify Set to TRUE by default in the call_data. To reject, set this field to
FALSE.

Activation Types

The following table lists the activation types used by the FileChooserShell.

Table 7-32 FileChooserShell Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

320 OLIT Reference Manual—August 1994

7
FileChooserShell Widget

The FileChooserShell widget has no activation types besides the ones in
“Common Activation Types” on page 68.

See Also

“FileChooser Widget” on page 284.

Widget Reference (D – F) 321

7
Flat Widgets

Flat Widgets
Flattened, or flat, widgets give the visual appearance and functionality of
many discrete windowed widgets, but are implemented as one widget with a
single associated window, created with one convenient toolkit request. Flat
widgets consume a fraction of the memory that a similar widget hierarchy
requires. The following widgets have flat versions: CheckBox, Exclusives, and
Nonexclusives.

In general, flat widgets have the following attributes:

• They are container widgets, responsible for managing the layout of one or
more controls, which are called items in this manual to distinguish them
from real widgets.

• The item classes are limited to one or a select few.

• Typically, after the container is populated, minimal or no manipulation of
the items is desired.

• Each container is simply a region that contains zero or more items of a
certain type.

• The items within the container do not have an associated window or widget
structure.

From the user’s perspective, there’s no distinguishable difference between a
flattened widget interface and a traditionally composed interface. From the
programmer’s perspective, flattened widgets have a different interface than
traditional widgets or gadgets. A single toolkit request can specify an arbitrary
number of primitive graphical user interface components (i.e., the items), thus
achieving a substantial reduction in the lines of code required to produce a
complex graphical interface component.

Item Lists and Allowable Resources

Items of a flat container are specified in list format. For the life of the list, both
the flat container and the application share the same list. Each list is an array of
application-defined records (typically, in a C-language structure format or as
an array), where each record describes a particular item.

For efficiency reasons, each record in the array must have the same form as the
other records in the array; i.e., each structure in the list has identical fields. This

322 OLIT Reference Manual—August 1994

7
Flat Widgets

restriction applies on a per-list basis only, since each list may have a different
set of fields per record if the application desires different attributes.

For example, if an application wanted to specify an “unselect” callback
procedure for one group of exclusives, but not for another, the application
would specify an XtNunselectProc field as an element field for the first list,
but not for the second list. For data alignment and parsing reasons, the fields of
each record must use the XtArgVal type (see “FlatExclusives Settings
Example”).

The fields of each record are resource values that describe the state of the item.
Allowable item resources are a subset of its container’s resource set. The
genealogy of flattened widget resources is derived from release 1.0 resources,
although new resources have been added (and some old ones removed) to
provide greater convenience to the application programmer and achieve a
higher degree of consistency between all flat containers and their items. An
item inherits any non-specified resource from its container. For example, if the
application wanted a particular font color for all items, the application does
not have to specify the XtNfontColor resource for each item; the application
simply sets the font color resource on the container and all items will use that
font color. Although item resources are part of its container’s resource set, none
of the item resources have any direct effect on the container.

Since the “form” of the item record is defined within the application’s domain,
the container must be given a hint about the record’s form so that it can parse
the supplied list. A resource name list is the key to unlocking the application’s
item list.

While the ordering of fields in each record is not important, the application
must give the resource names in the same sequence that their associated values
appear in the record. For example, if the records specifying items of a flat
exclusives container had a “label” field followed by the “selectProc” callback
field, the application must supply the container with the XtNlabel resource
name followed by the XtNselectProc resource name. Inconsistent ordering
of the fields will result in undefined behavior when the items are instantiated.

FlatExclusives Settings Example

The following code example illustrates how to create a FlatExclusives settings.
Notice that all the fields in the application-defined structure,

Widget Reference (D – F) 323

7
Flat Widgets

FlatExclusives , have the type XtArgVal . An alternative form for
specifying the FlatExclusives type is:

typedef XtArgVal FlatExclusives[number];

where number is the number of fields per record.

XtNclientData resources are specified for the container only, which allows
each item to inherit this value. If each item wanted a different client data, the
XtNclientData resource should be added to the other item resources, which
would disable the inheriting of the container’s client data value. To improve
the readability of this example, required type casts of the fields in the
FlatExclusives structure initialization deliberately have been omitted. The
resources used in the example are described in the individual flat widget
sections.

typedef struct { /* Application Defined Structure */
XtArgVal label; /* pointer to a string */

} FlatExclusives;

String exc_fields[] = { XtNlabel };

static void cb()
{ /* something interesting in here */ }

CreateObjects(parent)
Widget parent;

{
Arg args[6];
static FlatExclusives exc_items[] = {

{ "Choice 1" },
{ "Choice 2" },
{ "Choice 3" }

};

XtSetArg(args[0], XtNitems, exc_items);
XtSetArg(args[1], XtNnumItems, XtNumber(exc_items));
XtSetArg(args[2], XtNitemFields, exc_fields);
XtSetArg(args[3], XtNnumItemFields, XtNumber(exc_fields));
XtSetArg(args[4], XtNselectProc, cb);
XtSetArg(args[5], XtNclientData, "test case");

XtCreateManagedWidget("exclusives", flatExclusivesWidgetClass,
parent, args, 6);

} /* End Of CreateObjects() */

324 OLIT Reference Manual—August 1994

7
Flat Widgets

Specifying Items

Items of flattened widget containers are specified in list format with each list
having a corresponding set of resource names describing how the container is
to parse the list. Four common resources are used by each container class to
describe the necessary item information:

Name Class Type Access

XtNitems XtCItems XtPointer SGI

XtNnumItems XtCNumItems Cardinal SGI

XtNitemFields XtCItemFields String ∗ SGI

XtNnumItemFields XtCNumItemFields Cardinal SGI

Resource Use

XtNitems The list of items. This list must not be in a temporary memory
location such as a stack since flat containers reference it after
initialization and do not copy it in their private storage.

XtNnumItems The number of items.

XtNitemFields The list of resource names used to parse the records in the
XtNitems list. XtNitemFields does not have to point to
static information since the flat container does not use this
information after initialization. Although the flat container does
not reference this resource’s value after initialization, it holds
onto it for responding to an XtGetValues() request and
suppling it in the OlFlatCallData structure during
callbacks. Therefore, if the application plans on querying this
resource, the application should make this resource point to
static information.

XtNnumItemFields The number of resource names contained in
XtNitemFields .

Widget Reference (D – F) 325

7
Flat Widgets

Callbacks and Flat Widgets

There are two differences in the way callbacks are handled for flat widgets
versus traditional widgets. The first difference is that items do not use
XtCallbackLists ; instead, they use a single XtCallbackProc procedure.

A a flat widget callback procedure has the following form:

typedef void (∗XtCallbackProc)(
Widget widget ,
XtPointer client_data ,
XtPointer call_data);

Since the items of flattened widget containers are not true widget instances, the
widget argument supplied to an application’s callback procedure indicates the
flat container widget that is ultimately responsible for managing the items. For
example, the flatExclusivesWidget ID would be supplied as the widget ID
to the callback procedure for all items within the flat exclusives container. By
maintaining this rule, the application always has the correct widget handy in
the event that the application wishes to modify the item or its list from within
the callback procedure. The value of the XtNclientData resource is supplied
as the client_data field to the callback procedure. The call_data field is a
structure that the application can use to determine information about the item
associated with the current callback:

typedef struct {
Cardinal item_index ;
XtPointer items ;
Cardinal num_items ;
String ∗item_fields ;
Cardinal num_item_fields ;

} OlFlatCallData;

The fields are:

item_index Index of the item responsible for the callback.
items The head of item list that contains the item initiating the

callback
num_items The total number of items in the item list
item_fields The list of resource name used to identify the records in the

item list.
num_item_fields The number of resource names contained in item_fields.

326 OLIT Reference Manual—August 1994

7
Flat Widgets

Setting/Getting the State of an Item

The application can use two methods to change the state of an item: use the
OlFlatSetValues() procedure (see page 356) to modify one or more
attributes of an item, or directly modify the item list that the container and the
application share.

The first approach is very similar to doing an XtSetValues() request on a
widget, except that the OlFlatSetValues() routine requires the item index
as well as the widget ID, args, and num_args. The following code example
illustrates how to change an item’s label from within a callback procedure. The
example assumes the new label was specified as the client data.

Callback(
Widget widget, /* FlatExclusives Widget ID */
caddr_t client_data, /* the new static label */
caddr_t call_data); /* OlFlatCallData struct pointer */

{
OlFlatCallData ∗fcd = (OlFlatCallData ∗)call_data;
Arg args[1];

/* Set the label to be the new one passed in
 * with the client data field. */

XtSetArg(args[0], XtNlabel, client_data);

OlFlatSetValues(widget, fcp->item_index, args, 1);
} /* End Of Callback() */

Notice that the callback procedure did not have to know the number or the
order of the item fields. The only requirement was that the XtNlabel resource
is among the application-specified item fields, because if it was not, the above
request would be ignored.

There are some exceptions to this rule. For instance, the flat containers
maintain the set item and the default item even if the application did not
specify XtNset or XtNdefault . Having exceptions in this case are
worthwhile, since if the exceptions were not made, the application always
would have to specify a minimum set of item fields, which would have been
an undesirable requirement. See the individual widget sections in this manual
for a better description of the exceptions.

If the application does not use the above approach and modifies the item list
directly, the application must ensure that all items within the list have valid
states, since the container literally treats this type of modification as if the
container was given a new list.

Widget Reference (D – F) 327

7
Flat Widgets

For example, if an application wished to set a new item in a list of exclusive
items, it should first unset the currently set item and then set the new item. If
the application only set the new item, the container would generate a warning
since the item list contains more than one set item.

The following example shows how a callback procedure changes the set item
by modifying the item list. This example makes the first item be the set item
whenever the last item is selected. Notice that once the list has been touched,
the application must “inform” the container of the modification. Also notice
that in this example the application needs to know the structure of the
application to directly change its contents.

/* Application-defined structure from previous example */

typedef struct {
XtArgVal label; /* pointer to a string */
XtArgVal select_proc; /* pointer to a callback procedure */
XtArgVal set; /* this item is currently set */
XtArgVal sensitive; /* this item is sensitive */

} FlatExclusives;

Callback(
Widget widget; /* FlatExclusives Widget ID */
XtPointer client_data; /* application’s client data */
XtPointer call_data; /* OlFlatCallData struct pointer */

{
OlFlatCallData ∗fcd = (OlFlatCallData ∗) call_data;
if (fcd->num_items == (fcd->item_index + 1))
{

FlatExclusives ∗fexc_items = (FlatExclusives ∗) fcd->items;
Arg args[1];

/* Unset this item and set the first one */
fexc_items[fcd->item_index].set = FALSE;
fexc_items[0].set = TRUE;

/* Inform the container that the list was modified */
XtSetArg(args [0], XtNitemsTouched, TRUE);
XtSetValues(widget , args , 1);

}
} /* End of Callback() */

Obtaining the state of an item can be achieved in two ways:

1. Using the OlFlatGetValues() routine, specify the index of the item to be
queried (see page 355). If this approach is used, the application can query
any item resource even though it does not appear in the item fields.

328 OLIT Reference Manual—August 1994

7
Flat Widgets

In the initial example, for instance, the application can query the
XtNfontColor resource from any item even though it does not appear in
the FlatExclusives structure.

2. Looking directly into the item list, since both the application and flat
container share the same instance of the item description.

Registering Help on Items

The application can specify a unique help message for each item in a similar
fashion as help is registered for widgets; i.e., through the OlRegisterHelp()
routine (see page 146). Since items are not real widgets, but are extensions of
the flat widget container, the help registration routine has a complex ID:

typedef struct {
Widget widget ; /* Flat Widget ID */
Cardinal item_index ; /* item to register help on */

} OlFlatHelpId;

The following example registers help on item number 8.

static String tag = "Item 8";
static String source = "Item 8’s help";
OlFlatHelpId help_id;
help_id.widget = flat_widget;
help_id.item_index = 8;

OlRegisterHelp((XtPointer) &help_id, OL_FLAT_HELP, tag,
 OL_STRING_SOURCE, source);

See Also

“FlatCheckBox Widget” on page 329,
“FlatExclusives Widget” on page 337,
“FlatNonexclusives Widget” on page 347,
“Flat Widget Functions” on page 354,
“Help Function” on page 146.

Widget Reference (D – F) 329

7
FlatCheckBox Widget

FlatCheckBox Widget

Class
Class Name: FlatCheckBox
Class Pointer: flatCheckBoxWidgetClass

Ancestry

Core-Primitive-Flat-FlatExclusives-FlatCheckBox

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FCheckBox.h>

Description

The FlatCheckBox enables the application to create a number of check boxes
with a single widget. It provides items that appear and behave the same as
CheckBox widgets. However, the items only exist within the context of the
FlatCheckBox widget and are themselves not real widgets. Attributes of
FlatCheckBox items can be read and written using the Flat Widget Functions
described on page 354. They cannot be read or written using the Xt Intrinsics
functions.

In short, the FlatCheckBox provides the same functionality as a Nonexclusives
widget populated with CheckBox widgets; however, it offers improved
performance since fewer widgets are created.

See the general explanation of flattened widgets in “Flat Widgets” on page 321.

330 OLIT Reference Manual—August 1994

7
FlatCheckBox Widget

Components

The following diagram illustrates the components of the FlatCheckBox:

Figure 7-6 FlatCheckBox Components

Coloration

The background of the FlatCheckBox container is drawn using the parent’s
XtNbackground resource. The labels in the items are drawn using
XtNfontColor . The checkmarks in the items are drawn using
XtNforeground .

For 3D, the check box component coloration of each item is defined by the
OPEN LOOK GUI Functional Specification, Chapter 9, “Color and Three-
Dimensional Design.” XtNbackground is used for BG1, and the BG2 (pressed-
in), BG3 (shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNforeground is used to render the outline of the check box
component for each item as described by the OPEN LOOK GUI Functional
Specification, Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, when the
FlatCheckBox receives input focus, the background of the check box
component of the item with focus will be drawn with the value of
XtNinputFocusColor . However, if XtNinputFocusColor is the same as
XtNbackground , then the widget inverts XtNforeground and
XtNbackground inside the check box component of the item with focus. Once
the input focus leaves the widget, the original coloration is restored.

Label Check Boxes

Check Mark

FlatCheckBox Widget

Choice #1

Choice #2

Widget Reference (D – F) 331

7
FlatCheckBox Widget

Keyboard Traversal

The FlatCheckBox widget is a Primitive widget that manages traversal between
the check box items. When the user traverses to a FlatCheckBox widget, the
first item in the set will display itself as having input focus (see “CheckBox
Widget” on page 237 for a description of this appearance.)

The MOVEUP, MOVEDOWN, MOVERIGHT, and MOVELEFT keys move the input
focus between the items. To traverse out of the FlatCheckBox widget, the
following keys can be used:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application

Keyboard Mnemonic Display

The FlatCheckBox widget displays the mnemonic accelerator of an item as part
of the item’s label. The display attributes of the mnemonic character are
specified by the toolkit resource XtNshowMnemonics (see page 16). If a
character is to be displayed, and the character is present in the label, the
character in the label is emphasized in accordance with this resource. If the
character to be displayed is not in the label, the character is displayed to the
right of the label, on the same baseline and in parentheses. The emphasis in the
latter case is again in accordance with the XtNshowMnemonics resource.

If truncation is necessary, the mnemonic displayed in parentheses is truncated
as a unit.

Keyboard Accelerator Display

The FlatCheckBox widget displays the keyboard accelerator as part of the
item’s label. The string in the XtNacceleratorText resource is displayed to
the right of the label (or mnemonic) separated by at least one space. The
acceleratorText is right justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator
is truncated before the mnemonic or the label.

332 OLIT Reference Manual—August 1994

7
FlatCheckBox Widget

Resources

The following tables list the resources for the FlatCheckBox widget. All of the
resources are available on the FlatCheckBox container itself. Resources
identified by a footnote denote item resources. If these resources are not
included in the XtNitemFields list, they are inherited from the container
widget. An application can change the default values for item resources by
setting them on the container directly. Even though an item resource is not
included in the XtNitemFields list, the application can query the value of
any item resource with OlFlatGetValues() ; see page 355.

1. This resource is available on the container and as an item resource.

Table 7-33 FlatCheckBox Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive1 Boolean (calculated) G

XtNbackground1 Pixel XtDefaultBackground SGID

XtNbackgroundPixmap1 Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth1 Dimension 0 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth Cardinal (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged1 Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive1 Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Widget Reference (D – F) 333

7
FlatCheckBox Widget

1. This resource is available on the container and as an item resource.

Table 7-34 FlatCheckBox Primitive Resources

Name Type Default Access

XtNaccelerator1 String NULL SGI

XtNacceleratorText1 String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont1 OlFont XtDefaultFont SGID

XtNfontColor1 Pixel XtDefaultForeground SGID

XtNforeground1 Pixel XtDefaultForeground SGID

XtNinputFocusColor1 Pixel XtDefaultForeground SGID

XtNmnemonic1 unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn1 Boolean TRUE SGI

XtNuserData1 XtPointer NULL SGI

Table 7-35 FlatCheckBox Flat Resources1

Name Type Default Access

XtNgravity int CenterGravity SGI

XtNhPad Dimension 0 SGI

XtNhSpace Dimension 0 SGI

XtNitemFields String ∗ NULL SGI

XtNitemGravity int NorthWestGravity SGI

XtNitemMaxHeight Dimension OL_IGNORE SGI

XtNitemMaxWidth Dimension OL_IGNORE SGI

XtNitemMinHeight Dimension OL_IGNORE SGI

XtNitemMinWidth Dimension OL_IGNORE SGI

XtNitems XtPointer NULL SGI

XtNitemsTouched Boolean (calculated) SG

XtNlabel2 OlStr NULL SGI

334 OLIT Reference Manual—August 1994

7
FlatCheckBox Widget

1. These resources are defined in “Flat Resources” on page 52.

2. This resource is available on the container and as an item resource.

1. These resources are described under FlatExclusives, Table 7-42 on page 342.

2. This resource is available on the container and as an item resource.

3. This default overrides the value of 4 in the Flat class.

XtNlabelImage2 XImage ∗ NULL SGI

XtNlabelJustify2 OlDefine OL_LEFT SGI

XtNlabelTile2 Boolean FALSE SGI

XtNlayoutHeight OlDefine OL_MINIMIZE SGI

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNlayoutWidth OlDefine OL_MINIMIZE SGI

XtNmanaged2 Boolean TRUE SGI

XtNmeasure int 1 SGI

XtNnumItemFields Cardinal 0 SGI

XtNnumItems Cardinal 0 SGI

XtNsameHeight OlDefine OL_ALL SGI

XtNsameWidth OlDefine OL_COLUMNS SGI

XtNvPad Dimension 0 SGI

XtNvSpace Dimension 4 SGI

Table 7-36 FlatCheckBox FlatExclusives Resources1

Name Type Default Access

XtNclientData2 XtPointer NULL SGI

XtNdefault2 Boolean FALSE SGI

XtNdim Boolean FALSE SGI

XtNhSpace Dimension OL_IGNORE SGI

XtNnoneSet Boolean FALSE SGI

XtNselectProc2 XtCallbackProc NULL SGI

XtNset2 Boolean FALSE SGI

XtNunselectProc2 XtCallbackProc NULL SGI

XtNvSpace Dimension OL_IGNORE3 SGI

Table 7-35 FlatCheckBox Flat Resources1 (Continued)

Name Type Default Access

Widget Reference (D – F) 335

7
FlatCheckBox Widget

XtNposition

Synopsis: The side of the check box on which to place the label.
Values: OL_LEFT/”left” - The label is placed to the left of the check

box.
OL_RIGHT/”right” - The label is placed to the right of the check
box.

Activation Types

The following table lists the activation types used by the FlatCheckBox.

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

1. This resource is available on the container and as an item resource.

Table 7-37 FlatCheckBox Resources

Name Type Default Access

XtNposition1 OlDefine OL_LEFT SGI

Class Type Default Access

XtCPosition OlDefine OL_LEFT SGI

Table 7-38 FlatCheckBox Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

336 OLIT Reference Manual—August 1994

7
FlatCheckBox Widget

OL_SELECT/
OL_SELECTKEY

The activation of a FlatCheckBox is described in the OPEN LOOK GUI
Functional Specification section “Check Boxes” in Chapter 4. When the
FlatCheckBox item is activated with either OL_SELECT or OL_SELECTKEY, the
state of the XtNset resource will be reversed. When the XtNset resource goes
to FALSE, the XtNunselectProc callback will be called; when the XtNset
resource goes to TRUE, the XtNselectProc callback will be called.

See Also

“CheckBox Widget” on page 237,
“Flat Widgets” on page 321,
“FlatExclusives Widget” on page 337,
“FlatNonexclusives Widget” on page 347,
“Flat Widget Functions” on page 354,
“Help Function” on page 146.

Widget Reference (D – F) 337

7
FlatExclusives Widget

FlatExclusives Widget

Class
Class Name: FlatExclusives
Class Pointer: flatExclusivesWidgetClass

Ancestry

Core-Primitive-Flat-FlatExclusives

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FExclusive.h>

Description

The FlatExclusives widget provides the same functionality as an Exclusives
widget managing RectButtons. Instead of creating individual Rectbuttons as
children of a container widget, it creates items that have the same behavior as
the Rectbuttons. It is useful in applications that use large arrays of exclusive
settings since it requires fewer widgets to be created.

See the general explanation of flattened widgets in “Flat Widgets” on page 321.

Selection Control

There are two modes of operation, determined by the FlatExclusives resource
XtNnoneSet :

• When XtNnoneSet is FALSE, exactly one item in a FlatExclusives widget
must be set. That is, the XtNset resource is TRUE for one of the items. A
warning is generated if two or more items are set. If no items are set, the
FlatExclusives makes the first item that is both managed and mapped when
managed be the set item. No warning is produced in this case. The
FlatExclusives maintains this condition by ensuring that when an item is set
by the user clicking SELECT over it, the item that was set is cleared and its

338 OLIT Reference Manual—August 1994

7
FlatExclusives Widget

XtNunselectProc procedure is called; the item under the pointer is set
and its XtNselectProc procedure is called. However, clicking SELECT over
an item that is already set does nothing.

• When XtNnoneSet is TRUE, at most one item in a FlatExclusives widget can
be “set.” A warning is generated if two or more items are set. The
FlatExclusives maintains this condition by ensuring that when an item is set
by the user clicking SELECT over it, the item that was set is cleared and its
XtNunselectProc procedure is called; the item under the pointer is set
and its XtNselectProc procedure is called. Clicking SELECT over an item
that is already set unsets it and its XtNselectProc procedure is called.

Menu Use

The FlatExclusives widget can be added as child in a menu pane to implement
a one-of-many menu choice.

Coloration

When the FlatExclusives widget contains a number of items that is not a
multiple of XtNmeasure , the empty space is colored using the parent’s
XtNbackground . The labels in the items are drawn using XtNfontColor .

For 3D, the coloration of each FlatExclusives item is defined by the OPEN
LOOK GUI Functional Specification, Chapter 9, “Color and Three-Dimensional
Design.” XtNbackground is used for BG1, and the BG2 (pressed-in), BG3
(shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNforeground is used to render the outline of each FlatExclusives
item as described by the OPEN LOOK GUI Functional Specification, Chapter 4,
“Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, when the
FlatExclusives receives input focus, the background of the item with focus will
be drawn with the value of XtNinputFocusColor . However, if
XtNinputFocusColor is the same as XtNbackground , then the widget
inverts XtNforeground and XtNbackground of the item with input focus.
Once the input focus leaves the widget, the original coloration is restored.

Widget Reference (D – F) 339

7
FlatExclusives Widget

Keyboard Traversal

The FlatExclusives widget is a Primitive widget that manages the traversal
between a set of items. When the user traverses to a FlatExclusives widget, the
first item in the set will display itself as having input focus (see the RectButton
widget for a description of this appearance.)

The MOVEUP, MOVEDOWN, MOVERIGHT, and MOVELEFT keys move the input
focus between the items. To traverse out of the FlatExclusives widget, the
following keys can be used:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application.
• PREVWINDOW moves to the previous window in the application.
• NEXTAPP moves to the first window in the next application.
• PREVAPP moves to the first window in the previous application.

Resources

The following tables list the resources for the FlatExclusives widget. All of the
resources are available on the FlatExclusives container itself. Resources
identified by a footnote denote item resources. If these resources are not
included in the XtNitemFields list, they are inherited from the container
widget. An application can change the default values for item resources by
setting them on the container directly. Even though an item resource is not
included in the XtNitemFields list, the application can query the value of
any item resource with OlFlatGetValues() ; see page 355.

Table 7-39 FlatExclusives Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive1 Boolean (calculated) G

XtNbackground1 Pixel XtDefaultBackground SGID

XtNbackgroundPixmap1 Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth1 Dimension 0 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth Cardinal (parent’s) GI

340 OLIT Reference Manual—August 1994

7
FlatExclusives Widget

1. This resource is available on the container and as an item resource.

1. This resource is available on the container and as an item resource.

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged1 Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive1 Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-40 FlatExclusives Primitive Resources

Name Type Default Access

XtNaccelerator1 String NULL SGI

XtNacceleratorText1 String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont1 OlFont XtDefaultFont SGID

XtNfontColor1 Pixel XtDefaultForeground SGID

XtNforeground1 Pixel XtDefaultForeground SGID

XtNinputFocusColor1 Pixel XtDefaultForeground SGID

XtNmnemonic1 unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn1 Boolean TRUE SGI

XtNuserData1 XtPointer NULL SGI

Table 7-39 FlatExclusives Core Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 341

7
FlatExclusives Widget

1. These resources are defined in “Flat Resources” on page 52.

2. This resource is available on the container and as an item resource.

Table 7-41 FlatExclusives Flat Resources1

Name Type Default Access

XtNgravity int CenterGravity SGI

XtNhPad Dimension 0 SGI

XtNhSpace Dimension 0 SGI

XtNitemFields String ∗ NULL SGI

XtNitemGravity int NorthWestGravity SGI

XtNitemMaxHeight Dimension OL_IGNORE SGI

XtNitemMaxWidth Dimension OL_IGNORE SGI

XtNitemMinHeight Dimension OL_IGNORE SGI

XtNitemMinWidth Dimension OL_IGNORE SGI

XtNitems XtPointer NULL SGI

XtNitemsTouched Boolean (calculated) SG

XtNlabel2 OlStr NULL SGI

XtNlabelImage2 XImage ∗ NULL SGI

XtNlabelJustify2 OlDefine OL_LEFT SGI

XtNlabelTile2 Boolean FALSE SGI

XtNlayoutHeight OlDefine OL_MINIMIZE SGI

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNlayoutWidth OlDefine OL_MINIMIZE SGI

XtNmanaged2 Boolean TRUE SGI

XtNmeasure int 1 SGI

XtNnumItemFields Cardinal 0 SGI

XtNnumItems Cardinal 0 SGI

XtNsameHeight OlDefine OL_ALL SGI

XtNsameWidth OlDefine OL_COLUMNS SGI

XtNvPad Dimension 0 SGI

XtNvSpace Dimension 4 SGI

342 OLIT Reference Manual—August 1994

7
FlatExclusives Widget

XtNclientData

Synopsis: The client data supplied to all callback procedures.

Note – The widget must not modify the value in the storage area pointed to by
XtNclientData . The application is responsible for allocating and freeing this
area.

XtNdefault

Synopsis: When used on the container, whether one of the items is a default
item.

Values: TRUE/”true”
FALSE/”false”

Setting this resource on the container widget indicates whether or not one of
the items should be a default item. If the application sets this value on the
container to:

1. This resource is available on the container and as an item resource.

2. This default overrides the value of 4 in the Flat class.

Table 7-42 FlatExclusives Resources

Name Type Default Access

XtNclientData1 XtPointer NULL SGI

XtNdefault1 Boolean FALSE SGI

XtNdim Boolean FALSE SGI

XtNhSpace Dimension OL_IGNORE G

XtNnoneSet Boolean FALSE SGI

XtNselectProc1 XtCallbackProc NULL SGI

XtNset1 Boolean FALSE SGI

XtNunselectProc1 XtCallbackProc NULL SGI

XtNvSpace Dimension OL_IGNORE2 G

Class Type Default Access

XtCClientData XtPointer NULL SGI

Class Type Default Access

XtCDefault Boolean FALSE SGI

Widget Reference (D – F) 343

7
FlatExclusives Widget

TRUE The container will set the first managed and mapped item as
the default item if a default item does not exist.

FALSE The container will unset its default item if one exists.

Even if the application does not use XtNdefault in its item fields list, the
container will correctly maintain the default item and the application can
change the default item via OlFlatSetValues() .

When used on the item, this resource specifies whether or not the item is a
default item. If an attempt is made to set more than one item as the default, a
warning is generated and the first item to be specified as the default is selected
to be the default.

XtNdim

Synopsis: The visual display of substate changes.
Values: TRUE/”true” - The item shows a dimmed visual indicating that

the item represents the state of one or more objects, that as a group,
are in different states.
FALSE/”false” - Otherwise.

It is not necessary to use this resource if the application modifies the list with
the OlFlatSetValues() procedure, nor is it necessary to use this resource
whenever the application supplies a new list to the flat container. The XtNdim
resource has the same effect as setting XtNsensitive for non-flat widgets.

XtNhSpace/
XtNvSpace

Synopsis: The amount of horizontal/vertical space to leave between items.
Values: 0 = XtNhSpace

0 = XtNvSpace

If the items are of different sizes in a row or column, the spacing applies to the
widest or tallest dimension of all items in the row or column. Because OPEN
LOOK specifies that exclusives be grouped edge-to-edge, XtNhSpace and
XtNvSpace should always be zero.

Class Type Default Access

XtCDim Boolean FALSE SGI

Class Type Default Access

XtCHSpace Dimension OL_IGNORE G

XtCVSpace Dimension OL_IGNORE G

344 OLIT Reference Manual—August 1994

7
FlatExclusives Widget

XtNnoneSet

Synopsis: Whether all the items can be in unset mode or not.
Values: TRUE/”true” - Zero or more items can be set at any time. The

user can select the currently set item and toggle it back to an unset
state.
FALSE/”false” - Exactly one item must be in the set state
always. Attempting to select the currently set item does nothing.

XtNselectProc

Synopsis: The callback procedure invoked when an unset item is set by user
input.

XtNset

Synopsis: The current state of the item.
Values: TRUE/”true” - The item is set.

FALSE/”false” - The item is unset.

This resource is never inherited from the container, so its default value is
always FALSE. Even if the application does not use XtNset in its item fields
list, the container will correctly maintain the set item and the application can
change the set item via OlFlatSetValues() .

XtNunselectProc

Synopsis: The callback procedure invoke2zd when an set item is unset by
user input.

Class Type Default Access

XtCNoneSet Boolean FALSE SGI

Class Type Default Access

XtCCallbackProc XtCallbackProc NULL SGI

Class Type Default Access

XtCSet Boolean FALSE SGI

Class Type Default Access

XtCCallbackProc XtCallbackProc NULL SGI

Widget Reference (D – F) 345

7
FlatExclusives Widget

Activation Types

The following table lists the activation types used by the FlatExclusives.

Activation types not described in the following table are described in
“Common Activation Types” on page 68.”

OL_MENU/
OL_MENUKEY

The FlatExclusives will respond only to the OL_MENU and OL_MENUKEY
activation types if it is a descendant of a Menu widget. When this is the case,
the OL_MENU and OL_MENUKEY will behave as the OL_SELECT and
OL_SELECTKEY, respectively.

OL_MENUDEFAULT/
OL_MENUDEFAULTKEY

The OL_MENUDEFAULT and OL_MENUDEFAULTKEY activation types apply
only to FlatExclusives that are descendants of a Menu. These activation types

Table 7-43 FlatExclusives Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn

OL_MENUDEFAULTKEY MENUDEFAULT XtNmenuDefaultKey

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

346 OLIT Reference Manual—August 1994

7
FlatExclusives Widget

will set the MenuButton XtNdefault resource to TRUE, and change the
display of the widget according to the OPEN LOOK GUI Functional Specification
section “Changing Menu Defaults” in Chapter 15.

OL_SELECT/
OL_SELECTKEY

The activation of a FlatExclusives is described in the OPEN LOOK GUI
Functional Specification section “Exclusive Settings” in Chapter 4 and in “Using
Menus” in Chapter 15. When the FlatExclusives item is activated with either
OL_SELECT or OL_SELECTKEY, the XtNset resource will be set to TRUE and the
XtNselectProc callback will be called. The FlatExclusives item that was
previously set will have the XtNset resource changed to FALSE and the
XtNunselectProc callback will be called.

See Also

“Exclusives Widget” on page 277,
“Flat Widgets” on page 321,
“FlatCheckBox Widget” on page 329,
“FlatNonexclusives Widget” on page 347,
“Flat Widget Functions” on page 354,
“Help Function” on page 146.

Widget Reference (D – F) 347

7
FlatNonexclusives Widget

FlatNonexclusives Widget

Class
Class Name: FlatNonexclusives
Class Pointer: flatNonexclusivesWidgetClass

Ancestry

 Core-Primitive-Flat-FlatExclusives-FlatNonexclusives

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FNonexclus.h>

Description

The FlatNonexclusives widget provides the same functionality as a
Nonexclusives widget managing RectButtons. Instead of creating individual
Rectbuttons as children of a container widget, it creates items that have the
same behavior as the Rectbuttons. It is useful in applications that use large
arrays of exclusive settings since it requires fewer widgets to be created.

See the general explanation of flattened widgets in “Flat Widgets” on page 321.

Default Spacing

The default spacing between items is 50% of the prevailing point size for the
container’s font.

Menu Use

The FlatNonexclusives can be added as child in a menu pane to implement a
several-of-many menu choice.

348 OLIT Reference Manual—August 1994

7
FlatNonexclusives Widget

Coloration

The background of the FlatNonexclusives container is drawn using the
parent’s XtNbackground resource. The labels in the items are drawn using
XtNfontColor .

For 3D, the coloration of each FlatNonexclusives item is defined by the OPEN
LOOK GUI Functional Specification, Chapter 9, “Color and Three-Dimensional
Design.” XtNbackground is used for BG1, and the BG2 (pressed-in), BG3
(shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNforeground is used to render the outline of each
FlatNonexclusives item as described by the OPEN LOOK GUI Functional
Specification, Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, when the
FlatNonexclusives receives input focus, the background of the item with focus
will be drawn with the value of XtNinputFocusColor . However, if
XtNinputFocusColor is the same as XtNbackground , then the widget
inverts XtNforeground and XtNbackground of the item with input focus.
Once the input focus leaves the widget, the original coloration is restored.

Keyboard Traversal

The FlatNonexclusives widget is a Primitive widget that manages the traversal
between a set of items. When the user traverses to a FlatNonexclusives widget,
the first item in the set will display itself as having input focus (see the
RectButton Widget for a description of this appearance.)

The MOVEUP, MOVEDOWN, MOVERIGHT, and MOVELEFT keys move the input
focus between the items. To traverse out of the FlatNonexclusives widget,
the following keys can be used:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application

Widget Reference (D – F) 349

7
FlatNonexclusives Widget

Resources

The following tables list the resources for the FlatNonexclusives widget. All of
the resources are available on the FlatNonexclusives container itself. Resources
identified by a footnote denote item resources. If these resources are not
included in the XtNitemFields list, they are inherited from the container
widget. An application can change the default values for item resources by
setting them on the container directly. Even though an item resource is not
included in the XtNitemFields list, the application can query the value of
any item resource with OlFlatGetValues() ; see page 355.

1. This resource is available on the container and as an item resource.

Table 7-44 FlatNonexclusives Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive1 Boolean (calculated) G

XtNbackground1 Pixel XtDefaultBackground SGID

XtNbackgroundPixmap1 Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth1 Dimension 0 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth Cardinal (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged1 Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive1 Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

350 OLIT Reference Manual—August 1994

7
FlatNonexclusives Widget

1. This resource is available on the container and as an item resource.

Table 7-45 FlatNonexclusives Primitive Resources

Name Type Default Access

XtNaccelerator1 String NULL SGI

XtNacceleratorText1 String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont1 OlFont XtDefaultFont SGID

XtNfontColor1 Pixel XtDefaultForeground SGID

XtNforeground1 Pixel XtDefaultForeground SGID

XtNinputFocusColor1 Pixel XtDefaultForeground SGID

XtNmnemonic1 unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn1 Boolean TRUE SGI

XtNuserData1 XtPointer NULL SGI

Table 7-46 FlatNonexclusives Flat Resources1

Name Type Default Access

XtNgravity int CenterGravity SGI

XtNhPad Dimension 0 SGI

XtNhSpace Dimension 0 SGI

XtNitemFields String ∗ NULL SGI

XtNitemGravity int NorthWestGravity SGI

XtNitemMaxHeight Dimension OL_IGNORE SGI

XtNitemMaxWidth Dimension OL_IGNORE SGI

XtNitemMinHeight Dimension OL_IGNORE SGI

XtNitemMinWidth Dimension OL_IGNORE SGI

XtNitems XtPointer NULL SGI

XtNitemsTouched Boolean (calculated) SG

XtNlabel2 OlStr NULL SGI

Widget Reference (D – F) 351

7
FlatNonexclusives Widget

1. These resources are defined in “Flat Resources” on page 52.

2. This resource is available on the container and as an item resource.

1. These resources are defined under FlatExclusives, Table 7-42 on page 342.

2. This resource is available on the container and as an item resource.

3. This default overrides the value of 4 in the Flat class.

XtNlabelImage2 XImage ∗ NULL SGI

XtNlabelJustify2 OlDefine OL_LEFT SGI

XtNlabelTile2 Boolean FALSE SGI

XtNlayoutHeight OlDefine OL_MINIMIZE SGI

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNlayoutWidth OlDefine OL_MINIMIZE SGI

XtNmanaged2 Boolean TRUE SGI

XtNmeasure int 1 SGI

XtNnumItemFields Cardinal 0 SGI

XtNnumItems Cardinal 0 SGI

XtNsameHeight OlDefine OL_ALL SGI

XtNsameWidth OlDefine OL_COLUMNS SGI

XtNvPad Dimension 0 SGI

XtNvSpace Dimension 4 SGI

Table 7-47 FlatNonexclusives FlatExclusives Resources1

Name Type Default Access

XtNclientData2 XtPointer NULL SGI

XtNdefault2 Boolean FALSE SGI

XtNdim Boolean FALSE SGI

XtNhSpace Dimension OL_IGNORE SGI

XtNnoneSet Boolean FALSE SGI

XtNselectProc2 XtCallbackProc NULL SGI

XtNset2 Boolean FALSE SGI

XtNunselectProc2 XtCallbackProc NULL SGI

XtNvSpace Dimension OL_IGNORE3 SGI

Table 7-46 FlatNonexclusives Flat Resources1 (Continued)

Name Type Default Access

352 OLIT Reference Manual—August 1994

7
FlatNonexclusives Widget

The FlatNonexclusives widget has no resources other than those inherited from
its superclasses.

Activation Types

The following table lists the activation types used by the FlatNonexclusives.

Activation types not described in the following table are described in
“Common Activation Types” on page 68.

OL_MENU/
OL_MENUKEY

The FlatNonexclusives will respond only to the OL_MENU and OL_MENUKEY
activation types if it is a descendant of a Menu widget. When this is the case,
the OL_MENU and OL_MENUKEY will behave as the OL_SELECT and
OL_SELECTKEY, respectively.

Table 7-48 FlatNonexclusives Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn

OL_MENUDEFAULTKEY MENUDEFAULT XtNmenuDefaultKey

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 353

7
FlatNonexclusives Widget

OL_MENUDEFAULT/
OL_MENUDEFAULTKEY

The OL_MENUDEFAULT and OL_MENUDEFAULTKEY activation types apply
only to FlatNonexclusives that are descendants of a Menu. These activation
types will set the MenuButton XtNdefault resource to TRUE, and change the
display of the widget according to the OPEN LOOK GUI Functional Specification
section “Changing Menu Defaults” in Chapter 15.

OL_SELECT/
OL_SELECTKEY

The activation of a FlatNonexclusives is described in the OPEN LOOK GUI
Functional Specification section “Nonexclusive Settings” in Chapter 4 and in
“Using Menus” in Chapter 15. When the FlatNonexclusives item is activated
with either OL_SELECT or OL_SELECTKEY, the XtNset resource will be set to
TRUE and the XtNselectProc callback will be called. The FlatNonexclusives
item that was previously set will have the XtNset resource changed to FALSE
and the XtNunselectProc callback will be called.

See Also

“Flat Widgets” on page 321,
“FlatCheckBox Widget” on page 329,
“FlatExclusives Widget” on page 337,
“Flat Widget Functions” on page 354,
“Nonexclusives Widget” on page 428,
“Help Function” on page 146.

354 OLIT Reference Manual—August 1994

7
Flat Widget Functions

Flat Widget Functions
There are several convenience routines for querying or manipulating flattened
widget attributes. All of these routines issue a warning if the widget ID is not
a subclass of a flat widget.

OlFlatCallAcceptFocus
#include <Xol/OpenLook.h>

Boolean OlFlatCallAcceptFocus(
Widget widget ,
Cardinal index ,
Time time);

If the specified item is capable of accepting input focus, focus is assigned to the
item and OlFlatCallAcceptFocus() returns TRUE; otherwise, it returns
FALSE.

OlFlatGetFocusItem
#include <Xol/OpenLook.h>

Cardinal OlFlatGetFocusItem(
Widget widget);

OlFlatGetFocusItem() returns the item within the flattened widget that has
focus. It returns OL_NO_ITEM if no item within the widget has focus.

OlFlatGetItemIndex
#include <Xol/OpenLook.h>

Cardinal OlFlatGetItemIndex(
Widget widget ,
Position x,
Position y);

OlFlatGetItemIndex() returns the item that contains the given x and y
coordinates. It returns OL_NO_ITEM if no item contains the coordinate pair.

Widget Reference (D – F) 355

7
Flat Widget Functions

OlFlatGetItemGeometry
#include <Xol/OpenLook.h>

void OlFlatGetItemGeometry(
Widget widget ,
Cardinal index ,
Position ∗x_ret ,
Position ∗y_ret ,
Dimension ∗w_ret ,
Dimension ∗h_ret);

OlFlatGetItemGeometry() returns the location, width, and height of an
item with respect to its flattened widget container. If the supplied item index is
invalid, a warning is issued and the return values are set to zero.

OlFlatGetValues
#include <Xol/OpenLook.h>

void OlFlatGetValues(
Widget widget ,
Cardinal index ,
ArgList args ,
Cardinal num_args);

OlFlatGetValues() queries the attributes of an item. This routine is very
similar to XtGetValues() . Applications can query any attribute of an item
even if the attribute was not specified in the XtNitemFields resource of the
flat widget container.

OlVaFlatGetValues
#include <Xol/OpenLook.h>

void OlVaFlatGetValues(
Widget widget ,
Cardinal index ,
...);

OlVaFlatGetValues() is the variable-argument interface to
OlFlatGetValues() . The variable length list of resource name/value pairs is
terminated by a NULL resource name.

356 OLIT Reference Manual—August 1994

7
Flat Widget Functions

OlFlatSetValues
#include <Xol/OpenLook.h>

void OlFlatSetValues(
Widget widget ,
Cardinal index ,
ArgList args ,
Cardinal num_args);

OlFlatSetValues() sets the attributes of an item. This routine is very
similar to XtSetValues() . Applications can set values of item attributes even
if the attribute name was specified in the XtNitemFields resource of the flat
widget container or if the item’s attribute is always maintained (i.e., implicitly)
by the flat widget container regardless of the XtNitemFields entries.

For example, the FlatExclusives widget always maintains the value of an item’s
XtNset attribute even if XtNset was not in the XtNitemFields resource (see
“FlatExclusives Widget” on page 337). Therefore, an application can set the
value of XtNset even though XtNset was not specified explicitly in the
XtNitemFields resource for the widget. XtNfont , on the other hand, is not
implicitly maintained by the FlatExclusives widget, so an application must
specify XtNfont in the XtNitemFields resource if that application wants to
change the font value via OlFlatSetValues() .

OlVaFlatSetValues
#include <Xol/OpenLook.h>

void OlVaFlatGetValues(
Widget widget ,
Cardinal index ,
...);

OlVaFlatGetValues() is the variable-argument interface to
OlFlatSetValues() . The variable length list of resource name/value pairs is
terminated by a NULL resource name.

See Also

“Flat Widgets” on page 321,
“FlatCheckBox Widget” on page 329,
“FlatExclusives Widget” on page 337,
“FlatNonexclusives Widget” on page 347,
“Help Function” on page 146.

Widget Reference (D – F) 357

7
FontChooser Widget

FontChooser Widget

Class
Class Name: FontChooser
Class Pointer: fontChooserWidgetClass

Ancestry

Core-Composite-Constraint-Manager-RubberTile-FontChooser

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FontCh.h>

Description

The FontChooser widget provides a user interface to choose fonts conveniently
in an OLIT application. The widget does this by presenting lists of meaningful
typographical attributes for the user to choose from. The typographical
attributes displayed are: TYPEFACE, STYLE, and SIZE. Note that these attributes
are not one-to-one mapped to XLFD fields of the same names.

The typographical attributes are extracted either:

• Directly from the XLFD fonts announced by the underlying X11 server, or

• From FontSet definitions stored in the OpenWindows.fs database for the
current locale. For a detailed description of the OpenWindows.fs FontSet
database, see “Fontset Definitions in OpenWindows.fs” on page 358. These
definitions are used only when the FontChooser operates in the
internationalized mode (see “XtNtextFormat” on page 29).

The FontChooser widget has the following graphical elements:

• Scrolling lists for font attributes: TYPEFACE, STYLE, and SIZE
• Numeric field for typing in the SIZE of a scalable font
• Optional Extension container (for applications to extend the FontChooser)
• Font Preview Area (can be disabled)

• Control for switching preview on/off

358 OLIT Reference Manual—August 1994

7
FontChooser Widget

• Area for displaying preview text
• Apply, Revert, and Cancel buttons

The FontChooser widget is automatically instantiated when an instance of the
FontChooserShell widget is created (see “FontChooserShell Widget” on
page 375).

Coloration

Figure 7-7 FontChooser Appearance

Fontset Definitions in OpenWindows.fs

The fontset definition database contains the following:

Fontset Specifier

A font set is specified by using the fontset name as the resource specification
and the corresponding list of X Logical Font Description (XLFD) font names as
the resource value. The following example shows the fontset name

“-sun-myoungjo-medium-r-normal--16-140-75-75-p-140-korean-0”

Widget Reference (D – F) 359

7
FontChooser Widget

has been defined to consist of two fonts. The keyword “definition” indicates
that the value following it is a list of XLFD font names.
-sun-myoungjo-medium-r-normal--16-140-75-75-p-140-korean-0:definition,\
-b&h-lucida-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1, \
-sun-myoungjo-medium-r-normal--16-140-75-75-c-140-ksc5601.1987-0

The OLIT FontChooser displays the fontset name, which is to the left of the
keyword “definition.” However, in all its callbacks, the field font_name or
current_font_name provide the list of XLFD font names corresponding to the
fontset name. This has been done to ensure that information provided in the
callbacks is available for the programmer to manipulate directly using Xlib and
Xt interfaces.

Fontset Name Aliases

Other fontset names may be aliased to a particular fontset name using the
keyword alias. The following example aliases the name “hngmnj14” to the
fontset name “-sun-myoungjo-medium-r-normal--16-140-75-75-c-140-
korean-0”:
hngmnj14: alias, -sun-myoungjo-medium-r-normal--16-140-75-75-c-140-korean-0

Note – These definitions are currently ignored by the FontChooser widget.

Default Font Family

Font attributes FONT_FAMILY can be used to create or find a fontset object. The
default font family for a particular locale may be defined in the fontset
definition database file as below:

! Default Font Set
xv_font_set.default_family: FONT_FAMILY_SANS_SERIF

The font family FONT_FAMILY_SANS_SERIF has been defined as the default for
the FONT_FAMILY attribute.

Note – These definitions are currently ignored by the FontChooser widget.

Default Font Scales

The point sizes corresponding to the font scales of a particular locale may be
specified in the fontset definition database in the following manner:

360 OLIT Reference Manual—August 1994

7
FontChooser Widget

xv_font_set.small: 12
xv_font_set.medium: 14
xv_font_set.large: 16
xv_font_set.extra_large: 20

Note – These definitions are currently ignored by the FontChooser widget.

Invoking FontChooser Using the “propertiesKey” (OL_PROPERTY)

There are situations where the FontChooser needs to be brought up in response
to pressing the “propertiesKey.” A common situation is when text is selected in
a document and hitting the propertiesKey brings up the FontChooser with the
font of the text as the current font.

To achieve this, register an XtNconsumeEvent callback to the widget where
the propertiesKey is expected. The call_data for this callback points to an
OlVirtualEventRec (see “OlLookupInputEvent” on page 212 for more
details of this datatype). If the virtual_name member of this structure is
OL_PROPERTY, then the callback can popup a FontChooser and set the
consumed member of the structure to TRUE.

The name of the font of the current text selection can be passed as
XtNinitialFontName in the FontChooser to get it to display it as its current
font.

Note – OlAddCallback() should be used when adding an
XtNconsumeEvent callback (see “XtNconsumeEvent” on page 26).

Resources

Table 7-49 FontChooser Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel (parent’s) SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

Widget Reference (D – F) 361

7
FontChooser Widget

XtNborderWidth Dimension 0 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-50 FontChooser Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-51 FontChooser Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel (calculated; see page 27) SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 7-49 FontChooser Core Resources (Continued)

Name Type Default Access

362 OLIT Reference Manual—August 1994

7
FontChooser Widget

Table 7-52 FontChooser RubberTile Resources

Name Type Default Access

XtNorientation OlDefine OL_VERTICAL G

Table 7-53 FontChooser Resources

Name Type Default Access

XtNapplyCallback XtCallbackList NULL SGIO

XtNapplyLabel OlStr “Apply” GI

XtNattributeListHeight Dimension (calculated) SGI

XtNcancelCallback XtCallbackList NULL SGIO

XtNcancelLabel OlStr “Cancel” GI

XtNchangedCallback XtCallbackList NULL SGIO

XtNcharsetInfo String “iso8859-1” G

XtNerrorCallback XtCallbackList NULL SGIO

XtNextensionArea Widget NULL G

XtNfontSearchSpec String “*-*-*-*-*-*-*-*-*-*-*-*-*-*-*” GI

XtNinitialFontName String NULL GI

XtNmaximumPointSize Cardinal 99 GI

XtNnoPreviewText OlStr “The preview is turned off” SGI

XtNpreferredPointSizes String “8 10 12 14 18 24” GI

XtNpreviewHeight Dimension (calculated) SGI

XtNpreviewBorderWidth Dimension (calculated) GI

XtNpreviewBackground Pixel XtDefaultBackground GI

XtNpreviewFontColor Pixel XtDefaultForeground GI

XtNpreviewForeground Pixel XtDefaultForeground GI

XtNpreviewPresent Boolean TRUE SGI

XtNpreviewText OlStr “%T %S %s” SGI

XtNrevertCallback XtCallbackList NULL SGIO

XtNrevertLabel OlStr “Revert” GI

XtNsizeLabel OlStr “Size” GI

XtNstyleLabel OlStr “Style” GI

XtNpreviewSwitchLabel OlStr “Preview:” GI

XtNpreviewSwitchOffLabel OlStr “Off” GI

Widget Reference (D – F) 363

7
FontChooser Widget

XtNapplyCallback

Synopsis: The callback list invoked when the APPLY button is selected.

The call_data structure is:

typedef struct {
int reason ;
String current_font_name ;
OlFont current_font ;

} OlFCApplyCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_APPLY_FONT

current_font_name An XLFD font specification corresponding to the current
choices of attributes.

current_font An XFontStruct ∗ corresponding to current_font_name
when XtNtextFormat is OL_SB_STR_REP, or an
XFontSet when XtNtextFormat is OL_MB_STR_REP or
OL_WC_STR_REP.

The current_font will be freed by the widget after the callback returns.
Therefore, the application should use this field only for operations that are
local to the callback; i.e., operations that would not depend on current_font to
persist after the callback returns.

XtNapplyLabel

Synopsis: The label displayed on the APPLY button.
Values: Any OlStr value valid in the current locale.

XtNpreviewSwitchOnLabel OlStr “On” GI

XtNtextFormat OlStrRep OlDefaultTextFormat GI

XtNtypefaceLabel OlStr “Typeface” GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCApplyLabel OlStr “Apply” GI

Table 7-53 FontChooser Resources (Continued)

Name Type Default Access

364 OLIT Reference Manual—August 1994

7
FontChooser Widget

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

XtNattributeListHeight

Synopsis: The number of items shown in the scrolling lists.
Values: 2 < XtNattributeListHeight

The height of the SIZE scrolling list is XtNattributeListHeight - 1 to
accommodate the numeric field below it.

XtNcancelCallback

Synopsis: The callback list invoked when the CANCEL button is selected.

The call_data structure is:

typedef struct {
int reason;
String current_font_name;
OlFont current_font;

} OlFCCancelCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_CANCEL

current_font_name An XLFD font specification corresponding to the current
choices of attributes.

current_font An XFontStruct ∗ corresponding to current_font_name
when XtNtextFormat is OL_SB_STR_REP, or an
XFontSet when XtNtextFormat is OL_MB_STR_REP or
OL_WC_STR_REP.

The current_font will be freed by the widget after the callback returns.
Therefore, the application should use this field only for operations that are
local to the callback; i.e., operations that would not depend on current_font to
persist after the callback returns.

Class Type Default Access

XtCAttributeListHeight Dimension (calculated) SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (D – F) 365

7
FontChooser Widget

XtNcancelLabel

Synopsis: The label displayed on the CANCEL button.
Values: Any OlStr value valid in the current locale.

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

XtNchangedCallback

Synopsis: The callback list invoked when there is any change in the selections
of the attributes.

The call_data structure is:

typedef struct {
int reason;
String current_font_name;
OlFont current_font;
String previous_font_name;
OlFont previous_font;

} OlFCChangedCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_CHANGED_FONT

current_font_name An XLFD font specification corresponding to the current
choices of attributes.

current_font An XFontStruct ∗ corresponding to current_font_name
when XtNtextFormat is OL_SB_STR_REP, or an
XFontSet when XtNtextFormat is OL_MB_STR_REP or
OL_WC_STR_REP.

previous_font_name An XLFD font specification corresponding to the choices of
attributes before the change.

previous_font An XFontStruct ∗ corresponding to previous_font_name
when XtNtextFormat is OL_SB_STR_REP, or an
XFontSet when XtNtextFormat is OL_MB_STR_REP or
OL_WC_STR_REP.

Class Type Default Access

XtCCancelLabel OlStr “Cancel” GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

366 OLIT Reference Manual—August 1994

7
FontChooser Widget

The current_font and previous_font will be freed by the widget after the callback
returns. Therefore, the application should use these fields only for operations
that are local to the callback; i.e., operations that would not depend on
current_font and previous_font to persist after the callback returns.

XtNcharsetInfo

Synopsis: Constrains the set of fonts used by the FontChooser to a certain
encoding.

Values: A string containing the combination of the fields
CHARSET_REGISTRY and CHARSET_ENCODING (separated by a
“-”), which are defined as part of the X Logical Font Description
(XLFD) Conventions. Typically, these two fields identify the
character set and text encoding that the font handles.

When XtNtextFormat is OL_SB_STR_REP, this is used to restrict the fonts only
to those relevant to the current locale.

Note – XtNcharsetInfo is highly locale-specific and should be used with
care. The localized defaults are set up carefully to handle the normal case for
supported locales.

XtNerrorCallback

Synopsis: The callback list invoked when the FontChooser detects an error
condition.

The call_data structure is:

typedef struct {
int reason;
int error_num;
String font_name;

} OlFCErrorCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_ERROR

Class Type Default Access

XtCCharsetInfo String “iso8859-1” G

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (D – F) 367

7
FontChooser Widget

error_num A number from the following table that identifies the
specific error condition.

font_name An XLFD font specification corresponding to the current
choice of attributes.

XtNextensionArea

Synopsis: The container for the application to extend the GUI of the
FontChooser. The extension area is a widget of class RubberTile.
Graphically, the extension area appears above the preview area,
just below the row of scrolling lists.

Values: A RubberTile widget (see “RubberTile Widget” on page 502)
instantiated the first time an XtGetValues() is done on the
resource.

XtNfontSearchSpec

Synopsis: The simple regular expression that constrains the set of fonts used
by the FontChooser. See “Regular Expression Functions” on
page 161.

Values: Any string that is a valid XLFD specification.

Table 7-54 XtNerrorCallback error_num Descriptions

error_num Description

OL_FC_ERR_NO_FONTS_FOUND No fonts found

OL_FC_ERR_NO_INITIAL_FONT Initial font is not matched

OL_FC_ERR_BAD_FONT_SEARCH_SPEC Font Search specification is not
XLFD

OL_FC_ERR_MISSING_CHARSETS Incomplete font description (missing
charsets)

Class Type Default Access

XtCExtensionArea Widget NULL G

Class Type Default Access

XtCFontSearchSpec String “*-*-*-*-*-*-*-*-*-*-*-*-*-*-*” GI

368 OLIT Reference Manual—August 1994

7
FontChooser Widget

XtNinitialFontName

Synopsis: The attributes of the font that will be selected by the FontChooser
when it starts up. If the XtNinitialFontName cannot be found
among the fonts used by the FontChooser, then the first entry in
sorted order will be selected at first.

Values: A fully specified XLFD string. If XtNtextFormat is
OL_SB_STR_REP, this should be the fully-specified name of a font
available on the underlying X11 server. If XtNtextFormat is not
OL_SB_STR_REP, it should be the fully-specified definition of a font
set in the OpenWindows.fs file for the locale; see “OLIT Toolkit
Resources” on page 7.

In addition, pressing the “Revert” button anytime during an interaction with
the FontChooser will cause it to revert back to the value in
XtNinitialFontName .

XtNmaximumPointSize

Synopsis: Restricts the FontChooser to operate with point sizes up to its
value.

Values: Any positive integer.

XtNnoPreviewText

Synopsis: The message that the FontChooser displays in its preview area
when preview is turned off.

Values: Any valid string in the widget’s textFormat .

This resource has a localized default, i.e., the default value shown
is passed through dgettext(3) to arrive at the final default.

Class Type Default Access

XtCInitialFontName String NULL GI

Class Type Default Access

XtCMaximumPointSize Cardinal 99 GI

Class Type Default Access

XtCNoPreviewText OlStr “Preview turned off” GI

Widget Reference (D – F) 369

7
FontChooser Widget

XtNpreferredPointSizes

Synopsis: The list of point sizes displayed by the FontChooser in its SIZE
scrolling list.

Values: A string containing a list of positive integers separated by spaces.

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

XtNpreviewBorderWidth

Synopsis: The border width of the preview area in pixels.
Values: Any nonnegative integer.

XtNpreviewBackground

Synopsis: The pixel value used to color the background of the preview area.
Values: Any valid pixel on the screen.

XtNpreviewFontColor

Synopsis: The pixel value used to color the text in the preview area.
Values: Any valid pixel on the screen.

XtNpreviewForeground

Synopsis: The pixel value used to color the foreground in the preview area.
Values: Any valid pixel on the screen.

Class Type Default Access

XtCPreferredPointSizes String “8 10 12 14 18 24” GI

Class Type Default Access

XtCBorderWidth Dimension (calculated) SGI

Class Type Default Access

XtCBackground Pixel XtDefaultBackground GI

Class Type Default Access

XtCFontColor Pixel XtDefaultForeground GI

Class Type Default Access

XtCForeground Pixel XtDefaultForeground GI

370 OLIT Reference Manual—August 1994

7
FontChooser Widget

XtNpreviewHeight

Synopsis: The height of the preview area in pixels.
Values: Any nonnegative integer.

XtNpreviewPresent

Synopsis: The presence of a preview area.
Values: TRUE/”true” - A preview area will be present.

FALSE/”false” - A preview area will not be present.

XtNpreviewSwitchLabel

Synopsis: This is the caption for the preview on/off control.
Values: Any valid string in the widget’s textFormat .

This resource has a localized default, i.e., the default value shown is passed
through dgettext(3) to arrive at the final default.

XtNpreviewSwitchOffLabel

Synopsis: This is the label on the button to switch preview OFF.
Values: Any valid string in the widget’s textFormat .

This resource has a localized default, i.e., the default value shown is passed
through dgettext(3) to arrive at the final default.

Class Type Default Access

XtCPreviewHeight Dimension (calculated) SGI

Class Type Default Access

XtCPreviewPresent Boolean TRUE SGI

Class Type Default Access

XtCPreviewSwitchLabel OlStr “Preview:” GI

Class Type Default Access

XtCPreviewSwitchOffLabel OlStr “Off” GI

Widget Reference (D – F) 371

7
FontChooser Widget

XtNpreviewSwitchOnLabel

Synopsis: This is the label on the button to switch preview ON.
Values: Any valid string in the widget’s textFormat .

This resource has a localized default, i.e., the default value shown is passed
through dgettext(3) to arrive at the final default.

XtNpreviewText

Synopsis: Allows the application to configure the text that the FontChooser
displays in its preview area when preview is on. The text that the
FontChooser displays in its preview area.

Values: Any valid string in the widget’s textFormat . The following three
substrings are special if they appear in this string:

%T Replaced by the current typeface
%S Replaced by the current style
%s Replaced by the current size

XtNrevertCallback

Synopsis: The callback list invoked when the REVERT button is selected and
XtNinitialFontName is set to a valid XLFD specification.

The call_data structure is:

typedef struct {
int reason;
String current_font_name;
OlFont current_font;
String revert_font_name;
OlFont revert_font;

} OlFCRevertCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_REVERT_FONT

Class Type Default Access

XtCPreviewSwitchOnLabel OlStr “On” GI

Class Type Default Access

XtCPreviewText OlStr “%T %S %s” SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

372 OLIT Reference Manual—August 1994

7
FontChooser Widget

current_font_name An XLFD font specification corresponding to the current
choices of attributes.

current_font An XFontStruct ∗ corresponding to current_font_name
when XtNtextFormat is OL_SB_STR_REP, or an
XFontSet when XtNtextFormat is OL_MB_STR_REP or
OL_WC_STR_REP.

revert_font_name An XLFD font specification corresponding to the font it is
reverting to.

revert_font An XFontStruct ∗ corresponding to revert_font_name
when XtNtextFormat is OL_SB_STR_REP, or an
XFontSet when XtNtextFormat is OL_MB_STR_REP or
OL_WC_STR_REP.

The current_font and revert_font will be freed by the widget after the callback
returns. Therefore, the application should use these fields only for operations
that are local to the callback; i.e., operations that would not depend on
current_font and revert_font to persist after the callback returns.

XtNrevertLabel

Synopsis: The label displayed on the REVERT button.
Values: Any OlStr value valid in the current locale.

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

XtNsizeLabel

Synopsis: The title of the scrolling list displaying the list of SIZE attributes.
Values: Any OlStr value valid in the current locale.

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

Class Type Default Access

XtCRevertLabel OlStr “Revert” GI

Class Type Default Access

XtCSizeLabel OlStr “Size” GI

Widget Reference (D – F) 373

7
FontChooser Widget

XtNstyleLabel

Synopsis: The title of the scrolling list displaying the list of STYLE attributes.
Values: Any OlStr value valid in the current locale.

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

XtNtextFormat

Synopsis: The text representation type for the widget. The toolkit computes
the default setting.

Values: OL_SB_STR_REP - Use the fonts announced by the X11 server.
OL_MB_STR_REP or OL_WC_STR_REP - Use fontsets specified in
the locale-specific fontset database stored in the file
$OPENWINHOME/lib/locale/%L/OW_FONT_SETS/OpenWindows.fs

(where %L is replaced by the locale name). See “Fontset Definitions
in OpenWindows.fs” on page 358.

Because the text representation type determines whether XFontStruct ∗ or
XFontSet is needed for rendering text, this resource controls the source of font
names for the FontChooser.

XtNtypefaceLabel

Synopsis: The title of the scrolling list displaying the list of TYPEFACE
attributes.

Values: Any OlStr value valid in the current locale.

This resource has a localized default, which means that the default value
shown is passed through dgettext (3) to arrive at the final default.

Class Type Default Access

XtCStyleLabel OlStr “Style” GI

Class Type Default Access

XtCTextFormat OlStrRep OlDefaultTextFormat GI

Class Type Default Access

XtCTypefaceLabel OlStr “Typeface” GI

374 OLIT Reference Manual—August 1994

7
FontChooser Widget

Activation Types

The following table lists the activation types used by the FontChooser.

The FontChooser widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“RubberTile Widget” on page 502.

Table 7-55 FontChooser Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 375

7
FontChooserShell Widget

FontChooserShell Widget

Class
Class Name: FontChooserShell
Class Pointer: fontChooserShellWidgetClass

Ancestry

Core-Composite-Shell-WMShell-VendorShell-TransientShell-FontChooserShell

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FontChSh.h>

Description

The FontChooserShell widget provides a mechanism to directly instantiate a
FontChooser popup as defined in the OPEN LOOK GUI Functional Specification.

The FontChooserShell internally instantiates a FontChooser widget as its child
to provide most of the functionality. It adds the FontChooser popup/down
semantics defined in the OPEN LOOK GUI Functional Specification to this basic
functionality.

Components

Figure 7-8 FontChooserShell Components

FontChooserShell

FontChooser

376 OLIT Reference Manual—August 1994

7
FontChooserShell Widget

Coloration

Figure 7-9 FontChooserShell Appearance

Resources

Table 7-56 FontChooserShell Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel (parent’s) SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 0 SGI

XtNcolormap Colormap (parent’s) GI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SG

Widget Reference (D – F) 377

7
FontChooserShell Widget

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) GI

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SG

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-57 FontChooserShell Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-58 FontChooserShell Shell Resources

Name Type Default Access

XtNallowShellResize Boolean TRUE SGI

XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI

XtNgeometry String NULL GI

XtNoverrideRedirect Boolean FALSE SGI

XtNpopdownCallback XtCallbackList NULL SGIO

XtNpopupCallback XtCallbackList NULL SGIO

XtNsaveUnder Boolean FALSE SGI

XtNvisual Visual ∗ (parent’s) GIO

Table 7-59 FontChooserShell WMShell Resources

Name Type Default Access

XtNbaseHeight int XtUnspecifiedShellInt SGI

XtNbaseWidth int XtUnspecifiedShellInt SGI

XtNheightInc int XtUnspecifiedShellInt SGI

Table 7-56 FontChooserShell Core Resources (Continued)

Name Type Default Access

378 OLIT Reference Manual—August 1994

7
FontChooserShell Widget

XtNiconMask Pixmap NULL SGI

XtNiconPixmap Pixmap NULL SGI

XtNiconWindow Window NULL SGI

XtNiconX int XtUnspecifiedShellInt GI

XtNiconY int XtUnspecifiedShellInt GI

XtNinitialState InitialState NormalState SGI

XtNinput Bool FALSE G

XtNmaxAspectX int XtUnspecifiedShellInt SGI

XtNmaxAspectY int XtUnspecifiedShellInt SGI

XtNmaxHeight int OL_IGNORE SGI

XtNmaxWidth int OL_IGNORE SGI

XtNminAspectX int XtUnspecifiedShellInt SGI

XtNminAspectY int XtUnspecifiedShellInt SGI

XtNminHeight int OL_IGNORE SGI

XtNminWidth int OL_IGNORE SGI

XtNtitle String NULL SGI

XtNtitleEncoding Atom XA_STRING SGI

XtNtransient Boolean TRUE SGI

XtNwaitForWm Boolean TRUE SGI

XtNwidthInc int XtUnspecifiedShellInt SGI

XtNwindowGroup Window XtUnspecifiedWindow SGI

XtNwinGravity int XtUnspecifiedShellInt GI

XtNwmTimeout int 5000 (msec) SGI

Table 7-60 FontChooserShell VendorShell Resources

Name Type Default Access

XtNbusy Boolean FALSE SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNdefaultImName String NULL SGI

XtNfooterPresent Boolean FALSE SGI

XtNfocusWidget Widget (see description) SGI

XtNimFontSet OlFont XtDefaultFontSet SGI

XtNimStatusStyle OlImStatusStyle OL_NO_STATUS GI

Table 7-59 FontChooserShell WMShell Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 379

7
FontChooserShell Widget

XtNfontChooserWidget

Synopsis: The FontChooser child widget that can be accessed for setting or
getting its resources; see “FontChooser Widget” on page 357 for its
resources.

XtNleftFooterString OlStr NULL SGI

XtNleftFooterVisible Boolean TRUE SGI

XtNmenuButton Boolean (see description) GI

XtNmenuType OlDefine (see description) SGI

XtNpushpin OlDefine (see description) SGI

XtNresizeCorners Boolean (see description) SGI

XtNrightFooterString OlStr NULL SGI

XtNrightFooterVisible Boolean TRUE SGI

XtNshellTitle OlStr NULL SGI

XtNuserData XtPointer NULL SGI

XtNwindowHeader Boolean (see description) GI

XtNwmProtocol XtCallbackList NULL SGIO

XtNwmProtocolInterested int OL_WM_DELETE_WINDOW
| OL_WM_TAKE_FOCUS

I

Table 7-61 FontChooserShell TransientShell Resources

Name Type Default Access

XtNtransientFor Widget NULL SGI

Table 7-62 FontChooserShell Resources

Name Type Default Access

XtNfontChooserWidget Widget (calculated) G

XtNtextFormat OlStrRep OlDefaultTextFormat GI

Class Type Default Access

XtCWidget Widget (calculated) G

Table 7-60 FontChooserShell VendorShell Resources (Continued)

Name Type Default Access

380 OLIT Reference Manual—August 1994

7
FontChooserShell Widget

XtNtextFormat

Synopsis: The text format propagated to the child FontChooser widget.
Values: OL_SB_STR_REP - Single-byte character representation.

OL_WC_STR_REP - Wide character representation.
OL_MB_STR_REP - Multibyte character representation.

See “XtNtextFormat” on page 29 for details of initialization and the default
value.

Activation Types

The following table lists the activation types used by the FontChooserShell.

The FontChooserShell widget has no activation types besides the ones in
“Common Activation Types” on page 68.

See Also

“FontChooser Widget” on page 357.

Class Type Default Access

XtCTextFormat OlStrRep OlDefaultTextFormat GI

Table 7-63 NoticeShell Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 381

7
FooterPanel Widget

FooterPanel Widget

Note – The FooterPanel widget is obsolete but remains in the toolkit for
backward compatibility. Its functionality has been superseded by the
VendorShell’s XtNfooterPresent , XtNleftFooterVisible ,
XtNrightFooterVisible , XtNleftFooterString , and
XtNrightFooterString resources. See “VendorShell Resources” on page 42
for descriptions of these resources.

Class
Class Name: FooterPanel
Class Pointer: footerPanelWidgetClass

Ancestry

Core-Composite-Constraint-Manager-FooterPanel

Required Header Files
#include <Xol/OpenLook>
#include <Xol/FooterPane.h>

Description

The FooterPanel is a simple composite widget that provides a consistent
interface for attaching a footer message to the bottom of a base window. The
FooterPanel composite accepts two children: a top child and a footer child.
(These are attached to the top and bottom of the FooterPanel widget,
respectively.) The children are identified in the order they are added: the top
child is the first child added; the footer child is the second.

The initial height of the FooterPanel widget is the sum of the initial heights of
its children. The initial width is the widest of the initial widths of its children.

382 OLIT Reference Manual—August 1994

7
FooterPanel Widget

Sizing

The FooterPanel widget attempts to allow its children to grow or shrink to any
size, by asking its parent to allow it to grow to the width of the widest child
and the height of the sum of its children’s height.

When it is not allowed to grow to this desired size, or when it is resized
smaller by its parent, the FooterPanel imposes the size restriction as follows: It
resizes both children to its width, but forces the top Child to absorb all the
height restriction; it does not resize the height of the footer child. Conversely,
when it is resized larger by its parent, the FooterPanel widget gives all the
height increase to the top child and resizes both children to the new width.

The FooterPanel widget never overlaps its children. If necessary, it will resize
the top Child to zero height. If its height becomes too small to accommodate
the footer child’s height, it clips the footer child.

Limitations

The FooterPanel widget works with all OLIT widgets except those that are sub-
classed from the Shell widget class.

Coloration

The FooterPanel widget has no coloration of its own and its two child widgets
are colored independently.

Resources

Table 7-64 FooterPanel Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

Widget Reference (D – F) 383

7
FooterPanel Widget

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-65 FooterPanel Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-66 FooterPanel Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 7-64 FooterPanel Core Resources (Continued)

Name Type Default Access

384 OLIT Reference Manual—August 1994

7
FooterPanel Widget

Activation Types

The following table lists the activation types used by the FooterPanel.

The FooterPanel widget has no activation types besides the ones in “Common
Activation Types” on page 68.

Table 7-67 FooterPanel Activations Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (D – F) 385

7
Form Widget

Form Widget

Class
Class Name: Form
Class Pointer: formWidgetClass

Ancestry

Core-Composite-Constraint-Manager-Form

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Form.h>

Description

The Form widget is a constraint-based manager that provides a layout
language used to establish spatial relationships between its children. It then
manipulates these relationships when the Form is resized, new children are
added to the Form, or its children are moved, resized, unmanaged, remanaged,
rearranged, or destroyed. The Form composite widget works with all the OLIT
widgets, except those that are sub-classed from the Shell widget class.

Spanning Constraints

The Form provides a set of constraint resources that dictate the layout of its
children when they are created and when the Form is resized. These
constraints can be set in the horizontal, vertical, or both directions.

