Mountain View, CA 94043

OLITReference Manual

@ SunSoft

A Sun Microsystems, Inc. Business

[0 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., awholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

&0
Retf;tstre ‘(‘ ’

Adobe PostScript

Contents

1o Introduction.
Differences From OLIT Release 3.3
Motif and OPEN LOOK Interoperability Issues

2. CommON RESOUICESt
Resources Summary Tables
Resource Files.
Resource File Bindings
OLIT Toolkit Resources.t
COre RESOUICES . . . ottt e e e e
Composite RESOUICES ... o i it e i e e e
Primitive RESOUICeS. i e
Manager RESOUICESt e
Shell RESOUICES.o e
WMShell Resources.

VendorShell Resources

N N N oo N Rk e

W W oW NN e
a P P B W N

TransientShell Resourcescc.. 50

TopLevelShell Resources 50
ApplicationShell Resourcescovi... 51
Flat Resources. 52
Activation TYPeS 61
Activation Type Description. 61
Common Activation Types. 68
Internationalization Features 71
Introduction 71
System Requirements i 72
Issues Involved in Internationalizing Applications. 72
LocaleSetting i 73
Character Encoding and Text Formats 74
Localized TextHandling............ 79
InputMethod 80
Standards 89
ToOolKIt FUNCLIONS 91
Initialization and Activation Functions 92
Buffer Functions. i 95
Cursor and Pixmap Functions 99
Display Functions i 108
Dragand Drop Functions., 109
Dynamic Resource Functions. 140
Error Functions. 142

OLIT Reference Manual—August 1994

Help Function. i, 146

Input Focus Functions. i 150
Multiple Visual Functions. 154
Packed Widget Function. 156
Pixel Conversion Functions 158
Protocol Function. 160
Regular Expression Functions 161
Text Buffer Functions. 163
Text Buffer Functions for Internationalization.............. 176
Text Selection Operations 204
Toolkit Resource Functions. 206
Virtual Event Functions. 207
6. Widget Reference (A—=C)....... .. i 217
AbbrevMenuButton Widget. L 217
BulletinBoard Widget 225
Caption Widget 229
CheckBox Widget 237
ControlAreaWidget 249
7. WidgetReference (D-F)........... i .. 259
DrawAreaWidget 259
DropTargetWidget i 266
ExclusivesWidget 277
FileChooser Widget 284
FileChooserShell Widget 311

Contents \Y;

Vi

8.

9.

Flat Widgets 321

FlatCheckBox Widget i, 329
FlatExclusivesWidget. 337
FlatNonexclusives Widget 347
Flat Widget Functions 354
FontChooser Widget i 357
FontChooserShell Widget. 375
FooterPanel Widget. i 381
FormWidget. 385
Widget Reference (G-P). it 395
Gauge Widget. o 395
Gauge Function ... 402
MenuButton Widget 403
MenuShell Widget 414
Nonexclusives Widget 428
NoticeShell Widget 433
NumericFieldWidget 443
OblongButton Widget 464
PopupWindowShell Widget 475
Widget Reference (R—=S)........ 489
RectButton Widget i 489
RubberTile Widget 502
Scrollbar Widget 508
ScrolledWindow Widget 529

OLIT Reference Manual—August 1994

ScrollingListWidget i 547

ScrollingList Functions i 578
SliderWidget 586
StaticText Widget 600
StubWidget 609
10. WidgetReference (T—=2Z) 623
TextEditWidget 623
TextEdit FUNCLIONS 660
TextField Widget 665
TextField Functions i 686
TextLine Widget. 688
TextLine FUNCtions. i 708

Contents vii

viii OLIT Reference Manual—August 1994

Preface

Who Should Use This Book

This manual is for applications programmers who want to create applications
using the OPEN LOOK ® Intrinsics Dolkit (OLIT™). OLIT is a user interface
toolkit based on the X Window System™ Xt Intrinsics from MIT. OLIT
implements the OPEN LOOK Graphical User Interface (GUI); it consists of a set of
widgets and the Xt Intrinsics version R5.

This manual provides reference information for the widgets and associated
functions of OLIT. It is not intended to provide instruction for first-time OLIT
programmers. Programmers who want to learn how to use OLIT should
consult:

® X Window System Programming and Applications with Xt — OPEN LOOK Edition,
by John Pew, published by Prentice Hall, 1992.

® OLIT Quick Start Programmer’s Guide, Part Number 801-5317-10, Sun
Microsystems, Inc., 1993.

Programmers may also want to consult the following manuals for further
reference information:

® X Window System Toolkit, The Complete Programmer’s Guide and Specification,
Digital Press, 1992.

® X Window System, The Complete Guide to Xlib, X Protocol, ICCCM, XLFD,
Digital Press, 1992,

® OPEN LOOK Graphical User Interface Functional Specification, Addison-Wesley
Publishing Company, Inc., 1989.

® User Interface Specification for Mouseless Operation of the OPEN LOOK Graphical
User Interface, Part Number 800-6816-01, Sun Microsystems, Inc., Version 1.0
— August 1, 1991.

The publications that are not Sun reference manuals are available from
SunExpress™ (call 1-800-873-7869) or your local computer bookstore.

How This Book Is Organized

This manual consists of ten chapters. The following is a brief description of
each chapter.

Chapter 1, “Introduction,” contains a description of the differences from OLIT
3.3 to 3.4 and Motif interoperability. It also shows a hierarchy diagram of the
OLIT widget classes.

Chapter 2, “Common Resources,” describes resources that are common to
several widgets.

Chapter 3, “Activation Types,” describes virtual events and activation types
that are common to several widgets.

Chapter 4, “Internationalization Features,” describes how OLIT applications
can be internationalized.

Chapter 5, “Toolkit Functions,” describes functions that are used to
manipulate many of the widgets.

Chapter 6, “Widget Reference (A — C),” is the first of five chapters that
describe the widgets in the OLIT widget set and sets of utility, or convenience,
functions that can be used to interact with certain specific widgets. The
widgets are listed in alphabetical order, with any dedicated functions following
the applicable widgets. Each of the five chapters in this group represents a
range of widgets, divided into alphabetic groups: A-C, D-F, G-P, R-S, and
T-Z.

X OLIT Reference Manual—August 1994

Introduction 1

This chapter describes the differences between OLIT™ releases 3.3 and 3.4 and
OLIT interoperability with Motif. It also presents a diagram of the OLIT widget
class hierarchy.

Differences From OLIT Release 3.3

Solaris x86 Support

OLIT 3.4 now supports Solaris x86, sometimes referred to as “Solaris on Intel”.
Since the keyboards on most non-Sparc systems don’t have a “meta” key,
support for these systems requires some mechanism which lets users generate
a meta-key event without pressing an actual meta key (¢). On non-SPARC
keyboards this is done by pressing the Control and Alt keys at the same time.
This action is functionally identical to pressing the meta key on SPARC
keyboards.

XtNctrlAltMetaKey Resource

A new Toolkit resource has been added which controls the translation of the
Control-Alt key combination into the meta-key event. This resource may be
desirable in conjunction with programs that use menu accelerators or
mnemonics which conflict with the meta key substitute (Control-Alt). See
page 12 for details.

1
=

Motif and OPEN LOOK Interoperability Issues

Interoperability Between Motif Applications and OPEN LOOK Applications

XView and OLIT applications do not support Primary copy, move, and link.

® Secondary selections between Motif applications and XView or OLIT

applications do not work.

Copying or cutting from a Motif application into the Clipboard and then
pasting to an XView text subwindow will not work. Pasting to OLIT
applications or XView panel text fields will work.

Copying or cutting and pasting Asian text between a Motif application and
an XView or OLIT application does not work.

Drag and drop between Motif applications and XView or OLIT applications
does not work.

Interoperability Between the Motif Window Manager (mwm) and OPEN
LOOK Applications

Window manager decorations for some XView and OLIT windows are not
correct. Example: some applications may exhibit extra titles, or extra resize
handles. This does not affect application functionality.

Executing the window manager function f.kill on base frame windows of
an XView application (typically done by pulling down the default window
menu and selecting Quit or Close) may exit the application without user
confirmation, or any further application-specific processing.

If the resource keyboardFocusPolicy is set to pointer, then XView or
OLIT applications will get the focus when the mouse is moved into their
windows, but the caret may not always darken. To darken, click inside the
window.

The default colors for XView and OLIT applications are not those of Motif.
Dragging and dropping data onto an icon of a closed XView or OLIT
application will not work.

2 OLIT Reference Manual—August 1994

[EEN
i

OLIT Class Hierarchy

Object
RectObj
|
[_ [
UnNamedObj EventObject
Core ButtonGadget
I I:MenuButtonGadget
: OblongButtonGadget
Composite Primitive g g
|
[AbbrevMenuButton
Shell Constraint Button
I | | MenuButton
OverrideShell WMShell Manager OblongButton
RectButton
. Flat
VendorShell — BulletinBoard 0
| DrawArea I— FlatExclusives
— Caption FlatCheckBox
— CheckBox

TransientShell TopLevelShell

ApplicationShell

— MenuShell

— NoticeShell

— PopupWindowShell
— FileChooserShell
L FontChooserShell

— ControlArea

— Exclusives

— FooterPanel

— Form

L ScrollingList
— Nonexclusives

— RubberTile

Help

— FontChooser
FileChooser

— ScrolledWindow
— TextField

Introduction

— StaticText

FlatNonExclusives

Gauge
ListPane
Magnifier

— Pixmap

I— DropTarget
PushPin

ScrollBar Legend

Slider
OLIT classes

Stub Xt Intrinsics classes (italic)

TextEdit private or meta classes

TextLine
L_ NumericField

OLIT Reference Manual—August 1994

Common Resources 2

This chapter describes resources that are common to several widgets.

OLIT Toolkit Resources page 7

Core Resources page 17
Composite Resources page 23
Primitive Resources page 24
Manager Resources page 31
Shell Resources page 31
WMShell Resources page 35
VendorShell Resources page 42
TransientShell Resources page 50
TopLevelShell Resources page 50
ApplicationShell Resources page 51
Flat Resources page 52

The resources are listed according to the classes from which they derive.

A widget inherits resources from an ancestor class in the widget class tree;
see “OLIT Class Hierarchy” on page 3. For example, every widget has the
XtNbackground resource, because all widgets descend from
coreWidgetClass and this resource is defined as a Core resource. Likewise,
widgets that descend from primitiveWidgetClass have Primitive
resources, such as XtNaccelerator

=2

Resources Summary Tables

In addition to class resources, there are application wide resources that apply
to an entire OLIT application. These resources are called Toolkit Resources and
are also listed in this chapter.

Each widget described in Chapters 6-10 has summary tables listing all the
application-accessible resources for that widget. If a resource is shared, a
detailed description of that resource is in Chapter 2. If the resource is unique to
that widget, or if it has some different use or meaning to that widget, then it is
described in the individual widget section.

Resources Summary Tables

The summary tables in this chapter and the widget descriptions contain the
most commonly sought information about a resource:

® (C-language) type
® Default value (if any)
® Accessibility of the resource

Accompanying the individual description of a resource is a one-line table of
the preceding information, plus the class name of the resource. The class name
of the resource is not repeated in the summary table, and is only found with
the individual description. The values in the “Access” column of the summary
tables are abbreviated as follows:

Abbreviation Meaning

S (Set.) The application can set the resource using XtSetValues()

G (Get.) The application can get the resource using XtGetValues()

| (Init.) The application can set the resource when it creates the
widget.

(0] (Other.) The resource is set or retrieved in some other way;,

typically by a function just for this purpose; an explanation of this
is given with the resource description that follows the table.

D (Dynamic.) The resource is updated dynamically when the
window server resource database changes (for example, when
Properties or xrdb is used).

n/a (Not applicable.) The widget does not use this resource and is
unaffected by its value.

OLIT Reference Manual—August 1994

2=

Resource Files
Resource Files

The value taken by a resource can often be set in a resource file, typically
$HOME/. Xdefaults . For further details about resource specification in a
resource file, see Chapter 9 of the Xt Intrinsics Programming Manual.

Resource File Bindings

In many cases the C-language binding for a resource differs from that used in
the resource file. For example, to display keyboard accelerators on controls, a
program would set XtNshowAccelerators to OL_DISPLAY. However, in a
resource file, this would be done by a line such as:

CshowAccelerators: display

To show both the C-language value and the resource file value, this manual
uses the following convention to specify valid values for resources:

OL_DISPLAY/"display”

OLIT Toolkit Resources

OLIT uses several resources on an application-wide basis to determine the state
of an OPEN LOOK application, as shown in Table 2-1. Unlike the other
resources in this chapter, the OLIT Toolkit resources affect an application as a
whole, and are unrelated to the widget class hierarchy. Because of this, these
resources are not repeated in each widget description. These resources are not
retrieved and set in the same manner as the other resources in this manual.
Instead of using XtGetValues() and XtSetValues() , the corresponding
functions OlGetApplicationValues() and OlSetApplicationValues()

are used to retrieve or set the values of these resources. (See “Toolkit Resource
Functions” on page 206.)

Table 2-1 OLIT Toolkit Resources Summary

Name Type Default Access
XtNbeep OlDefine OL_BEEP_ALWAYS SGIO
XtNbeepVolume int 0 SGIO
XtNcolorTupleList OlColorTuple NULL GIO
XtNcontrolName String “Ctrl” 10D
XtNdragRightDistance Dimension 100 (pixels) SGIO

Common Resources 7

=2

OLIT Toolkit Resources

XtNbeep

Table 2-1 OLIT Toolkit Resources Summary (Continued)

Name Type Default Access
XtNgrabPointer Boolean TRUE SGIO
XtNhelpModel OlDefine OL_POINTER SGIO
XtNinputFocusFeedback OlDefine OL_SUPERCARET 10
XtNlockName String “Lock” 10D
XtNmenuMarkRegion Dimension 10 (pixels) SGIO
XtNctrlAltMetaKey Boolean (see description) Gl
XtNmnemonicPrefix Modifiers Mod1Mask SGIO
XtNmod1Name String “Meta” 10D
XtNmod2Name String “ModeSwitch” 10D
XtNmod3Name String “NumLock” 10D
XtNmod4Name String “Alt” 10D
XtNmod5Name String “Mod5” 10D
XtNmouseDampingFactor Cardinal 8 (pixels) SGIO
XtNmouseless Boolean FALSE GIO
XtNmultiClickTimeout Cardinal 200 (msec) SGIO
XtNmultiObjectCount Cardinal 3 SGIO
XtNolDefaultFont String Lucida SGIO
XtNscale int 12 SGIO
XtNselectDoesPreview Boolean TRUE SGIO
XtNshiftName String “Shift” 10D
XtNshowAccelerators OlDefine OL_DISPLAY SGIO
XtNshowMnemonics OlDefine OL_UNDERLINE SGIO
XtNthreeD Boolean TRUE SGIO
Class Type Default Access
XtCBeep OlDefine OL_BEEP_ALWAYS SGI

Synopsis: The type of objects that can generate audible warnings to the user.

OLIT Reference Manual—August 1994

2=

OLIT Toolkit Resources

Values: OL_BEEP_NEVER/’never” — Never generate audible warnings.
OL_BEEP_ALWAYS/"always” — Any object can generate audible
warnings.

OL_BEEP_NOTICES/"notices” — Only Notices should generate

audible warnings.

XtNbeepVolume

Class Type Default Access

XtCBeepVolume int 0 SGI

Synopsis: The percentage of the keyboard’s normal beep to use for audible
warnings.

Values: -100 < XtNbeepVolume < 100

See XBell() in the XLib Reference Manual.

XtNcolorTupleList

Class Type Default Access
XtCColorTupleList OlColorTuple NULL GIO

Synopsis: The alternative background colors for 3D rendering.
Values: Any valid color value for the display.

The emphasis colors are defined as:

BGO - highlight color, for emphasis

BG1 - normal background

BG2 - invoked background, for indented and menu choices
BG3 - shadow color, used with highlight for 3D effect

These colors can be specified in a defaults file as tuples (BGO, BG1, BG2, BG3)
of either numeric or character color values, or a mixture of the two.

CcolorTupleList: (#FFFFFF ,#000000 ,#000000 ,#AAAAAA)\
(pink ,gray ,green ,blue)

The effect of the resource is to make the BG0, BG2, and BG3 colors the
highlight, indent, and shadow colors for those widgets whose background
color matches BG1.

This color scheme is slightly different from OPEN LOOK in that BG2 and BG3
are not necessarily derived from BG1 by the addition of gray. This scheme is
intended to provide an alternative to the OPEN LOOK arrangement.

Common Resources 9

=2

OLIT Toolkit Resources

Normally, the toolkit will compute BG0-BG3 according to the OPEN LOOK
GUI Functional Specification. Where the toolkit fails because it is faced with a
color-poor display, the application can use XtNcolorTupleList to override
the tuple list.

Note — Color tuples cannot be manipulated from a program by ordinary
XtGetValues() and XtSetValues() functions. Instead, the program must
use the XrmQGetResource() and XrmQPutResource() functions defined in
the XLib Reference Manual.

XtNcontrolName

Class Type Default Access

XtCControlName String “ctrl” 10D

Synopsis: The text printed for the Control Key in an accelerator label.

XtNdragRightDistance

Class Type Default Access

XtCDragRightDistance Dimension 100 (pixels) SGI

Synopsis: The number of pixels the pointer must be dragged to post the
MenuButton’s submenu.

This resource specifies how far, in pixels, the pointer must be dragged over a
MenuButton with the MENU button depressed to post the MenuButton’s
submenu. The direction of the drag is to the right. This resource only applies to
MenuButtons on press-drag-release menus. See the OPEN LOOK GUI Functional
Specification for a description of press-drag-release menus.

XtNgrabPointer
Class Type Default Access
XtCGrabPointer Boolean TRUE SGI
Synopsis: The enabling of pointer grabs.
Values: TRUE/"true” - Allow pointer grabs.
FALSE/"false” - Do not allow pointer grabs.