Horizontal Constraints

These constraints control the positioning of a child in the horizontal direction
and the changes in its layout or dimensions when the Form is resized
horizontally.

386 OLIT Reference Manual—August 1994

7
Form Widget

Vertical Constraints

These constraints control the positioning of a child in the vertical direction and
the changes in its layout or dimensions when the Form is resized vertically.

Automatic Resizing

The Form calculates new sizes or positions for its children whenever they
change size or position. The new form size thus generated is passed as a
geometry request to the parent of the form. Once resized, the Form rearranges
its children based on the children’s constraints.

Child Management

When a widget within a form is unmanaged or destroyed, it is removed from
the constraint processing and the constraints are reprocessed to resize the form
and reposition and/or resize the form’s contents. Any widgets that referenced
it are rereferenced to the widget that it had been referencing. For the
unmanaged case, if the widget is remanaged, the widgets that were previously
referencing it are rereferenced to it, thereby reestablishing the original layout.

Coloration

The following diagram illustrates the resources used for Form Coloration.

Figure 7-10 Form Coloration

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

(Child Widgets Colored
Independently)

Widget Reference (D – F) 387

7
Form Widget

Form Geometry Management Algorithm

Whenever the Form widget is resized smaller or larger than its current size it
recomputes the positions and dimensions of its children based on their
constraints.

Terminology

Form_Width/Form_Height: The width/height of the Form is set through external
resize commands on the Form. Typically, these are set by the user through the
Window Manager.

Reference_Tree: The Form represents the layout of its children through a tree
data structure referred to as a Reference_Tree. It internally constructs two
Reference_Trees:

• A horizontal Reference_Tree, whose branches consist of widgets that
“xReference” one another (i.e., they are linked by the XtNxRefWidget or
XtNxRefName resources), and

• A vertical Reference_Tree, whose branches consist of widgets that
“yReference” one another (i.e., they are linked by the XtNyRefWidget or
XtNyRefName resources).

Branch_Width/Branch_Height: The width of a branch in the horizontal
Reference_Tree or the height of a branch in the vertical Reference_Tree.

Child_Width/Child_Height: The initial dimensions or dimensions set through
XtSetValues() for a child widget.

Consume_Width/Consume_Height: The difference between Form_Width/
Form_Height and Branch_Width/Branch_Height.

Resizable_Widget: A widget whose XtNxResizable /XtNyResizable is TRUE.

Resize Algorithm

The Resize algorithm used by the Form applies the same logic to each branch
in the horizontal and vertical Reference_Trees.

For each branch in the horizontal Reference_Tree:

1. The Form computes the Branch_Width by adding up the Child_Widths and
the XtNxOffset resource of each widget in this branch.

388 OLIT Reference Manual—August 1994

7
Form Widget

2. The Form_Width may be larger or smaller than the computed Branch_Width
of this branch. The Form attempts to shrink or expand this branch so that its
width becomes equal to Form_Width. It does so in the following manner:

a. If Form_Width > Branch_Width: The Form tries to distribute the extra
width (i.e., Consume_Width = Form_Width – Branch_Width) by
repositioning or resizing the children in this branch. It attempts this in
the following order:

i. Reposition widgets: Find out widgets whose XtNxVaryOffset is
TRUE and uniformly increase their offsets from their
xReferenceWidgets and thus distribute Consume_Width equally
among them.

ii. Resize widgets: If the previous step fails and XtNxAttachRight is
TRUE for the rightmost child widget, resize the first
Resizable_Widget starting from the right, so that Consume_Width is
completely consumed by that widget.

iii. Do nothing: If the previous step fails, no repositioning or resizing
occurs.

b. If Form_Width < Branch_Width: The Form tries to reposition or shrink
widgets in this branch so that all children can be accommodated. It
attempts this in the following order:

i. Reposition widgets: Find out widgets whose XtNxVaryOffset is
TRUE and uniformly decrease their offsets from their
xReferenceWidgets until every offset becomes zero or
Consume_Width is totally accounted for.

ii. Resize widgets: If the previous step fails or if Consume_Width is
still not zero, shrink all Resizable_Widgets uniformly, until all their
widths become 1 or Consume_Width is totally accounted for.

iii. Do nothing: If the previous step fails, no further repositioning or
resizing occurs.

The same algorithm is repeated for each branch in the vertical Reference_Tree.

Widget Reference (D – F) 389

7
Form Widget

Resources

Table 7-68 Form Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 7-69 Form Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 7-70 Form Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

390 OLIT Reference Manual—August 1994

7
Form Widget

Constraint Resources

Each child widget attached to the Form composite widget is constrained by the
resources detailed in the following table. In essence, these resources become
resources for each child widget and can be set and read just like any other
resources defined for the child.

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 7-71 Form Resources

Name Type Default Access

XtNxAddWidth Boolean FALSE SGI

XtNxAttachOffset int 0 SGI

XtNxAttachRight Boolean FALSE SGI

XtNxOffset int 0 SGI

XtNxRefName String NULL SGI

XtNxRefWidget Widget (form) SGI

XtNxResizable Boolean FALSE SGI

XtNxVaryOffset Boolean FALSE SGI

XtNyAddHeight Boolean FALSE SGI

XtNyAttachBottom Boolean FALSE SGI

XtNyAttachOffset int 0 SGI

XtNyOffset int 0 SGI

XtNyRefName String NULL SGI

XtNyRefWidget Widget (form) SGI

XtNyResizable Boolean FALSE SGI

XtNyVaryOffset Boolean FALSE SGI

Table 7-70 Form Manager Resources (Continued)

Name Type Default Access

Widget Reference (D – F) 391

7
Form Widget

XtNxAddWidth/
XtNyAddHeight

Synopsis: The addition of the width/height of the corresponding reference
widget to the location of a widget when determining the position
of a widget.

Values: TRUE/”true” - Add the width/height.
FALSE/”false” - Do not add the width/height.

XtNxAttachOffset/
XtNyAttachOffset

Synopsis: The separation between the Form widget and its children.
Values: 0 < XtNxAttachOffset

0 < XtNyAttachOffset

When a widget is attached to the right or bottom edge of the form, the
separation between the widget and the form defaults to zero pixels. These
resources allow that separation to be set to some other value. Also, for widgets
that are not attached to the right or bottom edge of the form, these resources
specify the minimum spacing between the widget and the form.

XtNxAttachRight/
XtNyAttachBottom

Synopsis: The reference direction on the form.
Values: TRUE/”true” - See below.

FALSE/”false” - See below.

These resources indicate that the specified widget should always be attached to
the right edge or bottom edge of the Form. Whenever the Form gets resized, it
will reposition or resize this child or its siblings so that it always maintains the

Class Type Default Access

XtCXAddWidth Boolean FALSE SGI

XtCYAddHeight Boolean FALSE SGI

Class Type Default Access

XtCXAttachOffset int 0 SGI

XtCYAttachOffset int 0 SGI

Class Type Default Access

XtCXAttachRight Boolean FALSE SGI

XtCYAttachBottom Boolean FALSE SGI

392 OLIT Reference Manual—August 1994

7
Form Widget

above condition. These resources are used in conjunction with the
XtNxVaryOffset , XtNyVaryOffset , XtNxResizable , and XtNyResizable
resources to control whether a child gets repositioned or resized when the
parent Form is resized.

XtNxOffset/
XtNyOffset

Synopsis: The offset from the reference widget.
Values: 0 < XtNxOffset

0 < XtNyOffset

The location of a widget is determined by the widget it references. By default,
a widget’s location exactly matches its reference widget’s location. These
resources specify the offset of a widget from its reference widget’s location.
The actual location of a widget is computed as:

if (XtNxAddWidth == TRUE)
x_location = x_location_of_ref_widget +

width_of_ref_widget + XtNxOffset
else

x_location = x_location_of_ref_widget + XtNxOffset

if (XtNyAddHeight == TRUE)
y_location = y_location_of_ref_widget +

height_of_ref_widget + XtNyOffset
else

y_location = y_location_of_ref_widget + XtNyOffset

XtNxRefName/
XtNyRefName

Synopsis: The reference widget by name.
Values: The name of a widget already created as a child of the form.

When a widget is added as a child of the form, its position is determined by
the widget it references. These resources allow the name of the reference
widget to be given. The form will convert this name to a widget to use for the

Class Type Default Access

XtCXOffset int 0 SGI

XtCYOffset int 0 SGI

Class Type Default Access

XtCXRefName String NULL SGI

XtCYRefName String NULL SGI

Widget Reference (D – F) 393

7
Form Widget

referencing. Any widget that is a direct child of the form or the form widget
itself can be used as a reference widget. If one of these resources is set and the
corresponding resource, XtNxRefWidget or XtNyRefWidget , is also set, they
are required to agree—the name given in XtNxRefName or XtNyRefName
must match the name of the identified widget.

XtNxRefWidget/
XtNyRefWidget

Synopsis: The reference widget by ID.
Values: The ID of a widget already created as a child.

Instead of naming the reference widget, an application can give the ID of the
reference widget using these resources. If both a widget ID and a widget name
is given for a reference in the same dimension (x or y), they are required to
refer to the same widget.

XtNxResizable/
XtNyResizable

Synopsis: The Form policy for resizing children.
Values: TRUE/”true” - The Form will resize its children.

FALSE/”false” - The Form will not resize its children.

When a Form’s size changes, it recomputes the dimensions and positions of its
children, to accommodate all of them within its new size. These resources
indicate to the Form that this child widget can be resized to achieve the new
layout.

Class Type Default Access

XtCXRefWidget Widget (form) SGI

XtCYRefWidget Widget (form) SGI

Class Type Default Access

XtCXResizable Boolean FALSE SGI

XtCYResizable Boolean FALSE SGI

394 OLIT Reference Manual—August 1994

7
Form Widget

XtNxVaryOffset/
XtNyVaryOffset

Synopsis: The variable spacing between a widget and its reference widget.
Values: TRUE/”true” - See below.

FALSE/”false” - See below.

When a Form’s size changes, it recomputes the dimensions and positions of its
children to accommodate all of them within its new size. These resources
indicate to the Form that this child widget can be repositioned (i.e., the offset
from its reference widget can be varied) to achieve the new layout. The offset
of any widget that directly references the Form never varies.

Activation Types

The following table lists the activation types used by the Form.

The Form widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“RubberTile Widget” on page 502.

Class Type Default Access

XtCXVaryOffset Boolean FALSE SGI

XtCYVaryOffset Boolean FALSE SGI

Table 7-72 Form Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

395

Widget Reference (G – P) 8

Gauge Widget

Class
Class Name: Gauge
Class Pointer: gaugeWidgetClass

Ancestry

Core-Primitive-Gauge

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Gauge.h>

Description

The Gauge widget displays a numeric value graphically. It is similar to a Slider
except that it is read-only.

396 OLIT Reference Manual—August 1994

8
Gauge Widget

Components

The Gauge widget consists of the following components:

• Bar with shaded region indicating the current value (oriented either
horizontally or vertically)

• Ticks (optional)
• Minimum value (optional)
• Maximum value (optional)
• Current value (optional—must be created and managed by the application)

Figure 8-1 Gauge Horizontal Orientation

Coloration

For 3D and 2D, the area surrounding the Gauge and its labels is drawn with
the parent’s XtNbackground . XtNfontColor is used to draw the minimum
and maximum value labels.

For 3D, the gauge component and tickmark coloration is defined by the OPEN
LOOK GUI Functional Specification, Chapter 9, “Color and Three-Dimensional
Design.” XtNbackground is used for BG1, and the BG2 (pressed-in), BG3
(shadow), and Highlight colors are derived by the toolkit from BG1.
XtNforeground is used to draw the current-value indicator bar inside the
Gauge.

For 2D, XtNbackground and XtNforeground are used to render the gauge
component and the tickmarks, as described by the OPEN LOOK GUI Functional
Specification, Chapter 4, “Controls.”

Application Notification

The application is responsible for setting the current value of the Gauge as well
as creating a widget (such as a StaticText or TextLine) to display the current
value numerically.

Widget Reference (G – P) 397

8
Gauge Widget

Resources

Table 8-1 Gauge Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-2 Gauge Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

398 OLIT Reference Manual—August 1994

8
Gauge Widget

XtNleftMargin

Synopsis: The number of pixels in the margin to the left of the gauge.
Values: OL_IGNORE/”ignore” or any valid Dimension .

XtNmaxLabel

Synopsis: The label to be placed next to the maximum value position.

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 8-3 Gauge Resources

Name Type Default Access

XtNleftMargin Dimension OL_IGNORE SGI

XtNmaxLabel OlStr NULL SGI

XtNminLabel OlStr NULL SGI

XtNorientation OlDefine OL_VERTICAL GI

XtNrecomputeSize Boolean FALSE SGI

XtNrightMargin Dimension OL_IGNORE SGI

XtNsliderMax int 100 SGI

XtNsliderMin int 0 SGI

XtNsliderValue int 0 SGI

XtNspan Dimension OL_IGNORE SGI

XtNticks int 0 SGI

XtNtickUnit OlDefine OL_NONE SGI

Class Type Default Access

XtCMargin Dimension OL_IGNORE SGI

Class Type Default Access

XtCLabel OlStr NULL SGI

Table 8-2 Gauge Primitive Resources (Continued)

Name Type Default Access

Widget Reference (G – P) 399

8
Gauge Widget

Values: Any OlStr value valid in the current locale.

For a vertical gauge, the label is placed to the right of the maximum value
position. If there is not enough space for the entire label and
XtNrecomputeSize is TRUE, then the widget will request more space to show
the entire label.

For a horizontal gauge, the label is placed centered and below the maximum
value position. If there is not enough room to center the label and
XtNrecomputeSize is set to FALSE, the end of the label will be aligned with
the right end of the outline of the gauge. If this label collides with the
minimum label, some part of the labels will overlap. If there is not enough
room to center the label and XtNrecomputeSize is set to TRUE, then the
widget will request more space to center the label below the maximum value
position.

XtNminLabel

Synopsis: The label to be placed next to the minimum value position.
Values: Any OlStr value valid in the current locale.

For a vertical gauge, the label is placed to the right of the minimum value
position. If there is not enough space for the entire label and
XtNrecomputeSize is TRUE, then the widget will request more space to show
the entire label.

For a horizontal gauge, the label is placed centered and below the minimum
value position. If there is not enough room to center the label and
XtNrecomputeSize is set to FALSE, the beginning of the label will be aligned
with the left end of the outline of the gauge and is drawn to the right. If this
label collides with the maximum label, some part of the labels will overlap. If
there is not enough room to center the label and XtNrecomputeSize is set to
TRUE, the widget will request for more space to center the label below the
minimum value position.

XtNorientation

Synopsis: The direction for the visual presentation of the widget.

Class Type Default Access

XtCLabel OlStr NULL SGI

Class Type Default Access

XtCOrientation OlDefine OL_VERTICAL GI

400 OLIT Reference Manual—August 1994

8
Gauge Widget

Values: OL_HORIZONTAL/”horizontal” - Define a horizontal gauge.
OL_VERTICAL/”vertical” - Define a vertical gauge.

XtNrecomputeSize

Synopsis: The widget’s resize policy.
Values: TRUE/”true” – The widget will resize itself whenever needed,

to compensate for the space needed to show the tick marks and the
labels.
FALSE/”false” – The widget will not resize itself.

The gauge widget uses XtNspan , the sizes of the labels, and XtNtickUnit to
determine the preferred size.

XtNrightMargin

Synopsis: The number of pixels in the margin to the right of the gauge.
Values: OL_IGNORE/”ignore” or any valid Dimension .

XtNsliderMax/
XtNsliderMin

Synopsis: The range of values tracked by the Gauge widget.
Values: XtNsliderMin < XtNsliderMax

XtNsliderValue

Synopsis: The values represented by the current position of the end of the
shaded portion of the gauge.

Values: XtNsliderMin ≤ XtNSliderValue ≤ XtNsliderMax

Class Type Default Access

XtCRecomputeSize Boolean FALSE SGI

Class Type Default Access

XtCMargin Dimension OL_IGNORE SGI

Class Type Default Access

XtCSliderMax int 100 SGI

XtCSliderMin int 0 SGI

Class Type Default Access

XtCSliderValue int 0 SGI

Widget Reference (G – P) 401

8
Gauge Widget

XtNspan

Synopsis: If XtNrecomputeSize is set to TRUE, the preferred length of the
gauge, not counting the space needed for the labels.

Values: OL_IGNORE/”ignore” or any valid Dimension .

The gauge widget uses the span value, the sizes of the labels, and
XtNtickUnit to determine the preferred size.

XtNticks

Synopsis: The interval between tick marks.
Values: The unit of the interval value is determined by XtNtickUnit .

XtNtickUnit

Synopsis: The interpretation of the XtNticks resource.
Values: OL_NONE/”none” - Display no tick marks and ignore XtNticks .

OL_PERCENT/”percent” - Interpret XtNticks as the
percentage of the gauge value range.
OL_SLIDERVALUE/”slidervalue” - Interpret XtNticks in
gauge value units.

To be consistent with the Scrollbar widget, the effective spacing between tick
marks, designated in XtNticks and XtNtickUnit , should be less than or
equal to the spacing in XtNgranularity .

Activation Types

The following table lists the activation types used by the Gauge.

Class Type Default Access

XtCSpan Dimension OL_IGNORE SGI

Class Type Default Access

XtCTicks int 0 SGI

Class Type Default Access

XtCTickUnit OlDefine OL_NONE SGI

Table 8-4 Gauge Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

402 OLIT Reference Manual—August 1994

8
Gauge Function

The Gauge widget is a read-only control that has no activation types besides
the ones in “Common Activation Types” on page 68.

See Also

“Slider Widget” on page 586.

Gauge Function
The following convenience function is used to set gauge values.

OlSetGaugeValue
#include <Xol/Gauge.h>

extern void OlSetGaugeValue(
Widget w,
int value);

This function is an alternative and faster method of setting the current value of
a Gauge widget. The effect is equivalent to doing XtSetValues() on the
XtNsliderValue resource of the widget.

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Table 8-4 Gauge Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (G – P) 403

8
MenuButton Widget

MenuButton Widget

Class
Class Name: MenuButton
Class Pointer: menuButtonWidgetClass,menuButtonGadgetClass

Ancestry

Core-Primitive-Button-MenuButton

Required Header Files
#include <Xol/OpenLook>
#include <Xol/MenuButton.h>

Description

The MenuButton is used to create a popup menu. It appears similar to the
OblongButton widget (seeOblongButton Widget on page 464), except that it
also has a mark, called a menumark, near the right end of the button. When the
user invokes the MENU command on the MenuButton, a menu pops up. The
MenuButton provides the features of menu default selection and menu
previewing as well as the features of the MenuShell widget.

Components

The MenuButton consists of an oblong border containing a label and a
menumark. A popup menu is attached. Each MenuButton also has the
components of the MenuShell widget.

Figure 8-2 MenuButton Appearance

Label

Menumark

404 OLIT Reference Manual—August 1994

8
MenuButton Widget

Subwidgets

The MenuButton widget automatically creates and attaches a MenuShell
widget. An application can add menu items to this menu by obtaining the
value of the XtNmenuPane resource and adding children to this widget.

Figure 8-3 MenuButton Subwidget

Popping Up the MenuShell Subwidget

When the MenuButton widget is not in a menu, pressing or clicking MENU on
the MenuButton pops up the MenuButton’s menu in the direction of the
menumark. In this case the menumark points down; therefore, the menu will
pop up below the MenuButton.

When the MenuButton widget is in a stay-up menu (implementing a cascade
menu), pressing or clicking MENU when the pointer is within or on the
button’s border pops up the button’s menu in the direction of the menumark.

When the MenuButton widget is in a popup menu (implementing a cascade
menu), moving the pointer into the menumark region pops up the menu in the
direction of the menumark. The position is computed when the movement into
the menumark region is first detected, but rapid pointer motion and internal
delays in popping up the menu may let the pointer wander.

Moving the pointer out of the MenuButton widget, but not directly into the
newly popped up menu, causes that menu to be popped down. This occurs
even if the pointer is moved into and out of the newly popped up menu in the
interim.

Menu Previewing

The MenuButton widget supports previewing of the default menu item if the
toolkit resource XtNselectDoesPreview is set to TRUE. In this case, if
SELECT is activated on the MenuButton, the widget will display the label of the
default item within the border of the MenuButton while the SELECT mouse

MenuButton

MenuShell
(XtNmenuPane)

Widget Reference (G – P) 405

8
MenuButton Widget

button is down. If the user releases the SELECT mouse button inside the
MenuButton border, the default menu item will be selected.

Menu Placement—Not Enough Space

If the right or bottom edge of the screen is too close to allow the menu
placement described above, the menu pops up aligned with the edge of the
screen and the pointer is shifted horizontally to keep it 4 points from the left
edge of the menu items. If the left edge of the screen is too close, the menu
pops up 4 points from the edge and the pointer is shifted to lie on the edge.
The pointer does not jump back after the menu is dismissed.

Selecting the Default Item

Each MenuButton widget has a default item belonging to the MenuShell
subwidget. If SELECT is activated on the MenuButton (and the
XtNselectDoesPreview toolkit resource is set to TRUE) and the default item
is inactive (the XtNsensitive resource is FALSE) or busy (the XtNbusy
resource is TRUE), the system beeps.

If SELECT is activated on the MenuButton (and the XtNselectDoesPreview
toolkit resource is set to TRUE) and the default item is another MenuButton (for
a cascading menu), its default will be selected; this recurses through the menu
tree until a non-MenuButton default widget is found.

Coloration

For 3D, MenuButton coloration is defined by the OPEN LOOK GUI Functional
Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BG1. XtNfontColor is used
to draw the label.

For 2D, XtNbackground and XtNfontColor are used to render the
MenuButton as described by the OPEN LOOK GUI Functional Specification,
Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the MenuButton will be drawn with the value of

406 OLIT Reference Manual—August 1994

8
MenuButton Widget

XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as XtNbackground , then the MenuButton
inverts XtNfontColor and XtNbackground . Once the input focus leaves the
widget, the original coloration is restored.

Label Appearance

The XtNwidth , XtNheight , XtNrecomputeSize , and XtNlabelJustify
resources interact to produce a truncated, clipped, centered, or left-justified
label as shown in the following table.

Table 8-5 MenuButton Label Appearance

When the label is centered or left-justified, the extra space is filled with the
background color of the MenuButton widget, as determined by the
XtNbackground and XtNbackgroundPixmap resources. When a text label is
truncated, the truncation occurs at a character boundary and a “more arrow” is
inserted to show that part of the label is missing. The arrow requires that more
of the label be truncated than would otherwise be necessary. If the width of the
button is too small to show even one character with the triangle, only the
triangle is shown. If the width is so small that the entire triangle cannot be
shown, the arrow is clipped on the right.

XtNwidth XtNrecomputeSize XtNlabelJustify Result

any value

needed
for label

>

>

needed
for label

needed
for label

needed
for label

needed
for label

any value

XtNheight XtNrecomputeSize XtNlabelJustify

>

<

<

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

any

any

any

any

any

OL_LEFT

OL_CENTER

Just Fits

Left Justified

Result

Trunc

Centered

Clipped

Just Fits

Centered

Widget Reference (G – P) 407

8
MenuButton Widget

Resources

Table 8-6 MenuButton Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-7 MenuButton Primitive Resources

Name Type Default Access

XtNaccelerator String NULL n/a

XtNacceleratorText String NULL n/a

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ n/a

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

408 OLIT Reference Manual—August 1994

8
MenuButton Widget

The following table lists the MenuButton resources that are propagated to the
MenuShell subwidget.

1. These subwidget resources are described in the sections “ControlArea Widget” on page 249 and “MenuShell
Widget” on page 414.

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 8-8 MenuButton Resources

Name Type Default Access

XtNdefault Boolean FALSE SGI

XtNlabel OlStr (instance name) SGI

XtNlabelImage XImage ∗ NULL SGI

XtNlabelJustify OlDefine OL_LEFT SGI

XtNlabelType OlDefine OL_STRING SGI

XtNmenuMark OlDefine (calculated) SGI

XtNrecomputeSize Boolean TRUE SGI

Table 8-9 MenuShell Subwidget Resources1

Name Type Default Access

XtNcenter Boolean TRUE I

XtNhPad Dimension 6 I

XtNhSpace Dimension 6 I

XtNlayoutType OlDefine OL_FIXEDCOLS I

XtNmeasure int 1 I

XtNmenuPane Widget (special) G

XtNpushpin OlDefine OL_NONE I

XtNpushpinDefault Boolean FALSE I

XtNsameSize OlDefine OL_COLUMNS I

XtNshellTitle OlStr (widget name) SGI

XtNvPad Dimension 3 I

XtNvSpace Dimension 1 I

Table 8-7 MenuButton Primitive Resources (Continued)

Name Type Default Access

Widget Reference (G – P) 409

8
MenuButton Widget

XtNdefault

Synopsis: Whether the MenuButton is the default choice in its immediate
shell.

Values: TRUE/”true” - If the button is in a menu, an oval ring is drawn
around the button to show that the button is the default choice of
one or more buttons.
FALSE/”false” - This button is not the default control of the
shell.

Setting XtNdefault to TRUE has the effect of setting XtNdefault of the
previous default control for the shell to be FALSE. The OL_MENUDEFAULT and
OL_MENUDEFAULTKEY activation types modify this resource.

XtNlabel

Synopsis: The text for the Label.
Values: Any OlStr value valid in the current locale.

This resource is ignored if the XtNlabelType resource has the value
OL_IMAGE.

The MenuButton label is colored using the XtNfontColor resource.

XtNlabelImage

Synopsis: The image for the Label.

This resource is ignored unless the XtNlabelType resource has the value
OL_IMAGE. If the image is of type XYBitmap , the image is highlighted when
appropriate by reversing the 0 and 1 values of each pixel (that is, by XORing
the image data). If the image is of type XYPixmap or ZPixmap , the image is not
highlighted, although the space around the image inside the border is
highlighted.

Class Type Default Access

XtCDefault Boolean FALSE SGI

Class Type Default Access

XtCLabel OlStr (instance name) SGI

Class Type Default Access

XtCLabelImage XImage ∗ NULL SGI

410 OLIT Reference Manual—August 1994

8
MenuButton Widget

If the image is smaller than the space available for it inside the border and
XtNlabelTile is FALSE, the image is centered vertically and either centered
or left-justified horizontally, depending on the value of the XtNlabelJustify
resource. If the image is larger than the space available for it, it is clipped so
that it does not display outside the border. If the XtNdefault resource is TRUE
so that the border is doubled, the space available is that inside the inner line of
the border.

XtNlabelJustify

Synopsis: The justification of a label within the widget.
Values: OL_LEFT/”left” - Left-justify the label.

OL_CENTER/”center” - Center the label.

XtNlabelType

Synopsis: The form that the label takes.
Values: OL_STRING/”string” - The label is text.

OL_IMAGE/”image” - The label is an image.

XtNmenuMark

Synopsis: The direction of the menu arrow.
Values: OL_DOWN/”down” - The menu arrow points down.

OL_RIGHT/”right” - The menu arrow points to the right.

The default is OL_RIGHT if the immediate shell ancestor is a MenuShell or a
subclass thereof; otherwise, it is OL_DOWN.

Class Type Default Access

XtCLabelJustify OlDefine OL_LEFT SGI

Class Type Default Access

XtCLabelType OlDefine OL_STRING SGI

Class Type Default Access

XtCMenuMark OlDefine (calculated) SGI

Widget Reference (G – P) 411

8
MenuButton Widget

XtNmenuPane

Synopsis: The widget where menu items can be added.
Values: ID of the menupane widget contained in the MenuButton’s

MenuShell.

This resource is available once the MenuButton widget has been created.

XtNrecomputeSize

Synopsis: The resize policy of the widget.
Values: TRUE/”true” – The MenuButton widget will do normal size

calculations that may cause its geometry to change and
automatically set the XtNheight and XtNwidth resources.
FALSE/”false” – The MenuButton widget will leave its size
alone; this may cause truncation of the visible image being shown
by the MenuButton widget if the fixed size is too small, or may
cause padding if the fixed size is too large. The location of the
padding is determined by the XtNlabelJustify resource.

Activation Types

The following table lists the activation types used by the MenuButton.

Class Type Default Access

XtCMenuPane Widget NULL G

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Table 8-10 MenuButton Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn

OL_MENUDEFAULTKEY MENUDEFAULT XtNmenuDefaultKey

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN DOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

412 OLIT Reference Manual—August 1994

8
MenuButton Widget

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_MENU

The OL_MENU activation type can be used to pop up the menu in two different
modes: press-drag-release and click-move-click. These modes are described in
the OPEN LOOK GUI Functional Specification section “Using Menu Buttons” in
Chapter 15. The position of the menu depends on the space available on the
screen and is described in the OPEN LOOK GUI Functional Specification section
“Menu Placement” in Chapter 15.

OL_MENUDEFAULT/
OL_MENUDEFAULTKEY

The OL_MENUDEFAULT and OL_MENUDEFAULTKEY activation types apply
only to MenuButtons that are descendants of a Menu. These activation types
will set the MenuButton XtNdefault resource to TRUE, and change the
display of the widget according to the OPEN LOOK GUI Functional Specification
section “Changing Menu Defaults” in Chapter 15.

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP UP XtNupKey

OL_MULTIDOWN JUMP DOWN XtNmultiDownKey

OL_MULTILEFT JUMP LEFT XtNmultiLeftKey

OL_MULTIRIGHT JUMP RIGHT XtNmultiRightKey

OL_MULTIUP JUMP UP XtNmultiUpKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_NEXTWINDOW NEXTWINDOW XtNnextWinKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_PREVWINDOW PREVWINDOW XtNprevWinKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Table 8-10 MenuButton Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (G – P) 413

8
MenuButton Widget

OL_MENUKEY

The OL_MENUKEY activation type can be used to pop up the menu according
to the OPEN LOOK Mouseless Specification section 4.2.

OL_SELECT

The activation of the MenuButton widget with the SELECT button depends on
the value of the toolkit resource XtNselectDoesPreview . When the resource
XtNselectDoesPreview is FALSE, this activation type will behave exactly as
the OL_MENU activation type. When XtNselectDoesPreview is TRUE,
SELECT can be used as a shortcut to display and activate the menu default as
described in the OPEN LOOK GUI Functional Specification Chapter 15 and
Chapter 5. If SELECT is released within the MenuButton, the default menu item
will be activated with the OL_SELECTKEY activation type.

OL_SELECTKEY

The OL_SELECTKEY activation type can be used to pop up the menu according
to the OPEN LOOK Mouseless Specification section 4.2.

See Also

“AbbrevMenuButton Widget” on page 217,
“ControlArea Widget” on page 249
“MenuShell Widget” on page 414.

414 OLIT Reference Manual—August 1994

8
MenuShell Widget

MenuShell Widget

Class
Class Name: MenuShell
Class Pointer: menuShellWidgetClass

Ancestry

Core-Composite-Shell-WMShell-VendorShell-TransientShell-MenuShell

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Menu.h>

Description

The MenuShell widget is used to create a menu not associated with either a
MenuButton or an AbbrevMenuButton. For example, a MenuShell widget can
be attached to a button, such as an OblongButton widget, but this does not
make the button into a menu button. However, all the features of the
MenuShell widget (except those related to menu creation) also pertain to the
MenuButton menu.

Components

A menu contains a set of items that are presented to the user for selection.
These are specified by the application as widgets attached to the menu. One of
these items is a default item. (A menu always has exactly one default item.)
The items are laid out in a control area. A menu also has a title, a title
separator, a border or window border, a drop shadow, and an optional
pushpin. The application chooses the label for the Title and whether a menu
has a pushpin.

A popup or stay-up menu shows the title, border, pushpin (if available), items,
and drop shadow. The title is left out if the menu is from either a menu button
or an abbreviated menu button. A pinned menu shows the window border,
title, pushpin, items, but no drop shadow.

Widget Reference (G – P) 415

8
MenuShell Widget

Figure 8-4 MenuShell Menu Components

Subwidgets

The MenuShell contains one subwidget, a “menupane,” which is a container
for the components of the menu. This widget is provided automatically and is
accessible through the XtNmenuPane resource.

Figure 8-5 MenuShell Subwidgets

Subclass of Shell Widget

The MenuShell widget is a subclass of Shell widget, so the
XtCreatePopupShell() routine is used to create it instead of the more
common XtCreateWidget() .

Menupane

The menupane is not described as a separate widget here; the only interface to
it for the application programmer is as a parent widget to which the widgets
comprising the menu items are attached. The menu items are not attached
directly to the MenuShell widget, since a shell widget can take only one child.

Pushpin Title Border

Title Separator

Default Item

Items

Drop Shadow

MenuShell

menu
(XtNmenuPane)

416 OLIT Reference Manual—August 1994

8
MenuShell Widget

Associating a Menu with a Widget

A menu can be associated with any widget, including Primitive widgets. The
connection is made by creating the menu widget as a child of the other widget.
Being a shell widget, the MenuShell widget is not a normal widget-child of its
parent, but a popup child. If the application allows it, the menu augments the
parent’s event list so that the popping up of the menu is handled
automatically.

Popup Control

Pressing MENU when the pointer is over the parent of the MenuShell widget
causes the menu to be popped up. The menu is presented as a popup menu,
where the items are available for a press-drag-release type of selection (see
below).

Clicking MENU when the pointer is over the parent of the MenuShell widget
also causes the menu to be popped up, but the menu is presented as a stay-up
menu, where the items are available for a click-move-click type of selection,
instead (see below).

A “slow click” (a press with a delay before the release) may show the menu as
a popup on the press, then as a stay-up on the release.

Selection Control

The MenuShell arranges for its children to respond to either the press-drag-
release or the click-move-click type of selection.

With the press-drag-release type of control, the user can keep MENU pressed
and move the pointer to the item of choice; releasing MENU selects the item
and pops the menu down. If the pointer is not over an item when MENU is
released, the menu simply pops down.

With the click-move-click type of control, the user can move the pointer to the
item of choice (MENU has already been released to end a click); clicking
SELECT or MENU selects the item and pops the menu down. If the pointer is
not over an item when SELECT or MENU is clicked, the menu simply pops
down.

These selection methods apply to all menu items except menu buttons. For
example, in Figure 8-4 on page 415, Locate Owner can be selected using the
methods described here. For the other items in the figure (which are menu

Widget Reference (G – P) 417

8
MenuShell Widget

buttons), see “MenuButton Widget” on page 403 for the explanation of menu
button selection behavior.

Converting Stay-up to Popup Menu

Pressing MENU in a stay-up menu converts it to a popup menu. Thus, the click-
move-click selection control becomes a press-drag-release selection control.

Highlighting Items

In the press-drag-release type of selection control, each menu item highlights
while the pointer is over it. The form of the highlighting depends on the type
of widget making up the item. Again, the MenuShell widget arranges for its
children to respond in this way. No highlighting occurs when the click-move-
click type of selection control is used.

Use of the Pushpin

The pushpin is presented to the user like any of the items to be selected from
the menu, except that it is always the topmost item, and it is presented visually
as an “adornment” of the header, next to the title (if present). The user can
select the pushpin, pushing it in to cause the menu to remain on the display as
a popup window, or a pinned menu, and pulling it out to make the menu a stay-
up menu. To the user, a pinned menu behaves indistinguishably from a
command window.

Default Item

If none of the menu items is explicitly set as the default item, the menu picks
the first menu item to be the default item. If the menu contains a pushpin and
no other menu item is explicitly set as the default item, the pushpin is chosen
as the default item.

Popup Position

If the menu is not from a menu button, the menu pops up so that the default
item is vertically centered 4 points to the right of the pointer. If the right or
bottom edge of the screen is too close to allow this placement, the menu pops
up with its edge aligned to the edge of the screen, and the mouse pointer is
shifted horizontally to keep it 4 points from the left edge of the default item.

For the popup position when the menu is from a menu button, see
“MenuButton Widget” on page 403.

418 OLIT Reference Manual—August 1994

8
MenuShell Widget

Coloration

The following diagram illustrates the resources that affect MenuShell
coloration in 2D.

Figure 8-6 MenuShell Menu Coloration

Coloration is identical for 3D, except that the coloration of the pushpin is
defined by the OPEN LOOK GUI Functional Specification, Chapter 9, “Color and
Three-Dimensional Design.” XtNbackground is used for BG1 of the pushpin,
and the BG2 (shaded), BG3 (shadow), and Highlight colors are derived by the
toolkit from BG1.

Programmatic Menu Popup and Popdown

Four convenience routines are provided to programmatically control the
mapping and unmapping of menus.

OlMenuPopup
void OlMenuPopup(

Widget menu,
Widget emanate ,
Cardinal item_index ,
OlDefine state ,
Boolean set_position ,
Position x,
Position y,
OlMenuPositionProc position_proc);

XtNforeground

XtNborderColor

XtNbackground
(XtNbackgroundPixmap)

XtNforeground
(Transparent over
Parent’s Background)

As Per Widget

Widget Reference (G – P) 419

8
MenuShell Widget

menu A menuShellWidget ID obtained by creating a menu explicitly.
emanate The object that the menu is currently associated with; it is supplied

to the position_proc when the menu positioning is done. If this field
is NULL, the menu’s parent object is used as the emanate object for
later positioning calculations.

item_index If emanate is a flattened widget, this parameter specifies the
particular item.

state The state the menu should be in when it is visible on the screen:
one of: OL_PINNED_MENU, OL_PRESS_DRAG_MENU, or
OL_STAYUP_MENU.

set_position A flag indicating whether the following two arguments (x and y)
are used to help position the menu. If the flag is FALSE, the current
Pointer Location is used to initialize x and y.

x, y These coordinates are used by the positioning routine. Typically,
these values represent the pointer position with respect to the
RootWindow (e.g., xevent-> xbutton.x_root and
xevent->xbutton.y_root). However, if the menu’s state is
OL_PINNED_MENU, these coordinates represent the desired
upper-left hand corner of the pinned menu.

position_proc The procedure called to determine the menu’s position if the
menu’s state is either OL_PINNED_MENU or OL_STAYUP_MENU. If
the menu’s state is OL_PINNED_MENU, the position_proc value is
ignored. If this procedure is NULL, the default positioning routine
(i.e., the one associated with the emanate widget or the menu’s
parent) is used. The type of this procedure is:

typedef void (∗OlMenuPositionProc)(
Widget menu,
Widget emanate ,
Cardinal item_index ,
OlDefine state ,
Position ∗mx,
Position ∗my,
Position ∗px ,
Position ∗px);

menu A menuShellWidget ID obtained by creating a menu
explicitly.

emanate Menu’s emanate widget.
item_index Emanate item_index or OL_NO_ITEM

state The state of the menu; either OL_PRESS_DRAG_MENU
or OL_STAYUP_MENU

420 OLIT Reference Manual—August 1994

8
MenuShell Widget

mx, my Pointers containing the menu’s current x and y
locations. If the position routine wants to move the
menu, it should change these values. The position
routine should not move the menu explicitly.

px, py The x and y locations supplied to the OlMenuPopup()
routine. If the position routine changes these values,
the pointer is warped to the new location.

OlMenuPost
void OlMenuPost(

Widget menu);

This convenience routine is equivalent to:

OlMenuPopup(menu, NULL, OL_NO_ITEM, OL_PRESS_DRAG_MENU, FALSE,
0, 0, (OlMenuPositionProc) NULL);

OlMenuPopdown
void OlMenuPopdown(

Widget menu,
Boolean dismiss_pinned);

This routine pops down a menu. If a menu is pinned, a value of TRUE for
dismiss_pinned is required to dismiss it. If a menu does not have a pushpin or
the menu is not pinned, the dismiss_pinned field is ignored.

OlMenuUnpost
void OlMenuUnpost(

Widget menu);

This convenience routine is equivalent to:

OlMenuPopdown(menu, FALSE);

Avoiding Permanent Toolkit Grabs

To avoid permanent toolkit grabs, the application should add the
OlCallbackPopdownMenu callback procedure to the XtNpopupCallback
callback list of any shell (except NoticeShell and MenuShell) that may be
popped up with an exclusive toolkit grab by the application.

Widget Reference (G – P) 421

8
MenuShell Widget

void OlCallbackPopdownMenu(
Widget w,
XtPointer client_data ,
XtPointer call_data)

The arguments are:

w Specifies the widget

client_data Not used by this procedure

call_data Not used by this procedure

Keyboard Traversal

By default, all menus allow traversal among the traversable controls added to
the widget.

Popping up a Menu via the keyboard is done by traversing to a MenuButton,
using NEXTFIELD, PREVFIELD, MOVEUP, MOVEDOWN, MOVERIGHT, or LEFT,
and pressing the MENUKEY key. If a menu is attached to a control other than a
MenuButton, it can be popped up by traversing to that control and pressing
the MENUKEY.

Keyboard traversal within a menu is done using the PREVFIELD, NEXTFIELD,
MOVEUP, MOVEDOWN, MOVELEFT and MOVERIGHT keys. The PREVFIELD,
MOVEUP, and MOVELEFT keys move the input focus to the previous Menu item
with keyboard traversal enabled. If the input focus is on the first item of the
Menu, then pressing one of these keys will wrap to the last item of the Menu
with keyboard traversal enabled. The NEXTFIELD, MOVEDOWN, and
MOVERIGHT keys move the input focus to the next Menu item with keyboard
traversal enabled. If the input focus is on the last item of the Menu, then
pressing one of these keys will wrap to the first item of the Menu with
keyboard traversal enabled.

To traverse out of the menu, the following keys can be used:

• CANCEL dismisses the menu and returns focus to the originating control
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application

NEXTWINDOW, PREVWINDOW, NEXTAPP, and PREVAPP are provided by the
OLWM window manager and are set via different resources.

422 OLIT Reference Manual—August 1994

8
MenuShell Widget

Resources

Table 8-11 MenuShell Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) GI

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-12 MenuShell Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 8-13 MenuShell Shell Resources

Name Type Default Access

XtNallowShellResize Boolean TRUE SGI

XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI

Widget Reference (G – P) 423

8
MenuShell Widget

XtNgeometry String NULL GI

XtNoverrideRedirect Boolean FALSE SGI

XtNpopdownCallback XtCallbackList NULL SGIO

XtNpopupCallback XtCallbackList NULL SGIO

XtNsaveUnder Boolean TRUE SGI

XtNvisual Visual ∗ (parent’s) GIO

Table 8-14 MenuShell WMShell Resources

Name Type Default Access

XtNbaseHeight int XtUnspecifiedShellInt SGI

XtNbaseWidth int XtUnspecifiedShellInt SGI

XtNheightInc int XtUnspecifiedShellInt SGI

XtNiconMask Pixmap NULL SGI

XtNiconPixmap Pixmap NULL SGI

XtNiconWindow Window NULL SGI

XtNiconX int XtUnspecifiedShellInt SGI

XtNiconY int XtUnspecifiedShellInt SGI

XtNinitialState InitialState NormalState SGI

XtNinput Bool FALSE G

XtNmaxAspectX int XtUnspecifiedShellInt SGI

XtNmaxAspectY int XtUnspecifiedShellInt SGI

XtNmaxHeight int OL_IGNORE SGI

XtNmaxWidth int OL_IGNORE SGI

XtNminAspectX int XtUnspecifiedShellInt SGI

XtNminAspectY int XtUnspecifiedShellInt SGI

XtNminHeight int OL_IGNORE SGI

XtNminWidth int OL_IGNORE SGI

XtNtitle String NULL SGI

XtNtitleEncoding Atom XA_STRING SGI

XtNtransient Boolean TRUE SGI

XtNwaitForWm Boolean TRUE SGI

XtNwidthInc int XtUnspecifiedShellInt SGI

XtNwindowGroup Window XtUnspecifiedWindow SGI

Table 8-13 MenuShell Shell Resources (Continued)

Name Type Default Access

424 OLIT Reference Manual—August 1994

8
MenuShell Widget

XtNwinGravity int XtUnspecifiedShellInt SGI

XtNwmTimeout int 5000 (msec) SGI

Table 8-15 MenuShell VendorShell Resources

Name Type Default Access

XtNbusy Boolean FALSE SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNdefaultImName String NULL SGI

XtNfooterPresent Boolean FALSE SGI

XtNfocusWidget Widget (see description) SGI

XtNimFontSet OlFont XtDefaultFontSet SGI

XtNimStatusStyle OlImStatusStyle OL_NO_STATUS GI

XtNleftFooterString OlStr NULL SGI

XtNleftFooterVisible Boolean TRUE SGI

XtNmenuButton Boolean (see description) GI

XtNmenuType OlDefine (see description) SGI

XtNpushpin OlDefine (see description) SGI

XtNresizeCorners Boolean (see description) SGI

XtNrightFooterString OlStr NULL SGI

XtNrightFooterVisible Boolean TRUE SGI

XtNshellTitle OlStr NULL SGI

XtNuserData XtPointer NULL SGI

XtNwindowHeader Boolean (see description) GI

XtNwmProtocol XtCallbackList NULL SGIO

XtNwmProtocolInterested int OL_WM_DELETE_WINDOW
| OL_WM_TAKE_FOCUS

I

Table 8-16 MenuShell TransientShell Resources

Name Type Default Access

XtNtransientFor Widget NULL SGI

Table 8-14 MenuShell WMShell Resources (Continued)

Name Type Default Access

Widget Reference (G – P) 425

8
MenuShell Widget

The MenuPane subwidget attached to the MenuShell widget is constrained by
the following resources. These resources can be set and read just like any other
resources for the MenuShell.

XtNmenuAugment

Synopsis: The one responsible for popping up the menu.
Values: TRUE/”true” – The MenuShell widget augments its parent’s

event handling so that the pressing or clicking of MENU
automatically pops up the menu.
FALSE/”false” – The application is responsible for detecting
when the menu should be popped up, and for calling the routine
OlMenuPost(menu_widget) to pop up the menu. See page 420.

1. These subwidget resources are described in the section “ControlArea Widget” on page 249.

Table 8-17 MenuShell Resources

Name Type Default Access

XtNmenuAugment Boolean TRUE GI

XtNmenuPane Widget NULL G

XtNpushpin OlDefine OL_NONE GI

XtNpushpinDefault Boolean FALSE GI

Table 8-18 MenuPane Subwidget Resources1

Name Type Default Access

XtNcenter Boolean TRUE I

XtNhPad Dimension 6 I

XtNhSpace Dimension 6 I

XtNlayoutType OlDefine OL_FIXEDCOLS I

XtNmeasure int 1 I

XtNsameSize OlDefine OL_COLUMNS I

XtNvPad Dimension 3 I

XtNvSpace Dimension 1 I

Class Type Default Access

XtCMenuAugment Boolean TRUE GI

426 OLIT Reference Manual—August 1994

8
MenuShell Widget

XtNmenuPane

Synopsis: The container widget that will be the parent of the menu items.

The value of this resource is available after the MenuShell widget has been
created.

XtNpushpin

Synopsis: Whether the MenuShell widget has a pushpin.
Values: OL_NONE/”none” - No pushpin will be included in the list of

menu items.
OL_OUT/”out” - A pushpin will be included as an item the user
can select; if the user selects the pushpin, the menu will be made
into an OPEN LOOK window. Note that the pushpin item is always
at the top of the menu list.

Unlike other widgets, the value OL_IN is not allowed for the MenuShell widget.

XtNpushpinDefault

Synopsis: Whether the pushpin is the default item.
Values: TRUE/”true” – The pushpin is the default item.

FALSE/”false” – The pushpin is not the default item.

If a menu has a pushpin and none of the menupane items has been designated
as the default, the pushpin automatically becomes the menu’s default item and
the value of the resource will be updated to reflect this.

Class Type Default Access

XtCMenuPane Widget NULL G

Class Type Default Access

XtCPushpin OlDefine OL_NONE GI

Class Type Default Access

XtCPushpinDefault Boolean FALSE SGI

Widget Reference (G – P) 427

8
MenuShell Widget

Activation Types

The following table lists the activation types used by the MenuShell.

The MenuShell widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“ControlArea Widget” on page 249,
“MenuButton Widget” on page 403.

Table 8-19 MenuShell Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVERIGHT RIGHT XtNrightKey

OL_MOVEUP UP XtNupKey

OL_MULTIDOWN JUMP DOWN XtNmultiDownKey

OL_MULTILEFT JUMP LEFT XtNmultiLeftKey

OL_MULTIRIGHT JUMP RIGHT XtNmultiRightKey

OL_MULTIUP JUMP UP XtNmultiUpKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_NEXTWINDOW NEXTWINDOW XtNnextWinKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_PREVWINDOW PREVWINDOW XtNprevWinKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

428 OLIT Reference Manual—August 1994

8
Nonexclusives Widget

Nonexclusives Widget

Class
Class Name: Nonexclusives
Class Pointer: nonexclusivesWidgetClass

Ancestry

Core-Composite-Constraint-Manager-Nonexclusives

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Nonexclusi.h>

Description

The Nonexclusives widget provides layout management and selection control
for a set of rectangular buttons or check boxes. It provides a simple way to
build a several-of-many button selection object.

Figure 8-7 Nonexclusive Buttons Example

Layout and Labels

The Nonexclusives widget lays out the rectangular buttons or check boxes in a
grid in the order they are added as child widgets by the application. The
number of rows or columns in this grid can be controlled by the application.
If the grid has more than one row, the Nonexclusives widget forces the
rectangular buttons or check boxes in each column to be the same size as the
widest in the column.

If the grid is a single row, each button will be only as wide as necessary to
display the label.

Widget Reference (G – P) 429

8
Nonexclusives Widget

The rectangular buttons or check boxes are separated by a distance that is 50%
of the prevailing point size for the containing window.

Use in Menu

The Nonexclusives widget can be added as a single child to a menupane to
implement a several-of-many menu choice. Only RectButton widgets can be
used in a Nonexclusives widget in a menu.

Restrictions on Children

Child widgets of a Nonexclusives widget are required to be all from the same
class--from either rectButtonWidgetClass or checkBoxWidgetClass .

Coloration

Any space not colored by the Nonexclusives children will be colored with the
value of the XtNbackground or XtNbackgroundPixmap resource.

Keyboard Traversal

The Nonexclusives widget manages the traversal between a set of RectButtons.
When the user traverses to a Nonexclusives widget, the first RectButton in the
set will receive input focus. The MOVEUP, MOVEDOWN, MOVERIGHT, and
MOVELEFT keys move the input focus between the RectButtons. To traverse out
of the Nonexclusives widget, the following keys can be used:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application

These controls have two states: “set” and “not set.” Pressing the SELECTKEY on
a nonexclusive control will toggle the current state. If the control is in a menu,
then the MENUKEY will also toggle the current state. If the control is “set,” then
toggling the control will call the XtNunselect callback list. If the control is
“not set,” then toggling the control will call the XtNselect callback list.

430 OLIT Reference Manual—August 1994

8
Nonexclusives Widget

Resources

Table 8-20 Nonexclusives Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-21 Nonexclusives Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 8-22 Nonexclusives Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

Widget Reference (G – P) 431

8
Nonexclusives Widget

XtNlayoutType

Synopsis: The type of layout of the child widgets.
Values: OL_FIXEDROWS/”fixedrows ” - Set a fixed number of rows.

OL_FIXEDCOLS/”fixedcols ” - Set a fixed number of columns.

The choices are to specify the number of rows or the number of columns. Only
one of these dimensions can be specified directly; the other is determined by
the number of child widgets added, and will always be enough to show all the
child widgets.

XtNmeasure

Synopsis: The number of rows or columns in the layout of the child widgets.
Values: 0 < XtNmeasure

If there are not enough child widgets to fill a row or column, the remaining
space is left empty.

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 8-23 Nonexclusives Resources

Name Type Default Access

XtNlayoutType OlDefine OL_FIXEDROWS SGI

XtNmeasure int 1 SGI

XtNrecomputeSize Boolean TRUE SGI

Class Type Default Access

XtCLayoutType OlDefine OL_FIXEDROWS SGI

Class Type Default Access

XtCMeasure int 1 SGI

Table 8-22 Nonexclusives Manager Resources (Continued)

Name Type Default Access

432 OLIT Reference Manual—August 1994

8
Nonexclusives Widget

XtNrecomputeSize

Synopsis: The resize policy of the widget.
Values: TRUE/”true” – The widget resizes itself to accommodate

changes in its children’s sizes due to changes in resources such as
fonts or labels.
FALSE/”false” – The widget does not resize itself.

Activation Types

The following table lists the activation types used by the Nonexclusives.

The Nonexclusives widget has no activation types besides the ones in
“Common Activation Types” on page 68.

See Also

“Exclusives Widget” on page 277,
“FlatNonexclusives Widget” on page 347.

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Table 8-24 Nonexclusives Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT LEFT XtNleftKey

OL_MOVERIGHT RIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_NEXTWINDOW NEXTWINDOW XtNnextWinKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (G – P) 433

8
NoticeShell Widget

NoticeShell Widget

Class
Class Name: NoticeShell
Class Pointer: noticeShellWidgetClass

Ancestry

Core-Composite-Shell-WMShell-VendorShell-TransientShell-NoticeShell

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Notice.h>

Description

The NoticeShell widget creates a popup window to notify the user of some
condition. It is typically used to allow the user to confirm a choice, or to warn
the user of a problem. When a NoticeShell is popped up, all other interaction
with the application is precluded until the NoticeShell is popped down.

Components

The NoticeShell widget has four main components:

• Text Area – Where the message to the user is displayed

• Control Area – A container for one or more widgets that the user uses to
control how to continue with an application

• Default Button – A button to acknowledge notice or to confirm action

• Emanate Widget – Typically the control requiring immediate attention that
was activated by the user. (Emanate is not a named widget class. It is named
this because it is the widget from which the NoticeShell “emanates,” or pops
up.) The application identifies the emanate widget to the NoticeShell
widget.

434 OLIT Reference Manual—August 1994

8
NoticeShell Widget

Figure 8-8 NoticeShell Widget

Subwidgets

The NoticeShell contains two subwidgets, a StaticText and a ControlArea,
created automatically, and accessible through the XtNtextArea and
XtNcontrolArea resources, respectively.

Figure 8-9 MenuShell Subwidgets

Subclass of the Shell Widget

The NoticeShell widget is a subclass of Shell; therefore, the
XtCreatePopupShell() routine is used to create a notice instead of the
normal XtCreateWidget() .

Popping the Notice Up and Down

The application controls when the NoticeShell widget is to be displayed or
popped up, via the XtPopup() routine. However, the application does not
need to control when the NoticeShell widget is popped down. If the control
area subwidget of the NoticeShell contains any OblongButton widgets, the

TextArea

Control Area

Default Button

NoticeShell

StaticText

(XtNtextArea) (XtNcontrolArea)

ControlArea

Widget Reference (G – P) 435

8
NoticeShell Widget

NoticeShell widget will pop down when the user clicks SELECT on one of these
buttons. The application can also pop down the NoticeShell itself using
XtPopDown() .

Busy Button, Busy Application

When the NoticeShell pops up, the application may ignore further input from
the user if the grab_kind argument to XtPopup is set to XtGrabExclusive
(see the description of XtPopup in the X Toolkit Intrinsics Reference Manual).
This prevents the user from interacting with anything other than the notice.
As feedback of this to the user, the NoticeShell causes the headers of all the
base windows and popup windows to be stippled in the busy pattern, and
causes a stipple pattern in the emanate widget. The latter stipple pattern is
caused by setting the XtNbusy resource to TRUE in the emanate widget. If the
emanate widget does not recognize this resource, nothing will happen.

On popping down, the NoticeShell widget clears all stipple patterns and
“unfreezes” the application, assuming the grab_kind argument to XtPopup
had been set to XtGrabExclusive .

Text and ControlAreas

The Text and Control Areas of the NoticeShell are handled by separate widget
interfaces. The widget IDs of these two areas can be obtained from the
NoticeShell widget after it has been created using the XtNtextArea and
XtNcontrolArea resources, respectively.

By default, the Text and ControlAreas abut with no space between them. The
application can control the distance between them by setting margins on the
ControlArea widget.

Keyboard Traversal

The NoticeShell widget limits keyboard traversal of the application to the
buttons within the ControlArea.

The user can traverse between the controls in the ControlArea using the
NEXTFIELD, PREVFIELD, MOVEUP, MOVEDOWN, MOVERIGHT, and MOVELEFT
keys. The NEXTAPP key will traverse to the next application, and the PREVAPP
key will traverse to the previous application, but the NEXTWINDOW and

436 OLIT Reference Manual—August 1994

8
NoticeShell Widget

PREVWINDOW keys are disabled. When keyboard traversal is used to move
back to the NoticeShell’s application, focus goes to the NoticeShell.

Coloration

The following diagram illustrates the resources that affect NoticeShell
coloration.

Figure 8-10 NoticeShell Coloration

Resources

Table 8-25 NoticeShell Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNbackground
(XtNbackgroundPixmap)

Per Individual Widget

XtNfontColor

Widget Reference (G – P) 437

8
NoticeShell Widget

XtNscreen Screen ∗ (parent’s) GI

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-26 NoticeShell Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 8-27 NoticeShell Shell Resources

Name Type Default Access

XtNallowShellResize Boolean TRUE SGI

XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI

XtNgeometry String NULL GI

XtNoverrideRedirect Boolean FALSE SGI

XtNpopdownCallback XtCallbackList NULL SGIO

XtNpopupCallback XtCallbackList NULL SGIO

XtNsaveUnder Boolean TRUE SGI

XtNvisual Visual ∗ (parent’s) GIO

Table 8-28 NoticeShell WMShell Resources

Name Type Default Access

XtNbaseHeight int XtUnspecifiedShellInt SGI

XtNbaseWidth int XtUnspecifiedShellInt SGI

XtNheightInc int XtUnspecifiedShellInt SGI

XtNiconMask Pixmap NULL SGI

Table 8-25 NoticeShell Core Resources (Continued)

Name Type Default Access

438 OLIT Reference Manual—August 1994

8
NoticeShell Widget

XtNiconPixmap Pixmap NULL SGI

XtNiconWindow Window NULL SGI

XtNiconX int XtUnspecifiedShellInt SGI

XtNiconY int XtUnspecifiedShellInt SGI

XtNinitialState InitialState NormalState SGI

XtNinput Bool FALSE G

XtNmaxAspectX int XtUnspecifiedShellInt SGI

XtNmaxAspectY int XtUnspecifiedShellInt SGI

XtNmaxHeight int OL_IGNORE SGI

XtNmaxWidth int OL_IGNORE SGI

XtNminAspectX int XtUnspecifiedShellInt SGI

XtNminAspectY int XtUnspecifiedShellInt SGI

XtNminHeight int OL_IGNORE SGI

XtNminWidth int OL_IGNORE SGI

XtNtitle String NULL SGI

XtNtitleEncoding ATom XA_STRING SGI

XtNtransient Boolean TRUE SGI

XtNwaitForWm Boolean TRUE SGI

XtNwidthInc int XtUnspecifiedShellInt SGI

XtNwindowGroup Window XtUnspecifiedWindow SGI

XtNwinGravity int XtUnspecifiedShellInt SGI

XtNwmTimeout int 5000 (msec) SGI

Table 8-29 NoticeShell VendorShell Resources

Name Type Default Access

XtNbusy Boolean FALSE SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNdefaultImName String NULL SGI

XtNfooterPresent Boolean FALSE SGI

XtNfocusWidget Widget (see description) SGI

XtNimFontSet OlFont XtDefaultFontSet SGI

XtNimStatusStyle XtOlImStatusStyle OL_NO_STATUS GI

XtNleftFooterString OlStr NULL SGI

Table 8-28 NoticeShell WMShell Resources (Continued)

Name Type Default Access

Widget Reference (G – P) 439

8
NoticeShell Widget

XtNleftFooterVisible Boolean TRUE SGI

XtNmenuButton Boolean (see description) GI

XtNmenuType OlDefine (see description) SGI

XtNpushpin OlDefine (see description) SGI

XtNresizeCorners Boolean (see description) SGI

XtNrightFooterString OlStr NULL SGI

XtNrightFooterVisible Boolean TRUE SGI

XtNshellTitle OlStr NULL SGI

XtNuserData XtPointer NULL SGI

XtNwindowHeader Boolean (see description) GI

XtNwmProtocol XtCallbackList NULL SGIO

XtNwmProtocolInterested int OL_WM_DELETE_WINDOW
| OL_WM_TAKE_FOCUS

I

Table 8-30 NoticeShell TransientShell Resources

Name Type Default Access

XtNtransientFor Widget NULL SGI

Table 8-31 NoticeShell Resources

Name Type Default Access

XtNcontrolArea Widget NULL G

XtNemanateWidget Widget (parent’s) SGI

XtNpointerWarping Boolean TRUE SGI

XtNtextArea Widget NULL G

XtNtextFormat OlStrRep OL_SB_STR_REP GI

Table 8-29 NoticeShell VendorShell Resources (Continued)

Name Type Default Access

440 OLIT Reference Manual—August 1994

8
NoticeShell Widget

The following table lists resources passed to the StaticText subwidget
maintained by the NoticeShell; they become resources of the StaticText
subwidget and can be set and read just like any other NoticeShell resources.

The following table lists resources passed to the ControlArea subwidget
maintained by the NoticeShell; they become resources of the ControlArea
subwidget and can be set and read just like any other NoticeShell resources.

XtNcontrolArea

Synopsis: The widget ID of the ControlArea widget.

1. These subwidget resource are defined in the section “StaticText Widget” on page 600.

1. These subwidget resource are defined in the section “ControlArea Widget” on page 249.

Table 8-32 NoticeShell StaticText Subwidget Resources1

Name Type Default Access

XtNalignment OlDefine OL_LEFT I

XtNfont OlFont XtDefaultFont I

XtNfontColor Pixel XtDefaultForeground I

XtNlineSpace int 0 I

XtNstring OlStr NULL I

XtNstrip Boolean TRUE I

XtNwrap Boolean TRUE I

Table 8-33 NoticeShell ControlArea Subwidget Resources1

Name Type Default Access

XtNhPad Dimension 4 I

XtNhSpace Dimension 4 I

XtNlayoutType OlDefine OL_FIXEDROWS I

XtNmeasure int 1 I

XtNsameSize OlDefine OL_COLUMNS I

XtNvPad Dimension 4 I

XtNvSpace Dimension 4 I

Class Type Default Access

XtCControlArea Widget NULL G

Widget Reference (G – P) 441

8
NoticeShell Widget

This value is available once the NoticeShell widget has been created. Any
widgets of the class OblongButton added to the Control Area are assumed to
be window disposition controls; that is, when the user activates one of them,
the NoticeShell widget pops itself down.

XtNemanateWidget

Synopsis: The widget ID of the emanate widget.

On popping up, the NoticeShell widget attempts to set this widget to be busy,
by making its XtNbusy resource TRUE; if the widget doesn’t recognize the
resource, nothing happens.

On popping down, the NoticeShell widget clears the XtNbusy resource. When
the NoticeShell widget pops up, it tries not to cover this widget; this may fail
depending on its location and the size of the NoticeShell widget. The default
for this resource is the parent. The parent, however, cannot be a gadget (an
OblongButtonGadget, for instance). To emanate a NoticeShell from a gadget,
specify another widget as the parent and set XtNemanateWidget to the
gadget.

XtNpointerWarping

Synopsis: Whether the pointer will jump to the default button when the
Notice is displayed.

Values: TRUE/”true” – The pointer jumps to the default button.
FALSE/”false” – The pointer doesn’t jump.

XtNtextArea

Synopsis: The widget ID of the StaticText widget that controls the text area.

This value is available once the NoticeShell widget has been created.

Class Type Default Access

XtCEmanateWidget Widget (parent’s) SGI

Class Type Default Access

XtCPointerWarping Boolean TRUE SGI

Class Type Default Access

XtCTextArea Widget NULL G

442 OLIT Reference Manual—August 1994

8
NoticeShell Widget

XtNtextFormat

Synopsis: The expected data format of all the textual resources of a widget.
Values: OL_SB_STR_REP - Single-byte character representation.

OL_WC_STR_REP - Wide character representation.
OL_MB_STR_REP - Multibyte character representation.

See “XtNtextFormat” on page 29 for details of initialization and the default
value.

Activation Types

The following table lists the activation types used by the NoticeShell.

The NoticeShell widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“ControlArea Widget” on page 249,
“StaticText Widget” on page 600.

Class Type Default Access

XtCTextFormat OlStrRep OL_SB_STR_REP GI

Table 8-34 NoticeShell Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Widget Reference (G – P) 443

8
NumericField Widget

NumericField Widget

Class
Class Name: NumericField
Class Pointer: numericFieldWidgetClass

Ancestry

Core-Primitive-TextLine-NumericField

Required Header Files
#include <Xol/OpenLook>
#include <Xol/AbbrevMenu.h>

Description

The NumericField widget is a one-line input field for alphanumeric text.
It implements the Numeric TextField object defined in the OPEN LOOK GUI
Functional Specification. The widget supports the basic datatypes—integers and
floats—and provides hooks for more complicated user-defined datatypes.
Providing support for any datatype involves:

• Implementing Converters between the datatype and String
• Implementing per-key and per-field validation
• Implementing increment and decrement operations

Once the input focus is moved into the widget, keyboard entry is allowed. If
the input value exceeds the length of the input field, the ScrollButtons appear.
Hidden text can then be scrolled into view by pressing the ScrollButtons.
Pressing the buttons continuously scrolls the text repeatedly with a user-
adjustable delay. The Increment or Decrement buttons can be used to
increment or decrement the input value in an appropriate manner.

Components

The NumericField contains the following graphical elements:

• Right-justified bold label at the left of the input field.

444 OLIT Reference Manual—August 1994

8
NumericField Widget

• Input field
• Input caret (not present in ReadOnly mode)
• 1-point (for Mono) or chiseled underline (not present in ReadOnly mode)
• Optional ScrollButtons
• Increment and Decrement buttons, referred to as DeltaButtons hereafter

Figure 8-11 NumericField Components

Keyboard Traversal

The NumericField allows keyboard entry if it is sensitive and it has the
keyboard focus. However, in ReadOnly mode the widget is not traversable and
it does not receive keyboard focus. Selection is also turned off during
ReadOnly mode.

The NumericField responds to the following keyboard navigation keys:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• CHARFWD moves the caret forward one character
• CHARBAK moves the caret backward one character
• WORDFWD moves the caret forward one word
• WORDBAK moves the caret back one word
• LINESTART moves the caret to the beginning of the display
• LINEEND moves the caret to the end of the display
• MENUKEY posts the menu associated with the NumericField

The NumericField responds to the following edit keys:

• DELCHARFWD deletes the character to the right of the caret
• DELCHARBAK deletes the character to the left of the caret
• DELWORDFWD deletes the word to the right of the caret
• DELWORDBAK deletes the word to the left of the caret
• DELLINEFWD deletes to the end of the line from the caret
• DELLINEBAK deletes from the beginning of the line to the caret
• DELLINE deletes the line containing the caret
• UNDO undoes the last edit

Bold Label Input Field

DeltaButtons

Underline

Widget Reference (G – P) 445

8
NumericField Widget

Keyboard Mnemonic Display

The NumericField does not display any mnemonic. If the NumericField is the
child of a Caption widget, the Caption can be used to display any mnemonic.

Keyboard Accelerator Display

The NumericField does not respond to any keyboard accelerators.

Display of Text

The NumericField displays its contents in the font specified by the XtNfont
resource. If the length of the text exceeds the length of the input field, the
widget sets up the left or right scrollbuttons (or both) to indicate this. The text
is then visually truncated at the boundaries to show only as many characters as
can fit in the input field. The truncation is always at a character boundary. A
scrollbutton is present only if characters are hidden in the direction indicated
by that buttons. The user can scroll to show the hidden parts of the text by
clicking or pressing the scrollbuttons. Clicking SELECT on any scrollbutton will
scroll the text one character in the direction indicated by that button. Pressing
SELECT on any scrollbutton will repeat the scrolling with a user-adjustable
delay between each scroll.

Caret Position

As characters are entered from the keyboard, the caret moves to the right until
it reaches the right end of the input field. As additional characters are typed,
the text jump-scrolls to the left by a specific amount. Note that the
NumericField always keeps the cursor visible. Thus, the presence or absence of
either of the scrollbuttons is controlled by the current cursor position.

Selection Of Text

The user can perform text selection by using the mouse or the keyboard. The
widget also provides a set of convenience functions to manipulate the selection
programmatically; see “TextLine Functions” on page 708.

446 OLIT Reference Manual—August 1994

8
NumericField Widget

DeltaButtons

The DeltaButtons can be used to increment or decrement the value in the
NumericField by a specified amount. The widget provides default logic for the
supported datatypes (int s and float s) as well as hooks for user-defined
datatypes. The DeltaButtons become insensitive when the value equals the
maximum or minimum range.

Coloration

For 3D and 2D, XtNfontColor is used to draw the NumericField’s text and
XtNinputFocusColor is used to draw the active caret.

For 3D, the NumericField’s underline and increment/decrement button
coloration is defined by the OPEN LOOK GUI Functional Specification, Chapter
9, “Color and Three-Dimensional Design.” XtNbackground is used for BG1,
and the BG2 (pressed-in), BG3 (shadow), and Highlight colors are derived by
the toolkit from BG1.

For 2D, XtNbackground and XtNforeground are used to render the
NumericField’s underline and increment/decrement buttons as described by
the OPEN LOOK GUI Functional Specification, Chapter 4, “Controls.”

Known Deficiencies

The TextLine widget, on which the NumericField is built, currently does not
support the implicit commit feature; see “Input Method” on page 80. This could
be a deficiency in Asian locales.

Resources

Table 8-35 NumericField Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

Widget Reference (G – P) 447

8
NumericField Widget

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-36 NumericField Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGI

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 8-35 NumericField Core Resources (Continued)

Name Type Default Access

448 OLIT Reference Manual—August 1994

8
NumericField Widget

1. These resources are defined in the section “TextLine Widget” on page 688.

2. These resources are provided by the TextLine to support captions and are subject to change in a future OLIT
release.

Table 8-37 NumericField TextLine Resources1

Name Type Default Access

XtNblinkRate int 1000 SGI

XtNcaptionAlignment OlDefine OL_CENTER G

XtNcaptionFont2 OlFont OlDefaultBoldFont SI

XtNcaptionLabel2 OlStr NULL SGI

XtNcaptionPosition2 OlDefine OL_LEFT G

XtNcaptionSpace2 Dimension 4 G

XtNcaptionWidth2 Dimension 0 G

XtNcharsVisible int 0 GI

XtNcommitCallback XtCallbackList (special) SGIO

XtNcursorPosition int 0 SGI

XtNeditType OlDefine OL_TEXT_EDIT SGI

XtNimPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

XtNinitialDelay int 500 SGI

XtNinsertTab Boolean FALSE SGI

XtNmaximumChars int 0 GI

XtNmenu Widget NULL GI

XtNmotionCallback XtCallbackList NULL SGIO

XtNpostModifyCallback XtCallbackList NULL SGIO

XtNpreModifyCallback XtCallbackList (special) SGIO

XtNrepeatRate int 100 SGI

XtNstring OlStr NULL SGI

XtNupdateDisplay Boolean TRUE SGI

Table 8-38 NumericField Resources

Name Type Default Access

XtNconvertProc OlNFConvertProc (special) I

XtNdelta XtPointer 1 for ints; 0.1 for floats;
else NULL

SGI

XtNdeltaCallback XtCallbackList NULL SGIO

Widget Reference (G – P) 449

8
NumericField Widget

The NumericField supports the basic datatypes int and float . The widget
also provides a mechanism for applications to implement their own datatypes.
Since the widget can support multiple datatypes, all resources that refer to any
data are uniformly represented as pointers to the actual data, which could be
any of the above widget-supported types or the application’s specific type.
Implementing additional datatypes is discussed in “Implementing New
Datatypes” on page 455.

XtNconvertProc

Synopsis: The widget-defined int/float to String converter.

This resource specifies the logic to convert between String and the user-
defined datatype. This needs to be set only when the application has defined a
custom datatype. See “Implementing New Datatypes” on page 455.

XtNdelta

Synopsis: The Increment or Decrement delta to be applied to the data field,
when either of the DeltaButtons is pressed. The widget applies the
delta internally for int s and float s.

By default, the widget makes internal copies of the data. Setting the
XtNsizeOf resource to zero prevents the widget from doing so. See the section

XtNdeltaState OlDefine OL_ACTIVE SGI

XtNmaxValue XtPointer NULL SGI

XtNminValue XtPointer NULL SGI

XtNsizeOf Cardinal (calculated) GI

XtNtype String XtRInt GI

XtNvalidateCallback XtCallbackList NULL SGIO

XtNvalue XtPointer NULL SGI

Class Type Default Access

XtCConvertProc XtROlNFConvertProc (special) I

Class Type Default Access

XtCDelta XtPointer 1 for ints; 0.1 for floats;
else NULL

SGI

Table 8-38 NumericField Resources (Continued)

Name Type Default Access

450 OLIT Reference Manual—August 1994

8
NumericField Widget

on “Implementing New Datatypes” on page 455 for reasons and techniques of
doing this.

XtNdeltaState

Synopsis: The state of the DeltaButtons.
Values: OL_ACTIVE/”active” - Both buttons are active.

OL_INCR_INACTIVE/”incr_inactive” - The increment
button is inactive, the decrement button is active.
OL_DECR_INACTIVE/”decr_inactive” - The decrement
button is inactive, the increment button is active.
OL_ABSENT/”absent” - DeltaButtons are not present.

XtNdeltaCallback

Synopsis: The callback list invoked when either of the DeltaButtons is
pressed. If the buttons are pressed continuously, the callback will
be invoked multiple times. The callback is not invoked if the
DeltaButtons are not present.