10

OLIT Reference Manual—August 1994

2=

OLIT Toolkit Resources

Setting XtNgrabPointer to FALSE prohibits OLIT from making any active
pointer grabs. This is sometimes useful when debugging OLIT applications; for
example, a developer debugging an application that pops up a menu might
want to set this resource to FALSE in order to continue using the mouse while
the menu is popped up.

(For example, use the
-xrm " [grabPointer: false"

argument when running the program.) However, this should be used only for
debugging, since the grab ensures all pointer events get delivered to the menu.

XtNhelpModel

Class Type Default Access
XtCHelpModel OlDefine OL_POINTER SGlI

Synopsis: The model of how help functions follow the pointer when the
HELP key is pressed.

Values: OL_POINTER/"pointer” - When the HELP key is pressed, the
item under the pointer is the subject of the help message.
OL_INPUTFOCUS/"inputfocus” - The subject of the help
message is the item with the keyboard input focus.

XtNinputFocusFeedback

Class Type Default Access
XtClnputFocusFeedback OlDefine OL_SUPERCARET 10
Synopsis: The keyboard input focus feedback style.

Values: OL_SUPERCARET/’supercaret” - Display a SuperCaret on the
object with the input focus.
OL_INPUT_FOCUS_COLOR/"inputFocusColor” - Highlight
the object with the input focus in the XtNinputFocusColor (see
page 27).

XtNlockName

Class Type Default Access
XtCLockName String “Lock” 10D

Synopsis: The text printed for the caps lock key in an accelerator label.

Common Resources 11

=2

OLIT Toolkit Resources

XtNmenuMarkRegion
Class Type Default Access
XtCMenuMarkRegion Dimension 10 (pixels) SGI

Synopsis: The width (in pixels) of the MenuButton’s menu mark region. If the
pointer is moved into this region with the MENU mouse button
depressed, the MenuButton’s submenu is posted.

XtNctrlAltMetaKey
Class Type Default Access
XtCCtrlAltMenuKey Boolean (see Synopsis) Gl

Synopsis: Controls whether or not the Control-Alt key combination generates
the meta-key event. On systems with keyboards that do not have a
meta key, this resource defaults to TRUE. On systems with
keyboards that do have a meta key, this resource defaults to

FALSE.
XtNmnemonicPrefix
Class Type Default Access
XtCMnemonicPrefix Modifiers Mod1Mask SGI

Synopsis: The modifier key that must accompany the mnemonic character
when activating an object from the keyboard, if that object is not on
a menu.

Values: Any valid X11 KeySym value (see the XLib Reference Manual) or any
valid Xt translation syntax for a Key event (see the Xt Intrinsics
Reference Manual).

12 OLIT Reference Manual—August 1994

2=

OLIT Toolkit Resources

XtNmod1Name/

XtNmod2Name/

XtNmod3Name/

XtNmod4Name/

XtNmod5Name
Class Type Default Access
XtCMod1Name String “Meta” 10D
XtCMod2Name String “ModeSwitch” 10D
XtCMod3Name String “NumLock” 10D
XtCMod4Name String “Alt” I0D
XtCMod5Name String “Mod5” 10D

Synopsis: The text displayed for the Modifierl to Modifier5 keys in an
accelerator label.

XtNmouseDampingFactor

Class Type Default Access
XtCMouseDampingFactor Cardinal 8 (pixels) SGI

Synopsis: The number of pixels the pointer can be moved before a drag
operation is initiated.

XtNmouseless

Class Type Default Access
XtCMouseless Boolean FALSE Gl
Synopsis: The enabling of mouseless operations.
Values: TRUE"true” — Mouseless mode is enabled.

FALSE/"false” — Mouseless mode is disabled.

When XtNmouseless is set to FALSE, only text input objects can acquire
keyboard input focus. The traversal mechanism moves the keyboard input
focus only through the text input objects.

When XtNmouseless is set to TRUE, some widgets, in addition to the text
input objects, also can acquire keyboard input focus. Keyboard input focus
feedback in non-text input objects can be specified through the
XtNinputFocusFeedback resource: by default, a SuperCaret. (See

Common Resources 13

=2

OLIT Toolkit Resources

XtNinputFocusFeedback on page 11 and XtNinputFocusColor on
page 27.) Refer to “Input Focus Functions” on page 150 for more information
on the behavior of input focus functions when XtNmouseless is set to FALSE.

XtNmultiClickTimeout

Class Type Default Access

XtCMultiClickTimeout Cardinal 200 (msec) SGI

Synopsis: The number of milliseconds that determines a multi-click.

This resource specifies the time interval in milliseconds within which two
successive button clicks are considered a multi-click, as long as the pointer
does not move beyond the XtNmouseDampingFactor value between the
clicks.

XtNmultiObjectCount

Class Type Default Access

XtCMultiObjectCount Cardinal 3 SGI

Synopsis: The repeat count for OL_MOVE direction keys.

This resource determines the number of times the OL_MULTIRIGHT,
OL_MULTILEFT, OL_MULTIUP, and OL_MULTIDOWN keys repeat the
OL_MOVERIGHT, OL_MOVELEFT, OL_MOVEUP, and OL_MOVEDOWN keys,
respectively. (These actions are normally on the Ctrl+arrow keys.)

XtNolDefaultFont

Class Type Default Access

XtCOlDefaultFont String Lucida SGI

Synopsis: The value for the XtNfont resource on most widgets that do not
set their own.

Values: Any Font specified in the XLFD format (see the XLib Reference
Manual). If the RESOLUTION_X, RESOLUTION_Y, and PIXEL_SIZE
fields in an XLFD font name are set to ‘00, the toolkit attempts to
load a font with RESOLUTION_X and RESOLUTION_Y derived from
the screen resolution of the widget’s screen. If the POINT_SIZE and
PIXEL_SIZE fields are set to ‘00, the toolkit attempts to load the
given font with a POINT_SIZE derived from the XtNscale of the
widget (POINT_SIZE = 10 x XtNscale).

14 OLIT Reference Manual—August 1994

2=

XtNscale

OLIT Toolkit Resources

In the C locale, the default value of XtNolDefaultFont is the 75x75
resolution Lucida sans serif font. In other locales, the default value is a font, or
a comma-separated list of fonts, suitable for that locale. The POINT_SIZE is
derived from the XtNscale resource of the widget in all locales.

Note - If a value is specified for the Xt Intrinsics XtNxtDefaultFont (or
XtNxtDefaultFontSet) resource, it may override the XtNolDefaultFont
resource. See “XtNfont” on page 26 for a detailed description of the exact
algorithm used.

Class Type Default Access
XtCScale int 12 SGI

Synopsis: The size of graphical elements (widgets), proportioned to the size
of text, measured in points (1/72 inch).

The toolkit supports sizes of 10, 12, 14, 16, 19, 20, and 24 points; other values
may not display correctly.

XtNselectDoesPreview

Class Type Default Access
XtCSelectDoesPreview Boolean TRUE SGI

Synopsis: The behavior of the SELECT mouse button when it is pressed over a
MenuButton or an Abbreviated MenuButton widget.

Values: TRUE/"true” - Pressing SELECT will cause the MenuButton to
preview the submenu’s default item and releasing the SELECT
button will activate the default item.

XtNshiftName

FALSE/"false” — Pressing SELECT is the same as pressing
MENU.
Class Type Default Access
XtCShiftName String “Shift” 10D

Synopsis: The text printed for the shift key in an accelerator label.

Common Resources 15

=2

OLIT Toolkit Resources
XtNshowAccelerators

Class Type Default Access
XtCShowAccelerators OlIDefine OL_DISPLAY SGI
Synopsis: The display of keyboard accelerators on controls.

Values: OL_DISPLAY/"display” — Keyboard accelerators are displayed.
OL_INACTIVE/"inactive” — Keyboard accelerators are not
displayed and controls ignore them.

OL_NONE/"none” — Keyboard accelerators are not displayed, but
still work.

XtNshowMnemonics

Class Type Default Access
XtCShowMnemonics OlDefine OL_UNDERLINE SGI
Synopsis: The display of keyboard mnemonics on controls.

Values: OL_UNDERLINE/"underline - Display mnemonics in the
controls by drawing a line under the character in the font color.
OL_DISPLAY/"display” — Same as OL_UNDERLINE.
OL_HIGHLIGHT/"highlight ” - Display the mnemonic

character with background and foreground colors reversed. When
highlighting a character that is displayed on a pixmap background,
the mnemonic character will be drawn in a solid color.

OL_INACTIVE/"inactive ” - Turn off the mnemonic display
and make the mnemonic key inactive.
OL_NONE/"none” - Do not display mnemonic characters.
XtNthreeD
Class Type Default Access
XtCThreeD Boolean TRUE SGI
Synopsis: The rendering method for visuals.
Values: TRUE/"true” — The visuals have a three-dimensional look.

FALSE/"false” - The visuals have a two-dimensional look.

16 OLIT Reference Manual—August 1994

2=

Core Resources

Core Resources

These are the resources of the Core class, of which all widget classes are

subclasses. See the diagram in “OLIT Class Hierarchy” on page 3.

Table 2-2 Core Resources Summary

XtNaccelerators

Name Type Default Access
XtNaccelerators AcceleratorTable NULL SGI
XtNancestorSensitive Boolean TRUE GO
XtNbackground Pixel XtDefaultBackground SGID
XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderColor Pixel XtDefaultForeground SGID
XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderWidth Dimension 1 SGI
XtNcolormap Colormap (parent’s) SGI
XtNdepth int (parent’s) Gl
XtNdestroyCallback XtCallbackList NULL SGIO
XtNheight Dimension 0 SGI
XtNmappedWhenManaged Boolean TRUE SGI
XtNscreen Screen [(parent’s) Gl
XtNsensitive Boolean TRUE GIO
XtNtranslations XtTranslations NULL SGI
XtNwidth Dimension 0 SGlI
XtNx Position 0 SGI
XtNy Position 0 SGI
Class Type Default Access
XtCAccelerators AcceleratorTable NULL SGI

Synopsis: The table of accelerator translations for the widget.

Common Resources

17

=2

Core Resources

XtNancestorSensitive
Class Type Default Access
XtCSensitive Boolean TRUE GO
Synopsis: TRUE if the immediate parent of the widget will receive input
events.
Note — XtlsSensitive() will return TRUE if both this and XtNsensitive

are TRUE. To preserve data integrity, neither this nor XtNsensitive should
be set directly; use XtSetSensitive()

XtNbackground
Class Type Default Access
XtCBackground Pixel XtDefaultBackground SGID

Synopsis: The background color for the widget.

Values: Any Pixel value valid for the current display, or any name from
the SOPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

Note — Widgets do not inherit the background color from their parent. Also,
any color set by the application when a widget is created, or in a later call to
XtSetValues() , will override the colors set by the user. Applications should
consider this and try to allow maximum flexibility for the user.

XtNbackgroundPixmap

Class Type Default Access

XtCPixmap Pixmap XtUnspecifiedPixmap SGI

Synopsis: The pixmap to be used for tiling the background.

The first tile is placed at the upper left-hand corner of the widget’s window.

Note — This resource takes precedence over the XtNbackground resource.

18 OLIT Reference Manual—August 1994

2=

Core Resources
XtNborderColor

Class Type Default Access
XtCBorderColor Pixel XtDefaultForeground SGID

Synopsis: The color of the border.

Values: Any Pixel value valid for the current display, or any name from
the SOPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”

on page 7.)
XtNborderPixmap
Class Type Default Access
XtCPixmap Pixmap XtUnspecifiedPixmap SGI

Synopsis: The pixmap to be used for tiling the border.

The first tile is placed at the upper left hand corner of the border.

Note — This resource takes precedence over the XtNborderColor resource.

XtNborderWidth
Class Type Default Access
XtCBorderWidth Dimension 1 SGI

Synopsis: The width in pixels of the border for a widget.
Values: 0 < XtNborderWidth < min(XtNwidth , XtNheight)/ 2

A width of zero means no border will show.

XtNcolormap
Class Type Default Access
XtCColormap Colormap (parent’s) SGI
Synopsis: The colormap used to interpret pixels drawn in the widget’s
window.
Values: Any colormap supported by the current display and compatible

with the widget’s visual resource.

Common Resources 19

=2

Core Resources
If not initialized, Shell and DrawArea widgets use their visual resource to find
(share or create) the widget’s colormap.

Gadgets do not have a colormap resource. To get the colormap associated with
any object use the function OlColormapOfObject() (see page 155).

XtNdepth
Class Type Default Access
XtCDepth int (parent's) Gl
Synopsis: The number of bits used for each pixel in the widget’s window.
Values: Any depth supported by the current display.
The value of this resource is used to set the depth of the widget’s window
when the widget is created.
Gadgets do not have a depth resource. To get the depth associated with any
object use the function OlDepthOfObject() (see page 155).
XtNdestroyCallback
Class Type Default Access
XtCCallback XtCallbackList NULL SGIO
Synopsis: The callback list invoked when a widget is destroyed.
XtNheight
Class Type Default Access
XtCHeight Dimension 0 SGI

Synopsis: The height of the widget’s window, in pixels, not including the
border.
Values: 0 < XtNheight

Programs may request a value at creation or through later calls to
XtSetValues() , but the request may not succeed because of layout
requirements of the parent widget.

When XtNheight = 0, the widget will select an appropriate default height;
composite widgets will size themselves to fit all of their children.

20 OLIT Reference Manual—August 1994

2=

Core Resources

XtNmappedWhenManaged
Class Type Default Access
XtCMappedWhenManaged Boolean TRUE SGI
Synopsis: The responsibility for mapping and managing the widget.
Values: TRUE"true” - The widget will be mapped (made visible) as
soon as it is both realized and managed.
FALSE/"false” — The program is responsible for mapping and

XtNscreen

unmapping the widget.

If the value is changed from TRUE to FALSE after the widget has been realized
and managed, the widget is unmapped. The Xt XtSetMappedWhenManaged()
function can be used to change the value of this resource.

Class Type Default Access
XtCScreen Screen [(parent’s) Gl

Synopsis: The screen on which the widget appears.
Values: A pointer to an Xlib Screen data structure.

This resource can only be specified for Shell widgets; all other widgets appear
on the same screen as their parents.

XtNsensitive

Class Type Default Access
XtCSensitive Boolean TRUE GIO

Synopsis: The reception of input events by a widget.
Values: TRUE"true” - The widget will receive input events.
FALSE/"false” — The widget will not receive input events.

If both XtNsensitive and XtNancestorSensitive are TRUE, the widget
will receive keyboard, mouse button, motion, window enter/leave, and focus
events.

Insensitive widgets do not receive these events. Insensitive widgets that appear
on the screen are stippled with a 50% gray pattern to show that they are
inactive. The 50% gray pattern makes every other pixel of the widget the
background color, in a checkerboard pattern.

Common Resources 21

=2

Core Resources

22

An application should use the XtSetSensitive() function to change this
resource, thereby maintaining the integrity of the XtNancestorSensitive
resource.

Note that for Caption and StaticText widgets, if XtNsensitive is set to FALSE,
the label will appear grayed out to indicate this.

XtNtranslations

XtNwidth

XtNx/
XtNy

Class Type Default Access

XtCTranslations XtTranslations NULL SGI

Synopsis: The mapping of events from the X server to widget and application
functions.

Every widget that descends from the Core class has a default value for this
resource. Setting this resource on a widget may completely override the default
mapping of events to widget functions for the widget. Refer to Chapter 7 of the
Xt Intrinsics Programming Manual for details on events and translations.

Class Type Default Access

XtCWidth Dimension 0 SGI

Synopsis: The width of the widget’s window in pixels, not including the
border.

Programs may request a value at creation or through later calls to
XtSetValues() , but the request may not succeed because of layout
requirements of the parent widget.

When XtNwidth = 0, the widget will select an appropriate default width;
composite widgets will size themselves to fit all of their children.

Class Type Default Access

XtCPosition Position 0 SGI

Synopsis: The position of the widget’s upper-left corner.

OLIT Reference Manual—August 1994

2=

Composite Resources

XtNchildren

Composite Resources

These resources contains the x- and y-coordinates, respectively, of the widget’s
upper-left corner (including the border) relative to its parent widget. Programs
may request a value at creation or through later calls to XtSetValues() , but
the request may not succeed because of layout requirements of the parent
widget.

For Shell widgets, XtNx and XtNy are measured relative to the root window.

These are the resources of the Composite class, of which all Constraint and
Manager classes are subclasses. See the diagram in “OLIT Class Hierarchy” on
page 3.

Table 2-3 Composite Resources Summary

Name Type Default Access
XtNchildren WidgetList NULL G
XtNinsertPosition XtOrderProc NULL SGI
XtNnumcChildren Cardinal 0 G
Class Type Default Access
XtCReadOnly WidgetList NULL G

Synopsis: The list of children of the widget.

Note — This resource is intended to be used inside an insert-position procedure.
It should never be set by the application.

XtNinsertPosition

Class Type Default Access
XtClnsertPosition XtOrderProc NULL SGI

Synopsis: The procedure that determines where a new child is to be inserted
into a list of existing children.

The default procedure inserts the new child at the end of the list.

Common Resources 23

=2

Primitive Resources

XtNnumChildren
Class Type Default Access
XtCReadOnly Cardinal 0 G

Primitive Resources

24

Synopsis: The number of entries in the list of children of the widget.

Note — This resource is intended to be used inside an insert-position procedure.
It should never be set by the application.

The following resources are available to the widgets that are a subclass of the

Primitive class. See the diagram in “OLIT Class Hierarchy” on page 3.

Table 2-4 Primitive Resources Summary

Name Type Default Access
XtNaccelerator String NULL SGI
XtNacceleratorText String NULL SGI
XtNconsumeEvent XtCallbackList NULL SGIO
XtNfont OlFont XtDefaultFont SGID
XtNfontColor Pixel XtDefaultForeground SGID
XtNforeground Pixel XtDefaultForeground SGID
XtNinputFocusColor Pixel Red SGID
XtNmnemonic unsigned char \0’ SGI
XtNreferenceName String NULL Gl
XtNreferenceWidget Widget NULL Gl
XtNscale int 12 SGI
XtNtextFormat OIStrRep OL_SB_STR_REP Gl
XtNtraversalOn Boolean TRUE SGl
XtNuserData XtPointer NULL SGI

OLIT Reference Manual—August 1994

2=

Primitive Resources

XtNaccelerator

Class Type Default Access
XtCAccelerator String NULL SGI

Synopsis: The single KeyPress event that activates the widget.
Values: A subset of the Xt translation manager syntax described in the XLib
Reference Manual can be used as the string value.

For example, given a button named “File,” the following is a valid accelerator
specification:
[File.accelerator: Ctrl Shift<Key>f

The button will be activated when the user presses the f key while holding
down both the Meta and Control keys.

Refer to “Activation Type Description” on page 61 for a more complete
description of acceptable syntax.

For compatibility reasons, the previous OLIT accelerator syntax is supported.
There is also a new general OPEN LOOK syntax that can be used to specify
accelerators for OLIT, xview (1), and olwm(1).

XtNacceleratorText

Class Type Default Access
XtCAcceleratorText String NULL SGI

Synopsis: The string describing the associated primitive widget’s accelerator.

For example, a Help button may set the resource to the string F1 to remind the
users that function key 1 is the HELP button. This text will be displayed to the
right of the Primitive’s label or image if the XtNshowAccelerators toolkit
resource is OL_DISPLAY. See page 16.

As a default value, the toolkit attempts to construct a user-readable
representation of the value of XtNaccelerator . However, some language
environments might not provide suitable fonts or character encoding for an
appropriate user-readable form; applications can overcome this problem by
providing a value for XtNacceleratorText . In many language
environments, this resource defaults to the XtNaccelerator string with
characters inserted between multiple key sequences.

Common Resources 25

=2

Primitive Resources

26

XtNconsumeEvent
Class Type Default Access
XtCCallback XtCallbackList NULL SGIO

XtNfont

Synopsis: The callback list invoked to consume an XEvent .

Whenever an event is processed by the standard OLIT translation table, the
XtNconsumeEvent list is called for the widget in question, allowing the
application to consume the XEvent .

The call_data for this resource uses data structures of type
OlVirtualEventRec . (See “OlLookuplnputEvent” on page 212 for more
detail of this data structure.)

To consume an event, the application should turn on (set to TRUE) the consumed
field in the call_data argument when a given event is processed.

OlAddCallback() must be used instead of XtAddCallback() when adding
callbacks to the XtNconsumeEvent callback list. (It is possible to use
XtAddCallback() for Primitive and Manager widgets, but not for
VendorShell widgets; therefore, it is recommended that applications be written
consistently with the OlAddCallback() function for all widget classes.)

Class Type Default Access

XtCFont OlFont XtDefaultFont SGID

Synopsis: The default font used by labels in a widget.
Values: Any valid XFontStruct pointer or XFontSet value.

The interpretation of this resource is dependent upon the value of the
XtNtextFormat resource of the widget.

If the XtNtextFormat resource has the value OL_SB_STR_REP, then the
XtNfont resources will be an OlFont reference to an XFontStruct [for
other values of the XtNtextFormat resource, the value of the XtNfont
resource will be an OlFont reference to an XFontSet .

The default value for XtNfont is determined using the following algorithm;

OLIT Reference Manual—August 1994

2=

Primitive Resources
® |f the widget’s text format is OL_SB_STR_REP, and if the

XtNxtDefaultFont resource is specified, an attempt is made to load
XtNxtDefaultFont . If the loading of XtNxtDefaultFont is unsuccessful,
or if XtNxtDefaultFont is not specified, the above step is repeated with

XtNolDefaultFont
® If the widget’s text format is not OL_SB_STR_REP, and if the

XtNxtDefaultFontSet resource is specified, an attempt is made to load
XtNxtDefaultFontSet . If the loading of XtNxtDefaultFontSet is
unsuccessful, or if XtNxtDefaultFontSet is not specified, the above step

is repeated with XtNolDefaultFont

XtNfontColor

Class Type Default Access
XtCFontColor Pixel XtDefaultForeground SGID

Synopsis: The font color used by objects that display text.

Values: Any Pixel value valid for the current display, or any name from
the SOPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”

on page 7.)
XtNforeground
Class Type Default Access
XtCForeground Pixel XtDefaultForeground SGID

Synopsis: The foreground color used by objects to draw non-textual content,
provided that the value of the XtNinputFocusFeedback toolkit
resource (see page 11) is OL_INPUT_FOCUS_COLOR.

Values: Any Pixel value valid for the current display, or any name from
the SOPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”

on page 7.)
XtNinputFocusColor
Class Type Default Access
XtClnputFocusColor Pixel Red SGID

Synopsis: The color used to show that the widget has input focus.

Common Resources 27

=2

Primitive Resources

Values: Any Pixel value valid for the current display, or any name from
the SOPENWINHOME/lib/rgb.txt file. (Pixel values are used in C
programs, rgb.txt values in X resource files. See “Resource Files”
on page 7.)

Normally, the color used to show input focus is derived from the value of the
XtNinputFocusColor resource and is dynamically maintained. This dynamic
behavior is abandoned if the application explicitly sets this resource either at
initialization or through a call to XtSetValues()

For various widgets, the default is dependent on the value of other resources.
For the FileChooser, FontChooser, TextEdit, TextField, and TextLine widgets, if
the application resource XtNmouseless = TRUE and the application resource
XtNinputFocusFeedback = OL_INPUT_FOCUS_COLOR (see page 11),
XtNinputFocusColor defaults to “Red”; otherwise, it defaults to the value of
XtNfontColor

XtNmnemonic

Class Type Default Access
XtCMnemonic unsigned char \0’ SGI

Synopsis: The mnemonic for keyboard operation.

Values: Any single-byte displayable character that is in the associated
widget’s label, or a character capable of being displayed in the
widget’s label.

Typing this character modified with the XtNmnemonicPrefix is equivalent to
activating the widget with the OL_SELECT activation type.

XtNreferenceName
Class Type Default Access
XtCReferenceName String NULL Gl

28

Synopsis: The position for inserting this widget in the traversal list of its
closest shell ancestor.

Values: The name of a widget already created as a descendant of its closest
shell ancestor.

If the named widget exists in the managing ancestor’s traversal list, this widget
will be inserted in front of it. Otherwise, this widget will be inserted at the end
of the list.

OLIT Reference Manual—August 1994

2=

Primitive Resources

If both the XtNreferenceName and XtNreferenceWidget resources are set,
they must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNreferenceWidget
Class Type Default Access
XtCReferenceWidget Widget NULL Gl

Synopsis: The position for inserting this widget in the traversal list of its
closest shell ancestor.

Values: The widget ID of a widget already created as a descendant of its
closest shell ancestor.

If the referenced widget is non-null and exists in the managing ancestor’s
traversal list, this widget will be inserted in front of it. Otherwise, this widget
will be inserted at the end of the list.

If both the XtNreferenceName and XtNreferenceWidget resources are set,
they must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNscale
Class Type Default Access
XtCScale int 12 SGI
Synopsis: The size of graphical elements (widgets), proportioned to the size

of text, measured in points (1/72 inch).

The toolkit supports sizes of 10, 12, 14, 16, 19, 20, and 24 points; other values
may not display correctly.

XtNtextFormat
Class Type Default Access
XtCTextFormat OlStrRep OL_SB_STR_REP Gl

Synopsis: The expected data format of all the textual resources of a widget.

Values: OL_SB _STR_REP - Single-byte character representation.
OL_WC_STR_REP - Wide character representation.
OL_MB_STR_REP - Multibyte character representation.

Common Resources 29

=2

Primitive Resources

XtNtextFormat can only be set when the widget is created. This can be
achieved by passing it as an argument to the Xt function used to create the
widget, for example XtVaCreateManagedWidget() . Alternatively, the toolkit
has a built-in default value for this resource, which applications can change
using the function OlSetDefaultTextFormat() . Unless changed by the
application, the default is OL_SB_STR_REP. XtNtextFormat cannot be set with
XtSetValues()

The widget subsequently manipulates and renders all data specified by the
application for its textual resources, assuming the specified data format. For
instance, if XtNtextFormat is set to OL_MB_STR_REP, the widget might render
a label using the Xlib function XmbDrawString() . If XtNtextFormat were
OL_WC_STR_REP, the widget would use XwcDrawString()

XtNtraversalOn

Class Type Default Access
XtCTraversalOn Boolean TRUE SGI
Synopsis: The accessibility of this widget through keyboard traversal.
Values: TRUE"true” - The widget is accessible.

FALSE/"false” — The widget is not accessible.

Note — This resource affects only an individual widget, and in the case of
Manager widgets, their children. Setting CraversalOn: false in a resource
control file is not quite equivalent to turning off mouseless operation.

XtNuserData
Class Type Default Access
XtCUserData XtPointer NULL SGI

30

Synopsis: Storage for application-specific data.

The toolkit does not modify the value in the storage area pointed to by
XtNuserData . The application is responsible for allocating and freeing this
area.

OLIT Reference Manual—August 1994

2=

Manager Resources

Manager Resources

The following resources are available to the widgets that are a subclass of the
Manager class. See the diagram in “OLIT Class Hierarchy” on page 3.

Table 2-5 Manager Resources Summary

Name Type Default Access
XtNconsumeEvent XtCallbackList NULL SGIO
XtNinputFocusColor Pixel Red SGID
XtNreferenceName String NULL Gl
XtNreferenceWidget Widget NULL Gl
XtNtraversalOn Boolean TRUE SGI
XtNuserData XtPointer NULL SGI

All of these Manager resources are equivalent to those defined in the Primitive
class; see:

“XtNconsumeEvent” on page 26,
“XtNinputFocusColor” on page 27,
“XtNreferenceName” on page 28,
“XtNreferenceWidget” on page 29,
“XtNtraversalOn” on page 30,
“XtNuserData” on page 30.

Shell Resources

These are resources that are common to all widget classes that are subclasses of
Shell. See the diagram in “OLIT Class Hierarchy” on page 3.

Base Windows and Popup Windows

To create OPEN LOOK base windows use OlToolkitInitialize() or
XtCreateApplicationShell() . (FileChooserShell, FontChooserShell,
PopupWindowsShell, MenuShell, and NoticeShell widgets are created using
XtCreateApplicationShell() .) An application can define other popup
windows that can be created using XtCreatePopupShell() . The following
resources are typical of base windows and generic popup windows, but not all
are available for the popup windows defined in this toolkit. See the list of

Common Resources 31

=2

Shell Resources

resources for the PopupWindow, Menu, and Notice widgets to see which are
available. The “Access” column in this table identifies the access for base
windows only.

Table 2-6 Shell Resources Summary

Name Type Default Access
XtNallowShellResize Boolean TRUE SGI
XtNcreatePopupChildProc XtCreatePopupChildProc NULL SGI
XtNgeometry String NULL Gl
XtNoverrideRedirect Boolean FALSE SGI
XtNpopdownCallback XtCallbackList NULL SGIO
XtNpopupCallback XtCallbackList NULL SGIO
XtNsaveUnder Boolean FALSE SGI
XtNvisual Visual O (parent’s) GIO
XtNwidthlInc int XtUnspecifiedShellint SGI

XtNallowShellResize

Class Type Default Access

XtCAllowShellResize Boolean TRUE SGI

Synopsis: The resize results of a child’s geometry request.

Values: TRUE — The widget will attempt to resize itself as requested by the
child. The attempt may be refused by the window manager, which
will cause the shell widget to refuse the geometry management
request of its child. Otherwise, it accepts the request.

FALSE — A Shell widget will immediately refuse the geometry
management request.

XtNcreatePopupChildProc

32

Class Type Default Access

XtCCreatePopupChildProc ~ XtCreatePopupChildProc TRUE SGlI

Synopsis: The single function (not a callback list) called during popup.

The function indicated by this resource is called after the XtNpopupCallback
callbacks are issued (see page 33), but before the shell widget is realized and
mapped. The function is passed a single argument, the 1D of the shell widget.

OLIT Reference Manual—August 1994

2=

Shell Resources

XtNgeometry
Class Type Default Access
XtCGeometry String NULL Gl

Synopsis: The size and position of the shell widget when it pops up.
Values: Any syntactically correct argument to the XParseGeometry()
function (see the XLib Reference Manual).

XtNoverrideRedirect

Class Type Default Access
XtCOverrideRedirect Boolean FALSE SGI
Synopsis: The manager of a shell widget’s window.
Values: TRUE"true” - The window manager does not manage the shell
widget’s window.
FALSE/"false” — The window manager manages the shell

widget’s window.

Do not set this resource for any of the OLIT shell widgets: FileChooserShell,
FontChooserShell, MenuShell, NoticeShell, or PopupWindowShell.

XtNpopdownCallback

Class Type Default Access
XtCCallback XtCallbackList NULL SGIO
Synopsis: The callback list invoked just after the shell widget’s window pops
down.
XtNpopupCallback
Class Type Default Access
XtCCallback XtCallbackList NULL SGIO

Synopsis: The callback list invoked just before the shell widget’s window
pops up.

Common Resources 33

=2

Shell Resources

34

XtNsaveUnder
Class Type Default Access
XtCSaveUnder Boolean FALSE SGI

XtNvisual

Synopsis: Whether the shell widget should instruct the server to attempt to
save the contents of windows obscured by the shell when it is
mapped, and to restore the contents when the shell widget is

unmapped.

Values: TRUE"true” - The server will attempt to save and restore the
contents.
FALSE/"false” — The server will not attempt to save and restore

the contents.

Class Type Default Access

XtCVisual Visual O (parent’s) GIO

Synopsis: The visual used to create the widget’s window.
Values: A pointer to any visual structure supported by the current display
and compatible with the widget’s depth and colormap.

Only Shell and DrawArea widgets have a visual resource. All other widgets
are created using their parent’s visual.

If not initialized, Shell and DrawArea widgets use their depth resource and
parent’s visual class to find the widget’s visual.

The preferred method of setting a Shell or DrawArea widget’s visual resource
is to use the Intrinsics typed args interface. A string containing the desired
Visual Class Name should be passed to the String to Visual resource converter.

To get the visual associated with any object use the function
OlVisualOfObiject() (see page 156).

OLIT Reference Manual—August 1994

2=

WMShell Resources

These are resources defined in WMShellWidgetClass

“OLIT Class Hierarchy” on page 3.

Table 2-7 WMShell Resources Summary

WMShell Resources

. See the diagram in

Name Type Default Access
XtNbaseHeight int XtUnspecifiedShellint SGI
XtNbaseWidth int XtUnspecifiedShellint SGI
XtNheightInc int XtUnspecifiedShellint SGI
XtNiconMask Pixmap NULL SGI
XtNiconPixmap Pixmap NULL SGI
XtNiconWindow Window NULL SGl
XtNiconX int XtUnspecifiedShellInt SGI
XtNiconY int XtUnspecifiedShellint SGI
XtNinitialState InitialState NormalState SGlI
XtNinput Bool FALSE G
XtNmaxAspectX int XtUnspecifiedShellIint SGI
XtNmaxAspectY int XtUnspecifiedShellint SGI
XtNmaxHeight int OL_IGNORE SGI
XtNmaxWidth int OL_IGNORE SGI
XtNminAspectX int XtUnspecifiedShellint SGI
XtNminAspectY int XtUnspecifiedShellint SGI
XtNminHeight int OL_IGNORE SGI
XtNminWidth int OL_IGNORE SGlI
XtNtitle String NULL SGI
XtNtitleEncoding Atom XA_STRING SGI
XtNtransient Boolean TRUE SGI
XtNwaitForwm Boolean TRUE SGI
XtNwidthlInc int XtUnspecifiedShellint SGI
XtNwindowGroup Window XtUnspecifiedWindow SGI
XtNwinGravity int XtUnspecifiedShellint SGI
XtNwmTimeout int 5000 (msec) SGI
Common Resources 35

=2

WMShell Resources

XtNbaseHeight/

XtNbaseWidth
Class Type Default Access
XtCBaseHeight Int XtUnspecifiedShelllnt SGI
XtCBaseWidth Int XtUnspecifiedShelllnt SGI

Synopsis: The base values to which the XtNheightinc and XtNwidthinc
size increments are added.

XtNheightinc

Class Type Default Access

XtCHeightlnc int XtUnspecifiedShellInt SGI

Synopsis: The resizing increment for Shell widgets.
Values: 0 < XtNheightinc

This resource defines an arithmetic progression of sizes, from XtNminHeight
to XtNmaxHeight into which the shell widget prefers to be resized by the
window manager.

XtNiconMask

XtNiconPixmap

36

Class Type Default Access

XtClconMask Pixmap NULL SGlI

Synopsis: The mask applied to XtNiconPixmap to give the base window’s
icon.

Values: A single plane pixmap.

Class Type Default Access

XtClconPixmap Pixmap NULL SGI

Synopsis: The image to be used as the base window’s icon.
Values: A single plane pixmap.

OLIT Reference Manual—August 1994

2=

WMShell Resources

XtNiconWindow

XtNiconX/
XtNiconY

Class Type Default Access

XtClconWindow Window NULL SGI

Synopsis: The ID of a window to be used as the base window’s icon.
Values: An ID of an existing window.

The XtNiconWindow takes precedence over the XtNiconPixmap resource.

Class Type Default Access
XtClconX int XtUnspecifiedShelllnt SGI
XtClconY int XtUnspecifiedShellint SGI
Synopsis: The x- and y-coordinates of where the base window’s icon should
appear.
Values: -1 < XtNiconX
-1 < XtNiconY

If the value of either of these resource is -1, the window manager
automatically picks a value, according to its icon placement requirements.

XtNinitialState

Class Type Default Access
XtClnitialState InitialState NormalState SGlI

Synopsis: The appearance of the base window (and associated popup
windows) when the application starts up.

Values: NormalState — The application starts up with its base window
open.
IconicState — The application starts up with its base window

closed into an icon.

Other values are defined by the X Window System for this resource, but the
OPEN LOOK window manager recognizes only the iconic and normal states.