The call_data structure is:

typedef struct {
int reason ;
XEvent ∗event ;
XtPointer delta ;
XtPointer current_value ;
OlDefine current_delta_state ;
XtPointer new_value ;
OlDefine new_delta_state ;
Boolean update ;

} OlNFDeltaCallbackStruct;

The fields signify:

reason OL_REASON_INCREMENT or OL_REASON_DECREMENT

event A pointer to the corresponding XEvent structure

delta The value of the XtNdelta resource

current_value The current value of the XtNvalue resource

Class Type Default Access

XtCDeltaState OlDefine OL_ACTIVE SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (G – P) 451

8
NumericField Widget

current_delta_state The current value of XtNdeltaState

new_value The new value of the XtNvalue resource if the widget’s
default delta logic (if any) is carried out. The application
can override the default behavior by changing the contents
of this field to any new value.

new_delta_state The new value of the XtNdeltaState if the widget’s
default delta logic (if any) is carried out. The application
can override the default behavior by changing this field to
any new value.

update This resource should be set to TRUE to indicate that the
new_value has changed.

If XtNtype is user-defined, then modifying new_value to the new value and
setting update to TRUE will cause the widget to update XtNvalue with the
new value, erase the old_value, and display the new_value. If the value of the
new_delta_state field changes, the widget will update the XtNdeltaState
resource and redisplay the DeltaButtons appropriately.

If XtNtype is XtRFloat /XtRInt , the new_value field is computed by the
widget by incrementing/decrementing XtNvalue by XtNdelta and
validating it against XtNmaxValue /XtNminValue . XtNdeltaState is also
set up appropriately by the widget. The application can override this default
logic by modifying new_value and setting update to TRUE. This would cause
the widget to update XtNvalue with the new value, erase the old_value, and
display the new_value. Note that no increment/decrement or validation will be
done by the widget. If the value of the new_delta_state field is changed, the
widget would update the XtNdeltaState resource and redisplay the
DeltaButtons appropriately. This is also the default behavior (i.e., if no
callbacks are registered).

XtNmaxValue/
XtNminValue

Synopsis: The maximum (minimum) value that can be set for the data field.

For datatypes XtRInt and XtRFloat , the widget does the following if this
resource is not NULL:

Class Type Default Access

XtCMaxValue XtPointer NULL SGI

XtCMinValue XtPointer NULL SGI

452 OLIT Reference Manual—August 1994

8
NumericField Widget

• While incrementing (decrementing) the data field, if the value is greater
than or equal to XtNmaxValue (less than or equal to XtNminValue), the
increment (decrement) button is desensitized.

• When the value is committed by the user, the widget verifies that the value
does not exceed XtNmaxValue (is not less than XtNminValue).

By default, the widget makes internal copies of the data. Setting the
XtNsizeOf resource to zero prevents the widget from doing so. See the section
on “Implementing New Datatypes” on page 455 for reasons and techniques of
doing this.

XtNsizeOf

Synopsis: The size of the datatype that is used by the application.
Values: Size of the datatype or zero.

This value needs to be set only when the application has defined a custom
datatype. The special value of zero can be used to indicate that the widget need
not make copies of any resources. See the section on “Implementing New
Datatypes” on page 455 for reasons and techniques of doing this.

XtNtype

Synopsis: The type of the data.
Values: XtRInt - Integer

XtRFloat - Float

The application can also define a custom datatype, as described in
“Implementing New Datatypes” on page 455.

XtNvalidateCallback

Synopsis: The validation callback.

Class Type Default Access

XtCSizeOf Cardinal (calculated) GI

Class Type Default Access

XtCCType String XtRInt GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (G – P) 453

8
NumericField Widget

The call_data structure is:

typedef struct {
int reason ;
XEvent ∗event ;
XtPointer value ;
OlDefine delta_state ;
Boolean update ;
Boolean valid ;

} OlNFValidateCallbackStruct;

This callback is invoked when the user presses the RETURN, NEXTFIELD, or
PREVFIELD keys. The fields signify:

reason OL_REASON_VALIDATE

event A pointer to the corresponding XEvent structure

value The current value of the XtNvalue resource. The application
can make appropriate changes to this field and set the update
flag to update XtNvalue .

delta_state The current value of XtNdeltaState . This can be set to a new
value to update this resource.

update This resource should be set to TRUE to indicate that the value
has changed.

valid A field that indicates the validity of the contents.

If XtNtype is XtRInt or XtRFloat , then the widget will internally validate
the value against XtNmaxValue and XtNminValue . If the value is invalid, it
sets valid to FALSE. The callback can take appropriate action, like beeping,
popping up a notice, etc. It can also reset the value and delta_state resources to
suitable default values by modifying those fields and setting update to TRUE.
On return from the callback, if valid is FALSE, the widget maintains focus
within the widget. If valid is TRUE, the widget relinquishes focus. If XtNtype is
user-defined, the widget invokes this callback immediately. Depending on the
valid flag, the widget will maintain focus or relinquish focus.

XtNvalue

Synopsis: The pointer to an int , float , or the user-defined datatype.

Class Type Default Access

XtCValue XtPointer NULL SGI

454 OLIT Reference Manual—August 1994

8
NumericField Widget

The contents of the pointer is the data to be displayed. The data is converted
into a string (depending on the datatype) and used as the XtNstring resource
of the superclass, the TextLine widget.

By default, the NumericField widget makes internal copies of the data. Setting
the XtNsizeOf resource to zero prevents the widget from doing so. See the
section on “Implementing New Datatypes” on page 455 for reasons and
techniques of doing this.

Examples for XtVaSetValues() :

int i = 10;

XtVaSetValues(w, XtNvalue, &i, NULL);
...
int ∗ip;

XtVaGetValues(w, XtNvalue, &ip, NULL);

In the second example, ip now points to data in the widget’s space. Therefore,
the application must make copies if it needs to manipulate this data.

Per-Key and Per-Field Validation

The NumericField widget uses the callbacks of its superclass to implement per-
key and per-field validation, as described below.

The NumericField widget itself does per-key validation for the datatypes
XtRInt and XtRFloat . The widget registers XtNpreModifyCallback s on its
superclass (TextLine) for int s and float s. The callback for int verifies that
each keystroke is a valid digit; the callback for float ensures that each
keystroke is either a digit or a decimal separator and that only one decimal
separator occurs in the field. Applications can override this behavior by
removing the widget-registered callback and installing their own callback. For
user-defined datatypes, the application can register a customized per-key
validation callback.

The NumericField widget also does per-field validation for the datatypes
XtRInt and XtRFloat , which verifies that the field-value is within the
minimum and maximum ranges. The widget registers a callback on the
XtNcommitCallback of the TextLine superclass. This callback verifies the
field-value against the minimum and maximum ranges, if they exist. On
success, the widget sets the valid field of the OlNFValidateCallbackStruct
to TRUE and invokes any XtNvalidateCallback callbacks registered. On

Widget Reference (G – P) 455

8
NumericField Widget

failure, the valid flag is set to FALSE and any XtNvalidateCallback callbacks
present are invoked.

Implementing New Datatypes

The NumericField widget currently supports int and float as the base
datatypes; i.e., the widget internally provides all logic and code necessary to
handle these datatypes. The widget also allows applications to define and use
their own datatypes. Examples of such user-defined datatypes would include
Date, Time, Currency, etc. Implementing a new datatype involves the following
steps:

1. Register the new datatype with the widget.

2. Implement Converters between the datatype and String.

3. Optionally implement Per-Key and Per-Field Validation routines.

4. Optionally implement Increment and Decrement operations.

Each step is elaborated below:

1. The application specifies a name for the new datatype. The name should be
a printable ASCII String . This name is registered with the widget by setting
it up as the XtNtype resource. The application should also set the
XtNsizeOf resource to the size in bytes of the new datatype. The widget
internally uses this value while making copies of the contents of XtNvalue ,
XtNdelta , XtNminValue , and XtNmaxValue . XtNsizeOf can be set to the
special value of ‘0’ to indicate that the widget need not make copies of the
above resources. This will result in the widget accessing these values
directly through pointers to the application’s dataspace.

Typically, a programmer would want to do this if the datatype is large in
size and the application stores all the above resource values in global space
or space allocated by malloc (3), so that copying between the application’s
dataspace and the widget’s dataspace is redundant or inefficient. Caution
should be used, however, since modifying any of these values also directly
affects the widget’s state.

2. The NumericField displays the contents of XtNvalue by converting the
contents to a string and setting it up as the XtNstring resource of its
superclass—the TextLine. Similarly, the widget updates XtNvalue by
retrieving the XtNstring resource value of the TextLine and converting it

456 OLIT Reference Manual—August 1994

8
NumericField Widget

back to the specified datatype. The widget does these conversions internally
for the base datatypes. However, for user-defined datatypes, the application
needs to provide this conversion logic. This is done by setting up the
XtNconvertProc function. The prototype of this function is as follows:

Boolean Converter(
Widget w,
OlStrRep format ,
XrmQuark from_type ,
XrmQuark to_type ,
XtPointer ∗value ,
XtPointer ∗string ,
Cardinal ∗string_length);

w The widget.

format The text_format of the widget.

from_type The source datatype; i.e, the datatype to be converted from.
This is a quarkified representation of the datatype name.

to_type The destination datatype; i.e., the datatype to be converted
to. This is a quarkified representation of the datatype name.

value A pointer to the data stored.

string A pointer to the data stored as a string.

string_length The size of the memory where the string is stored.

The Converter should do the following:
• Attempt the type conversion from the source datatype to the destination

datatype.
• Copy the converted data to the appropriate location; i.e., in string if the

destination datatype is String , in value if the destination datatype is the
user’s datatype. Before copying, ensure that the location is a valid
memory pointer and that the storage size is sufficient. If not, allocate
sufficient memory and then copy the data. Update ∗string_length to the
length of the string if the destination datatype is String .

• If the conversion failed, issue a warning and return FALSE; otherwise,
return TRUE. The string datatype is identified as XtRString .

3. Per-Key validation ensures that each key is valid in the current context.
The application can verify this by registering an appropriate
XtNpreModifyCallback on the widget.

Widget Reference (G – P) 457

8
NumericField Widget

Per-Field validation ensures that the contents of the widget are valid, when
the user commits a value (i.e., presses <return> or <Tab>). The application
can achieve this by registering an appropriate XtNvalidateCallback . The
callback should set the valid field of the call_data to indicate the validity of
the data. The callback can also reset the widget contents by updating value
and setting update to TRUE.

4. The widget should update its contents and the state of its DeltaButtons
whenever the buttons are pressed. The widget does this internally for the
base datatypes. For user-defined datatypes, the application can implement
the necessary logic by registering an appropriate XtNdeltaCallback . The
callback should update the new_value and new_delta_state fields in the
call_data and set update to TRUE, if the contents of the widget need to be
changed.

Activation Types

The following table lists the activation types used by the NumericField.

Table 8-39 NumericField Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_CHARBAK LEFT XtNleftKey

OL_CHARFWD RIGHT XtNrightKey

OL_COPY COPY XtNcopyBtn

OL_CUT CUT XtNcutBtn

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_DELCHARBAK DELETE BACKWARD XtNdelCharBakFwd

OL_DELCHARFWD DELETE FORWARD XtNdelCharFwdKey

OL_DELLINE DELETE LINE XtNdelLineKey

OL_DELLINEBAK DELLINEBAK XtNdelLineBakKey

OL_DELLINEFWD DELLINEFWD XtNdelLineFwdKey

OL_DELWORDBAK DELWORDBAK XtNdelWordBakKey

OL_DELWORDFWD DELWORDFWD XtNdelWordFwdKey

OL_HELP HELP XtNhelpKey

OL_LINEEND ROW END XtNlineEndKey

OL_LINESTART ROW START XtNlineStartKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

458 OLIT Reference Manual—August 1994

8
NumericField Widget

Activation types not described in the following table are described in
“Common Activation Types” on page 68.

OL_CHARBAK

The cursor is moved backward by one character. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

OL_CHARFWD

The cursor is moved forward by one character. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

OL_COPY

This activation type copies the current selection from the widget to the
CLIPBOARD.

OL_CUT

This activation type copies the current selection from the widget to the
CLIPBOARD and also deletes the selected text from the widget. The following
callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field in the call_data to FALSE.

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PASTE PASTE XtNpasteBtn

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

OL_UNDO UNDO XtNundoKey

OL_WORDBAK JUMP LEFT XtNwordBakKey

OL_WORDFWD JUMP RIGHT XtNwordFwdKey

Table 8-39 NumericField Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (G – P) 459

8
NumericField Widget

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELCHARBAK

If there exists a selection in the widget, it is deleted. If there is no selection, the
character before the insert point is deleted. The following callbacks are
invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELCHARFWD

If there exists a selection in the widget, it is deleted. If there is no selection, the
character after the insert point is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

460 OLIT Reference Manual—August 1994

8
NumericField Widget

OL_DELLINE

The whole line is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELLINEBAK

If there exists a selection in the widget, it is deleted. If there is no selection, the
segment of the line before the insert point The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELLINEFWD

If there exists a selection in the widget, it is deleted. If there is no selection, the
segment of the line after the insert point is deleted. The following callbacks are
invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

Widget Reference (G – P) 461

8
NumericField Widget

OL_DELWORDBAK

If there exists a selection in the widget, it is deleted. If there is no selection, the
word before the insert point is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELWORDFWD

If there exists a selection in the widget, it is deleted. If there is no selection, the
word after the insert point is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_LINESTART

The cursor is moved to the start of the line. The XtNmotionCallback callback
is invoked before the cursor position is changed. The callback can prevent the
cursor movement by setting the valid field in the call_data to FALSE.

OL_LINEEND

The cursor is moved to the end of the line. The XtNmotionCallback callback
is invoked before the cursor position is changed. The callback can prevent the
cursor movement by setting the valid field in the call_data to FALSE.

462 OLIT Reference Manual—August 1994

8
NumericField Widget

OL_NEXTFIELD

This activation type invokes the XtNcommitCallback . If the callback sets
valid to TRUE and if XtNmouseless is TRUE, the widget transfers focus to the
next traversable widget. If the callback sets valid to TRUE and if
XtNmouseless is FALSE, the widget transfers focus and sets the insert point to
the next TextLine or TextEdit widget. If the callback sets valid to FALSE, the
widget maintains focus and insert point within itself.

OL_PASTE

This activation type inserts the contents of the CLIPBOARD into the widget at
the current insert point. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the insertion occurs. The callback
can prevent the insertion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the insertion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the insertion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_PREVFIELD

This activation type invokes the XtNcommitCallback . If the callback sets
valid to TRUE and if XtNmouseless is TRUE, the widget transfers focus to the
previous traversable widget. If the callback sets valid to TRUE and if
XtNmouseless is FALSE, the widget transfers focus and sets the insert point to
the previous TextLine or TextEdit widget. If the callback sets valid to FALSE, the
widget maintains focus and insert point within itself.

OL_UNDO

This activation type undoes the last modification to the widget’s text buffer.
The following callbacks are invoked:

XtNpreModifyCallback Invoked before any modification occurs. The
callback can prevent the modification by setting
the valid field in the call_data to FALSE.

XtNpostModifyCallback Invoked after any modification occurs.

Widget Reference (G – P) 463

8
NumericField Widget

XtNmotionCallback Invoked before the cursor position is changed
due to the modification. The callback can prevent
the cursor movement by setting the valid field in
the call_data to FALSE.

OL_WORDBAK

The cursor is moved backward by one word. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

OL_WORDFWD

The cursor is moved forward by one word. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

See Also

“TextLine Widget” on page 688.

464 OLIT Reference Manual—August 1994

8
OblongButton Widget

OblongButton Widget

Class
Class Name: OblongButton
Class Pointer: oblongButtonWidgetClass,oblongButtonGadgetClass

Ancestry

Core-Primitive-Button-OblongButton

Required Header Files
#include <Xol/OpenLook>
#include <Xol/OblongButt.h>

Description

The OblongButton is an action widget that the user can “push” by pressing
SELECT on it. When the button is pushed, its border inverts, making it appear
as if the button has actually been pressed. It is typically used to initiate one or
several application-defined actions.

Components

The OblongButton consists of a label surrounded by a rounded, or oblong,
border.

Figure 8-12 OblongButton Components

Busy Indication During Callbacks

Each OblongButton is associated with an application-defined action
implemented as a list of callbacks. To let the user know that an action is still

Label Border

Widget Reference (G – P) 465

8
OblongButton Widget

taking place, the OblongButton stipples the area inside the border before
issuing the callbacks. When the last callback returns, the OblongButton restores
its original appearance. If the application’s action continues to be “busy” after
the callbacks return, the application should set the XtNbusy resource to TRUE
before returning from the callbacks, then reset it to FALSE when the action is no
longer taking place.

The “busy” stipple pattern is designed to show enough dots to gray the button
noticeably, while still leaving a text label legible.

OblongButtons In Popup Menus

Entering an oblong button while MENU is depressed highlights the button’s
interior. Releasing MENU then restores the original appearance and invokes the
action for the button as described above. Leaving the button before releasing
MENU restores the appearance but does not invoke the action.

OblongButtons Not In Popup Menus

Clicking SELECT on an OblongButton starts the action associated with the
button. Pressing SELECT, or moving the pointer into the button while SELECT is
pressed, highlights the button’s interior. Releasing SELECT restores the
appearance and invokes the action for the button as described above. Moving
the pointer off the button before releasing SELECT also restores the appearance,
but does not invoke the action.

If the OblongButton is in a stay-up menu, clicking or pressing MENU works the
same as SELECT. If the OblongButton is not in a stay-up (or popup) menu,
clicking or pressing MENU does not do anything; the event is passed up to an
ancestor widget.

OblongButton Gadgets

Correct button behavior is not guaranteed if gadgets are positioned so that
they overlap.

Gadgets share some Core fields but, since they are not subclasses of Core, do
not have all Core fields. In particular, they do not have a name field or a
translation field, so translations cannot be specified or overridden.

Event Handlers cannot be added to gadgets using XtAddEventHandler() .

466 OLIT Reference Manual—August 1994

8
OblongButton Widget

Coloration

For 3D, OblongButton coloration is defined by the OPEN LOOK GUI Functional
Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BG1. XtNfontColor is used
to draw the label.

For 2D, XtNbackground and XtNfontColor are used to render the
OblongButton as described by the OPEN LOOK GUI Functional Specification,
Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the OblongButton will be drawn with the value of
XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as XtNbackground , then the
OblongButton inverts XtNfontColor and XtNbackground . Once the input
focus leaves the widget, the original coloration is restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE.

The OblongButton widget responds to the following keyboard navigation keys:

• NEXTFIELD, MOVEDOWN, and MOVERIGHT move to the next traversable
widget in the window

• PREVFIELD, MOVEUP, and MOVELEFT move to the previous traversable
widget in the window

• NEXTWINDOW moves to the next window in the application

• PREVWINDOW moves to the previous window in the application

• NEXTAPP moves to the first window in the next application

• PREVAPP moves to the first window in the previous application

The OblongButton will respond to the SELECTKEY by acting as if the SELECT
buttons had been clicked.

Widget Reference (G – P) 467

8
OblongButton Widget

Keyboard Mnemonic Display

The OblongButton widget displays its keyboard mnemonic as part of its label.
If the mnemonic character is in the label, then that character is highlighted
according to the value of the XtNshowMnemonics toolkit resource. If the
mnemonic character is not in the label, it is displayed to the right of the label in
parentheses and highlighted according to the value of the XtNshowMnemonics
resource.

If label truncation is necessary, the mnemonic displayed in parentheses is
truncated as a unit.

Keyboard Accelerator Display

The display of keyboard accelerators is controlled by the toolkit resource
XtNshowAccelerators . When the value of XtNshowAccelerators is
OL_DISPLAY, the OblongButton widget displays the keyboard accelerator as
part of its label. The string in the XtNacceleratorText resource is displayed
to the right of the label (or mnemonic) separated by at least one space. The
acceleratorText is right justified.

If label truncation is necessary, the accelerator is truncated as a unit. The
accelerator is truncated before the mnemonic or the label.

468 OLIT Reference Manual—August 1994

8
OblongButton Widget

Label Appearance

The XtNwidth , XtNheight , XtNrecomputeSize , and XtNlabelJustify
resources interact to produce a truncated, clipped, centered, or left-justified
label as shown in the following table.

Table 8-40 OblongButton Label Appearance

When the label is centered or left-justified, the extra space is filled with the
background color of the OblongButton widget, as determined by the
XtNbackground and XtNbackgroundPixmap resources. When a text label is
truncated, the truncation occurs at a character boundary and a solid triangle is
inserted to show that part of the label is missing. The triangle requires that
more of the label be truncated than would otherwise be necessary. If the width
of the button is too small to show even one character with the triangle, only the
triangle is shown. If the width is so small that the entire triangle cannot be
shown, the triangle is clipped on the right. An image label is simply truncated;
no triangle is shown. See also the XtNlabelTile resource for how it affects
the appearance of a label image.

XtNwidth XtNrecomputeSize XtNlabelJustify Result

any value

needed
for label

>

>

needed
for label

needed
for label

needed
for label

needed
for label

any value

XtNheight XtNrecomputeSize XtNlabelJustify

>

<

<

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

any

any

any

any

any

OL_LEFT

OL_CENTER

Just Fits

Left Justified

Result

Trunc

Centered

Centered

Clipped

Just Fits

Widget Reference (G – P) 469

8
OblongButton Widget

Resources

Table 8-41 OblongButton Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-42 OblongButton Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

470 OLIT Reference Manual—August 1994

8
OblongButton Widget

XtNbusy

Synopsis: The “busy” state of the button.
Values: TRUE/”true” – The button is stippled as “busy.”. The system

will beep if the user attempts to select the button; the attempt is
refused and no callbacks are invoked.
FALSE/”false” – The button is not stippled and works
normally.

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 8-43 OblongButton Resources

Name Type Default Access

XtNbusy Boolean FALSE SGI

XtNdefault Boolean FALSE SGI

XtNlabel OlStr (instance name) SGI

XtNlabelImage XImage ∗ NULL SGI

XtNlabelJustify OlDefine OL_LEFT SGI

XtNlabelTile Boolean FALSE SGI

XtNlabelType OlDefine OL_STRING SGI

XtNrecomputeSize Boolean TRUE SGI

XtNselect XtCallbackList NULL SGIO

Class Type Default Access

XtCBusy Boolean FALSE SGI

Table 8-42 OblongButton Primitive Resources (Continued)

Name Type Default Access

Widget Reference (G – P) 471

8
OblongButton Widget

XtNdefault

Synopsis: Whether the OblongButton is the default choice in its immediate
shell.

Values: TRUE/”true” – If the button is in a menu, an oval ring is drawn
around the button to show that the button is the default choice of
one or more buttons.
FALSE/”false” – The button is not the default choice.

XtNlabel

Synopsis: The text for the Label.
Values: Any OlStr value valid in the current locale.

This resource is ignored if the XtNlabelType resource has the value
OL_IMAGE.

The OblongButton label is colored using the XtNfontColor resource.

XtNlabelImage

Synopsis: The image for the Label.

This resource is ignored unless the XtNlabelType resource has the value
OL_IMAGE. If the image is of type XYBitmap , the image is highlighted when
appropriate by reversing the 0 and 1 values of each pixel (that is, by XORing
the image data). If the image is of type XYPixmap or ZPixmap , the image is not
highlighted, although the space around the image inside the border is.

If the image is smaller than the space available for it inside the border and
XtNlabelTile is FALSE, the image is centered vertically and either centered
or left-justified horizontally, depending on the value of the XtNlabelJustify
resource. If the image is larger than the space available for it, it is clipped so
that it does not display outside the border. If the XtNdefault resource is TRUE
so that the border is doubled, the space available is that inside the inner line of
the border.

Class Type Default Access

XtCDefault Boolean FALSE SGI

Class Type Default Access

XtCLabel OlStr (instance name) SGI

Class Type Default Access

XtCLabelImage XImage ∗ NULL SGI

472 OLIT Reference Manual—August 1994

8
OblongButton Widget

XtNlabelJustify

Synopsis: The justification of the Label within the widget width.
Values: OL_LEFT/”left” – The Label is left-justified.

OL_CENTER/”center” – The Label is centered.

XtNlabelTile

Synopsis: The tiling of the Label’s background.
Values: TRUE/”true” – For an image that is smaller than the subobject’s

background, the label area is tiled with the image to fill the
subobject’s background.
FALSE/”false” – The label is placed as described by the
XtNlabelJustify resource.

This resource augments the XtNlabelImage resource to allow tiling the
subobject’s background. The XtNlabelTile resource is ignored for text labels.

XtNlabelType

Synopsis: The form that the Label takes.
Values: OL_STRING/”string” - The label is text.

OL_IMAGE/”image” - The label is an image.
OL_POPUP/”popup” - The label is text followed by an ellipsis.

XtNrecomputeSize

Synopsis: Whether the OblongButton widget should calculate its size.
Values: TRUE/”true” – The OblongButton widget will do normal size

calculations that may cause its geometry to change, and
automatically set the XtNheight and XtNwidth resources.
FALSE/”false” – The OblongButton widget will leave its size
alone; this may cause truncation of the visible image being shown

Class Type Default Access

XtCLabelJustify OlDefine OL_LEFT SGI

Class Type Default Access

XtCLabelTile Boolean FALSE SGI

Class Type Default Access

XtCLabelType OlDefine OL_STRING SGI

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Widget Reference (G – P) 473

8
OblongButton Widget

by the OblongButton widget if the fixed size is too small, or may
cause padding if the fixed size is too large. The location of the
padding is determined by the XtNlabelJustify resource.

XtNselect

Synopsis: The callback list invoked when the widget is selected.

Activation Types

The following table lists the activation types used by the OblongButton.

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Table 8-44 OblongButton Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn

OL_MENUDEFAULTKEY MENUDEFAULT XtNmenuDefaultKey

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

474 OLIT Reference Manual—August 1994

8
OblongButton Widget

OL_MENU/
OL_MENUKEY

The OblongButton only will respond to the OL_MENU and OL_MENUKEY
activation types if it is a descendant of a Menu widget. When this is the case,
the OL_MENU and OL_MENUKEY will behave as the OL_SELECT and
OL_SELECTKEY, respectively.

OL_MENUDEFAULT/
OL_MENUDEFAULTKEY

The OL_MENUDEFAULT and OL_MENUDEFAULTKEY activation types apply
only to OblongButtons that are descendants of a Menu. These activation types
set the OblongButton XtNdefault resource to TRUE, and change the display
of the widget according to the OPEN LOOK GUI Functional Specification section
“Changing Menu Defaults” in Chapter 15.

OL_SELECT/
OL_SELECTKEY

The activation of the OblongButton widget with the SELECT button or key will
cause the XtNselect callback to be called.

See Also

“Exclusives Widget” on page 277
“FlatExclusives Widget” on page 337
“FlatNonexclusives Widget” on page 347
“MenuButton Widget” on page 403
“Nonexclusives Widget” on page 428
“RectButton Widget” on page 489.

Widget Reference (G – P) 475

8
PopupWindowShell Widget

PopupWindowShell Widget

Class
Class Name: PopupWindowShell
Class Pointer: popupWindowShellWidgetClass

Ancestry

Core-Composite-Shell-WMShell-VendorShell-TransientShell-
PopupWindowShell

Required Header Files
#include <Xol/OpenLook>
#include <Xol/PopupWindo.h>

Description

The PopupWindowShell widget is used to implement the OPEN LOOK property
window, managing its creation, and providing a simple interface for
populating the window with controls. However, the PopupWindowShell has
no innate semantics to relate the controls to a selected object; this must be
handled by the application. For example, the application must dim all the
controls if an object selected by the user is incompatible with a displayed
property window.

The decoration of the PopupWindowShell by the Window Manager is
controlled by the resources listed in the following table.

Table 8-45 PopupWindowShell Default Window Decorations

Resource Type Default

XtNmenuButton Boolean FALSE

XtNpushpin OlDefine OL_OUT

XtNresizeCorners Boolean FALSE

XtNwindowHeader Boolean TRUE

476 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

Components

Figure 8-13 PopupWindowShell Components

The PopupWindowShell has the following parts, as shown in the figure.

• Upper control area
• Lower control area
• Window border
• Popup window menu
• Settings menu (conditional)
• Apply button (conditional)
• Reset button (conditional)
• Reset to Factory button (conditional)
• Set Defaults button (conditional)
• Header
• Window mark
• Pushpin (optional)
• Resize corners (optional)
• Footer (optional)

The window border, popup window menu, header, window mark, and
pushpin provide the user with window management controls over the
PopupWindowShell widget. The Apply, Reset, Reset to Factory, and Set

Pushpin Header Resize Corner
(one of four)

Upper
Control
Area

Lower
Control
Area

Footer

Window
Border

Widget Reference (G – P) 477

8
PopupWindowShell Widget

Defaults Buttons are automatically created by adding an appropriate callback
to help create a standard layout of a property window.

Subwidgets

The PopupWindowShell contains three subwidgets, a FooterPanel and two
ControlArea widgets, provided automatically, and accessible through the
following resources:

• XtNfooterPanel
• XtNlowerControlArea
• XtNupperControlArea

Figure 8-14 PopupWindowShell Subwidgets

Automatic Addition of Buttons, Settings Menu

To aid in the creation of a property window, the PopupWindowShell has
several callbacks typically used in such a popup window, for applying,
resetting, etc. For each of these callbacks that the application sets in the
argument list used for creation of the PopupWindow, the PopupWindowShell
widget automatically creates a button in the lower ControlArea, and the same
button in the Settings Menu. For example, if the application specifies a callback
for XtNapply , the popup displays an Apply button. If none of the callbacks is
defined, no buttons are automatically created and no Settings Menu is created.

If the application is building a command window, it has to create whatever
buttons and menus are needed.

Subclass Shell Widget

The PopupWindowShell widget is a subclass of Shell , so the
XtCreatePopupShell() routine is used to create a popup window instead of
the normal XtCreateWidget() .

PopupWindowShell

FooterPanel
(XtNfooterPanel)

(XtNlowerControlArea)

ControlArea
(XtNupperControlArea)

ControlArea

478 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

Popping the Window Up and Down

The application controls when the PopupWindowShell widget is to be
displayed or popped up with the XtPopup() routine.

The application also has the responsibility for raising a mapped popup
window to the front if the user attempts to pop it up and it is already up. This
can be accomplished using the XRaiseWindow() function.

However, the application cannot control when the PopupWindowShell widget
is to be popped down, since the user may have pinned it up with the intent
that it stays up until he or she dismisses it. The widget itself detects when to
pop down: the user clicks SELECT on an OblongButton widget in the lower
ControlArea, or the user dismisses the popup window using the Popup
Window Menu or pushpin.

Control Areas

The upper and lower ControlAreas are handled by separate widget interfaces.
The application needs to obtain the individual widget IDs for the control areas
(upper_controlarea and lower_controlarea) and footer container (footerarea) from
the PopupWindowShell widget.

The two ControlAreas and the Footer abut so that there is no space between
them. An application can control the distance between the controls in the
Control Areas by setting margins in each area.

If the PopupWindowShell widget automatically creates the Apply, Reset, Reset
to Factory, or Set Defaults Buttons, it puts them in that order in the lower
ControlArea. No space is left for a missing button. These buttons will also
appear before any buttons added to the lower ControlArea by the application.

Widget Reference (G – P) 479

8
PopupWindowShell Widget

Coloration

The following diagram illustrates the resources that affect PopupWindowShell
coloration.

Figure 8-15 PopupWindowShell Coloration

Keyboard Traversal

The PopupWindowShell widget has a number of components that the user can
traverse between. The buttons in the lower ControlArea and in the Settings
menu have the following mnemonics:

These mnemonics will be displayed in the button labels according to the value
of the toolkit resource XtNshowMnemonics (see page 16). The buttons are
created with XtNtraversalOn set to TRUE.

Table 8-46 PopupWindowShell Traversable Components

Resource Button Name Mnemonic

XtNapply Apply A

XtNreset Reset R

XtNresetFactory Reset to Factory F

XtNsetDefaults Set Defaults S

XtNbackground
(XtNbackgroundPixmap)

As per

widget
 individual

480 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

The TOGGLEPUSHPIN key changes the state of the pushpin in the window
header. If the pushpin is in, TOGGLEPUSHPIN will pull the pin out and pop
down the window. If the pushpin is out, TOGGLEPUSHPIN will stick the pin in.

Resources

Table 8-47 PopupWindowShell Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) GI

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 8-48 PopupWindowShell Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Widget Reference (G – P) 481

8
PopupWindowShell Widget

Table 8-49 PopupWindowShell Shell Resources

Name Type Default
Acces
s

XtNallowShellResize Boolean TRUE SGI

XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI

XtNgeometry String NULL GI

XtNoverrideRedirect Boolean FALSE SGI

XtNpopdownCallback XtCallbackList NULL SGIO

XtNpopupCallback XtCallbackList NULL SGIO

XtNsaveUnder Boolean FALSE SGI

XtNvisual Visual ∗ (parent’s) GIO

Table 8-50 PopupWindowShell WMShell Resources

Name Type Default
Acces
s

XtNbaseHeight int XtUnspecifiedShellInt SGI

XtNbaseWidth int XtUnspecifiedShellInt SGI

XtNheightInc int XtUnspecifiedShellInt SGI

XtNiconMask Pixmap NULL SGI

XtNiconPixmap Pixmap NULL SGI

XtNiconWindow Window NULL SGI

XtNiconX int XtUnspecifiedShellInt SGI

XtNiconY int XtUnspecifiedShellInt SGI

XtNinitialState InitialState NormalState SGI

XtNinput Bool FALSE G

XtNmaxAspectX int XtUnspecifiedShellInt SGI

XtNmaxAspectY int XtUnspecifiedShellInt SGI

XtNmaxHeight int OL_IGNORE SGI

XtNmaxWidth int OL_IGNORE SGI

XtNminAspectX int XtUnspecifiedShellInt SGI

XtNminAspectY int XtUnspecifiedShellInt SGI

XtNminHeight int OL_IGNORE SGI

XtNminWidth int OL_IGNORE SGI

482 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

XtNtitle String NULL SGI

XtNtitleEncoding Atom XA_STRING SGI

XtNtransient Boolean TRUE SGI

XtNwaitForWm Boolean TRUE SGI

XtNwidthInc int XtUnspecifiedShellInt SGI

XtNwindowGroup Window XtUnspecifiedWindow SGI

XtNwinGravity int XtUnspecifiedShellInt SGI

XtNwmTimeout int 5000 (msec) SGI

Table 8-51 PopupWindowShell VendorShell Resources

Name Type Default Access

XtNbusy Boolean FALSE SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNdefaultImName String NULL SGI

XtNfooterPresent Boolean FALSE SGI

XtNfocusWidget Widget (see description) SGI

XtNimFontSet OlFont XtDefaultFontSet SGI

XtNimStatusStyle OlImStatusStyle OL_NO_STATUS GI

XtNleftFooterString OlStr NULL SGI

XtNleftFooterVisible Boolean TRUE SGI

XtNmenuButton Boolean (see description) GI

XtNmenuType OlDefine (see description) SGI

XtNpushpin OlDefine (see description) SGI

XtNresizeCorners Boolean (see description) SGI

XtNrightFooterString OlStr NULL SGI

XtNrightFooterVisible Boolean TRUE SGI

XtNshellTitle OlStr NULL SGI

XtNuserData XtPointer NULL SGI

XtNwindowHeader Boolean (see description) GI

XtNwmProtocol XtCallbackList NULL SGIO

XtNwmProtocolInterested int OL_WM_DELETE_WINDOW
| OL_WM_TAKE_FOCUS

I

Table 8-50 PopupWindowShell WMShell Resources (Continued)

Name Type Default
Acces
s

Widget Reference (G – P) 483

8
PopupWindowShell Widget

Table 8-52 PopupWindowShell TransientShell Resources

Name Type Default Access

XtNtransientFor Widget NULL SGI

Table 8-53 PopupWindowShell Resources

Name Type Default Access

XtNapply XtCallbackList NULL I

XtNapplyLabel String “Apply” GI

XtNapplyMnemonic unsigned char ‘A’ GI

XtNfooterPanel Widget (none) G

XtNlowerControlArea Widget (none) G

XtNmenuTitle String “Settings” GI

XtNpointerWarping Boolean TRUE SGI

XtNreset XtCallbackList NULL I

XtNresetFactory XtCallbackList NULL I

XtNresetFactoryLabel String “Reset To Factory” GI

XtNresetFactoryMnemonic unsigned char ‘F’ GI

XtNresetLabel String “Reset” GI

XtNresetMnemonic unsigned char ‘R’ GI

XtNsetDefaults XtCallbackList NULL I

XtNsetDefaultsLabel String “Set Defaults” GI

XtNsetDefaultsMnemonic unsigned char ‘S’ GI

XtNupperControlArea Widget (none) G

XtNverify XtCallbackList NULL I

484 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

The following table lists resources passed to the ControlArea subwidget
maintained by the PopupWindowShell; they become resources of the
ControlArea subwidget and can be set and read just like any other
PopupWindowShell resources.

XtNapply/
XtNreset/
XtNresetFactory/
XtNsetDefaults

Synopsis: The callback lists invoked for buttons in the lower ControlArea and
in the Settings Menu—the Apply, Reset, Reset to Factory, and Set
Defaults buttons, respectively.

Typically, an application defines one of these resources only when it is using
the PopupWindowShell widget for a property window. For each resource with
a defined callback, a unique button is added in the lower ControlArea;
conversely, where a resource has no callback defined by the application, no
button is shown. The callbacks must be set at initialization time in order for the
buttons to be created. The labels for these buttons are listed below, in the order
they appear in the lower ControlArea.

1. These subwidget resource are defined in the section “ControlArea Widget” on page 249.

Table 8-54 PopupWindowShell ControlArea Subwidget Resources1

Name Type Default Access

XtNalignCaptions Boolean TRUE for upper Control Area;
FALSE for lower

I

XtNcenter Boolean FALSE I

XtNhPad Dimension 0 I

XtNhSpace Dimension 0 I

XtNlayoutType OlDefine OL_FIXEDCOLS for upper
Control Area;
OL_FIXEDROWS for lower

I

XtNmeasure int 1 I

XtNsameSize OlDefine OL_COLUMNS I

XtNvPad Dimension 0 I

XtNvSpace Dimension 0 I

Class Type Default Access

XtCCallback XtCallbackList NULL I

Widget Reference (G – P) 485

8
PopupWindowShell Widget

No space is left for a missing button. In general, the callback list for one of these
resources is issued when the user activates the button associated with the
resource. After the callbacks are issued, the PopupWindowShell widget will
attempt to pop itself down, first checking with the application that this may be
done by issuing the XtNverify callbacks, then checking the state of the pushpin.

XtNapplyLabel/
XtNresetLabel/
XtNresetFactoryLabel/
XtNsetDefaultsLabel

Synopsis: The labels for the Apply, Reset, Reset to Factory, and Set Defaults
buttons, respectively.

XtNapplyMnemonic/
XtNresetMnemonic/
XtNresetFactoryMnemonic/
XtNsetDefaultsMnemonic

Synopsis: The mnemonics for the Apply, Reset, Reset to Factory, and Set
Defaults buttons, respectively.

Values: Any ASCII character.

XtNfooterPanel

Synopsis: The widget ID of the FooterPanel composite child widget that
handles the footer.

Class Type Default Access

XtCApplyLabel String “Apply” GI

XtCResetLabel String “Reset” GI

XtCResetFactoryLabel String “Reset to Factory” GI

XtCSetDefaultsLabel String “Set Defaults” GI

Class Type Default Access

XtCApplyMnemonic unsigned char ‘A’ GI

XtCResetMnemonic unsigned char ‘R’ GI

XtCResetFactoryMnemonic unsigned char ‘F’ GI

XtCSetDefaultsMnemonic unsigned char ‘S’ GI

Class Type Default Access

XtCFooterPanel Widget (none) G

486 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

The value of this resource is available once the PopupWindowShell widget has
been created. If the application wants a footer, it can add one to the composite
identified by this resource.

XtNlowerControlArea/
XtNupperControlArea

Synopsis: The widget IDs of the ControlArea composite child widgets that
handle the lower and upper ControlAreas, respectively.

The application can use each widget ID to populate the PopupWindowShell
with controls. These widget IDs are available once the PopupWindowShell
widget has been created. Any widgets of the class OblongButton added to the
lower ControlArea are assumed to be window disposition controls; that is,
when the user activates one of them the PopupWindowShell widget should
pop itself down, if allowed by the application and the state of the pushpin.

XtNmenuTitle

Synopsis: The title for the conditional Settings Menu.

XtNpointerWarping

Synopsis: Whether the pointer will jump to the focus widget when the
PopupWindowShell is popped up.

Values: TRUE/”true” – The pointer jumps to the focus widget (see
“XtNfocusWidget” on page 44) when the widget is popped up.
FALSE/”false” – The pointer doesn’t jump.

XtNverify

Synopsis: The callback list invoked when popping down.

Class Type Default Access

XtCLowerControlArea Widget (none) G

XtCUpperControlArea Widget (none) G

Class Type Default Access

XtCMenuTitle String “Settings” GI

Class Type Default Access

XtCPointerWarping Boolean TRUE SGI

Class Type Default Access

XtCCallback XtCallbackList NULL I

Widget Reference (G – P) 487

8
PopupWindowShell Widget

The call_data parameter to the callback is a pointer to a variable of type
Boolean . It is initially set to TRUE, and the application should set a value that
reflects whether the pop-down is allowed. Typically, the application will use
this to prevent a pop-down so that an error message can be displayed. Since
more than one callback routine may be registered for this resource, each
callback routine can first check the value pointed to by the call_data parameter
to see if a previous callback in the list has already rejected the pop-down
attempt. If one has, the subsequent callback need not continue evaluating
whether a pop-down is allowed. If the value is still TRUE after the last callback
returns, the pop-down continues. Since these callbacks are issued before the
PopupWindowShell checks the state of the pushpin, the application should not
assume that the pop-down will occur even though it has allowed it.

Activation Types

The following table lists the activation types used by the PopupWindowShell.

The PopupWindowShell widget has no activation types besides the ones in
“Common Activation Types” on page 68.

See Also

“ControlArea Widget” on page 249,
“FooterPanel Widget” on page 381.

Table 8-55 PopupWindowShell Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

488 OLIT Reference Manual—August 1994

8
PopupWindowShell Widget

489

Widget Reference (R – S) 9

RectButton Widget

Class
Class Name: RectButton
Class Pointer: rectButtonWidgetClass

Ancestry

Core-Primitive-Button-RectButton

Required Header Files
#include <Xol/OpenLook>
#include <Xol/RectButton.h>

Description

The RectButton is a toggle button that can be either set or unset and is designed
to be a choice item in a one-of-many or several-of-many choice object. When
the user presses SELECT on the button, its state will toggle. The state of the
button can also be set programmatically.

490 OLIT Reference Manual—August 1994

9
RectButton Widget

Components

The figure below shows several OPEN LOOK compliant buttons, in normal,
default, and current states (two versions).

Figure 9-1 RectButton Rectangular Buttons

The RectButton widget consists of a Label surrounded by a rectangular border.
The border can change to reflect that the button may be a default of several
buttons (double border), or represents a current state of an object (thick
border), or represents a current state of one of several objects with different
states (dimmed border).

The RectButton widget is not intended to be used alone, but rather as a child of
either an Exclusives composite widget (to implement one-of-many choice
selection—see “Exclusives Widget” on page 277) or a Nonexclusives composite
widget (to implement several-of-many choice selection—see “Nonexclusives
Widget” on page 428). If the RectButton is created as a child of a different
composite widget, proper behavior is not guaranteed.

The following descriptions of using the RectButton widget in a menu assume
that the RectButton widget is a child of an Exclusives or Nonexclusives widget,
which is a descendant of a MenuShell widget.

Popup Menu RectButtons

Entering a RectButton while MENU is depressed changes the appearance of the
button from unset to set state or vice versa, to reflect the state the button would
be in if MENU were released. Releasing MENU toggles the state associated with
the button. Leaving the button before releasing MENU restores the original
state appearance and does not toggle the button.

Widget Reference (R – S) 491

9
RectButton Widget

Non-Popup Menu RectButtons

Clicking SELECT on a RectButton toggles the state associated with it. Pressing
SELECT, or moving the pointer into the button while SELECT is pressed,
changes the border from unset to set state or vice versa, to reflect the state the
button would be in if SELECT were released. Releasing SELECT toggles the
state. Moving the pointer off the button before releasing SELECT restores the
state appearance and does not toggle the button.

If the button is in a stay-up menu, clicking or pressing MENU works the same
as SELECT. If the button is not in a stay-up (or popup) menu, clicking or
pressing MENU does not do anything; the event is passed up to an ancestor
widget.

Coloration

For 3D, RectButton coloration is defined by the OPEN LOOK GUI Functional
Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BG1. XtNfontColor is used
to draw the label.

For 2D, XtNbackground and XtNfontColor are used to render the
RectButton as described by the OPEN LOOK GUI Functional Specification,
Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the RectButton will be drawn with the value of
XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as XtNbackground , then the RectButton
inverts XtNfontColor and XtNbackground . Once the input focus leaves the
widget, the original coloration is restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE.

The RectButton widget responds to the following keyboard navigation keys:

• NEXTFIELD moves to the next traversable widget in the window

• PREVFIELD moves to the previous traversable widget in the window

492 OLIT Reference Manual—August 1994

9
RectButton Widget

• MOVEUP moves to the RectButton above the current widget in the
Nonexclusives or Exclusives composite

• MOVEDOWN moves to the RectButton below the current widget in the
Nonexclusives or Exclusives composite

• LEFT moves to the RectButton to the left of the current widget in the
Nonexclusives or Exclusives composite

• MOVERIGHT moves to the RectButton to the right of the current widget in
the Nonexclusives or Exclusives composite

• NEXTWINDOW moves to the next window in the application

• PREVWINDOW moves to the previous window in the application

• NEXTAPP moves to the first window in the next application

• PREVAPP moves to the first window in the previous application

The RectButton will respond to the SELECTKEY by acting as if the SELECT
buttons had been clicked.

Keyboard Mnemonic Display

The RectButton widget displays its mnemonic accelerator as part of its label. If
the mnemonic character is in the label, then that character is highlighted
according to the value of the XtNshowMnemonics toolkit resource. If the
mnemonic character is not in the label, it is displayed to the right of the label in
parenthesis and highlighted according to the value of the XtNshowMnemonics
resource.

If label truncation is necessary, the mnemonic displayed in parenthesis is
truncated as a unit.

Keyboard Accelerator Display

The display of keyboard accelerators is controlled by the toolkit resource
XtNshowAccelerators . When the value of XtNshowAccelerators is
OL_DISPLAY, the RectButton widget displays the keyboard accelerator as part
of its label. The string in the XtNacceleratorText resource is displayed to
the right of the label (or mnemonic) separated by at least one space. The
acceleratorText is right justified.

If label truncation is necessary, the accelerator is truncated as a unit. The
accelerator is truncated before the mnemonic or the label.

Widget Reference (R – S) 493

9
RectButton Widget

Resources

Table 9-1 RectButton Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-2 RectButton Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

494 OLIT Reference Manual—August 1994

9
RectButton Widget

XtNdefault

Synopsis: Whether the RectButton is the default choice in its immediate shell.
Values: TRUE/”true” – This button is the default control and it will

indicate as such by displaying a border doubled to two lines.
FALSE/”false” – The button is not the default choice.

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 9-3 RectButton Resources

Name Type Default Access

XtNdefault Boolean FALSE SGI

XtNdim Boolean FALSE SGI

XtNlabel OlStr (instance name) SGI

XtNlabelImage XImage ∗ NULL SGI

XtNlabelJustify OlDefine OL_LEFT SGI

XtNlabelTile Boolean FALSE SGI

XtNlabelType OlDefine OL_STRING SGI

XtNrecomputeSize Boolean TRUE SGI

XtNselect XtCallbackList NULL SGIO

XtNset Boolean FALSE SGI

XtNunselect XtCallbackList NULL SGIO

Class Type Default Access

XtCDefault Boolean FALSE SGI

Table 9-2 RectButton Primitive Resources (Continued)

Name Type Default Access

Widget Reference (R – S) 495

9
RectButton Widget

XtNdim

Synopsis: Whether the border of the RectButton visually reflects the state of
associated objects.

Values: TRUE/”true” – The border is dimmed to show that the
RectButton represents the state of one or more of several objects
that, as a group, are in different states.
FALSE/”false” – The border is not dimmed.

XtNlabel

Synopsis: The text for the Label.
Values: Any OlStr value valid in the current locale.

This resource is ignored if the XtNlabelType resource has the value
OL_IMAGE.

The RectButton label is colored using the XtNfontColor resource.

XtNlabelImage

Synopsis: The image for the Label.

This resource is ignored unless the XtNlabelType resource has the value
OL_IMAGE. If the image is of type XYBitmap , the image is highlighted when
appropriate by reversing the 0 and 1 values of each pixel (that is, by XORing
the image data). If the image is of type XYPixmap or ZPixmap , the image is not
highlighted, although the space around the image inside the border is
highlighted.

If the image is smaller than the space available for it inside the border and
XtNlabelTile is FALSE, the image is centered vertically and either centered
or left-justified horizontally, depending on the value of the XtNlabelJustify
resource. If the image is larger than the space available for it, it is clipped so
that it does not display outside the border. If the XtNdefault resource is TRUE

Class Type Default Access

XtCDim Boolean FALSE SGI

Class Type Default Access

XtCLabel OlStr (instance name) SGI

Class Type Default Access

XtCLabelImage XImage ∗ NULL SGI

496 OLIT Reference Manual—August 1994

9
RectButton Widget

so that the border is doubled, the space available is that inside the inner line of
the border.

XtNlabelJustify

Synopsis: The justification of the Label within the widget width.
Values: OL_LEFT/”left” – The Label is left-justified.

OL_RIGHT/”right” – The Label is right-justified.
OL_CENTER/”center” – The Label is centered.

XtNlabelTile

Synopsis: The tiling of the Label’s background.
Values: TRUE/”true” – For an image that is smaller than the subobject’s

background, the label area is tiled with the image to fill the
subobject’s background.
FALSE/”false” – The label is placed as described by the
XtNlabelJustify resource.

This resource augments the XtNlabelImage resource to allow tiling the
subobject’s background. The XtNlabelTile resource is ignored for text labels.

XtNlabelType

Synopsis: The form that the Label takes.
Values: OL_STRING/”string” - The label is text.

OL_IMAGE/”image” - The label is an image.

XtNrecomputeSize

Synopsis: The resize policy of the widget.

Class Type Default Access

XtCLabelJustify OlDefine OL_LEFT SGI

Class Type Default Access

XtCLabelTile Boolean FALSE SGI

Class Type Default Access

XtCLabelType OlDefine OL_STRING SGI

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Widget Reference (R – S) 497

9
RectButton Widget

Values: TRUE/”true” – The RectButton widget will do normal size
calculations that may cause its geometry to change, and
automatically set the XtNheight and XtNwidth resources.
FALSE/”false” – The RectButton widget will leave its size
alone; this may cause truncation of the visible image being shown
by the RectButton widget if the fixed size is too small, or may
cause padding if the fixed size is too large. The location of the
padding is determined by the XtNlabelJustify resource.

XtNselect

Synopsis: The callback list invoked when the widget is selected.

XtNset

Synopsis: The current state of the button.
Values: TRUE/”true” – The button is set (if the toolkit resource

XtNthreeD is TRUE, the button will appear pressed-in; otherwise,
the border is thickened to indicate the set state).
FALSE/”false” – The button is unset.

Simply setting XtNset to TRUE with a call to XtSetValues() does not issue
the XtNselect callbacks.

XtNunselect

Synopsis: The callback list invoked when the widget is toggled into “unset”
mode.

When the RectButton is toggled into “unset” mode by the user to make
XtNset become FALSE, the callbacks specified in this resource are activated.

Simply setting XtNset to FALSE with a call to XtSetValues() does not issue
the XtNunselect callbacks.

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCSet Boolean FALSE SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

498 OLIT Reference Manual—August 1994

9
RectButton Widget

Border Resource Interactions

The XtNdim , XtNdefault , and XtNset resources can be set independently;
however, all these states cannot be reflected in the visual appearance of the
RectButton, as shown in the following table.

Table 9-4 RectButton Borders

Label Resource Interactions

The XtNwidth , XtNheight , XtNrecomputeSize , and XtNlabelJustify
resources interact to produce a truncated, clipped, centered, or left-justified
label as shown in the following table.

When the label is centered or left-justified, the extra space is filled with the
background color of the RectButton widget, as determined by the
XtNbackground and XtNbackgroundPixmap resources. When the label is
truncated, a solid-black triangle is inserted to show that part of the label is
missing. The triangle requires that more of the label be truncated than would
otherwise be necessary. If the width of the button is too small to show even one
character with the triangle, only the triangle is shown. If the width is so small
that the entire triangle cannot be shown, the triangle is clipped on the right.
See the XtNlabelTile resource for how it affects the appearance of a label.

XtNset XtNdefault XtNdim Border appearance

TRUE/FALSE

TRUE/FALSE

TRUE

FALSE

FALSE

FALSE

Dimmed

Thickened

Normal

Open

Open

Normal

TRUE

TRUE

TRUE

TRUE

FALSE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

TRUE

Widget Reference (R – S) 499

9
RectButton Widget

Table 9-5 RectButton Label Appearance

Activation Types

The following table lists the activation types used by the RectButton.

Table 9-6 RectButton Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn

OL_MENUDEFAULTKEY MENUDEFAULT XtNmenuDefaultKey

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN DOWN XtNdownKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT LEFT XtNleftKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

XtNwidth XtNrecomputeSize XtNlabelJustify Result

any value

needed
for label

>

>

needed
for label

needed
for label

needed
for label

needed
for label

any value

XtNheight XtNrecomputerSize XtNlabelJustify

>

<

<

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

any

any

any

any

any

OL_LEFT

OL_CENTER

Just Fits

Left Justified

Just Fits

Result

Trunc

Right Justified

Centered

Clipped

500 OLIT Reference Manual—August 1994

9
RectButton Widget

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_MENU/
OL_MENUKEY

The RectButton only will respond to the OL_MENU and OL_MENUKEY
activation types if it is a descendant of a Menu widget. When this is the case,
the OL_MENU and OL_MENUKEY will behave as the OL_SELECT and
OL_SELECTKEY, respectively.

OL_MENUDEFAULT/
OL_MENUDEFAULTKEY

The OL_MENUDEFAULT and OL_MENUDEFAULTKEY activation types only
apply to RectButtons that are descendants of a Menu. These activation types
set the RectButton XtNdefault resource to TRUE, and change the display of
the widget according to the OPEN LOOK GUI Functional Specification section
“Changing Menu Defaults” in Chapter 15.

OL_MOVERIGHT RIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_MOVEUP UP XtNupKey

OL_MULTIDOWN JUMP DOWN XtNmultiDownKey

OL_MULTILEFT JUMP LEFT XtNmultiLeftKey

OL_MULTIRIGHT JUMP RIGHT XtNmultiRightKey

OL_MULTIUP JUMP UP XtNmultiUpKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_NEXTWINDOW NEXTWINDOW XtNnextWinKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_PREVWINDOW PREVWINDOW XtNprevWinKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Table 9-6 RectButton Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (R – S) 501

9
RectButton Widget

OL_SELECT/
OL_SELECTKEY

The activation of the RectButton widget with the SELECT button or key will
depend on the parent of the RectButton: either Exclusives or Nonexclusives.

The activation of an Exclusive RectButton is described in the OPEN LOOK GUI
Functional Specification section “Exclusive Settings” in Chapter 4 and in “Using
Menus” in Chapter 15. When the user selects a RectButton in an exclusive
setting, the XtNset resource will be set to TRUE and the XtNselect callback
will be called. In addition, the RectButton in the exclusive that was previously
set will have the XtNset resource changed to FALSE and the XtNunselect
callback will be called.

The activation of a Nonexclusive RectButton is described in the OPEN LOOK
GUI Functional Specification section “Nonexclusive Settings” in Chapter 4 and in
“Using Menus” in Chapter 15. When the user selects a RectButton in a
nonexclusive setting, the state of the XtNset resource is reversed. When the
XtNset resource goes to FALSE, the XtNunselect callback is called; when the
XtNset resource goes to TRUE, the XtNselect callback will be called.

See Also

“Exclusives Widget” on page 277,
“FlatExclusives Widget” on page 337,
“FlatNonexclusives Widget” on page 347,
“MenuButton Widget” on page 403,
“Nonexclusives Widget” on page 428,
“OblongButton Widget” on page 464.

502 OLIT Reference Manual—August 1994

9
RubberTile Widget

RubberTile Widget

Class
Class Name: RubberTile
Class Pointer: rubberTileWidgetClass

Ancestry

Core-Composite-Constraint-Manager-RubberTile

Required Header Files
#include <Xol/OpenLook>
#include <Xol/RubberTile.h>

Description

The RubberTile is a constraint widget that allows an application to lay out its
children either vertically or horizontally, and then assign relative weights to
each child so that it absorbs a certain percentage of size changes. If the
RubberTile is set with a vertical orientation, then the children will be laid out
vertically in column, each spanning the width of the RubberTile. If the
RubberTile is laid out horizontally, then the children will be laid out
horizontally in a row, each ones height spanning the height of the RubberTile.
The RubberTile resizes its children according to a weight assigned to each
child. If there are three children with weights of 1, 2, and 3, they resize to get
1/6th, 1/3rd, and 1/2 of the available space respectively.

This widget is very useful when laying out panes in a window. For example, if
an application requires three panes laid out vertically, and the top pane is not
to absorb any height changes, but the two lower panes are to each absorb half
of the height changes, then the application can do the following: create a
RubberTile with XtNorientation set to OL_VERTICAL, then create each child,
assigning each the appropriate XtNweight constraint resource value:

top pane -> XtNweight = 0
middle pane -> XtNweight = 1
bottom pane -> XtNweight = 1

Widget Reference (R – S) 503

9
RubberTile Widget

top pane’s size change percentage = 0 / (0 + 1 + 1) = 0%
middle pane’s size change percentage = 1 / (0 + 1 + 1) = 50%
bottom pane’s size change percentage = 1 / (0 + 1 + 1) = 50%

RubberTiles do not enforce any weighting on their children when the widget is
created, only when it is resized. During creation, for a horizontal layout, the
initial width of the RubberTile widget will be the sum of the width of the
children and the initial height will be that of the tallest child. For a vertical
layout, the initial height of the RubberTile widget will be the sum of the
individual heights and the initial width will be that of the widest child.

An individual RubberTile only supports a single dimensional array, vertical or
horizontal. However, an application can produce a two dimensional effect with
a matrix of RubberTile widgets. For example, to create the effect of a 2 × 4
matrix, two top level RubberTiles could manage four RubberTiles each.

Coloration

The diagram illustrates the resources that affect RubberTile coloration.

Figure 9-2 RubberTile Coloration

XtNborderColor

XtNbackground
(if XtNspace > 0)

Child Widgets
Colored

Independently

504 OLIT Reference Manual—August 1994

9
RubberTile Widget

Resources

Table 9-7 RubberTile Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-8 RubberTile Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 9-9 RubberTile Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

Widget Reference (R – S) 505

9
RubberTile Widget

Each child widget attached to the RubberTile composite widget is constrained
by the resources in the following table. These resources become resources for
each child widget and can be set and read just like any other resources defined
for the child.

XtNorientation

Synopsis: The orientation of the widget.
Values: OL_VERTICAL/”vertical” - Arrange the child widgets as a

single vertical column.
OL_HORIZONTAL/”horizontal” - Arrange the child widgets as
a single horizontal row.

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 9-10 RubberTile Resources

Name Type Default Access

XtNorientation OlDefine OL_VERTICAL SGI

Table 9-11 RubberTile Constraint Resources

Name Type Default Access

XtNrefName String NULL SGI

XtNrefWidget XtPointer NULL SGI

XtNspace Dimension 0 SGI

XtNweight Dimension 1 SGI

Class Type Default Access

XtCOrientation OlDefine OL_VERTICAL SGI

Table 9-9 RubberTile Manager Resources (Continued)

Name Type Default Access

506 OLIT Reference Manual—August 1994

9
RubberTile Widget

XtNrefName

Synopsis: The reference widget by name.
Values: The name of the child of the RubberTile.

When a child is positioned by the RubberTile widget, it is placed geometrically
after (below or right of) the widget referenced by XtNrefName or
XtNrefWidget .

The reference named by this resource will be resolved no sooner than when the
children are managed by the RubberTile widget, so that a client can use
forward referencing of children.

XtNrefWidget

Synopsis: The reference widget by widget ID.
Values: The ID of an existing child of the RubberTile.

If both XtNrefName and XtNrefWidget are given, they must agree.

XtNspace

Synopsis: The amount of space between the child and its reference widget
(the widget identified by XtNrefName or XtNrefWidget).

Values: 0 ≤ XtNspace

Note – The XtNspace constraint resource conflicts with the Caption widget
resource of the same name. Thus, setting this resource for a Caption widget
that is a child of a RubberTile will affect both of the widgets.

Class Type Default Access

XtCRefName String NULL SGI

Class Type Default Access

XtCRefWidget XtPointer NULL SGI

Class Type Default Access

XtCSpace Dimension 0 SGI

Widget Reference (R – S) 507

9
RubberTile Widget

XtNweight

Synopsis: The weight that dictates how much of a resize is applied to the
child.

Values: 0 ≤ XtNweight

Activation Types

The following table lists the activation types used by the RubberTile.

The RubberTile widget has no activation types besides the ones in “Common
Activation Types” on page 68.

See Also

“Form Widget” on page 385.

Class Type Default Access

XtCWeight Dimension 1 SGI

Table 9-12 RubberTile Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

508 OLIT Reference Manual—August 1994

9
Scrollbar Widget

Scrollbar Widget

Class
Class Name: Scrollbar
Class Pointer: scrollbarWidgetClass

Ancestry

Core-Primitive-Scrollbar

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Scrollbar.h>

Description

The Scrollbar widget is similar to the slider widget, but provides additional
features. It is typically used with a pane when the pane’s contents exceed its
size. The user can adjust the pane’s view of the contents by manipulating the
Scrollbar.

Components

Each full scrollbar has the following parts:

• Cable, indicating the extent of scrolling

• Anchors, top (left) and bottom (right), located at both ends of the cable.
They are used to move the view to the corresponding extreme of the item or
list of items being viewed.

• Elevator, which slides along the length of the cable, containing
• Arrows, up (left) and down (right), used to move the view in the direction

of the arrow by one unit.
• Drag area, for moving the view by tracking the position of the mouse

pointer relative to the scrollbar.

Widget Reference (R – S) 509

9
Scrollbar Widget

• Proportion indicator, which moves along with the elevator to indicate the
size of the view and its position relative to the entire item or list of items
being viewed.

• Page indicator (optional), located next to the drag area, which indicates the
page number of the content being viewed. The page indicator will be
displayed only when the SELECT button is pressed in the drag area.

• Scrollbar menu.

Because a scrollbar can be seen and used horizontally as well as vertically, the
top anchor and bottom anchor have the aliases left anchor and right anchor,
respectively.

Each scrollbar is associated with a content, as defined by the application. The
content is composed of units (e.g. lines of text) that are visible in a viewing
area. For a scrollbar to be useful, the content typically has more units than can
fit in the viewing area. Hence, “scrolling” the content brings units into view as
other units move out of view. The amount of the Content that is visible at one
time is called a pane in the descriptions below.

Figure 9-3 Scrollbar Horizontal Orientation

Figure 9-4

Subwidgets

The Scrollbar contains one subwidget: a MenuShell created automatically, and
accessible through the XtNmenuPane resource.

Figure 9-5 Scrollbar Subwidgets

Drag Area

Proportion Indicator
Cable

Right AnchorLeft Anchor Left Arrow Right Arrow

Elevator

ScrollBar

MenuShell
(XtNmenuPane)

510 OLIT Reference Manual—August 1994

9
Scrollbar Widget

Figure 9-6 Scrollbar Vertical Orientation

Abbreviated Scrollbar

The Scrollbar widget responds to a parent’s request to resize smaller by
shortening the cable (and proportion indicator), but leaving the other elements
full-sized. The Scrollbar widget will eliminate the cable entirely, if necessary, to
meet a resize request. These abbreviated scrollbars are shown in the following
figure. If necessary, the Scrollbar widget will eliminate the anchors (in addition
to the cable and drag area) to meet a resize request to form a minimum
Scrollbar.

Figure 9-7 Abbreviated Scrollbars

Top Anchor

Cable

Proportion Indicator

Up Arrow

Down Arrow

Bottom Anchor

Drag Area

Elevator

Cable

Proportion Indicator

Widget Reference (R – S) 511

9
Scrollbar Widget

Elevator Motion

As visual feedback to the user, the elevator moves up and down (or left and
right) along the line of the cable as the content scrolls or changes panes.

The range of motion of the elevator is not necessarily the full distance between
the anchors. The application decides how far the elevator can be moved by
evaluating each attempt to move it.

The user manipulates the scrollbar by pressing or clicking SELECT. The action
performed depends on the position of the pointer and whether the application
is willing to scroll the content.

Scrolling One Unit

Clicking SELECT on one of the arrows moves the elevator in the direction of the
arrow, moves the pointer to stay on the arrow, and changes the content to
move one unit out of view and another unit into view, such that the view
scrolls in the opposite direction of the elevator motion.

If the application cannot scroll at this time, the elevator and pointer do not
move and the view does not change.

Pressing SELECT on an arrow repeats the action described above. When SELECT
is clicked or pressed, the arrow highlights while the scrolling action takes
place. The highlighting stays until SELECT is released.

When the elevator has reached the end of the cable, the arrow in that direction
is made inactive.

Scrolling Several Units

Dragging SELECT on the drag area moves the elevator along the cable to track
the component of the pointer motion parallel to the cable. The content scrolls
in the opposite direction, bringing one or more units into view as other units
move out of view.

If granularity is enforced and the elevator is moved to a position that
represents a non-integral number of units, the closest integral number of units
is considered instead. If granularity is not enforced, the elevator is moved by
the non-integral number of units. The XtNsliderMoved callback allows the
application to enforce granularity.

512 OLIT Reference Manual—August 1994

9
Scrollbar Widget

When the application reaches the limit that it can scroll, the view no longer
changes and the elevator stops moving. While dragging SELECT, the drag area
highlights. The pointer is constrained to stay within the Drag Area as the
elevator moves.

Scrolling Limits

Clicking SELECT on one of the anchors causes the view of the Content to
change to the corresponding pane, and moves the elevator to the limit in the
direction of the anchor. If the elevator is already at the limit, nothing happens.

Clicking SELECT on an anchor highlights the anchor while the scrolling action
takes place.

Scrolling a Pane

Clicking SELECT on the cable above/left-of or below/right-of the elevator
causes the view of the Content to change to the previous or next pane,
respectively. The pointer is moved along the direction of the elevator travel to
keep it off the elevator.

If only a partial pane remains before the limit of the Content is reached, the
effect is as if the user clicked SELECT on the corresponding anchor. If the
application cannot move to another pane, the view does not change, the
elevator and pointer do not move.

Pressing SELECT on the Cable repeats the action described above.

Elevator at Limits

The application calibrates the scrollbar so that the position of the elevator on
the scrollbar is in units useful to the application. In general, these units will not
be pixels or points.

If the scrollbar is close enough to an anchor, the separation in application units
may be zero pixels, because of the discrete nature of pixels. Here, the elevator
is kept away from the anchor so that two points of the cable length are visible.
The elevator is placed at the limit of motion only when the user explicitly
moves the elevator to an anchor by clicking SELECT on the anchor, or drags the
elevator until it reaches the limit.

Widget Reference (R – S) 513

9
Scrollbar Widget

Indicating View Proportion

The proportion indicator gives a gross measure of what part of the content is in
view. Its size relative to the length of the cable is the same as the size of the
pane relative to the size of the content. However, the scrollbar widget does not
maintain this relation but relies on the application to provide the length of the
proportion indicator.

The proportion indicator moves with the elevator such that both reach the
limits together. When the content is scrolled to the beginning, the proportion
indicator and the elevator align at the left or top end of the scrollbar. When the
content is scrolled to the end, the proportion indicator and the elevator align at
the right or bottom end of the scrollbar. For intermediate positions, the elevator
is positioned proportionally between the ends of the proportion indicator.
Thus, as the content is scrolled at a constant rate (e.g., by dragging SELECT),
the elevator creeps from one end of the Proportion Indicator to the other at a
constant rate.

Scrollbar Menu

The scrollbar menu (not shown in the figures) pops up when the user presses
MENU anywhere over the Scrollbar widget. The menu has three default choices
depending on the Scrollbar orientation.

Here to top/left Scrolls the content so that the unit next to the pointer is
placed at the top or left of the viewing area.

Top/left to here Scrolls the content so that the unit at the top or left of
the viewing area is placed next to the pointer.

Previous Scrolls the content to restore the previous view. The
Scrollbar widget remembers only the last two scroll
positions, so repeated access of this choice alternates
the content between two views.

An application can add choices to this menu, using the same technique for
populating other menus (see “MenuShell Widget” on page 414). The ID of the
Menu widget is available as a resource of the Scrollbar.

514 OLIT Reference Manual—August 1994

9
Scrollbar Widget

Coloration

For 3D and 2D, the area surrounding the Scrollbar is drawn with the parent’s
XtNbackground . XtNforeground is used to draw the optional page number
indicator value.

For 3D, the Scrollbar coloration is defined by the OPEN LOOK GUI Functional
Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BG1.

For 2D, XtNbackground and XtNforeground are used to render the Scrollbar
as described by the OPEN LOOK GUI Functional Specification, Chapter 7,
“Scrolling.”

Keyboard Traversal

The Scrollbar’s default value of the XtNtraversalOn resource is FALSE. If the
application sets it to TRUE, undefined results occur.

Scrollbar Menu

The default choices in the Scrollbar Menu are created with XtNtraversalOn
set to TRUE and XtNmnemonic set to the first character of their label.

When the Scrollbar menu is posted via keyboard traversal, the “Here to top”
and “Top to here” buttons are not sensitive. These buttons depend on the
position of the pointer when the menu is posted, and so they are not applicable
when the menu is posted from the keyboard.

Keyboard Mnemonic Display

The Scrollbar does not display the mnemonic accelerator. If the Scrollbar is the
child of a Caption widget, the Caption widget can be used to display the
mnemonic for the Scrollbar.

Keyboard Accelerator Display

The Scrollbar does not display or respond to a keyboard accelerator because
clicking the SELECT button on a Scrollbar activates depending on the pointer
position.

Widget Reference (R – S) 515

9
Scrollbar Widget

Resources

Table 9-13 Scrollbar Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-14 Scrollbar Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

516 OLIT Reference Manual—August 1994

9
Scrollbar Widget

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean FALSE SGI

XtNuserData XtPointer NULL SGI

Table 9-15 Scrollbar Resources

Name Type Default Access

XtNcurrentPage int 1 SGI

XtNdragCBType OlDefine OL_CONTINUOUS SGI

XtNgranularity int 1 SGI

XtNhereToLeftLabel OlStr “Here To Left” GI

XtNhereToLeftMnemonic unsigned char ‘\0’ GI

XtNhereToTopLabel OlStr “Here To Top” GI

XtNhereToTopMnemonic unsigned char ‘\0’ GI

XtNinitialDelay int 500 SGI

XtNleftToHereLabel OlStr “Left To Here” GI

XtNleftToHereMnemonic unsigned char ‘\0’ GI

XtNmenuPane Widget NULL G

XtNmenuTitle OlStr “Scrollbar” GI

XtNorientation OlDefine OL_VERTICAL GI

XtNpointerWarping Boolean TRUE SGI

XtNpreviousLabel OlStr “Previous” GI

XtNpreviousMnemonic unsigned char ‘\0’ GI

XtNproportionLength int (XtNsliderMax -
XtNsliderMin)

SGI

XtNrepeatRate int 100 SGI

XtNshowPage OlDefine OL_NONE SGI

XtNsliderMax int 100 SGI

XtNsliderMin int 0 SGI

XtNsliderMoved XtCallbackList NULL SGIO

XtNsliderValue int 0 SGI

XtNstopPosition OlDefine OL_ALL SGI

Table 9-14 Scrollbar Primitive Resources (Continued)

Name Type Default Access

Widget Reference (R – S) 517

9
Scrollbar Widget

The following table lists resources passed to the Menu subwidget maintained
by the Scrollbar. They become resources of the Menu subwidget and can be set
and read just like any other resources for the Scrollbar.

XtNcurrentPage

Synopsis: The page number displayed when the XtNshowPage resource is
set to OL_RIGHT or OL_LEFT.

Values: 1 ≤ XtNcurrentPage

If XtNshowPage is set via XtSetValues() , or if XtNshowPage is already set
and later XtNsliderValue is changed via SetValues() , it is the
responsibility of the application to update XtNcurrentPage appropriately.

1. These subwidget resources are described in the sections “ControlArea Widget” on page 249 and “MenuShell
Widget” on page 414.

XtNtopToHereLabel OlStr “Top To Here” GI

XtNtopToHereMnemonic unsigned char ‘\0’ GI

XtNuseSetValCallback Boolean FALSE SGI

Table 9-16 Scrollbar Subwidget Resources1

Name Type Default Access

XtNcenter Boolean TRUE I

XtNhPad Dimension 4 I

XtNhSpace Dimension 4 I

XtNlayoutType OlDefine OL_FIXEDROWS I

XtNmeasure int 1 I

XtNpushpin OlDefine OL_NONE I

XtNpushpinDefault Boolean FALSE I

XtNsameSize OlDefine OL_COLUMNS I

XtNvPad Dimension 4 I

XtNvSpace Dimension 4 I

Class Type Default Access

XtCCurrentPage int 1 SGI

Table 9-15 Scrollbar Resources (Continued)

Name Type Default Access

518 OLIT Reference Manual—August 1994

9
Scrollbar Widget

XtNdragCBType

Synopsis: The frequency of issuing XtNsliderMoved callbacks during a
drag operation.

Values: OL_CONTINUOUS/”continuous” - Issue callbacks continuously.
OL_GRANULARITY/”granularity” - Issue callbacks only when
the drag box crosses any granularity positions.
OL_RELEASE/”release” - Issue callbacks only once when the
SELECT button is released.

XtNgranularity

Synopsis: The distance the elevator attempts to move when clicking or
pressing SELECT on an arrow.

Values: 1 ≤ XtNgranularity ≤ XtNsliderMax − XtNsliderMin

Normally, the drag operation does not honor granularity unless enforcement is
set in the XtNsliderMoved callback procedure.

XtNhereToLeftLabel/
XtNhereToTopLabel/
XtNleftToHereLabel/
XtNpreviousLabel/
XtNtopToHereLabel

Synopsis: The labels for the various menu buttons.
Values: Any OlStr values valid in the current locale.

Class Type Default Access

XtCDragCBType OlDefine OL_CONTINUOUS SGI

Class Type Default Access

XtCGranularity int 1 SGI

Class Type Default Access

XtCHereToLeftLabel OlStr “Here to Left” GI

XtCHereToTopLabel OlStr “Here to Top” GI

XtCLeftToHereLabel OlStr “Left to Here” GI

XtCPreviousLabel OlStr “Previous” GI

XtCTopToHereLabel OlStr “Top to Here” GI

Widget Reference (R – S) 519

9
Scrollbar Widget

XtNhereToLeftMnemonic/
XtNhereToTopMnemonic/
XtNleftToHereMnemonic/
XtNpreviousMnemonic/
XtNtopToHereMnemonic

Synopsis: The mnemonics for the various menu buttons.
Values: Any ASCII character.

XtNinitialDelay

Synopsis: The time, in milliseconds, before the first action occurs when
SELECT is pressed on the cables or arrows.

Values: 0 < XtNinitialDelay

XtNmenuPane

Synopsis: The widget where the scrollbar menu items are attached.
Values: The ID of the menu widget associated with the scrollbar.

This value is available once the Scrollbar has been created.

The default scrollbar menu contains the following items:

• Here To Top (Here To Left)
• Top To Here (Left To Here)
• Previous

The application must not remove these items from the menu.

Class Type Default Access

XtCHereToLeftMnemonic unsigned char ‘\0’ GI

XtCHereToTopMnemonic unsigned char ‘\0’ GI

XtCLeftToHereLabel unsigned char ‘\0’ GI

XtCPreviousLabel unsigned char ‘\0’ GI

XtCTopToHereLabel unsigned char ‘\0’ GI

Class Type Default Access

XtCInitialDelay int 500 GI

Class Type Default Access

XtCMenuPane Widget NULL G

520 OLIT Reference Manual—August 1994

9
Scrollbar Widget

The scrollbar menu can be enhanced by adding new menu items to this widget.
Items can be added just as they are added to the menupane for a MenuShell or
MenuButton widget.

XtNmenuTitle

Synopsis: The title of the Scrollbar menu.
Values: Any OlStr value valid in the current locale.

XtNorientation

Synopsis: The direction of the visual presentation of the widget.
Values: OL_HORIZONTAL/”horizontal” - Define a horizontal scrollbar.

OL_VERTICAL/”vertical” - Define a vertical scrollbar.

This resource cannot be changed via XtSetValues() .

XtNpointerWarping

Synopsis: Whether the pointer will move along with the elevator when
SELECT is pressed on one of the arrows.

Values: TRUE/”true” - The pointer moves with the elevator.
FALSE/”false” - The pointer doesn’t move with the elevator.

XtNproportionLength

Synopsis: The size of the proportion indicator.
Values: 1 ≤ XtNproportionLength ≤ (XtNsliderMax -

XtNsliderMin)

The application uses the XtNsliderMax and XtNsliderMin resources to
calibrate the scrollbar, making its overall length correspond to the overall
length of the content, and uses the XtNproportionLength resource to
indicate how much of the content is visible. While this resource gives the

Class Type Default Access

XtCMenuTitle OlStr “Scrollbar” GI

Class Type Default Access

XtCOrientation OlDefine OL_VERTICAL GI

Class Type Default Access

XtCPointerWarping Boolean TRUE SGI

Class Type Default Access

XtCProportionLength int (XtNsliderMax - XtNsliderMin) SGI

Widget Reference (R – S) 521

9
Scrollbar Widget

overall length of the proportion indicator, the elevator always covers part of it.
If the elevator would completely hide the proportion indicator, 3-point sections
of it are shown above and below (or left of and right of) the elevator. If the
elevator is too close to an anchor to show all of a 3-point section, as much as
possible of the section is shown on that side (this may be a zero-length section).

XtNrepeatRate

Synopsis: The time in milliseconds between repeated actions when SELECT is
pressed on the cables or arrows.

Values: 0 ≤ XtNrepeatRate

XtNshowPage

Synopsis: The position of the page indicator.
Values: OL_LEFT/”left” - The page indicator is to the left of the

drag box.
OL_RIGHT/”right” - The page indicator is to the right of the
drag box.
OL_NONE/”none” - The page indicator is not displayed.

The page indicator is displayed only if XtNorientation is OL_VERTICAL. The
page indicator is popped up when the scrollbar is dragged by its drag area.
While dragging, the page indicator is updated constantly. If XtNshowPage
changes from OL_NONE to any other value, a popup window for the page
indicator is created. If the value changes to OL_NONE, the popup window is
destroyed.

XtNsliderMax/
XtNsliderMin

Synopsis: The calibration of the scrollbar.
Values: XtNsliderMin < XtNsliderMax

Class Type Default Access

XtCRepeatRate int 100 SGI

Class Type Default Access

XtCShowPage OlDefine OL_NONE SGI

Class Type Default Access

XtCSliderMax int 100 SGI

XtCSliderMin int 0 SGI

522 OLIT Reference Manual—August 1994

9
Scrollbar Widget

An application should set the values of these resources to correspond to the
range of the content, and should set the value of the XtNproportionLength
resource to the length of the view into the content. This calibrates the scrollbar.

The Scrollbar uses the calibration to convert the pixel location of the elevator
into a value in the range represented by the length of the Content.

The explanation for this range relation follows: First, an application calibrates
the scrollbar as described above, so that XtNsliderMin and XtNsliderMax
span the length of the Content and XtNproportionLength gives the length
of the view of the Content. That is,

XtNsliderMin = start of Content
XtNsliderMax = length of Content
XtNproportionLength = length of Pane

Consider that the Elevator tracks a fixed position in the view; the position is
arbitrary, but remains the same as the view is scrolled over the Content. This
can be the first line in the view.

When the view is at the top of the content, the elevator is at the top of the
scrollbar and the calibrated position of the first line is XtNsliderMin .
However, when the view is at the bottom of the content, the elevator is at the
bottom of the scrollbar and the calibrated position of the first line is
XtNsliderMax - XtNproportionLength .

XtNsliderMoved

Synopsis: The callback lists used when the scrollbar is manipulated.

The Scrollbar widget passes the final location of the Elevator, as an integer
between XtNsliderMin and XtNsliderMax inclusive, in a structure pointed
to by the call_data parameter:

typedef struct _OlScrollbarVerify {
int new_location ;
int new_page ;
Boolean ok ;
int slidermin ;
int slidermax ;

Class Type Default Access

XtCSliderMoved XtCallbackList NULL SGIO

Widget Reference (R – S) 523

9
Scrollbar Widget

int delta ;
Boolean more_cb_pending ;

} OlScrollbarVerify;

new_location When the XtNsliderMoved callbacks are made, the
new_location member gives the position of the attempted
scroll. This will be the new value of the XtNsliderValue
resource if the scroll attempt is successful; however, the
XtNsliderValue resource is not updated until after the
callbacks return.

new_page Used to set the page number. To see the page number, the
application must set XtNshowPage to OL_LEFT or OL_RIGHT.

ok Initially set to TRUE; the application sets the value to indicate
whether the scroll attempt is allowed. Since more than one
callback routine may be registered for these resources, each
callback routine can first check the ok member to see if a
previous callback routine in the list has already rejected the
scroll attempt. The Scrollbar will complete the scroll attempt
only if, after the last callback has returned, the ok member is
still TRUE.
If ok is FALSE after the last callback returns, the Scrollbar
restores the Elevator to the position it was in before the user
attempted to move it. This is required only when the Elevator
has been dragged. The Scrollbar does not move the Elevator
for other scrollbar manipulations until the scroll attempt has
been verified.

slidermin The same value as in the XtNsliderMin resource.
slidermax The same value as in the XtNsliderMax resource.
delta The distance between the new scroll position and the old, as

a signed value.
more_cb_pending Specifies if there are more callbacks pending.

A callback can change the new_location value to reflect a partial scroll. For
example, if the scrolling granularity causes a scroll attempt past the end of an
application’s partially full buffer, the application should adjust new_location to
a value representing the end of the buffer. The adjusted value must lie between
the values present before the attempted scroll and the new values given in the
OlScrollbarVerify structure.

The XtNsliderMoved callbacks are issued when the elevator position has
been conditionally changed by the user

524 OLIT Reference Manual—August 1994

9
Scrollbar Widget

• clicking or pressing SELECT on the up/left or down/right arrow buttons;
• moving the Elevator to a new position by dragging SELECT on the drag area;
• clicking SELECT on the top/left or bottom/right anchors;
• clicking or pressing SELECT on the Cable.

XtNsliderValue

Synopsis: The current position of the elevator.
Values: XtNsliderMin ≤ XtNsliderValue ≤ XtNsliderMax -

XtNproportionLength

The Scrollbar widget keeps this resource up to date; however, an application
can also get the current value through the XtNsliderMoved callbacks.

XtNstopPosition

Synopsis: The disposition of the drag box at the end of a drag operation.
Values: OL_ALL/”all” - Upon the release of the SELECT button in a

drag operation, the drag box will be positioned at where it stops.
OL_GRANULARITY/”granularity” - The drag box will snap to
the nearest granularity position.

XtNuseSetValCallback

Synopsis: The callback action with programmatic control of slider value.
Values: TRUE/”true” - The callbacks specified in XtNsliderMoved are

called when the slider value changes, even if it changes under
program control instead of as the result of mouse action.
FALSE/”false” - The callbacks specified in XtNsliderMoved
are not called when the slider value is changed programmatically.

The callbacks listed in XtNsliderMoved are called as the result of mouse
action by the user changing the slider value. This resource allows those
callbacks to be called when the slider value changes under program control as
well as by mouse action.

Class Type Default Access

XtCSliderValue int 0 SGI

Class Type Default Access

XtCStopPosition OlDefine OL_ALL SGI

Class Type Default Access

XtCUseSetValCallback Boolean FALSE SGI

Widget Reference (R – S) 525

9
Scrollbar Widget

Activation Types

The following table lists the activation types used by the Scrollbar.

Activation types not described in the following table are described in
“Common Activation Types” on page 68.”

Table 9-17 Scrollbar Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_HSBMENU ALT+CTRL R XtNhorizSBMenuKey

OL_MENU MENU XtNmenuBtn

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PAGEDOWN ALT+PANE DOWN XtNpageDownKey

OL_PAGELEFT ALT+PANE LEFT XtNpageLeftKey

OL_PAGERIGHT ALT+PANE RIGHT XtNpageRightKey

OL_PAGEUP ALT+PANE UP XtNpageUpKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SCROLLBOTTOM DATA END XtNscrollBottomKey

OL_SCROLLDOWN ALT+DOWN XtNscrollDownKey

OL_SCROLLLEFT ALT+LEFT XtNscrollLeftKey

OL_SCROLLLEFTEDGE ALT+{ XtNscrollLeftEdge

OL_SCROLLRIGHT ALT+RIGHT XtNscrollRightKey

OL_SCROLLRIGHTEDGE ALT+} XtNscrollRightEdge

OL_SCROLLTOP DATA START XtNscrollTopKey

OL_SCROLLUP ALT+UP XtNscrollUpKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

OL_VSBMENU CTRL R XtNvertSBMenuKey

526 OLIT Reference Manual—August 1994

9
Scrollbar Widget

OL_MENU

This activation type pops up the Scrollbar menu as described in the OPEN
LOOK GUI Functional Specification section “Scrollbar Menu” in Chapter 10.
Activation of the Scrollbar menu items calls the XtNsliderMoved callback
with the appropriate OlScrollbarVerify structure.

OL_MENUKEY/
OL_VSBMENU/
OL_HSBMENU

These activation types will pop up the Scrollbar menu. When the Scrollbar
menu is posted via keyboard traversal, the “Here to top” and “Top to here”
buttons will not be sensitive. These buttons will depend on the position of the
pointer when the menu is posted, and so they will not be applicable when the
menu is posted from the keyboard. The OL_VSBMENU activation type applies
only to Scrollbars with an XtNorientation of OL_VERTICAL; and the
OL_HSBMENU activation type applies only to Scrollbars with an
XtNorientation of OL_HORIZONTAL.

OL_PAGEDOWN

For a scrollbar with XtNorientation of OL_VERTICAL, this activation type
will decrement the slider value by XtNproportionLength and call the
XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_PAGELEFT

For a scrollbar with XtNorientation of OL_HORIZONTAL, this activation
type will decrement the slider value by the value of XtNproportionLength
and call the XtNsliderMoved callback with the appropriate
OlScrollbarVerify structure.

OL_PAGERIGHT

For a scrollbar with XtNorientation of OL_HORIZONTAL, this activation
type will increment the slider value by the value of XtNproportionLength
and call the XtNsliderMoved callback with the appropriate
OlScrollbarVerify structure.

Widget Reference (R – S) 527

9
Scrollbar Widget

OL_PAGEUP

For a scrollbar with XtNorientation of OL_VERTICAL, this activation type
will increment the slider value by XtNproportionLength and call the
XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_SCROLLBOTTOM

For a scrollbar with XtNorientation of OL_VERTICAL, this activation type
will move the slider to the value of XtNsliderMin and call the
XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_SCROLLDOWN/
OL_SCROLLLEFT

These activation types will move the slider one negative unit of granularity
and call the XtNsliderMoved callback with the appropriate
OlScrollbarVerify structure.

OL_SCROLLLEFTEDGE

For a scrollbar with XtNorientation of OL_HORIZONTAL, this activation
type will move the slider to the value of XtNsliderMin and call the
XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_SCROLLRIGHTEDGE

For a scrollbar with XtNorientation of OL_HORIZONTAL, this activation
type will move the slider to the value of XtNsliderMax minus the value of
XtNproportionLength and call the XtNsliderMoved callback with the
appropriate OlScrollbarVerify structure.

OL_SCROLLTOP

For a scrollbar with XtNorientation of OL_VERTICAL, this activation type
will move the slider to the value of XtNsliderMax minus the value of
XtNproportionLength and call the XtNsliderMoved callback with the
appropriate OlScrollbarVerify structure.

528 OLIT Reference Manual—August 1994

9
Scrollbar Widget

OL_SCROLLUP/
OL_SCROLLRIGHT

These activation types will move the slider one positive unit of granularity and
call the XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_SELECT

This activation type depends on the position of the pointer within the Scrollbar
widget. When the pointer is positioned on the elevator, the XtNsliderMoved
callback will be called according to the value of the XtNdragCBType . When
the pointer is positioned on the right anchor, the behavior will be the same as
the OL_SCROLLRIGHTEDGE activation type. When the pointer is positioned on
the top anchor, the behavior will be the same as the OL_SCROLLTOP activation
type. When the pointer is positioned on the left anchor, the behavior will be the
same as the OL_SCROLLLEFTEDGE activation type. When the pointer is
positioned on the bottom anchor, the behavior will be the same as the
OL_SCROLLBOTTOM activation type. When the pointer is positioned on the up
arrow, the behavior will be the same as the OL_SCROLLUP activation type.
When the pointer is positioned on the right arrow, the behavior will be the
same as the OL_SCROLLRIGHT activation type. When the pointer is positioned
on the left arrow, the behavior will be the same as the OL_SCROLLLEFT
activation type. When the pointer is positioned on the down arrow, the
behavior will be the same as the OL_SCROLLDOWN activation type. When the
pointer is positioned on the cable above or to the right of the elevator, the
behavior will be the same as the OL_PAGEUP and OL_PAGERIGHT activation
types, respectively. When the pointer is positioned on the cable below or to the
left of the elevator, the behavior will be the same as the OL_PAGEDOWN and
OL_PAGELEFT activation types, respectively.

See Also

“MenuShell Widget” on page 414.

Widget Reference (R – S) 529

9
ScrolledWindow Widget

ScrolledWindow Widget

Class
Class Name: ScrolledWindow
Class Pointer: scrolledWindowWidgetClass

Ancestry

Core-Composite-Constraint-Manager-ScrolledWindow

Required Header Files
#include <Xol/OpenLook>
#include <Xol/ScrolledWi.h>

Description

The ScrolledWindow has no native text or graphic capabilities, but provides
the basis for implementing the OPEN LOOK scrollable text or graphics pane.

Components

The ScrolledWindow widget has the following components:

• Vertical scrollbar (typically)
• Horizontal scrollbar (typically)
• Content (not necessarily all visible)
• View of the content (visible part of content)
• View border

530 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

Figure 9-8 ScrolledWindow Components

Subwidgets

The ScrolledWindow contains five subwidgets: a BulletinBoard to hold the
child contents; two Scrollbars, horizontal and vertical, along with their
associated menus, created automatically, and accessible through the following
resources:

• XtNhScrollbar
• XtNvScrollbar
• XtNhMenupane
• XtNvMenupane

View Border

View of the
Content

Content

Horizontal Scrollbar
V

er
tic

al
 S

cr
ol

lb
ar

Widget Reference (R – S) 531

9
ScrolledWindow Widget

Figure 9-9 ScrolledWindow Subwidgets

View Border

The view border is a narrow outline around the view of the content: in 2D, it is
a 1-pixel outline; in 3D, it is a 2-point beveled outline.

Content and View of Content

The ScrolledWindow widget implements a scrollable visible window (the view
of the content) onto another, typically larger, data display (the content). The view
can be moved through the content using the scroll bars.

To use the scrolled window, the application creates a widget capable of
displaying the entire content as a child of the ScrolledWindow widget. The
ScrolledWindow widget positions the child widget “within” the view of the
content, and creates scroll bars for the horizontal and vertical dimensions, as
needed. When the user performs some action on the scroll bars, the child
widget will be repositioned accordingly within the view of the content. A
larger child widget positioned within a smaller view by the ScrolledWindow
widget, is forced to display only the viewed part of itself. This is all handled
through normal widget geometry management.

The word “within” is used strictly in the widget sense: the larger child widget
is positioned within the smaller view of the content part of the ScrolledWindow
widget, which necessarily forces the child widget to display only the visible part
of itself. The protocol for this is through normal widget geometry interactions.

Upper Left Corner Fixed on Resize

If the ScrolledWindow widget is resized, the upper left corner of the view stays
fixed over the same spot in the content, unless this would cause the view to
extend past the right or bottom edge of the content. If necessary, the upper left
corner will shift left or up only enough to keep the view from extending past
the right or bottom edge.

ScrolledWindow

vertical ScrollBar
(XtNvScrollBar) (XtNhScrollBar)

horizontal ScrollBar
(XtNvMenupane)

vertical MenuShell
 (XtNhMenupane)

horizontal MenuShellcontents container
(BulletinBoard)

532 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

View Larger than Content

Generally, the view of the content never becomes larger than needed to show
the content. This default behavior can be overridden using the
XtNrecomputeHeight and XtNrecomputeWidth resources (see page 543).

Scrollbars

The scrollbars are configured to scroll integer values, in pixels, through the
width and length of the content. This allows the finest degree of control of the
positioning of the view of the content. However, the application can set the
step rate through these values to avoid a large number of view updates as the
user scrolls through the content.

Unless forced to appear (see “XtNforceHorizontalSB” on page 538), a scrollbar
is removed from the side where it is no longer needed. Remaining scrollbars
stay a fixed distance from the view.

Application Controlled Scrolling

The ScrolledWindow widget also supports application-controlled scrolling,
including the scrolling of large amounts of data such as text. In this mode of
operation, the application monitors user interaction with the Scrollbars and
displays the appropriate data in the view.

The application specifies this mode of operation by setting the
XtNvAutoScroll /XtNhAutoScroll resources to FALSE. Normally, these
settings are combined with the setting of the XtNvSliderMoved and
XtNhSliderMoved callbacks. Also, the application should specify an
XtNcomputeGeometries callback, which is used to lay out the
ScrolledWindow. To programmatically manipulate the scrollbars, the
application must set the XtNuseSetValCallback resource of the Scrollbar
widget to TRUE. The TextEdit widget (see page 623) recognizes when it is a
child of a ScrolledWindow widget and operates in this mode.

Widget Reference (R – S) 533

9
ScrolledWindow Widget

Coloration

The diagram illustrates the resources that affect ScrolledWindow coloration.

Figure 9-10 ScrolledWindow Coloration

Keyboard Traversal

The ScrolledWindow controls the keyboard traversal between the content, the
horizontal ScrollBar, and the vertical ScrollBar. The scrollbars that are created
by the ScrolledWindow have the XtNtraversalOn resource set to FALSE.

A content widget added to the ScrolledWindow with traversal enabled will be
added to the traversable widgets in the window with the scrollbars so that the
user can move between them with the NEXTFIELD (or MOVEUP or MOVELEFT)
and PREVFIELD (or MOVEDOWN or MOVERIGHT) keys.

Child
Widget’s
Coloration

XtNborderColor

Scrollbar Coloration (XtNbackground
inherited from ScrolledWindow)

S
cr

ol
lb

ar
 C

ol
or

at
io

n
(X

tN
ba

ck
gr

ou
nd

in
he

rit
ed

 fr
om

 S
cr

ol
le

dW
in

do
w

)

534 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

Resources

Table 9-18 ScrolledWindow Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel (parent’s) SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-19 ScrolledWindow Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 9-20 ScrolledWindow Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

Widget Reference (R – S) 535

9
ScrolledWindow Widget

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 9-21 ScrolledWindow Resources

Name Type Default Access

XtNalignHorizontal OlDefine OL_BOTTOM SGI

XtNalignVertical OlDefine OL_RIGHT SGI

XtNcomputeGeometries Function NULL SGI

XtNcurrentPage int 1 SGI

XtNforceHorizontalSB Boolean FALSE SGI

XtNforceVerticalSB Boolean FALSE SGI

XtNforeground Pixel XtDefaultForeground SGID

XtNhAutoScroll Boolean TRUE SGI

XtNhInitialDelay int 500 (msec) SGI

XtNhMenuPane Widget NULL G

XtNhRepeatRate int 100 (msec) SGI

XtNhScrollbar Widget NULL G

XtNhSliderMoved XtCallbackList NULL SGIO

XtNhStepSize int 1 SGI

XtNinitialX int 0 GI

XtNinitialY int 0 GI

XtNrecomputeHeight Boolean TRUE SGI

XtNrecomputeWidth Boolean TRUE SGI

XtNshowPage OlDefine OL_NONE SGI

XtNvAutoScroll Boolean TRUE SGI

XtNviewHeight Dimension 0 SGI

XtNviewWidth Dimension 0 SGI

XtNvInitialDelay int 500 (msec) SGI

XtNvMenuPane Widget NULL G

XtNvRepeatRate int 100 (msec) SGI

Table 9-20 ScrolledWindow Manager Resources (Continued)

Name Type Default Access

536 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

XtNalignHorizontal

Synopsis: The placement of the horizontal scrollbar.
Values: OL_BOTTOM/”bottom” - Place the horizontal scrollbar on the

bottom.
OL_TOP/”top” - Place the horizontal scrollbar on the top.

XtNalignVertical

Synopsis: The placement of the vertical scrollbar.
Values: OL_RIGHT/”right” - Place the vertical scrollbar on the right.

OL_LEFT/”left” - Place the vertical scrollbar on the left.

XtNcomputeGeometries

Synopsis: A function called whenever the ScrolledWindow needs to lay out
its children.

The content widget sets this resource to a pointer to a function that is called
whenever the ScrolledWindow needs to lay out its children:

void (∗compute_geometries)(
Widget content_widget ,
OlSWGeometries ∗geometries);

XtNvScrollbar Widget NULL G

XtNvSliderMoved XtCallbackList NULL SGIO

XtNvStepSize int 1 SGI

Class Type Default Access

XtCAlignHorizontal OlDefine OL_BOTTOM SGI

Class Type Default Access

XtCAlignVertical OlDefine OL_RIGHT SGI

Class Type Default Access

XtCComputeGeometries Function NULL SGI

Table 9-21 ScrolledWindow Resources (Continued)

Name Type Default Access

Widget Reference (R – S) 537

9
ScrolledWindow Widget

The structure pointed to be geometries is defined as:

typedef struct _OlSWGeometries {
Widget sw;
Widget vsb ;
Widget hsb ;
Dimension bb_border_width ;
Dimension vsb_width ;
Dimension vsb_min_height ;
Dimension hsb_height ;
Dimension hsb_min_width ;
Dimension sw_view_width ;
Dimension sw_view_height ;
Dimension bbc_width ;
Dimension bbc_height ;
Dimension bbc_real_width ;
Dimension bbc_real_height ;
Boolean force_hsb ;
Boolean force_vsb ;

} OlSWGeometries;

The ScrolledWindow widget populates the values in this structure before the
call and examines them after the call to perform the layout operation. The
fields are as follows:

sw The widget ID of the ScrolledWindow widget.
vsb The widget ID of its vertical Scrollbar widget.
hsb The widget ID of its horizontal Scrollbar widget.
bb_border_width The width of the border around the view.
vsb_width The width of the vertical Scrollbar.
vsb_min_height The minimum height of the vertical Scrollbar.
hsb_height The height of the horizontal Scrollbar.
hsb_min_width The minimum width of the horizontal Scrollbar.
sw_view_width The width of the entire ScrolledWindow.
sw_view_height The height of the entire ScrolledWindow.
bbc_width The width of the view.
bbc_height The height of the view.
bbc_real_width The width of the contents.
bbc_real_height The height of the contents.
force_hsb When TRUE, a horizontal Scrollbar is forced to be present.
force_vsb When TRUE, a vertical Scrollbar is forced to be present.

538 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

The called function is responsible for populating the following fields of this
structure:

bbc_width
bbc_height
bbc_real_width
bbc_real_height
force_hsb
force_vsb

For example, if the application wants to make the view 300 pixels wide by 200
pixels high into a contents that is 1200 pixels wide and 700 pixels high, it needs
to set these fields as follows:

bbc_width = 300
bbc_height = 200
bbc_real_width = 1200
bbc_real_height = 700

Since the view is smaller than the contents in both width and height, both
scrollbars will appear in this case. Therefore, the values supplied for force_vsb
and force_hsb are not important. However, one could have situations where one
of the scrollbars is always wanted independent of the relationship between the
view and content sizes; in such cases, force_hsb and force_vsb are useful.

XtNcurrentPage

Synopsis: The value to be used by the ScrolledWindow vertical scrollbar.

See “Scrollbar Widget” on page 508 for more details.

XtNforceHorizontalSB

Synopsis: Force attachment of a horizontal scrollbar.
Values: TRUE/”true” - Disables size checking and forces the scrollbar to

be attached to the window regardless of the size of the child
widget.

Class Type Default Access

XtCCurrentPage int 1 SGI

Class Type Default Access

XtCForceHorizontalSB Boolean FALSE SGI

Widget Reference (R – S) 539

9
ScrolledWindow Widget

FALSE/”false” - Performs size checking and does not force
attachment.

When the child widget is created and positioned within the scrolled window,
its width is examined. If the entire child widget will fit within the width of the
scrolled window, and the horizontal scrollbar is not forced and the horizontal
scrollbar will not be created, since there is no need to scroll in that direction.

If a scrollbar is forced but not needed because the content fits within the view,
the scrollbar is made insensitive.

XtNforceVerticalSB

Synopsis: Force attachment of a vertical scrollbar.
Values: TRUE/”true” - Disables size checking and forces the scrollbar to

be attached to the window, regardless of the size of the child
widget.
FALSE/”false” - Performs size checking and does not force
attachment.

When the child widget is created and positioned within the scrolled window,
its height is examined. If the entire child widget will fit within the height of the
scrolled window, and the vertical scrollbar is not forced, the vertical scrollbar
will not be created, since there is no need to scroll in that direction.

If a scrollbar is forced but not needed because the content fits within the view,
the scrollbar is made insensitive.

XtNforeground

Synopsis: The foreground color used by the ScrolledWindow to draw non-
textual content.

Values: Any Pixel value valid for the current display, or any name from
the $OPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

Class Type Default Access

XtCForceVerticalSB Boolean FALSE SGI

Class Type Default Access

XtCForeground Pixel XtDefaultForeground SGID

540 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

XtNhAutoScroll/
XtNvAutoScroll

Synopsis: The scrolling mode in the horizontal (vertical) direction.
Values: TRUE/”true” – The ScrolledWindow widget is responsible for

all interaction with the scrollbar and the positioning of the content
window within the view.
FALSE/”false” – The application is responsible for all scrollbar
interaction and scrolling of the data within the content window.

XtNhInitialDelay/
XtNvInitialDelay

Synopsis: The time in milliseconds of the initial repeat delay to be used when
the scrolling arrows of the horizontal (vertical) scrollbar
component of the ScrolledWindow are pressed.

XtNhMenuPane /
XtNvMenuPane

Synopsis: A widget for a menu that can be popped up from the horizontal
scrollbar.

These resources provide for the retrieval of a handle to the menu that may be
popped up over a horizontal (vertical) scrollbar. This is useful for customizing
the menu. For example, the application may add the concept of a page or
chapter. The menu could then have items for scrolling forward and backward
by those units.

See “Scrollbar Widget” on page 508 for more details.

Class Type Default Access

XtCHAutoScroll Boolean TRUE SGI

XtCVAutoScroll Boolean TRUE SGI

Class Type Default Access

XtCHInitialDelay int 500 (msec) SGI

XtCVInitialDelay int 500 (msec) SGI

Class Type Default Access

XtCHMenuPane Widget NULL G

XtCVMenuPane Widget NULL G

Widget Reference (R – S) 541

9
ScrolledWindow Widget

XtNhRepeatRate/
XtNvRepeatRate

Synopsis: The time in milliseconds of the repeat delay to be used when the
scrolling arrows of the horizontal (vertical) scrollbar component of
the ScrolledWindow are pressed.

XtNhScrollbar/
XtNvScrollbar

Synopsis: The widget ID of the horizontal (vertical) scrollbar.

An application uses these values to set scrollbar characteristics, such as
coloration.

XtNhSliderMoved/
XtNvSliderMoved

Synopsis: The callback lists for tracking child position.

These resources mimic the XtNsliderMoved resource of the horizontal
(vertical) scrollbar. The call_data parameter for this callback is a pointer to an
OlScrollBarVerify structure, as in the Scrollbar widget. The application
can validate a scroll attempt before the ScrolledWindow widget will reposition
the view of the content, and can update the page number and adjust the
scrollbar elevator position. See “Scrollbar Widget” on page 508 for more
details.

Class Type Default Access

XtCHRepeatRate int 100 (msec) SGI

XtCVRepeatRate int 100 (msec) SGI

Class Type Default Access

XtCScrollbar Widget NULL G

XtCScrollbar Widget NULL G

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

XtCCallback XtCallbackList NULL SGIO

542 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

XtNhStepSize/
XtNhStepSize

Synopsis: The minimum unit of horizontal (vertical) scrolling.
Values: The size in pixels of the minimum scrollable unit in the content:

0 < XtNhStepSize
0 < XtNvStepSize

For instance, to allow the user to scroll a single pixel in either direction, the
value would be 1. Or, to allow the user to scroll a character at a time
horizontally, the value would be the width of a character. Scrolling a character
at a time requires a constant width font, of course.

The ScrolledWindow widget uses this value to calibrate the minimum scrolling
step, XtNgranularity , of the scrollbars.

XtNinitialX/
XtNinitialY

Synopsis: The initial x- and y-position of the child widget.
Values: 0 ≥ XtNinitialX

0 ≥ XtNinitialY

The child widget is initially positioned at the upper left corner, (x,y)
coordinates of (0,0). This positioning can be changed by specifying a new x,y
location. The scrollbars are adjusted to give a visual indication of the offset
specified in these resources. The content is positioned within the view of the
content, so as the view of the content moves progressively further through the
content, the coordinates of the position become more negative. Thus, the initial
coordinate given in this resource should be zero or negative to ensure proper
operation of the scrolled window.

Class Type Default Access

XtCHStepSize int 1 SGI

XtCVStepSize int 1 SGI

Class Type Default Access

XtCInitialX int 0 GI

XtCInitialY int 0 GI

Widget Reference (R – S) 543

9
ScrolledWindow Widget

XtNrecomputeHeight/
XtNrecomputeWidth

Synopsis: The resizing method used by the ScrolledWindow widget.
Values: TRUE/”true” – The ScrolledWindow shrinks the view of the

content in the corresponding direction to absorb the change in the
ScrolledWindow widget’s size.
FALSE/”false” – The ScrolledWindow does not shrink the
view in that direction.

These resources, together with XtNviewWidth and XtNviewHeight , are
typically used to set a preferred dimension in a direction that should not be
scrolled.

XtNshowPage

Synopsis: The actions of the scrollbar page indicator during dragging. This
value is directed to the vertical scrollbar in the ScrolledWindow
widget.

Values: OL_LEFT/”left” - Display the page indicator to the left of the
drag box.
OL_RIGHT/”right” - Display the page indicator to the right of
the drag box.
OL_NONE/”none” - Display no page indicator.

See “Scrollbar Widget” on page 508 for more details.

Activation Types

The following table lists the activation types used by the ScrolledWindow.

Class Type Default Access

XtCRecomputeHeight Boolean TRUE SGI

XtCRecomputeWidth Boolean TRUE SGI

Class Type Default Access

XtCShowPage OlDefine OL_NONE SGI

Table 9-22 ScrolledWindow Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

544 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_HSBMENU

This activation type will pop up the menu associated with the
XtNhScrollbar widget. When this menu is posted via keyboard traversal, the
“Here to left” and “Left to here” buttons will not be sensitive. Activating the
“Previous” menu item on this menu calls the XtNhSliderMoved callback list
with the appropriate OlScrollbarVerify structure.

OL_HELP HELP XtNhelpKey

OL_HSBMENU HSBMENU XtNhorizSBMenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PAGEDOWN PAGEDOWN XtNpageDownKey

OL_PAGELEFT PAGELEFT XtNpageLeftKey

OL_PAGERIGHT PAGERIGHT XtNpageRightKey

OL_PAGEUP PAGEUP XtNpageUpKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SCROLLBOTTOM SCROLLBOTTOM XtNscrollBottomKey

OL_SCROLLDOWN SCROLLDOWN XtNscrollDownKey

OL_SCROLLLEFT SCROLLLEFT XtNscrollLeftKey

OL_SCROLLLEFTEDGE SCROLLLEFTEDGE XtNscrollLeftEdge

OL_SCROLLRIGHT SCROLLRIGHT XtNscrollRightKey

OL_SCROLLRIGHTEDGE SCROLLRIGHTEDGE XtNscrollRightEdge

OL_SCROLLTOP SCROLLTOP XtNscrolltopKey

OL_SCROLLUP SCROLLUP XtNscrollUpKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

OL_VSBMENU VSBMENU XtNvertSBMenuKey

Table 9-22 ScrolledWindow Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (R – S) 545

9
ScrolledWindow Widget

OL_PAGEDOWN

This activation type will decrement the XtNvScrollbar ’s slider value by an
amount necessary to scroll the view down by the height of the view, and call
the XtNvSliderMoved callback list with the appropriate
OlScrollbarVerify structure.

OL_PAGELEFT

This activation type will decrement the XtNhScrollbar ’s slider value by an
amount necessary to scroll the view left by the width of the view, and call the
XtNhSliderMoved callback list with the appropriate OlScrollbarVerify
structure.

OL_PAGERIGHT

This activation type will increment the XtNhScrollbar ’s slider value by an
amount necessary to scroll the view right by the width of the view, and call the
XtNhSliderMoved callback list with the appropriate OlScrollbarVerify
structure.

OL_PAGEUP

This activation type will increment the XtNvScrollbar ’s slider value by an
amount necessary to scroll the view up by the height of the view, and call the
XtNvSliderMoved callback list with the appropriate OlScrollbarVerify
structure.

OL_SCROLLBOTTOM

This activation type will move the vertical scrollbar’s slider such that the view
is moved to the bottom of the content, and call the XtNvSliderMoved callback
list with the appropriate OlScrollbarVerify structure.

OL_SCROLLDOWN

This activation type will move the vertical scrollbar’s slider one negative unit
of granularity and call the XtNvSliderMoved callback list with the
appropriate OlScrollbarVerify structure.

OL_SCROLLLEFT

This activation type will move the horizontal scrollbar’s slider one negative
unit of granularity and call the XtNhSliderMoved callback list with the
appropriate OlScrollbarVerify structure.

546 OLIT Reference Manual—August 1994

9
ScrolledWindow Widget

OL_SCROLLLEFTEDGE

This activation type will move the horizontal scrollbar’s slider such that the
view is moved to the left edge of the content, and call the XtNhSliderMoved
callback list with the appropriate OlScrollbarVerify structure.

OL_SCROLLRIGHT

This activation type will move the horizontal scrollbar’s slider one positive
unit of granularity and call the XtNhSliderMoved callback list with the
appropriate OlScrollbarVerify structure.

OL_SCROLLRIGHTEDGE

This activation type will move the horizontal scrollbar’s slider such that the
view is moved to the right edge of the content, and call the XtNhSliderMoved
callback list with the appropriate OlScrollbarVerify structure.

OL_SCROLLTOP

This activation type will move the vertical scrollbar’s slider such that the view
is moved to the top of the content, and call the XtNvSliderMoved callback list
with the appropriate OlScrollbarVerify structure.

OL_SCROLLUP

This activation type will move the vertical scrollbar’s slider one positive unit of
granularity and call the XtNvSliderMoved callback list with the appropriate
OlScrollbarVerify structure.

OL_VSBMENU

This activation type will pop up the menu associated with the
XtNvScrollbar widget. When this menu is posted via keyboard traversal, the
“Here to top” and “Top to here” buttons will not be sensitive. Activating the
“Previous” menu item on this menu calls the XtNvSliderMoved callback list
with the appropriate OlScrollbarVerify structure.

See Also

“Scrollbar Widget” on page 508.

Widget Reference (R – S) 547

9
ScrollingList Widget

ScrollingList Widget

Class
Class Name: ScrollingList
Class Pointer: scrollingListWidgetClass

Ancestry

Core-Composite-Constraint-Manager-Form-ScrollingList

Required Header Files
#include <Xol/OpenLook>
#include <Xol/ScrollingL.h>

Description

The ScrollingList widget provides a list of items that the user can scroll
through and choose. The application can make the choice of items exclusive, or
allow the user to make multiple choices. It can also enable the user to edit
items within the list.

OLIT releases after 3.1 have some new features and a new Application
Programming Interface (API). The new features include multiple ScrollingList
modes, item sensitivity, and double-click support. This new API enables the
application to use these new features and also obsoletes the old API with a
richer set of convenience functions. Refer to “ScrollingList Modes” on page 552
for more details.

Components

Each ScrollingList widget has the following parts: Items, a Scrollbar, and a
View. If the application allows the list to be edited in place (in the view), the
ScrollingList widget also uses an editable text field.

548 OLIT Reference Manual—August 1994

9
ScrollingList Widget

Figure 9-11 ScrollingList Components

Editable ScrollingList

The application can choose whether to allow the user to edit the items in a
scrolling list. The editable text field is the interface for entering the new item,
and is described later. Other aspects of the user interface for editing are
controlled by the application. For example, the application can attach a menu
to the scrolling list to allow the user to select where a new item is to be
inserted, and can employ popup windows to gather additional information
about a new item.

Figure 9-12 Editable ScrollingList

Border
Current item border
surrounding current
item

ScrollbarView

Editable Text
Field

Widget Reference (R – S) 549

9
ScrollingList Widget

Subwidgets

The ScrollingList contains three subwidgets: a Scrollbar, a ListPane, and a
TextField.

Figure 9-13 ScrollingList Subwidgets

Editable Text Field

The application can request that the ScrollingList widget provide an editable
text field that will allow the user to change an existing item in the view. The
TextField subwidget implements this editable text field. The ScrollingList
widget manages the TextField widget as follows:

• Opening/closing – The application asks the ScrollingList widget to “open”
and “close” the editable text field. Opening the editable text field widget
maps it and positions it so that, as the user types in the name of a new or
changed item, the name lines up with the existing item names. Closing the
editable text field widget unmaps it. (As described below, there may be
times when the widget is unmapped, yet still open.)

• Editing – If an existing item is being edited, the application requests the
editable text field to overlay the item.

• Insertion – If a new item is being inserted, the application requests items to
be scrolled down in the view to accommodate the editable text field.

• Mapping – The ScrollingList widget maps and unmaps the editable text
field widget; the application does not.

• Scrolling – If the user scrolls the list while the editable text field is still open,
the ScrollingList widget scrolls it with the rest of the items. If it has to be
scrolled out of the view, it is scrolled out entirely, causing it to be unmapped
but not closed. The application should not try to remap the child since it
will be remapped when the list is scrolled back again.

• Setting/selecting – If the user attempts to make a selection or set a current
item, the editable text field is automatically closed.

ScrollingList

Scrollbar ListPane

TextField
(XtNtextField)

550 OLIT Reference Manual—August 1994

9
ScrollingList Widget

The application is responsible for handling the verification callbacks of the
editable text field and for telling the ScrollingList widget to add a new item or
change an existing item as a result of the user input.

Selectable ScrollingList

The application can choose whether to allow the user to select items from a
scrolling list. If items can be selected, they can be copied elsewhere as text, and
may be deletable (“cut”).

Deleting Selected Items

The user can delete selected items. The ScrollingList widget provides some
deletion capabilities through the selection mechanisms (see the discussion
under “Text Selections on Items” on page 551), and the application can provide
other capabilities, such as with a popup menu choice. The application verifies
that each selected item can be deleted; it is responsible for providing feedback
to the user for any items it will not delete. The ScrollingList widget updates the
view to remove any deleted items.

Item Order

The list is assumed to have an order defined by the application. As it adds
items, the application tells the ScrollingList widget where to insert them: either
before an item already in the list or at the end of the list.

The application may change the content of a list at any time, including while it
is displayed. The widget updates the view, if necessary, to reflect the changed
list. To avoid unnecessary updates to the view when several changes need to
be made, the application can instruct the ScrollingList widget to avoid updates
until the changes are finished.

Making an Item Current

The user can make an item current by:

• Pressing SELECT over it, or
• Moving the input focus into the widget and typing the first letter of the

item’s name.

Since OLIT 3.2, either of these actions will add the item to the list of current
items or will select a new current item, depending on the mode (exclusive,

Widget Reference (R – S) 551

9
ScrollingList Widget

exclusive-none-set, or nonexclusive). Double-clicking will invoke an
application-specified callback.

In the default API, either of these actions caused a callback to the application,
which could decide if the item should be made a current item, remain a current
item, or be changed to a regular item, depending on the current state of the
item and the needs of the application. Thus, the application can make the
scrolling list behave as a set of exclusive or nonexclusive items.

Pressing SELECT also starts a selection, as described below.

Text Selections on Items

The ScrollingList widget allows selection operations on the items if the
XtNselectable resource is TRUE; see page 567. Items that are moved or
copied from the view are treated as a newline-separated list of text items, in
the order they appear in the scrolling list, with no leading or trailing blanks on
any item.

• Selecting a single item. Clicking SELECT on an item selects it and deselects
any other active selection on the screen.

• Selecting other items. Clicking ADJUST on an item toggles its state, making
an unselected item selected and a selected item unselected.

• Wipe-through selection, with SELECT. Pressing and dragging SELECT over
items selects them and deselects any other active selection on the screen.
The selection starts with the item where SELECT is pressed and extends to
the item where SELECT is released. If the pointer moves above or below the
view, the view scrolls additional items into the view, selecting them as well.
The rate at which items scroll into the view is the same as when pressing
SELECT on the up or down arrows of the Scrollbar. The pointer can move
out of the view to the left or right without interrupting the selection.

• Wipe-through selection, with ADJUST. Pressing and dragging ADJUST marks
the bounds of a selection the same way as pressing and dragging SELECT,
except that the items covered are “toggled.” (Previously selected items are
deselected and previously unselected items are selected.)

• Copying items. Pressing COPY copies any selected items to the clipboard
and deselects them.

• Cutting items. Pressing CUT moves any selected items to the clipboard and
deletes them from the list. This operation is allowed only if the scrolling list
is editable.

552 OLIT Reference Manual—August 1994

9
ScrollingList Widget

ScrollingList Modes

This feature is newly introduced in OLIT 3.2. The ScrollingList Widget can be
created in one of the following modes:

OL_EXCLUSIVE This “Exclusive” mode lets the user choose one
item from a list of items, so that at any given
time exactly one item is current or chosen.

OL_EXCLUSIVE_NONESET This is a variation of the “Exclusive”
ScrollingList. Here the user can choose one or
none of the items on the list.

OL_NONEXCLUSIVE This lets the user choose none, one, or multiple
items from the list.

OL_NONE None of the above three modes. This is the
default mode for the ScrollingList and is
termed the default API in this section. It is
provided for backwards compatibility.

Note – The old API uses the OlListToken datatype; the new API uses the
OlSlistItemPtr datatype instead. Applications cannot use any functions in
the old API to manipulate the new features. Applications should also take care
not to mix functions from the two APIs.

In this section the term item refers to a ScrollingList item of datatype
OlSlistItemPtr .

Coloration

For both 2D and 3D, XtNfontColor is used to draw the ScrollingList item
labels. If XtNselectable is set to TRUE, when a list item is selected (for COPY
and PASTE), the ScrollingList reverses XtNbackground and XtNfontColor
for the selected item. See individual “Coloration” sections for Scrollbar
(page 514) and TextField (page 665) for information on the ScrollingList’s
scrollbar and textfield component coloration.

For 3D, ScrollingList item coloration is defined by the OPEN LOOK GUI
Functional Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BG1.

Widget Reference (R – S) 553

9
ScrollingList Widget

For 2D, XtNbackground and XtNforeground are used to render the
ScrollingList items as described by the OPEN LOOK GUI Functional
Specification, Chapter 8, “Scrolling Lists.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the list item with focus will be drawn with the value of
XtNinputFocusColor when the ScrollingList receives input focus. However,
if XtNinputFocusColor is the same as XtNbackground , then the
ScrollingList inverts XtNfontColor and XtNbackground within the list item
with focus. Once the input focus leaves the widget, the original coloration is
restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE.

The ScrollingList widget responds to the following keyboard navigation keys:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application
• MOVEUP moves the input focus up one line
• MOVEDOWN moves the input focus down one line
• PANESTART moves the input focus to the first item in the pane
• PANEEND moves the input focus to the last item in the pane
• SCROLLUP scrolls up one item in the list
• SCROLLDOWN scrolls down one item in the list
• SCROLLTOP scrolls to the first item in the list
• SCROLLBOTTOM scrolls to the last item in the list
• PAGEUP scrolls up one page so that the first item visible is the last item

visible in the pane
• PAGEDOWN scrolls down one page so that the last item visible is the first

item visible in the pane

When an Editable Text Field is in the ScrollingList, the keyboard traversal keys
defined for TextField widgets apply.

554 OLIT Reference Manual—August 1994

9
ScrollingList Widget

The SELECTKEY selects the Current Item and unselects any other active
selection on the screen. The ADJUSTKEY toggles the Current Item’s state,
making an unselected Item selected and a selected Item unselected.

The scrolling keys of interest are defined within the ScrollingList and traversal
to the Scrollbar is not necessary to manipulate the ScrollingList.

Keyboard Mnemonic Display

The ScrollingList widget displays the mnemonic accelerator for each item as
part of its label. If the mnemonic character is in the label, then that
character is displayed or highlighted according to the value of the toolkit
resource XtNshowMnemonics (see page 16). If the mnemonic character is
not in the label, it is displayed to the right of the label in parentheses and
highlighted according to the value of XtNshowMnemonics .

If truncation is necessary, the mnemonic displayed in parentheses is
truncated as a unit.

Known Deficiencies

ScrollingList does not support wide character string formats. The application
should use the multibyte interface as a workaround.

Resources

Table 9-23 ScrollingList Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

Widget Reference (R – S) 555

9
ScrollingList Widget

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-24 ScrollingList Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 9-25 ScrollingList Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 9-26 ScrollingList Resources

Name Type Default Access

XtNalign Boolean TRUE SGI

XtNapplAddItem1 OlApplAddItemProc (special) G

XtNapplDeleteItem1 OlApplDeleteItemProc (special) G

XtNapplEditClose1 OlApplEditCloseProc (special) G

Table 9-23 ScrollingList Core Resources (Continued)

Name Type Default Access

556 OLIT Reference Manual—August 1994

9
ScrollingList Widget

1. This resource cannot be used with the new API and related functions.

XtNapplEditOpen1 OlApplEditOpenProc (special) G

XtNapplTouchItem1 OlApplItemProc (special) G

XtNapplUpdateView1 OlApplUpdateViewProc (special) G

XtNapplViewItem1 OlApplItemProc (special) G

XtNcurrentItems OlSlistItemPtr ∗ NULL G

XtNfirstViewableItem OlSlistItemPtr (calculated) SG

XtNitemCurrentCallback XtCallbackList NULL SGIO

XtNitemHeight Dimension 0 SGI

XtNitemNotCurrentCallback XtCallbackList NULL SGIO

XtNlastViewableItem OlSlistItemPtr (calculated) SG

XtNlistPane Widget (special) G

XtNmultiClickCallback XtCallbackList NULL SGIO

XtNnumCurrentItems int 0 G

XtNnumItems int 0 G

XtNposition OlDefine OL_LEFT SGI

XtNprefMaxWidth Dimension 0 SGI

XtNprefMinWidth Dimension 0 SGI

XtNrecomputeWidth Boolean TRUE SGI

XtNscrollingListItems OlSlistItemPtr ∗ NULL G

XtNscrollingListMode OlDefine OL_NONE GI

XtNselectable Boolean FALSE SGI

XtNsensitive Boolean TRUE GIO

XtNspace Dimension 4 SGI

XtNtextField Widget (special) G

XtNuserDeleteItems XtCallbackList NULL SGIO

XtNuserMakeCurrent1 XtCallbackList NULL SGIO

XtNviewableItems OlSlistItemPtr ∗ NULL G

XtNviewHeight Dimension (calculated) SGI

Table 9-26 ScrollingList Resources (Continued)

Name Type Default Access

Widget Reference (R – S) 557

9
ScrollingList Widget

XtNalign

Synopsis: The alignment of combined string/glyph items.
Values: TRUE/”true” – The second components of all items having both

string and glyph are aligned, at an offset of XtNspace from the
widest first component.
FALSE/”false” – The items are not aligned.

XtNapplAddItem

Synopsis: The system-provided routine the application should use when it
adds a new item to the list. Applications should use
XtGetValues() to retrieve this routine.

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef OlListToken (∗OlApplAddItemProc)(Widget widget ,
OlListToken parent ,
OlListToken reference ,
OlListItem item);

widget Identifies the ScrollingList widget instance.
parent Should be set to 0, for compatibility with future changes.
reference Identifies an item before which to insert the new item. This value can

be zero to append the new item to the list.

item Describes the new item.

The content of the OlListItem structure is copied by the ScrollingList widget
into space that it maintains; however, the data pointed to by the label and
glyph members are not copied. The application can access the copied data
directly, using the OlListItemPointer() macro to get a pointer to the
OlListItem structure for the item.

If it changes the data, the application should use the XtNapplTouchItem
routine to let the ScrollingList widget know the data has changed.

Class Type Default Access

XtCAlign Boolean TRUE SGI

Class Type Default Access

XtCApplAddItem OlApplAddItemProc (special) G

558 OLIT Reference Manual—August 1994

9
ScrollingList Widget

If mapped and if allowed by the application (see “XtNapplUpdateView” on
page 561), the ScrollingList widget updates the view if the new item will be in
the view. The view is changed as little as possible: if the new item is in the
upper half of the view, the items above it are scrolled up and the top item is
scrolled off; if the new item is in the lower half of the view, the items below it
are scrolled down and the bottom item is scrolled off.

This routine is also used to build the item list from scratch.

XtNapplDeleteItem

Synopsis: The system-provided routine the application should call when it
deletes an item from the list. Applications should use
XtGetValues() to retrieve this routine.

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef void (∗OlApplDeleteItemProc)(Widget widget ,
OlListToken token);

widget Identifies the ScrollingList widget instance.

token Identifies the deleted item.

If mapped and if allowed by the application (see “XtNapplUpdateView” on
page 561), the ScrollingList widget updates the view if the deleted item was
visible.

The view is changed as little as possible:

• If the deleted item was in the upper half of the view, items above it are
scrolled down and an item is scrolled in from the top;

• If the deleted item was in the lower half of the view, items below it are
scrolled up and an item is scrolled in from the bottom.

• If the view is already at the top or bottom, the additional item is scrolled in
from the other end, if possible.

Class Type Default Access

XtCApplDeleteItem OlApplDeleteItemProc (special) G

Widget Reference (R – S) 559

9
ScrollingList Widget

XtNapplEditClose

Synopsis: The system-provided routine the application should call when the
user has finished editing an item in the view. Applications should
use XtGetValues() to retrieve this routine.

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef void (∗OlApplEditCloseProc)(Widget widget);

widget Identifies the ScrollingList widget instance.

When this routine is called, the ScrollingList widget unmaps the editable text
field widget, scrolling up the items below it if they had been scrolled down to
allow an insert.

The application is responsible for calling the XtNapplAddItem routine to add
the new item, or calling the XtNapplTouchItem routine to mark the item as
changed.

To avoid unnecessary updates to the view, the application should add the new
item (XtNapplAddItem) or mark the changed item (XtNapplTouchItem)
before closing the editable text field. A later call to the XtNapplEditClose
routine without an intervening call to the XtNapplEditOpen routine is
ignored.

If mapped, the ScrollingList widget updates the view, even if the application
had halted updates (see “XtNapplUpdateView” on page 561). If the application
had halted updates, they will continue to be halted afterwards.

XtNapplEditOpen

Synopsis: The system-provided routine the application should use when it
wants to allow the user to insert a new item or change an existing
item in the view. Applications should use XtGetValues() to
retrieve this routine.

Class Type Default Access

XtCApplEditClose OlApplEditClose (special) G

Class Type Default Access

XtCApplEditOpen OlApplEditOpen (special) G

560 OLIT Reference Manual—August 1994

9
ScrollingList Widget

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef void (∗OlApplEditOpenProc) (Widget widget ,
Boolean insert ,
OlListToken reference);

widget Identifies the ScrollingList widget instance.
insert Tells whether items should be scrolled down to make room for

inserting a new item. A value of FALSE implies that an item is being
edited in place and no items are to be scrolled.

reference Identifies an item before which a new item is to be inserted (insert is
TRUE) or identifies the item that is being changed (insert is FALSE). If
insert is TRUE, this value can be zero to append a new item at the end
of the list. If insert is FALSE, this value must refer to an existing item.
The referenced item does not have to be in the view (see below).

If a new item is being inserted, the ScrollingList widget makes room for the
editable text field by scrolling down the referenced item and any items below
it. If the referenced item is not in the view, it is automatically made visible just
as if the application had called the XtNapplViewItem routine first. The
XtNapplEditOpen routine can be called again before an intervening call to
the XtNapplEditClose routine. The effect is as if the XtNapplEditClose
routine was called, but without multiple updates to the view. For example, this
allows the application to let the user insert several new items in succession: the
editable text field moves down as each item is inserted, but is never removed
from the view.

Note – This item-insertion feature is currently not implemented.

If mapped, the ScrollingList widget updates the view, even if the application
had halted updates (see “XtNapplUpdateView” on page 561). If the application
had halted updates, they will continue to be halted afterwards.

Widget Reference (R – S) 561

9
ScrollingList Widget

XtNapplTouchItem

Synopsis: The system-provided routine the application should use when it
changes an item in the list. Applications should use
XtGetValues() to retrieve this routine.

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef void (∗OlApplTouchItemProc)(Widget widget ,
OlListToken token);

widget Identifies the ScrollingList widget instance.

token Identifies the item that has changed.

If mapped and if allowed by the application (see XtNapplUpdateView), the
ScrollingList widget updates the view if the changed item is visible.

XtNapplUpdateView

Synopsis: The system-provided routine the application can call to keep the
ScrollingList widget from updating the view, or to let it again
update the view. Applications should use XtGetValues() to
retrieve this routine.

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef void (∗OlApplUpdateViewProc)(Widget widget ,
Boolean ok);

widget Identifies the ScrollingList widget instance.

ok Either TRUE or FALSE, depending on whether the ScrollingList can
update the View as it changes, or not, respectively.

From the time the XtNapplUpdateView routine is called with a FALSE
argument until it is called with a TRUE argument, the ScrollingList does not

Class Type Default Access

XtCApplTouchItem OlApplTouchItemProc (special) G

Class Type Default Access

XtCApplUpdateView OlApplUpdateView (special) G

562 OLIT Reference Manual—August 1994

9
ScrollingList Widget

update the view in response to application-made changes. The ScrollingList
widget updates the view once for each of these exceptions, each time an
exception occurs. An application should use this routine to bracket a set of
changes to avoid spurious changes to the view. This routine is not needed if
only one change is made to the list. The following example illustrates the use
of the XtNapplUpdateView routine.

/* Stop view updates. */
(∗applUpdateView)(widget, FALSE);

/* Make some changes. */
(∗applDeleteItem)(widget,...);
(∗applDeleteItem)(widget,...);
(∗applAddItem)(widget,...);
(∗applTouchItem)(widget, ...);

/* Allow the view to be updated again. */
(∗applUpdateView)(widget, TRUE);

XtNapplViewItem

Synopsis: The system-provided routine the application can call when it wants
a particular item placed in the view. Applications should use
XtGetValues() to retrieve this routine.

Note – This resource cannot be used with the new API and related functions.

The prototype for this routine is as follows:

typedef void (∗OlApplViewItemProc)(Widget widget ,
OlListToken token);

widget Identifies the ScrollingList widget instance.

token Identifies the item to move into the view.

The item is moved into the view in a way that minimizes the change to the
view. If the item is currently in the view, nothing is changed. If scrolling the list
up or down brings the item into the view while keeping at least one previously
viewed item in the view, the list is scrolled. Otherwise, the item is placed at the
top of the view, or as close to the top as possible if there aren’t enough items in
the current Level to fill the view below it. If mapped and if allowed by the
application (see “XtNapplUpdateView” on page 561), the ScrollingList widget
updates the view. See also “Known Deficiencies” on page 585.

Class Type Default Access

XtCApplViewItem OlApplViewItemProc (special) G

Widget Reference (R – S) 563

9
ScrollingList Widget

XtNcurrentItems

Synopsis: The array of OlSlistItemPtr items that are current in the list.

XtGetValues() for this resource returns the items that are current and the
application must not free these items.

XtNfirstViewableItem

Synopsis: Which item is the first viewable item in the list. The default is the
first item added to the list.

XtNitemCurrentCallback

Synopsis: The list of callbacks to be invoked when an item is made current by
the user pressing the SELECT mouse button over an item.

This callback list is not invoked if XtNscrollingListMode is OL_NONE. The
call_data structure is OlSlistCallbackStruct (see page 571) and the reason
field in the call_data structure will be set to OL_REASON_ITEM_CURRENT.

XtNitemHeight

Synopsis: The height of each item.
Values: 0 ≤ XtNitemHeight

If set to zero, the height of each item will be the height of the font specified by
XtNfont . If the items in the ScrollingList include glyphs, this resource should
be set to the maximum height of all the glyphs.

Class Type Default Access

XtCCurrentItems OlSlistItemPtr ∗ NULL G

Class Type Default Access

XtCFirstViewableItem OlSlistItemPtr (calculated) SG

Class Type Default Access

XtCItemCurrentCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCItemHeight Dimension 0 SGI

564 OLIT Reference Manual—August 1994

9
ScrollingList Widget

XtNitemNotCurrentCallback

Synopsis: The callback list invoked when the user presses the SELECT mouse
button on a current item.

This callback list is not invoked if XtNscrollingListMode is OL_NONE. The
call_data structure is OlSlistCallbackStruct (see page 571) and the reason
field in the call_data structure will be set to OL_REASON_ITEM_NOT_CURRENT.

XtNlastViewableItem

Synopsis: The last viewable item in the list.

XtNlistPane

Synopsis: The ListPane child of the ScrollingList.

The ListPane widget is created as a child by the ScrollingList widget during
instantiation.

The ListPane widget is subclassed off the Primitive widget. The ScrollingList
items are rendered on the ListPane widget. XtNconsumeEvent callbacks or
event handlers for the ScrollingList must be registered on this widget.

XtNmultiClickCallback

Synopsis: The callback list invoked when the user presses the SELECT mouse
button on an item multiple times.

This callback list is not invoked if XtNscrollingListMode is OL_NONE. The
call_data structure is OlSlistCallbackStruct (see page 571) and the reason
field in the call_data structure will be set to OL_REASON_DOUBLE_CLICK. The
XtNmultiClickTimeout toolkit resource defines the timer interval in

Class Type Default Access

XtCItemNotCurrentCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCLastViewableItem OlSlistItemPtr (calculated) SG

Class Type Default Access

XtCReadOnly Widget (special) G

Class Type Default Access

XtCMultiClickCallback XtCallbackList NULL SGIO

Widget Reference (R – S) 565

9
ScrollingList Widget

milliseconds within which two successive button clicks are interpreted as a
multiclick.

XtNnumCurrentItems

Synopsis: The number of current items.

XtNnumItems

Synopsis: The total number of items in the list at any given time.

This resource automatically gets updated by the ScrollingList whenever an
item gets added or deleted.

XtNposition

Synopsis: The position of the string with respect to the glyph in items having
both components.

Values: OL_LEFT/”left” - Sets the string to the left of the glyph.
OL_RIGHT/”right” - Sets the string to the right of the glyph.

XtNprefMaxWidth/
XtNprefMinWidth

Synopsis: Controls dynamic resizing.
Values: 0 ≤ XtNprefMaxWidth

0 ≤ XtNprefMinWidth

If the value of these resources is specified as zero, the static sizing behavior is
preserved (which is the default). However, if these are specified as nonzero,
then the width of the ScrollingList will be no less than XtNprefMinWidth and
no greater than XtNprefMaxWidth , regardless of the length of the items

Class Type Default Access

XtCNumCurrentItems int 0 G

Class Type Default Access

XtCNumItems int 0 G

Class Type Default Access

XtCPosition OlDefine OL_LEFT SGI

Class Type Default Access

XtCPrefMaxWidth Dimension 0 SGI

XtCPrefMinWidth Dimension 0 SGI

566 OLIT Reference Manual—August 1994

9
ScrollingList Widget

inside. Items that are longer than XtNprefMaxWidth will automatically be
marked with a caret, indicating that they are not completely visible.

If the application wishes to set the List to a single width, then
XtNprefMinWidth should equal XtNprefMaxWidth , thus forcing the
ScrollingList width to a particular size.

XtNrecomputeWidth

Synopsis: Whether the ScrollingList widget should dynamically resize itself
in the horizontal direction.

Values: TRUE/”true” - The ScrollingList grows horizontally to
accommodate the widest item in the list.
FALSE/”false” - The ScrollingList does not grow horizontally
to accommodate changes in item dimensions.

The ScrollingList never shrinks horizontally to accommodate changes in item
dimensions.

XtNscrollingListItems

Synopsis: The entire list of items in the widget.

The number of items in this list is determined by the resource XtNnumItems . If
the widget is empty it returns NULL. XtGetValues() on this resource returns
the items themselves and not a copy of the list items. The application must not
free the returned items. The application must not free the returned items and
must make a copy if this returned list has to be used in any of the convenience
functions.

XtNscrollingListMode

Synopsis: The mode of the ScrollingList.
Values: OL_EXCLUSIVE - Exclusive mode; one item is current at all

times.
OL_EXCLUSIVE_NONESET - Exclusive-none-set mode; zero or

Class Type Default Access

XtCRecomputeWidth Boolean TRUE SGI

Class Type Default Access

XtCScrollingListItems OlSlistItemPtr ∗ NULL G

Class Type Default Access

XtCScrollingListMode OlDefine OL_NONE GI

Widget Reference (R – S) 567

9
ScrollingList Widget

one item is current at all times.
OL_NONEXCLUSIVE - Nonexclusive mode; zero, one, or many
items are current.
OL_NONE - Default API mode, for backwards compatibility.

XtNselectable

Synopsis: Whether the user can select items in the scrolling list.
Values: TRUE/”true” - Items can be selected with SELECT and ADJUST

and copied with the COPY key. Items may be deleted with the CUT
key, although the application can stop some or all selected items
from being deleted.
FALSE/”false” - Items cannot be selected and the COPY and
CUT keys have no effect.

XtNspace

Synopsis: The spacing between the string and the glyph in an item.
Values: 0 ≤ XtNspace

XtNtextField

Synopsis: The widget ID of the editable text field widget.

This value is available once the ScrollingList widget has been created. The
ScrollingList widget resets the following TextField resources before returning
from each invocation of the XtNapplEditOpen routine:

Class Type Default Access

XtCSelectable Boolean FALSE SGI

Class Type Default Access

XtCSpace Dimension 4 SGI

Class Type Default Access

XtCTextField Widget (special) G

Name Class Value

XtNwidth XtCWidth Width available in View

XtNstring XtCString Name of Item to be changed

568 OLIT Reference Manual—August 1994

9
ScrollingList Widget

XtNuserDeleteItems

Synopsis: The list of callbacks invoked when the user tries to delete items
from the list.

Currently, the only way the ScrollingList widget handles deletions is through a
cut operation. The call_data parameter has different values depending on the
mode of the ScrollingList.

In the default API (XtNscrollingListMode = OL_NONE), the call_data
parameter points to a structure OlListDelete defined as:

typedef struct _OlListDelete {
OlListToken ∗tokens;
Cardinal num_tokens ;

} OlListDelete;

tokens A list identifying the items to be deleted. The application is
expected to act on each item separately, calling the
XtNapplDeleteItem routine to delete each from the list. The
application may refuse to delete some or all of the items, and is
responsible for providing any feedback to the user.

num_tokens The number of items to delete.

In the new API (XtNscrollingListMode ≠ OL_NONE), the call_data
parameter points to a structure OlSlistUserDeleteCallbackStruct
defined as:

typedef struct {
int reason ;
XEvent ∗event ;
OlDefine mode;
OlSlistItemPtr ∗user_del_items ;
int num_del_items ;

} OlSlistUserDeleteCallbackStruct;

reason Indicates the reason for the callback.

mode Indicates what mode the scrollinglist is in:
OL_EXCLUSIVE
OL_EXCLUSIVES_NONESET
OL_NONEXCLUSIVE

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (R – S) 569

9
ScrollingList Widget

event Points to the XEvent that triggered the callback. This
member can be NULL.

item The item that was most recently made current when the
event that triggered that callback occurred.

item_pos Specifies the Position of the item in the list.

cur_items Specifies a list of current items at the time of the event that
triggered the callback. When the mode is
OL_NONEXCLUSIVE, this gives a list of all the current items.
When the mode is OL_EXCLUSIVE or
OL_EXCLUSIVE_NONESET, this variable has the same value
as the field item. This points to temporary storage that the
application must copy into its own space if needed.

num_cur_items Gives the number of current items in the list.

cur_items_pos An array of integers, representing one for each current item.
This points to temporary storage that the application must
copy into its own space if needed.

and the reason field will be set to OL_REASON_USER_DELETE_ITEMS. It is up to
the application to act on each item by calling OlSlistDeleteItem() or
OlSlistDeleteItems() (see page 579) and providing necessary feedback.

XtNuserMakeCurrent

Synopsis: The callback list invoked when the user presses SELECT over an
item.

Note – This resource cannot be used with the new API and related functions.

The call_data parameter is the OlListToken value that identifies the item. The
application is expected to decide if the current item status of this item should
change. The attributes member of the OlListItem structure for this item is not
automatically changed by the ScrollingList widget.

Class Class Default Access

XtCCallback XtCallbackList NULL SGIO

570 OLIT Reference Manual—August 1994

9
ScrollingList Widget

XtNviewableItems

Synopsis: The list of viewable items in the widget.

The number of items in this list is determined by the XtNviewHeight resource.
There are three possible cases: if XtNnumItems is zero the value returned is
NULL. If the value of XtNnumItems is greater than zero but less than the value
of XtNviewHeight then the list item pointer returned will be valid only for the
first XtNnumItems in the list. Otherwise the list item pointer is valid for all
XtNviewHeight items.
XtGetValues() on this resource returns the items themselves and not a copy
of the list items. The application must not free the returned items. The
application must make a copy if this returned list has to be used in any of the
convenience functions.

XtNviewHeight

Synopsis: The preferred height of the view as the number of items to show.
Values: 0 ≤ XtNviewHeight

If a nonzero value is given, the corresponding XtNheight resource is
computed by converting this number to pixels and adding any padding or
border thickness. In this case, any value given in the XtNheight resource is
overwritten. If a zero value is given in the XtNviewHeight resource, the
XtNheight resource is used as an estimate. The view is sized to show an
integral number of items, such that the overall height of the ScrollingList
widget is less than or equal to XtNheight , if possible. However, the view is
always large enough to show at least one item, and is no shorter than the
minimum scrollbar size. If neither the XtNviewHeight resource nor the
XtNheight resource is set, or both are set to zero, the view is made as small as
possible, limited as described above.

Class Type Default Access

XtCViewableItems OlSlistItemPtr ∗ NULL G

Class Type Default Access

XtCViewHeight Dimension (calculated) SGI

Widget Reference (R – S) 571

9
ScrollingList Widget

Callback Information

OlSlistCallbackStruct

This structure is used by a number of the callbacks defined for the new API.

typedef struct {
int reason ;
XEvent ∗event ;
OlDefine mode;
OlSlistItemPtr item ;
int item_pos ;
OlSlistItemPtr ∗cur_items ;
int num_cur_items ;
int ∗cur_items_pos ;

} OlSlistCallbackStruct;

reason Indicates the reason for the callback.

mode The mode of the scrollinglist:
OL_EXCLUSIVE
OL_EXCLUSIVES_NONESET
OL_NONEXCLUSIVE

event Points to the XEvent that triggered the callback. This member
can be NULL.

item The item that was most recently made current when the event
that triggered that callback occurred.

item_pos The Position of the item in the list.

cur_items A list of current items at the time of the event that triggered
the callback. When the mode is OL_NONEXCLUSIVE, this gives
a list of all the current items. When the mode is OL_EXCLUSIVE
or OL_EXCLUSIVE_NONESET, this variable has the same value
as the field item. This points to temporary storage that the
application must copy into its own space if needed.

num_cur_items The number of current items in the list.

cur_items_pos An array of integers, representing one for each current item.
This points to temporary storage that the application must
copy into its own space if needed. This field is currently not
implemented in OLIT.

572 OLIT Reference Manual—August 1994

9
ScrollingList Widget

OlSlistItemAttrs

The item data structure OlSlistItemAttrs is used in the
OlSlistAddItem() convenience function to indicate the attributes of interest
for a ScrollingList item. See also “OlSlistGetItemAttrs” on page 580 and
“OlSlistSetItemAttrs” on page 584.

typedef struct {
long flags ;
OlDefine label_type ;
OlStr item_label ;
XImage ∗item_image ;
Boolean item_sensitive ;
Boolean item_current ;
unsigned char item_mnemonic ;
XtPointer user_data ;

} OlSlistItemAttrs, ∗OlSlistItemAttrsPtr;

flags Marks which fields in this structure are defined, as the bitwise
inclusive OR of the following:

#define OlItemLabelType (1L << 0)
#define OlItemLabel (1L << 1)
#define OlItemImage (1L << 2)
#define OlItemSensitive (1L << 3)
#define OlItemCurrent (1L << 4)
#define OlItemMnemonic (1L << 5)
#define OlItemUserData (1L << 6)

label_type The type of label to display for the Item in the view. It can have
one of the values:

OL_STRING for a text label
OL_IMAGE for an image label
OL_BOTH for a text and image label.

item_label The string to display for the Item in the view.
item_image The glyph to be displayed for the item in the view. The type of

the value of this member depends on the value of the label_type
member—if OL_BOTH or OL_IMAGE, a glyph is displayed.

item_sensitive TRUE if the item is sensitive. See also “OlSlistGetItemSensitivity”
on page 581.

item_current TRUE if the item is current. See also “OlSlistIsItemCurrent” on
page 582.

item_mnemonic A single character that is used as a mnemonic accelerator for
keyboard traversal.

user_data A pointer to an area available for application-specific data.

Widget Reference (R – S) 573

9
ScrollingList Widget

OlListItem Structure

Several of the resources defined for the default API use the following
OlListItem structure:

typedef struct _OlListItem {
OlDefine label_type ;
XtPointer label ;
XImage ∗glyph ;
OlBitMask attr ;
XtPointer user_data ;
unsigned char mnemonic ;

} OlListItem;

label_type Identifies the type of label to display for the Item in the view. It
can have one of the values:

OL_STRING if the label consists only of text
OL_IMAGE if the label consists only of an image
OL_BOTH if the label comprises both text and image

label Specifies the string to display for the Item in the view.
glyph Specifies the glyph to be displayed for the item in the view. The

type of the value of this member depends on the value of the
label_type member—if OL_BOTH or OL_IMAGE, a glyph is
displayed.

attr Defines attributes of the Item. It is a 32-bit vector with the field:
OL_LIST_ATTR_APPL—available for application use.
This field consists of the low-order 16 bits, to be used as
the application sees fit.
OL_LIST_ATTR_CURRENT—if the Item is a current item.