Common Resources 37

=2

WMShell Resources

XtNinput
Class Type Default Access
XtClnput Boolean FALSE G
Synopsis: The application’s input focus behavior.
This resource should not be set by an application.

XtNmaxAspectX/

XtNmaxAspectY/

XtNminAspectX/

XtNminAspectY
Class Type Default Access
XtCMaxAspectX int XtUnspecifiedShelllnt SGI
XtCMaxAspectY int XtUnspecifiedShelllnt SGI
XtCMinAspectX int XtUnspecifiedShelllnt SGI
XtCMinAspectY int XtUnspecifiedShelllnt SGI
Synopsis: The range of aspect ratios allowed for the size of the shell widget’s

window.

Values: -1 = XtNmaxAspectX or 1< XtNmaxAspectX

-1 = XtNmaxAspectY or 1 < XtNmaxAspectY
-1 = XtNminAspectX or 1< XtNminAspectX
-1 = XtNminAspectY or 1< XtNminAspectY

XtNminAspectX< XtNmaxAspectX
XtNminAspectY XtNmaxAspectY

Assuming the width and height of the window are given by width and height
the following relation shows how the window size is constrained:

XtNminAspectX< width < XtNmaxAspectX
XtNminAspectY height™ XtNmaxAspectY

If the user tries to resize the window to a narrower or wider aspect ratio than
allowed by these resources, the window manager adjusts the window to the
closest allowed aspect ratio. If possible, it will do this by increasing the width
or height to compensate.

38 OLIT Reference Manual—August 1994

2=

WMShell Resources

The XtNmaxHeight and XtNmaxWidth resources may force the window
manager to reduce the width or height instead. If the values of these resources
are -1, the window manager does not constrain the size of the window to any
aspect ratio.

Note — An application should either set all values to -1 (the default) or should
set all to a positive value. An application should never set a value of zero to
any of these resources.

XtNmaxHeight/

XtNmaxWidth/

XtNminHeight/

XtNminWidth
Class Type Default Access
XtCMaxHeight int OL_IGNORE SGI
XtCMaxWidth int OL_IGNORE SGI
XtCMinHeight int OL_IGNORE SGI
XtCMinWidth int OL_IGNORE SGI

XtNtitle

Synopsis: The range allowed for the size of the shell widget’s window.
Values: XtNminHeight < XtNmaxHeight

XtNminWidth < XtNmaxWidth

(or OL_IGNORE for any of these resources)

If the user tries to resize the window smaller or larger than these values allow,
the window manager adjusts the width and/or height to compensate.

The default value of OL_IGNORE keeps the window manager from constraining
the window’s size.

Class Type Default Access
XtCTitle String NULL SGI

Synopsis: The title to include in the header of the base or popup window.

Widgets of classes other than Shell may have a resource with this name.

Common Resources 39

=2

WMShell Resources

XtNtitleEncoding

Class Type Default Access

XtCTitleEncoding Atom XA_STRING SGI

Synopsis: The character set used in the XtNtitle resource.
Values: ICCCM defines only one valid value for this resource: XA_STRING.
Individual window managers may specify other values.

XtNtransient

Class Type Default Access

XtCTransient Boolean TRUE SGI

Synopsis: The unmapping of a shell widget’s window when the associated
base window is iconified.

Values: TRUE"true” - The window is unmapped.
FALSE/"false” — The window is mapped.

A transient window is one that is unmapped when its associated base window
is iconified. This resource controls this behavior.

No application should set this resource for any of the OLIT shell widgets. See
XtNwindowGroup on page 41.

XtNwaitForWWm
Class Type Default Access
XtCWaitForwm Boolean TRUE SGI

Synopsis: Whether the shell’s geometry manager waits for the window
manager to respond to a request. For details on this resource,
please refer to the Xt Intrinsics Programming Manual.

XtNwidthinc
Class Type Default Access
XtCWidthinc int XtUnspecifiedShelllnt SGI

40

Synopsis: The resizing increment for Shell widgets.
Values: 0 < XtNwidthinc

OLIT Reference Manual—August 1994

2=

WMShell Resources

This resource defines the increment in an arithmetic progression of sizes, from
XtNminWidth to XtNmaxWidth , into which the shell widget prefers to be
resized by the window manager.

XtNwindowGroup

Class Type Default Access
XtCWindowGroup Window XtUnspecifiedWindow SGI

Synopsis: The base window associated with this shell widget’s window.
Values: An ID of an existing window

When the user closes the base window, all its associated windows are
unmapped (popup windows or other shell widget windows with

XtNtransient set to TRUE) or closed (base windows with XtNtransient set
to FALSE).

XtNwinGravity

Class Type Default Access
XtCWinGravity int (see description) SGI

Synopsis: The corner of the application window critical for placement.
Values: WestGravity/"west”

CenterGravity/"center”

NorthGravity/'north”

NorthEastGravity/’northEast”

NorthWestGravity/’northWest”

SouthGravity/"south”

SouthEastGravity/"southEast”

SouthWestGravity/’southWest”

If XtNgeometry is NULL, the default value is NorthWestGravity . If
XtNgeometry is not NULL, the default value is the gravity implied by the
geometry string. Consult the Xt Intrinsics Reference Manual for further details
on XtNwinGravity

Common Resources 41

=2

VendorShell Resources

XtNwmTimeout

VendorShell Resources

42

Class

Type

Default

Access

XtCWmTimeout

int

5000 (msec)

SGI

Synopsis: The time interval the shell’s geometry manager waits for the
window manager to respond to a request. See “XtNwaitForwm”

on page 40.

Table 2-6 on page 32 listed generic resources available to most shells. Table 2-8,
however, lists resources necessary to support the OPEN LOOK look and feel.

These resources are implemented in the VendorShell
therefore, apply only to shells that are subclasses of the VendorShell
class (i.e., TransientShell, MenuShell, PopupWindowsShell, NoticeShell,

widget class; and

widget

FontChooserShell, TopLevelShell, and ApplicationShell). Since some of these

resources do not apply to all shells (e.g., XtNresizeCorners

on menus), see

the individual widget descriptions for more accurate descriptions of the
applicable resources and their default values.

Table 2-8 VendorShell Resources Summary

Name Type Default Access
XtNbusy Boolean FALSE SGI
XtNconsumeEvent XtCallbackList NULL SGIO
XtNdefaultimName String NULL SGI
XtNfooterPresent Boolean FALSE SGI
XtNfocusWidget Widget (see description) SGI
XtNimFontSet OlFont XtDefaultFontSet SGI
XtNimStatusStyle OllmStatusStyle OL_NO_STATUS Gl
XtNleftFooterString Olstr NULL SGI
XtNleftFooterVisible Boolean TRUE SGI
XtNmenuButton Boolean (see description) Gl
XtNmenuType OlDefine (see description) SGI
XtNpushpin OlDefine (see description) SGI
XtNresizeCorners Boolean (see description) SGI
XtNrightFooterString OlSstr NULL SGI
XtNrightFooterVisible Boolean TRUE SGlI

OLIT Reference Manual—August 1994

2=

VendorShell Resources

Table 2-8 VendorShell Resources Summary (Continued)

Name Type Default Access
XtNshellTitle Olstr NULL SGI
XtNuserData XtPointer NULL SGlI
XtNwindowHeader Boolean (see description) Gl
XtNwmProtocol XtCallbackList NULL SGIO
XtNwmProtocollnterested int OL_WM_DELETE_WINDOW |

| oL_wM_TAKE_Focus

XtNbusy

Class Type Default Access

XtCBusy Boolean FALSE SGI

Synopsis: The marking of the shell’s window as busy.

Values: TRUE- Marks as busy the application window associated with this
shell. When a window becomes busy, the window manager grays
the window header (if there is one).

FALSE - Causes the window to return to its normal appearance
and event processing. Neither the window manager nor the toolkit
grabs mouse or keyboard events when an application window
becomes busy.
XtNconsumeEvent
Class Type Default Access
XtCCallback XtCallbackList NULL SGIO

Synopsis: The callback list invoked to consume an XEvent . This resource is
equivalent to the one defined for the Primitive class; see
“XtNconsumeEvent” on page 26.

XtNdefaultimName

Class Type Default Access
XtCDefaultimName String NULL SGI

Synopsis: The name of the default input method.
Values: Name of an input method suitable for the locale of the application.
See “Input Method” on page 80.

Common Resources 43

=2

VendorShell Resources

XtNfocusWidget
Class Type Default Access
XtCFocusWidget Widget (see description) SGI

Synopsis: The widget that gets input focus when the user selects a window.

If not initialized by the programmer, this resource defaults to the first widget
created among its descendants capable of accepting input focus.

As focus changes within the shell, this resource is updated to reflect the widget
with focus. Focus will be set to this widget when the VendorShell loses and
then regains focus.

A resource converter will translate widget names specified in a resource file to
a widget ID for this resource.

XtNfooterPresent
Class Type Default Access
XtCFooterPresent Boolean FALSE SGI
Synopsis: The presentation of a shell footer area.
Values: TRUE/"true” — The footer area is created and/or mapped.
FALSE/"false” — If the footer area already exists, it is

unmapped; otherwise, nothing is created.

XtNimFontSet

Class Type Default Access

XtCImFontSet OlFont XtDefaultFontSet SGI

Synopsis: The font set used by the input method to display status feedback.
Values: Any fontset suitable for the locale of the application.

XtNimStatusStyle

44

Class Type Default Access

XtCImStatusStyle OllmStatusStyle OL_NO_STATUS Gl

Synopsis: The location of the input method status feedback. See “Setting the
Input Method Pre-Edit and Status Styles (Asian Locales Only)” on
page 82.

OLIT Reference Manual—August 1994

2=

Values:

XtNleftFooterString

VendorShell Resources

OL_IM_DISPLAYS_IN_CLIENT/"imDisplaysInClient” - The
input method displays the status in the footer of the shell’s
window.

OL_IM_DISPLAYS_IN_ROOT/"imDisplaysInRoot” - The
input method displays the status in a separate window that is a
child of the root window.

OL_NO_STATUS/’"none” - The input method provides no status
feedback.

Class Type Default Access
XtCLeftFooterString Olstr NULL SGI
Synopsis: The left footer string.

Values: Any OIStr value valid in the current locale.

Both XtNfooterPresent and XtNleftFooterVisible must be TRUE for

this string to be visible.

XtNIleftFooterVisible

Class Type Default Access

XtCLeftFooterVisible Boolean TRUE SGI

Synopsis: The visibility of the left footer area.

Values: TRUE/"true” — The left footer area is made visible.
FALSE/"false” — The left footer area is made invisible.

If the XtNfooterPresent resource is FALSE, the XtNleftFooterVisible
resource has no effect.

XtNmenuButton

Class Type Default Access

XtCMenuButton Boolean (see description) Gl

Synopsis: The placement of the menu button decoration in the upper left
corner of the shell window’s header.

Values: TRUE"true” - The menu button decoration should be drawn.
This is the default for TopLevel shells.
FALSE/"false” — The menu button decoration should not be

drawn. This is the default for Transient shells.

Common Resources 45

=2

VendorShell Resources

46

XtNmenuType
Class Type Default Access
XtCMenuType OlDefine (see description) SGI

XtNpushpin

Synopsis: The type of window menu that the window manager creates.

Values: OL_MENU_FULL/"full” — This is the default value for a base
shell. This full menu contains the following entries: Close, Full
Size, Move and Resize, Properties, Back, Refresh, and Quit.
OL_MENU_LIMITED/"limited” — Setting this value results in a
window menu with the following buttons: Dismiss (a MenuButton)
Move and Resize, Back, Refresh, Owner?. OL_MENU_LIMITED is
the default for PopupWindow and Help shells.
OL_MENU_CANCEL/"cancel” — This value provides the same
menu as the OL_MENU_LIMITED with the exception that the
Dismiss button is replaced with a Cancel button.
OL_NONE/"none” — The window manager does not create a
menu or a menu mark. The NoticeShell widget sets this value.

Class Type Default Access
XtCPushPin OlDefine (see description) SGI
Synopsis: The inclusion of the pushpin in the window’s decorations.
Values: OL_NONE/"none” — A pushpin is not included in the window’s
decorations. This is the default for base window shells and
NoticeShells.
OL_OUT/"out ” — A pushpin is included in the window’s

decorations, with its state set to be unpinned. This is the default for
PopupWindowsShells.

OL_IN/"in ” — A pushpin is included in the window’s
decorations, with its state set to be pinned. A MenuShell widget
should not set XtNpushpin to OL_IN at initialization time.

Applications can query the state of the pushpin by getting the value of this
resource, since it is updated when the pushpin’s state changes.

If the shell does not have an OPEN LOOK header (XtNwindowHeader is set to
FALSE), then XtNpushpin is always OL_NONE, and attempts to change the
value are ignhored.

OLIT Reference Manual—August 1994

2=

VendorShell Resources

Once created, a widget supports transitions of out-to-in and in-to-out, but
other transitions are implementation dependent.

XtNresizeCorners

Class Type Default Access
XtCResizeCorners Boolean (see description) SGI

Synopsis: The inclusion of resize corners as part of the window decorations.

Values: TRUE- Default for the base shell; resize corners are present.
FALSE - Default for other Shell widgets; resize corners are not
present.

XtNrightFooterString

Class Type Default Access

XtCRightFooterString Olstr NULL SGI

Synopsis: The right footer string.

Values: Any OIStr value valid in the current locale.

Both XtNfooterPresent and XtNrightFooterVisible must be TRUE for

this string to be visible.

XtNrightFooterVisible

Class Type Default Access

XtCRightFooterVisible Boolean TRUE SGI

Synopsis: The visibility of the right footer area.

Values: TRUE/"true” — The right footer area is visible.
FALSE/"false” — The right footer area is not visible.

If the XtNfooterPresent resource is FALSE, the XtNrightFooterVisible
resource has no effect.

XtNshellTitle

Class Type Default Access
XtCTitle OlSstr NULL SGI

Synopsis: The title for a shell widget.
Values: Any OIStr value valid in the current locale.

Common Resources 47

=2

VendorShell Resources

The value of this resource is internally kept consistent with the value of the
XtNtitle resource. Changing either of the two resources affects the other. The

essential difference between XtNtitle and XtNshellTitle lies in their
types.

XtNuserData
Class Type Default Access
XtCUserData XtPointer NULL SGI

Synopsis: Storage for application-specific data. This resource is equivalent to
the one defined for the Primitive class; see “XtNuserData” on

XtNwindowHeader

page 30.
Class Type Default Access
XtCWindowHeader Boolean (see description) Gl
Synopsis: The presence of a window header provided by the window
manager.
Values: TRUEtrue” - Default for base windows, PopupWindows, and

Help shells, indicating the window has a header.
FALSE/”false” - Default for Notice shell, indicating the window
has no header.

The header is the area of the window that contains the pushpin, title, and
window mark.

Note — This resource can only be set at initialization.

XtNwmProtocol
Class Type Default Access
XtCWMProtocol XtCallbackList NULL SGIO

48

Synopsis: The callback list invoked when a vendor shell widget receives
WM_PROTOCOL messages.

This resource controls the action that is taken whenever a shell widget receives
WM_PROTOCOL messages matching the types of protocol messages specified in
the XtNwmProtocolinterested resource. If no callback list is specified, the

OLIT Reference Manual—August 1994

2=

VendorShell Resources

shell performs its default action(s). If a callback list is specified, it is invoked
and no default action(s) is taken. The application can, however, simulate the
default action(s) at its convenience by calling OIWMProtocolAction() with
the action parameter set to OL_DEFAULTACTION. (See “Protocol Function” on
page 160 for more information on this routine.)

When the application’s callback list is invoked, the call_data field is a pointer to
the following structure:

typedef struct {
int msgtype ; [* type of WM msg */
XEvent [xevent ;

} OIWMProtocolVerify;

The field msgtype is an integer constant indicating the type of protocol message
that invoked the callback and has a range of values of:

OL_WM_TAKE_FOCUS
OL_WM_SAVE_YOURSELF
OL_WM_DELETE_WINDOW

OlAddCallback() must be used instead of XtAddCallback() when adding
callbacks to the XtNwmProtocol callback list.

XtNwmProtocolInterested

Class Type Default Access

XtCWMProtocollnterested int OL_WM_DELETE_WINDOW SGI
| OL_WM_TAKE_FOCUS

Synopsis: The types of protocol messages that interest the application.

Values: The bitwise inclusive OR of the following values:
OL_WM_DELETE_WINDOW Requests any protocol messages
associated with WM_DELETE_WINDOW. If this value is not set by
the application, undefined results occur.
OL_WM_TAKE_FOCUS -Requests any protocol messages
associated with WM_TAKE_FOCUS. If this value is not set by the
application, undefined results occur.
OL_WM_SAVE_YOURSELF Requests any protocol messages
associated with WM_SAVE_YOURSELF

Common Resources 49

=2

TransientShell Resources
TransientShell Resources

This resource is defined in TransientShellWidgetClass . See the diagram
in “OLIT Class Hierarchy” on page 3.

Table 2-9 TransientShell Resources Summary

Name Type Default Access

XtNtransientFor Widget NULL SGI

XtNtransientFor

Class Type Default Access

XtCTransientFor Widget NULL SGI

Synopsis: The widget the shell is a transient for if the shell has the
XtNtransient resource TRUE and is a transient shell.
Values: The widget the shell is transient for.

TopLevelShell Resources

These are resources defined in TopLevelShellWidgetClass . See the
diagram in “OLIT Class Hierarchy” on page 3.

Table 2-10 TopLevelShell Resources Summary

Name Type Default Access

XtNiconic Boolean FALSE SGI

XtNiconName String NULL SGI

XtNiconNameEncoding Atom XA_STRING SGI
XtNiconic

Class Type Default Access

XtClconic Boolean FALSE SGI

Synopsis: The iconic state of the base window.

Values: TRUE"true” - Iconifies the base window.

FALSE/"false” — De-iconifies the base window.

This resource also provides an alternative way to set the XtNinitialState
resource to IconicState

50 OLIT Reference Manual—August 1994

2=

ApplicationShell Resources

XtNiconName

Class Type Default Access

XtClconName String NULL SGI

The name that the window manager displays in the shell widget’s
icon.