Other bit values are defined, but should not be used by the
application.

mnemonic A single character that is used as a mnemonic accelerator for
keyboard traversal.

user_data A pointer to an area available for application-specific data.

OlListToken Structure

In the default API, the ScrollingList widget identifies each item with a “token”
of type OlListToken . The ScrollingList widget assigns the token when an
item is added by the application, and the application uses the token in later
references to the item. A zero value is allowed in some contexts where an
OlListToken is expected, as a way to refer to no item.

574 OLIT Reference Manual—August 1994

9
ScrollingList Widget

As a convenience to the application, the macro OlListItemPointer(token)
converts an OlListToken value into a pointer to the corresponding
OlListItem . The application can change the values of the OlListItem
members, but should let the ScrollingList widget know that they have
changed, using the XtNapplTouchItem routine. No checking is done for
incorrect OlListToken arguments to the OlListItemPointer macro.

The OlListToken value can be coerced into the type caddr_t and back
without loss of precision.

Activation Types

The following table lists the activation types used by the ScrollingList.

Table 9-27 ScrollingList Activation Types

Activation Type Semantics Resource Name

OL_ADJUST ADJUST XtNadjustBtn

OL_ADJUSTKEY ADJUST XtNadjustKey

OL_CANCEL CANCEL XtNcancelKey

OL_COPY COPY XtNcopyKey

OL_CUT CUT XtNcutKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MENU MENU XtNmenuBtn

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_MULTIDOWN JUMP DOWN XtNmultiDownKey

OL_MULTIUP JUMP UP XtNmultiUpKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PAGEDOWN ALT+PANE DOWN XtNpageDownKey

OL_PAGEUP ALT+PANE UP XtNpageUpKey

OL_PANEEND PANE DOWN XtNpaneEndKey

OL_PANESTART PANE UP XtNpaneStartKey

OL_PASTE PASTE XtNpasteKey

Widget Reference (R – S) 575

9
ScrollingList Widget

Activation types not described in the following table are described in
“Common Activation Types” on page 68.

OL_ADJUST/
OL_ADJUSTKEY

These activation types can be used to make additional list items current. They
apply only if the ScrollingList is selectable. If the XtNtextField widget is
being edited, editing will be terminated and its XtNverification callback (if
any) will be called. If other list items are already selected (highlighted), they
will be cleared. The current item will become the current selection, and will be
highlighted if it is not already. If the item has an XtNuserMakeCurrent
callback, it will be called.

OL_COPY

This activation type will copy the currently selected items to the clipboard as a
<newline>-separated list of text items in the order they appear. The
OL_LIST_ATTR_CURRENT attr field of the currently selected items will be
cleared.

OL_CUT

This activation type applies only to ScrollingLists that are editable. The
currently selected items are moved to the clipboard as a <newline>-separated
list of text items in the order they appear in the ScrollingList. The
XtNuserDeleteItems callback will be called with an OlListDelete
structure containing the currently selected items.

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SCROLLBOTTOM DATA END XtNscrollBottomKey

OL_SCROLLDOWN ALT+DOWN XtNscrollDownKey

OL_SCROLLTOP DATA START XtNscrollTopKey

OL_SCROLLUP ALT+UP XtNscrollUpKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Table 9-27 ScrollingList Activation Types (Continued)

Activation Type Semantics Resource Name

576 OLIT Reference Manual—August 1994

9
ScrollingList Widget

OL_MENU/
OL_MENUKEY

These activation types will post the ScrollingList menu.

OL_MULTIDOWN/
OL_PAGEDOWN

These activation types will scroll the list down a number of items equivalent to
the current XtNviewHeight .

OL_MULTIUP/
OL_PAGEUP

These activation types will scroll the list up a number of items equivalent to
the current XtNviewHeight .

OL_PANEEND

This activation will type make the last list item the current item.

OL_PANESTART

This activation type will make the first list item the current item.

OL_PASTE

This activation type applies only to an editable ScrollingList. When the
XtNtextField widget has focus within an editable ScrollingList, then the
OL_PASTE activation type will insert the contents of the clipboard at the
current insert position.

OL_SCROLLBOTTOM

This activation type will scroll the list so the last item is at the bottom of the
view and update the scrollbar appropriately.

OL_SCROLLDOWN

If the list is not already at the bottom, this activation type will scroll the list
down one item, updating the list view and scrollbar.

Widget Reference (R – S) 577

9
ScrollingList Widget

OL_SCROLLTOP

This activation type will scroll the list so the first item is at the top of the view,
and updates the scrollbar appropriately.

OL_SCROLLUP

If the list is not already at the top, this activation type will scroll the list up one
item, updating the list view and scrollbar.

OL_SELECT/
OL_SELECTKEY

These activation types can be used to make one or more list items current.
They apply only if the ScrollingList is selectable. If the XtNtextField widget
is being edited, editing will be terminated and its XtNverification callback
(if any) will be called. If other list items are already selected (highlighted), they
will be cleared. The item will become the current selection, and will be
highlighted if it is not already. If the item has an XtNuserMakeCurrent
callback, it will be called.

See Also

“Scrollbar Widget” on page 508,
“ScrollingList Functions” on page 578,
“TextField Widget” on page 665.

578 OLIT Reference Manual—August 1994

9
ScrollingList Functions

ScrollingList Functions
The following convenience functions are provided to manipulate the
ScrollingList widget in the new API mode; see “ScrollingList Modes” on
page 552.

OlSlistAddItem
#include <Xol/ScrollingL.h>

OlSlistItemPtr OlSlistAddItem(
Widget widget ,
OlSlistItemAttrsPtr item_attr ,
OlSlistItemPtr ref_item);

OlSlistAddItem() adds an item before ref_item, given the attributes of the
item, and returns a pointer to the item. The value of ref_item can be zero to
append the new item to the bottom of list. The content of item_attr will be
copied by the ScrollingList widget into space that it maintains; however, the
data pointed to by the item_image member will not be copied. The application
must use the OlSlistGetItemAttrs() and OlSlistSetItemAttrs()
functions to get and set the data associated with an item and then use the
OlSlistTouchItem() function to inform the ScrollingList widget that the
data has been changed. If mapped and if allowed by the application, the
ScrollingList widget updates the view if the new item will be in the view. The
view is changed as little as possible: if the new item is in the upper half of the
view, the items above it are scrolled up and the top item is scrolled off; if the
new item is in the lower half of the view, the items below it are scrolled down
and the bottom item is scrolled off.

OlSlistDeleteAllItems
#include <Xol/ScrollingL.h>

void OlSlistDeleteAllItems(Widget widget);

OlSlistDeleteAllItems() deletes all items from the Scrollinglist.

Widget Reference (R – S) 579

9
ScrollingList Functions

OlSlistDeleteItem
#include <Xol/ScrollingL.h>

void OlSlistDeleteItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistDeleteItem() deletes item from the ScrollingList.

OlSlistDeleteItems
#include <Xol/ScrollingL.h>

void OlSlistDeleteItems(
Widget widget ,
OlSlistItemPtr ∗items ,
int num_items);

OlSlistDeleteItems() deletes items from the ScrollingList.

OlSlistEditItem
#include <Xol/ScrollingL.h>

void OlSlistEditItem(
Widget widget ,
Boolean insert ,
OlSlistItemPtr ref_item);

OlSlistEditItem() allows programmatic editing of a ScrollingList item. If
insert is TRUE, then ref_item identifies the item before which a new item is to
inserted. If insert is TRUE, then ref_item can be NULL, in which case a new item
would be added to the end of the list. If insert is FALSE, then ref_item refers to
the item that should be edited and must be a valid item in the list.

OlSlistEndEdit
#include <Xol/ScrollingL.h>

void OlSlistEndEdit(Widget widget);

OlSlistEndEdit() should be called by the application when the user has
finished editing an item.

580 OLIT Reference Manual—August 1994

9
ScrollingList Functions

OlSlistFirstViewableItem
#include <Xol/ScrollingL.h>

void OlSlistFirstViewableItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistFirstViewableItem() sets item as the first viewable item in the
list.

OlSlistGetItemAttrs
#include <Xol/ScrollingL.h>

void OlSlistGetItemAttrs(
Widget widget ,
OlSlistItemPtr item ,
OlSlistItemAttrs ∗get_attrs);

OlSlistGetItemAttrs() returns the item attributes of item in get_attrs. The
flags field must be set appropriately in get_attrs. The application must not free
any members of the get_attrs field and must make copies of the data as needed.

OlSlistGetItemImage
#include <Xol/ScrollingL.h>

XImage ∗OlSlistGetItemImage(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetItemImage() returns the image corresponding to item, or NULL
if the item does not have an associated image.

OlSlistGetItemLabel
#include <Xol/ScrollingL.h>

OlStr OlSlistGetItemLabel(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetItemLabel() returns the label corresponding to item, or NULL if
the item does not have an associated label.

Widget Reference (R – S) 581

9
ScrollingList Functions

OlSlistGetItemSensitivity
#include <Xol/ScrollingL.h>

Boolean OlSlistGetItemSensitivity(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetItemSensitivity() returns TRUE if the item is sensitive;
otherwise, it returns FALSE.

OlSlistGetItemType
#include <Xol/ScrollingL.h>

OlDefine OlSlistGetItemType(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetItemType() returns the item type, given the item. Valid values
are:

OL_STRING if item just has a string
OL_IMAGE if item just has a image
OL_BOTH if item has both string and image
OL_NONE if item is not a valid item in the list

OlSlistGetItemUserData
#include <Xol/ScrollingL.h>

XtPointer OlSlistGetItemUserData(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetItemUserData() returns the item’s user_data, if any.

OlSlistGetMode
#include <Xol/ScrollingL.h>

OlDefine OlSlistGetMode(Widget widget);

OlSlistGetMode() returns the mode of the ScrollingList:

OL_EXCLUSIVE Exclusive mode; one item is current at all times.

582 OLIT Reference Manual—August 1994

9
ScrollingList Functions

OL_EXCLUSIVE_NONESET Exclusive-none-set mode; zero or one item is
current at all times.

OL_NONEXCLUSIVE Nonexclusive mode; zero, one, or many items are
current.

OL_NONE Default API mode, for backwards compatibility.

OlSlistGetNextItem
#include <Xol/ScrollingL.h>

OlSlistItemPtr OlSlistGetNextItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetNextItem() returns the next item, given a valid item. If item is
the last item in the ScrollingList, then it returns NULL.

OlSlistGetPrevItem
#include <Xol/ScrollingL.h>

OlSlistItemPtr OlSlistGetPrevItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistGetPrevItem() returns the previous item, given a valid item. If item
is the first item in the ScrollingList, then it returns NULL.

OlSlistIsItemCurrent
#include <Xol/ScrollingL.h>

Boolean OlSlistIsItemCurrent(
Widget widget ,
OlSlistItemPtr item);

OlSlistIsItemCurrent() returns TRUE if the item is current; otherwise, it
returns FALSE.

Widget Reference (R – S) 583

9
ScrollingList Functions

OlSlistIsValidItem
#include <Xol/ScrollingL.h>

Boolean OlSlistIsValidItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistIsValidItem() returns TRUE if the specified item is a valid item in
the list; otherwise, it returns FALSE.

OlSlistLastViewableItem
#include <Xol/ScrollingL.h>

void OlSlistLastViewableItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistLastViewableItem() sets item to be the last viewable item in the
list.

OlSlistMakeAllItemsNotCurrent
#include <Xol/ScrollingL.h>

void OlSlistMakeAllItemsNotCurrent(Widget widget);

OlSlistMakeAllItemsNotCurrent() makes all items not current.

OlSlistMakeItemCurrent
#include <Xol/ScrollingL.h>

void OlSlistMakeItemCurrent(
Widget widget ,
OlSlistItemPtr item ,
Boolean issue_callback);

OlSlistMakeItemCurrent() makes an item current, adds it to the list of
current items, and issues a current callback if the Boolean value issue_callback
is TRUE.

584 OLIT Reference Manual—August 1994

9
ScrollingList Functions

OlSlistMakeItemNotCurrent
#include <Xol/ScrollingL.h>

void OlSlistMakeItemNotCurrent(
Widget widget ,
OlSlistItemPtr item ,
Boolean issue_callback);

OlSlistMakeItemNotCurrent() makes an item not current in the
ScrollingList and also removes it from the current list. It issues an
XtNitemNotCurrentCallback if issue_callback is TRUE.

OlSlistSetItemAttrs
#include <Xol/ScrollingL.h>

void OlSlistSetItemAttrs(
Widget widget ,
OlSlistItemPtr item ,
OlSlistItemAttrs ∗set_attrs);

OlSlistSetItemAttrs() sets the attributes pointed to in set_attrs on the
specified item. The flags field must be appropriately set in set_attrs. The widget
then copies this data into space that it maintains. The data pointed to by the
item_image member of set_attrs will not be copied.

OlSlistTouchItem
#include <Xol/ScrollingL.h>

void OlSlistTouchItem(
Widget widget ,
OlSlistItemPtr item);

OlSlistTouchItem() should be used by the application when it changes the
attributes of an item. If mapped and if allowed by the application (see
“OlSlistUpdateView” on page 585), the ScrollingList widget updates the view if
the changed item is visible.

Widget Reference (R – S) 585

9
ScrollingList Functions

OlSlistUpdateView
#include <Xol/ScrollingL.h>

void OlSlistUpdateView(
Widget widget ,
Boolean ok);

OlSlistUpdateView() can be called by the application to keep the
ScrollingList widget from updating the view or to let it again update the view.
If ok is TRUE, the ScrollingList widget can update the View as it changes;
otherwise, it cannot update the view.

OlSlistViewItem
#include <Xol/ScrollingL.h>

void OlSlistViewItem(
Widget widget,
 OlSlistItemPtr item);

OlSlistViewItem() can be called by the application to place a particular
ScrollingList item in view. See description of the XtNapplViewItem resource
in the ScrollingList widget section for more details.

Known Deficiencies

There is no programmatic interface equivalent to the XtNapplViewItem
resource (such as OlSlistUpdateView() ’s relationship to
XtNapplUpdateView). The following workaround is available:

OlApplViewItemProc ViewItem;
OlSlistItemPtr item; /* the item to be in view */

...

XtVaGetValues(slist, XtNapplViewItem, &ViewItem, NULL);
(∗ViewItem)(slist, item); /* this brings ‘item’ into view */

586 OLIT Reference Manual—August 1994

9
Slider Widget

Slider Widget

Class
Class Name: Slider
Class Pointer: sliderWidgetClass

Ancestry

Core-Primitive-Slider

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Slider.h>

Description

The Slider widget enables the user to set a numeric value graphically.

Components

Figure 9-14 Vertical and Horizontal Sliders

Top Anchor

Bottom Anchor

Drag
Box

Shaded Bar Bar

Tick Marks

Left
Anchor Anchor

Right

Widget Reference (R – S) 587

9
Slider Widget

A Slider consists of the following elements:

• Top (left) anchor
• Bottom (right) anchor
• Drag box
• Bar (typically)
• Shaded bar (typically)
• Current value (not visible)
• Minimum value (not visible)
• Maximum value (not visible)

The current value is the numeric value a user attempts to change with the
Slider widget.

Drag Box Motion

As visual feedback to the user, the drag box moves up or down (or left or right)
along the bar as the current value changes.

Dragging SELECT

The user can change the current value by dragging the drag box with SELECT.
The pressing of SELECT must start with the pointer in the drag box, but the
drag box (and the current value) track the pointer motion regardless of where
it goes while SELECT is pressed. This means it is not possible for the user to
change the current value by first pressing SELECT outside the drag box and
then moving the pointer into it. Only the component of the pointer motion
parallel to the Bar is tracked, and the motion of the drag box (and change in
the current value) are limited by the length of the Bar.

Clicking SELECT

Clicking SELECT above the drag box for a vertical slider, or to the right for a
horizontal slider, increases the current value by an application-specified
amount, moves the drag box to correspond to the new current value, and
moves the pointer to keep it on the drag box.

Clicking SELECT to the other side of the drag box decreases the value by the
same amount and moves the drag box and pointer accordingly.

Pressing SELECT repeats this action.

588 OLIT Reference Manual—August 1994

9
Slider Widget

Moving Drag Box to Limits

Clicking SELECT on one of the bottom/left or top/right anchors causes the
current value to take on the minimum value or maximum value, respectively,
and moves the drag box to the limit in the direction of the Anchor. If the drag
box is already at the limit, nothing happens.

Clicking SELECT on an anchor highlights the anchor while the current value is
changed.

Application Notification

The application gets notified about a change in the current value on the release
of SELECT for either the drag or click. It is responsible for providing any
feedback to the user deemed appropriate, such as updating the current value
in a text field.

Coloration

For 3D and 2D, the area surrounding the Slider and its labels is drawn with the
parent’s XtNbackground . XtNfontColor is used to draw the minimum and
maximum labels.

For 3D, the slider, endbox, and tickmark coloration is defined by the OPEN
LOOK GUI Functional Specification, Chapter 9, “Color and Three-Dimensional
Design.” XtNbackground is used for BG1, and the BG2 (pressed-in), BG3
(shadow), and Highlight colors are derived by the toolkit from BG1.
XtNforeground is used to draw the current-value indicator bar on the Slider.

For 2D, XtNbackground and XtNforeground are used to render the slider,
endboxes, and tickmarks as described by the OPEN LOOK GUI Functional
Specification, Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the Slider will be drawn with the value of
XtNinputFocusColor when it receives input focus. However, if
XtNinputFocusColor is the same as XtNbackground , then the Slider inverts
XtNforeground and XtNbackground . Once the input focus leaves the Slider,
the original coloration is restored.

Widget Reference (R – S) 589

9
Slider Widget

Keyboard Traversal

The Slider’s default value of the XtNtraversalOn resource is TRUE.

The user can operate the Slider by using the keyboard to move the Drag Box
and access the Anchors. The following keys manipulate the Current Value:

• SCROLLUP and SCROLLRIGHT increase the Current Value by an application-
specified amount, and move the Drag Box to correspond to the new Current
Value.

• SCROLLDOWN and SCROLLLEFT decrease the Current Value by an
application-specified amount, and move the Drag Box to correspond to the
new Current Value.

• SCROLLTOP and SCROLLRIGHTEDGE cause the Current Value to take on the
Maximum Value, and move the Drag Box to a vertical slider’s top anchor or
a horizontal slider’s right anchor. The anchor is briefly highlighted while the
Current Value is changed and the Drag Box is moved.

• SCROLLBOTTOM and SCROLLLEFTEDGE cause the Current Value to take on
the Minimum Value, and move the Drag Box to a vertical slider’s bottom
anchor or a horizontal slider’s left anchor. The anchor is briefly highlighted
while the Current Value is changed and the Drag Box is moved.

The Slider widget responds to the following keyboard navigation keys:

• NEXTFIELD, MOVEDOWN, and MOVERIGHT move to the next traversable
widget in the window

• PREVFIELD, MOVEUP, and MOVELEFT move to the previous traversable
widget in the window

• NEXTWINDOW moves to the next window in the application

• PREVWINDOW moves to the previous window in the application

• NEXTAPP moves to the first window in the next application

• PREVAPP moves to the first window in the previous application

Keyboard Mnemonic Display

The Slider does not display the mnemonic accelerator. If the Slider is the child
of a Caption widget, the Caption widget will display the mnemonic as part of
the label.

590 OLIT Reference Manual—August 1994

9
Slider Widget

Keyboard Accelerator Display

The Slider does not respond to a keyboard accelerator because the results of
clicking the SELECT button on a Slider depends on the pointer position. So, the
Slider does not display a keyboard accelerator.

Resources

Table 9-28 Slider Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-29 Slider Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

Widget Reference (R – S) 591

9
Slider Widget

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 9-30 Slider Resources

Name Type Default Access

XtNdragCBType OlDefine OL_CONTINUOUS SGI

XtNendBoxes Boolean TRUE SGI

XtNgranularity int 1 SGI

XtNinitialDelay int 500 SGI

XtNmaxLabel OlStr NULL SGI

XtNminLabel OlStr NULL SGI

XtNorientation OlDefine OL_VERTICAL GI

XtNpointerWarping Boolean TRUE SGI

XtNrecomputeSize Boolean FALSE SGI

XtNrepeatRate int 100 SGI

XtNsliderMax int 100 SGI

XtNsliderMin int 0 SGI

XtNsliderMoved XtCallbackList NULL SGIO

XtNsliderValue int 0 SGI

XtNspan Dimension OL_IGNORE SGI

XtNstopPosition OlDefine OL_ALL SGI

XtNticks int 0 SGI

XtNtickUnit OlDefine OL_NONE SGI

XtNuseSetValCallback Boolean FALSE SGI

Table 9-29 Slider Primitive Resources (Continued)

Name Type Default Access

592 OLIT Reference Manual—August 1994

9
Slider Widget

XtNdragCBType

Synopsis: The frequency of issuing XtNsliderMoved callbacks during a
drag operation.

Values: OL_CONTINUOUS/”continuous” - Issue callbacks continuously.
OL_GRANULARITY/”granularity” - Issue callbacks only when
the drag box crosses any granularity positions.
OL_RELEASE/”release” - Issue callbacks only once when the
SELECT button is released.

XtNendBoxes

Synopsis: Whether the end boxes are displayed.
Values: TRUE/”true” - Display end boxes.

FALSE/”false” - Do not display end boxes.

XtNgranularity

Synopsis: How much clicking SELECT changes the current value.
Values: 1 ≤ XtNgranularity ≤ (XtNsliderMax - XtNsliderMin)

Clicking SELECT on the bar or shaded bar attempts to change the current value
by the amount given in this resource. Dragging the drag box with SELECT
changes the current value by this amount before the XtNsliderMoved
callbacks are issued.

XtNinitialDelay

Synopsis: The time, in milliseconds, before the first action occurs when
SELECT is pressed on the bar or shaded bar.

Values: 0 < XtNinitialDelay

Class Type Default Access

XtCDragCBType OlDefine OL_CONTINUOUS SGI

Class Type Default Access

XtCEndBoxes Boolean TRUE SGI

Class Type Default Access

XtCGranularity int 1 SGI

Class Type Default Access

XtCInitialDelay int 500 SGI

Widget Reference (R – S) 593

9
Slider Widget

XtNmaxLabel

Synopsis: The label to be placed next to the maximum value position.
Values: Any OlStr value valid in the current locale.

For a vertical slider, the label will be placed to the right of the minimum value
position. If there is not enough space for the entire label and
XtNrecomputeSize is FALSE, the label will be truncated from the right end. If
there is not enough space for the entire label and XtNrecomputeSize is TRUE,
then the widget will request more space to show the entire label.

For a horizontal slider, the label will be placed centered and below the
maximum value position. If there is not enough room to center the label and
XtNrecomputeSize is set to FALSE, the right end of the label will be aligned
with the right anchor. If this label collides with the XtNminLabel , some part of
the labels will overlap. If there is not enough room to center the label and
XtNrecomputeSize is set to TRUE, the widget will request more space to
center the label below the maximum value position.

XtNminLabel

Synopsis: The label to be placed next to the minimum value position.
Values: Any OlStr value valid in the current locale.

For a vertical slider, the label is placed to the right of the minimum value
position. If there is not enough space for the entire label and
XtNrecomputeSize is FALSE, the label will be truncated from the right end. If
there is not enough space for the entire label and XtNrecomputeSize is TRUE,
then the widget will request more space to show the entire label.

For a horizontal slider, the label will be placed centered and below the
minimum value position. If there is not enough room to center the label and
XtNrecomputeSize is set to FALSE, the beginning of the label will be aligned
with the left anchor and will be drawn to the right. If this label collides with
the XtNmaxLabel , some part of the labels will overlap. If there is not enough
room to center the label and XtNrecomputeSize is set to TRUE, the widget
will request more space to center the label below the minimum value position.

Class Type Default Access

XtCLabel OlStr NULL SGI

Class Type Default Access

XtCLabel OlStr NULL SGI

594 OLIT Reference Manual—August 1994

9
Slider Widget

XtNorientation

Synopsis: The direction for the visual presentation of the widget.
Values: OL_HORIZONTAL/”horizontal” - Define a horizontal slider.

OL_VERTICAL/”vertical” - Define a vertical slider.

XtNpointerWarping

Synopsis: Whether the pointer will warp; i.e., follow the drag box as it
moves.

Values: TRUE/”true” - The pointer will warp.
FALSE/”false” - The pointer will not warp.

XtNrecomputeSize

Synopsis: Whether the Slider widget should resize itself whenever needed, to
compensate for the space needed to show the tick marks and the
labels.

Values: TRUE/”true” - The Slider will resize itself.
FALSE/”false” - The Slider will not resize itself.

The Slider widget uses the value of XtNspan , the sizes of the labels, and
XtNtickUnit to determine the preferred size.

XtNrepeatRate

Synopsis: The time, in milliseconds, between repeated actions when SELECT
is pressed on the bar or shaded bar.

Values: 0 < XtNrepeatRate

Class Type Default Access

XtCOrientation OlDefine OL_VERTICAL GI

Class Type Default Access

XtCPointerWarping Boolean TRUE SGI

Class Type Default Access

XtCRecomputeSize Boolean FALSE SGI

Class Type Default Access

XtCRepeatRate int 100 SGI

Widget Reference (R – S) 595

9
Slider Widget

XtNsliderMax/
XtNsliderMin

Synopsis: The range of values tracked by the Slider widget.
Values: XtNsliderMin < XtNsliderMax

Mathematically, the range is closed on both ends; that is, the range is the
following subset of the set of integers:

XtNsliderMin ≤ range ≤ XtNsliderMax

This is independent of the drag box displayed in the Slider widget. The Slider
widget takes into account the size of the drag box when relating the physical
range of movement to the range of values.

Figure 9-15 Drag Box Range of Movement

XtNsliderMoved

Synopsis: The callback list invoked when the Slider widget is manipulated.

Class Type Default Access

XtCSliderMax int 100 SGI

XtCSliderMin int 0 SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

XtNsliderMax

XtNsliderMin

(Range of
Movement)

(Overall
Length)

Drag Box

596 OLIT Reference Manual—August 1994

9
Slider Widget

The call_data parameter is a pointer to a structure of the form:

typedef struct OlSliderVerify {
int new_location ;
Boolean more_cb_pending ;

} OlSliderVerify;

new_location The new location of the Slider.

more_cb_pending Specifies if there are more callbacks pending.

An XtGetValues() inside the callback will return the previous value.

XtNsliderValue

Synopsis: The current position of the drag box.
Values: XtNsliderMin ≤ XtNsliderValue ≤ XtNsliderMax

The Slider widget keeps this resource up to date; however, an application can
also get the current value through the XtNsliderMoved callbacks.

XtNspan

Synopsis: If XtNrecomputeSize is set to TRUE, then XtNspan should be set
to reflect the preferred length of the slider, not counting the space
needed for the labels. The Slider widget uses the span value, the
sizes of the labels, and XtNtickUnit to determine the preferred
size.

XtNstopPosition

Synopsis: The behavior of the drag box at the end of a drag operation.
Values: OL_ALL/”all” - At the end of a drag operation, the drag box

will be positioned where it stops.
OL_GRANULARITY/”granularity” - The drag box will snap to
the nearest granularity position.
OL_TICKMARK/”tickmark” - The drag box will snap to the
nearest tickmark position.

Class Type Default Access

XtCSliderValue int 0 SGI

Class Type Default Access

XtCSpan Dimension OL_IGNORE SGI

Class Type Default Access

XtCStopPosition OlDefine OL_ALL SGI

Widget Reference (R – S) 597

9
Slider Widget

XtNticks

Synopsis: The interval between tick marks.
Values: The unit of the interval value is determined by XtNtickUnit .

XtNtickUnit

Synopsis: The number of units of the interval between tick marks.
Values: OL_NONE/”none” - The widget will display no tick marks and

will ignore XtNticks .
OL_SLIDERVALUE/”slidervalue” - The widget will interpret
XtNticks as the same unit as the slider value.
OL_PERCENT/”percent” - The widget will interpret XtNticks
as the percentage of the slider value range.

XtNuseSetValCallback

Synopsis: Whether a XtNsliderMoved callback is called when Slider is
manipulated by doing an XtSetValues() call.

Values: TRUE/”true” - The callback will be called.
FALSE/”false” - The callback will not be called.

Activation Types

The following table lists the activation types used by the Slider.

Class Type Default Access

XtCTicks int 0 SGI

Class Type Default Access

XtCTickUnit OlDefine OL_NONE SGI

Class Type Default Access

XtCUseSetValCallback Boolean FALSE SGI

Table 9-31 Slider Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

598 OLIT Reference Manual—August 1994

9
Slider Widget

Activation types not described in the following table are described in
“Common Activation Types” on page 68.

OL_SCROLLBOTTOM

For a scrollbar with XtNorientation of OL_VERTICAL, this activation type
will move the slider to the value of XtNsliderMin and call the
XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_SCROLLDOWN/
OL_SCROLLLEFT

These activation types will move the slider one negative unit of granularity
and call the XtNsliderMoved callback with the appropriate
OlScrollbarVerify structure.

OL_SCROLLLEFTEDGE

For a slider with XtNorientation of OL_HORIZONTAL, this activation type
will move the slider to the value of XtNsliderMin and call the
XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SCROLLBOTTOM DATA END XtNscrollBottomKey

OL_SCROLLDOWN ALT+DOWN XtNscrollDownKey

OL_SCROLLLEFT ALT+LEFT XtNscrollLeftKey

OL_SCROLLLEFTEDGE ALT+{ XtNscrollLeftEdge

OL_SCROLLRIGHT ALT+RIGHT XtNscrollRightKey

OL_SCROLLRIGHTEDGE ALT+} XtNscrollRightEdge

OL_SCROLLTOP DATA START XtNscrollTopKey

OL_SCROLLUP ALT+UP XtNscrollUpKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Table 9-31 Slider Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (R – S) 599

9
Slider Widget

OL_SCROLLRIGHTEDGE

For a slider with XtNorientation of OL_HORIZONTAL, this activation type
will move the slider to the value of XtNsliderMax minus the value of
XtNproportionLength and call the XtNsliderMoved callback with the
appropriate OlScrollbarVerify structure.

OL_SCROLLTOP

For a slider with XtNorientation of OL_VERTICAL, this activation type will
move the slider to the value of XtNsliderMax and call the XtNsliderMoved
callback with the appropriate OlScrollbarVerify structure.

OL_SCROLLUP/
OL_SCROLLRIGHT

These activation types will move the slider one positive unit of granularity and
call the XtNsliderMoved callback with the appropriate OlScrollbarVerify
structure.

OL_SELECT

This activation type depends on the position of the pointer within the Slider
widget. When the pointer is positioned on the drag box, the XtNsliderMoved
callback will be called according to the value of the XtNdragCBType . When
the pointer is positioned on the right anchor, the behavior will be the same as
the OL_SCROLLRIGHTEDGE activation type. When the pointer is positioned on
the top anchor, the behavior will be the same as the OL_SCROLLTOP activation
type. When the pointer is positioned on the left anchor, the behavior will be the
same as the OL_SCROLLLEFTEDGE activation type. When the pointer is
positioned on the bottom anchor, the behavior will be the same as the
OL_SCROLLBOTTOM activation type. When the pointer is positioned on the bar
above or to the right of the drag box, the behavior will be the same as the
OL_SCROLLUP and OL_SCROLLRIGHT activation type. When the pointer is
positioned on the below or to the left of the drag box, the behavior will be the
same as the OL_SCROLLLEFT and OL_SCROLLDOWN activation type.

See Also

“Gauge Widget” on page 395,
“Scrollbar Widget” on page 508.

600 OLIT Reference Manual—August 1994

9
StaticText Widget

StaticText Widget

Class
Class Name: StaticText
Class Pointer: staticTextWidgetClass

Ancestry

Core-Primitive-StaticText

Required Header Files
#include <Xol/OpenLook>
#include <Xol/StaticText.h>

Description

The StaticText widget provides a way to present an uneditable block of single
or multi-line text to the user. The layout of the text is configured by a few
simple layout controls.

Word Wrap

If the text is too long to fit in the width provided by the StaticText widget, the
text may be “wrapped” if the application requests it. The wrapping occurs at a
space between words, if possible, leaving as many words on a line as will fit.
If a word is too long for the width, it is wrapped between characters. An
embedded newline will always cause a wrap.

Text Clipping

If the text is not wrapped, it will be truncated if it cannot fit in the width of the
StaticText widget. The application can choose whether the truncation occurs on
the left, right, or evenly on both sides of each line of the text.

If the text is too large to fit in the height provided by the StaticText widget, the
text is clipped on the bottom. The clipping falls on a pixel boundary, not
between lines, so that it is possible that only the upper part of the last line of
text may be visible.

Widget Reference (R – S) 601

9
StaticText Widget

Space Stripping

The application can choose to have leading spaces or trailing spaces (or both)
stripped from the text before display, or can choose to have no stripping done.

Selecting and Operating on Text

The StaticText widget allows text to be selected in several ways and then
copied. See “Text Selection Operations” on page 204 for the description of these
operations. The application can control whether or not this selectability is
allowed on a StaticText widget.

Coloration

The diagram illustrates the resources that affect StaticText coloration.

Figure 9-16 StaticText Coloration

Keyboard Traversal

The default value of the XtNtraversalOn resource is FALSE.

If XtNtraversalOn is set to TRUE, the widget responds to the following
keyboard navigation keys:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• NEXTWINDOW moves to the next window in the application
• PREVWINDOW moves to the previous window in the application
• NEXTAPP moves to the first window in the next application
• PREVAPP moves to the first window in the previous application

The quick brown fox jumped
over the lazy widget.

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

XtNfontColor

602 OLIT Reference Manual—August 1994

9
StaticText Widget

Keyboard Mnemonic and Accelerator Display

The StaticText does not have keyboard mnemonic or keyboard accelerator
capabilities.

Resources

Table 9-32 StaticText Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-33 StaticText Primitive Resources

Name Type Default Access

XtNaccelerator String NULL n/a

XtNacceleratorText String NULL n/a

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

Widget Reference (R – S) 603

9
StaticText Widget

XtNalignment

Synopsis: The alignment of the lines to be applied when drawing the text.
Values: OL_LEFT/”left” – The left sides of lines are vertically aligned.

OL_CENTER/”center” – The centers are vertically aligned.
OL_RIGHT/”right” – The right sides are vertically aligned.

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ n/a

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 9-34 StaticText Resources

Name Type Default Access

XtNalignment OlDefine OL_LEFT SGI

XtNgravity int CenterGravity SGI

XtNhSpace Dimension 2 SGI

XtNlineSpace int 0 SGI

XtNrecomputeSize Boolean TRUE SGI

XtNselectable Boolean TRUE SGI

XtNstring OlStr NULL SGI

XtNstrip Boolean TRUE SGI

XtNvSpace Dimension 2 SGI

XtNwrap Boolean TRUE SGI

Class Type Default Access

XtCAlignment OlDefine OL_LEFT SGI

Table 9-33 StaticText Primitive Resources (Continued)

Name Type Default Access

604 OLIT Reference Manual—August 1994

9
StaticText Widget

XtNgravity

Synopsis: How extra space is used with the StaticText widget. See Table 9-35.

If XtNrecomputeSize is set to FALSE, the application can set a width and
height to the StaticText widget that exceeds the size needed to display the
string. This resource controls the use of any extra space.

XtNheight

Synopsis: The height of the StaticText widget, not including the border.

If XtNrecomputeSize is set to TRUE, XtNheight is set to:
(height of text) + 2 × XtNhSpace .

Class Type Default Access

XtCGravity Int CenterGravity SGI

Table 9-35 XtNgravity Values

Value Action

CenterGravity String is centered vertically and horizontally in the extra
space.

NorthGravity Top edge of the string is aligned with the top edge of the
space and centered horizontally.

SouthGravity Bottom edge of the string is aligned with the bottom edge
of the space and centered horizontally.

EastGravity Right edge of the string is aligned with the right edge of
the space and centered vertically.

WestGravity Left edge of the string is aligned with the left edge of the
space and centered vertically.

NorthWestGravity Top and left edges of the string are aligned with the top
and left edges of the space.

NorthEastGravity Top and right edges of the string are aligned with the top
and right edges of the space.

SouthWestGravity Bottom and left edges of the string are aligned with the
bottom and left edges of the space.

SouthEastGravity Bottom and right edges of the string are aligned with the
bottom and right edges of the space.

Class Type Default Access

XtCHeight Dimension (calculated) SGI

Widget Reference (R – S) 605

9
StaticText Widget

XtNhSpace/
XtNvSpace

Synopsis: The number of pixels of horizontal (vertical) padding between the
window borders and the displayed string.

Values: 0 ≤ XtNhSpace
0 ≤ XtNhSpace

XtNlineSpace

Synopsis: The amount of space between lines of text.
Values: –100 ≤ XtNlineSpace

The spacing is specified as a percentage of the font height, and is the distance
between the baseline of one text line and the top of the next font line. Thus, the
distance between successive text baselines, in percentage of the font height, is
XtNlineSpace + 100.

XtNrecomputeSize

Synopsis: Whether the StaticText widget should calculate its size and
automatically set the XtNheight and XtNwidth resources.

Values: TRUE/”true” – The StaticText widget will do normal size
calculations that may cause its geometry to change.
FALSE/”false” – The StaticText widget will leave its size alone;
this may cause truncation of the visible image being shown by the
StaticText widget if the fixed size is too small, or may cause
centering if the fixed size is too large.

XtNselectable

Synopsis: Whether the user can select text in the widget.

Class Type Default Access

XtCHSpace Dimension 2 SGI

XtCVSpace Dimension 2 SGI

Class Type Default Access

XtCLineSpace int 0 SGI

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Class Type Default Access

XtCSelectable Boolean TRUE SGI

606 OLIT Reference Manual—August 1994

9
StaticText Widget

Values: TRUE/”true” – The user can select text.
FALSE/”false” – The user cannot select text. SELECT or ADJUST
mouse actions and the COPY key action will have no effect.

XtNstring

Synopsis: The (NULL terminated) string to be drawn.
Values: Any OlStr value valid in the current locale.

XtNstrip

Synopsis: How leading and trailing spaces are stripped during the layout of
the text string.

Values: TRUE/”true”, FALSE/”false” , as shown in the following table.

XtNwidth

Synopsis: The width of the StaticText widget, not including the border.

If XtNrecomputeSize is set to TRUE, XtNwidth is set to:
(width of text) + 2 × XtNvSpace .

XtNwrap

Synopsis: How lines that are too long to fit in the width of the StaticText
widget are wrapped.

Class Type Default Access

XtCString OlStr NULL SGI

Class Type Default Access

XtCStrip Boolean TRUE SGI

XtNstrip XtNalignment Spaces stripped

TRUE

OL_LEFT Leading spaces stripped.

OL_RIGHT Trailing spaces stripped.

OL_CENTER Both leading and trailing spaces stripped

FALSE any None.

Class Type Default Access

XtCWidth Dimension (calculated) SGI

Class Type Default Access

XtCWrap Boolean TRUE SGI

Widget Reference (R – S) 607

9
StaticText Widget

Values: TRUE/”true”, FALSE/”false” , as shown in the following table. .

Activation Types

The following table lists the activation types used by the StaticText.

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

XtNwrap XtNalignment Wrap action

FALSE

OL_LEFT Clipped on the right

OL_RIGHT Clipped on the left

OL_CENTER Clipped equally on both left and right

TRUE any
Long text is broken between words with each
line of the displayed text having as many
words as can fit.

Table 9-36 StaticText Activation Types

Activation Type Semantics Resource Name

OL_ADJUST ADJUST XtNadjustBtn

OL_CANCEL CANCEL XtNcancelKey

OL_COPY COPY XtNcopyKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_SELECT SELECT XtNselectBtn

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

608 OLIT Reference Manual—August 1994

9
StaticText Widget

OL_ADJUST

This activation type can be used to alter a selection, as described in the OPEN
LOOK GUI Functional Specification section “Adjusting a Text Selection” in
Chapter 17.

OL_COPY

This activation type can be used to copy the currently selected text to the
clipboard, as described in the OPEN LOOK GUI Functional Specification section
“Copying Text” in Chapter 17.

OL_SELECT

This activation type can be used to select characters, as described in the OPEN
LOOK GUI Functional Specification section “Selecting Text” in Chapter 17.

See Also

“TextField Functions” on page 686,
“Text Selection Operations” on page 204,
“TextEdit Functions” on page 660,
“TextEdit Widget” on page 623,
“TextField Widget” on page 665.

Widget Reference (R – S) 609

9
Stub Widget

Stub Widget

Class
Class Name: Stub
Class Pointer: stubWidgetClass

Ancestry

Core-Primitive-Stub

Required Header Files
#include <Xol/OpenLook>
#include <Xol/Stub.h>

Description

The Stub widget is a method-driven widget that allows the application to
specify procedures at creation and/or XtSetValues() time that are normally
restricted to a widget’s class part.

Most class part procedures have been attached to the instance part. For
example, with the Stub widget, it is possible to set the procedure that is called
whenever an exposure occurs. It is also possible to set the setValues and
initialize procedures.

Local Widgets

By allowing the application to specify procedures outside the widget class
structure, applications can use the Stub widget to build local widgets without
having going through the formal steps. For example, suppose an application
wanted to create a menu separator widget that inherits its parent’s background
color at creation time. It would be wasteful to create a new widget to perform
these trivial tasks. Instead, the application would use a Stub widget and
specify an Initialize procedure for it.

610 OLIT Reference Manual—August 1994

9
Stub Widget

Graphics Applications

The Stub widget can be used to implement graphics applications. Since the
application has direct access to the widget’s internal expose procedure, the
application can take advantage of the exposure compression provided with the
region argument. This field is not accessible if the application used an Event
Handler to trap exposures. Also, since the application has access to the
SetValues and SetValuesHook procedures, the application can
programmatically modify graphic-related resources of the Stub widget.

Inheriting Procedures from Existing Widgets

Once a Stub widget is created, other Stub widgets can inherit its methods
without the application having to specify them again. All the application has to
do is specify a reference Stub widget in the creation Arg list and the new Stub
widget will inherit all instance methods from the referenced Stub widget.

Wrapping Widgets Around Existing Windows

The Stub widget also allows the application to give widget functionality to
existing X windows. For example, if the application wanted to track button
presses on the root window, the application would create a Stub widget using
the RootWindow ID as the XtNwindow resource. Once this has been done, the
application can monitor events on the root window by attaching event
handlers to the Stub widget.

Coloration

The diagram illustrates the resources used for Stub coloration.

Figure 9-17 Stub Coloration

XtNborderColor

XtNbackground

Widget Reference (R – S) 611

9
Stub Widget

Keyboard Traversal

The Stub is a Primitive widget and it inherits the translations for traversal
actions from the Primitive class. The user of a Stub widget should add
translations for dealing with the navigation events listed in the section of
“TextField Widget” on page 665 that apply to the particular use of the Stub.

Keyboard Mnemonic Display

The Stub does not display the mnemonic accelerator. If the Stub is the child of
a Caption widget, the Caption widget can be used to display the Stub’s
mnemonic.

Keyboard Accelerator Display

The Stub does not display the keyboard accelerator. If the Stub is the child of a
Caption widget, the Caption widget can be used to display the Stub’s
accelerator as part of the label.

Coloration

The Stub widget should be able to display a state that indicates it has input
focus. The general heuristic used for this display by OPEN LOOK widgets is
that the background color is replaced with the input focus color found in the
resource XtNinputFocusColor .

Resources

Table 9-37 Stub Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

612 OLIT Reference Manual—August 1994

9
Stub Widget

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension 0 SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension 0 SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 9-38 Stub Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL SGI

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel Red SGID

XtNmnemonic unsigned char ‘\0’ SGI

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean FALSE SGI

XtNuserData XtPointer NULL SGI

Table 9-39 Stub Resources

Name Type Default Access

XtNacceptFocusFunc Function NULL SGI

XtNactivateFunc Function NULL SGI

XtNdestroy Function NULL SGI

Table 9-37 Stub Core Resources (Continued)

Name Type Default Access

Widget Reference (R – S) 613

9
Stub Widget

XtNacceptFocusFunc

Synopsis: The function that allows applications to override the default accept
focus procedure.

This procedure has the same semantics as the XtAcceptFocusFunc Core
Widget Class procedure and it is called by the Stub Widget Class’s accept
focus class procedure. When overriding the default accept focus procedure,
the routine OlCanAcceptFocus() can be used to check the widget’s focus-
taking eligibility. OlSetInputFocus() (see page 151) should be used
instead of XSetInputFocus() when explicitly setting focus to a window.

XtNactivateFunc

Synopsis: The procedure called whenever OlActivateWidget() is called
with the Stub widget ID for which this function was assigned.

XtNexpose Function NULL SGI

XtNgetValuesHook Function NULL SGI

XtNhighlightHandlerProc Function NULL SGI

XtNinitialize Function (private) GI

XtNinitializeHook Function NULL GI

XtNqueryGeometry Function NULL SGI

XtNrealize Function (private) SGI

XtNreferenceStub Widget NULL GI

XtNregisterFocusFunc Function NULL SGI

XtNresize Function NULL SGI

XtNsetValues Function NULL SGI

XtNsetValuesAlmost Function (superclass) SGI

XtNsetValuesHook Function NULL SGI

XtNtraversalHandlerFunc Function NULL SGI

XtNwindow Window NULL GI

Class Type Default Access

XtCAcceptFocusFunc Function NULL SGI

Class Type Default Access

XtCActivateFunc Function NULL SGI

Table 9-39 Stub Resources (Continued)

Name Type Default Access

614 OLIT Reference Manual—August 1994

9
Stub Widget

The procedure has the following declaration:

Boolean activateFunc (
Widget w,
OlVirtualName activation_type ,
XtPointer data);

If the activation_type is valid, the routine should take the appropriate action and
return TRUE; otherwise, the routine should return FALSE.

XtNdestroy

Synopsis: The procedure called when this Stub instance is destroyed.

The procedure has the following declaration:

void destroy (Widget w);

XtNexpose

Synopsis: The procedure called when the corresponding Stub widget receives
an exposure event.

The procedure has the following declaration:

void expose (
Widget w,
XEvent ∗xevent ,
Region region);

Since the Stub widget class has requested exposure compression, the region
field is valid.

XtNgetValuesHook

Synopsis: The procedure called whenever the application makes an
XtGetValues() call on the corresponding Stub widget.

Class Type Default Access

XtCDestroy Function NULL SGI

Class Type Default Access

XtCExpose Function NULL SGI

Class Type Default Access

XtCGetValuesHook Function NULL SGI

Widget Reference (R – S) 615

9
Stub Widget

The procedure has the following declaration:

void getValuesHook (
Widget w,
ArgList args ,
Cardinal ∗num_args);

XtNheight

Synopsis: The height of the widget.

If XtNwindow has a NULL value, the application must ensure that the
dimensions of XtNwidth and XtNheight are non-NULL. The application can
specify the width and height with an Arg list or specify an initialize procedure
that sets them with non-NULL values. If either of these dimensions is NULL
when the application attempts to realize the Stub widget, an error will result.

XtNhighlightHandlerProc

Synopsis: Whether the Stub widget displays a visual indication that it has, or
does not have, input focus.

The XtNhighlightHandlerProc procedure will be called to notify a Stub
widget that input focus has either moved to or from the widget. The
XtNhighlightHandlerProc will be called after the widget has lost or
accepted focus as a result of calling OlSetInputFocus() , calling
OlMoveFocus() , or matching a KeyPress event to a keyboard traversal
command (see “OlMoveFocus” on page 152). The procedure has the following
declaration:

void highlightHandlerProc (
Widget widget ,
OlDefine highlight_type);

This procedure has the responsibility of displaying the object in the
appropriate state based on the highlight_type. Whenever a Stub widget receives
focus, its XtNhighlightHandlerProc will be called with a highlight_type of
OL_IN. An OL_OUT highlight_type is used to signal that the Stub widget has lost
focus.

Class Type Default Access

XtCHeight Dimension 0 SGI

Class Type Default Access

XtCHighlightHandlerProc Function NULL SGI

616 OLIT Reference Manual—August 1994

9
Stub Widget

XtNinitialize

Synopsis: The procedure called by XtCreateWidget() for a Stub widget
instance.

The procedure has the following declaration:

void initialize (
Widget request ,
Widget new,
ArgList args ,
Cardinal ∗num_args);

If the application supplies its own initialize procedure, it is the application’s
responsibility to deal with the XtNwindow resource. When the XtNwindow
resource is non-NULL, the default initialize procedure fills in the Stub widget’s
XtNx , XtNy , XtNwidth , and XtNheight resource values with the
corresponding window attribute values obtained from the window specified
by the XtNwindow resource.

XtNinitializeHook

Synopsis: The procedure called by XtCreateWidget() for a Stub widget
instance after the initialize procedure has been called.

The procedure has the following declaration:

void initializeHook (
Widget w,
ArgList args ,
Cardinal ∗num_args);

The application can access the creation argument list through this routine. The
widget specified with the w argument is the new widget from the initialize
procedure.

Class Type Default Access

XtCInitialize Function (private) SGI

Class Type Default Access

XtCInitializeHook Function NULL SGI

Widget Reference (R – S) 617

9
Stub Widget

XtNqueryGeometry

Synopsis: The procedure called whenever the application does an
XtQueryGeometry() request on the corresponding Stub widget.

The procedure has the following declaration:

void queryGeometry (
Widget w,
XtWidgetGeometry ∗request ,
XtWidgetGeometry ∗preferred_return);

XtNrealize

Synopsis: The procedure called to realize a Stub widget instance.

The procedure has the following declaration:

void realize (
Widget w,
XtValueMask ∗value_mask ,
XSetWindowAttributes ∗attributes);

If the application supplies its own realize procedure, it is the application’s
responsibility to deal with the XtNwindow resource. When XtNwindow is non-
NULL, the realize procedure uses this window for the widget instance instead
of creating a new window. The default realize procedure gives an error
message if another widget in its process space is referencing the window
already; it does not reparent the specified window.

XtNreferenceStub

Synopsis: The pointer to an existing Stub widget.

If this pointer is non-NULL, the new Stub will inherit all instance methods from
the referenced Stub widget. An XtSetValues() request on the new Stub
widget should be used to change any inherited methods.

Class Type Default Access

XtCQueryGeometry Function NULL SGI

Class Type Default Access

XtCRealize Function (private) SGI

Class Type Default Access

XtCReferenceStub Widget NULL GI

618 OLIT Reference Manual—August 1994

9
Stub Widget

XtNregisterFocusFunc

Synopsis: The procedure called whenever a Stub widget gains focus.

The procedure has the following declaration:

Widget registerFocus (Widget stub_widget);

Whenever a Stub widget gains focus, this procedure is called and the Stub’s
shell sets the “current focus widget” (see “OlGetCurrentFocusWidget” on
page 151) to the value returned by it. If this function is NULL or returns NULL,
the current focus widget is set to the Stub widget. This is the typical case. If
this procedure returns a widget ID other than the Stub widget’s, that ID is used
to update the current focus widget so that a subsequent call to
OlGetCurrentFocusWidget() would return it. Returning a widget ID other
than the Stub widget’s will not move the focus away from the Stub widget.

XtNresize

Synopsis: The procedure called whenever a Stub widget instance is resized.

The procedure has the following declaration:

void resize (Widget w);

XtNsetValues

Synopsis: The procedure called whenever the application makes an
XtSetValues() call on a Stub widget instance.

The procedure has the following declaration:

Boolean setValues (
Widget current ,
Widget request ,
Widget new,
ArgList args ,
Cardinal ∗num_args);

Class Type Default Access

XtCRegisterFocusFunc Function NULL SGI

Class Type Default Access

XtCResize Function NULL SGI

Class Type Default Access

XtCSetValues Function NULL SGI

Widget Reference (R – S) 619

9
Stub Widget

XtNsetValuesAlmost

Synopsis: The procedure called when a parent rejects the requested geometry.

The procedure has the following declaration:

void setValuesAlmost (
Widget w,
Widget new_widget ,
XtWidgetGeometry ∗request ,
XtWidgetGeometry ∗reply);

This procedure is called when the application attempts to set a Stub widget’s
geometry via an XtSetValues() call and the Stub widget’s parent did not
accept the requested geometry. The default setValuesAlmost procedure simply
accepts the suggested compromise.

XtNsetValuesHook

Synopsis: The procedure called whenever the application makes an
XtSetValues() call on a Stub widget instance.

The procedure has the following declaration:

Boolean setValuesHook (
Widget w,
ArgList args ,
Cardinal ∗num_args);

Since this procedure is called after the setValues procedure, the widget specified
by the w argument is the new widget from the setValues procedure.

XtNtraversalHandlerFunc

Synopsis: The procedure called to process traversal commands whenever the
Stub widget has focus.

If an application wants the Stub widget to process traversal commands
whenever the Stub widget has focus, this resource is used to supply the

Class Type Default Access

XtCSetValuesAlmost Function (superclass) SGI

Class Type Default Access

XtCSetValuesHook Function NULL SGI

Class Type Default Access

XtCTraversalHandlerFunc Function NULL SGI

620 OLIT Reference Manual—August 1994

9
Stub Widget

traversal routine. An example of a case when this is desirable is when a Stub
widget is used to implement a spreadsheet. In this case, the Stub widget would
trap the OL_MOVERIGHT, OL_MOVELEFT, etc. commands to move focus
between the cells in the spreadsheet. The traversal handling routine has the
following declaration:

Widget traversalHandler (
Widget w,
Widget start ,
OlVirtualName direction ,
Time time);

If the traversal routine can process the traversal command, it returns the ID of
the widget that now has focus. The widget ID returned can be the Stub
widget’s ID. This is the case when the traversal command was processed, but
focus did not leave the Stub widget. If the traversal routine cannot process the
given command, it should return NULL.

XtNwidth

Synopsis: The width of the widget.

If XtNwindow has a NULL value, the application must ensure that the
dimensions of XtNwidth and XtNheight are non-NULL. The application can
specify the width and height with an Arg list or specify an initialize procedure
that sets them with non-NULL values. If either of these dimensions is NULL
when the application attempts to realize the Stub widget, an error will result.

XtNwindow

Synopsis: The window ID that the Stub widget should associate with its
instance data at realization time.

The XtNwindow resource can be specified at initialization time only. If a
window ID is supplied, that Stub widget instance will trap events on the given
window. After the Stub widget instance is realized, the function XtWindow()
will return this window ID. If the Stub widget is managed by its parent widget,
the supplied window will be included in geometry calculations even though
the Stub widget (by default) does not reparent the supplied window to be a

Class Type Default Access

XtCWidth Dimension 0 SGI

Class Type Default Access

XtCWindow Window NULL GI

Widget Reference (R – S) 621

9
Stub Widget

child of the parent widget’s window. Explicit calls to XtMoveWidget() ,
XtResizeWidget() , XtConfigureWidget() , or XtSetValues() can be
used to modify the window’s attributes.

Note – When the Stub widget instance is destroyed, the window will be
destroyed along with it.

Activation Types

The following table lists the activation types used by the Stub.

The Stub widget has no activation types besides the ones in “Common
Activation Types” on page 68.

Table 9-40 Stub Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_HELP HELP XtNhelpKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

622 OLIT Reference Manual—August 1994

9
Stub Widget

Example

The following example illustrates how an application can use the Stub widget
to perform a particular type of exposure handling. Since an initialize procedure
was not specified and the XtNwindow resource was not used, the initial Arg
list includes non-NULL values for the widget’s width and height.

static void Redisplay(
Widget w;
XEvent ∗xevent;
Region region);

{ /* do something interesting here */
} /* END OF Redisplay() */

main(...)
{

Widget base;
Widget stub;
static Arg args[] = {

{ XtNexpose, (XtArgVal) Redisplay },
{ XtNwidth, (XtArgVal) 1 },
{ XtNheight, (XtArgVal) 1 }

};

OlToolkitInitialize();
base = XtAppInitialize(...);
stub = XtCreateManagedWidget("graphics pane", stubWidgetClass,

base, args, XtNumber(args));
...

} /* END of main() */

See Also

“Input Focus Functions” on page 150.

623

Widget Reference (T – Z) 10

TextEdit Widget

Class
Class Name: TextEdit
Class Pointer: textEditWidgetClass

Ancestry

Core-Primitive-TextEdit

Required Header Files
#include <Xol/OpenLook>
#include <Xol/TextEdit.h>

Description

The TextEdit widget provides a multi-line text editing facility that has both a
customizable user interface and a programmatic interface. It provides a
consistent editing paradigm for textual data. An example is shown in the
following figure.

624 OLIT Reference Manual—August 1994

10
TextEdit Widget

Figure 10-1 Simple TextEdit Widget

The TextEdit widget provides three text wrap modes: OL_WRAP_OFF,
OL_WRAP_ANY, and OL_WRAP_WHITE_SPACE. The TextEdit widget manages
its text data using a TextBuffer data structure and allows the application to
access and manipulate its TextBuffer in order to implement more complex
textual operations.

The TextEdit widget provides several distinct callback lists used to monitor the
state of the textual data: insertion cursor movement, modification of the text,
and post modification notification. Each of these callbacks provide information
to the application regarding the intended action. The application can simply
examine this information to maintain its current state or can disallow the
action and perform any of the programmatic manipulations instead.

The TextEdit widget provides distinct callback lists for user input: mouse
button down and key press. The call_data for these callbacks decodes the input
for the application. The application can examine the input and either consume
the action, and perform any of the programmatic manipulations, or allow the
widget to act upon it.

The TextEdit widget also provides the application with a callback list invoked
when the widget is redisplayed. With this callback the application can add
callbacks that can be used to display information in the margins of the
TextEdit, such as line numbers or update marks. (See “XtNmargin” on
page 636.)

Widget Reference (T – Z) 625

10
TextEdit Widget

Editing Capabilities

The TextEdit widget provides editing capabilities to move the insert point,
select text, delete text, scroll the display, perform cut, copy, paste, and undo
operations, and refresh the text display. All of these capabilities are represented
by OLIT Activation Types, which are mapped to key bindings via global
resources stored in the X server. All of these settings dynamically change
immediately after new resource values are stored in the server. See Table 10-4
on page 642 for a complete list of these Activation Types supported by the
TextEdit widget.

Text Hierarchy

Text is considered to be hierarchically composed of white space, words, lines,
and paragraphs. These terms are defined as:

white space Any non-empty sequence of the ASCII characters space, tab,
linefeed, or carriage return (decimal values of 32, 9, 10, 13,
respectively)

word Any non-empty sequence of characters bounded on both sides
by white space.

source line Any (possibly empty) sequence of characters bounded by
newline characters.

display line Any (possibly empty) sequence of characters appearing on a
single window display line.

source paragraph Any sequence of characters bounded by sets of two or more
adjacent newline characters.

display paragraph Any (possibly empty) sequence of characters bounded by
newline characters. (This is a synonym for source line.)

In all cases, the beginning or end of the edit text is an acceptable bounding
element in the previous definitions.

The Text Buffer

The TextEdit widget uses a TextBuffer to store and manage the text data. If the
application needs to implement complex operations on the text (i.e., search for
a string, replace a paragraph, etc.), it can access the handle to the TextEdit’s
TextBuffer and then use the set of TextBuffer routines to manipulate the
TextBuffer. Since the TextBuffer provides more detailed information on the

626 OLIT Reference Manual—August 1994

10
TextEdit Widget

structure of the text (words, lines, pages, etc.) than the TextEdit widget itself,
the application can use the TextBuffer to have more programmatic control over
the text. There are two variants of the TextBuffer that are used, depending on
the value of the widget’s XtNtextFormat resource. See “Text Buffer
Functions” on page 163 and “Text Buffer Functions for Internationalization” on
page 176 for information on the TextBuffer.

Sizing the Display

When making display decisions, the TextEdit widget first will use either the
application-specified width and height or, if these values are not specified,
calculate width and height by applying the values of the XtNcharsVisible
and XtNlinesVisible resources. Once the width and height are determined,
the TextEdit widget will request an appropriate size from its parent
(considering the margins). If the request is denied or only partially satisfied, no
future growth requests will be made unless there is an intervening resize
operation externally imposed.

Once the size of the display is settled, the TextEdit widget calculates the
display lines based on this size, the various margins, the font, tab table, and
wrap mode.

Wrapping

If the wrap mode (see “XtNwrapMode” on page 642) is OL_WRAP_ANY, as
many characters from the source line as will entirely fit before the right margin
are written to the current display line, then the next character starts at the left
margin of the next display line, and so on.

If the wrap mode is OL_WRAP_WHITE_SPACE, the line wrap occurs at the first
whitespace character that follows the last full word that does fit on the current
display line. If the first full word that does not fit is the first word on the
display line, however, the wrap is made as if OL_WRAP_ANY were selected.

If the wrap mode is OL_WRAP_OFF, the lines are not wrapped but are clipped
at the right margin. In this mode the text is horizontally scrollable.

Widget Reference (T – Z) 627

10
TextEdit Widget

Text Scrolling

The application can get horizontal and/or vertical scrolling of a TextEdit by
creating it as a child of a ScrolledWindow widget; see “ScrolledWindow
Widget” on page 529. The ScrolledWindow will completely manage the
scrolling of text for the application by using its scrollbars.

The proportion indicators on the scrollbars show relatively how much of the
text is currently in the display.

As the user enters text, the view automatically scrolls when the insert point
moves beyond a margin boundary (right or bottom) to keep the insert point in
view.

Coloration

The following diagram illustrates the resources that affect TextEdit coloration.

Figure 10-2 TextEdit Coloration

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE.

The TextEdit widget responds to the following Activation Types for keyboard
navigation. For more information on these Activation Types and their key
bindings, see Table 10-4 on page 642.

XtNinputFocusColor

XtNbackground

XtNfontColor

XtNborderColor

628 OLIT Reference Manual—August 1994

10
TextEdit Widget

OL_CHARBAK OL_LINESTART OL_ROWDOWN
OL_CHARFWD OL_NEXTFIELD OL_ROWUP
OL_DOCEND OL_PANEEND OL_WORDBAK
OL_DOCSTART OL_PANESTART OL_WORDFWD
OL_LINEEND OL_PREVFIELD

It is expected that the user will use the alternate bindings for NEXTFIELD and
PREVFIELD because the primary binding, <Tab> and <Shift-Tab>, are valid
characters in a Text pane (unless XtNinsertTabs is set to FALSE).

The TextEdit widget responds to the following Activation Types for selection.
For more information on these Activation Types and their key bindings, see
Table 10-4 on page 642.

OL_SELCHARBAK OL_SELLINE OL_SELWORDBAK
OL_SELCHARFWD OL_SELLINEBAK OL_SELWORDFWD
OL_SELFLIPENDS OL_SELLINEFWD

The TextEdit widget responds to the following Activation Types for scrolling.
For more information on these Activation Types and their key bindings, see
Table 10-4 on page 642.

OL_PAGEDOWN OL_SCROLLBOTTOM OL_SCROLLRIGHT
OL_PAGELEFT OL_SCROLLDOWN OL_SCROLLRIGHTEDGE
OL_PAGERIGHT OL_SCROLLLEFT OL_SCROLLTOP
OL_PAGEUP OL_SCROLLLEFTEDGE OL_SCROLLUP

The TextEdit widget responds to the following Activation Types for editing.
For more information on these Activation Types and their key bindings, see
Table 10-4 on page 642.

OL_DELCHARBAK OL_DELLINEBAK OL_DELWORDFWD
OL_DELCHARFWD OL_DELLINEFWD OL_UNDO
OL_DELLINE OL_DELWORDBAK

Keyboard Mnemonic Display

The TextEdit does not display the mnemonic. If the TextEdit widget is the child
of a Caption widget, the Caption widget can be used to display the mnemonic.

Keyboard Accelerator Display

The TextEdit does not display the keyboard accelerator. If the TextEdit is the
child of a Caption widget, the Caption widget can be used to display the
accelerator as part of the label.

Widget Reference (T – Z) 629

10
TextEdit Widget

Resources

Table 10-1 TextEdit Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth Int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

Table 10-2 TextEdit Primitive Resources

Name Type Default Access

XtNaccelerator String NULL SGI

XtNacceleratorText String NULL n/a

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGID

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel (calculated; see page 27) SGID

XtNmnemonic Unsigned char ‘\0’ n/a

XtNreferenceName String NULL GI

630 OLIT Reference Manual—August 1994

10
TextEdit Widget

XtNreferenceWidget Widget NULL GI

XtNscale Int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 10-3 TextEdit Resources

Name Type Default Access

XtNblinkRate long 666 SGI

XtNbottomMargin Dimension 4 SGI

XtNbuttons XtCallbackList NULL SGIO

XtNcharsVisible Int 50 GI

XtNcopyLabel OlStr “Copy” GI

XtNcopyMnemonic unsigned char ‘\0’ GI

XtNcursorPosition TextPosition 0 SGI

XtNcutLabel OlStr “Cut” GI

XtNcutMnemonic Unsigned char ‘\0’ GI

XtNdeleteLabel OlStr “Delete” GI

XtNdeleteMnemonic unsigned char ‘\0’ GI

XtNdisplayPosition TextPosition 0 SGI

XtNeditType OlEditMode OL_TEXT_EDIT SGI

XtNgrowMode OlDefine OL_GROW_OFF SGI

XtNimPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

XtNinsertTab Boolean TRUE SGI

XtNkeys XtCallbackList NULL SGIO

XtNleftMargin Dimension 4 SGI

XtNlinesVisible Int 16 GI

XtNmargin XtCallbackList NULL SGIO

XtNmenuTitle OlStr “Edit” GI

XtNmodifyVerification XtCallbackList NULL SGIO

XtNmotionVerification XtCallbackList NULL SGIO

XtNpasteLabel OlStr “Paste” GI

XtNpasteMnemonic Unsigned char ‘\0’ GI

Table 10-2 TextEdit Primitive Resources (Continued)

Name Type Default Access

Widget Reference (T – Z) 631

10
TextEdit Widget

XtNblinkRate

Synopsis: The rate that the active input caret blinks.
Values: The number of milliseconds between blinks. Setting this value to

zero turns off the blink effect.

XtNbottomMargin

Synopsis: The number of pixels used for the height of the bottom margin.

XtNbuttons

Synopsis: The callback list invoked when a mouse button press is made in
the pane.

XtNpostModifyNotification XtCallbackList NULL SGIO

XtNrightMargin Dimension 4 SGI

XtNselectEnd TextPosition 0 SGI

XtNselectStart TextPosition 0 SGI

XtNsource OlStr NULL SGI

XtNsourceType OlSourceType OL_STRING_SOURCE SGI

XtNtabTable TabTable NULL SGI

XtNtopMargin Dimension 4 SGI

XtNundoLabel OlStr “Undo” GI

XtNundoMnemonic Unsigned char ‘\0’ GI

XtNwrapMode OlWrapMode OL_WRAP_WHITE_SPACE SGI

Class Type Default Access

XtCBlinkRate Long 666 SGI

Class Type Default Access

XtCMargin Dimension 4 SGI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Table 10-3 TextEdit Resources (Continued)

Name Type Default Access

632 OLIT Reference Manual—August 1994

10
TextEdit Widget

The call_data parameter is a pointer to an OlInputCallData structure:

typedef struct {
Boolean consumed ;
XEvent ∗event ;
KeySym ∗keysym ;
char ∗∗buffer ;
int ∗length ;
OlInputEvent ol_event ;

} OlInputCallData, ∗OlInputCallDataPointer;

typedef enum {
OL_UNKNOWN_INPUT, OL_SELECT, OL_ADJUST, OL_MENU,
OL_CONSTRAIN, OL_DUPLICATE, OL_PAN, OL_UNKNOWN_KEY_INPUT,
OL_CUT, OL_COPY, OL_PASTE, OL_HELP, OL_CANCEL, OL_PROP,
OL_STOP, OL_UNDO, OL_NEXT_FIELD, OL_PREV_FIELD, OL_CHARFWD,
OL_CHARBAK, OL_ROWDOWN, OL_ROWUP, OL_WORDFWD, OL_WORDBAK,
OL_LINESTART, OL_LINEEND, OL_DOCSTART, OL_DOCEND, OL_PANESTART,
OL_PANEEND, OL_DELCHARFWD, OL_DELCHARBAK, OL_DELWORDFWD,
OL_DELWORDBAK, OL_DELLINEFWD, OL_DELLINEBAK, OL_DELLINE,
OL_SELCHARFWD, OL_SELCHARBAK, OL_SELWORDFWD, OL_SELWORDBAK,
OL_SELLINEFWD, OL_SELLINEBAK, OL_SELLINE, OL_SELFLIPENDS,
OL_REDRAW, OL_RETURN, OL_PAGEUP, OL_PAGEDOWN, OL_HOME, OL_END,
OL_SCROLLUP, OL_SCROLLDOWN, OL_SCROLLLEFT, OL_SCROLLRIGHT,
OL_SCROLLLEFTEDGE, OL_SCROLLRIGHTEDGE, OL_PGM_GOTO

} OlInputEvent;

This callback can be used to remap or consume button events; for example, to
override the default Edit menu. To do so, the application would add a
XtNbuttons callback that checks the ol_event member of the
OlInputCallData structure. If the value of the ol_event member is OL_MENU,
the callback posts the application-defined menu and sets the consumed member
of the OlInputCallData structure to TRUE.

XtNcharsVisible

Synopsis: The initial width of the text in terms of characters.
Values: 0 ≤ XtNcharsVisible

This resource overrides the XtNwidth resource setting. The XtNwidth is
recalculated to be the value of XtNcharsVisible multiplied by the width of
the “n” (en) character in the font plus the values for the left and right margins.

Class Type Default Access

XtCCharsVisible int 50 GI

Widget Reference (T – Z) 633

10
TextEdit Widget

The value of this resource changes to reflect the effects of geometry changes
imposed by the widget tree and the user. Calls to XtSetValues() for this
resource are ignored.

XtNcopyLabel/
XtNcutLabel/
XtNdeleteLabel/
XtNpasteLabel/
XtNundoLabel

Synopsis: The label for the Copy, Cut, Delete, Paste, and Undo buttons in the
Edit menu, respectively.

Values: Any OlStr value valid in the current locale.

XtNcopyMnemonic/
XtNcutMnemonic/
XtNdeleteMnemonic/
XtNpasteMnemonic/
XtNundoMnemonic

Synopsis: The mnemonic for the Copy, Cut, Delete, Paste, and Undo buttons
in the Edit menu, respectively.

Values: Any ASCII character.

Class Type Default Access

XtCCopyLabel OlStr “Copy” GI

XtCCutLabel OlStr “Cut” GI

XtCDeleteLabel OlStr “Delete” GI

XtCPasteLabel OlStr “Paste” GI

XtCUndoLabel OlStr “Undo” GI

Class Type Default Access

XtCCopyMnemonic unsigned char ‘\0’ GI

XtCCutMnemonic unsigned char ‘\0’ GI

XtCDeleteMnemonic unsigned char ‘\0’ GI

XtCPasteMnemonic unsigned char ‘\0’ GI

XtCUndoMnemonic unsigned char ‘\0’ GI

634 OLIT Reference Manual—August 1994

10
TextEdit Widget

XtNcursorPosition

Synopsis: The relative character position in the text of the insert cursor.
Values: 0 ≤ XtNcursorPosition < number-of-chars-in-buffer

Changing the value of this resource may affect the XtNdisplayPosition
resource if the XtNcursorPosition value is not visible in the pane.

XtNdisplayPosition

Synopsis: The character position in the text that will be displayed at the top
of the pane.

Values: 0 ≤ XtNdisplayPosition < number-of-chars-in-textbuffer

A value of 0 indicates the beginning of the text source. When the value
provided is near the end of the buffer, this position is recalculated to ensure
that the last line in the buffer appears as the last line in the pane.

XtNeditType

Synopsis: The edit state of the widget.
Values: OL_TEXT_READ/”textread” - The contents are read-only; the

user cannot edit any text.
OL_TEXT_EDIT/”textedit” - The text is fully editable.

XtNgrowMode

Synopsis: The resize policy of the widget (in conjunction with
XtNwrapmode).

Values: OL_GROW_OFF/”grow_off” - The widget will not grow either
horizontally or vertically when text exceeds window boundaries.
OL_GROW_HORIZONTAL/”grow_horizontal” - The widget
will grow horizontally, if the text exceeds the width of the window.
This setting is valid only when XtNwrapMode is OL_WRAP_OFF.

Class Type Default Access

XtCTextPosition TextPosition 0 SGI

Class Type Default Access

XtCTextPosition TextPosition 0 SGI

Class Type Default Access

XtCEditType OlEditMode OL_TEXT_EDIT SGI

Class Type Default Access

XtCGrowMode OlDefine OL_GROW_OFF SGI

Widget Reference (T – Z) 635

10
TextEdit Widget

OL_GROW_VERTICAL/”grow_vertical” - The widget will
grow vertically, if the text exceeds the height of the window.
OL_GROW_BOTH/”grow_both” - The widget will grow both
horizontally and vertically as required, if the text exceeds the
window width or height. This setting is valid only when
XtNwrapMode is OL_WRAP_OFF.

XtNimPreeditStyle

Synopsis: The pre-edit style (in conjunction with the shell’s
XtNimStatusStyle resource). If the pre-edit style is not
supported by the input method, the ability to pre-edit is lost.

Values: OL_ON_THE_SPOT/”onTheSpot” - The pre-edit data is
displayed at the insertion point in the application window. The
preexisting user data is shifted and the pre-edit data is inserted at
the point of insertion.
OL_OVER_THE_SPOT/”overTheSpot” - The pre-edit data is
displayed in the application window, starting at the insertion
point. As the user types the pre-edit data, the preexisting user data
is obscured by the pre-edit data.
OL_ROOT_WINDOW/”rootWindow” - The pre-edit data is
displayed in a child of the root window, away from the point of
insertion.
OL_NO_PREEDIT/”none” - No pre-edit data is displayed.

See “XtNimStatusStyle” on page 44 and “Setting the Input Method Pre-Edit
and Status Styles (Asian Locales Only)” on page 82.

XtNinsertTab

Synopsis: Determines whether a tab character is insertable.
Values: TRUE/”true” - Tabs are insertable but not used for forward

traversal. Forward traversal can still be accomplished with
Control-Tab.
FALSE/”false”- Tabs are used for forward traversal and are not
insertable.

Class Type Default Access

XtCImPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

Class Type Default Access

XtCInsertTab Boolean TRUE SGI

636 OLIT Reference Manual—August 1994

10
TextEdit Widget

XtNkeys

Synopsis: The callback list invoked when a key press is made in the pane.

The call_data parameter is a pointer to an OlInputCallData structure, as
shown in “XtNbuttons” on page 631.

This callback can be used to remap or consume key events, such as to post a
property window for the text. To do so, the application would add a XtNkeys
callback that checks the ol_event member of the OlInputCallData structure.
If the value of the ol_event member is OL_PROP, the callback posts the property
window (or raises it if it is already mapped) and sets the consumed member of
the OlInputCallData structure to TRUE.

XtNleftMargin

Synopsis: The number of pixels used for the width of the left margin.

XtNlinesVisible

Synopsis: The initial height of the text in terms of display lines.
Values: 1 ≤ XtNlinesVisible

This resource overrides the XtNheight resource setting. The XtNheight is
recalculated to be the value of XtNlinesVisible multiplied by the height of
the font plus the values for the top and bottom margins.

The value of XtNlinesVisible changes to reflect the effects of geometry
changes imposed by the widget tree and the user. Calls to XtSetValues() for
this resource are ignored.

XtNmargin

Synopsis: The callback list invoked when the pane is redisplayed.

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCMargin Dimension 4 SGI

Class Type Default Access

XtCLinesVisible int 16 GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (T – Z) 637

10
TextEdit Widget

The call_data parameter is a pointer to an OlTextMarginCallData structure:

typedef struct {
OlTextMarginHint hint ;
XRectangle ∗rect ;

} OlTextMarginCallData, ∗OlTextMarginCallDataPointer;

typedef enum {
OL_MARGIN_EXPOSED,
OL_MARGIN_CALCULATED

} OlTextMarginHint;

The hint member indicates whether the area to be redrawn was explicitly
known because of an exposure event (OL_MARGIN_EXPOSED) or if the
rectangle was calculated relative to the textual display
OL_MARGIN_CALCULATED). The margin callback should respond to the
OL_MARGIN_EXPOSED hint by repainting the area defined by the rect member.

The margin callback may wish to calculate its own rectangle in the
OL_MARGIN_CALCULATED case. It can use the rectangle structure passed with
the call_data for this purpose. This callback can be used to repair the margins
for the text, such as to display line numbers for the text in the left margin.

XtNmenuTitle

Synopsis: The title of the TextEdit menu.
Values: Any OlStr value valid in the current locale.

XtNmodifyVerification

Synopsis: The callback list invoked when a modification of the text is
attempted.

The call_data parameter is a pointer to an OlTextModifyCallData structure:

typedef struct {
Boolean ok ;
TextPosition current_cursor ;
TextPosition select_start ;
TextPosition select_end ;
TextPosition new_cursor ;
TextPosition new_select_start ;

Class Type Default Access

XtCMenuTitle OlStr “Edit” GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

638 OLIT Reference Manual—August 1994

10
TextEdit Widget

TextPosition new_select_end ;
char ∗text ;
int text_length ;

} OlTextModifyCallData, ∗OlTextModifyCallDataPointer;

All of the fields in this structure, with the exception of the ok flag, are treated as
read-only information. The application can return without changing the value
of ok (initially TRUE), in which case the update will occur. The application can
also set the ok flag to FALSE, perform any other operations it desires, and
return, in which case the update will not be performed.

XtNmotionVerification

Synopsis: The callback list invoked whenever the cursor position moves
within the widget.

The call_data parameter is a pointer to an OlTextMotionCallData structure:

typedef struct {
Boolean ok ;
TextPosition current_cursor ;
TextPosition new_cursor ;
TextPosition select_start ;
TextPosition select_end ;

} OlTextMotionCallData, ∗OlTextMotionCallDataPointer;

This callback list is used whenever the cursor position changes due to cursor
movement operations or by modification of the text.

The application can distinguish between a simple cursor movement and a
modify operation by comparing the current_cursor and new_cursor values.
When these values are equal, the callback is the result of a modify operation. In
this case the ok flag is ignored and the application should not attempt to
perform updates to the text or its display during this callback.

If the values of current_cursor and new_cursor are different, the application is
guaranteed that the operation is the result of a cursor movement. In this mode
all of the fields in this structure, with the exception of the ok flag, are treated as
read-only information.

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (T – Z) 639

10
TextEdit Widget

The application can return without changing the value of the ok flag (initially
TRUE), in which case the movement will occur. The application can also set ok
to FALSE, perform any other operations it desires and return, in which case the
movement will not be performed.

XtNpostModifyNotification

Synopsis: The callback list invoked after a text update has completed.

The call_data parameter is a pointer to an OlTextPostModifyCallData
structure:

typedef struct {
Boolean requestor ;
TextPosition new_cursor ;
TextPosition new_select_start ;
TextPosition new_select_end ;
char ∗inserted ;
char ∗deleted ;
TextLocation delete_start ;
TextLocation delete_end ;
TextLocation insert_start ;
TextLocation insert_end ;
TextLocation cursor_position ;

} OlTextPostModifyCallData, ∗OlTextPostModifyCallDataPointer;

This callback synchronizes the application with the text once a modify
operation is completed. For example, the application may record successful
edit operations in an undo buffer to provide multilevel undo functionality. The
data provided in this callback is considered read-only and volatile (the
application should copy what it needs from this structure before returning).

XtNrightMargin

Synopsis: The size of the right margin, in pixels.

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Class Type Default Access

XtCMargin Dimension 4 SGI

640 OLIT Reference Manual—August 1994

10
TextEdit Widget

XtNselectEnd /
XtNselectStart

Synopsis: The character position of the end/start of the current text selection.

This resource is used with XtNselectStart and XtNcursorPosition to
specify a selection. To be effective, the following conditions must be true:

XtNselectStart ≤ XtNselectEnd
and either XtNcursorPosition == XtNselectStart

or
XtNcursorPosition == XtNselectEnd

If either of these tests fails, then XtNselectStart and XtNselectEnd are set
to the value of XtNcursorPosition .

XtNsource

Synopsis: The source of the text to display.
Values: The datatype of the value depends on the value of

XtNsourceType :

The TextEdit widget does not guarantee that an XtGetValues() on this
resource will return the correct data and datatype. Internally, the passed-in
values are overwritten. To get at the current text contents, use the TextEdit
function OlTextEditCopyBuffer() (see page 660).

Class Type Default Access

XtCTextPosition TextPosition 0 SGI

XtCTextPosition TextPosition 0 SGI

Class Type Default Access

XtCSource OlStr NULL SGI

XtNsourceType XtNsource Contents

OL_STRING_SOURCE Any OlStr value valid in the current locale.

OL_DISK_SOURCE A string that represents the pathname of a file
containing the source text.

OL_TEXT_BUFFER_SOURCE A pointer to a TextBuffer containing the source text
in single-byte format.

OL_OLTEXT_BUFFER_SOURCE A pointer to a TextBuffer containing the source text
in multi-byte format.

Widget Reference (T – Z) 641

10
TextEdit Widget

XtNsourceType

Synopsis: The interpretation of the XtNsource resource value.
Values: OL_STRING_SOURCE/”stringsource” – The XtNsource value

is interpreted as the string to be used as the source.
OL_DISK_SOURCE/”disksource” – The XtNsource value is
interpreted as the name of the file containing the source.
OL_TEXT_BUFFER_SOURCE –The XtNsource value is
interpreted as a pointer to a previously initialized single-byte
format TextBuffer (see “Text Buffer Functions” on page 163 for
a description of TextBuffers). This value can only be set
programmatically; there is no corresponding resource file string.
OL_OLTEXT_BUFFER_SOURCE –The XtNsource value is
interpreted as a pointer to a previously initialized multi-byte
format TextBuffer (see “Text Buffer Functions” on page 163 for
a description of TextBuffers). This value can only be set
programmatically; there is no corresponding resource file string.

XtNtabTable

Synopsis: The pointer to an array of tab positions.

The tab positions are specified in terms of pixels and must be terminated by a
zero (0) entry. The widget calculates tabs by finding the next tab table entry
that exceeds the current x offset for the line. If no such entry exists in the table
or if the pointer to the tab table is NULL, the tab is set to the next greater
multiple of 8 times the size of the “n” (en) character in the font.

XtNtopMargin

Synopsis: The number of pixels used for the top margin.

Class Type Default Access

XtCSourceType OlSourceType OL_STRING_SOURCE SGI

Class Type Default Access

XtCTabTable TabTable NULL SGI

Class Type Default Access

XtCMargin Dimension 4 SGI

642 OLIT Reference Manual—August 1994

10
TextEdit Widget

XtNwrapMode

Synopsis: The wrapping of the text in the pane.
Values: OL_WRAP_ANY/”wrapany” – Lines are wrapped at the last

character before the right margin.
OL_WRAP_WHITE_SPACE/”wrapwhitespace” – Lines are
wrapped at the last white space before the right margin or at the
last character before the right margin if the line does not contain
any white space.
OL_WRAP_OFF/”wrapoff” – Lines are not wrapped and the
pane may scroll horizontally.

Activation Types

The following table lists the activation types used by the TextEdit.

Class Type Default Access

XtCWrapMode OlWrapMode OL_WRAP_WHITE_SPACE SGI

Table 10-4 TextEdit Activation Types

Activation Type Semantics Resource Name

OL_ADJUST ADJUST XtNadjustBtn

OL_ADJUSTKEY ADJUST XtNadjustKey

OL_CANCEL CANCEL XtNcancelKey

OL_CHARBAK LEFT XtNleftKey

OL_CHARFWD RIGHT XtNrightKey

OL_COPY COPY XtNcopyBtn

OL_CUT CUT XtNcutBtn

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_DELCHARBAK DELETEBACKWARD XtNdelCharBakFwd

OL_DELCHARFWD DELETEFORWARD XtNdelCharFwdKey

OL_DELLINE DELETELINE XtNdelLineKey

OL_DELLINEBAK DELLINEBAK XtNdelLineBakKey

OL_DELLINEFWD DELLINEFWD XtNdelLineFwdKey

OL_DELWORDBAK DELWORDBAK XtNdelWordBakKey

OL_DELWORDFWD DELWORDFWD XtNdelWordFwdKey

OL_DOCEND DATAEND XtNdocEndKey

OL_DOCSTART DATASTART XtNdocStartKey

Widget Reference (T – Z) 643

10
TextEdit Widget

OL_HELP HELP XtNhelpKey

OL_LINEEND ROWEND XtNlineEndKey

OL_LINESTART ROWSTART XtNlineStartKey

OL_MENU MENU XtNmenuBtn

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PAGEDOWN PAGEDOWN XtNpageDownKey

OL_PAGELEFT PAGELEFT XtNpageLeftKey

OL_PAGERIGHT PAGERIGHT XtNpageRightKey

OL_PAGEUP PAGEUP XtNpageUpKey

OL_PANEEND PANEDOWN XtNpaneEndKey

OL_PANESTART PANEUP XtNpaneStartKey

OL_PASTE PASTE XtNpasteBtn

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_ROWDOWN DOWN XtNdownKey

OL_ROWUP UP XtNupKey

OL_SCROLLDOWN SCROLLDOWN XtNscrollDownKey

OL_SCROLLLEFT SCROLLLEFT XtNscrollLeftKey

OL_SCROLLLEFTEDGE SCROLLLEFTEDGE XtNscrollLeftEdgeKey

OL_SCROLLRIGHT SCROLLRIGHT XtNscrollRightKey

OL_SCROLLRIGHTEDGE SCROLLRIGHTEDGE XtNscrollRightEdgeKey

OL_SCROLLUP SCROLLUP XtNscrollUpKey

OL_SELCHARBAK SELCHARBAK XtNselCharBakKey

OL_SELCHARFWD SELCHARFWD XtNselCharFwdKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_SELFLIPENDS SELFLIPENDS XtNselFlipEndsKey

OL_SELLINE SELLINE XtNselLineKey

OL_SELLINEBAK SELLINEBAK XtNselLineBakKey

Table 10-4 TextEdit Activation Types (Continued)

Activation Type Semantics Resource Name

644 OLIT Reference Manual—August 1994

10
TextEdit Widget

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_ADJUST

The OL_ADJUST activation type first calls the XtNbuttons callback list with
the appropriate OlInputCallData structure. If there is no XtNbuttons
callback or if the consumed field of the OlInputCallData structure is TRUE,
then processing continues. The OL_ADJUST activation type calls the
XtNmotionVerification callback list with the appropriate
OlTextMotionCallData structure containing the new cursor position,
selection start, and selection end. If a callback is not registered or the
OlTextMotionCallData ’s ok field is TRUE, the OL_ADJUST activation type
will modify the XtNcursorPosition , XtNselectStart , and
XtNselectEnd resources to reflect the cursor position and the resulting
selection.

OL_CHARBAK

The OL_CHARBAK activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved one character before the current cursor position. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.
When the cursor is positioned before the first character on a line, the

OL_SELLINEFWD SELLINEFWD XtNselLineFwdKey

OL_SELWORDBAK SELWORDBAK XtNselWordBakKey

OL_SELWORDFWD SELWORDFWD XtNselWordFwdKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

OL_UNDO UNDO XtNundoKey

OL_WORDBAK JUMPLEFT XtNwordBakKey

OL_WORDFWD JUMPRIGHT XtNwordFwdKey

Table 10-4 TextEdit Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (T – Z) 645

10
TextEdit Widget

OL_CHARBAK activation type will cause the previous line to be brought into
view and the XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure.

OL_CHARFWD

The OL_CHARFWD activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved one character after the current cursor position. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.
When the cursor is positioned after the last character on a line, the activation
type will cause the next line to be brought into view and the XtNmargin
callback list will be called with the appropriate OlTextMarginCallData
structure.

OL_COPY

The OL_COPY activation type first calls the XtNbuttons callback list with the
appropriate OlInputCallData structure. If there is no XtNbuttons callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure containing the
currently selected items. If the OlTextModifyCallData ok field is TRUE upon
return, then the selected text will be copied to the CLIPBOARD.

OL_CUT

The OL_CUT activation type first calls the XtNbuttons callback list with the
appropriate OlInputCallData structure. If there is no XtNbuttons callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type applies only to TextEdit widgets that
have XtNeditType of OL_TEXT_EDIT. The XtNmodifyVerification
callback list will be called with an OlTextModifyCallData structure
containing the currently selected items. If the OlTextModifyCallData ok
field is TRUE upon return, then the selected text will be copied to the
CLIPBOARD.

646 OLIT Reference Manual—August 1994

10
TextEdit Widget

OL_DELCHARBAK

The OL_DELCHARBAK activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the character to the left of the cursor
has been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the character has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELCHARFWD

The OL_DELCHARFWD activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the character to the right of the cursor
has been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the character has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

Widget Reference (T – Z) 647

10
TextEdit Widget

OL_DELLINE

The OL_DELLINE activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmodifyVerification callback
list with an OlTextModifyCallData structure that represents the selection,
cursor position, and text after the current line has been deleted. If there is no
XtNmodifyVerification callback or if the ok field of the
OlTextModifyCallData structure is TRUE, then the text will be updated.
Then the activation type calls the XtNmotionVerification callback list with
an OlTextMotionCallData structure that represents the selection and cursor
position after the line has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELLINEBAK

The OL_DELLINEBAK activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the line to the left of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the line has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

648 OLIT Reference Manual—August 1994

10
TextEdit Widget

OL_DELLINEFWD

The OL_DELLINEFWD activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the line to the right of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the line has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELWORDBAK

The OL_DELWORDBAK activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the word to the left of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the word has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

Widget Reference (T – Z) 649

10
TextEdit Widget

OL_DELWORDFWD

The OL_DELWORDFWD activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the word to the right of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the word has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DOCEND

The OL_DOCEND activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved to after the last character on the last line of the TextBuffer. If
there is no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved
and the text may be scrolled to bring the last line into view. If the text is
scrolled to bring the last line into view, the XtNmargin callback list will be
called with the appropriate OlTextMarginCallData structure.

OL_DOCSTART

The OL_DOCSTART activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved to before the first character on the first line of the TextBuffer.

650 OLIT Reference Manual—August 1994

10
TextEdit Widget

If there is no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved
and the text may be scrolled to bring the first line into view. If the text is
scrolled to bring the first line into view, the XtNmargin callback list will be
called with the appropriate OlTextMarginCallData structure.

OL_LINEEND

The OL_LINEEND activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved to after the last character on the current line. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_LINESTART

The OL_LINESTART activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved to before the first character on the current line. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_MENU/
OL_MENUKEY

The OL_MENU activation type first calls the XtNbuttons callback list with the
appropriate OlInputCallData structure. If there is no XtNbuttons callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The OL_MENUKEY activation type first calls the XtNkeys
callback list with the appropriate OlInputCallData structure. If there is no
XtNkeys callback or if the consumed field of the OlInputCallData structure
is TRUE, then processing continues. The OL_MENU and OL_MENUKEY
activation types will pop up the TextEdit menu.

Widget Reference (T – Z) 651

10
TextEdit Widget

OL_PAGEDOWN

The OL_PAGEDOWN activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the page
after the current view into the view.

OL_PAGELEFT

The OL_PAGELEFT activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The OL_PAGELEFT activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the page to
the left of the current view into the view.

OL_PAGERIGHT

The OL_PAGERIGHT activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The OL_PAGERIGHT activation type calls the XtNmargin
callback list with the appropriate OlTextMarginCallData structure to bring
the page to the right of the current view into the view.

OL_PAGEUP

The OL_PAGEUP activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The OL_PAGEUP activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the page
before the current view into the view.

OL_PANEEND

The OL_PANEEND activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor

652 OLIT Reference Manual—August 1994

10
TextEdit Widget

position moved to after the last character on the last line in the current view. If
there is no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_PANESTART

The OL_PANESTART activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved to before the first character on the first line in the
current view. If there is no XtNmotionVerification callback or if the ok
field of the OlTextMotionCallData structure is TRUE, then the cursor will be
moved.

OL_PASTE

The OL_PASTE activation type first calls the XtNbuttons callback list with the
appropriate OlInputCallData structure. If there is no XtNbuttons callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The OL_PASTE activation type applies only to TextEdit
widgets that have XtNeditType of OL_TEXT_EDIT. When the widget has
focus, then the OL_PASTE activation type will insert the contents of the
CLIPBOARD at the current insert position by calling the
XtNpostModifyVerification callback list. The XtNmotionVerification
callback list will be called with an OlTextMotionCallData structure that
represents the new cursor and selection position.

OL_ROWDOWN

The OL_ROWDOWN activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The OL_ROWDOWN activation type calls the
XtNmotionVerification callback list with an OlTextMotionCallData
structure that represents the cursor position moved one line after the current
cursor position. If there is no XtNmotionVerification callback or if the ok
field of the OlTextMotionCallData structure is TRUE, then the cursor will be
moved and the text may be scrolled to bring the new line into view. When a
new line is brought into the view, the XtNmargin callback list will be called
with the appropriate OlTextMarginCallData structure.

Widget Reference (T – Z) 653

10
TextEdit Widget

OL_ROWUP

The OL_ROWUP activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved one line previous to the current cursor position. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved
and the text may be scrolled to bring the new line into view. When a new line
is brought into the view, the XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SCROLLDOWN

The OL_SCROLLDOWN activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the line after
the current view into the view.

OL_SCROLLLEFT

The OL_SCROLLLEFT activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the character
left of the current view into the view.

OL_SCROLLLEFTEDGE

The OL_SCROLLLEFTEDGE activation type first calls the XtNkeys callback list
with the appropriate OlInputCallData structure. If there is no XtNkeys
callback or if the consumed field of the OlInputCallData structure is TRUE,
then processing continues. The activation type calls the XtNmargin callback
list with the appropriate OlTextMarginCallData structure to bring the left-
most character of the document into the view.

654 OLIT Reference Manual—August 1994

10
TextEdit Widget

OL_SCROLLRIGHT

The OL_SCROLLRIGHT activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the character
right of the current view into the view.

OL_SCROLLRIGHTEDGE

The OL_SCROLLRIGHTEDGE activation type first calls the XtNkeys callback list
with the appropriate OlInputCallData structure. If there is no XtNkeys
callback or if the consumed field of the OlInputCallData structure is TRUE,
then processing continues. The activation type calls the XtNmargin callback
list with the appropriate OlTextMarginCallData structure to bring the
rightmost character of the document into the view.

OL_SCROLLUP

The OL_SCROLLUP activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmargin callback list with the
appropriate OlTextMarginCallData structure to bring the line before the
current view into the view.

OL_SELCHARBAK

The OL_SELCHARBAK activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended one character to the left of the cursor position and the
cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, the cursor will be moved, and the text may be scrolled to bring the
previous line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

Widget Reference (T – Z) 655

10
TextEdit Widget

OL_SELCHARFWD

The OL_SELCHARFWD activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended one character to the right of the cursor position and the
cursor position moved to after the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, the cursor will be moved, and the text may be scrolled to bring the
next line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SELECT

The OL_SELECT activation type first calls the XtNbuttons callback list with
the appropriate OlInputCallData structure. If there is no XtNbuttons
callback or if the consumed field of the OlInputCallData structure is TRUE,
then processing continues. The activation type calls the
XtNmotionVerification callback list with the appropriate
OlTextMotionCallData structure containing the new cursor position,
selection start, and selection end. If a callback is not registered or the
OlTextMotionCallData ’s ok field is TRUE, the OL_SELECT activation type
will modify the XtNcursorPosition , XtNselectStart , and
XtNselectEnd resources to reflect the cursor position and the resulting
selection.

OL_SELFLIPENDS

The OL_SELFLIPENDS activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved to the opposite end of the current selection. If there is
no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved. If
the text is scrolled to bring the cursor into view, the XtNmargin callback list
will be called with the appropriate OlTextMarginCallData structure.

656 OLIT Reference Manual—August 1994

10
TextEdit Widget

OL_SELLINE

The OL_SELLINE activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the selection
extended to the beginning of the current line and to the end of the current line.
and the cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure.

OL_SELLINEBAK

The OL_SELLINEBAK activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the beginning of the line to the left of the current cursor
position and the cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, the cursor will be moved, and the text may be scrolled to bring the
previous line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SELLINEFWD

The OL_SELLINEFWD activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the end of the line to the right of the current cursor
position and the cursor position moved to after the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be

Widget Reference (T – Z) 657

10
TextEdit Widget

extended, the cursor will be moved, and the text may be scrolled to bring the
next line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SELWORDBAK

The OL_SELWORDBAK activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the beginning of the word to the left of the current cursor
position and the cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, the cursor will be moved, and the text may be scrolled to bring the
previous line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SELWORDFWD

The OL_SELWORDFWD activation type first calls the XtNkeys callback list with
the appropriate OlInputCallData structure. If there is no XtNkeys callback
or if the consumed field of the OlInputCallData structure is TRUE, then
processing continues. The activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the end of the word to the right of the current cursor
position and the cursor position moved to after the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, the cursor will be moved, and the text may be scrolled to bring the
next line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_UNDO

The OL_UNDO activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmodifyVerification callback
list with an OlTextModifyCallData structure that represents the selection,
cursor position, and text before the last modification. If there is no

658 OLIT Reference Manual—August 1994

10
TextEdit Widget

XtNmodifyVerification callback or if the ok field of the
OlTextModifyCallData structure is TRUE, then the text will be updated.
Then the activation type calls the XtNmotionVerification callback list with
an OlTextMotionCallData structure that represents the selection and cursor
position before the last modification. If there is no XtNmotionVerification
callback or if the ok field of the OlTextMotionCallData structure is TRUE,
then the cursor and selection will be updated. The XtNmargin callback list will
be called with the appropriate OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_WORDBAK

The OL_WORDBAK activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved one word before the current cursor position. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.
When the cursor is positioned before the first word on a line, the previous line
will be brought into view and the XtNmargin callback list will be called with
the appropriate OlTextMarginCallData structure.

OL_WORDFWD

The OL_WORDFWD activation type first calls the XtNkeys callback list with the
appropriate OlInputCallData structure. If there is no XtNkeys callback or if
the consumed field of the OlInputCallData structure is TRUE, then processing
continues. The activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved one word after the current cursor position. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.
When the cursor is positioned after the last word on a line, the next line will be
brought into view and the XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

Widget Reference (T – Z) 659

10
TextEdit Widget

See Also

“StaticText Widget” on page 600,
“TextEdit Functions” on page 660,
“TextField Widget” on page 665,
“TextField Functions” on page 686,
“TextLine Widget” on page 688,
“TextLine Functions” on page 708,
“Text Selection Operations” on page 204.

660 OLIT Reference Manual—August 1994

10
TextEdit Functions

TextEdit Functions
The following functions assist in manipulating TextEdit widgets.

OlTextEditClearBuffer
#include <Xol/textbuff.h>

Boolean OlTextEditClearBuffer(
TextEditWidget ctx);

OlTextEditClearBuffer() deletes all of the text associated with the
TextEdit widget ctx. It returns FALSE if the widget supplied is not a TextEdit
widget or if the clear operation fails; otherwise, it returns TRUE.

OlTextEditReadSubString
#include <Xol/textbuff.h>

Boolean OlTextEditReadSubString(
TextEditWidget ctx ,
char ∗∗buffer ,
TextPosition start ,
TextPosition end);

OlTextEditReadSubString() retrieves a copy of a substring from the
TextBuffer associated with the TextEdit widget. The storage required for the
copy is allocated by this routine; it is the responsibility of the caller to free this
storage when appropriate. It returns FALSE if the widget supplied is not a
TextEdit widget or if the operation fails; otherwise, it returns TRUE.

OlTextEditCopyBuffer
#include <Xol/textbuff.h>

Boolean OlTextEditCopyBuffer(
TextEditWidget ctx ,
char ∗buffer);

OlTextEditCopyBuffer() retrieves a copy of the contents of the TextBuffer
associated with the TextEdit widget ctx. The storage required for the copy is
allocated by this routine; it is the responsibility of the caller to free this storage
when appropriate. The function returns FALSE if the widget supplied is not a
TextEdit widget or if the buffer cannot be read; otherwise, it returns TRUE.

Widget Reference (T – Z) 661

10
TextEdit Functions

When OlTextEditCopyBuffer() returns, buffer contains the text in the
TextBuffer of the widget in an (OlStr ∗); the char ∗∗ shown in the synopsis is
for binary compatibility with previous versions.

OlTextEditCopySelection
#include <Xol/textbuff.h>

Boolean OlTextEditCopySelection(
TextEditWidget ctx ,
int delete);

OlTextEditCopySelection() Copies or Cuts the current selection in the
TextEdit widget ctx. If no selection exists, or if the TextEdit cannot acquire the
CLIPBOARD, or if the widget supplied is not a TextEdit widget, FALSE is
returned. Otherwise, the selection is copied to the CLIPBOARD then, if the delete
flag is nonzero, the text is then deleted from the TextBuffer associated with the
TextEdit widget (i.e., a Cut operation is performed). Finally, TRUE is returned.

OlTextEditRedraw
#include <Xol/textbuff.h>

Boolean OlTextEditRedraw(
TextEditWidget ctx);

OlTextEditRedraw() forces a complete refresh of the TextEdit widget
display. It returns FALSE if the widget supplied is not a TextEdit widget or if
the widget is not realized or if the update state is FALSE; otherwise, it returns
TRUE.

OlTextEditGetCursorPosition
#include <Xol/textbuff.h>

Boolean OlTextEditGetCursorPosition(
TextEditWidget ctx ,
TextPosition ∗start ,
TextPosition ∗end ,
TextPosition ∗cursorPosition);

OlTextEditGetCursorPosition() retrieves the current selection start, end,
and cursorPosition. The start value will represent the position of the first
character in the selection; the end value will be the position of the character

662 OLIT Reference Manual—August 1994

10
TextEdit Functions

after the last character in the selection. (For example, if the TextBuffer contains
abc and the selection is ab , start will return as 0 and end as 2.) If there is no
current selection, start and end will both be equal to cursorPosition. The function
returns FALSE if the widget supplied is not a TextEdit widget; otherwise, it
returns TRUE.

OlTextEditSetCursorPosition
#include <Xol/textbuff.h>

Boolean OlTextEditSetCursorPosition(
TextEditWidget ctx ,
TextPosition start ,
TextPosition end ,
TextPosition cursorPosition);

OlTextEditSetCursorPosition() changes the current selection start and
end and cursorPosition. For efficiency, the function does not check the validity of
the positions. If invalid values are given, results are unpredictable. The
function attempts to ensure that the cursorPosition is visible by scrolling the
display. It returns FALSE if the widget supplied is not a TextEdit widget;
otherwise, it returns TRUE.

OlTextEditGetLastPosition
#include <Xol/textbuff.h>

Boolean OlTextEditGetLastPosition(
TextEditWidget ctx ,
TextPosition ∗position);

OlTextEditGetLastPosition() retrieves the TextEdit widget ctx. It returns
FALSE if the widget supplied is not a TextEdit widget; otherwise, it returns
TRUE.

OlTextEditMoveDisplayPosition
#include <Xol/textbuff.h>

void OlTextEditMoveDisplayPosition(
TextEditWidget ctx ,
OlInputEvent move_type);

Widget Reference (T – Z) 663

10
TextEdit Functions

OlTextEditMoveDisplayPosition() moves the display position and
performs scroll updates in the TextEdit widget. It is recommended that this
function be used instead of XtSetValues() to move the display position.
Using XtSetValues() may result in a screen flicker.
The move_type parameter can have one of the following values:

OL_SCROLLUP Scroll up a line
OL_SCROLLDOWN Scroll down a line
OL_PAGEUP Scroll a page up
OL_PAGEDOWN Scroll a page down
OL_HOME Scroll to the beginning of the text(home)
OL_END Scroll to the end

OlTextEditTextBuffer
#include <Xol/textbuff.h>

TextBuffer ∗OlTextEditTextBuffer(
TextEditWidget ctx);

OlTextEditTextBuffer() retrieves the TextBuffer pointer associated with
the TextEdit widget ctx. This pointer can be used to access the facilities
provided by the functions in “Text Buffer Functions” on page 163 and “Text
Buffer Functions for Internationalization” on page 176. The function returns
NULL if the text format of the ctx widget is not single-byte.

OlTextEditOlTextBuffer
#include <Oltextbuff.h>

OlTextBufferPtr OlTextEditOlTextBuffer(
TextEditWidget ctx);

OlTextEditOlTextBuffer () retrieves the OlTextBufferPtr associated
with the TextEdit widget ctx. OlTextBufferPtr is an opaque pointer that
points to a TextBuffer that is capable of handling multibyte and wide character
data. This type of text buffer is only associated with a multibyte
(OL_MB_STR_REP) or wide character (OL_WC_STR_REP) TextEdit widget.

The function returns NULL if the text format of the ctx widget is single-byte. It
returns an OlTextBufferPtr if the text format of ctx is multibyte or wide
character. For a single-byte (OL_SB_STR_REP) TextEdit widget, use
OlTextEditTextBuffer() .

664 OLIT Reference Manual—August 1994

10
TextEdit Functions

OlTextEditInsert
#include <Xol/textbuff.h>

Boolean OlTextEditInsert(
TextEditWidget ctx ,
String buffer ,
int length);

OlTextEditInsert() inserts a NULL-terminated buffer containing length
bytes in the TextBuffer associated with the TextEdit widget ctx. The inserted text
replaces the current (if any) selection. The value of length is not used internally,
but is passed on as the length field in the XtNmodifyVerification callback.
The function returns FALSE if the widget supplied is not a TextEdit widget or if
the insert operation fails; otherwise, it returns TRUE.

OlTextEditUpdate
#include <Xol/textbuff.h>

Boolean OlTextEditUpdate(
TextEditWidget ctx ,
Boolean state);

OlTextEditUpdate() sets the updateState of a TextEdit widget. Setting the
state to FALSE turns screen update off; setting the state to TRUE turns screen
updates on and refreshes the display. The function returns FALSE if the widget
supplied is not a TextEdit widget; otherwise, it returns TRUE.

OlTextEditPaste
#include <Xol/textbuff.h>

Boolean OlTextEditPaste(
TextEditWidget ctx);

OlTextEditPaste() pastes the contents of the CLIPBOARD into the TextEdit
widget ctx. The current (if any) selection is replaced by the contents of the
CLIPBOARD. The function returns FALSE if the widget supplied is not a
TextEdit widget; otherwise, it returns TRUE.

See Also

Regular Expression Functions on page 161,
“Text Buffer Functions” on page 163,
“Text Buffer Functions for Internationalization” on page 176.

Widget Reference (T – Z) 665

10
TextField Widget

TextField Widget

Note – The TextField widget is obsolete but remains in the toolkit for backward
compatibility. Its functionality has been superseded by the TextLine widget,
which provides a more efficient implementation of a one-line text field. See
“TextLine Widget” on page 688 for more information.

Class
Class Name: TextField
Class Pointer: textFieldWidgetClass

Ancestry

Core-Composite-Constraint-Manager-TextField

Required Header Files
#include <Xol/OpenLook>
#include <Xol/TextField.h>

Description

Components

A TextField widget is a one-line input field for text data, as shown in the
following diagram.

Figure 10-3 TextField Components

Left Arrow Right Arrow

TextField Widget Input Caret Input Field

666 OLIT Reference Manual—August 1994

10
TextField Widget

The input field and input caret are always present; however, the left and right
arrows only appear when the value of the TextField is larger than the input
field can display. These arrows provide the user the ability to scroll the
TextField value.

Subwidget

The TextField widget creates a one-line TextEdit widget to handle the text
editing. If the application needs to configure certain TextEdit resources (i.e.,
XtNcursorPosition), it can access the handle to the TextEdit subwidget
through the XtNtextEditWidget resource. For more information on the
TextEdit widget, see “TextEdit Widget” on page 623.

Keyboard Input

Once the input focus has been moved to the Input Field, keyboard entry is
allowed. The TextField widget does not validate the input, leaving that up to
the application.

Coloration

For 3D and 2D, XtNfontColor is used to draw the TextField’s text and
XtNinputFocusColor is used to draw the active caret.

For 3D, the TextField underline and scrollbutton coloration is defined by the
OPEN LOOK GUI Functional Specification, Chapter 9, “Color and Three-
Dimensional Design.” XtNbackground is used for BG1, and the BG2 (pressed-
in), BG3 (shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNbackground and XtNforeground are used to render the
TextField’s underline and scrollbuttons as described by the OPEN LOOK GUI
Functional Specification, Chapter 4, “Controls.”

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE.

The TextField widget responds to the following Activation Types for keyboard
navigation. For more information on these Activation Types and their key
bindings, see Table 10-9 on page 675.

Widget Reference (T – Z) 667

10
TextField Widget

OL_CHARBAK OL_MENU OL_PREVFIELD
OL_CHARFWD OL_MENUKEY OL_WORDBAK
OL_LINEEND OL_NEXTFIELD OL_WORDFWD
OL_LINESTART

Keyboard Mnemonic Display

The TextField does not display the mnemonic. If the TextField is the child of a
Caption widget, the Caption widget can be used to display the mnemonic.

Keyboard Accelerator Display

The TextField does not respond to a keyboard accelerator because clicking the
SELECT button on a TextField activates depending on the pointer position. So,
the TextField does not display a keyboard accelerator.

Text Selection

The TextField widget responds to the following Activation Types for selection.
For more information on these Activation Types and their key bindings, see
Table 10-9 on page 675.

OL_ADJUST OL_SELCHARBAK OL_SELLINE
OL_ADJUSTKEY OL_SELCHARFWD OL_SELLINEBAK
OL_COPY OL_SELECT OL_SELLINEFWD
OL_CUT OL_SELECTKEY OL_SELWORDBAK
OL_PASTE OL_SELFLIPENDS OL_SELWORDFWD

Scrolling

The TextField widget responds to the following Activation Types for scrolling.
For more information on these Activation Types and their key bindings, see
Table 10-9 on page 675.

OL_SCROLLRIGHT OL_SCROLLLEFT OL_SCROLLLEFTEDGE
OL_SCROLLRIGHTEDGE

Editing

The TextField widget responds to the following Activation Types for editing.
For more information on these Activation Types and their key bindings, see
Table 10-9 on page 675.

668 OLIT Reference Manual—August 1994

10
TextField Widget

OL_DELCHARBAK OL_DELLINEBAK OL_DELWORDFWD
OL_DELCHARFWD OL_DELLINEFWD OL_RETURN
OL_DELLINE OL_DELWORDBAK OL_UNDO

Scrolling Long Text Input

If an input value exceeds the length of the Input Field, the Left Arrow and/or
Right Arrow appear and the input value is visually truncated on the left
and/or the right to show only as many characters as can fit in the Input Field.
The truncation is at a character boundary. Since the Arrows take up space that
would otherwise be used for the input, the truncation is more severe than
would be necessary if they were not visible. An Arrow is present only if
characters are hidden in the direction expressed by the arrow.

The user can scroll to show the hidden parts of the input by:

• Clicking or pressing SELECT on the Left or Right Arrow.

• Clicking SELECT on the Left Arrow scrolls the input one character to the
right to show the next character that was hidden to the left.

• Clicking SELECT on the Right Arrow scrolls the input one character to the
left to show the next character that was hidden to the right.

• Pressing SELECT scrolls continuously, with a user-adjustable wait between
changes.

The text does not scroll beyond its limits, so that the left-most character never
moves beyond the right edge of the TextField widget and the rightmost
character never moves beyond the left edge.

• If the user attempts to scroll beyond the limits by clicking SELECT, the
system beeps.

• If the user is pressing SELECT when the limit is reached, the text stops
scrolling but the system does not beep.

• If the user releases SELECT and then presses it again to exceed the scrolling
limit, the system beeps once regardless of how long SELECT is pressed.

Input Validation

A validation callback list can be used to perform limited per-field validation,
such as when the user presses the RETURN, PREVFIELD, or NEXTFIELD keys. It
is not called if the user moves the focus to another input area using the mouse.

Widget Reference (T – Z) 669

10
TextField Widget

Caret Position

As characters are entered from the keyboard, the input caret moves to the right
until it reaches the right end of the input field. As additional characters are
typed the text scrolls to the left (the left arrow appears as discussed above) and
the input caret moves relative to the text but remains stationary on the screen.

Selecting and Operating on the Input Field

The TextField widget allows text to be copied or moved to and from the input
field. See “Text Selection Operations” on page 204 for the description of these
operations.

Resources

Table 10-5 TextField Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

670 OLIT Reference Manual—August 1994

10
TextField Widget

Table 10-6 TextField Composite Resources

Name Type Default Access

XtNchildren WidgetList NULL G

XtNinsertPosition XtOrderProc NULL SGI

XtNnumChildren Cardinal 0 G

Table 10-7 TextField Manager Resources

Name Type Default Access

XtNconsumeEvent XtCallbackList NULL SGIO

XtNinputFocusColor Pixel Red SGID

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNtraversalOn Boolean TRUE SGI

XtNunrealizeCallback XtCallbackList NULL SGIO

XtNuserData XtPointer NULL SGI

Table 10-8 TextField Resources

Name Type Default Access

XtNcharsVisible int (calculated) GI

XtNeditType OlEditType OL_TEXT_EDIT SGI

XtNfont OlFont XtDefaultFont SGI

XtNfontColor Pixel XtDefaultForeground SGID

XtNimPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

XtNinitialDelay int 500 SGI

XtNinsertTab Boolean FALSE SGI

XtNmaximumSize int 0 SGI

XtNrepeatRate int 100 SGI

XtNscale int 12 SGI

XtNstring OlStr NULL SGI

XtNtextEditWidget Widget NULL G

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNverification XtCallbackList NULL SGIO

Widget Reference (T – Z) 671

10
TextField Widget

XtNcharsVisible

Synopsis: The initial width of the list in terms of characters.

This resource overrides the XtNwidth resource setting. The XtNwidth is
recalculated to be the value of the average font width plus the values for the
internal left and right margins. The value of this resource changes to reflect the
effects of geometry changes imposed by the widget tree and the user. Calls to
XtSetValues() for this resource are ignored.

XtNeditType

Synopsis: The edit state of the source.
Values: OL_TEXT_READ/”textread” – The source is read-only; the user

cannot edit it.
OL_TEXT_EDIT/”textedit” – The source is fully editable.

XtNfont

The TextField widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfont” on page 26.

XtNfontColor

The TextField widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfontColor” on page 27.

XtNimPreeditStyle

Synopsis: The pre-edit style (in conjunction with the shell’s

Class Type Default Access

XtCCharsVisible int (calculated) GI

Class Type Default Access

XtCEditType OlEditMode OL_TEXT_EDIT SGI

Class Type Default Access

XtCFont OlFont XtDefaultFont SGI

Class Type Default Access

XtCFontColor Pixel XtDefaultForeground SGID

Class Type Default Access

XtCImPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

672 OLIT Reference Manual—August 1994

10
TextField Widget

XtNimStatusStyle resource). If the pre-edit style is not
supported by the input method, the ability to pre-edit is lost.

Values: OL_ON_THE_SPOT/”onTheSpot” - The pre-edit data is
displayed at the insertion point in the application window. The
preexisting user data is shifted and the pre-edit data is inserted at
the point of insertion.
OL_OVER_THE_SPOT/”overTheSpot” - The pre-edit data is
displayed in the application window, starting at the insertion
point. As the user types the pre-edit data, the preexisting user data
is obscured by the pre-edit data.
OL_ROOT_WINDOW/”rootWindow” - The pre-edit data is
displayed in a child of the root window, away from the point of
insertion.
OL_NO_PREEDIT/”none” - No pre-edit data is displayed.

See “XtNimStatusStyle” on page 44 and “Setting the Input Method Pre-Edit
and Status Styles (Asian Locales Only)” on page 82.

XtNinitialDelay

Synopsis: The number of milliseconds from the time the scrolling arrows are
pressed until the repeated scrolling starts.

XtNinsertTab

Synopsis: Determines whether a tab character is insertable into the text.
Values: TRUE/”true” - Tabs are insertable but not used for forward

traversal. Forward traversal can still be accomplished with
Control-Tab.
FALSE/”false” - A tab is not insertable.

Setting this resource to FALSE (the default) makes traversal of the controls
easier if the tab key is bound as OL_NEXTFIELD.

Class Type Default Access

XtCInitialDelay int 500 SGI

Class Type Default Access

XtCInsertTab Boolean FALSE SGI

Widget Reference (T – Z) 673

10
TextField Widget

XtNmaximumSize

Synopsis: The maximum number of characters that can be entered into the
internal buffer.

Values: 0 ≤ XtNmaximumSize

If this value is not set or is zero, the internal buffer will increase its size as
needed, limited only by memory limitations of the process.

XtNrepeatRate

Synopsis: The time in milliseconds between repeats when the scrolling
arrows are pressed for more than XtNinitialDelay milliseconds.

XtNscale

The TextField widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNscale” on page 29.

XtNstring

Synopsis: The content of the Input Field. On being set, a copy of the value is
made in an internal buffer.

Values: Any OlStr value valid in the current locale.

Using XtGetValues() on this resource gets a new copy that the application is
responsible for freeing when no longer needed.

The TextField function OlTextFieldGetOlString() can also be used to get
a copy of the XtNstring value; see page 686.

Class Type Default Access

XtCLength int 0 SGI

Class Type Default Access

XtCRepeatRate int 100 SGI

Class Type Default Access

XtCScale int 12 SGI

Class Type Default Access

XtCString OlStr NULL SGI

674 OLIT Reference Manual—August 1994

10
TextField Widget

XtNtextEditWidget

Synopsis: The TextEdit widget managed by the TextField.

This value can be used to directly access the underlying TextEdit widget (and
its TextBuffer) used to manage the textual display.

XtNtextFormat

The TextField widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNtextFormat” on page 29.

XtNverification

Synopsis: The callback list invoked when the user presses the RETURN,
PREVFIELD, or NEXTFIELD keys out of the TextField widget.

The call_data parameter is a pointer to a OlTextFieldVerify structure:

typedef struct _OlTextFieldVerify {
String string ;
Boolean ok ;
OlTextVerifyReason reason ;

} OlTextFieldVerify;

string A pointer to the content of the text field. It is not a copy but a pointer
to an internal buffer. The application should copy the buffer if
it needs to keep the data intact longer than the duration of the
callback.

ok Currently unused.
reason One of the following constants:

OlTextFieldReturn RETURN entered
OlTextFieldPrevious PREVFIELD entered
OlTextFieldNext NEXTFIELD entered

Class Type Default Access

XtCTextEditWidget Widget NULL G

Class Type Default Access

XtCTextFormat OlStrRep OL_SB_STR_REP GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (T – Z) 675

10
TextField Widget

Activation Types

The following table lists the activation types used by the TextField.

Table 10-9 TextField Activation Types

Activation Type Semantics Resource Name

OL_ADJUST ADJUST XtNadjustBtn

OL_ADJUSTKEY ADJUST XtNadjustKey

OL_CANCEL CANCEL XtNcancelKey

OL_CHARBAK LEFT XtNleftKey

OL_CHARFWD RIGHT XtNrightKey

OL_COPY COPY XtNcopyBtn

OL_CUT CUT XtNcutBtn

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_DELCHARBAK DELETE BACKWARD XtNdelCharBakFwd

OL_DELCHARFWD DELETE FORWARD XtNdelCharFwdKey

OL_DELLINE DELETE LINE XtNdelLineKey

OL_DELLINEBAK DELLINEBAK XtNdelLineBakKey

OL_DELLINEFWD DELLINEFWD XtNdelLineFwdKey

OL_DELWORDBAK DELWORDBAK XtNdelWordBakKey

OL_DELWORDFWD DELWORDFWD XtNdelWordFwdKey

OL_HELP HELP XtNhelpKey

OL_LINEEND ROW END XtNlineEndKey

OL_LINESTART ROW START XtNlineStartKey

OL_MENU MENU XtNmenuBtn

OL_MENUKEY MENU XtNmenuKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PASTE PASTE XtNpasteBtn

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_RETURN RETURN XtNreturnKey

OL_SCROLLLEFT SCROLLLEFT XtNscrollLeftKey

OL_SCROLLLEFTEDGE SCROLLLEFTEDGE XtNscrollLeftEdgeKey

676 OLIT Reference Manual—August 1994

10
TextField Widget

Activation types not described in the following table are described in
“Common Activation Types” on page 68.

OL_ADJUST

The OL_ADJUST activation type calls the XtNmotionVerification callback
list with the appropriate OlTextMotionCallData structure containing the
new cursor position, selection start, and selection end. If a callback is not
registered or the OlTextMotionCallData ’s ok field is TRUE, the OL_ADJUST
activation type will modify the XtNcursorPosition , XtNselectStart , and
XtNselectEnd resources to reflect the cursor position and the resulting
selection.

OL_CHARBAK

The OL_CHARBAK activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved one character before the current cursor position. If there
is no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_SCROLLRIGHT SCROLLRIGHT XtNscrollRightKey

OL_SCROLLRIGHTEDGE SCROLLRIGHTEDGE XtNscrollRightEdgeKey

OL_SELCHARBAK SELCHARBAK XtNselCharBakKey

OL_SELCHARFWD SELCHARFWD XtNselCharFwdKey

OL_SELECT SELECT XtNselectBtn

OL_SELECTKEY SELECT XtNselectKey

OL_SELFLIPENDS SELFLIPENDS XtNselFlipEndsKey

OL_SELLINE SELLINE XtNselLineKey

OL_SELLINEBAK SELLINEBAK XtNselLineBakKey

OL_SELLINEFWD SELLINEFWD XtNselLineFwdKey

OL_SELWORDBAK SELWORDBAK XtNselWordBakKey

OL_SELWORDFWD SELWORDFWD XtNselWordFwdKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

OL_UNDO UNDO XtNundoKey

OL_WORDBAK JUMP LEFT XtNwordBakKey

OL_WORDFWD JUMP RIGHT XtNwordFwdKey

Table 10-9 TextField Activation Types (Continued)

Activation Type Semantics Resource Name

Widget Reference (T – Z) 677

10
TextField Widget

OL_CHARFWD

The OL_CHARFWD activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved one character after the current cursor position. If there
is no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_COPY

The OL_COPY activation type calls the XtNmodifyVerification callback list
with an OlTextModifyCallData structure containing the currently selected
items. If the OlTextModifyCallData ok field is TRUE upon return, then the
selected text will be copied to the CLIPBOARD.

OL_CUT

The OL_CUT activation type applies only to TextField widgets that have
XtNeditType of OL_TEXT_EDIT. The XtNmodifyVerification callback list
will be called with an OlTextModifyCallData structure containing the
currently selected items. If the OlTextModifyCallData ok field is TRUE upon
return, then the selected text will be copied to the CLIPBOARD.

OL_DELCHARBAK

The OL_DELCHARBAK activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the character to the left of the cursor
has been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the character has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

678 OLIT Reference Manual—August 1994

10
TextField Widget

OL_DELCHARFWD

The OL_DELCHARFWD activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the character to the right of the cursor
has been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the character has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELLINE

The OL_DELLINE activation type calls the XtNmodifyVerification callback
list with an OlTextModifyCallData structure that represents the selection,
cursor position, and text after the current line has been deleted. If there is no
XtNmodifyVerification callback or if the ok field of the
OlTextModifyCallData structure is TRUE, then the text will be updated.
Then the activation type calls the XtNmotionVerification callback list
with an OlTextMotionCallData structure that represents the selection and
cursor position after the line has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection
will be updated. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELLINEBAK

The OL_DELLINEBAK activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the line to the left of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification

Widget Reference (T – Z) 679

10
TextField Widget

callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the line has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELLINEFWD

The OL_DELLINEFWD activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the line to the right of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the line has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_DELWORDBAK

The OL_DELWORDBAK activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the word to the left of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the word has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

680 OLIT Reference Manual—August 1994

10
TextField Widget

OL_DELWORDFWD

The OL_DELWORDFWD activation type calls the XtNmodifyVerification
callback list with an OlTextModifyCallData structure that represents the
selection, cursor position, and text after the word to the right of the cursor has
been deleted. If there is no XtNmodifyVerification callback or if the ok
field of the OlTextModifyCallData structure is TRUE, then the text will be
updated. Then the activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection and cursor position after the word has been deleted. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor and selection will
be updated. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure. Finally, the
XtNpostModifyNotification callback list will be called with the
appropriate OlTextPostModifyCallData structure.

OL_LINEEND

The OL_LINEEND activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the cursor
position moved to after the last character on the current line. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_LINESTART

The OL_LINESTART activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved to before the first character on the current line. If there
is no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_MENU/
OL_MENUKEY

The OL_MENU and OL_MENUKEY activation types will pop up the TextField
menu.

Widget Reference (T – Z) 681

10
TextField Widget

OL_PASTE

The OL_PASTE activation type applies only to TextField widgets that have
XtNeditType of OL_TEXT_EDIT. When the widget has focus, then the
OL_PASTE activation type will insert the contents of the CLIPBOARD at the
current insert position by calling the XtNpostModifyVerification callback
list. The XtNmotionVerification callback list will be called with an
OlTextMotionCallData structure that represents the new cursor and
selection position.

OL_RETURN

This activation type calls the XtNverification callback list with the
appropriate OlTextFieldVerify structure.

OL_SCROLLLEFT

The OL_SCROLLLEFT activation type calls the XtNmargin callback list with the
appropriate OlTextMarginCallData structure to bring the character left of
the current view into the view.

OL_SCROLLLEFTEDGE

The OL_SCROLLLEFTEDGE activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the left-
most character of the document into the view.

OL_SCROLLRIGHT

The OL_SCROLLRIGHT activation type calls the XtNmargin callback list with
the appropriate OlTextMarginCallData structure to bring the character
right of the current view into the view.

OL_SCROLLRIGHTEDGE

The OL_SCROLLRIGHTEDGE activation type calls the XtNmargin callback list
with the appropriate OlTextMarginCallData structure to bring the
rightmost character of the document into the view.

OL_SELCHARBAK

The OL_SELCHARBAK activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended one character to the left of the cursor position and the
cursor position moved to before the selection. If there is no

682 OLIT Reference Manual—August 1994

10
TextField Widget

XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, cursor will be moved, and the text may be scrolled to bring the
previous line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SELCHARFWD

The OL_SELCHARFWD activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended one character to the right of the cursor position and the
cursor position moved to after the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, cursor will be moved, and the text may be scrolled to bring the next
line into view. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure.

OL_SELECT

The OL_SELECT activation type calls the XtNmotionVerification callback
list with the appropriate OlTextMotionCallData structure containing the
new cursor position, selection start, and selection end. If a callback is not
registered or the OlTextMotionCallData ’s ok field is TRUE, the OL_SELECT
activation type will modify the XtNcursorPosition , XtNselectStart , and
XtNselectEnd resources to reflect the cursor position and the resulting
selection.

OL_SELFLIPENDS

The OL_SELFLIPENDS activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved to the opposite end of the current selection. If there is
no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved. If
the text is scrolled to bring the cursor into view, the XtNmargin callback list
will be called with the appropriate OlTextMarginCallData structure.

OL_SELLINE

The OL_SELLINE activation type calls the XtNmotionVerification callback
list with an OlTextMotionCallData structure that represents the selection
extended to the beginning of the current line and to the end of the current line.

Widget Reference (T – Z) 683

10
TextField Widget

and the cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure.

OL_SELLINEBAK

The OL_SELLINEBAK activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the beginning of the line to the left of the current cursor
position and the cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, cursor will be moved, and the text may be scrolled to bring the
previous line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

OL_SELLINEFWD

The OL_SELLINEFWD activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the end of the line to the right of the current cursor
position and the cursor position moved to after the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, cursor will be moved, and the text may be scrolled to bring the next
line into view. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure.

OL_SELWORDBAK

The OL_SELWORDBAK activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the beginning of the word to the left of the current cursor
position and the cursor position moved to before the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, cursor will be moved, and the text may be scrolled to bring the
previous line into view. The XtNmargin callback list will be called with the
appropriate OlTextMarginCallData structure.

684 OLIT Reference Manual—August 1994

10
TextField Widget

OL_SELWORDFWD

The OL_SELWORDFWD activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
selection extended to the end of the word to the right of the current cursor
position and the cursor position moved to after the selection. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the selection will be
extended, cursor will be moved, and the text may be scrolled to bring the next
line into view. The XtNmargin callback list will be called with the appropriate
OlTextMarginCallData structure.

OL_UNDO

The OL_UNDO activation type calls the XtNmodifyVerification callback
list with an OlTextModifyCallData structure that represents the selection,
cursor position, and text before the last modification. If there is no
XtNmodifyVerification callback or if the ok field of the
OlTextModifyCallData structure is TRUE, then the text will be updated.
Then the activation type calls the XtNmotionVerification callback list with
an OlTextMotionCallData structure that represents the selection and cursor
position before the last modification. If there is no XtNmotionVerification
callback or if the ok field of the OlTextMotionCallData structure is TRUE,
then the cursor and selection will be updated. The XtNmargin callback list
will be called with the appropriate OlTextMarginCallData structure.
Finally, the XtNpostModifyNotification callback list will be called with
the appropriate OlTextPostModifyCallData structure.

OL_WORDBAK

The OL_WORDBAK activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved one word before the current cursor position. If there is
no XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

OL_WORDFWD

The OL_WORDFWD activation type calls the XtNmotionVerification
callback list with an OlTextMotionCallData structure that represents the
cursor position moved one word after the current cursor position. If there is no
XtNmotionVerification callback or if the ok field of the
OlTextMotionCallData structure is TRUE, then the cursor will be moved.

Widget Reference (T – Z) 685

10
TextField Widget

See Also

“StaticText Widget” on page 600,
“TextEdit Widget” on page 623,
“TextEdit Functions” on page 660,
“TextField Functions” on page 686,
“Text Buffer Functions” on page 163,
“Text Selection Operations” on page 204.

686 OLIT Reference Manual—August 1994

10
TextField Functions

TextField Functions
The following functions assist in manipulating TextField widgets.

OlTextFieldCopyOlString
int OlTextFieldCopyOlString(

TextFieldWidget tfw ,
OlStr string);

OlTextFieldCopyOlString() copies the OlStr string associated with the
TextField widget tfw into the user-supplied area pointed to by string. The
function returns the length of this string in number of bytes (if the text format
is single-byte or multibyte) or in the number of wide characters (if the text
format is wide character).

OlTextFieldCopyString
#include <textbuff.h>

int OlTextFieldCopyString(
TextFieldWidget tfw ,
char ∗string);

OlTextFieldCopyString() copies the string associated with the
TextField widget tfw into the user supplied area pointed to by string and
returns the length of this string.

Note – This function is superseded by OlTextFieldCopyOlString() .
However, it is safe to use OlTextFieldCopyString() if the text format of
the widget is single-byte.

OlTextFieldGetOlString
OlStr OlTextFieldGetOlString(

TextFieldWidget tfw,
int ∗size);

OlTextFieldGetOlString() retrieves a new copy of the OlStr associated
with the TextField widget tfw. The function returns a pointer to the newly
allocated OlStr copy.

Widget Reference (T – Z) 687

10
TextField Functions

Optionally, if size is not NULL, OlTextFieldGetOlString() returns in size
the length of the string in number of bytes (if the text format is single-byte or
multibyte) or in number of wide characters (if the text format is wide
character).

OlTextFieldGetString
#include <textbuff.h>

char ∗OlTextFieldGetString(
TextFieldWidget tfw ,
int ∗size);

OlTextFieldGetString() retrieves a new copy of the string associated with
the TextField widget tfw and returns a pointer to the newly allocated string
copy. Optionally, if size is not NULL, the function returns in size the length of
the string, including the null terminator.

Note – The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

Note – This function is superseded by OlTextFieldGetString() . However,
it is safe to use OlTextFieldGetString() if the text format of the widget is
single-byte.

See Also

Regular Expression Functions on page 161.

688 OLIT Reference Manual—August 1994

10
TextLine Widget

TextLine Widget

Class
Class Name: TextLine
Class Pointer: textLineWidgetClass

Ancestry

Core-Primitive-TextLine

Required Header Files
#include <Xol/OpenLook>
#include <Xol/TextLine.h>

Description

The TextLine widget is a one-line input field for text data. Once the input focus
is moved into the widget, keyboard entry is allowed. If the input value exceeds
the length of the input field, the scroll buttons appear. Hidden text can then be
scrolled into view by pressing the scroll buttons. Pressing the buttons
continuously scrolls the text repeatedly with a user-adjustable delay.

Components

The TextLine contains the following graphical elements:

• Right-justified bold label at the left of the TextLine
• Input field
• Input Caret (not present in ReadOnly mode)
• 1-point (for Mono) or chiseled underline (not present in ReadOnly mode)
• Optional scroll buttons

Widget Reference (T – Z) 689

10
TextLine Widget

Figure 10-4 TextLine Components

Keyboard Traversal

The TextLine allows keyboard entry if it is sensitive and it has the keyboard
focus. However, in ReadOnly mode, the widget is not traversable and it does
not receive keyboard focus. Selection is also turned off during ReadOnly mode.

The TextLine responds to the following keyboard navigation keys:

• NEXTFIELD moves to the next traversable widget in the window
• PREVFIELD moves to the previous traversable widget in the window
• CHARFWD moves the caret forward one character
• CHARBAK moves the caret backward one character
• WORDFWD moves the caret forward one word
• WORDBAK moves the caret back one word
• LINESTART moves the caret to the beginning of the display
• LINEEND moves the caret to the end of the display
• MENUKEY posts the menu associated with the TextLine

The TextLine responds to the following edit keys:

• DELCHARFWD deletes the character to the right of the caret
• DELCHARBAK deletes the character to the left of the caret
• DELWORDFWD deletes the word to the right of the caret
• DELWORDBAK deletes the word to the left of the caret
• DELLINEFWD deletes to the end of the line from the caret
• DELLINEBAK deletes from the beginning of the line to the caret
• DELLINE deletes the line containing the caret
• UNDO undoes the last edit

Keyboard Mnemonic Display

The TextLine does not display any mnemonic. If the TextLine is the child of a
Caption widget, the Caption can be used to display any mnemonic.

Bold Label Input Caret

Underline

Input Field

690 OLIT Reference Manual—August 1994

10
TextLine Widget

Keyboard Accelerator Display

The TextLine does not respond to any keyboard accelerators.

Display of Text

The TextLine displays its contents in the font specified by the XtNfont
resource. If the length of the text exceeds the length of the input field, the
widget sets up the Left or Right or both scroll buttons to indicate this. The text
is then visually truncated at the boundaries to show only as many characters as
can fit in the input field. The truncation is always at a character boundary. A
scroll button is present only if characters are hidden in the direction indicated
by that button. The user can scroll to show the hidden parts of the text by
clicking or pressing the scroll buttons. Clicking SELECT on any scroll button
will scroll the text one character in the direction indicated by that button.
Pressing SELECT on any scroll button will repeat the scrolling with a user-
adjustable delay between each scroll.

Caret Position

As characters are entered from the keyboard, the caret moves to the right until
it reaches the right end of the input field. As additional characters are typed,
the text jump-scrolls to the left by a specific amount. Note that the TextLine
always keeps the cursor visible. Thus, the presence or absence of either of the
scroll buttons is controlled by the current cursor position.

Selection of Text

Text selection can be done by the user by using the mouse or keyboard. The
widget also provides a set of convenience functions to manipulate the selection
programmatically; see “TextLine Functions” on page 708.

Coloration

For 3D and 2D, XtNfontColor is used to draw the TextLine’s text and
XtNinputFocusColor is used to draw the active caret.

Widget Reference (T – Z) 691

10
TextLine Widget

For 3D, the TextLine underline and scrollbutton coloration is defined by the
OPEN LOOK GUI Functional Specification, Chapter 9, “Color and Three-
Dimensional Design.” XtNbackground is used for BG1, and the BG2 (pressed-
in), BG3 (shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNbackground and XtNforeground are used to render the
TextLine’s underline and scrollbuttons as described by the OPEN LOOK GUI
Functional Specification, Chapter 4, “Controls.”

Known Deficiencies

The TextLine widget currently does not support the implicit commit feature; see
“Input Method” on page 80. This could be a deficiency in Asian locales. The
workaround is to use the TextField widget (page 665), which does support it.

Resources

Table 10-10TextLine Core Resources

Name Type Default Access

XtNaccelerators AcceleratorTable NULL SGI

XtNancestorSensitive Boolean TRUE G

XtNbackground Pixel XtDefaultBackground SGID

XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderColor Pixel XtDefaultForeground SGID

XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI

XtNborderWidth Dimension 1 SGI

XtNcolormap Colormap (parent’s) SGI

XtNdepth int (parent’s) GI

XtNdestroyCallback XtCallbackList NULL SGIO

XtNheight Dimension (calculated) SGI

XtNmappedWhenManaged Boolean TRUE SGI

XtNscreen Screen ∗ (parent’s) G

XtNsensitive Boolean TRUE GIO

XtNtranslations XtTranslations NULL SGI

XtNwidth Dimension (calculated) SGI

XtNx Position 0 SGI

XtNy Position 0 SGI

692 OLIT Reference Manual—August 1994

10
TextLine Widget

Table 10-11TextLine Primitive Resources

Name Type Default Access

XtNaccelerator String NULL n/a

XtNacceleratorText String NULL n/a

XtNconsumeEvent XtCallbackList NULL SGIO

XtNfont OlFont XtDefaultFont SGI

XtNfontColor Pixel XtDefaultForeground SGID

XtNforeground Pixel XtDefaultForeground SGID

XtNinputFocusColor Pixel (calculated; see page 27) SGID

XtNmnemonic unsigned char ‘\0’ n/a

XtNreferenceName String NULL GI

XtNreferenceWidget Widget NULL GI

XtNscale int 12 SGI

XtNtextFormat OlStrRep OL_SB_STR_REP GI

XtNtraversalOn Boolean TRUE SGI

XtNuserData XtPointer NULL SGI

Table 10-12TextLine Resources

Name Type Default Access

XtNblinkRate int 1000 SGI

XtNcaptionAlignment1 OlDefine OL_CENTER G

XtNcaptionFont1 OlFont OlDefaultBoldFont SI

XtNcaptionLabel1 OlStr NULL SGI

XtNcaptionPosition1 OlDefine OL_LEFT G

XtNcaptionSpace1 Dimension 4 G

XtNcaptionWidth1 Dimension 0 G

XtNcharsVisible int 0 GI

XtNcommitCallback XtCallbackList NULL SGIO

XtNcursorPosition int 0 SGI

XtNeditType OlDefine OL_TEXT_EDIT SGI

XtNimPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

XtNinitialDelay int 500 SGI

XtNinsertTab Boolean FALSE SGI

Widget Reference (T – Z) 693

10
TextLine Widget

XtNblinkRate

Synopsis: The blink rate of the active cursor in terms of milliseconds. A value
of zero turns blinking off.

Values: Any integer

XtNcaptionAlignment

Synopsis: The alignment of the caption with respect to the text area.

Note – This resource cannot be set and is subject to change in future revisions.

XtNcaptionFont

Synopsis: The font for the caption label.
Values: Any font valid in the current locale

Note – This resource cannot be set and is subject to change in future revisions.

1. These resources are provided to support captions. They are subject to change in a future OLIT release. Note
that they cannot be set.

XtNmaximumChars int 0 GI

XtNmenu Widget (special) GI

XtNmotionCallback XtCallbackList NULL SGIO

XtNpostModifyCallback XtCallbackList NULL SGIO

XtNpreModifyCallback XtCallbackList NULL SGIO

XtNrepeatRate int 100 SGI

XtNstring OlStr NULL SGI

XtNunderline Boolean TRUE SGI

XtNupdateDisplay Boolean TRUE SGI

Class Type Default Access

XtCBlinkRate int 1000 SGI

Class Type Default Access

XtCCaptionAlignment OlDefine OL_CENTER G

Class Type Default Access

XtCCaptionFont OlFont OlDefaultBoldFont SI

Table 10-12TextLine Resources (Continued)

Name Type Default Access

694 OLIT Reference Manual—August 1994

10
TextLine Widget

XtNcaptionLabel

Synopsis: The Label for the TextLine.
Values: Any OlStr valid in the current locale.

Note – This resource cannot be set and is subject to change in future revisions.

XtNcaptionPosition

Synopsis: The position of the caption with respect to the text area.

Note – This resource cannot be set and is subject to change in future revisions.

XtNcaptionSpace

Synopsis: The separation between the caption and the text area in pixels.

Note – This resource cannot be set and is subject to change in future revisions.

XtNcaptionWidth

Synopsis: The width of caption text in pixels

Note – This resource cannot be set and is subject to change in future revisions.

Class Type Default Access

XtCCaptionLabel OlStr NULL SGI

Class Type Default Access

XtCCaptionPosition OlDefine OL_LEFT G

Class Type Default Access

XtCCaptionSpace Dimension 4 G

Class Type Default Access

XtCCaptionWidth Dimension 0 G

Widget Reference (T – Z) 695

10
TextLine Widget

XtNcharsVisible

Synopsis: If nonzero, the initial width of text in terms of characters.
Values: Any integer

This resource overrides the XtNwidth setting. XtNwidth is then calculated as:

XtNwidth = XtNcharsVisible × max_char_width over the given FontSet.

The actual number of characters visible could be more than the value of this
resource since XtNwidth is computed based on the max_char_width of the
given FontSet . The resource value changes with Geometry changes.
If XtNcharsVisible is zero, the width of the text is determined by
XtNmaximumChars . See page 697.

XtNcommitCallback

Synopsis: The callback list invoked when a <Tab> or <Return> is inserted
into the TextLine.

The call_data structure is:

typedef struct {
int reason ;
XEvent ∗event ;
Boolean valid ;
OlStr buffer ;
int length ;

} OlTLCommitCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_COMMIT

event A pointer to the corresponding XEvent structure

valid A field to be set by the callback to indicate the validity of the
contents

buffer A pointer to the XtNstring resource. This pointer is ReadOnly
and valid only within the callback.

length Length of the text in characters, not including any terminating
NULL character

Class Type Default Access

XtCCharsVisible int 0 GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

696 OLIT Reference Manual—August 1994

10
TextLine Widget

This callback is invoked when the user hits the RETURN, NEXTFIELD, or
PREVFIELD keys. If the callback sets valid to TRUE, the widget:

• Transfers focus to the next traversable widget if Mouseless mode is enabled.
• Transfers focus and insert point to the next TextLine or TextEdit if Mouseless

is disabled.

If the callback sets valid to FALSE, the widget maintains focus and insert point
in the current TextLine. The application also can provide additional feedback
within this callback, such as popping up a Notice, clearing the field, or
resetting the cursor position.

XtNcursorPosition

Synopsis: The position of the cursor.
Values: 0 ≤ XtNcursorPosition ≤ total number-of-characters

Setting this resource will cause scrolling if the new position is beyond the
visual area.

XtNeditType

Synopsis: The edit mode.
Values: OL_TEXT_EDIT/”text_edit” - The text is editable.

OL_TEXT_READ/”text_read” - The text is read-only. In read-
only mode, the input-caret is disabled and the widget is not
traversable or selectable.

XtNimPreeditStyle

Synopsis: The pre-edit style (in conjunction with the shell’s
XtNimStatusStyle resource). If the pre-edit style is not
supported by the input method, the ability to pre-edit is lost.

Values: OL_ON_THE_SPOT/”onTheSpot” - The pre-edit data is
displayed at the insertion point in the application window. The
preexisting user data is shifted and the pre-edit data is inserted at
the point of insertion.

Class Type Default Access

XtCTextPosition int 0 SGI

Class Type Default Access

XtCEditType OlDefine OL_TEXT_EDIT SGI

Class Type Default Access

XtCImPreeditStyle OlImPreeditStyle OL_NO_PREEDIT GI

Widget Reference (T – Z) 697

10
TextLine Widget

OL_OVER_THE_SPOT/”overTheSpot” - The pre-edit data is
displayed in the application window, starting at the insertion
point. As the user types the pre-edit data, the preexisting user data
is obscured by the pre-edit data.
OL_ROOT_WINDOW/”rootWindow” - The pre-edit data is
displayed in a child of the root window, away from the point of
insertion.
OL_NO_PREEDIT/”none” - No pre-edit data is displayed.

See “XtNimStatusStyle” on page 44 and “Setting the Input Method Pre-Edit
and Status Styles (Asian Locales Only)” on page 82.

XtNinitialDelay

Synopsis: The time in milliseconds of the initial repeat delay to be used when
the scrolling arrows are pressed.

Values: Any integer

XtNinsertTab

Synopsis: Determines whether tabs are insertable.
Values: TRUE/”true” - Tabs are insertable but are not used for forward

traversal. Forward traversal can still be accomplished with
Control-Tab.
FALSE/”false” - Tabs are not insertable and act as NEXTFIELD.

XtNmaximumChars

Synopsis: The maximum internal buffer size in terms of characters.
Values: Any integer

If this resource is zero, then the internal buffer will increase in size
dynamically.

If XtNcharsVisible is zero (its default value), it is set up as follows:

Class Type Default Access

XtCInitialDelay int 500 SGI

Class Type Default Access

XtCInsertTab Boolean FALSE SGI

Class Type Default Access

XtCMaximumChars int 0 GI

698 OLIT Reference Manual—August 1994

10
TextLine Widget

if (charsVisible == 0)
charsVisible = (maximumChars ? maximumChars : 20)

XtNmenu

Synopsis: The handle to the MenuShell widget that is popped up when the
user presses the MENU key over the TextLine. By default, this
menu contains the OPEN LOOK specified default elements UNDO,
CUT, COPY, PASTE, and DELETE.

The application can augment this menu by creating more items as children of
the MenuShell’s XtNmenuPane widget. It can also change attributes of the
MenuShell or the default items within. However, none of the default items
should be removed from the MenuShell.

The application can also install its own Menu by setting this resource while
creating the TextLine widget. In this case, the application’s menu will be
popped up instead of the widget’s built-in menu. In fact, the widget does not
even create its own menu. Therefore, an application can share menus among
multiple TextLine widgets and avoid the overhead of having multiple
MenuShells.

XtNmotionCallback

Synopsis: The callback list invoked when the cursor position changes.

The call_data structure is:

typedef struct {
int reason ;
XEvent ∗event ;
Boolean valid ;
int current_cursor ;
int new_cursor ;

} OlTLMotionCallbackStruct;

Class Type Default Access

XtCReadOnly Widget (special) GI

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (T – Z) 699

10
TextLine Widget

The fields in the call_data structure are:

reason OL_REASON_MOTION – Indicates that the callback was
invoked due to non-programmatic cursor-movement.
OL_REASON_PROG_MOTION – Indicates that this callback
was invoked due to programmatic cursor-movement.

event A pointer to the corresponding XEvent structure

valid If TRUE, the widget performs the Cursor motion. Otherwise,
it does not.

current_cursor Current cursor position

new_cursor New cursor position

XtNpreModifyCallback

Synopsis: The callback list invoked before a modification of the buffer is
attempted.