Synopsis:

If the XtNtitle resource is not defined or is NULL, this resource is used
instead. If this resource is NULL, the name of the application is used in its
place.

XtNiconNameEncoding

Class Type Default Access

XtClconNameEncoding Atom XA_STRING SGI

The character set used in the XtNiconName resource.
ICCCM defines only one valid value for this resource: XA_STRING.
Individual window managers may specify other values.

Synopsis:
Values:

ApplicationShell Resources

XtNargc/
XtNargv

These are resources defined in ApplicationShellwidgetClass . See the
diagram in “OLIT Class Hierarchy” on page 3.

Table 2-11 ApplicationShell Resources Summary

Name Type Default Access
XtNargc int 0 |
XtNargv String O NULL |
Class Type Default Access
XtCArgc int 0 |
XtCArgv String O NULL |
Synopsis: The setting for the WM_COMMAND property.

Common Resources 51

=2

Flat Resources

Flat Resources

52

The application shell uses XtNargc and XtNargv to set the WM_COMMAND
property. The WM_COMMAND property specifies the command line used to
invoke the program. If an application uses XtApplnitialize() , the
intrinsics set XtNargc and XtNargv to the values of argc and argv passed to
XtApplnitialize()

Flat widgets are described starting on page 321. All of the flat containers have
the same layout characteristics. The superclass of all flat widgets is a generic
row/column manager metaclass called Flat. Although each column has its own
width and each row has its own height, all columns can have the same width
and all rows can have the same height, if desired. The efficiency in both
processing steps and data requirements increases as the grid becomes more
regular in shape. For example, a grid specifying that all rows must have the
same height and all columns must have the same width is the most efficient
configuration. The Flat row/column manager widget lays out the items within
the container, driven by the layout attributes of the container and starting in
the NorthWest corner. Row-major order implies every column in the current
row is filled before filling any columns in the next row. Column-major order
implies every row in the current column is filled before filling any rows in the
next column.

Items of flat containers are placed within the grid. If the item’s width (or
height) is less than the column’s width (or row’s height), the item is positioned
in accordance to the XtNitemGravity resource. The following table lists the
layout resources of all flat containers. See the resource tables for each flat
container widget for a more accurate accounting of the default and allowable
values for each layout resource.

Table 2-12 Flat Resources Summary

Name Type Default Access
XtNgravity int CenterGravity SGI
XtNhPad Dimension 0 SGlI
XtNhSpace Dimension 0 SGI
XtNitemFields String O NULL SGI
XtNitemGravity int NorthWestGravity SGI
XtNitemMaxHeight Dimension OL_IGNORE SGI
XtNitemMaxWidth Dimension OL_IGNORE SGI

OLIT Reference Manual—August 1994

2=

XtNgravity

Table 2-12 Flat Resources Summary (Continued)

Flat Resources

Name Type Default Access
XtNitemMinHeight Dimension OL_IGNORE SGI
XtNitemMinWidth Dimension OL_IGNORE SGI
XtNitems XtPointer NULL SGI
XtNitemsTouched Boolean FALSE SG
XtNlabel Olstr NULL SGI
XtNlabellmage Xlmage O NULL SGI
XtNlabellustify OlDefine OL_LEFT SGI
XtNlabelTile Boolean FALSE SGI
XtNlayoutHeight OlDefine OL_MINIMIZE SGlI
XtNlayoutType OlDefine OL_FIXEDROWS SGI
XtNlayoutWidth OlDefine OL_MINIMIZE SGI
XtNmeasure int 1 SGI
XtNnumltemFields Cardinal 0 SGI
XtNnumltems Cardinal 0 SGI
XtNsameHeight OlDefine OL_ALL SGI
XtNsameWidth OlDefine OL_COLUMNS SGI
XtNvPad Dimension 0 SGI
XtNvSpace Dimension 4 SGI
Class Type Default Access
XtCGravity int CenterGravity SGI

Synopsis: The locus in the container where an undersized group of items will

be placed during layout.
WestGravity/"west”
CenterGravity/"center”

Values:

NorthGravity/'north”

NorthEastGravity/"northEast”
NorthWestGravity/"northWest”

SouthGravity/"south”

SouthEastGravity/"southEast”
SouthWestGravity/"southWest”

The gravity resource specifies the position of all items (i.e., as a group)
whenever a tight-fitting bounding box that surrounds the items has a width, or

Common Resources

53

=2

Flat Resources

54

XtNhPad/
XtNvPad

XtNhSpace/
XtNvSpace

height, less than the container’s width or height, respectively. Essentially, this
resource specifies how the items, as a group, float within their container.

Class Type Default Access
XtCHPad Dimension 0 SGI
XtCVPad Dimension 0 SGl

Synopsis: The minimum horizontal and vertical space to leave around the
edges of the container.
Values: 0 < XtNhPad

0 < XtNvPad
Class Type Default Access
XtCHSpace Dimension 0 SGI
XtCVSpace Dimension 4 SGI

Synopsis: The amount of horizontal and vertical space to leave between
items.

Values: 0 < XtNhSpace
0 < XtNvSpace

If the items are of different sizes in a row or column, the spacing applies to the
widest or tallest dimension of all items in the row or column.

XtNitemFields

Class Type Default Access

XtCltemFields String O NULL SGI

Synopsis: The list of resource names used to identify the records in the
XtNitems list.

Values: A pointer to an application-defined structure containing a list of
resources.

The application must ensure that this value points to a static list since flat
containers reference this list after initialization, but do not copy its information.

OLIT Reference Manual—August 1994

2=

Flat Resources

XtNitemGravity

Class Type Default Access
XtCltemGravity int NorthWestGravity SGI

Synopsis: The region in its cell within the container in which an undersized
item will be placed during layout.
Values: WestGravity/"west”
CenterGravity/"center”
NorthGravity/’north”
NorthEastGravity/’northEast”
NorthWestGravity/"northWest”
SouthGravity/"south”
SouthEastGravity/’southEast”
SouthWestGravity/"southWest”

This resource is used whenever the item’s width or height is less than the
column width or the row height of the place it is to occupy. The values of the
XtNsameWidth and XtNsameHeight resources govern the column’s width
and the row’s height.

XtNitemMaxHeight/
XtNitemMaxWidth/
XtNitemMinHeight/
XtNitemMinWidth

Class Type Default Access
XtCltemMaxHeight Dimension OL_IGNORE SGI
XtCltemMaxWidth Dimension OL_IGNORE SGI
XtCltemMinHeight Dimension OL_IGNORE SGlI
XtCltemMinWidth Dimension OL_IGNORE SGI

Synopsis: The maximum/minimum allowable height/width of items.

If any of these resources has the value OL_IGNORE (the default), the
corresponding maximum/minimum height/width constraint is ignored.

Common Resources 55

=2

Flat Resources

56

XtNitems

Class Type Default Access

XtCltems XtPointer NULL SGI

Synopsis: A list of application-defined structures, each representing an item.
Values: A pointer to the list of application-defined item structures.

An item structure contains fields corresponding to the resources in the
XtNitemFields list. The number of items in this list is contained in the
XtNnumitems resource (see page 59).

The application must ensure that this value points to a static list since flat
containers reference this list after initialization, and do not copy its
information.

XtNitemsTouched

Class Type Default Access

XtCltemsTouched Boolean FALSE SG

Synopsis: The update status of the contents of the container.
Values: TRUE- The contents need updating.
FALSE - The contents do not need updating.

Whenever the application modifies an item list directly, this resource must be
set to TRUE, to signal the flat container widget to update its contents. The flat
container will relayout and redisplay its entire list of items, as if the list were
new. This may result in geometry negotiations with the container’s parent
widget.

After the container completes the processing associated with setting this
resource to TRUE, it will reset the resource value to FALSE, indicating the
integrity of the widget state with what is being displayed. This means
XtGetValues() on XtNitemsTouched will always return FALSE.

It is not necessary to use this resource if the application modifies the list with
the OlFlatSetValues() procedure (see page 354), nor is it necessary to use
this resource whenever the application supplies a new list to the flat container.

OLIT Reference Manual—August 1994

2=

XtNlabel

Flat Resources

Class Type Default Access
XtCLabel Olstr NULL SG

Synopsis: The text string that appears in the item.
Values: Any OIStr value valid in the current locale.

XtNlabellmage

Class Type Default Access
XtCLabellmage Xlmage O NULL SGI

Synopsis: An Ximage for display in an item label region.

The toolkit will ignore this resource if XtNlabel is non-NULL. The XImage
will not be copied.

XtNIabelJustify

Class Type Default Access

XtCLabellustify OlDefine OL_LEFT SGI

Synopsis: The justification of the label or image within the item.

Values: OL_LEFT/left” — Left-justify the label or image.
OL_CENTER/’center” - Center the label or image.
OL_RIGHT/"right” - Right-justify the label or image.

XtNlabelTile

Class Type Default Access

XtCLabelTile Boolean FALSE SGI

Synopsis: The drawing of the label image as a single image or as a tiled
pattern.

Values: TRUE/"true” - If the image will fit within the item, the label area
will be filled with multiple renditions of the image in a tiled
pattern.

FALSE/"false” — A single image will be drawn as the item’s
label, justified as specified by the XtNlabelJustify resource.

The XtNlabelTile resource is ignored if XtNlabel is non-NULL.

Common Resources 57

=2

Flat Resources

XtNlayoutHeight/
XtNlayoutWidth

Class Type Default Access
XtCLayoutHeight OlDefine OL_MINIMIZE SGI
XtCLayoutWidth OlDefine OL_MINIMIZE SGlI

Synopsis: The resize policy of flat containers when items change.

Values: OL_MINIMIZE/"minimize” — The container will modify its height
or width to be just large enough to tightly wrap around its items.
Thus, the container will grow and shrink depending on the size
needs of its items. This policy will override any width or height
resources that the application has set previously.
OL_MAXIMIZE/'maximize” - The container will increase its
height or width to be just large enough to tightly wrap around its
items, regardless of its current height or width, but will not give up
extra space. Thus, the container will grow, but never shrink,
depending on the size needs of its items.

XtNlayoutType

Class Type Default Access

XtCLayoutType OlDefine OL_FIXEDROWS SGI

Synopsis: The axis in the grid of items that is considered the major axis for
the layout policy.

Values: OL_FIXEDCOLS/"fixedcols” — The layout will have a maximum
number of columns equal to the value specified by the
XtNmeasure resource, and there will be enough rows to hold all
items. Items are placed in row-major order; i.e., the columns of the
current row are filled before filling any columns in the next row.
OL_FIXEDROWS/"fixedrows” - The layout will have a maximum
number of rows equal to the value specified by the XtNmeasure
resource, and there will be enough columns to hold all items. Items
are placed in column-major order; i.e., the rows of the current
column are filled before filling any rows in the next column.

58 OLIT Reference Manual—August 1994

2=

Flat Resources

XtNmeasure

Class Type Default Access
XtCMeasure int 1 SGlI

Synopsis: The number of items allowed in the major direction for the layout

policy.
Values: 0 < XtNmeasure

The major direction is determined by the XtNlayoutType resource. For a
column-major layout, at most XtNmeasure columns will be displayed, and as
many rows as are needed to display all items within this number of columns.
For a row-major layout, at most XtNmeasure rows will be displayed, and as
many columns as are needed to display all items within this number of rows.

XtNnumltemFields

Class Type Default Access
XtCNumltemFields Cardinal 0 SGI

Synopsis: The number of resource names contained in XtNitemFields

XtNnumltems

Class Type Default Access
XtCNumltems Cardinal 0 SGI

Synopsis: The number of items.
Values: The number of elements in the XtNitems list (see page 56).

XtNsameHeight

Class Type Default Access
XtCSameHeight OlDefine OL_ALL SGI

Synopsis: The items forced to be the same height within the container.
Values: OL_ALL/all” — All items will be the same height.
OL_ROWS/"rows” — All items appearing in the same row will be
the same height.
OL_NONE/"none” - Items will be placed in fixed-height rows, but
the height of each item will be unaffected. The height of each row
will be the height of the tallest item.

Common Resources 59

=2

Flat Resources

60

XtNsameWidth
Class Type Default Access
XtCSameWidth OlDefine OL_COLUMNS SGI

Synopsis: The items forced to be the same width within the container.
Values: OL_ALL/all” — All items will be the same width.
OL_COLUMNS/"columns” — All items appearing in the same
column will be the same width.
OL_NONE/"none” - Items will be placed in fixed-width columns,
but the width of each item will be unaffected. The width of each
column will be the width of the widest item.

OLIT Reference Manual—August 1994

Activation Types 3

This chapter explains what Activation Types are, explains how they are used in
the toolkit, and describes those Activation Types that are common to several
OLIT widgets.

Activation Type Description

What is an Activation Type?

OPEN LOOK defines a set of semantics that a user can invoke to control the user
interface. Some examples of these semantics are:

MENU Popup a menu
SCROLLDOWN Scroll the view down one screen
NEXTFIELD Move focus to the next object

See the OPEN LOOK GUI Functional Specification and the OPEN LOOK
Mouseless Specification for more information on GUI semantics.

Currently, OLIT maps these semantics to virtual events inside the toolkit (termed
“virtual” because they do not necessarily correspond to a particular X11 input
event). OLIT’s convention is to add a prefix of “OL_" to the semantic name to
name the type of virtual event, which is called the Activation Type.

61

=3

Activation Type Description

62

For example, for the semantics listed previously, the corresponding OLIT
Activation Types are:

OL_MENU and OL_MENUKEY (for Mouseless mode)
OL_SCROLLDOWN
OL_NEXTFIELD

Each OLIT widget supports a set of Activation Types for which it knows how to
respond. Some Activation Types are supported by all widgets, such as
OL_HELP, and those used for Mouseless operation (described later in this
chapter), and some are specific to a certain widget.

So, when a user performs an input action, OLIT translates the generated
XEvent (or combination of XEvent s) into an Activation Type defined by a set
of configurable toolkit bindings (described later) and then delivers the
corresponding “virtual event” to the widget. If the widget supports that
Activation Type, it performs the corresponding action. For example, if the user
presses the MENU mouse button on a MenuButton widget, OLIT translates this
to the OL_MENU Activation Type, delivers an OL_MENU activation to the
MenuButton widget, and the MenuButton responds by popping up its menu.

Interposing on Activation Types

If an application wishes to monitor or interpose on the virtual events delivered
to a particular widget, it can register an XtNconsumeEvent callback on the
widget. (For detailed information on this callback, see “XtNconsumeEvent” on
page 26 for the Primitive or Manager classes.) This callback will get called just
before the Activation Type is delivered to the widget. If the application wishes
to prevent this Activation from being delivered to the widget, it can change the
consumed Boolean field in the call_data to TRUE inside the callback. This
callback allows the application to perform some custom action in replacement
of, or in addition to, the standard widget behavior.

Programmatically Activating Widgets

Since the widgets respond to Activation Types (not just X11 events), the
application can easily simulate these user semantics by calling
OlActivateWidget() with the desired Activation Type. For example, if an
application wants text to scroll down in response to an OblongButton being
pressed, it simply needs to put the following statement in the XtNselect
callback for the button:

OLIT Reference Manual—August 1994

3=

Activation Type Description
OlActivateWidget(scrolledwindow, OL_SCROLLDOWN, NULL);

OLIT also supports “associating” widgets with each other such that if a widget
is activated with an Activation Type that it does not support, the Activation
will be automatically passed on to an associated widget, called a “follower.”
Applications can associate widgets using the OlAssociateWidget() routine.
For example, if an application wants any scrolling Activation Types to be
passed from an OblongButton widget to a Scrollbar, the application simply
needs to make the Scrollbar a “follower” of the OblongButton:

OlAssociateWidget(button, scrollbar, FALSE);

See “Initialization and Activation Functions” on page 92 for more information
on programmatically activating widgets.

Mapping X11 Events to Activation Types

By making the widget respond to high-level Activation Types, as opposed to
having it respond to particular X11 input events, this model allows more
flexibility for both the user and the programmer. The Activation Types are
mapped to actual X11 input events through a set of toolkit resources. These
toolkit resources have a set of default bindings that the user can easily change
using the standard resource mechanism. For example, the resources and
default bindings for the Activation Types mentioned previously are the
following:

Default
Activation Type Resource Binding Description
OL_MENU XtNmenuBtn <Button3> (MENU mouse button)
OL_MENUKEY XtNmenuKey a<Space> (Alt+Space key)
OL_SCROLLDOWN XtNscrolIDownKey a<Down> (Alt+R14 key)
OL_NEXTFIELD XtNnextFieldKey <Tab>,c<Tab> (Tab or Control+Tab)

The syntax of the “Default Bindings” column is explained below. The
OL_MENU Activation Type could be mapped instead to the MENU mouse
button by putting the following line in a Resource file:

CmenuBtn: <Button2>

Activation Types 63

=3

Activation Type Description

64

A complete table of the OLIT Activation Types and their default bindings is in
Table 3-1 on page 65. The following abbreviations for modifier keys are used to
shorten the “Default Bindings” column of the table, and can also be used in
resource specifications:

No Modifiers n Meta key m Mod2key 2
Alt key a Hyper key h Mod3 key 3
Ctrl key c Super key su Mod4 key 4
Shift key s Mod1l key 1 Mod5 key 5

There are three different ways to specify key bindings (and keyboard
accelerators) in a resource file:

1. A key event specified using a subset of the Xt translation manager syntax.
The syntax is specified in EBNF notation, following the same conventions
used in the Xt Intrinsics Reference Manual, Appendix B.

keyseq = [modifier_list] "<Key>" <keysym_name>
modifier_list = {modifier_name} | "None" | "n"
modifier_ name = <see modifier names table above>

2. The existing OLIT syntax, which is similar to the Xt translation manager
syntax and maintained for backward compatibility.

keyseq = [modifier_list] "<" <keysym_name> ">"

3. A general OpenWindows syntax that is understood by OLIT, xview (1), and
olwm(1).

keyseq = {[modifier_name] "+"} <keysym_name>

For example, to bind the SELECTKEY command to be activated when the space
bar is pressed and the Meta modifier key (¢) is held down, any of the
following may be used:

[kelectkey: Meta<Key>space ; Xt translation syntax

C5electKey: Meta<space> ; OLIT syntax
[BelectKey: Meta+space ; generic syntax

Note — On keyboards that don’t have an actual meta key, the meta-key event is
generated by pressing the Control and Alt keys at the same time.