The call_data structure is:

typedef struct {
int reason ;
XEvent ∗event ;
Boolean valid ;
int current_cursor ;
int new_cursor ;
OlStr buffer ;
int start ;
int replace_length ;
OlStr insert_buffer ;
int insert_length ;

} OlTLPreModifyCallbackStruct;

The fields in the call_data structure are:

reason OL_REASON_PRE_MODIFICATION – Indicates that the
callback was invoked due to non-programmatic edits.
OL_REASON_PROG_PRE_MODIFICATION – Indicates that
this callback was invoked due to programmatic edits.

event A pointer to the corresponding XEvent structure

valid If TRUE, the widget performs the modification; otherwise,
it does not

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

700 OLIT Reference Manual—August 1994

10
TextLine Widget

current_cursor Current position of the cursor

new_cursor Cursor position after modification

buffer A pointer to the XtNstring resource. Note that this
pointer is ReadOnly and will be valid only within the
callback.

start Start of text to be deleted or replaced

replace_length Length in characters of the text to be deleted or replaced,
not including any terminating NULL character.

insert_buffer The new text to be inserted

insert_length Length in characters of the text to be inserted, not
including any terminating NULL character.

All fields except valid are ReadOnly.

XtNpostModifyCallback

Synopsis: The callback list invoked after modification of the buffer is done.

The call_data structure is:

typedef struct {
int reason ;
XEvent ∗event ;
int cursor ;
OlStr buffer ;

} OlTLPostModifyCallbackStruct;

Fields in the call_data structure are:

reason OL_REASON_POST_MODIFICATION – Indicates that the callback
was invoked due to non-programmatic edits.
OL_REASON_PROG_POST_MODIFICATION – Indicates that this
callback was invoked due to programmatic edits.

event A pointer to the corresponding XEvent structure

cursor Current position of cursor

buffer A pointer to the XtNstring resource. This pointer is ReadOnly
and will be valid only within the callback.

All fields are ReadOnly.

Class Type Default Access

XtCCallback XtCallbackList NULL SGIO

Widget Reference (T – Z) 701

10
TextLine Widget

XtNrepeatRate

Synopsis: The time in milliseconds of the repeat delay to be used when the
scrolling arrows are pressed.

Values: Any integer

XtNstring

Synopsis: The contents of the TextLine buffer.
Values: Any OlStr valid in the current locale.

On being set, the string is inserted into the widget’s internal buffer.
XtGetValues() on this resource returns a pointer to the current data. The
widget should treat the pointed-to data as ReadOnly and the pointed-to data is
guaranteed to be valid only until the next Intrinsics call. Thus, if the
application needs the data longer, it should make a copy of it.

XtNunderline

Synopsis: The presence of the underline.
Values: TRUE/”true” - The underline is present.

FALSE/”false” - The underline is absent. Note that the OPEN
LOOK GUI Functional Specification states that the underline should
be removed if the widget is in read-only mode.

XtNupdateDisplay

Synopsis: The redisplay of the screen.
Values: TRUE/”true” - Redisplay the widget in the current state.

FALSE/”false” - Screen redisplay is stopped until it is set back
to TRUE.

This resource is useful during incremental programmatic edits.

Class Type Default Access

XtCRepeatRate int 100 SGI

Class Type Default Access

XtCString OlStr NULL SGI

Class Type Default Access

XtCUnderline Boolean TRUE SGI

Class Type Default Access

XtCUpdateDisplay Boolean TRUE SGI

702 OLIT Reference Manual—August 1994

10
TextLine Widget

Activation Types

The following table lists the activation types used by the TextLine.

Activation types not described in the following table are described in
“Common Activation Types” on page 68.

Table 10-13TextLine Activation Types

Activation Type Semantics Resource Name

OL_CANCEL CANCEL XtNcancelKey

OL_CHARBAK LEFT XtNleftKey

OL_CHARFWD RIGHT XtNrightKey

OL_COPY COPY XtNcopyBtn

OL_CUT CUT XtNcutBtn

OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey

OL_DELCHARBAK DELETE BACKWARD XtNdelCharBakFwd

OL_DELCHARFWD DELETE FORWARD XtNdelCharFwdKey

OL_DELLINE DELETE LINE XtNdelLineKey

OL_DELLINEBAK DELLINEBAK XtNdelLineBakKey

OL_DELLINEFWD DELLINEFWD XtNdelLineFwdKey

OL_DELWORDBAK DELWORDBAK XtNdelWordBakKey

OL_DELWORDFWD DELWORDFWD XtNdelWordFwdKey

OL_HELP HELP XtNhelpKey

OL_LINEEND ROW END XtNlineEndKey

OL_LINESTART ROW START XtNlineStartKey

OL_MOVEDOWN MOVEDOWN XtNdownKey

OL_MOVELEFT MOVELEFT XtNleftKey

OL_MOVERIGHT MOVERIGHT XtNrightKey

OL_MOVEUP MOVEUP XtNupKey

OL_NEXTFIELD NEXTFIELD XtNnextFieldKey

OL_PASTE PASTE XtNpasteBtn

OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

OL_UNDO UNDO XtNundoKey

OL_WORDBAK JUMP LEFT XtNwordBakKey

OL_WORDFWD JUMP RIGHT XtNwordFwdKey

Widget Reference (T – Z) 703

10
TextLine Widget

OL_CHARBAK

The cursor is moved backward by one character. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

OL_CHARFWD

The cursor is moved forward by one character. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

OL_COPY

This activation type copies the current selection from the widget to the
CLIPBOARD.

OL_CUT

This activation type copies the current selection from the widget to the
CLIPBOARD and also deletes the selected text from the widget. The following
callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELCHARBAK

If there exists a selection in the widget, it is deleted. If there is no selection, the
character before the insert point is deleted. The following callbacks are
invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

704 OLIT Reference Manual—August 1994

10
TextLine Widget

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELCHARFWD

If there exists a selection in the widget, it is deleted. If there is no selection, the
character after the insert point is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELLINE

The whole line is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELLINEBAK

If there exists a selection in the widget, it is deleted. If there is no selection, the
segment of the line before the insert point The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

Widget Reference (T – Z) 705

10
TextLine Widget

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELLINEFWD

If there exists a selection in the widget, it is deleted. If there is no selection, the
segment of the line after the insert point is deleted. The following callbacks are
invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELWORDBAK

If there exists a selection in the widget, it is deleted. If there is no selection, the
word before the insert point is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_DELWORDFWD

If there exists a selection in the widget, it is deleted. If there is no selection, the
word after the insert point is deleted. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the deletion occurs. The callback
can prevent the deletion by setting the valid field
in the call_data to FALSE.

706 OLIT Reference Manual—August 1994

10
TextLine Widget

XtNpostModifyCallback Invoked after the deletion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the deletion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

OL_LINESTART

The cursor is moved to the start of the line. The XtNmotionCallback callback
is invoked before the cursor position is changed. The callback can prevent the
cursor movement by setting the valid field in the call_data to FALSE.

OL_LINEEND

The cursor is moved to the end of the line. The XtNmotionCallback callback
is invoked before the cursor position is changed. The callback can prevent the
cursor movement by setting the valid field in the call_data to FALSE.

OL_NEXTFIELD

This activation type invokes the XtNcommitCallback . If the callback sets
valid to TRUE and if XtNmouseless is TRUE, the widget transfers focus to the
next traversable widget. If the callback sets valid to TRUE and if
XtNmouseless is FALSE, the widget transfers focus and sets the insert point to
the next TextLine or TextEdit widget. If the callback sets valid to FALSE, the
widget maintains focus and insert point within itself.

OL_PASTE

This activation type inserts the contents of the CLIPBOARD into the widget at
the current insert point. The following callbacks are invoked:

XtNpreModifyCallback Invoked before the insertion occurs. The callback
can prevent the insertion by setting the valid field
in the call_data to FALSE.

XtNpostModifyCallback Invoked after the insertion occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the insertion. The callback can prevent the
cursor movement by setting the valid field in the
call_data to FALSE.

Widget Reference (T – Z) 707

10
TextLine Widget

OL_PREVFIELD

This activation type invokes the XtNcommitCallback . If the callback sets
valid to TRUE and if XtNmouseless is TRUE, the widget transfers focus to the
previous traversable widget. If the callback sets valid to TRUE and if
XtNmouseless is FALSE, the widget transfers focus and sets the insert point to
the previous TextLine or TextEdit widget. If the callback sets valid to FALSE, the
widget maintains focus and insert point within itself.

OL_UNDO

This activation type undoes the last modification to the widget’s text buffer.
The following callbacks are invoked:

XtNpreModifyCallback Invoked before any modification occurs. The
callback can prevent the modification by setting
the valid field in the call_data to FALSE.

XtNpostModifyCallback Invoked after any modification occurs.

XtNmotionCallback Invoked before the cursor position is changed
due to the modification. The callback can prevent
the cursor movement by setting the valid field in
the call_data to FALSE.

OL_WORDBAK

The cursor is moved backward by one word. The XtNmotionCallback
callback is invoked before the cursor position is changed. The callback can
prevent the cursor movement by setting the valid field in the call_data to FALSE.

OL_WORDFWD

The cursor is moved forward by one word. The XtNmotionCallback callback
is invoked before the cursor position is changed. The callback can prevent the
cursor movement by setting the valid field in the call_data to FALSE.

See Also

“NumericField Widget” on page 443,
“TextField Widget” on page 665,
“TextLine Functions” on page 708.

708 OLIT Reference Manual—August 1994

10
TextLine Functions

TextLine Functions
These functions manipulate the contents of the TextLine widget.

OlTLGetPosition
#include <TextLine.h>

int OlTLGetPosition(
Widget w,
int pos);

OlTLGetPosition() returns some key positions in the text line. Valid values
for pos are:

OL_CURSORPOS Return the cursor position.
OL_BEGIN_CURRENT_WORD Return the beginning of the current word.
OL_END_CURRENT_WORD Return the end of the current word.
OL_END_LINE Return the end of the line.

OlTLGetPosition() returns the position corresponding to the specified
value of pos. (No error information is available.)

OlTLGetSelection
#include <Xol/TextLine.h>

OlStr OlTLGetSelection(
Widget w,
int ∗start ,
int ∗length);

OlTLGetSelection() returns the current Selection as well as the Selection
start and length. The returned string should be freed by the application, when
no longer required, using XtFree() . OlTLGetSelection() returns NULL if
no selection is active.

Widget Reference (T – Z) 709

10
TextLine Functions

OlTLGetSubString
#include <Xol/TextLine.h>

OlStr OlTLGetSubString(
Widget w,
int start ,
int length);

OlTLGetSubString() returns length characters beginning at start. The
returned string should be freed by the application using XtFree() .
OlTLGetSubString() returns NULL on failure. Failures include invalid start
and length values.

OlTLOperateOnSelection
#include <Xol/TextLine.h>

Boolean OlTLOperateOnSelection(
Widget w,
int mode);

OlTLOperateOnSelection() performs various operations on the primary or
CLIPBOARD selections. Valid values for mode are:

OL_CUT Copies the primary selection to the CLIPBOARD, then deletes
the primary selection. This operation invokes the
XtNpreModifyCallback and XtNpostModifyCallback
callbacks.

OL_COPY Copies the primary selection to the CLIPBOARD.

OL_PASTE Inserts the CLIPBOARD selection at the destination cursor. If the
destination cursor is inside the current selection, the
CLIPBOARD selection replaces the selected text. This operation
invokes the XtNpreModifyCallback and
XtNpostModifyCallback callbacks.

OL_CANCEL Clears the primary selection.

OlTLOperateOnSelection() returns FALSE if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to
gain ownership of the CLIPBOARD selection. Otherwise, it returns TRUE.

710 OLIT Reference Manual—August 1994

10
TextLine Functions

OlTLSetSelection
#include <Xol/TextLine.h>

Boolean OlTLSetSelection(
Widget w,
int start ,
int length);

OlTLSetSelection() selects length characters beginning at start. It returns
TRUE on success, FALSE on failure. Failures include invalid start and length
values.

OlTLSetSubString
#include <Xol/TextLine.h>

Boolean OlTLSetSubString(
Widget w,
int start ,
int length ,
OlStr buffer);

OlTLSetSubString() can be used to do insertion, replacement, and deletion
of substrings. It replaces length characters, beginning at start, with the contents
of buffer. It returns TRUE on success, FALSE on failure. Failures include invalid
start and length values and memory allocation failures.

See Also

“TextLine Widget” on page 688.

711

Index

Symbols
.Xdefaults file, 17

font sets, 87

Numerics
2D/3D resource, 26

A
Abbreviated Scrollbars, 520
AbbrevMenuButton, 227

Activation Types, 233
Ancestry, 227
Coloration, 229
Components, 228
Core Resources, 230
Current Selection Widget, 228
Keyboard Accelerator Display, 230
Keyboard Mnemonic Display, 230
Keyboard Traversal, 229
OL_MENU Activation Type, 233
OL_MENUKEY Activation Type, 234
OL_SELECT Activation Type, 234
OL_SELECTKEY Activation Type,

234
Primitive Resources, 231
Resources, 231
Subwidget, 228

Subwidget Resources, 232
XtNmenuPane resource, 232
XtNpreviewWidget resource, 232

accelerator string resource, 35
accelerators See keyboard accelerators
Access column of resource tables, 16
activating widgets, 103
Activation Types

AbbrevMenuButton widget, 233
BulletinBoard widget, 238
Caption widget, 245
CheckBox widget, 258
common types, 78
ControlArea widget, 267
DrawArea widget, 275
DropTarget widget, 286
Exclusives widget, 292
FileChooser widget, 320
FileChooserShell widget, 329
FlatCheckBox widget, 345
FlatExclusives widget, 355
FlatNonexclusives widget, 362
FontChooser widget, 384
Form widget, 404
Gauge widget, 411
MenuButton widget, 421
MenuShell widget, 437
Nonexclusives widget, 442

712 OLIT Reference Manual—August 1994

NoticeShell widget, 390, 452
NumericField widget, 467
OblongButton widget, 483
PopupWindowShell widget, 497
RectButton widget, 509
relationship to virtual events, 71
RubberTile widget, 517
Scrollbar widget, 535
ScrolledWindow widget, 553
ScrollingList widget, 584
Slider widget, 607
StaticText widget, 617
Stub widget, 631
table, 75
TextEdit widget, 652
TextField widget, 684
TextLine widget, 711

active pointer grabbing, 218
Aligning Captions, 263
AllocateBuffer(), 105
AllocateTextBuffer(), 173
Alt key, 23
anchor, 518
application resources, See OLIT Toolkit

Resources, 17
ApplicationShell Resources, 61

XtNargc, 61
XtNargv, 61

application-specific data resource, 40, 58
arrow button in AbbreviatedMenuButton,

228
aspect ratios resource, 48
audible warnings resource, 18

B
background color resource, 19, 28
background pixmap resource, 28
BackwardScanTextBuffer(), 174
base window

creating, 41
icon from window ID, 47
icon mask, 46
iconifying, 60

iconifying at startup, 47
image of icon, 46
initial state, 47
location, 47
of shell widget, 51
title, 49

beep resource, 18
beep volume resource, 18
BG0 - BG3, 19
border color resource, 29
border pixmap resource, 29
border width resource, 29
Buffer Functions, 105

AllocateBuffer(), 105
Buffer Macros, 105
CopyBuffer(), 106
FreeBuffer(), 106
GrowBuffer(), 106
InsertIntoBuffer(), 106
ReadFileIntoBuffer(), 107
ReadStringIntoBuffer(), 107
strclose(), 108
strgetc(), 108
stropen(), 108

Buffer Macros, 105
buffer object, 105
BulletinBoard, 235

Activation Types, 238
Ancestry, 235
Coloration, 236
Composite Resources, 237
Core Resources, 236
Keyboard Traversal, 235
Manager Resources, 237
Resources, 237
XtNlayout resource, 237

BulletinBoard Resources
DrawArea widget, 272

busy marking resource, 53
button events

remapping and consuming in Text,
642

ButtonPress event, 222

Index 713

ButtonRelease event, 222

C
callback

Activation Types, 72
destruction, 30
dynamic, 150
flat widget, 335
popdown, 43
popup, 43
Preview and Animate, 122
virtual events, 72
XEvent consumption, 53

caps lock resource, 21
Caption, 239

Activation Types, 245
Ancestry, 239
Child Constraints, 240
Coloration, 240
Components, 239
Composite Resources, 242
Core Resources, 241
Keyboard Accelerator Display, 241
Keyboard Mnemonic Display, 241
Keyboard Traversal, 240
Layout Control, 240
Manager Resources, 242
OL_SELECT Activation Type, 246
OL_SELECTKEY Activation Type,

246
Resources, 242
Widget, 239
XtNalignment resource, 243
XtNfont resource, 243
XtNfontColor resource, 243
XtNlabel resource, 244
XtNmnemonic resource, 244
XtNposition resource, 244
XtNrecomputeSize resource, 244
XtNspace conflict with RubberTile,

516
XtNspace resource, 245
XtNtextFormat resource, 245

cascade menu, 414

changebars, 259
character encoding, 84
CheckBox, 247

Activation Types, 258
Ancestry, 247
Appearance with Set/Default/Dim,

250
Bounds on, 248
Coloration, 249
Components, 247
Composite Resources, 252
Core Resources, 251
Keyboard Accelerator Display, 250
Keyboard Mnemonic Display, 250
Keyboard Traversal, 249
Label and Check Box Appearance,

251
Label Resource Interactions, 251
Manager Resources, 252
OL_SELECT Activation Type, 258
OL_SELECTKEY Activation Type,

258
Operations, 248
Resources, 253
SELECT, 248
XtNaccelerator resource, 253
XtNacceleratorText resource, 253
XtNdim resource, 254
XtNfont resource, 254
XtNfontColor resource, 254
XtNforeground resource, 254
XtNlabel resource, 254
XtNlabelImage resource, 255
XtNlabelJustify resource, 255
XtNlabelTile resource, 255
XtNlabelType resource, 256
XtNmnemonic resource, 256
XtNposition resource, 256
XtNrecomputeSize resource, 256
XtNscale resource, 257
XtNselect resource, 257
XtNset resource, 257
XtNtextFormat resource, 257
XtNunselect resource, 257

children list resource, 33

714 OLIT Reference Manual—August 1994

click timing resource, 24
click-move-click menu, 426
click-move-click mode, 422
CLIPBOARD operations, 215
color

background resource, 19, 28
border resource, 29
foreground, 37
highlight, 19
shadow, 19
tuples resource, 19

colormap resource, 29
command line arguments, 62
commiting input, 91
Composite Resources, 33

BulletinBoard widget, 237
Caption widget, 242
CheckBox widget, 252
ControlArea widget, 261
DrawArea widget, 271
Exclusives widget, 290
FileChooser widget, 296
FileChooserShell widget, 324
FontChooser widget, 371
FontChooserShell widget, 387
FooterPanel widget, 393
Form widget, 399
MenuShell widget, 432
Nonexclusives widget, 440
NoticeShell widget, 447
PopupWindowShell widget, 490
RubberTile widget, 514
ScrolledWindow widget, 544
ScrollingList widget, 565
TextField widget, 679
XtNchildren, 33
XtNinsertPosition, 33
XtNnumChildren, 34

Constraint Resources
RubberTile widget, 515

consume an XEvent resource, 36
control key resource, 20
ControlArea, 259

Activation Types, 267

Ancestry, 259
Coloration, 260
Components, 259
Composite Resources, 261
Core Resources, 260
Layout Control, 259
Manager Resources, 261
Padding Around Controls, 264
Resources, 261
Subwidget Resources, 262
XtNalignCaptions resource, 262
XtNallowChangeBars resource, 262
XtNcenter resource, 263
XtNchangeBar resource, 263
XtNhPad resource, 264
XtNhSpace resource, 264
XtNlayoutType resource, 265
XtNmeasure resource, 266
XtNsameSize resource, 266
XtNvPad resource, 264
XtNvSpace resource, 264

ControlArea Subwidget Resources
NoticeShell widget, 450
PopupWindowShell widget, 494

converting pixel dimensions, 168
CopyBuffer(), 106
copying text, 215
CopyTextBufferBlock(), 174
Core Resources, 27

AbbrevMenuButton widget, 230
BulletinBoard widget, 236
Caption widget, 241
CheckBox widget, 251
ControlArea widget, 260
DrawArea widget, 271
DropTarget widget, 277
Exclusives widget, 289
FileChooser widget, 295
FileChooserShell widget, 324
FlatCheckBox widget, 342
FlatExclusives widget, 349
FlatNonexclusives widget, 359
FontChooser widget, 370
FontChooserShell widget, 386
FooterPanel widget, 392

Index 715

Form widget, 399
Gauge widget, 407
MenuButton widget, 417
MenuShell widget, 432
Nonexclusives widget, 440
NoticeShell widget, 446
NumericField widget, 456
OblongButton widget, 479
PopupWindowShell widget, 490
RectButton widget, 503
RubberTile widget, 514
Scrollbar widget, 525
ScrolledWindow widget, 544
ScrollingList widget, 564
Slider widget, 600
StaticText widget, 612
Stub widget, 621
TextEdit widget, 639
TextField widget, 678
TextLine widget, 700
XtNaccelerators, 27
XtNancestorSensitive, 28
XtNbackground, 28
XtNbackgroundPixmap, 28
XtNborderColor, 29
XtNborderPixmap, 29
XtNborderWidth, 29
XtNcolormap, 29
XtNdepth, 30
XtNdestroyCallback, 30
XtNheight, 30
XtNmappedWhenManaged, 31
XtNscreen, 31
XtNsensitive, 31
XtNtranslations, 32
XtNwidth, 32
XtNx, 32
XtNy, 32

corners, resize, 57
Cursor and Pixmap Functions, 109

GetOlBusyCursor(), 115
GetOlDuplicateCursor(), 116
GetOlMoveCursor(), 116
GetOlPanCursor(), 116
GetOlQuestionCursor(), 116

GetOlStandardCursor(), 116
GetOlTargetCursor(), 117
OlGet50PercentGrey(), 117
OlGet75PercentGrey(), 117
OlGetDataDupeDragCursor(), 109
OlGetDataDupeDropCursor(), 109
OlGetDataDupeInsertCursor(), 109
OlGetDataDupeNoDropCursor(), 110
OlGetDataMoveDragCursor(), 110
OlGetDataMoveDropCursor(), 110
OlGetDataMoveInsertCursor(), 110
OlGetDataMoveNoDropCursor(),

110
OlGetDocCursor(), 110
OlGetDocStackCursor(), 110
OlGetDropCursor(), 111
OlGetDupeDocCursor(), 111
OlGetDupeDocDragCursor(), 111
OlGetDupeDocDropCursor(), 111
OlGetDupeDocNoDropCursor(), 111
OlGetDupeStackCursor(), 111
OlGetDupeStackDragCursor(), 111
OlGetDupeStackDropCursor(), 112
OlGetDupeStackNoDropCursor(),

112
OlGetFolderCursor(), 112
OlGetFolderStackCursor(), 112
OlGetMoveDocCursor(), 112
OlGetMoveDocDragCursor(), 112
OlGetMoveDocDropCursor(), 112
OlGetMoveDocNoDropCursor(), 113
OlGetMoveStackCursor(), 113
OlGetMoveStackDragCursor(), 113
OlGetMoveStackDropCursor(), 113
OlGetMoveStackNoDropCursor(),

113
OlGetNoDropCursor(), 113
OlGetTextDupeDragCursor(), 113
OlGetTextDupeDropCursor(), 114
OlGetTextDupeInsertCursor(), 114
OlGetTextDupeNoDropCursor(), 114
OlGetTextMoveDragCursor(), 114
OlGetTextMoveDropCursor(), 114
OlGetTextMoveInsertCursor(), 114
OlGetTextMoveNoDropCursor(), 114
Other Version 2 Cursors, 115

716 OLIT Reference Manual—August 1994

Pixmap Functions, 117
Version 2 Drag and Drop Cursors, 115
Version 3 Cursors, 109

cutting text, 215

D
data, application-specific, 40, 58
default font resource, 24
default label font resource, 36
default text format, 86
DeltaButtons, 454
depth

specifying a visual, 164
depth resource, 30
destruction callback, 30
Differences From OLIT Release 3.1, 11
display

updating, 118
display depth resource, 30
Display Functions, 118

OlUpdateDisplay(), 118
Drag and Drop Functions, 119

Begin Drag, 121
Cleanup, 124
client_data, 124
Closing Handshake, 123
Common Arguments, 124
Data Structures, 127
Destination Functions, 138
Drop and Data Transfer, 122
Drop Rectangle, 119
Drop Site, 119
Drop Site Manipulation Functions,

125
Drop Target, 120
dropsiteid, 124
General Purpose Functions, 126
Handshake Functions, 126
Message Functions, 126
Notify Procedure Prototypes, 128
OlDnDAllocTransientAtom(), 132
OlDnDBeginSelectionTransaction(),

138

OlDnDChangeDropSitePreview-
Hints(), 139

OlDnDClearDragState(), 133
OlDnDDeliverPreviewMessage(), 133
OlDnDDeliverTriggerMessage(), 133
OlDnDDestroyDropSite(), 139
OlDnDDisownSelection(), 134
OlDnDDragAndDrop(), 134
OlDnDDragNDropDone(), 139
OlDnDDropSiteID(), 127
OlDnDEndSelectionTransaction(),

140
OlDnDErrorDuringSelection-

Transaction(), 141
OlDnDFreeTransientAtom(), 135
OlDnDGetCurrentSelectionsFor-

Widget(), 141
OlDnDGetDropSitesOfWidget(), 142
OlDnDGetDropSitesOfWindow(),

142
OlDnDGetWidgetOfDropSite(), 143
OlDnDGetWindowOfDropSite(), 143
OlDnDInitializeDragState(), 136
OlDnDOwnSelection(), 136
OlDnDOwnSelectionIncremental(),

136
OlDnDPMNotifyProc(), 129
OlDnDPreviewAndAnimate(), 137
OlDnDPreviewAnimateCbP(), 128
OlDnDProtocolActionCbP(), 129
OlDnDQueryDropSiteInfo(), 144
OlDnDRegisterWidgetDropSite(),

145
OlDnDRegisterWindowDropSite(),

146
OlDnDSetDropSiteInterest(), 146
OlDnDSetInterestInWidgetHier(),

147
OlDnDSitePreviewHints(), 127
OlDnDSiteRect(), 127
OlDnDTMNotifyProc(), 131
OlDnDTransactionStateCallback(),

130
OlDnDUpdateDropSiteGeometry(),

147

Index 717

OlDnDWidgetConfiguredInHier(),
147

OlGrabDragPointer(), 137
OlUngrabDragPointer(), 138
Owner, 120
Preview And Animate, 122
Preview Message Notify Procedure,

120
preview_hints, 125
Selection Functions, 126
Setup, 121
Source Functions, 132
Trigger Message Notify Procedure,

120
Drag Box Range of Movement, 605
drag distance resource, 20
drag distance, specifying, 23
DrawArea, 269

Activation Types, 275
Ancestry, 269
BulletinBoard Resources, 272
Coloration, 270
Composite Resources, 271
Core Resources, 271
Keyboard Traversal, 270
Manager Resources, 271
Multiple Visuals Support, 270
Resources, 272
XtNexposeCallback resource, 272
XtNforeground resource, 273
XtNgraphicsExposeCallback

resource, 273
XtNresizeCallback resource, 274
XtNvisual resource, 274

Drop Target Coloration, 277
DropTarget, 276

Activation Types, 286
Ancestry, 276
Coloration, 276
Core Resources, 277
OlDropTargetCallbackStruct

structure, 279
Pixmap Resources, 278
Primitive Resources, 278
Resources, 278

XtNbusyPixmap resource, 281
XtNdndAcceptCursor resource, 281
XtNdndAnimateCallback resource,

282
XtNdndCopyCursor resource, 282
XtNdndMoveCursor resource, 282
XtNdndPreviewCallback resource,

283
XtNdndPreviewHints resource, 282
XtNdndRejectCursor resource, 283
XtNdndTriggerCallback resource,

284
XtNfull resource, 284
XtNownSelectionCallback resource,

284
XtNrecomputeSize resource, 285
XtNselectionAtom resource, 285

dynamic callback list, 150
Dynamic Resource Functions, 150

OlCallDynamicCallbacks(), 150
OlRegisterDynamicCallback(), 150
OlUnregisterDynamicCallback(), 151

dynamic resources, 16

E
Editable ScrollingList, 558
elevator, 518
emanate widget, 443
encoding

multibyte, 84
single-byte, 84
wide character, 84

EndCurrentTextBufferWord(), 175
EnterNotify event, 222
Error Functions, 152

OlError(), 152
OlErrorHandler(), 154
OlSetErrorHandler(), 153
OlSetVaDisplayErrorMsg-Handler(),

154
OlSetVaDisplayWarningMsgHandler

(), 154
OlSetWarningHandler(), 153

718 OLIT Reference Manual—August 1994

OlVaDisplayErrorMsg(), 152
OlVaDisplayErrorMsgHandler(), 154
OlVaDisplayWarningMsg(), 153
OlVaDisplayWarningMsgHandler(),

155
OlWarning(), 152
OlWarningHandler(), 154

Exclusive Buttons Example, 287
Exclusives, 287

Activation Types, 292
Ancestry, 287
Child Constraint, 288
Coloration, 288
Composite Resources, 290
Core Resources, 289
Grid Layout and Button Labels, 287
Keyboard Traversal, 289
Manager Resources, 290
Menu Use, 288
Resources, 290
Selection Control, 288
XtNlayoutType resource, 291
XtNmeasure resource, 291
XtNnoneSet resource, 291
XtNrecomputeSize resource, 292

expose event, 273
exposure events

processing, 118

F
FileChooser, 294

Accelerators, 313
Activation Types, 320
Ancestry, 294
Base Resources, 300
Coloration, 295
Component Access, 314
Composite Resources, 296
Core Resources, 295
Customization Resources, 311
Extensibility Callbacks, 316
Extensibility Resources, 314
Extension Container, 314
File Filtering, 307

GoTo Control, 309
Known Deficiencies, 295
Labels, 318
Manager Resources, 296
Mnemonics, 313
Pathname Processing, 312
Resources, 297
RubberTile Resources, 296
Sorting, 311
Sorting Styles, 312
Standard Callbacks, 302
XtNapplicationFolders resource, 309
XtNapplicationFoldersMaxCount

resource, 309
XtNcancelAccelerator resource, 313
XtNcancelButtonWidget resource,

315
XtNcancelCallback resource, 316
XtNcancelLabel resource, 319
XtNcancelMnemonic resource, 313
XtNcommandButtonWidget resource,

315
XtNcomparisonFunc resource, 311
XtNcurrentFolder resource, 300
XtNcurrentFolderLabelString

resource, 319
XtNcurrentFolderLabelWidget

resource, 315
XtNcurrentFolderWidget resource,

315
XtNdefaultDocumentName

resource, 319
XtNdefaultDocumentSuffix

resource, 320
XtNdocumentListWidget resource,

315
XtNdocumentNameLabelWidget

resource, 315
XtNdocumentNameTypeInWidget

resource, 315
XtNexpandTilde resource, 312
XtNextensionClass resource, 314
XtNextensionName resource, 314
XtNextensionWidget resource, 314
XtNfilterProc resource, 307
XtNfilterString resource, 308

Index 719

XtNfolderOpenedCallback resource,
316

XtNfolderPromptString resource, 318
XtNfollowSymlinks resource, 300
XtNfont resource, 300
XtNfontColor resource, 300
XtNforeground resource, 301
XtNgotoButtonWidget resource, 315
XtNgotoHomeAccelerator resource,

313
XtNgotoHomeButtonWidget

resource, 315
XtNgotoHomeLabel resource, 319
XtNgotoHomeMnemonic resource,

313
XtNgotoLabel resource, 319
XtNgotoMenuWidget resource, 315
XtNgotoPromptString resource, 318
XtNgotoPromptWidget resource, 315
XtNgotoTypeInWidget resource, 315
XtNgoUpOneFolderLabel resource,

319
XtNhideDotFiles resource, 308
XtNhistoryFoldersMaxCount

resource, 309
XtNhistoryFoldersMinCount

resource, 309
XtNhomeFolder resource, 310
XtNincludeAccelerator resource, 313
XtNincludeLabel resource, 319
XtNincludeMnemonic resource, 313
XtNinputDocumentCallback

resource, 303
XtNlastDocumentName resource,

301
XtNlistChoiceCallback resource, 317
XtNlistPromptWidget resource, 315
XtNlistVisibleItemCount resource,

301
XtNlistVisibleItemMinCount

resource, 301
XtNopenAccelerator resource, 313
XtNopenButtonWidget resource, 315
XtNopenFolderAccelerator resource,

313

XtNopenFolderCallback resource,
305

XtNopenFolderLabel resource, 319
XtNopenFolderMnemonic resource,

313
XtNopenLabel resource, 319
XtNopenMnemonic resource, 313
XtNopenPromptString resource, 318
XtNoperation resource, 301
XtNoutputDocumentCallback

resource, 306
XtNsaveAccelerator resource, 313
XtNsaveAsAccelerator resource, 313
XtNsaveAsLabel resource, 319
XtNsaveAsMnemonic resource, 313
XtNsaveLabel resource, 319
XtNsaveMnemonic resource, 313
XtNscale resource, 302
XtNshowGlyphs resource, 302
XtNshowInactive resource, 308
XtNsubstituteShellVariables resource,

312
XtNtextFormat resource, 302
XtNuserFolders resource, 310
XtNuserFoldersMaxCount resource,

311
FileChooserShell, 321

Activation Types, 329
Ancestry, 321
Coloration, 322
Composite Resources, 324
Core Resources, 324
Resources, 327
Shell Resources, 324
TransientShell Resources, 327
VendorShell Resources, 326
WMShell Resources, 325
XtNfileChooserWidget resource, 327
XtNoperation resource, 327
XtNpointerWarping resource, 328
XtNtextFormat resource, 328
XtNverifyCallback resource, 328

Flat, 331
Callbacks and Flat Widgets, 335
FlatExclusives Settings Example, 332

720 OLIT Reference Manual—August 1994

Item Lists and Allowable Resources,
331

registering help for Flat widgets, 156
Registering Help on Items, 338
Setting/Getting the State of an Item,

336
Specifying Items, 334

Flat Resources, 62
FlatCheckBox widget, 343
FlatExclusives widget, 351
FlatNonexclusives widget, 360
XtNgravity, 63
XtNhPad, 64
XtNhSpace, 64
XtNitemFields, 64
XtNitemGravity, 65
XtNitemMaxHeight, 65
XtNitemMaxWidth, 65
XtNitemMinHeight, 65
XtNitemMinWidth, 65
XtNitems, 66
XtNitemsTouched, 66
XtNlabel, 67
XtNlabelImage, 67
XtNlabelJustify, 67
XtNlabelTile, 67
XtNlayoutHeight, 68
XtNlayoutType, 68
XtNlayoutWidth, 68
XtNmeasure, 69
XtNnumItemFields, 69
XtNnumItems, 69
XtNsameHeight, 69
XtNsameWidth, 70
XtNvPad, 64
XtNvSpace, 64

Flat Widget Functions, 364
OlFlatCallAcceptFocus(), 364
OlFlatGetFocusItem(), 364
OlFlatGetItemGeometry(), 365
OlFlatGetItemIndex(), 364
OlFlatGetValues(), 365
OlFlatSetValues(), 366
OlVaFlatGetValues(), 365
OlVaFlatSetValues(), 366

FlatCheckBox, 339
Activation Types, 345
Ancestry, 339
Coloration, 340
Components, 340
Core Resources, 342
Flat Resources, 343
FlatExclusives Resources, 344
Keyboard Accelerator Display, 341
Keyboard Mnemonic Display, 341
Keyboard Traversal, 341
OL_SELECT Activation Type, 346
OL_SELECTKEY Activation Type,

346
Primitive Resources, 343
Resources, 345
XtNposition resource, 345

FlatExclusives, 347
Activation Types, 355
Ancestry, 347
Coloration, 348
Core Resources, 349
Flat Resources, 351
Keyboard Traversal, 349
Menu Use, 348
OL_MENU Activation Type, 355
OL_MENUDEFAULT Activation

Type, 355
OL_MENUDEFAULTKEY Activation

Type, 355
OL_MENUKEY Activation Type, 355
OL_SELECT Activation Type, 356
OL_SELECTKEY Activation Type,

356
Primitive Resources, 350
Resources, 352
Selection Control, 347
XtNclientData resource, 352
XtNdefault resource, 352
XtNdim resource, 353
XtNhSpace resource, 353
XtNnoneSet resource, 354
XtNselectProc resource, 354
XtNset resource, 354
XtNunselectProc resource, 354

Index 721

XtNvSpace resource, 353
FlatExclusives Resources

FlatCheckBox widget, 344
FlatNonexclusives widget, 361

FlatNonexclusives, 357
Activation Types, 362
Ancestry, 357
Coloration, 358
Core Resources, 359
Default Spacing, 357
Flat Resources, 360
FlatExclusives Resources, 361
Keyboard Traversal, 358
Menu Use, 357
OL_MENU Activation Type, 362
OL_MENUDEFAULT Activation

Type, 363
OL_MENUDEFAULTKEY Activation

Type, 363
OL_MENUKEY Activation Type, 362
OL_SELECT Activation Type, 363
OL_SELECTKEY Activation Type,

363
Primitive Resources, 360

follower widgets, 103
font

default font resource, 24
default label, 36
text color, 37

font set
Fontset Definitions in

OpenWindows.fs, 368
status feedback, 54

font set handling, 87
FontChooser, 367

Activation Types, 384
Ancestry, 367
Appearance, 368
Coloration, 368
Composite Resources, 371
Core Resources, 370
Default Font Family, 369
Default Font Scales, 369
Fontset Definitions in

OpenWindows.fs, 368

Fontset Name Aliases, 369
Fontset Specifier, 368
Manager Resources, 371
OL_PROPERTY, 370
propertiesKey, 370
Resources, 372
RubberTile Resources, 372
XtNapplyCallback resource, 373
XtNapplyLabel resource, 373
XtNattributeListHeight resource, 374
XtNcancelCallback resource, 374
XtNcancelLabel resource, 375
XtNchangedCallback resource, 375
XtNcharsetInfo resource, 376
XtNerrorCallback resource, 376
XtNextensionArea resource, 377
XtNfontSearchSpec resource, 377
XtNinitialFontName resource, 378
XtNmaximumPointSize resource, 378
XtNnoPreviewText, 378
XtNpreferredPointSizes resource, 379
XtNpreviewBackground resource,

379
XtNpreviewBorderWidth resource,

379
XtNpreviewFontColor resource, 379
XtNpreviewForeground resource,

379
XtNpreviewHeight resource, 380
XtNpreviewPresent resource, 380
XtNpreviewSwitchLabel, 380
XtNpreviewSwitchOffLabel

resource, 380
XtNpreviewSwitchOnLabel

resource, 381
XtNpreviewText resource, 381
XtNrevertCallback resource, 381
XtNrevertLabel resource, 382
XtNsizeLabel resource, 382
XtNstyleLabel resource, 383
XtNtextFormat resource, 383
XtNtypefaceLabel resource, 383

FontChooserShell, 385
Ancestry, 385
Appearance, 386

722 OLIT Reference Manual—August 1994

Coloration, 386
Components, 385
Composite Resources, 387
Core Resources, 386
Resources, 389
Shell Resources, 387
TransientShell Resources, 389
VendorShell Resources, 388
WMShell Resources, 387
XtNfontChooserWidget resource, 389
XtNtextFormat resource, 390

footer
left string, 55
left visibility, 55
right string, 57
right visibility, 57

footer area resource, 54
FooterPanel, 391

Activations Types, 394
Ancestry, 391
Coloration, 392
Composite Resources, 393
Core Resources, 392
Limitations, 392
Manager Resources, 393
Sizing, 392

foreground color resource, 37
Form, 395

Activation Types, 404
Ancestry, 395
Automatic Resizing, 396
Child Management, 396
Coloration, 396
Composite Resources, 399
Constraint Resources, 400
Core Resources, 399
Form Geometry Management

Algorithm, 397
Horizontal Constraints, 395
Manager Resources, 399
Reference_Tree, 397
resize algorithm, 397
Resources, 400
Spanning Constraints, 395
Terminology, 397

Vertical Constraints, 396
XtNxAddWidth resource, 401
XtNxAttachOffset resource, 401
XtNxAttachRight resource, 401
XtNxOffset resource, 402
XtNxRefName resource, 402
XtNxRefWidget resource, 403
XtNxResizable resource, 403
XtNxVaryOffset resource, 404
XtNyAddHeight resource, 401
XtNyAttachBottom resource, 401
XtNyAttachOffset resource, 401
XtNyOffset resource, 402
XtNyRefName resource, 402
XtNyRefWidget resource, 403
XtNyResizable resource, 403
XtNyVaryOffset resource, 404

ForwardScanTextBuffer(), 175
FreeBuffer(), 106
FreeTextBuffer(), 175

G
gadgets

registering help, 156
Gauge, 405

Activation Types, 411
Ancestry, 405
Application Notification, 406
Coloration, 406
Components, 406
Core Resources, 407
Horizontal Orientation, 406
Primitive Resources, 407
Resources, 408
XtNleftMargin resource, 408
XtNmaxLabel resource, 408
XtNminLabel resource, 409
XtNorientation resource, 409
XtNrecomputeSize resource, 410
XtNrightMargin resource, 410
XtNsliderMax resource, 410
XtNsliderMin resource, 410
XtNsliderValue resource, 410
XtNspan resource, 411

Index 723

XtNticks resource, 411
XtNtickUnit resource, 411

Gauge Function, 412
OlSetGaugeValue(), 412

geometry manager
example, 148

geometry requests, 42
GetOlBusyCursor(), 115
GetOlDataDupeDragCursor(), 115
GetOlDataDupeDropCursor(), 115
GetOlDataDupeInsertCursor(), 115
GetOlDataDupeNoDropCursor(), 115
GetOlDataMoveDragCursor(), 115
GetOlDataMoveDropCursor(), 115
GetOlDataMoveInsertCursor(), 115
GetOlDataMoveNoDropCursor(), 115
GetOlDocCursor(), 115
GetOlDocStackCursor(), 115
GetOlDropCursor(), 115
GetOlDupeDocCursor(), 115
GetOlDupeDocDragCursor(), 115
GetOlDupeDocDropCursor(), 115
GetOlDupeDocNoDropCursor(), 115
GetOlDupeStackCursor(), 115
GetOlDupeStackDragCursor(), 115
GetOlDupeStackDropCursor(), 115
GetOlDupeStackNoDropCursor(), 115
GetOlDuplicateCursor(), 116
GetOlFolderCursor(), 115
GetOlFolderStackCursor(), 115
GetOlMoveCursor(), 116
GetOlMoveDocCursor(), 115
GetOlMoveDocDragCursor(), 115
GetOlMoveDocDropCursor(), 115
GetOlMoveDocNoDropCursor(), 115
GetOlMoveStackCursor(), 115
GetOlMoveStackDragCursor(), 115
GetOlMoveStackDropCursor(), 115
GetOlMoveStackNoDropCursor(), 115
GetOlNoDropCursor(), 115

GetOlPanCursor(), 116
GetOlQuestionCursor(), 116
GetOlStandardCursor(), 116
GetOlTargetCursor(), 117
GetOlTextDupeDragCursor(), 115
GetOlTextDupeDropCursor(), 115
GetOlTextDupeInsertCursor(), 115
GetOlTextDupeNoDropCursor(), 115
GetOlTextMoveDragCursor(), 115
GetOlTextMoveDropCursor(), 115
GetOlTextMoveInsertCursor(), 115
GetOlTextMoveNoDropCursor(), 115
GetTextBufferBlock(), 176
GetTextBufferBuffer(), 176
GetTextBufferChar(), 176
GetTextBufferLine(), 177
GetTextBufferLocation(), 177
grabbing pointer events, 135
grabs, avoiding permanent toolkit, 430
graphics expose event, 273
gravity resource for flat widgets, 63
GrowBuffer(), 106

H
header resource, 58
height resource, 30
help facility

Activation Type, 78
Displaying the Help Message, 159
Format of Help, 157
Help for Flat Widgets, 156
Help Key Event, 158
internationalization, 89
OlRegisterHelp(), 156
Static Variables, 159

Help Function, 156
help model resource, 21
highlight color, 19
highlighting keyboard mnemonics

resource, 26
Hiragana, 91

724 OLIT Reference Manual—August 1994

I
icon mask resource, 46
icon name resource, 61
iconifying the base window, 60
IM See input method
IncrementTextBufferLocation(), 177
Initialization and Activation Functions,

102
OlActivateWidget(), 103
OlAssociateWidget(), 103
OlInitialize(), 102
OlToolkitInitialize(), 102
OlUnassociateWidget(), 104

input events
receiving, 28, 31

input focus
acquiring, 23
application behavior, 48
color resource, 37
feedback resource, 21
manipulating, 160
moving, 79
selecting a window, 54
sensitivity, 31

Input Focus Functions, 160
OlCallAcceptFocus(), 160
OlCanAcceptFocus(), 160
OlGetCurrentFocusWidget(), 161
OlHasFocus(), 161
OlMoveFocus(), 162
OlSetInputFocus(), 161

input method, 90
commiting input, 91
default, 53
implicit commit, 91
screen regions, 92
status feedback, 54
status style, 95

input mode, 91
InsertIntoBuffer(), 106
international OLIT

definition, 82
supported languages, 82

internationalization
character encoding, 84
example, 97
font sets, 87
help facility, 89
input mode, 91
locale, 81
setting default text format, 86
setting locales, 83
standards, 99
supported languages, 82
text formats, 84

Internationalization Features, 81
Internationalization Functions

OlAllocateTextBuffer(), 186
OlBackwardScanTextBuffer(), 187
OlCopyTextBufferBlock(), 188
OlEndCurrentTextBufferWord(), 188
OlForwardScanTextBuffer(), 189
OlFreeTextBuffer(), 190
OlGetTextBufferBlock(), 190
OlGetTextBufferBuffer(), 191
OlGetTextBufferCharAtLoc(), 192
OlGetTextBufferFileName(), 192
OlGetTextBufferLine(), 193
OlGetTextUndoDeleteItem(), 193
OlGetTextUndoInsertItem(), 194
OlIncrementTextBufferLocation(),

194
OlIsTextBufferEmpty(), 195
OlIsTextBufferModified(), 195
OlLastCharInTextBufferLine(), 195
OlLastTextBufferLine(), 196
OlLastTextBufferLocation(), 196
OlLastTextBufferPosition(), 197
OlLineOfPosition(), 197
OlLinesInTextBuffer(), 197
OlLocationOfPosition(), 198
OlNextLocation(), 199
OlNextTextBufferWord(), 199
OlNumBytesInTextBufferLine(), 200
OlNumCharsInTextBufferLine(), 200
OlNumUnitsInTextBufferLine(), 201
OlPositionOfLine(), 201
OlPositionOfLocation(), 201

Index 725

OlPreviousLocation(), 202
OlPreviousTextBufferWord(), 202
OlReadFileIntoTextBuffer(), 203
OlReadStringIntoTextBuffer(), 204
OlRegisterAllTextBufferScan-

Functions(), 204
OlRegisterAllTextBufferWord-

Definition, 205
OlRegisterPerTextBufferScan-

Functions(), 205
OlRegisterPerTextBufferWord-

Definition(), 206
OlRegisterTextBufferUpdate(), 207
OlReplaceBlockInTextBuffer(), 207
OlReplaceCharInTextBuffer(), 209
OlSaveTextBuffer(), 210
OlSetTextUndoDeleteItem(), 210
OlSetTextUndoInsertItem(), 211
OlStartCurrentTextBufferWord(), 211
OlTextEditOlTextBuffer(), 212
OlUnitOffsetOfLocation(), 212
OlUnregisterTextBufferUpdate(), 213

internationalizing applications, 81
item list resource for flat widgets, 64
items

flat widget, 331

J
Japanese Feature Package, 82
Japanese phonetic alphabets, 91

K
Kanji, 91
Katakana, 91
key bindings in resource file, 74
keyboard accelerators

binding in resource file, 74
KeyPress event, 35
resource, 26
string resource, 35
translations resource, 27

keyboard input focus See input focus
keyboard mnemonics

resource, 26, 38
keyboard repeat count, 24
keyboard traversal

preventing, 103
resource, 40

KeyPress event, 222
KeyPress event resource, 35

L
label

default font, 36
label resource for flat widgets, 67
LANG

setting locale, 84
LastTextBufferLocation(), 178
LastTextBufferPosition(), 178
leader widgets, 103
LeaveNotify event, 222
LineOfPosition(), 178
locale, 81

setting, 83
localization, 81
localized messages, 90
LocationOfPosition(), 178
lookup choice region, 91
LookupOlColors(), 150
LookupOlInputEvent(), 217

M
Manager Resources, 41

BulletinBoard widget, 237
Caption widget, 242
CheckBox widget, 252
ControlArea widget, 261
DrawArea widget, 271
Exclusives widget, 290
FileChooser widget, 296
FontChooser widget, 371
FooterPanel widget, 393
Form widget, 399
Nonexclusives widget, 440

726 OLIT Reference Manual—August 1994

RubberTile widget, 514
ScrolledWindow widget, 544
ScrollingList widget, 565
TextField widget, 679

mapping
widget, 31
X events, 32

menu
cascade, 414
click-move-click, 422, 426
pinned, 427
popup, creating, 227
press-drag-release, 422, 426
slow clicking, 426

menu button
presence in shell window header, 55

menu mark width resource, 22
MenuButton, 413

Activation Types, 421
Ancestry, 413
Appearance, 413
Coloration, 415
Components, 413
Core Resources, 417
Label Appearance, 416
Menu Placement, 415
Menu Previewing, 414
OL_MENU Activation Type, 422
OL_MENUDEFAULT Activation

Type, 422
OL_MENUDEFAULTKEY Activation

Type, 422
OL_MENUKEY Activation Type, 423
OL_SELECT Activation Type, 423
OL_SELECTKEY Activation Type,

423
Popping Up the MenuShell

Subwidget, 414
Primitive Resources, 417
Resources, 418
Selecting the Default Item, 415
Subwidget, 414
Subwidgets, 414
XtNdefault resource, 419
XtNlabel resource, 419

XtNlabelImage resource, 419
XtNlabelJustify resource, 420
XtNlabelType resource, 420
XtNmenuMark resource, 420
XtNmenuPane resource, 421
XtNrecomputeSize resource, 421

menumark, 413
menupane, 425
MenuPane Subwidget Resources, 435
MenuShell, 424

Activation Types, 437
Ancestry, 424
Associating a Menu with a Widget,

426
Avoiding Permanent Toolkit Grabs,

430
Coloration, 428
Components, 424
Composite Resources, 432
Converting Stay-up to Pop-up Menu,

427
Core Resources, 432
Highlighting Items, 427
Keyboard Traversal, 431
Menu Components, 425
menupane, 425
OlMenuPopdown(), 430
OlMenuPopup(), 428
OlMenuPost(), 430
OlMenuUnpost(), 430
Popup Control, 426
Popup Position, 427
Programmatic Menu Popup and

Popdown, 428
pushpin usage, 427
Resources, 435
Selection Control, 426
Shell Resources, 432
Subwidget Resources, 418
Subwidgets, 425
The Default Item, 427
TransientShell Resources, 434
VendorShell Resources, 434
WMShell Resources, 433
XtNmenuAugment resource, 435

Index 727

XtNmenuPane resource, 436
XtNpushpin resource, 436
XtNpushpinDefault resource, 436

messages
localized, 90
protocol, 58, 59

Meta key, 23
meta-key, 22
millimeters

converting from pixels, 168
mnemonic

character prefix resource, 22
keyboard, 38

mnemonics See keyboard mnemonics
Mod5 key, 23
ModeSwitch key, 23
Modifier1 - Modifier5 key resources, 23
MotionNotify event, 222
mouse damping factor resource, 23
mouseless operations resource, 23
multibyte character text, 39
multibyte encoding, 84
multi-click timing resource, 24
Multiple Visual Functions, 164

OlColormapOfObject(), 165
OlDepthOfObject(), 165
OlInternAtom(), 165
OlVisualOfObject(), 166

multi-visual application, 164

N
NextLocation(), 179
NextTextBufferWord(), 179
Nonexclusives, 438

Activation Types, 442
Ancestry, 438
Buttons Example, 438
Coloration, 439
Composite Resources, 440
Core Resources, 440
Keyboard Traversal, 439
Manager Resources, 440

menu use, 439
menupane usage, 439
Resources, 441
Restrictions on Children, 439
XtNlayoutType resource, 441
XtNmeasure resource, 441
XtNrecomputeSize resource, 442

NoticeShell, 443
Activation Types, 390, 452
Ancestry, 443
Coloration, 446
Components, 443
Composite Resources, 447
ControlArea Subwidget Resources,

450
Core Resources, 446
emanate widget, 443
Keyboard Traversal, 445
Popping the Notice Up and Down,

444
Resources, 449
Shell Resources, 447
StaticText Subwidget Resources, 449
Subwidgets, 444
Text and ControlAreas, 445
TransientShell Resources, 449
VendorShell Resources, 448
WMShell Resources, 447
XtNcontrolArea resource, 450
XtNemanateWidget resource, 450
XtNpointerWarping resource, 451
XtNtextArea resource, 451
XtNtextFormat resource, 451

numeric values
displaying graphically, 405

NumericField, 453
Activation Types, 467
Ancestry, 453
Caret Position, 455
Coloration, 456
Components, 453, 454
Core Resources, 456
DeltaButtons, 454, 456
Display of Text, 455
Implementing New Datatypes, 465

728 OLIT Reference Manual—August 1994

Keyboard Accelerator Display, 455
Keyboard Mnemonic Display, 455
Keyboard Traversal, 454
OL_CHARBAK Activation Type, 468
OL_CHARFWD Activation Type, 468
OL_COPY Activation Type, 468
OL_CUT Activation Type, 468
OL_DELCHARBAK Activation

Type, 469
OL_DELCHARFWD Activation Type,

469
OL_DELLINE Activation Type, 470
OL_DELLINEBAK Activation Type,

470
OL_DELLINEFWD Activation Type,

470
OL_DELWORDBAK Activation Type,

471
OL_DELWORDFWD Activation

Type, 471
OL_LINEEND Activation Type, 471
OL_LINESTART Activation Type, 471
OL_NEXTFIELD Activation Type,

472
OL_PASTE Activation Type, 472
OL_PREVFIELD Activation Type, 472
OL_UNDO Activation Type, 472
OL_WORDBAK Activation Type, 473
OL_WORDFWD Activation Type,

473
Per-Key and Per-Field Validation, 464
Primitive Resources, 457
Resources, 458
Selection Of Text, 455
TextLine Resources, 458
validation, 464
XtNconvertProc resource, 459
XtNdelta resource, 459
XtNdeltaCallback resource, 460
XtNdeltaState resource, 460
XtNmaxValue resource, 461
XtNminValue resource, 461
XtNsizeOf resource, 462
XtNtype resource, 462
XtNvalidateCallback resource, 462
XtNvalue resource, 463

NumLock key, 23

O
OblongButton, 474

Activation Types, 483
Ancestry, 474
Busy Indication During Callbacks,

474
Coloration, 476
Components, 474
Core Resources, 479
in popup menus, 475
in PopupWindowShells, 496
Keyboard Accelerator Display, 477
Keyboard Mnemonic Display, 477
Keyboard Traversal, 476
Label Appearance, 478
OblongButton Gadgets, 475
OblongButtons Not In Popup Menus,

475
OL_MENU Activation Type, 484
OL_MENUDEFAULT Activation

Type, 484
OL_MENUDEFAULTKEY Activation

Type, 484
OL_MENUKEY Activation Type, 484
OL_SELECT Activation Type, 484
OL_SELECTKEY Activation Type,

484
Primitive Resources, 479
Resources, 480
XtNbusy resource, 480
XtNdefault resource, 481
XtNlabel resource, 481
XtNlabelImage resource, 481
XtNlabelJustify resource, 482
XtNlabelTile resource, 482
XtNlabelType resource, 482
XtNrecomputeSize resource, 482
XtNselect resource, 483

OL_ADJUST
ScrollingList widget, 585
StaticText widget, 618
TextEdit widget, 654
TextField widget, 685

Index 729

OL_ADJUSTKEY
ScrollingList widget, 585

OL_CHARBAK
NumericField widget, 468
TextEdit widget, 654
TextField widget, 685
TextLine widget, 712

OL_CHARFWD
NumericField widget, 468
TextEdit widget, 654
TextField widget, 686
TextLine widget, 712

OL_COPY
NumericField widget, 468
ScrollingList widget, 585
StaticText widget, 618
TextEdit widget, 655
TextField widget, 686
TextLine widget, 712

OL_CORE_IE, 223
OL_CUT

NumericField widget, 468
ScrollingList widget, 585
TextEdit widget, 655
TextField widget, 686
TextLine widget, 712

OL_DEFAULT_IE, 223
OL_DELCHARBAK

NumericField widget, 469
TextEdit widget, 655
TextField widget, 686
TextLine widget, 712

OL_DELCHARFWD
NumericField widget, 469
TextEdit widget, 656
TextField widget, 687
TextLine widget, 713

OL_DELLINE
NumericField widget, 470
TextEdit widget, 656
TextField widget, 687
TextLine widget, 713

OL_DELLINEBAK
NumericField widget, 470

TextEdit widget, 657
TextField widget, 687
TextLine widget, 713

OL_DELLINEFWD
NumericField widget, 470
TextEdit widget, 657
TextField widget, 688
TextLine widget, 714

OL_DELWORDBAK
NumericField widget, 471
TextEdit widget, 658
TextField widget, 688
TextLine widget, 714

OL_DELWORDFWD
NumericField widget, 471
TextEdit widget, 658
TextField widget, 689
TextLine widget, 714

OL_DOCEND
TextEdit widget, 659

OL_DOCSTART
TextEdit widget, 659

OL_HSBMENU
Scrollbar widget, 536
ScrolledWindow widget, 554

OL_LINEEND
NumericField widget, 471
TextEdit widget, 659
TextField widget, 689
TextLine widget, 715

OL_LINESTART
NumericField widget, 471
TextEdit widget, 660
TextField widget, 689
TextLine widget, 715

OL_MENU
AbbrevMenuButton widget, 233
FlatExclusives widget, 355
FlatNonexclusives widget, 362
MenuButton widget, 422
OblongButton widget, 484
RectButton widget, 510
Scrollbar widget, 536
ScrollingList widget, 586

730 OLIT Reference Manual—August 1994

TextEdit widget, 660
TextField widget, 689

OL_MENUDEFAULT
FlatExclusives widget, 355
FlatNonexclusives widget, 363
MenuButton widget, 422
OblongButton widget, 484
RectButton widget, 510

OL_MENUDEFAULTKEY
FlatExclusives widget, 355
FlatNonexclusives widget, 363
MenuButton widget, 422
OblongButton widget, 484
RectButton widget, 510

OL_MENUKEY
AbbrevMenuButton widget, 234
FlatExclusives widget, 355
FlatNonexclusives widget, 362
MenuButton widget, 423
OblongButton widget, 484
RectButton widget, 510
Scrollbar widget, 536
ScrollingList widget, 586
TextEdit widget, 660
TextField widget, 689

Ol_MMToPixel, 168
OL_MULTIDOWN

ScrollingList widget, 586
OL_MULTIUP

ScrollingList widget, 586
OL_NEXTFIELD

NumericField widget, 472
TextLine widget, 715

OL_PAGEDOWN
Scrollbar widget, 536
ScrolledWindow widget, 555
ScrollingList widget, 586
TextEdit widget, 660

OL_PAGELEFT
Scrollbar widget, 536
ScrolledWindow widget, 555
TextEdit widget, 660

OL_PAGERIGHT
Scrollbar widget, 536

ScrolledWindow widget, 555
TextEdit widget, 661

OL_PAGEUP
Scrollbar widget, 537
ScrolledWindow widget, 555
ScrollingList widget, 586
TextEdit widget, 661

OL_PANEEND
ScrollingList widget, 586
TextEdit widget, 661

OL_PANESTART
ScrollingList widget, 586
TextEdit widget, 661

OL_PASTE
NumericField widget, 472
ScrollingList widget, 586
TextEdit widget, 662
TextField widget, 690
TextLine widget, 715

Ol_PixelToMM, 168
Ol_PixelToPoint, 168
Ol_PointToPixel, 168
OL_PREVFIELD

NumericField widget, 472
TextLine widget, 716

OL_RETURN
TextField widget, 690

OL_ROWDOWN
TextEdit widget, 662

OL_ROWUP
TextEdit widget, 662

OL_SB_STR_REP, 87
Ol_ScreenMMToPixel, 168
Ol_ScreenPixelToMM, 168
Ol_ScreenPixelToPoint, 168
Ol_ScreenPointToPixel, 168
OL_SCROLLBOTTOM

Scrollbar widget, 537
ScrolledWindow widget, 555
ScrollingList widget, 586
Slider widget, 608

OL_SCROLLDOWN
Scrollbar, 537

Index 731

Scrollbar widget, 537
ScrolledWindow widget, 555
ScrollingList widget, 586
Slider widget, 608
TextEdit widget, 663

OL_SCROLLLEFT
ScrolledWindow widget, 555
Slider widget, 608
TextEdit widget, 663
TextField widget, 690

OL_SCROLLLEFTEDGE
Scrollbar widget, 537
ScrolledWindow widget, 556
Slider widget, 608
TextEdit widget, 663
TextField widget, 690

OL_SCROLLRIGHT
Scrollbar widget, 538
ScrolledWindow widget, 556
Slider widget, 609
TextEdit widget, 663
TextField widget, 690

OL_SCROLLRIGHTEDGE
Scrollbar widget, 537
ScrolledWindow widget, 556
Slider widget, 609
TextEdit widget, 663
TextField widget, 690

OL_SCROLLTOP
Scrollbar widget, 537
ScrolledWindow widget, 556
ScrollingList widget, 587
Slider widget, 609

OL_SCROLLUP
Scrollbar widget, 538
ScrolledWindow widget, 556
ScrollingList widget, 587
Slider widget, 609
TextEdit widget, 664

OL_SELCHARBAK
TextEdit widget, 664
TextField widget, 690

OL_SELCHARFWD
TextEdit widget, 664

TextField widget, 691
OL_SELECT

AbbrevMenuButton widget, 234
Caption widget, 246
CheckBox widget, 258
FlatCheckBox widget, 346
FlatExclusives widget, 356
FlatNonexclusives widget, 363
MenuButton widget, 423
OblongButton widget, 484
RectButton widget, 511
Scrollbar widget, 538
ScrollingList widget, 587
Slider widget, 609
StaticText widget, 618
TextEdit widget, 665
TextField widget, 691

OL_SELECTKEY
AbbrevMenuButton widget, 234
Caption widget, 246
CheckBox widget, 258
FlatCheckBox widget, 346
FlatExclusives widget, 356
FlatNonexclusives widget, 363
MenuButton widget, 423
OblongButton widget, 484
RectButton widget, 511
ScrollingList widget, 587

OL_SELFLIPENDS
TextEdit widget, 665
TextField widget, 691

OL_SELLINE
TextEdit widget, 665
TextField widget, 691

OL_SELLINEBAK
TextEdit widget, 666
TextField widget, 692

OL_SELLINEFWD
TextEdit widget, 666
TextField widget, 692

OL_SELWORDBAK
TextEdit widget, 666
TextField widget, 692

OL_SELWORDFWD

732 OLIT Reference Manual—August 1994

TextEdit widget, 667
TextField widget, 693

OL_TEXT_IE, 223
OL_UNDO

NumericField widget, 472
TextEdit widget, 667
TextField widget, 693
TextLine widget, 716

OL_VSBMENU
Scrollbar widget, 536
ScrolledWindow widget, 556

OL_WORDBAK
NumericField widget, 473
TextEdit widget, 668
TextField widget, 693
TextLine widget, 716

OL_WORDFWD
NumericField widget, 473
TextEdit widget, 668
TextField widget, 693
TextLine widget, 716

OlActivateWidget(), 103
OlAddCallback(), 36, 59
OlAllocateTextBuffer(), 186
OlApplAddItemProc, 567
OlApplDeleteItemProc, 568
OlApplEditCloseProc, 569
OlApplEditOpenProc, 570
OlApplTouchItemProc, 571
OlApplUpdateViewProc, 571
OlApplViewItemProc, 572
OlAssociateWidget(), 73, 103
OlBackwardScanTextBuffer(), 187
OlBlackPixel, 164
OlCallAcceptFocus(), 160
OlCallDynamicCallbacks(), 150
OlCanAcceptFocus(), 160
OlClassSearchIEDB(), 219
OlClassSearchTextDB(), 220
OlColormapOfObject(), 165
OlCopyTextBufferBlock(), 188
OlCreateInputEventDB(), 221

OlCreatePackedWidgetList(), 166
OlDefaultDisplay, 168
OlDefaultScreen, 168
OlDepthOfObject(), 165
OlDetermineMouseAction(), 217
OlDnDAllocateTransientAtom(), 121
OlDnDAllocTransientAtom(), 132
OlDnDBeginSelectionTransaction(), 138
OlDnDChangeDropSitePreviewHints(),

139
OlDnDClearDragState(), 133
OlDnDDeliverPreviewMessage(), 133
OlDnDDeliverTriggerMessage(), 133
OlDnDDestroyDropSite(), 139
OlDnDDisownSelection(), 134
OlDnDDragAndDrop(), 134
OlDnDDragNDropDone(), 139
OlDnDDragNDropInfo structure, 135
OlDnDDropSiteID(), 127
OlDnDEndSelectionTransaction(), 140
OlDnDErrorDuringSelection-

Transaction(), 141
OlDnDFreeTransientAtom(), 135
OlDnDGetCurrentSelectionsForWidget(),

141
OlDnDGetDropSitesOfWidget(), 142
OlDnDGetDropSitesOfWindow(), 142
OlDnDGetWidgetOfDropSite(), 143
OlDnDGetWindowOfDropSite(), 143
OlDnDInitializeDragState(), 136
OlDnDOwnSelection(), 136
OlDnDOwnSelectionIncremental(), 136
OlDnDPMNotifyProc(), 129
OlDnDPreviewAndAnimate(), 137
OlDnDPreviewAnimateCbP(), 128
OlDnDProtocolActionCbP(), 129
OlDnDQueryDropSiteInfo(), 144
OlDnDRegisterWidgetDropSite(), 145
OlDnDRegisterWindowDropSite(), 146
OlDnDSetDropSiteInterest(), 146

Index 733

OlDnDSetInterestInWidgetHier(), 147
OlDnDSitePreviewBoth, 128
OlDnDSitePreviewDefaultSite, 128
OlDnDSitePreviewEnterLeave, 127
OlDnDSitePreviewForwarded, 128
OlDnDSitePreviewHints(), 127
OlDnDSitePreviewInsensitive, 128
OlDnDSitePreviewMotion, 128
OlDnDSitePreviewNone, 127
OlDnDSiteRect(), 127
OlDnDTMNotifyProc(), 131
OlDnDTransactionStateCallback(), 130
OlDnDUpdateDropSiteGeometry(), 147
OlDnDWidgetConfiguredInHier(), 147
OlDrawAreaCallbackStruct structure, 273
OlDropTargetCallbackStruct Field

Validity, 280
OlDropTargetCallbackStruct structure,

279
OlEndCurrentTextBufferWord(), 188
OlError(), 152
OlErrorHandler(), 154
OlFCApplyCallbackStruct structure, 373
OlFCCancelCallbackStruct structure, 374
OlFCChangedCallbackStruct structure,

375
OlFCErrorCallbackStruct structure, 376
OlFCRevertCallbackStruct structure, 381
OlFiChFilterCallbackStruct structure, 307
OlFileChDocumentCallbackStruct

structure, 304, 306
OlFileChFolderCallbackStruct structure,

305
OlFileChGenericCallbackStruct

structure, 302
OlFileChListChoiceCallbackStruct

structure, 317
OlFileChShVerifyCallbackStruct structure,

329
OlFlatCallAcceptFocus(), 364
OlFlatCallData structure, 335

OlFlatGetFocusItem(), 364
OlFlatGetItemGeometry(), 365
OlFlatGetItemIndex(), 364
OlFlatGetValues(), 365
OlFlatHelpId structure, 156, 338
OlFlatSetValues(), 366
OlFNavNode structure type, 304
OlFolderList, 309
OlFont, 87
OlForwardScanTextBuffer(), 189
OlFreeTextBuffer(), 190
OlGet50PercentGrey(), 117
OlGet75PercentGrey(), 117
OlGetApplicationResources(), 150
OlGetApplicationValues(), 17, 216
OlGetCurrentFocusWidget(), 161
OlGetDataDupeDragCursor(), 109
OlGetDataDupeDropCursor(), 109
OlGetDataDupeInsertCursor(), 109
OlGetDataDupeNoDropCursor(), 110
OlGetDataMoveDragCursor(), 110
OlGetDataMoveDropCursor(), 110
OlGetDataMoveInsertCursor(), 110
OlGetDataMoveNoDropCursor(), 110
OlGetDefaultFont(), 88
OlGetDocCursor(), 110
OlGetDocStackCursor(), 110
OlGetDropCursor(), 111
OlGetDupeDocCursor(), 111
OlGetDupeDocDragCursor(), 111
OlGetDupeDocDropCursor(), 111
OlGetDupeDocNoDropCursor(), 111
OlGetDupeStackCursor(), 111
OlGetDupeStackDragCursor(), 111
OlGetDupeStackDropCursor(), 112
OlGetDupeStackNoDropCursor(), 112
OlGetFolderCursor(), 112
OlGetFolderStackCursor(), 112
OlGetMoveDocCursor(), 112
OlGetMoveDocDragCursor(), 112

734 OLIT Reference Manual—August 1994

OlGetMoveDocDropCursor(), 112
OlGetMoveDocNoDropCursor(), 113
OlGetMoveStackCursor(), 113
OlGetMoveStackDragCursor(), 113
OlGetMoveStackDropCursor(), 113
OlGetMoveStackNoDropCursor(), 113
OlGetNoDropCursor(), 113
OlGetTextBufferBlock(), 190
OlGetTextBufferBuffer(), 191
OlGetTextBufferCharAtLoc(), 192
OlGetTextBufferFileName(), 192
OlGetTextBufferLine(), 193
OlGetTextDupeDragCursor(), 113
OlGetTextDupeDropCursor(), 114
OlGetTextDupeInsertCursor(), 114
OlGetTextDupeNoDropCursor(), 114
OlGetTextMoveDragCursor(), 114
OlGetTextMoveDropCursor(), 114
OlGetTextMoveInsertCursor(), 114
OlGetTextMoveNoDropCursor(), 114
OlGetTextUndoDeleteItem(), 193
OlGetTextUndoInsertItem(), 194
OlGrabDragPointer(), 121, 137
OlHasFocus(), 161
OlIncrementTextBufferLocation(), 194
OlInitialize(), 102
OlInputCallData structure, 642
OlInputEvent enumerated type, 642
OlInternAtom(), 165
OlIsTextBufferEmpty(), 195
OlIsTextBufferModified(), 195
OLIT Release 3.2 differences, 11
OLIT Toolkit Resources, 17

XtNbeep, 18
XtNbeepVolume, 19
XtNcolorTupleList, 19
XtNcontrolName, 20
XtNdragRightDistance, 20
XtNgrabPointer, 20
XtNhelpModel, 21
XtNinputFocusFeedback, 21

XtNlockName, 21
XtNmenuMarkRegion, 22
XtNmnemonicPrefix, 22
XtNmod1Name, 23
XtNmod2Name, 23
XtNmod3Name, 23
XtNmod4Name, 23
XtNmod5Name, 23
XtNmouseDampingFactor, 23
XtNmouseless, 23
XtNmultiClickTimeout, 24
XtNmultiObjectCount, 24
XtNolDefaultFont, 24
XtNscale, 25
XtNselectDoesPreview, 25
XtNshiftName, 25
XtNshowAccelerators, 26
XtNshowMnemonics, 26
XtNthreeD, 26

OlKeyOrBtnRec structure, 221
OlLastCharInTextBufferLine(), 195
OlLastTextBufferLine(), 196
OlLastTextBufferLocation(), 196
OlLastTextBufferPosition(), 197
OlLineOfPosition(), 197
OlLinesInTextBuffer(), 197
OlListDelete structure, 578
OlListItem structure, 583
OlLocationOfPosition(), 198
OlLookupInputEvent(), 222
OlMMToPixel, 168
OlMoveFocus(), 162
OlNextLocation(), 199
OlNextTextBufferWord(), 199
OlNFDeltaCallbackStruct structure, 460
OlNFValidateCallbackStruct structure,

463
OlNumBytesInTextBufferLine(), 200
OlNumCharsInTextBufferLine(), 200
OlNumUnitsInTextBufferLine(), 201
OlPackedWidget structure, 167
OlPixelToMM, 168

Index 735

OlPixelToPoint, 168
OlPointToPixel, 168
OlPositionOfLine(), 201
OlPositionOfLocation(), 201
OlPreviousLocation(), 202
OlPreviousTextBufferWord(), 202
OlReadFileIntoTextBuffer(), 203
OlReadStringIntoTextBuffer(), 204
OlRegisterAllTextBufferScanFunctions(),