Up to two bindings may be specified for a virtual event as a comma-separated
list; for example:

[kelectkey: Meta<Key>space, Ctrl<Key>space

OLIT Reference Manual—August 1994

3=

Activation Type Description

Keyboard accelerators may also be specified using any of the three methods,
but only one binding can be associated with an accelerator.

Table 3-1 OLIT Activation Types

Activation Type Semantic Resource Name Default Binding
OL_ADJUST ADJUST XtNadjustBtn <Button2>
OL_ADJUSTKEY ADJUSTKEY XtNadjustKey a<Insert>
OL_CANCEL CANCEL XtNcancelKey <Escape>
OL_CHARBAK CHARBAK XtNcharBakKey <Left>
OL_CHARFWD CHARFWD XtNcharFwdKey <Right>
OL_CONSTRAIN CONSTRAIN XtNconstrainBtn s<Buttonl1>
OL_COPY COPY XtNcopyKey <F16>

OL_CUT CuT XtNcutKey <F20>

OL_DEFAULTACTION
OL_DELCHARBAK
OL_DELCHARFWD
OL_DELLINE
OL_DELLINEBAK
OL_DELLINEFWD
OL_DELWORDBAK
OL_DELWORDFWD
OL_DOCEND
OL_DOCSTART
OL_DRAG
OL_DROP
OL_DUPLICATE
OL_DUPLICATEKEY
OL_HELP
OL_HSBMENU
OL_LINEEND

DEFAULTACTION
DELCHARBAK
DELCHARFWD
DELLINE
DELLINEBAK
DELLINEFWD
DELWORDBAK
DELWORDFWD
DOCEND
DOCSTART
DRAG

DROP
DUPLICATE
DUPLICATEKEY
HELP
HSBMENU
LINEEND

XtNdefaultActionKey
XtNdelCharBakKey
XtNdelCharFwdKey
XtNdelLineKey
XtNdelLineBakKey
XtNdelLineFwdKey
XtNdelWordBakKey
XtNdelWordFwdKey
XtNdocEndKey
XtNdocStartKey
XtNdragKey
XtNdropKey
XtNduplicateBtn
XtNduplicateKey
XtNhelpKey
XtNhorizSBMenuKey
XtNlineEndKey

<Return>, c<Return>
<BackSpace>, <Delete>
s<BackSpace>, c<d>
m<BackSpace>, m<Delete>
c<BackSpace>, c<v>
c<Delete>, c<k>
s<BackSpace>, c<w>

¢ s<Delete>

c<R13>

c<R7>

<F5>

<F2>

c<Button1>

s<space>

<Help>

a<h>

<R13>, c<e>

Activation Types

65

=3

Activation Type Description

66

Table 3-1 OLIT Activation Types (Continued)

Activation Type Semantic Resource Name Default Binding
OL_LINESTART LINESTART XtNlineStartKey <R7>, c<a>
OL_MENU MENU XtNmenuBtn <Button3>
OL_MENUDEFAULT MENUDEFAULT XtNmenuDefaultBtn c<Button3>
OL_MENUDEFAULTKEY MENUDEFAULTKEY XtNmenuDefaultKey c<space>
OL_MENUKEY MENUKEY XtNmenuKey a<space>
OL_MOVEDOWN MOVEDOWN XtNdownKey <Down>
OL_MOVELEFT MOVELEFT XtNleftKey <Left>
OL_MOVERIGHT MOVERIGHT XtNrightKey <Right>
OL_MOVEUP MOVEUP XtNupKey <Up>
OL_MULTIDOWN MULTIDOWN XtNmultiDownKey c<Down>
OL_MULTILEFT MULTILEFT XtNmultiLeftKey c<Left>
OL_MULTIRIGHT MULTIRIGHT XtNmultiRightKey c<Right>
OL_MULTIUP MULTIUP XtNmultiUpKey c<Up>
OL_NEXT_FIELD NEXT_FIELD XtNnextFieldKey <Tab>, c<Tab>
OL_PAGEDOWN PAGEDOWN XtNpageDownKey a<R15>
OL_PAGELEFT PAGELEFT XtNpageLeftKey a c<R9>
OL_PAGERIGHT PAGERIGHT XtNpageRightKey a c<R15>
OL_PAGEUP PAGEUP XtNpageUpKey a<R9>
OL_PAN PAN XtNpanBtn ¢ s <Buttonl>
OL_PANEEND PANEEND XtNpaneEndKey ¢ s<R13>
OL_PANESTART PANESTART XtNpaneStartKey ¢ s<R7>
OL_PASTE PASTE XtNpasteKey <F18>, c<y>
OL_PREV_FIELD PREV_FIELD XtNprevFieldKey s<Tab>, ¢ s<Tab>
OL_PROPERTY PROPERTY XtNpropertiesKey <F13>
OL_RETURN RETURN XtNreturnKey <Return>
OL_ROWDOWN ROWDOWN XtNrowDownKey <Down>
OL_ROWUP ROWUP XtNrowUpKey <Up>

OLIT Reference Manual—August 1994

3=

Activation Type Description

Table 3-1 OLIT Activation Types (Continued)

Activation Type Semantic Resource Name Default Binding
OL_SCROLLBOTTOM SCROLLBOTTOM XtNscrollBottomKey a c<R13>
OL_SCROLLDOWN SCROLLDOWN XtNscrolIDownKey a<Down>
OL_SCROLLLEFT SCROLLLEFT XtNscrollLeftKey a<Left>
OL_SCROLLLEFTEDGE SCROLLLEFTEDGE XtNscrollLeftEdgeKey a <R7>
OL_SCROLLRIGHT SCROLLRIGHT XtNscrollRightKey a<Right>
OL_SCROLLRIGHTEDGE SCROLLRIGHTEDGE XtNscrollRightEdgeKey a <R13>
OL_SCROLLTOP SCROLLTOP XtNscrollTopKey a c<R7>
OL_SCROLLUP SCROLLUP XtNscrollUpKey a<up>
OL_SELCHARBAK SELCHARBAK XtNselCharBakKey s<Left>, s c
OL_SELCHARFWD SELCHARFWD XtNselCharFwdKey s<Right>, s c<f>
OL_SELECT SELECT XtNselectBtn <Buttonl>
OL_SELECTKEY SELECTKEY XtNselectKey <space>
OL_SELFLIPENDS SELFLIPENDS XtNselFlipEndsKey a<Insert>
OL_SELLINE SELLINE XtNselLineKey ¢ a<Left>
OL_SELLINEBAK SELLINEBAK XtNselLineBakKey s<R7>, s c<p>
OL_SELLINEFWD SELLINEFWD XtNselLineFwdKey s<R13>, s c<n>
OL_SELWORDBAK SELWORDBAK XtNselWordBakKey ¢ s<Left>
OL_SELWORDFWD SELWORDFWD XtNselWordFwdKey ¢ s<Right>
OL_STOP STOP XtNstopKey <F11>
OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey — c<t>
OL_UNDO UNDO XtNundoKey <F14>
OL_VSBMENU VSBMENU XtNvertSBMenuKey a<v>
OL_WORDBAK WORDBAK XtNwordBakKey c<Left>
OL_WORDFWD WORDFWD XtNwordFwdKey c<Right>

Activation Types

67

=3

Common Activation Types

Common Activation Types

68

All OLIT widget classes that accept input focus support the semantics
described in section 2.3 of the OPEN LOOK Mouseless Specification and at least
the Activation Types shown in Table 3-2.

Table 3-2 Common Activation Types

Activation Type Semantics Resource Name
OL_CANCEL CANCEL XtNcancelKey
OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey
OL_HELP HELP XtNhelpKey
OL_MOVEDOWN MOVEDOWN XtNdownKey
OL_MOVELEFT MOVELEFT XtNleftKey
OL_MOVERIGHT MOVERIGHT XtNrightKey
OL_MOVEUP MOVEUP XtNupKey
OL_NEXTFIELD NEXTFIELD XtNnextFieldKey
OL_PREVFIELD PREVFIELD XtNprevFieldKey
OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

These activation types have the following meanings:

OL_CANCEL

Redirect the OL_CANCEL activation type, delivering it to the first widget
ancestor inclusive of the object receiving the activation that is an instance of
vendorShellWidgetClass or a subclass thereof.

OL_DEFAULTACTION

Redirect the OL_DEFAULTACTION activation type, delivering it to the first
widget ancestor inclusive of the object receiving the activation that is an
instance of vendorShellwidgetClass or a subclass thereof.

OL_HELP

Invoke the system help facility. If the value of the toolkit resource
XtNhelpModel is OL_POINTER, then help will be invoked for the object
currently under the pointer at the time of activation; however, if the value of
XtNhelpModel is OL_INPUTFOCUS, then help will be invoked for the object
that currently holds input focus.

OLIT Reference Manual—August 1994

3=

Common Activation Types
OL_MOVEDOWN

Move the input focus from the current object to the object below the current
holder of input focus in the traversal order. The definition of the object below
the current holder of the input focus in the traversal order is context sensitive
and system dependent.

OL_MOVELEFT/
OL_PREVFIELD

Move the input focus from the current object to the previous object in the
traversal order. The definition of the previous object in the traversal order is
context sensitive and system dependent.

OL_MOVERIGHT/
OL_NEXTFIELD

Move the input focus from the current object to the next object in the traversal
order. The definition of the next object in the traversal order is context sensitive
and system dependent.

OL_MOVEUP

Move the input focus from the current object to the object above the current
holder of input focus in the traversal order. The definition of the object above
the current holder of the input focus in the traversal order is context sensitive
and system dependent.

OL_TOGGLEPUSHPIN

Redirect the OL_TOGGLEPUSHPIN activation type, delivering it to the first
widget ancestor inclusive of the object receiving the activation that is an
instance of vendorShellWidgetClass or a subclass thereof.

Activation Types 69

=3

Common Activation Types

70 OLIT Reference Manual—August 1994

Introduction

Internationalization Features 4

This chapter focuses on the general issues of internationalizing applications,
and how OLIT address these issues. It also provides a simple example
application, which demonstrates how OLIT makes it easy to create and use
internationalized applications.

As the international market for software becomes increasingly important,
software manufacturers need a way to internationalize their applications
without having to re-engineer or re-compile the application for each language.
Ideally, a single version of an application should be able to support any
number of languages.

Internationalization refers to the ability of a Graphical User Interface (GUI) to
display text in various languages and conventions, and to accept textual input
in those languages. Locale or localization refers to the alphabet and conventions
of a particular language or cultural environment. Date, time, and monetary
format are examples of locale conventions.

The OLIT toolkit, a user-interface toolkit based on the X Window System and
the OPEN LOOK graphical user interface, allows developers to simply and
easily create internationalized applications without having to modify the
source code for each supported language. An application developed and
compiled with OLIT will be able to operate in any of the supported languages
and process data according to the rules of that language.

71

=4

System Requirements

System Requirements

OLIT features that support internationalized applications are referred to as
international OLIT in this chapter. This internationalized version of OLIT
supports both European languages (French, German, Italian, and Swedish) and
Asian languages (Japanese, Korean, Taiwanese Chinese, and PRC Chinese).

Adding new languages to an international OLIT application consists primarily
of setting the default text format and changing messages, labels, and other
strings in resource files. For Asian locales, one must also provide localized
input methods (IM) to allow for multibyte character composition. The input
method is the method by which text is entered into the system. Input methods
are specific to each Asian language and are provided by Sun Microsystems.
They can, however, be redefined and changed by OEMs or independent
software vendors.

The first release of international OLIT enables developers to localize to several
European and Asian languages. To run this release of international OLIT, you
need Solaris®, OpenWindows™, and the Feature Package for the locale in which
you intend to run it. For example, you need the Japanese Feature Package (JFP)
for Japan, the Korean localization package for Korea, and the French
localization package for France. These packages consist of extensions to SunOS
and incorporate numerous facilities for handling local linguistic and cultural
conventions.

Issues Involved in Internationalizing Applications

72

To internationalize your application, you must address the following issues.

1. Locale Setting. Locale Setting is the method by which the language or
cultural environment is set. See “Locale Setting” on page 73.

2. Character Encoding. Conventional applications use 7-bit ASCII encoding to
represent each character. However, some languages have larger character
sets that require more than the 128 character range permitted by 7-bit
encoding; for example, European locales use an 8-bit encoding and Asian
locales use extended encoding mechanisms. Character encoding is the
method by which a language’s character set is represented. See “Character
Encoding and Text Formats” on page 74 and the Sun Software
Internationalization Guide for further details on character encoding.

OLIT Reference Manual—August 1994

4=

Locale Setting

Locale Setting

3. Font Set Handling. Font handling is simple for the U.S. and European
languages that OLIT supports because they only use one character set.
However, some languages use multiple character sets and therefore require
multiple fonts or a font set. See “Font Set Handling” on page 77.

4. Localized Text Handling. The developer needs to be able to use application
strings (i.e., error messages, menu text, button text, etc.) in the native
language, and have those strings retrieved in the language specified by the
locale. See “Localized Text Handling” on page 79.

5. Input Method (Asian Locales Only). This is the method by which users
enter the text of a language. To enter data into a conventional application,
the user simply types in the information to be processed. Some languages,
however, consist of multiple alphabets which require several keystrokes to
create one character. This special handling is called the input method. See
“Input Method” on page 80.

6. Standards. Software internationalization is supported by a number of
standards organizations. These include IEEE (POSIX), ANSI,
X/0pen, and the MIT X Consortium. In order to make applications portable
across a wide variety of hardware platforms, it is important to use a toolkit
that follows these standards as much possible, as international OLIT does.
See “Standards” on page 89.

This chapter describes each of these issues in detail and discusses how these
issues are addressed by international OLIT.

The X Toolkit Intrinsics, on which OLIT is layered, provides an application
resource called XnlLanguage (class XnlLanguage) that announces the user’s
locale to the toolkit and the operating system.

Resource Type Default Access

XnlLanguage XtNstring NULL |

The currently supported values for this resource are: de, fr , it ,ja , ko, sv, zh,
and zh_TW There are three ways to establish the locale, as shown in the
following list:

Internationalization Features 73

=4

Character Encoding and Text Formats

1.

Specify -xnllanguage on the command line of an OLIT application. For
example, to set the locale for an application called myapplication to Korean,

you type:

%myapplication -xnllanguage ko

Specify (xnlLanguage: language in a X11 Resource Manager database file.
For example, to set the locale to traditional Chinese, you add the following
line to your .Xdefaults file:

*xnlLanguage: zh_TW

Set the LANG environment variable in the shell that you are starting the
application from. For example, to set the locale to Japanese, you type the
following:

%setenv LANG ja

To set the locale to French, you type the following:
%setenv LANG fr

Establishing the OS locale is the responsibility of OLIT and Xt. You should not
use the OS function setlocale (3) in your OLIT applications, since OLIT
already calls this function internally.

Character Encoding and Text Formats

74

OLIT supports three character encoding types, or text formats:

Single byte, used in the USA and Europe, which represents each character
with one byte

Multibyte, used in Asian, which represents each character with a variable
number of bytes

Wide character, used in Asian, which represents each character with a fixed
number of bytes

Applications can create single-byte, multibyte, or wide character OLIT objects,
or a combination of these. If you are writing an application intended for single-

byte locales only, you may want to use single-byte text format to avoid the
performance overhead incurred by processing multibyte text. However, note
that if you use single-byte format, it will be harder to internationalize your
application to Asian locales at a later date.

OLIT Reference Manual—August 1994

4=

Character Encoding and Text Formats

The multibyte text format is fully compatible with ASCII. Since each different
character can potentially be a different size, programming with multibyte text
can be difficult. However, the multibyte format uses memory efficiently.

Wide character text format, on the other hand, is easier to program since all
characters are represented with the same number of bytes. However, the wide
character format consumes more storage since it represents all characters with
a fixed number of bytes. If all characters are ASCII, many of the bytes will be
superfluous.

When deciding which text format is appropriate for a user interface, you
should take the following considerations into account:

® Conversion between formats reduces performance.
® OLIT honors the requested text format inside the object implementation.

® Processing multibyte data is inherently more time consuming than
processing single-byte or wide character data. Objects that perform
intensive data manipulation (for example text-editing object such as OLIT’s
TextEdit or TextField widgets) will perform better if created as wide
character objects. (If an object is certain to only handle 8-bit data, the
optimal solution is to create single-byte objects.)

You should design your application so that conversion between formats is
minimized. For example, you may want to decide on an object-by-object basis
whether textual data will be processed intensively and use wide character
format if it is.

Note — The widget makes assumptions based on the text format. For example,
if you specify the single-byte format and supply a wide character label, it
causes an error.

OLIT widget resources for presentation text are of type OIStr . For more
information on this type, see “Setting the Default Text Format for an Entire
Application” on page 76. To provide support for multiple text formats,
international OLIT introduces the XtNtextFormat resource. This resource
allows you to inform widgets what text format to expect for resources
associated with presentation text. This is an interface for programmers only;
there is no equivalent interface for users to specify widget text formats. The
text format of an object is persistent for the lifetime of the object; it is
established at object creation time and cannot be changed.

Internationalization Features 75

=4

Character Encoding and Text Formats
There are several ways to set the text format:

®* Do nothing. If you do nothing, the text format defaults to single byte.

® Set the default text format for the entire application with the
OlSetDefaultTextFormat() function.

® Set the default text format for an individual widget by changing the
widget’s XtNtextFormat resource.

Setting the Default Text Format for an Entire Application

As a convenience, OLIT maintains a default text format, which widgets inherit
when they are created without their text format explicitly specified in the
argument list passed to one of the XtCreateWidget() family of functions.

For compatibility with previous OLIT releases, the default text format is
single-byte unless you change it. To change it, use the
OlSetDefaultTextFormat() function, which is defined as follows:

void OlSetDefaultTextFormat(OIStrRep format);

where format specifies the character representation of the text. The format
argument can have the following values:

format Value Meaning

OL_SB_STR_REP Single-byte character representation
OL_WC_STR_REP Wide character representation
OL_MB_STR_REP Multibyte character representation

Your application should call OlSetDefaultTextFormat() immediately after
OlToolkitInitialize() and before creating the widget hierarchy. Objects
subsequently created will have the text format specified in the most recent call
to OlSetDefaultTextFormat() , unless overridden by explicit arguments.
Note that if the application is single-byte only, it does not need to call
OlSetDefaultTextFormat()

You can create a widget hierarchy consisting of a combination of multibyte,
wide character, and single byte objects. You can do this either by changing the
default text format between widget creation calls or by specifying an object’s
text format explicitly when creating it.

76 OLIT Reference Manual—August 1994

4=

Character Encoding and Text Formats

Setting the Text Format for an Individual Widget

OLIT provides a resource, XtNtextFormat , which allows you to set the text
format for individual widgets. See “XtNtextFormat” on page 29.

Font Set Handling

OlFont

To represent data that consists of multiple character sets, Release 5 of the

X Window System provides the notion of a Font Set. An XFontSet is a X11R5
data structure that supports this notion. From the user’s perspective, an
XFontSet represents a list of X11 Logical Font Description (XLFD) fonts that
allows the application to fully represent the characters used in a particular
locale. For full details on Font Sets, refer to the X11R5 documentation.

To specify a font set in a resource file, use a comma-separated list of fonts. For
example, you can enter the following in your .Xdefaults file:

[(font: -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-1, \
-jis-fixed-medium-r-normal--16-150-75-75-¢c-160-jisx0208.1983-0,\
-misc-fixed-medium-r-normal--0-0-75-75-c-0-jisx0201.1976-0

When you internationalize your application, you should specify fonts in a
resource file. If you specify them within your application, it will be impossible
for others to localize it.

OLIT supports both the font and font set notions by introducing the OlFont
type for objects that display text. OlFont is an opaque pointer type whose
interpretation depends on the setting of its associated XtNtextFormat

resource. If you create an object as multibyte or wide character, the value of the
OlFont field will be a valid XFontSet identifier. If you create an object as
single byte, OlFont field will be a valid pointer to an XFontStruct

If the text format is OL_SB_STR_REP and a font set has been specified (using a
comma-separated list), the first font in the list will be used to construct an
Xfont struct.

Internationalization Features 77

=4

Character Encoding and Text Formats

78

Setting the Default Font or Font Set

The OLIT widget set provides an XtNolDefaultFont resource that specifies
the default font or fontset for an application. This resource is discussed in
“XtNolDefaultFont” on page 14.

If no font is specified for a widget’s XtNfont resource, XtNolDefaultFont
determines the widget’s font. In international OLIT, the default value of
XtNolDefaultFont is determined as follows:

® In the C locale and European locales, the default value of
XtNolDefaultFont is Lucida sans serif with Resolution_X and
Resolution_Y set to 75.

® In Asian locales, the default value of XtNolDefaultFont is the font set
required to display all the characters in the code set of the locale.

® An internationalized OLIT application running in Asian locales must define
the XtNolDefaultFont resource in its locale-specific app-defaults file.
If the XtNolDefaultFont resource is not specified with a list of fully-
defined font names the application’s startup time will be increased
significantly. The application’s startup time is dependent on the number of
wildcards in the XLFD font names. Use completely specified XLFD font
names to optimize performance at startup time. The following is an example
of how to set the XtNolDefaultFont resource in the Japanese locale:

*olDefaultFont: \

-sun-gothic-medium-r-normal--16-140-75-75-¢c-70-jisx0201.1976-0, \

-sun-gothic-medium-r-normal--16-140-75-75-c-140-jisx0208.1983-0

Getting the Default Font or Font Set

The OlGetDefaultFont() convenience routine enables you to get the font or
font set that will be used if you do not set the XtNfont resource for a widget.
The syntax of OlGetDefaultFont() is:

OlFont OlGetDefaultFont(widget w;

where w is a widget in the application for which you want to get the default
font.

If XtNolDefaultFont specifies a font that is not available,
OlGetDefaultFont() returns a null pointer.

OLIT Reference Manual—August 1994

4=

Localized Text Handling

Localized Text Handling

OLIT provides resources that enable you to set various text strings (messages,
menu labels, button labels, etc.) in an application. For information on the text
string resources for a particular widget, see the reference section for the
widget. When you create an internationalized application, you should remove
all these resources from your application and keep them in locale-specific
resource files.

Using Internationalized Help

You can register multibyte help text for a widget with OLIT’s

OlRegisterHelp() function. To register single-byte help, use multibyte help.
The OLIT Help API currently supports multibyte only. A wide character API
will be added in the future. The syntax for OlRegisterHelp() is as follows:

void OIRegisterHelp(

OlDefine id_type ,
XtPointer id ,
String tag ,
OlDefine source_type
XtPointer source);
To use OIRegisterHelp() with international OLIT, specify one of the

following values for the id_type argument.

id_type Value Meaning

OL_WIDGET_HELP Specifies multibyte format help text for an individual
widget (for backward compatibility).

OL_FLAT_HELP Specifies multibyte format help text for a flat widget (for
backward compatibility

If you specify OL_DISK_SOURCE for the source_type argument, you must specify
a single-byte or multibyte filename for the source argument.

Help searches the directories specified by XFILESEARCHPATH for the specified
filename. If you set the filename from within your program as an absolute
path, help ignores XFILESEARCHPATH. If the XFILESEARCHPATH expansion
does not find a file for help, the current directory is searched. Within the value

Internationalization Features 79

=4

Input Method

of XFILESEARCHPATH, any instance of the string “%T” is expanded to “help”
and “%N” is expanded to the filename the programmer specifies as the source
parameter to OIRegisterHelp()

For a description of the other arguments of OIRegisterHelp() , see “Help
Function” on page 146.

Localized Messages

OLIT issues textual error message in the program’s locale at startup. To do this,
OLIT registers a private language procedure with the Intrinsics during
OlToolkitInitialize() ; see page 92.

Do not register an application-specific language procedure. If you do, it will
interfere with OLIT’s locale-announcement mechanism and you will have to
take responsibility for it in your application. If your application requires
processing before OLIT’s language procedure is called, you can provide your
own procedure and call OLIT’s procedure from it. To get the language
procedure registered by OLIT, call:

olit_proc = XtSetLanguageProc(NULL, NULL, NULL);

Multibyte and Wide Character Text Buffer Functions

Input Method

80

International OLIT provides multibyte and wide character equivalents to the
single-byte text buffer functions in previous releases. A list of these functions
and their syntax are provided in “Text Buffer Functions for
Internationalization” on page 176.

The input method (IM) is the algorithm by which users enter the text of a
language. The input method for each language may be different, depending on
the linguistic structure and conventions of that language.

International OLIT follows the X Window System Version 11, Input Method
Specification, Draft 3.0. This specification was derived as a result of discussions
among X Consortium members on standardizing the input handling of
characters in various languages by X clients.

OLIT Reference Manual—August 1994

4=

Input Method

For many languages, there isn’t a one-to-one key to character mapping,
regardless of how the keyboard is configured. In order to support such
languages, an input method is required.

In English and European languages, users enter the desired text by typing in a
sequence of letters to create a word. However, for Asian languages based on
ideographic characters, input is more complicated. For example, there are two
phonetic alphabets in Japanese—Hiragana and Katakana—and the traditional
ideogrammatic alphabet, Kanji. In any piece of writing, all three alphabets may
be used. Japanese words can also be spelled out phonetically in English. This is
called Romaji.

To handle European language characters where there is no key on the standard
keyboard that maps to the desired character, use the Compose key to initiate a
composed character sequence (e.g., Compose key, <letter>, <accent or
diacritical mark>).

To handle languages for which there isn’t a one-to-one key to character
mapping, input methods provide features such as the following:

® A control key sequence, which selects the input mode

* A pre-edit region, which displays characters as the user enters them but
before the user commits them

® A lookup choice region, which displays ideographic characters and allows
the user to choose one

® A status region, which provides information such as whether conversion is
activated and the state or mode of the input method

Text input widgets, in conjunction with some input methods, also can provide
advanced, language-specific, pre-editing features. For instance, the OLIT
TextEdit widget can detect certain conditions under which it will commit any
uncommitted pre-edit text without the user having to take further action. This
technique is known as implicit commit.

Example: In a mail application the user enters a message in Japanese and
presses a “send” button to dispatch the composed message. If there is
uncommitted pre-edit text, the user’s intention is that it be part of the message.
The pre-edit text has not, however, been committed to the text buffer. In this
case it is useful for the toolkit to intervene and cause a commit to occur before
the application processes the buffer to send the message.

Internationalization Features 81

=4

Input Method

82

Details of which operations trigger implicit commit semantics in OLIT widgets
can be found in the localization documentation for the appropriate languages.

The use of these features varies with the input method. For more information,
see the documentation for the input method you are using.

Figure 4-1 shows the input method screen regions.
Pre-Edit Region

i] ~ on_footerw h

R include <X11/Intrinsich>
#include <¥11/StringDefs.hz>
#include <¥ol/OpenLlook.hz
#include <¥ol/RubberTile h>
#include <Xol/TextE
#include <Xol/Scrollg At b: g c:F d:38 o: 5 £
mainiarac, argv) . N - LOOkUp
int arac 9: 1 h 1 1+l IR K 148 Choice
char *argv[l; .33 . .
; m:3h n:E 0: ¥R p: iR 0:38 r: &ff Region
Widget toplavel, B
arg wiargs[Sl:
int n;
KtappContext apm
OlToolkitinitialize((XtPointer)NULLY
B .
=31 <4— Status Region
= Il

Figure 4-1 Input Method Screen Regions for zh_TW locale

Setting the Input Method Pre-Edit and Status Styles (Asian Locales Only)

There are two aspects of the input method that an OLIT application can control:

® The pre-edit style, which specifies where and how pre-edit data is presented.
The pre-edit style can vary from widget to widget within a shell.

® The status style, which specifies where status feedback is presented. The
status style, unlike the pre-edit, is an attribute of the shell and is expected to
remain the same across all widgets inside the shell.

OLIT provides two new resources that specify the pre-edit and status styles:
XtNimPreeditStyle and XtNimStatusStyle , described in the following
sections.

OLIT Reference Manual—August 1994

4=

Input Method
XtNimPreeditStyle (Asian Locales Only)

The XtNimPreeditStyle resource selects the pre-edit style. This resource is
supported by all the OLIT widgets that allow text input. See, for example,
TextEdit (“XtNimPreeditStyle” on page 635).

Resource Type Default Access

XtNimPreeditStyle OllmPreeditStyle OL_NO_PREEDIT Gl

If the specified style is not supported by the input method, the ability to pre-
edit is lost. The currently supported pre-edit styles are:

XtNimPreeditStyle Value Meaning

OL_ON_THE_SPOm IM directs the application to display the pre-edit data
"onTheSpot”

OL_OVER_THE_SPOT IM displays pre-edit data in its own window
"overTheSpot”

OL_ROOT_WINDOW IM displays pre-edit data outside the application in a
"rootWindow” window that is a child of the base window
OL_NO_PREEDI?"none” IM does not display pre-edit data

The following figure shows an example of the onTheSpot pre-edit style. The
pre-edit data is shown in reverse video. When the user commits the data, it is
sent to the client and displayed in normal video.

B g tinclude <¢11/Intrinsic.h>
tinclude <11/Stringdefs. >

tinclude <ol Apeni ook h>

tinclude <ol RubberTile.h>

tinclude <ol fTextEdit.h>

tinclude <ol /Scrol led®i. >

toplevel, te, rb, sw;

vargs [5];
s

XtAppContext app;
void DoHelp();

Figure 4-2 onTheSpot Pre-Edit Style for ja locale

Internationalization Features 83

=4

Input Method
The following figure shows an example of the overTheSpot pre-edit style.

] over_footerw

W TE=FH, REIFD W
i REZTH, BEILATE]
#include <¥11/Intrinsic.h>

#include <¥11/Stringhefs.h>
sinclude cvol iomanlool b

b:dn oF

e
char *argv[];

i
Widget toplevel, te, rb, sw;
arg wargs[3l:
int n;

2HAE]

reedit Style:overTheSpot Status: imDisplaysInClient

Figure 4-3 overTheSpot Pre-Edit Style for zh locale
The following figure shows an example of the rootWindow pre-edit style.

root_footerw

JHEAL
WEAFEFE T RER
WHEAFERFET RS

F

#include <€11/Intrinsic.h>
#Hinclude <¥11/75tringbefs.h>
#include <xXol/sopenLook.h>
#include <xXol/RubberTile.h>
#Hinclude <Hol/TextEdit.h>
#include <Hol/Scrolledwi.h:

mainCargc, argyl
int argc:
char =argwl[]l;

[BEHFELAE]

Preedit Style:rootiWindow Status: imbisplawsInClient

Figure 4-4 rootWindow Pre-Edit Style for zh locale

See the X11R5 documentation for a full description of each of the pre-edit
styles.

84 OLIT Reference Manual—August 1994

4=

Input Method

XtNimStatusStyle (Asian Locales Only)

The XtNimStatusStyle resource, defined in the VendorShell class,
determines the style of IM status feedback.

Resource Type Default Access

XtNimStatusStyle OllmStatusStyle OL_NO_STATUS Gl

The supported styles are:

XtNimStatusStyle Value Meaning

OL_IM_DISPLAYS_IN_CLIENT / The IM generates status feedback in the footer
"imDisplaysInClient” of the shell window
OL_IM_DISPLAYS_IN_ROOT/ The IM generates status feedback in a
"imDisplaysInRoot” separate window

OL_NO_STATU# none” The IM doesn’t generates any status feedback

When XtNimStatusStyle is set to OL_IM_DISPLAYS_IN_CLIENT, a number of
other resources are available to set characteristics of the application footer. See
“Application Resources for the IM Footer (Asian Locales Only)” on page 87.

Internationalization Features 85

=4

Input Method

The following figure shows an example of the imDisplaysInClient status
style.

root_footerw

chldhld
ShidF2 L Td

tinclude <X11/5tringlefs. h>
include <ol AOpeniook h>
tinclude <Xol RubberTile. h>
tinclude <ol /TextEdit.h>
#include <ol /Scrol led®i. >

main{argc, argy)
int argc;
char #argv[];
{

Tidget toplevel, te, rh, s¥;
Arg wargs [5];

[0
Preedit Style:zroot¥indor

Figure 4-5 imDisplaysInClient Status Style for ja locale

The following figure shows an example of the imDisplaysinRoot status
style.

r@ rootWindow_rootWindow

B2 3o YIE2 nit DEMAHT RIS 0=
Preedit 3 status EEIE 2T
2 HEE|ASLIC

Preedit: rootwindow
Status: rootwindow

© LEMHinput Method)= x Bl L FA AL
E| A0|0, vt OLIT, #viewS 2 EEIES 22
NlibOAM £ AMZO| ZHSELICE

@
roe
uy
rlo
TH
T
=
A
(1))
m
S
=2
x
é
]
_?ﬂ
rir
i
am
<+
Mo
el
hd

Figure 4-6 imDisplaysinRoot Status Style for ko locale

86 OLIT Reference Manual—August 1994

4=

Input Method

Application Resources for the IM Footer (Asian Locales Only)

Resource Type Default Access
XtNimFontSet OlFont XtDefaultFont SGI
XtNdefaultimName String NULL SGI

XtNimFontSet (Asian Locales Only)

The XtNimFontSet resource specifies the internationalization IM status
footer's font set.

XtNdefaultimName

The XtNdefaultimName resource specifies the string to identify the IM Server.

XtNshellTitle

Example

XtNshellTitle is an OIStr resource that allows the title of shell widgets to
be set. The shell being set must be a subclass of VendorShell . The usage of
this resource is analogous to the XtNtitle resource defined by the Intrinsic
classes. XtNshellTitle and XtNtitle are synchronized by OLIT; calling
XtSetValues() on either will cause both to be updated.

To internationalize a simple OLIT application for the European or Asian locales,
you need to:

1. Remove any resources that contain display text from the application code
and put them in a resource file.

2. Specify the text format for widgets that display text (by specifying a
default text format for the application or by specifying the text format for
individual widgets).

3. Specify a font set for resources that contain OlFont values (such as
XtNfont) in the resource file.

Internationalization Features 87

=4

Input Method

88

Suppose you want to write an internationalized application that displays a
StaticText widget with some wide character text in it. To do this, you would
write code similar to the following.

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/StaticText.h>

main(argc, argv)
int argc;
char Cargvl[];

{
Widget toplevel, msg_widget;
XtAppContext app;
/* Initialize the OLIT toolkit */
OlToolkitInitialize((XtPointer)NULL);
[* Set the default text format to wide character */
OlSetDefaultTextFormat(OL_WC_STR_REP);
toplevel = XtApplnitialize(&app, "Memo",
(XrmOptionDescList)NULL,
0, &argc, argv, NULL,
(ArgList) NULL, 0);
/* Create a staticText widget. */
msg_widget = XtVaCreateManagedWidget("'msg",
staticTextWidgetClass,
toplevel,
NULL);
/* Realize the widgets and enter the event loop. */
XtRealizeWidget(toplevel);
XtAppMainLoop(app);
}

Note that this application does not specify the string that appears in the
StaticText widget. You specify this text in the resource file as follows:

[BtaticText.string: <text>
Also note that this application is different from a conventional OLIT application
in that it calls OlSetDefaultTextFormat() to set the default text format.

OlSetDefaultTextFormat() sets the default text format for any widgets in the
application that display text.