204
OlRegisterDynamicCallback(), 150
OlRegisterHelp(), 89, 156
OlRegisterPerTextBufferScanFunctions(),

205
OlRegisterPerTextBufferWordDefinition(),

206
OlRegisterTextBufferUpdate(), 207
OlReplaceBlockInTextBuffer(), 207
OlReplaceCharInTextBuffer(), 209
OlReplayBtnEvent(), 219
OlSaveTextBuffer(), 210
OlScreenMMToPixel, 168
OlScreenPixelToMM, 168
OlScreenPixelToPoint, 168
OlScreenPointToPixel, 168
OlScrollbarVerify structure, 533
OlSetApplicationValues(), 17, 216
OlSetDefaultTextFormat(), 40, 86
OlSetErrorHandler(), 153
OlSetGaugeValue(), 412
OlSetInputFocus(), 161
OlSetTextUndoDeleteItem(), 210
OlSetTextUndoInsertItem(), 211
OlSetVaDisplayErrorMsgHandler(), 154
OlSetVaDisplayWarningMsgHandler(),

154
OlSetWarningHandler(), 153
OlSliderVerify structure, 606
OlSlistAddItem(), 588
OlSlistCallbackStruct structure, 581
OlSlistDeleteAllItems(), 588

OlSlistDeleteItem(), 589
OlSlistDeleteItems(), 589
OlSlistEditItem(), 589
OlSlistEndEdit(), 589
OlSlistFirstViewableItem(), 590
OlSlistGetItemAttrs(), 590
OlSlistGetItemImage(), 590
OlSlistGetItemLabel(), 590
OlSlistGetItemSensitivity(), 591
OlSlistGetItemType(), 591
OlSlistGetItemUserData(), 591
OlSlistGetMode(), 591
OlSlistGetNextItem(), 592
OlSlistGetPrevItem(), 592
OlSlistIsItemCurrent(), 592
OlSlistIsValidItem(), 593
OlSlistItemAttrs structure, 582
OlSlistLastViewableItem(), 593
OlSlistMakeAllItemsNotCurrent(), 593
OlSlistMakeItemCurrent(), 593
OlSlistMakeItemNotCurrent(), 594
OlSlistSetItemAttrs(), 594
OlSlistTouchItem(), 594
OlSlistUpdateView(), 595
OlSlistUserDeleteCallbackStruct

structure, 578
OlSlistViewItem(), 595
OlStartCurrentTextBufferWord(), 211
OlStr type, 85
OlStrScanDefFunc(), 205, 206
OlStrWordDefFunc(), 205, 206
OlSWGeometries structure, 547
OlTextBufferPtr type, 672
OlTextEditClearBuffer(), 669
OlTextEditCopyBuffer(), 669
OlTextEditCopySelection(), 670
OlTextEditGetCursorPosition(), 670
OlTextEditGetLastPosition(), 671
OlTextEditInsert(), 673
OlTextEditMoveDisplayPosition(), 671

736 OLIT Reference Manual—August 1994

OlTextEditOlTextBuffer(), 212, 672
OlTextEditPaste(), 673
OlTextEditReadSubString(), 669
OlTextEditRedraw(), 670
OlTextEditSetCursorPosition(), 671
OlTextEditTextBuffer(), 672
OlTextEditUpdate(), 673
OlTextFieldCopyOlString(), 695
OlTextFieldCopyString(), 695
OlTextFieldGetOlString(), 695
OlTextFieldGetString(), 696
OlTextFieldVerify structure, 683
OlTextMarginCallData structure, 647
OlTextMarginHint enumerated type, 647
OlTextModifyCallData structure, 647
OlTextMotionCallData structure, 648
OlTextPostModifyCallData structure, 649
OlTLCommitCallbackStruct structure,

704
OlTLGetPosition(), 717
OlTLGetSelection(), 717
OlTLGetSubString(), 718
OlTLMotionCallbackStruct structure, 707
OlTLOperateOnSelection(), 718
OlTLPostModifyCallbackStruct

structure, 709
OlTLPreModifyCallbackStruct structure,

708
OlTLSetSelection(), 719
OlTLSetSubString(), 719
OlToolkitInitialize(), 41, 102
OlUnassociateWidget(), 104
OlUngrabDragPointer(), 138
OlUnitOffsetOfLocation(), 212
OlUnregisterDynamicCallback(), 151
OlUnregisterTextBufferUpdate(), 213
OlUpdateDisplay(), 118
OlVaDisplayErrorMsg(), 152
OlVaDisplayErrorMsgHandler(), 154
OlVaDisplayWarningMsg(), 153

OlVaDisplayWarningMsgHandler(), 155
OlVaFlatGetValues(), 365
OlVaFlatSetValues(), 366
OlVirtualEventRec, 36
OlVirtualEventRec structure, 223
OlVirtualEventTable, 221
OlVisualOfObject(), 166
OlWarning(), 152
OlWarningHandler(), 154
OlWhitePixel, 166
OlWidgetSearchIEDB(), 225
OlWidgetSearchTextDB(), 226
OlWMProtocolAction(), 170
OlWMProtocolVerify structure, 59, 170
OPEN LOOK TEXT database, 220

P
Packed Widget Function, 166
Packed Widget Functions

OlCreatePackedWidgetList(), 166
pasting text, 215
pinned menu, 427
pixel

number of bits per, 30
Pixel Conversion Functions, 168

Screen Selection, 169
pixmap

background resource, 28
border resource, 29

pixmap functions, See Cursor and Pixmap
Functions, 109

Pixmap Resources
DropTarget widget, 278

point size resource, 39
point size scaling resource, 25
pointer grabbing, 218

resource, 20
points

converting from pixels, 168
popdown callbacks, 43
popup

Index 737

callback, 43
function resource, 42
position, 43
window title, 49

PopupWindowShell, 485
Activation Types, 497
Ancestry, 485
Automatic Addition of Buttons,

Settings Menu, 487
Coloration, 489
Components, 486
Composite Resources, 490
Control Areas, 488
ControlArea Subwidget Resources,

494
Core Resources, 490
Default Window Decorations, 485
Keyboard Traversal, 489
Popping the Window Up and Down,

488
Resources, 493
Shell Resources, 491
Subwidgets, 487
TransientShell Resources, 493
Traversable Components, 489
VendorShell Resources, 492
WMShell Resources, 491
XtNapply resource, 494
XtNapplyLabel resource, 495
XtNapplyMnemonic resource, 495
XtNfooterPanel resource, 495
XtNlowerControlArea resource, 496
XtNmenuTitle resource, 496
XtNpointerWarping resource, 496
XtNreset resource, 494
XtNresetFactory resource, 494
XtNresetFactoryLabel resource, 495
XtNresetFactoryMnemonic resource,

495
XtNresetLabel resource, 495
XtNresetMnemonic resource, 495
XtNsetDefaults resource, 494
XtNsetDefaultsLabel resource, 495
XtNsetDefaultsMnemonic resource,

495

XtNupperControlArea resource, 496
XtNverify resource, 496

position resource, 32
PositionOfLine(), 179
PositionOfLocation(), 179
pre-edit region, 91
press-drag-release menu, 426
press-drag-release mode, 422
previewing submenus, 25
previewing the default menu item, 229
PreviousLocation(), 180
PreviousTextBufferWord(), 180
Primitive Resources, 34

AbbrevMenuButton widget, 231
DropTarget widget, 278
FlatCheckBox widget, 343
FlatExclusives widget, 350
FlatNonexclusives widget, 360
Gauge widget, 407
MenuButton widget, 417
NumericField widget, 457
OblongButton widget, 479
RectButton widget, 503
Scrollbar widget, 525
Slider widget, 600
StaticText widget, 612
Stub widget, 622
TextEdit widget, 639
TextLine widget, 701
XtNaccelerator, 35
XtNacceleratorText, 35
XtNconsumeEvent, 36
XtNfont, 36
XtNfontColor, 37
XtNforeground, 37
XtNinputFocusColor, 37
XtNmnemonic, 38
XtNreferenceName, 38
XtNreferenceWidget, 39
XtNscale, 39
XtNtextFormat, 39
XtNtraversalOn, 40
XtNuserData, 40

Protocol Function, 170

738 OLIT Reference Manual—August 1994

Protocol Functions
OlWMProtocolAction(), 170

protocol messages, 58
selecting, 59

pushpin
toggling, 79

pushpin resource, 56

R
ReadFileIntoBuffer(), 107
ReadFileIntoTextBuffer(), 180
ReadStringIntoBuffer(), 107
ReadStringIntoTextBuffer(), 181
RectButton, 499

Activation Types, 509
Ancestry, 499
Border Resource Interactions, 508
Borders, 508
Coloration, 501
Components, 500
Core Resources, 503
Keyboard Accelerator Display, 502
Keyboard Mnemonic Display, 502
Keyboard Traversal, 501
Label Appearance, 509
Label Resource Interactions, 508
Non-Popup Menu RectButtons, 501
OL_MENU Activation Type, 510
OL_MENUDEFAULT Activation

Type, 510
OL_MENUDEFAULTKEY Activation

Type, 510
OL_MENUKEY Activation Type, 510
OL_SELECT Activation Type, 511
OL_SELECTKEY Activation Type,

511
Popup Menu RectButtons, 500
Primitive Resources, 503
Rectangular Buttons, 500
Resources, 504
XtNdefault resource, 504
XtNdim resource, 505
XtNlabel resource, 505
XtNlabelImage resource, 505

XtNlabelJustify resource, 506
XtNlabelTile resource, 506
XtNlabelType resource, 506
XtNrecomputeSize resource, 506
XtNselect resource, 507
XtNset resource, 507
XtNunselect resource, 507

RegisterTextBufferScanFunctions(), 181
RegisterTextBufferUpdate(), 182
RegisterTextBufferWordDefinition(), 181
Regular Expression Functions, 171

streexp(), 171
strexp(), 171
strrexp(), 172

Regular Expression Notation, 171
release differences, 11
remapping button events, 642
repeat count resource, 24
ReplaceBlockInTextBuffer(), 182
ReplaceCharInTextBuffer(), 184
resize corners, 57
resize policy of flat widgets, 68
resizing increment resource, 50
resizing Shell widgets resource, 43
resizing shells, 42
resource database

detecting dynamic changes, 150
resource file

bindings, 17
key bindings, 74

RESOURCE_MANAGER, 150
resources

dynamic updating, 16
Resources Summary Tables, 16
resources summary tables, 16
rgb.txt file, 28, 29, 37, 38, 273, 549
Romaji, 91
RubberTile, 512

Activation Types, 517
Ancestry, 512
Coloration, 513
Composite Resources, 514

Index 739

Constraint Resources, 515
Core Resources, 514
Manager Resources, 514
Resources, 515
XtNorientation resource, 515
XtNrefName resource, 516
XtNrefWidget resource, 516
XtNspace confolict with Caption, 516
XtNspace resource, 516
XtNweight resource, 517

RubberTile Resources
FileChooser widget, 296
FontChooser widget, 372

S
SaveTextBuffer(), 184
scale resource, 25, 39
ScollingList Functions

known deficiencies, 595
screen resource, 31
Scrollbar, 518

Abbreviated Scrollbar, 520
Activation Types, 535
Ancestry, 518
Coloration, 524
Components, 518
Core Resources, 525
elevator, 518
Elevator at Limits, 522
Elevator Motion, 521
Horizontal Orientation, 519
Indicating View Proportion, 523
Keyboard Accelerator Display, 524
Keyboard Mnemonic Display, 524
Keyboard Traversal, 524
OL_HSBMENU Activation Type, 536
OL_MENU Activation Type, 536
OL_MENUKEY Activation Type, 536
OL_PAGEDOWN Activation Type,

536
OL_PAGELEFT Activation Type, 536
OL_PAGERIGHT Activation Type,

536
OL_PAGEUP Activation Type, 537

OL_SCROLLBOTTOM Activation
Type, 537

OL_SCROLLDOWN Activation Type,
537

OL_SCROLLLEFTEDGE Activation
Type, 537

OL_SCROLLRIGHT Activation
Type, 538

OL_SCROLLRIGHTEDGE Activation
Type, 537

OL_SCROLLTOP Activation Type,
537

OL_SCROLLUP Activation Type, 538
OL_SELECT Activation Type, 538
OL_VSBMENU Activation Type, 536
Primitive Resources, 525
Resources, 526
Scrollbar Menu, 523, 524
Scrolling a Pane, 522
Scrolling Limits, 522
Scrolling One Unit, 521
Scrolling Several Units, 521
Subwidget Resources, 527
Subwidgets, 519
Vertical Orientation, 520
XtNcurrentPage resource, 527
XtNdragCBType resource, 528
XtNgranularity resource, 528
XtNhereToLeftLabel resource, 528
XtNhereToLeftMnemonic resource,

529
XtNhereToTopLabel resource, 528
XtNhereToTopMnemonic resource,

529
XtNinitialDelay resource, 529
XtNleftToHereLabel resource, 528
XtNleftToHereMnemonic resource,

529
XtNmenuPane resource, 529
XtNmenuTitle resource, 530
XtNorientation resource, 530
XtNpointerWarping resource, 530
XtNpreviousLabel resource, 528
XtNpreviousMnemonic resource, 529
XtNproportionLength resource, 530
XtNrepeatRate resource, 531

740 OLIT Reference Manual—August 1994

XtNshowPage resource, 531
XtNsliderMax resource, 531
XtNsliderMin resource, 531
XtNsliderMoved resource, 532
XtNsliderValue resource, 534
XtNstopPosition resource, 534
XtNtopToHereLabel resource, 528
XtNtopToHereMnemonic resource,

529
XtNuseSetValCallback resource, 534

ScrolledWindow, 539
Activation Types, 553
Ancestry, 539
Application Controlled Scrolling, 542
Coloration, 543
Components, 539, 540
Composite Resources, 544
Content and View of Content, 541
Core Resources, 544
Keyboard Traversal, 543
Manager Resources, 544
OL_HSBMENU Activation Type, 554
OL_PAGEDOWN Activation Type,

555
OL_PAGELEFT Activation Type, 555
OL_PAGERIGHT Activation Type,

555
OL_PAGEUP Activation Type, 555
OL_SCROLLBOTTOM Activation

Type, 555
OL_SCROLLDOWN Activation Type,

555
OL_SCROLLLEFT Activation Type,

555
OL_SCROLLLEFTEDGE Activation

Type, 556
OL_SCROLLRIGHT Activation

Type, 556
OL_SCROLLRIGHTEDGE Activation

Type, 556
OL_SCROLLTOP Activation Type,

556
OL_SCROLLUP Activation Type, 556
OL_VSBMENU Activation Type, 556
Resources, 545

Scrollbars, 542
Subwidgets, 540, 541
Upper Left Corner Fixed on Resize,

541
View Border, 541
View Larger than Content, 542
view of the content, 541
XtNalignHorizontal resource, 546
XtNalignVertical resource, 546
XtNcomputeGeometries resource,

546
XtNcurrentPage resource, 548
XtNforceHorizontalSB resource, 548
XtNforceVerticalSB resource, 549
XtNforeground resource, 549
XtNhAutoScroll resource, 550
XtNhInitialDelay resource, 550
XtNhMenuPane resource, 550
XtNhRepeatRate resource, 551
XtNhScrollbar resource, 551
XtNhSliderMoved resource, 551
XtNhStepSize resource, 552
XtNinitialX resource, 552
XtNinitialY resource, 552
XtNrecomputeHeight resource, 553
XtNrecomputeWidth resource, 553
XtNshowPage resource, 553
XtNvAutoScroll resource, 550
XtNvInitialDelay resource, 550
XtNvMenuPane resource, 550
XtNvRepeatRate resource, 551
XtNvScrollbar resource, 551
XtNvSliderMoved resource, 551
XtNvStepSize resource, 552

ScrollingList, 557
Activation Types, 584
Ancestry, 557
Callback Information, 581
Coloration, 562
Components, 557, 558
Composite Resources, 565
Core Resources, 564
Deleting Selected Items, 560
Editable ScrollingList, 558
Editable Text Field, 559

Index 741

Item Order, 560
Keyboard Mnemonic Display, 564
Keyboard Traversal, 563
known deficiencies, 595
Making an Item Current, 560
Manager Resources, 565
OL_ADJUST Activation Type, 585
OL_ADJUSTKEY Activation Type,

585
OL_COPY Activation Type, 585
OL_CUT Activation Type, 585
OL_MENU Activation Type, 586
OL_MENUKEY Activation Type, 586
OL_MULTIDOWN Activation Type,

586
OL_MULTIUP Activation Type, 586
OL_PAGEDOWN Activation Type,

586
OL_PAGEUP Activation Type, 586
OL_PANEEND Activation Type, 586
OL_PANESTART Activation Type,

586
OL_PASTE Activation Type, 586
OL_SCROLLBOTTOM Activation

Type, 586
OL_SCROLLDOWN Activation Type,

586
OL_SCROLLTOP Activation Type,

587
OL_SCROLLUP Activation Type, 587
OL_SELECT Activation Type, 587
OL_SELECTKEY Activation Type,

587
OlSlistCallbackStruct, 581
OlSlistItemAttrs, 582
Resources, 565
ScrollingList Modes, 562
Selectable ScrollingList, 560
Subwidgets, 559
Text Selections on Items, 561
XtNalign resource, 567
XtNapplAddItem resource, 567
XtNapplDeleteItem resource, 568
XtNapplEditClose resource, 569
XtNapplEditOpen resource, 569
XtNapplTouchItem resource, 571

XtNapplUpdateView resource, 571
XtNapplViewItem resource, 572
XtNcurrentItems resource, 573
XtNfirstViewableItem resource, 573
XtNitemCurrentCallback resource,

573
XtNitemHeight resource, 573
XtNitemNotCurrentCallback

resource, 574
XtNlastViewableItem resource, 574
XtNlistPane resource, 574
XtNmultiClickCallback resource, 574
XtNnumCurrentItems resource, 575
XtNnumItems resource, 575
XtNposition resource, 575
XtNprefMaxWidth resource, 575
XtNprefMinWidth resource, 575
XtNrecomputeWidth resource, 576
XtNscrollingListItems resource, 576
XtNscrollingListMode resource, 576
XtNselectable resource, 577
XtNspace resource, 577
XtNtextField resource, 577
XtNuserDeleteItems resource, 578
XtNuserMakeCurrent resource, 579
XtNviewableItems resource, 580
XtNviewHeight resource, 580

ScrollingList Functions, 588
OlSlistAddItem(), 588
OlSlistDeleteAllItems(), 588
OlSlistDeleteItem(), 589
OlSlistDeleteItems(), 589
OlSlistEditItem(), 589
OlSlistEndEdit(), 589
OlSlistFirstViewableItem(), 590
OlSlistGetItemAttrs(), 590
OlSlistGetItemImage(), 590
OlSlistGetItemLabel(), 590
OlSlistGetItemSensitivity(), 591
OlSlistGetItemType(), 591
OlSlistGetItemUserData(), 591
OlSlistGetMode(), 591
OlSlistGetNextItem(), 592
OlSlistGetPrevItem(), 592
OlSlistIsItemCurrent(), 592

742 OLIT Reference Manual—August 1994

OlSlistIsValidItem(), 593
OlSlistLastViewableItem(), 593
OlSlistMakeAllItemsNotCurrent(),

593
OlSlistMakeItemCurrent(), 593
OlSlistMakeItemNotCurrent(), 594
OlSlistSetItemAttrs(), 594
OlSlistTouchItem(), 594
OlSlistUpdateView(), 595

SELECT mouse button, 25
drop site, 119

selection atom, 123
shadow color, 19
shell

menu button in header, 55
title, 57

Shell Resources, 41
Base Windows and Popup Windows,

41
FileChooserShell widget, 324
FontChooserShell widget, 387
MenuShell widget, 432
NoticeShell widget, 447
PopupWindowShell widget, 491
XtNallowShellResize, 42
XtNcreatePopupChildProc, 42
XtNgeometry, 43
XtNoverrideRedirect, 43
XtNpopdownCallback, 43
XtNpopupCallback, 43
XtNsaveUnder, 44
XtNvisual, 44

shift key resource, 25
single-byte character text, 39
single-byte encoding, 84
size resources for flat widgets, 65
Slider, 596

Activation Types, 607
Ancestry, 596
Application Notification, 598
Clicking SELECT, 597
Coloration, 598
Components, 596
Core Resources, 600

Drag Box Motion, 597
Dragging SELECT, 597
Keyboard Accelerator Display, 600
Keyboard Mnemonic Display, 599
Keyboard Traversal, 599
Moving Drag Box to Limits, 598
OL_SCROLLBOTTOM Activation

Type, 608
OL_SCROLLDOWN Activation Type,

608
OL_SCROLLLEFT Activation Type,

608
OL_SCROLLLEFTEDGE Activation

Type, 608
OL_SCROLLRIGHT Activation

Type, 609
OL_SCROLLRIGHTEDGE Activation

Type, 609
OL_SCROLLTOP Activation Type,

609
OL_SCROLLUP Activation Type, 609
OL_SELECT Activation Type, 609
Primitive Resources, 600
Resources, 601
XtNdragCBType resource, 602
XtNendBoxes resource, 602
XtNgranularity resource, 602
XtNinitialDelay resource, 602
XtNmaxLabel resource, 603
XtNminLabel resource, 603
XtNorientation resource, 604
XtNpointerWarping resource, 604
XtNrecomputeSize resource, 604
XtNrepeatRate resource, 604
XtNsliderMax resource, 605
XtNsliderMin resource, 605
XtNsliderMoved resource, 605
XtNsliderValue resource, 606
XtNspan resource, 606
XtNstopPosition resource, 606
XtNticks resource, 607
XtNtickUnit resource, 607
XtNuseSetValCallback resource, 607

Spacing Between Controls, 265
spacing resource for flat widgets, 64

Index 743

standards for internationalization, 99
StartCurrentTextBufferWord(), 185
StaticText, 610

Activation Types, 617
Ancestry, 610
Coloration, 611
Core Resources, 612
Keyboard Mnemonic and Accelerator

Display, 612
Keyboard Traversal, 611
OL_ADJUST Activation Type, 618
OL_COPY Activation Type, 618
OL_SELECT Activation Type, 618
Primitive Resources, 612
Resources, 613
Selecting and Operating on Text, 611
Space Stripping, 611
Text Clipping, 610
Word Wrap, 610
XtNalignment resource, 613
XtNgravity resource, 614
XtNheight resource, 614
XtNhSpace resource, 615
XtNlineSpace resource, 615
XtNrecomputeSize resource, 615
XtNselectable resource, 615
XtNstring resource, 616
XtNstrip resource, 616
XtNvSpace resource, 615
XtNwidth resource, 616
XtNwrap resource, 616

StaticText Subwidget Resources
NoticeShell widget, 449

status feedback font set, 54
status region, 91
strclose(), 108
streexp(), 171
strexp(), 171
strgetc(), 108
stropen(), 108
strrexp(), 172
Stub, 619

Activation Types, 631
Ancestry, 619

Coloration, 620, 621
Core Resources, 621
Graphics Applications, 620
Inheriting Procedures from Existing

Widgets, 620
Keyboard Accelerator Display, 621
Keyboard Mnemonic Display, 621
Keyboard Traversal, 621
Local Widgets, 619
Primitive Resources, 622
Resources, 622
Wrapping Widgets Around Existing

Windows, 620
XtNacceptFocusFunc resource, 623
XtNactivateFunc resource, 623
XtNdestroy resource, 624
XtNexpose resource, 624
XtNgetValuesHook resource, 624
XtNheight resource, 625
XtNhighlightHandlerProc resource,

625
XtNinitialize resource, 626
XtNinitializeHook resource, 626
XtNqueryGeometry resource, 627
XtNrealize resource, 627
XtNreferenceStub resource, 627
XtNregisterFocusFunc resource, 628
XtNresize resource, 628
XtNsetValues resource, 628
XtNsetValuesAlmost resource, 629
XtNsetValuesHook resource, 629
XtNtraversalHandlerFunc resource,

629
XtNwidth resource, 630
XtNwindow resource, 630

submenus
previewing, 25

Subwidget Resources
AbbrevMenuButton widget, 232
ControlArea widget, 262
MenuShell widget, 418
Scrollbar widget, 527

SuperCaret, 23
resource, 21

744 OLIT Reference Manual—August 1994

T
text

copying, 215
cutting, 215
data format, 39
font color resource, 37
multibyte character, 39
pasting, 215
single-byte, 39

Text Buffer Functions, 173
AllocateTextBuffer(), 173
BackwardScanTextBuffer(), 174
CopyTextBufferBlock(), 174
EndCurrentTextBufferWord(), 175
ForwardScanTextBuffer(), 175
FreeTextBuffer(), 175
GetTextBufferBlock(), 176
GetTextBufferBuffer(), 176
GetTextBufferChar(), 176
GetTextBufferLine(), 177
GetTextBufferLocation(), 177
IncrementTextBufferLocation(), 177
LastTextBufferLocation(), 178
LastTextBufferPosition(), 178
LineOfPosition(), 178
LocationOfPosition(), 178
NextLocation(), 179
NextTextBufferWord(), 179
OlAllocateTextBuffer(), 186
OlBackwardScanTextBuffer(), 187
OlCopyTextBufferBlock(), 188
OlEndCurrentTextBufferWord(), 188
OlForwardScanTextBuffer(), 189
OlFreeTextBuffer(), 190
OlGetTextBufferBlock(), 190
OlGetTextBufferBuffer(), 191
OlGetTextBufferCharAtLoc(), 192
OlGetTextBufferFileName(), 192
OlGetTextBufferLine(), 193
OlGetTextUndoDeleteItem(), 193
OlGetTextUndoInsertItem(), 194
OlIncrementTextBufferLocation(),

194
OlIsTextBufferEmpty(), 195
OlIsTextBufferModified(), 195

OlLastCharInTextBufferLine(), 195
OlLastTextBufferLine(), 196
OlLastTextBufferLocation(), 196
OlLastTextBufferPosition(), 197
OlLineOfPosition(), 197
OlLinesInTextBuffer(), 197
OlLocationOfPosition(), 198
OlNextLocation(), 199
OlNextTextBufferWord(), 199
OlNumBytesInTextBufferLine(), 200
OlNumCharsInTextBufferLine(), 200
OlNumUnitsInTextBufferLine(), 201
OlPositionOfLine(), 201
OlPositionOfLocation(), 201
OlPreviousLocation(), 202
OlPreviousTextBufferWord(), 202
OlReadFileIntoTextBuffer(), 203
OlReadStringIntoTextBuffer(), 204
OlRegisterAllTextBufferScan-

Functions(), 204
OlRegisterAllTextBufferWord-

Definition, 205
OlRegisterPerTextBufferScan-

Functions(), 205
OlRegisterPerTextBufferWord-

Definition(), 206
OlRegisterTextBufferUpdate(), 207
OlReplaceBlockInTextBuffer(), 207
OlReplaceCharInTextBuffer(), 209
OlSaveTextBuffer(), 210
OlSetTextUndoDeleteItem(), 210
OlSetTextUndoInsertItem(), 211
OlStartCurrentTextBufferWord(), 211
OlTextEditOlTextBuffer(), 212
OlUnitOffsetOfLocation(), 212
OlUnregisterTextBufferUpdate(), 213
PositionOfLine(), 179
PositionOfLocation(), 179
PreviousLocation(), 180
PreviousTextBufferWord(), 180
ReadFileIntoTextBuffer(), 180
ReadStringIntoTextBuffer(), 181
RegisterTextBufferScanFunctions(),

181
RegisterTextBufferUpdate(), 182

Index 745

RegisterTextBufferWordDefinition(),
181

ReplaceBlockInTextBuffer(), 182
ReplaceCharInTextBuffer(), 184
SaveTextBuffer(), 184
StartCurrentTextBufferWord(), 185
TextBuffer Macros(), 185
TextLocation Structure(), 173
UnregisterTextBufferUpdate(), 185

Text Buffer Functions for
Internationalization, 186

TEXT database, 220
text format

default, 86
text formats, 84
Text Selection Operations, 214

Adjusted Selection, 215
Deletion of the New Selection, 214
Multiclick Selection, 215
Setting Insert Point, 214
Wipethrough Selection, 214

TextBuffer Macros(), 185
TextEdit, 633

Activation Types, 652
Ancestry, 633
Coloration, 637
Core Resources, 639
Editing Capabilities, 635
Keyboard Accelerator Display, 638
Keyboard Mnemonic Display, 638
Keyboard Traversal, 637
OL_ADJUST Activation Type, 654
OL_CHARBAK Activation Type, 654
OL_CHARFWD Activation Type, 654
OL_COPY Activation Type, 655
OL_CUT Activation Type, 655
OL_DELCHARBAK Activation

Type, 655
OL_DELCHARFWD Activation Type,

656
OL_DELLINE Activation Type, 656
OL_DELLINEBAK Activation Type,

657
OL_DELLINEFWD Activation Type,

657

OL_DELWORDBAK Activation Type,
658

OL_DELWORDFWD Activation
Type, 658

OL_DOCEND Activation Type, 659
OL_DOCSTART Activation Type, 659
OL_LINEEND Activation Type, 659
OL_LINESTART Activation Type, 660
OL_MENU Activation Type, 660
OL_MENUKEY Activation Type, 660
OL_PAGEDOWN Activation Type,

660
OL_PAGELEFT Activation Type, 660
OL_PAGERIGHT Activation Type,

661
OL_PAGEUP Activation Type, 661
OL_PANEEND Activation Type, 661
OL_PANESTART Activation Type,

661
OL_PASTE Activation Type, 662
OL_ROWDOWN Activation Type,

662
OL_ROWUP Activation Type, 662
OL_SCROLLDOWN Activation Type,

663
OL_SCROLLLEFT Activation Type,

663
OL_SCROLLLEFTEDGE Activation

Type, 663
OL_SCROLLRIGHT Activation

Type, 663
OL_SCROLLRIGHTEDGE Activation

Type, 663
OL_SCROLLUP Activation Type, 664
OL_SELCHARBAK Activation Type,

664
OL_SELCHARFWD Activation

Type, 664
OL_SELECT Activation Type, 665
OL_SELFLIPENDS Activation Type,

665
OL_SELLINE Activation Type, 665
OL_SELLINEBAK Activation Type,

666
OL_SELLINEFWD Activation Type,

666

746 OLIT Reference Manual—August 1994

OL_SELWORDBAK Activation Type,
666

OL_SELWORDFWD Activation Type,
667

OL_UNDO Activation Type, 667
OL_WORDBAK Activation Type, 668
OL_WORDFWD Activation Type,

668
Primitive Resources, 639
Resources, 640
Sizing the Display, 636
Text Hierarchy, 635
The Text Buffer, 635
Wrapping, 636
XtNblinkRate resource, 641
XtNbottomMargin resource, 641
XtNbuttons resource, 641
XtNcharsVisible resource, 642
XtNcopyLabel resource, 643
XtNcopyMnemonic resource, 643
XtNcursorPosition resource, 644
XtNcutLabel resource, 643
XtNcutMnemonic resource, 643
XtNdeleteLabel resource, 643
XtNdeleteMnemonic resource, 643
XtNdisplayPosition resource, 644
XtNeditType resource, 644
XtNgrowMode resource, 644
XtNimPreeditStyle resource, 645
XtNinsertTab resource, 645
XtNkeys resource, 646
XtNleftMargin resource, 646
XtNlinesVisible resource, 646
XtNmargin resource, 646
XtNmenuTitle resource, 647
XtNmodifyVerification resource, 647
XtNmotionVerification resource, 648
XtNpasteLabel resource, 643
XtNpasteMnemonic resource, 643
XtNpostModifyNotification

resource, 649
XtNrightMargin resource, 649
XtNselectEnd resource, 650
XtNselectStart resource, 650
XtNsource resource, 650
XtNsourceType resource, 651

XtNtabTable resource, 651
XtNtopMargin resource, 651
XtNundoLabel resource, 643
XtNundoMnemonic resource, 643
XtNwrapMode resource, 651

TextEdit Functions, 669
OlTextEditClearBuffer(), 669
OlTextEditCopyBuffer(), 669
OlTextEditCopySelection(), 670
OlTextEditGetCursorPosition(), 670
OlTextEditGetLastPosition(), 671
OlTextEditInsert(), 673
OlTextEditMoveDisplayPosition(),

671
OlTextEditOlTextBuffer(), 672
OlTextEditPaste(), 673
OlTextEditReadSubString(), 669
OlTextEditRedraw(), 670
OlTextEditSetCursorPosition(), 671
OlTextEditTextBuffer(), 672
OlTextEditUpdate(), 673

TextField, 674
Activation Types, 684
Ancestry, 674
Caret Position, 678
Coloration, 675
Components, 674
Composite Resources, 679
Core Resources, 678
Editing, 676
Input Validation, 677
Keyboard Accelerator Display, 676
Keyboard Input, 675
Keyboard Mnemonic Display, 676
Keyboard Traversal, 675
Manager Resources, 679
OL_ADJUST Activation Type, 685
OL_CHARBAK Activation Type, 685
OL_CHARFWD Activation Type, 686
OL_COPY Activation Type, 686
OL_CUT Activation Type, 686
OL_DELCHARBAK Activation

Type, 686
OL_DELCHARFWD Activation Type,

687

Index 747

OL_DELLINE Activation Type, 687
OL_DELLINEBAK Activation Type,

687
OL_DELLINEFWD Activation Type,

688
OL_DELWORDBAK Activation Type,

688
OL_DELWORDFWD Activation

Type, 689
OL_LINEEND Activation Type, 689
OL_LINESTART Activation Type, 689
OL_MENU Activation Type, 689
OL_MENUKEY Activation Type, 689
OL_PASTE Activation Type, 690
OL_RETURN Activation Type, 690
OL_SCROLLLEFT Activation Type,

690
OL_SCROLLLEFTEDGE Activation

Type, 690
OL_SCROLLRIGHT Activation

Type, 690
OL_SCROLLRIGHTEDGE Activation

Type, 690
OL_SELCHARBAK Activation Type,

690
OL_SELCHARFWD Activation

Type, 691
OL_SELECT Activation Type, 691
OL_SELFLIPENDS Activation Type,

691
OL_SELLINE Activation Type, 691
OL_SELLINEBAK Activation Type,

692
OL_SELLINEFWD Activation Type,

692
OL_SELWORDBAK Activation Type,

692
OL_SELWORDFWD Activation Type,

693
OL_UNDO Activation Type, 693
OL_WORDBAK Activation Type, 693
OL_WORDFWD Activation Type,

693
Resources, 679
Scrolling, 676
Scrolling Long Text Input, 677

Selecting and Operating on the Input
Field, 678

Subwidget, 675
Text Selection, 676
XtNcharsVisible resource, 680
XtNeditType resource, 680
XtNfont resource, 680
XtNfontColor resource, 680
XtNimPreeditStyle resource, 680
XtNinitialDelay resource, 681
XtNinsertTab resource, 681
XtNmaximumSize resource, 682
XtNrepeatRate resource, 682
XtNscale resource, 682
XtNstring resource, 682
XtNtextEditWidget resource, 683
XtNtextFormat resource, 683
XtNverification resource, 683

TextField Functions, 695
OlTextFieldCopyString(), 695
OlTextFieldGetOlString(), 695
OlTextFieldGetString(), 696
OlTextFieldOlCopyString(), 695

TextLine, 697
Activation Types, 711
Ancestry, 697
Caret Position, 699
Coloration, 699
Components, 697, 698
Core Resources, 700
Display of Text, 699
Keyboard Accelerator Display, 699
Keyboard Mnemonic Display, 698
Keyboard Traversal, 698
OL_CHARBAK Activation Type, 712
OL_CHARFWD Activation Type, 712
OL_COPY Activation Type, 712
OL_CUT Activation Type, 712
OL_DELCHARBAK Activation

Type, 712
OL_DELCHARFWD Activation Type,

713
OL_DELLINE Activation Type, 713
OL_DELLINEBAK Activation Type,

713

748 OLIT Reference Manual—August 1994

OL_DELLINEFWD Activation Type,
714

OL_DELWORDBAK Activation Type,
714

OL_DELWORDFWD Activation
Type, 714

OL_LINEEND Activation Type, 715
OL_LINESTART Activation Type, 715
OL_NEXTFIELD Activation Type,

715
OL_PASTE Activation Type, 715
OL_PREVFIELD Activation Type, 716
OL_UNDO Activation Type, 716
OL_WORDBAK Activation Type, 716
OL_WORDFWD Activation Type,

716
Primitive Resources, 701
Resources, 701
Selection of Text, 699
XtNblinkRate resource, 702
XtNcaptionAlignment resource, 702
XtNcaptionFont resource, 702
XtNcaptionLabel resource, 703
XtNcaptionPosition resource, 703
XtNcaptionSpace resource, 703
XtNcaptionWidth resource, 703
XtNcharsVisible resource, 704
XtNcommitCallback resource, 704
XtNcursorPosition resource, 705
XtNeditType resource, 705
XtNimPreeditStyle resource, 705
XtNinitialDelay resource, 706
XtNinsertTab resource, 706
XtNmaximumChars resource, 706
XtNmenu resource, 707
XtNmotionCallback resource, 707
XtNpostModifyCallback resource,

709
XtNpreModifyCallback resource, 708
XtNrepeatRate resource, 710
XtNstring resource, 710
XtNunderline resource, 710
XtNupdateDisplay resource, 710

TextLine Functions, 717
OlTLGetPosition(), 717

OlTLGetSelection(), 717
OlTLGetSubString(), 718
OlTLOperateOnSelection(), 718
OlTLSetSelection(), 719
OlTLSetSubString(), 719

TextLine Resources
NumericField widget, 458

TextLocation Structure(), 173
TextUpdateFunction, 182, 208
three-dimensional resource, 26
tiling border resource, 29
title

shell widget, 57
title resource, 49
toolkit grabs (avoiding), 430
Toolkit Resource Functions, 216

OlGetApplicationValues(), 216
OlSetApplicationValues(), 216

toolkit resources, See OLIT Toolkit
Resources, 17

TopLevelShell Resources, 60
XtNiconic, 60
XtNiconName, 61
XtNiconNameEncoding, 61

transient window, 50
TransientShell Resources, 60

FileChooserShell widget, 327
FontChooserShell widget, 389
MenuShell widget, 434
NoticeShell widget, 449
PopupWindowShell widget, 493
XtNtransientFor, 60

translation manager
key event syntax, 74

translations resource, 32
traversal list, 163

inserting by widget ID, 39
inserting by widget name, 38

traversal order
default, 163

traversal, See keyboard traversal, 40
two-dimensional resource, 26

Index 749

U
underlined keyboard mnemonics, 26
Undo

implementing, 183
UnregisterTextBufferUpdate(), 185
updating the display, 118

V
validation of numeric fields, 464
VendorShell Resources, 52

FileChooserShell widget, 326
FontChooserShell widget, 388
MenuShell widget, 434
NoticeShell widget, 448
PopupWindowShell widget, 492
XtNbusy, 53
XtNconsumeEvent, 53
XtNdefaultImName, 53
XtNfocusWidget, 54
XtNfooterPresent, 54
XtNimFontSet, 54
XtNimStatusStyle, 54
XtNleftFooterString, 55
XtNleftFooterVisible, 55
XtNmenuButton, 55
XtNmenuType, 56
XtNpushpin, 56
XtNresizeCorners, 57
XtNrightFooterString, 57
XtNrightFooterVisible, 57
XtNshellTitle, 57
XtNuserData, 58
XtNwindowHeader, 58
XtNwmProtocol, 58
XtNwmProtocolInterested, 59

Vertical and Horizontal Sliders, 596
Virtual Event Functions, 217

LookupOlInputEvent(), 217
OlClassSearchIEDB(), 219
OlClassSearchTextDB(), 220
OlCreateInputEventDB(), 221
OlDetermineMouseAction(), 217
OlLookupInputEvent(), 222

OlReplayBtnEvent(), 219
OlWidgetSearchIEDB(), 225
OlWidgetSearchTextDB(), 226

virtual events
relationship to Activation Types, 71
use with callbacks, 72

visual, 44
visual class, 164
visuals

multiple, 164
volume (beep) resource, 19
volume resource, 18

W
wide character encoding, 84
wide character text, 39
widgets

activating, 103
associating by Activation Types, 73
creating tree in one call, 166
emanate, 443
follower, 103
leader, 103
mapping, 31
programmatic activation, 72
updating, 118

window
base, 41
header, 58
menu on shell, 56
pushpin, 56
resize corners, 57
transient, 50
visual, 44

window height resource, 30
window manager

managing shell window, 43
messages, 58

window menu resource, 56
window size

constraining, 48
increment, 50
ranges, 49

750 OLIT Reference Manual—August 1994

window width resource, 32
WM_COMMAND, 62
WM_PROTOCOL messages, 58
WMShell Resources, 45

FileChooserShell widget, 325
FontChooserShell widget, 387
MenuShell widget, 433
NoticeShell widget, 447
PopupWindowShell widget, 491
XtNbaseHeight, 46
XtNbaseWidth, 46
XtNheightInc, 46
XtNiconMask, 46
XtNiconPixmap, 46
XtNiconWindow, 47
XtNiconX, 47
XtNiconY, 47
XtNinitialState, 47
XtNinput, 48
XtNmaxAspectX, 48
XtNmaxAspectY, 48
XtNmaxHeight, 49
XtNmaxWidth, 49
XtNminAspectX, 48
XtNminAspectY, 48
XtNminHeight, 49
XtNminWidth, 49
XtNtitle, 49
XtNtitleEncoding, 50
XtNtransient, 50
XtNwaitForWm, 50
XtNwidthInc, 50
XtNwindowGroup, 51
XtNwinGravity, 51
XtNwmTimeout, 52

X
X Logical Font Description (XLFD), 368
x-, y-coordinates

of base window, 47
XtNx/XtNy resources, 32

XCopyArea, 273
XCopyPlane, 273
XEvent

consumption resource, 36
drag and drop types, 124
mapping to Activation Types, 73
translating to virtual event, 222

Xevent
mapping, 32

XEvent consumption resource, 53
XFILESEARCHPATH, 89
XFontSet, 87
XGetSelection(), 123
XGrabKeyboard(), 135
XGrabPointer(), 135
XLFD, 24, 87

fonts, 367
X Logical Font Description, 368

XLookupString(), 217, 223
XMatchVisualinfo(), 164
XmbDrawString(), 40
XnlLanguage, 83
XParseGeometry(), 43
XRaiseWindow(), 488
XSetInputFocus(), 161, 162, 623
XtAcceptFocusFunc, 623
XtAddCallback(), 36, 59
XtAddEventHandler(), 475
XtAppCreateShell(), 102
XtAppGetErrorDatabaseText(), 152
XtAppInitialize(), 62, 102
XtCallAcceptFocus(), 160
XtCallbackProc procedure, 335
XtConfigureWidget(), 631
XtCreateApplicationContext(), 102
XtCreateApplicationShell(), 41
XtCreatePopupShell(), 41
XtDisownSelection(), 134
XtDisplayToApplicationContext(), 153
XtFree(), 142
XtGetSelectionValue(), 123
XtInitializeDisplay(), 102
XtIsSensitive(), 28
XtMoveWidget(), 631

Index 751

XtNaccelerator
CheckBox widget, 253
Primitive Resources, 35

XtNaccelerators
Core Resources, 27

XtNacceleratorText
CheckBox widget, 253
Primitive Resources, 35

XtNacceptFocusFunc
Stub widget, 623

XtNactivateFunc
Stub widget, 623

XtNalign
ScrollingList widget, 567

XtNalignCaptions
ControlArea widget, 262

XtNalignHorizontal
ScrolledWindow widget, 546

XtNalignment
Caption widget, 243
StaticText widget, 613

XtNalignVertical
ScrolledWindow widget, 546

XtNallowChangeBars
ControlArea widget, 262

XtNallowShellResize
Shell Resources, 42

XtNancestorSensitive
Core Resources, 28

XtNapplAddItem
ScrollingList widget, 567

XtNapplDeleteItem
ScrollingList widget, 568

XtNapplEditClose
ScrollingList widget, 569

XtNapplEditOpen
ScrollingList widget, 569

XtNapplicationFolders
FileChooser widget, 309

XtNapplicationFoldersMaxCount
FileChooser widget, 309

XtNapplTouchItem
ScrollingList widget, 571

XtNapplUpdateView
ScrollingList widget, 571

XtNapplViewItem
ScrollingList widget, 572

XtNapply
PopupWindowShell widget, 494

XtNapplyCallback
FontChooser widget, 373

XtNapplyLabel
FontChooser widget, 373
PopupWindowShell widget, 495

XtNapplyMnemonic
PopupWindowShell widget, 495

XtNargc
ApplicationShell Resources, 61

XtNargv
ApplicationShell Resources, 61

XtNattributeListHeight
FontChooser widget, 374

XtNbackground
Core Resources, 28
overriding, 28

XtNbackgroundPixmap
Core Resources, 28

XtNbaseHeight
WMShell Resources, 46

XtNbaseWidth
WMShell Resources, 46

XtNbeep
OLIT Toolkit Resources, 18

XtNbeepVolume
OLIT Toolkit Resources, 19

XtNblinkRate
TextEdit widget, 641
TextLine widget, 702

XtNborderColor
Core Resources, 29
overriding, 29

XtNborderPixmap
Core Resources, 29

XtNborderWidth
Core Resources, 29

XtNbottomMargin

752 OLIT Reference Manual—August 1994

TextEdit widget, 641
XtNbusy

OblongButton widget, 480
VendorShell Resources, 53

XtNbusyPixmap
DropTarget widget, 281

XtNbuttons
TextEdit widget, 641

XtNcancelAccelerator
FileChooser widget, 313

XtNcancelButtonWidget
FileChooser widget, 315

XtNcancelCallback
FileChooser widget, 316
FontChooser widget, 374

XtNcancelLabel
FileChooser widget, 319
FontChooser widget, 375

XtNcancelMnemonic
FileChooser widget, 313

XtNcaptionAlignment
TextLine widget, 702

XtNcaptionFont
TextLine widget, 702

XtNcaptionLabel
TextLine widget, 703

XtNcaptionPosition
TextLine widget, 703

XtNcaptionSpace
TextLine widget, 703

XtNcaptionWidth
TextLine widget, 703

XtNcenter
ControlArea widget, 263

XtNchangeBar
ControlArea widget, 263

XtNchangedCallback
FontChooser widget, 375

XtNcharsetInfo
FontChooser widget, 376

XtNcharsVisible
TextEdit widget, 642
TextField widget, 680

TextLine widget, 704
XtNchildren

Composite Resources, 33
XtNclientData

FlatExclusives widget, 352
XtNcolormap

Core Resources, 29
XtNcolorTupleList

OLIT Toolkit Resources, 19
XtNcommandButtonWidget

FileChooser widget, 315
XtNcommitCallback

TextLine widget, 704
XtNcomparisonFunc

FileChooser widget, 311
XtNcomputeGeometries

ScrolledWindow widget, 546
XtNconsumeEvent

Primitive Resources, 36
use with Activation Types, 72
VendorShell Resources, 53

XtNcontrolArea
NoticeShell widget, 450

XtNcontrolName
OLIT Toolkit Resources, 20

XtNconvertProc
NumericField widget, 459

XtNcopyLabel
TextEdit widget, 643

XtNcopyMnemonic
TextEdit widget, 643

XtNcreatePopupChildProc
Shell Resources, 42

XtNcurrentFolder
FileChooser widget, 300

XtNcurrentFolderLabelString
FileChooser widget, 319

XtNcurrentFolderLabelWidget
FileChooser widget, 315

XtNcurrentFolderWidget
FileChooser widget, 315

XtNcurrentItems
ScrollingList widget, 573

Index 753

XtNcurrentPage
Scrollbar widget, 527
ScrolledWindow widget, 548

XtNcursorPosition
TextEdit widget, 644
TextLine widget, 705

XtNcutLabel
TextEdit widget, 643

XtNcutMnemonic
TextEdit widget, 643

XtNdefault
FlatExclusives widget, 352
MenuButton widget, 419
OblongButton widget, 481
RectButton widget, 504

XtNdefaultDocumentName
FileChooser widget, 319

XtNdefaultDocumentSuffix
FileChooser widget, 320

XtNdefaultImName, 97
VendorShell Resources, 53

XtNdeleteLabel
TextEdit widget, 643

XtNdeleteMnemonic
TextEdit widget, 643

XtNdelta
NumericField widget, 459

XtNdeltaCallback
NumericField widget, 460

XtNdeltaState
NumericField widget, 460

XtNdepth
Core Resources, 30

XtNdestroy
Stub widget, 624

XtNdestroyCallback
Core Resources, 30

XtNdim
CheckBox widget, 254
FlatExclusives widget, 353
RectButton widget, 505

XtNdisplayPosition
TextEdit widget, 644

XtNdndAcceptCursor
DropTarget widget, 281

XtNdndAnimateCallback
DropTarget widget, 282

XtNdndCopyCursor
DropTarget widget, 282

XtNdndMoveCursor
DropTarget widget, 282

XtNdndPreviewCallback
DropTarget widget, 283

XtNdndPreviewHints
DropTarget widget, 282

XtNdndRejectCursor
DropTarget widget, 283

XtNdndTriggerCallback
DropTarget widget, 284

XtNdocumentListWidget
FileChooser widget, 315

XtNdocumentNameLabelWidget
FileChooser widget, 315

XtNdocumentNameTypeInWidget
FileChooser widget, 315

XtNdragCBType
Scrollbar widget, 528
Slider widget, 602

XtNdragRightDistance
OLIT Toolkit Resources, 20

XtNeditType
TextEdit widget, 644
TextField widget, 680
TextLine widget, 705

XtNemanateWidget
NoticeShell widget, 450

XtNendBoxes
Slider widget, 602

XtNerrorCallback
FontChooser widget, 376

XtNexpandTilde
FileChooser widget, 312

XtNexpose
Stub widget, 624

XtNexposeCallback
DrawArea widget, 272

754 OLIT Reference Manual—August 1994

XtNextensionArea
FontChooser widget, 377

XtNextensionClass
FileChooser widget, 314

XtNextensionName
FileChooser widget, 314

XtNextensionWidget
FileChooser widget, 314

XtNfileChooserWidget
FileChooserShell widget, 327

XtNfilterProc
FileChooser widget, 307

XtNfilterString
FileChooser widget, 308

XtNfirstViewableItem
ScrollingList widget, 573

XtNfocusWidget
VendorShell Resources, 54

XtNfolderOpenedCallback
FileChooser widget, 316

XtNfolderPromptString
FileChooser widget, 318

XtNfollowSymlinks
FileChooser widget, 300

XtNfont
Caption widget, 243
CheckBox widget, 254
FileChooser widget, 300
Primitive Resources, 36
TextField widget, 680

XtNfontChooserWidget
FontChooserShell widget, 389

XtNfontColor
Caption widget, 243
CheckBox widget, 254
FileChooser widget, 300
Primitive Resources, 37
TextField widget, 680

XtNfontSearchSpec
FontChooser widget, 377

XtNfooterPanel
PopupWindowShell widget, 495

XtNfooterPresent

VendorShell Resources, 54
XtNforceHorizontalSB

ScrolledWindow widget, 548
XtNforceVerticalSB

ScrolledWindow widget, 549
XtNforeground

CheckBox widget, 254
DrawArea widget, 273
FileChooser widget, 301
Primitive Resources, 37
ScrolledWindow widget, 549

XtNfull
DropTarget widget, 284

XtNgeometry
Shell Resources, 43

XtNgetValuesHook
Stub widget, 624

XtNgotoButtonWidget
FileChooser widget, 315

XtNgotoHomeAccelerator
FileChooser widget, 313

XtNgotoHomeButtonWidget
FileChooser widget, 315

XtNgotoHomeLabel
FileChooser widget, 319

XtNgotoHomeMnemonic
FileChooser widget, 313

XtNgotoLabel
FileChooser widget, 319

XtNgotoMenuWidget
FileChooser widget, 315

XtNgotoPromptString
FileChooser widget, 318

XtNgotoPromptWidget
FileChooser widget, 315

XtNgotoTypeInWidget
FileChooser widget, 315

XtNgoUpOneFolderLabel
FileChooser widget, 319

XtNgrabPointer
OLIT Toolkit Resources, 20

XtNgranularity
Scrollbar widget, 528

Index 755

Slider widget, 602
XtNgraphicsExposeCallback

DrawArea widget, 273
XtNgravity

Flat Resources, 63
StaticText widget, 614

XtNgravity Values, 614
XtNgrowMode

TextEdit widget, 644
XtNhAutoScroll

ScrolledWindow widget, 550
XtNheight

Core Resources, 30
StaticText widget, 614
Stub widget, 625

XtNheightInc
WMShell Resources, 46

XtNhelpModel
OLIT Toolkit Resources, 21

XtNhereToLeftLabel
Scrollbar widget, 528

XtNhereToLeftMnemonic
Scrollbar widget, 529

XtNhereToTopLabel
Scrollbar widget, 528

XtNhereToTopMnemonic
Scrollbar widget, 529

XtNhideDotFiles
FileChooser widget, 308

XtNhighlightHandlerProc
Stub widget, 625

XtNhInitialDelay
ScrolledWindow widget, 550

XtNhistoryFoldersMaxCount
FileChooser widget, 309

XtNhistoryFoldersMinCount
FileChooser widget, 309

XtNhMenuPane
ScrolledWindow widget, 550

XtNhomeFolder
FileChooser widget, 310

XtNhPad
ControlArea widget, 264

Flat Resources, 64
XtNhRepeatRate

ScrolledWindow widget, 551
XtNhScrollbar

ScrolledWindow widget, 551
XtNhSliderMoved

ScrolledWindow widget, 551
XtNhSpace

ControlArea widget, 264
Flat Resources, 64
FlatExclusives widget, 353
StaticText widget, 615

XtNhStepSize
ScrolledWindow widget, 552

XtNiconic
TopLevelShell Resources, 60

XtNiconMask
WMShell Resources, 46

XtNiconName
TopLevelShell Resources, 61

XtNiconNameEncoding
TopLevelShell Resources, 61

XtNiconPixmap
overriding, 47
WMShell Resources, 46

XtNiconWindow
WMShell Resources, 47

XtNiconX
WMShell Resources, 47

XtNiconY
WMShell Resources, 47

XtNimFontSet, 97
VendorShell Resources, 54

XtNimPreeditStyle, 93
TextEdit widget, 645
TextField widget, 680
TextLine widget, 705

XtNimStatusStyle, 95
VendorShell Resources, 54

XtNincludeAccelerator
FileChooser widget, 313

XtNincludeLabel
FileChooser widget, 319

756 OLIT Reference Manual—August 1994

XtNincludeMnemonic
FileChooser widget, 313

XtNinitialDelay
Scrollbar widget, 529
Slider widget, 602
TextField widget, 681
TextLine widget, 706

XtNinitialFontName
FontChooser widget, 378

XtNinitialize
Stub widget, 626

XtNinitializeHook
Stub widget, 626

XtNinitialState
WMShell Resources, 47

XtNinitialX
ScrolledWindow widget, 552

XtNinitialY
ScrolledWindow widget, 552

XtNinput
WMShell Resources, 48

XtNinputDocumentCallback
FileChooser widget, 303

XtNinputFocusColor
Primitive Resources, 37

XtNinputFocusFeedback
OLIT Toolkit Resources, 21

XtNinsertPosition
Composite Resources, 33

XtNinsertTab
TextEdit widget, 645
TextField widget, 681
TextLine widget, 706

XtNitemCurrentCallback
ScrollingList widget, 573

XtNitemFields
Flat Resources, 64

XtNitemGravity
Flat Resources, 65

XtNitemHeight
ScrollingList widget, 573

XtNitemMaxHeight
Flat Resources, 65

XtNitemMaxWidth
Flat Resources, 65

XtNitemMinHeight
Flat Resources, 65

XtNitemMinWidth
Flat Resources, 65

XtNitemNotCurrentCallback
ScrollingList widget, 574

XtNitems
Flat Resources, 66

XtNitemsTouched
Flat Resources, 66

XtNkeys
TextEdit widget, 646

XtNlabel
Caption widget, 244
CheckBox widget, 254
Flat Resources, 67
MenuButton widget, 419
OblongButton widget, 481
RectButton widget, 505

XtNlabelImage
CheckBox widget, 255
Flat Resources, 67
MenuButton widget, 419
OblongButton widget, 481
RectButton widget, 505

XtNlabelJustify
CheckBox widget, 255
Flat Resources, 67
MenuButton widget, 420
OblongButton widget, 482
RectButton widget, 506

XtNlabelTile
CheckBox widget, 255
Flat Resources, 67
OblongButton widget, 482
RectButton widget, 506

XtNlabelType
CheckBox widget, 256
MenuButton widget, 420
OblongButton widget, 482
RectButton widget, 506

XtNlastDocumentName

Index 757

FileChooser widget, 301
XtNlastViewableItem

ScrollingList widget, 574
XtNlayout

BulletinBoard widget, 237
XtNlayoutHeight

Flat Resources, 68
XtNlayoutType

ControlArea widget, 265
Exclusives widget, 291
Flat Resources, 68
Nonexclusives widget, 441

XtNlayoutWidth
Flat Resources, 68

XtNleftFooterString
VendorShell Resources, 55

XtNleftFooterVisible
overriding, 55
VendorShell Resources, 55

XtNleftMargin
Gauge widget, 408
TextEdit widget, 646

XtNleftToHereLabel
Scrollbar widget, 528

XtNleftToHereMnemonic
Scrollbar widget, 529

XtNlineSpace
StaticText widget, 615

XtNlinesVisible
TextEdit widget, 646

XtNlistChoiceCallback
FileChooser widget, 317

XtNlistPane
ScrollingList widget, 574

XtNlistPromptWidget
FileChooser widget, 315

XtNlistVisibleItemCount
FileChooser widget, 301

XtNlistVisibleItemMinCount
FileChooser widget, 301

XtNlockName
OLIT Toolkit Resources, 21

XtNlowerControlArea

PopupWindowShell widget, 496
XtNmappedWhenManaged

Core Resources, 31
XtNmargin

TextEdit widget, 646
XtNmaxAspectX

WMShell Resources, 48
XtNmaxAspectY

WMShell Resources, 48
XtNmaxHeight

WMShell Resources, 49
XtNmaximumChars

TextLine widget, 706
XtNmaximumPointSize

FontChooser widget, 378
XtNmaximumSize

TextField widget, 682
XtNmaxLabel

Gauge widget, 408
Slider widget, 603

XtNmaxValue
NumericField widget, 461

XtNmaxWidth
WMShell Resources, 49

XtNmeasure
ControlArea widget, 266
Exclusives widget, 291
Flat Resources, 69
Nonexclusives widget, 441

XtNmenu
TextLine widget, 707

XtNmenuAugment
MenuShell widget, 435

XtNmenuButton
VendorShell Resources, 55

XtNmenuMark
MenuButton widget, 420

XtNmenuMarkRegion
OLIT Toolkit Resources, 22

XtNmenuPane
AbbrevMenuButton widget, 232
MenuButton widget, 421
MenuShell widget, 436

758 OLIT Reference Manual—August 1994

Scrollbar widget, 529
XtNmenuTitle

PopupWindowShell widget, 496
Scrollbar widget, 530
TextEdit widget, 647

XtNmenuType
VendorShell Resources, 56

XtNmetaKey
OLIT Toolkit Resources, 22

XtNminAspectX
WMShell Resources, 48

XtNminAspectY
WMShell Resources, 48

XtNminHeight
WMShell Resources, 49

XtNminLabel
Gauge widget, 409
Slider widget, 603

XtNminValue
NumericField widget, 461

XtNminWidth
WMShell Resources, 49

XtNmnemonic
Caption widget, 244
CheckBox widget, 256
Primitive Resources, 38

XtNmnemonicPrefix
OLIT Toolkit Resources, 22

XtNmod1Name
OLIT Toolkit Resources, 23

XtNmod2Name
OLIT Toolkit Resources, 23

XtNmod3Name
OLIT Toolkit Resources, 23

XtNmod4Name
OLIT Toolkit Resources, 23

XtNmod5Name
OLIT Toolkit Resources, 23

XtNmodifyVerification
TextEdit widget, 647

XtNmotionCallback
TextLine widget, 707

XtNmotionVerification

TextEdit widget, 648
XtNmouseDampingFactor

OLIT Toolkit Resources, 23
XtNmouseless

OLIT Toolkit Resources, 23
XtNmultiClickCallback

ScrollingList widget, 574
XtNmultiClickTimeout

OLIT Toolkit Resources, 24
XtNmultiObjectCount

OLIT Toolkit Resources, 24
XtNnoneSet

Exclusives widget, 291
FlatExclusives widget, 354

XtNnoPreviewText
FontChooser widget, 378

XtNnumChildren
Composite Resources, 34

XtNnumCurrentItems
ScrollingList widget, 575

XtNnumItemFields
Flat Resources, 69

XtNnumItems
Flat Resources, 69
ScrollingList widget, 575

XtNolDefaultFont, 88
OLIT Toolkit Resources, 24

XtNopenAccelerator
FileChooser widget, 313

XtNopenButtonWidget
FileChooser widget, 315

XtNopenFolderAccelerator
FileChooser widget, 313

XtNopenFolderCallback
FileChooser widget, 305

XtNopenFolderLabel
FileChooser widget, 319

XtNopenFolderMnemonic
FileChooser widget, 313

XtNopenLabel
FileChooser widget, 319

XtNopenMnemonic
FileChooser widget, 313

Index 759

XtNopenPromptString
FileChooser widget, 318

XtNoperation
FileChooser widget, 301
FileChooserShell widget, 327

XtNorientation
Gauge widget, 409
RubberTile widget, 515
Scrollbar widget, 530
Slider widget, 604

XtNoutputDocumentCallback
FileChooser widget, 306

XtNoverrideRedirect
Shell Resources, 43

XtNownSelectionCallback
DropTarget widget, 284

XtNpasteLabel
TextEdit widget, 643

XtNpasteMnemonic
TextEdit widget, 643

XtNpointerWarping
FileChooserShell widget, 328
NoticeShell widget, 451
PopupWindowShell widget, 496
Scrollbar widget, 530
Slider widget, 604

XtNpopdownCallback
Shell Resources, 43

XtNpopupCallback
Shell Resources, 43

XtNposition
Caption widget, 244
CheckBox widget, 256
FlatCheckBox widget, 345
ScrollingList widget, 575

XtNpostModifyCallback
TextLine widget, 709

XtNpostModifyNotification
TextEdit widget, 649

XtNpreferredPointSizes
FontChooser widget, 379

XtNprefMaxWidth
ScrollingList widget, 575

XtNprefMinWidth
ScrollingList widget, 575

XtNpreModifyCallback
TextLine widget, 708

XtNpreviewBackground
FontChooser widget, 379

XtNpreviewBorderWidth
FontChooser widget, 379

XtNpreviewFontColor
FontChooser widget, 379

XtNpreviewForeground
FontChooser widget, 379

XtNpreviewHeight
FontChooser widget, 380

XtNpreviewPresent
FontChooser widget, 380

XtNpreviewSwitchLabel
FontChooser widget, 380

XtNpreviewSwitchOffLabel
FontChooser widget, 380

XtNpreviewSwitchOnLabel
FontChooser widget, 381

XtNpreviewText
FontChooser widget, 381

XtNpreviewWidget
AbbrevMenuButton widget, 232

XtNpreviousLabel
Scrollbar widget, 528

XtNpreviousMnemonic
Scrollbar widget, 529

XtNproportionLength
Scrollbar widget, 530

XtNpushpin
MenuShell widget, 436
VendorShell Resources, 56

XtNpushpinDefault
MenuShell widget, 436

XtNqueryGeometry
Stub widget, 627

XtNrealize
Stub widget, 627

XtNrecomputeHeight
ScrolledWindow widget, 553

760 OLIT Reference Manual—August 1994

XtNrecomputeSize
Caption widget, 244
CheckBox widget, 256
DropTarget widget, 285
Exclusives widget, 292
Gauge widget, 410
MenuButton widget, 421
Nonexclusives widget, 442
OblongButton widget, 482
RectButton widget, 506
Slider widget, 604
StaticText widget, 615

XtNrecomputeWidth
ScrolledWindow widget, 553
ScrollingList widget, 576

XtNreferenceName
Primitive Resources, 38

XtNreferenceStub
Stub widget, 627

XtNreferenceWidget
Primitive Resources, 39

XtNrefName
RubberTile widget, 516

XtNrefWidget
RubberTile widget, 516

XtNregisterFocusFunc
Stub widget, 628

XtNrepeatRate
Scrollbar widget, 531
Slider widget, 604
TextField widget, 682
TextLine widget, 710

XtNreset
PopupWindowShell widget, 494

XtNresetFactory
PopupWindowShell widget, 494

XtNresetFactoryLabel
PopupWindowShell widget, 495

XtNresetFactoryMnemonic
PopupWindowShell widget, 495

XtNresetLabel
PopupWindowShell widget, 495

XtNresetMnemonic
PopupWindowShell widget, 495

XtNresize
Stub widget, 628

XtNresizeCallback
DrawArea widget, 274

XtNresizeCorners
VendorShell Resources, 57

XtNrevertCallback
FontChooser widget, 381

XtNrevertLabel
FontChooser widget, 382

XtNrightFooterString
VendorShell Resources, 57

XtNrightFooterVisible
overriding, 57
VendorShell Resources, 57

XtNrightMargin
Gauge widget, 410
TextEdit widget, 649

XtNsameHeight
Flat Resources, 69

XtNsameSize
ControlArea widget, 266

XtNsameWidth
Flat Resources, 70

XtNsaveAccelerator
FileChooser widget, 313

XtNsaveAsAccelerator
FileChooser widget, 313

XtNsaveAsLabel
FileChooser widget, 319

XtNsaveAsMnemonic
FileChooser widget, 313

XtNsaveLabel
FileChooser widget, 319

XtNsaveMnemonic
FileChooser widget, 313

XtNsaveUnder
Shell Resources, 44

XtNscale
CheckBox widget, 257
FileChooser widget, 302
OLIT Toolkit Resources, 25
Primitive Resources, 39

Index 761

TextField widget, 682
XtNscreen

Core Resources, 31
XtNscrollingListItems

ScrollingList widget, 576
XtNscrollingListMode

ScrollingList widget, 576
XtNselect

CheckBox widget, 257
OblongButton widget, 483
RectButton widget, 507

XtNselectable
ScrollingList widget, 577
StaticText widget, 615

XtNselectDoesPreview
OLIT Toolkit Resources, 25

XtNselectEnd
TextEdit widget, 650

XtNselectionAtom
DropTarget widget, 285

XtNselectProc
FlatExclusives widget, 354

XtNselectStart
TextEdit widget, 650

XtNsensitive
Core Resources, 31

XtNset
CheckBox widget, 257
FlatExclusives widget, 354
RectButton widget, 507

XtNsetDefaults
PopupWindowShell widget, 494

XtNsetDefaultsLabel
PopupWindowShell widget, 495

XtNsetDefaultsMnemonic
PopupWindowShell widget, 495

XtNsetValues
Stub widget, 628

XtNsetValuesAlmost
Stub widget, 629

XtNsetValuesHook
Stub widget, 629

XtNshellTitle, 97

VendorShell Resources, 57
XtNshiftName

OLIT Toolkit Resources, 25
XtNshowAccelerators

OLIT Toolkit Resources, 26
XtNshowGlyphs

FileChooser widget, 302
XtNshowInactive

FileChooser widget, 308
XtNshowMnemonics

OLIT Toolkit Resources, 26
XtNshowPage

Scrollbar widget, 531
ScrolledWindow widget, 553

XtNsizeLabel
FontChooser widget, 382

XtNsizeOf
NumericField widget, 462

XtNsliderMax
Gauge widget, 410
Scrollbar widget, 531
Slider widget, 605

XtNsliderMin
Gauge widget, 410
Scrollbar widget, 531
Slider widget, 605

XtNsliderMoved
Scrollbar widget, 532
Slider widget, 605

XtNsliderValue
Gauge widget, 410
Scrollbar widget, 534
Slider widget, 606

XtNsource
TextEdit widget, 650

XtNsourceType
TextEdit widget, 651

XtNspace
Caption widget, 245
conflict, 516
RubberTile widget, 516
ScrollingList widget, 577

XtNspan

762 OLIT Reference Manual—August 1994

Gauge widget, 411
Slider widget, 606

XtNstopPosition
Scrollbar widget, 534
Slider widget, 606

XtNstring
StaticText widget, 616
TextField widget, 682
TextLine widget, 710

XtNstrip
StaticText widget, 616

XtNstyleLabel
FontChooser widget, 383

XtNsubstituteShellVariables
FileChooser widget, 312

XtNtabTable
TextEdit widget, 651

XtNtextArea
NoticeShell widget, 451

XtNtextEditWidget
TextField widget, 683

XtNtextField
ScrollingList widget, 577

XtNtextFormat, 85, 87
Caption widget, 245
CheckBox widget, 257
FileChooser widget, 302
FileChooserShell widget, 328
FontChooser widget, 383
FontChooserShell widget, 390
NoticeShell widget, 451
Primitive Resources, 39
TextField widget, 683

XtNthreeD
OLIT Toolkit Resources, 26

XtNticks
Gauge widget, 411
Slider widget, 607

XtNtickUnit
Gauge widget, 411
Slider widget, 607

XtNtitle
WMShell Resources, 49

XtNtitleEncoding
WMShell Resources, 50

XtNtopMargin
TextEdit widget, 651

XtNtopToHereLabel
Scrollbar widget, 528

XtNtopToHereMnemonic
Scrollbar widget, 529

XtNtransient
WMShell Resources, 50

XtNtranslations
Core Resources, 32

XtNtraversalHandlerFunc
Stub widget, 629

XtNtraversalOn
Primitive Resources, 40

XtNtype
NumericField widget, 462

XtNtypefaceLabel
FontChooser widget, 383

XtNunderline
TextLine widget, 710

XtNundoLabel
TextEdit widget, 643

XtNundoMnemonic
TextEdit widget, 643

XtNunselect
CheckBox widget, 257
RectButton widget, 507

XtNunselectProc
FlatExclusives widget, 354

XtNupdateDisplay
TextLine widget, 710

XtNupperControlArea
PopupWindowShell widget, 496

XtNuserData
Primitive Resources, 40
VendorShell Resources, 58

XtNuserDeleteItems
ScrollingList widget, 578

XtNuserFolders
FileChooser widget, 310

XtNuserFoldersMaxCount

Index 763

FileChooser widget, 311
XtNuserMakeCurrent

ScrollingList widget, 579
XtNuseSetValCallback

Scrollbar widget, 534
Slider widget, 607

XtNvalidateCallback
NumericField widget, 462

XtNvalue
NumericField widget, 463

XtNvAutoScroll
ScrolledWindow widget, 550

XtNverification
TextField widget, 683

XtNverify
PopupWindowShell widget, 496

XtNverifyCallback
FileChooserShell widget, 328

XtNviewableItems
ScrollingList widget, 580

XtNviewHeight
ScrollingList widget, 580

XtNvInitialDelay
ScrolledWindow widget, 550

XtNvisual
DrawArea widget, 274
Shell Resources, 44

XtNvMenuPane
ScrolledWindow widget, 550

XtNvPad
ControlArea widget, 264
Flat Resources, 64

XtNvScrollbar
ScrolledWindow widget, 551

XtNvSliderMoved
ScrolledWindow widget, 551

XtNvSpace
ControlArea widget, 264
Flat Resources, 64
FlatExclusives widget, 353
StaticText widget, 615

XtNvStepSize
ScrolledWindow widget, 552

XtNwaitForWm
WMShell Resources, 50

XtNweight
RubberTile widget, 517

XtNwidth
Core Resources, 32
StaticText widget, 616
Stub widget, 630

XtNwidthInc
WMShell Resources, 50

XtNwindow
Stub widget, 630

XtNwindowGroup
WMShell Resources, 51

XtNwindowHeader
VendorShell Resources, 58

XtNwinGravity
WMShell Resources, 51

XtNwmProtocol
VendorShell Resources, 58

XtNwmProtocolInterested
VendorShell Resources, 59

XtNwmTimeout
WMShell Resources, 52

XtNwrap
StaticText widget, 616

XtNwrapMode
TextEdit widget, 651

XtNx
Core Resources, 32

XtNxAddWidth
Form widget, 401

XtNxAttachOffset
Form widget, 401

XtNxAttachRight
Form widget, 401

XtNxOffset
Form widget, 402

XtNxRefName
Form widget, 402

XtNxRefWidget
Form widget, 403

XtNxResizable

764 OLIT Reference Manual—August 1994

Form widget, 403
XtNxtDefaultFont, 25
XtNxtDefaultFontSet, 25
XtNxVaryOffset

Form widget, 404
XtNy

Core Resources, 32
XtNyAddHeight

Form widget, 401
XtNyAttachBottom

Form widget, 401
XtNyAttachOffset

Form widget, 401
XtNyOffset

Form widget, 402
XtNyRefName

Form widget, 402
XtNyRefWidget

Form widget, 403
XtNyResizable

Form widget, 403
XtNyVaryOffset

Form widget, 404
XtOpenDisplay(), 102
XtOwnSelection(), 136
XtPopDown(), 445
XtPopup(), 488
XtResizeWidget(), 631
XtSetLanguageProc(), 90
XtSetMappedWhenManaged(), 31
XtSetSensitive(), 28
XtSetValues(), 631
XtToolkitInitialize(), 102
XtVaCreateManagedWidget(), 40
XtWindow(), 269, 630
XwcDrawString(), 40
XYBitmap, 481, 505
XYPixmap, 419, 481, 505

Z
ZPixmap, 419, 481, 505