OLIT Reference Manual—August 1994

4=

Standards

Standards

If you only want to set the text format for an individual widget, you set its
XtNtextFormat resource. For example, in the application above you would
create the StaticText widget as follows:
msg_widget = XtVaCreateManagedWidget("msg",
staticTextWidgetClass,
toplevel,
XtNtextFormat, OL_WC_STR_REP,
NULL);

For some locales, you may also need to specify a font set for the application. To
do this, you add the following line to the resources file:

[BtaticText.font: font set

The following figures show the application with Korean and Japanese text.

| memos8

IHeIIn Waorld ojz)=2 ordsta 2.

Figure 4-7 “Hello World” in Korean

| memo$g

Hello World B A, SHIZ ||

Figure 4-8 “Hello World” in Japanese

There are three standards that international OLIT follows:

® |Internationalized UNIX
® MIT X11 Internationalization Standard
® Internationalized Extension of OPEN LOOK Specification

Internationalization Features 89

=4

Standards

90 OLIT Reference Manual—August 1994

Toolkit Functions

This chapter describes functions that are not related to any particular widget.

Initialization and Activation Functions page 92

Buffer Functions page 95

Cursor and Pixmap Functions page 99

Display Functions page 108
Drag and Drop Functions page 109
Dynamic Resource Functions page 140
Error Functions page 142
Help Function page 146
Input Focus Functions page 150
Multiple Visual Functions page 154
Packed Widget Function page 156
Pixel Conversion Functions page 158
Protocol Function page 160
Regular Expression Functions page 161
Text Buffer Functions page 163
Text Buffer Functions for Internationalization page 176
Text Selection Operations page 204
Toolkit Resource Functions page 206
Virtual Event Functions page 207

91

=5

Initialization and Activation Functions
Initialization and Activation Functions

92

OlToolkitInitialize

#include <Xol/OpenLook.h>

void OlToolkitInitialize(
XtPointer NULL);

OlToolkitInitialize() must be called by each application before any
OPEN LOOK widgets are created or other OPEN LOOK routines are used.

The suggested method of initializing an OLIT application is to use
OlToolkitInitialize() followed by some combination of:

XtApplnitialize()

XtToolkitInitialize()
XtCreateApplicationContext()
XtOpenDisplay() or XtlnitializeDisplay()
XtAppCreateShell()

or the corresponding variable argument functions.

Ollnitialize

Note — The following initialization routine is now obsolete:

#include <Xol/OpenLook.h>
void Ollnitialize(

String shell_name ,

String application_class ,

XrmOptionDescRec Coptions

Cardinal num_options

Cardinal Cargce ,

String argv [));
The arguments to the obsolete Ollnitialize() routine were similar to the
arguments to the X Window Xtlnitialize() routine. Use the
OlToolkitInitialize() routine instead, but note the differences in

arguments in that new version.

OLIT Reference Manual—August 1994

D=

Initialization and Activation Functions
OlActivateWidget

#include <Xol/OpenLook.h>
Boolean OlActivateWidget(

Widget widget
OlVirtualName activation_type ,
XtPointer data);
OlActivateWidget() programmatically activates a widget in accordance

with the supplied activation type (see Chapter 3, “Activation Types”). The
precise semantics of activation and activation type are widget-dependent and
are described in each widget section. OlActivateWidget() returns TRUE if
the activation type was accepted by the initially supplied widget, or one of its
associated follower widgets; see OlAssociateWidget() . Otherwise, the
function returns FALSE. If the initially supplied widget does not accept the
activation type, OlActivateWidget() recursively attempts to activate
associated follower widgets until one of them accepts the supplied activation

type.
OlActivateWidget() also accepts gadget arguments.

OlAssociateWidget

#include <Xol/OpenLook.h>
Boolean OlAssociateWidget(

Widget leader
Widget follower
Boolean disable_traversal)
OlAssociateWidget() associates a widget (the follower) with another widget

(the leader). Associating a widget with a leader widget effectively expands the
number of ways the leader widget can be activated since

OlActivateWidget() automatically activates any follower widgets if the
lead widget does not accept the supplied activation type. This routine returns
TRUE if the association was successful; otherwise, it returns FALSE. Attempts to
create an association-cycle are invalid and produce a warning.

It is typically desirable to prevent keyboard traversal among widgets
associated with one another. The disable_traversal parameter is a convenient
interface for setting the follower widget’s XtNtraversalOn resource to FALSE.

OlAssociateWidget() also accepts gadget arguments.

Toolkit Functions 93

=5

Initialization and Activation Functions
OlUnassociateWidget

#include <Xol/OpenLook.h>

void OlUnassociateWidget(
Widget follower);

OlUnassociateWidget() removes a follower widget from a previous
association with another lead widget. No warning is generated if the supplied
widget was not previously associated with another widget.

OlUnassociateWidget() also accepts gadget arguments.

94 OLIT Reference Manual—August 1994

D=

Buffer Functions

Buffer Functions

These functions manipulate a generic “Buffer” object.

AllocateBuffer

#include <Xol/buffutil.h>
Buffer [CAllocateBuffer(

int element_size
int initial_size);
AllocateBuffer() allocates a Buffer for elements of the given element_size.

The used member of the Buffer is set to zero and the size member is set to the
value of initial_size. If initial_size is zero, the pointer p is set to NULL; otherwise,
the amount of space required (initial_size x element_size) is allocated and the
pointer p is set to point to this space. The function returns the pointer to the
allocated Buffer. It is the responsibility of the caller to free this storage (using
FreeBuffer()) when it is no longer needed.

The Buffer structure is defined as follows:
typedef struct _Buffer {

int size ;
int used;
int esize ;
BufferElement Cp;

} Buffer;

Buffer Macros
The following macros are provided for use with the Buffer functions.

Table 5-1 Buffer Utilities Macros

Macro Returns

BufferFilled(buffer) Indicates whether buffer is filled

BufferLeft(buffer) Evaluates to the number of unused elements in buffer
BufferEmpty(buffer) Indicates whether buffer is empty

Toolkit Functions 95

=5

Buffer Functions

96

CopyBuffer

#include <Xol/buffutil.h>
Buffer [opyBuffer(
Buffer Chuffer);

CopyBuffer() allocates a new Buffer with the same attributes as the given
buffer and copies the data associated with the given buffer into the new Buffer.
A pointer to the newly allocated and initialized Buffer is returned. It is the
responsibility of the caller to free this storage (using FreeBuffer()) when it
is no longer needed.

FreeBuffer

#include <Xol/buffutil.h>

void FreeBuffer(
Buffer Thuffer);

FreeBuffer() deallocates (frees) storage associated with the given buffer
pointer.

GrowBuffer

#include <Xol/buffutil.h>

void GrowBuffer(
Buffer Cbuffer
int increment);

GrowBuffer() expands (or compresses) a given buffer size by increment
elements. If the increment is negative, the operation results in a reduction in
the size of the Buffer.

InsertintoBuffer

#include <Xol/buffutil.h>
int InsertintoBuffer(

Buffer [target ,
Buffer Osource
int offset);
InsertintoBuffer() inserts the elements stored in the source Buffer into the

target Buffer before the element stored at offset. If the offset is invalid or if the
source Buffer is empty, the function returns zero; otherwise, it returns 1 after

OLIT Reference Manual—August 1994

D=

Buffer Functions

completing the insertion. The GrowBuffer() function will be used as needed
to ensure that the target Buffer is large enough to hold the contents of the source
Buffer.

ReadFilelntoBuffer

#include <Xol/buffutil.h>
int ReadFilelntoBuffer(

FILE O ,
Buffer Cbuffer);
ReadFileIntoBuffer() reads a previously opened file associated with fp

and adds the characters read to the end of the buffer. The GrowBuffer()
function will be used as needed to ensure that the Buffer is large enough to
hold the contents of the file. The function returns when either an end-of-file is
detected or a newline character is encountered while reading the file. The
function returns EOF if end-of-file is detected and “\n’ if a newline character is
encountered.

ReadStringIntoBuffer

#include <Xol/buffutil.h>
int ReadStringIntoBuffer(

Buffer Csp,
Buffer Cbuffer);
ReadStringlintoBuffer() reads a previously opened Buffer (see “stropen”

on page 98) associated with sp and adds the characters read to the end of buffer.
The GrowBuffer() function will be used as needed to ensure that the Buffer
is large enough to hold the data to be copied. The function returns when either
a newline character is encountered or an end-of-buffer condition is detected
while reading the Buffer associated with sp. The function returns a ‘\n’ if it
encounters a newline character and EOF if it detects an end-of-buffer condition.

strclose

#include <Xol/buffutil.h>

void strclose(
Buffer Ckp);

The strclose() function closes a string Buffer that was opened using the
stropen() function. It frees the Buffer allocated by stropen()

Toolkit Functions 97

=5

Buffer Functions

98

See Also

strgetc

#include <Xol/buffutil.h>
int strgetc(
Buffer Ckp);

The strgetc() function reads the next character stored in the string sp. The
function returns the next character in the Buffer. When no characters remain,
the function returns EOF.

stropen

#include <Xol/buffutil.h>

Buffer Cstropen(
char Cktring);

The stropen() function allocates a Buffer large enough for string and copies
string into this Buffer. A pointer to the newly allocated Buffer is returned. It is
the responsibility of the caller to close this Buffer (using strclose()) when it
is no longer needed.

“Text Buffer Functions” on page 163,
“Text Buffer Functions for Internationalization” on page 176.

OLIT Reference Manual—August 1994

D=

Cursor and Pixmap Functions

These functions fall into several categories:

Cursor and Pixmap Functions

® OIGet xyzCursor - These are Version 3 functions for obtaining the cursors
defined for Drag and Drop functionality. They take a Widget argument,
unlike the GetOl -style cursor functions. The middle part of the name
indicates the OPEN LOOK-specified function of the cursor. These OlGet O
functions are the preferred functions to use in every case, especially if you
are not using the standard colormap for the root window of your display.

® GetOl xyzCursor - These are not the preferred interface, but are included
to provide compatibility with the Version 2 style of functions, taking a
Screen [screen argument. They are listed separately, without figures.
The cursors for the GetOIl Ofunctions are identical to their OlGet O

counterparts.

® Other Version 2 functions, also with names of the form GetOIl xyzCursor ,
for cursors unrelated to Drag and Drop. Figures for these cursors are in the

OPEN LOOK GUI Functional Specification.

® Two functions returning gray Pixmap IDs.

Version 3 Cursors

§ o o

OlGetDataDupeDragCursor

#include <Xol/OICursors.h>
Cursor OlGetDataDupeDragCursor(

Widget widget);
OlGetDataDupeDropCursor

#include <Xol/OICursors.h>
Cursor OlGetDataDupeDropCursor(

Widget widget);
OlGetDataDupelnsertCursor

#include <Xol/OlCursors.h>

Cursor OlGetDataDupelnsertCursor(
Widget widget);

Toolkit Functions

99

=5

Cursor and Pixmap Functions
OlGetDataDupeNoDropCursor

#include <Xol/OlICursors.h>

i

Cursor OlGetDataDupeNoDropCursor(
Widget widget);

OlGetDataMoveDragCursor

#include <Xol/OICursors.h>

Cursor OlGetDataMoveDragCursor(
Widget widget);

OlGetDataMoveDropCursor

#include <Xol/OlCursors.h>

Cursor OlGetDataMoveDropCursor(
Widget widget);

OlGetDataMovelnsertCursor

#include <Xol/OICursors.h>

Cursor OlGetDataMovelnsertCursor(
Widget widget);

OlGetDataMoveNoDropCursor

#include <Xol/OlCursors.h>

Cursor OlGetDataMoveNoDropCursor(
Widget widget);

OlGetDocCursor

#include <Xol/OICursors.h>

Cursor OlGetDocCursor(
Widget widget);

O f o o

OlGetDocStackCursor

#include <Xol/OICursors.h>

Cursor OlGetDocStackCursor(
Widget widget);

)

100 OLIT Reference Manual—August 1994

D=

oo

) & [

JoJ

OlGetDropCursor

#include <Xol/OlICursors.h>

Cursor OlGetDropCursor(
Widget widget);

OlGetDupeDocCursor

#include <Xol/OICursors.h>

Cursor OlGetDupeDocCursor(
Widget widget);

OlGetDupeDocDragCursor

#include <Xol/OlCursors.h>

Cursor OlGetDupeDocDragCursor(
Widget widget);

OlGetDupeDocDropCursor

#include <Xol/OICursors.h>

Cursor OlGetDupeDocDropCursor(
Widget widget);

OlGetDupeDocNoDropCursor

#include <Xol/OICursors.h>
Cursor OlGetDupeDocNoDropCursor(

Widget widget);
OlGetDupeStackCursor

#include <Xol/OICursors.h>

Cursor OlGetDupeStackCursor(
Widget widget);

OlGetDupeStackDragCursor

#include <Xol/OICursors.h>

Cursor OlGetDupeStackDragCursor(
Widget widget);

Toolkit Functions

Cursor and Pixmap Functions

101

=5

Cursor and Pixmap Functions
OlGetDupeStackDropCursor

#include <Xol/OlICursors.h>

Cursor OlGetDupeStackDropCursor(
Widget widget);

OlGetDupeStackNoDropCursor

#include <Xol/OICursors.h>

Cursor OlGetDupeStackNoDropCursor(
Widget widget);

OlGetFolderCursor
E #include <Xol/OlCursors.h>
Cursor OlGetFolderCursor(
Widget widget);

OlGetFolderStackCursor

#include <Xol/OICursors.h>

Cursor OlGetFolderStackCursor(
Widget widget);

L

OlGetMoveDocCursor

#include <Xol/OlCursors.h>

Cursor OlGetMoveDocCursor(
Widget widget);

OlGetMoveDocDragCursor

#include <Xol/OICursors.h>

o |

Cursor OlGetMoveDocDragCursor(
Widget widget);

OlGetMoveDocDropCursor

#include <Xol/OICursors.h>

[©]

Cursor OlGetMoveDocDropCursor(
Widget widget);

102 OLIT Reference Manual—August 1994

D=

Nl

s)

OlGetMoveDocNoDropCursor

#include <Xol/OlICursors.h>

Cursor OlGetMoveDocNoDropCursor(
Widget widget);

OlGetMoveStackCursor

#include <Xol/OICursors.h>

Cursor OlGetMoveStackCursor(
Widget widget);

OlGetMoveStackDragCursor

#include <Xol/OlCursors.h>

Cursor OlGetMoveStackDragCursor(
Widget widget);

OlGetMoveStackDropCursor

#include <Xol/OICursors.h>

Cursor OlGetMoveStackDropCursor(
Widget widget);

OlGetMoveStackNoDropCursor

#include <Xol/OICursors.h>
Cursor OlGetMoveStackNoDropCursor(

Widget widget);
OlGetNoDropCursor

#include <Xol/OICursors.h>
Cursor OlGetNoDropCursor(

Widget widget);
OlGetTextDupeDragCursor

#include <Xol/OICursors.h>

Cursor OlGetTextDupeDragCursor(
Widget widget);

Toolkit Functions

Cursor and Pixmap Functions

103

=5

Cursor and Pixmap Functions
OlGetTextDupeDropCursor

#include <Xol/OlICursors.h>

I

Cursor OlGetTextDupeDropCursor(
Widget widget);

OlGetTextDupelnsertCursor

#include <Xol/OICursors.h>

Cursor OlGetTextDupelnsertCursor(
Widget widget);

OlGetTextDupeNoDropCursor

#include <Xol/OlCursors.h>

Cursor OlGetTextDupeNoDropCursor(
Widget widget);
OlGetTextMoveDragCursor

#include <Xol/OICursors.h>

Cursor OlGetTextMoveDragCursor(
Widget widget);

OlGetTextMoveDropCursor

#include <Xol/OlCursors.h>

Cursor OlGetTextMoveDropCursor(
Widget widget);

OlGetTextMovelnsertCursor

#include <Xol/OICursors.h>

T

Cursor OlGetTextMovelnsertCursor(
Widget widget);

/4 OlGetTextMoveNoDropCursor

#include <Xol/OICursors.h>

!

Cursor OlGetTextMoveNoDropCursor(
Widget widget);

104 OLIT Reference Manual—August 1994

D=

Version 2 Drag and Drop Cursors

Cursor and Pixmap Functions

All of these version 2 drag and drop cursor functions have similar synopses:

#include <Xol/OICursors.h>

Cursor GetOl

Screen Ckcreen);

The functions are:

GetOlDataDupeDragCursor()
GetOlDataDupeDropCursor()
GetOlDataDupelnsertCursor()
GetOlDataDupeNoDropCursor()
GetOlDataMoveDragCursor()
GetOlDataMoveDropCursor()
GetOlDataMovelnsertCursor()
GetOIDataMoveNoDropCursor()
GetOIDocCursor()
GetOlDocStackCursor()
GetOIDropCursor()
GetOIDupeDocCursor()
GetOIDupeDocDragCursor()
GetOIDupeDocDropCursor()
GetOIDupeDocNoDropCursor()
GetOIDupeStackCursor()
GetOIDupeStackDragCursor()
GetOlIDupeStackDropCursor()
GetOlIDupeStackNoDropCursor()

Other Version 2 Cursors

GetOIBusyCursor

#include <Xol/OICursors.h>

Cursor GetOIBusyCursor(
Screen Ckcreen);

GetOIBusyCursor()

<cursor-name> Cursor(

GetOlFolderCursor()
GetOlFolderStackCursor()
GetOIMoveDocCursor()
GetOIMoveDocDragCursor()
GetOIMoveDocDropCursor()
GetOIMoveDocNoDropCursor()
GetOIMoveStackCursor()
GetOIMoveStackDragCursor()
GetOIMoveStackDropCursor()
GetOIMoveStackNoDropCursor()
GetOINoDropCursor()
GetOITextDupeDragCursor()
GetOITextDupeDropCursor()
GetOITextDupelnsertCursor()
GetOITextDupeNoDropCursor()
GetOlTextMoveDragCursor()
GetOITextMoveDropCursor()
GetOlTextMovelnsertCursor()
GetOITextMoveNoDropCursor()

obtains the cursor ID for screen that complies with the

OPEN LOOK GUI Functional Specification description of the Busy cursor.

Toolkit Functions

105

=5

Cursor and Pixmap Functions

106

GetOIDuplicateCursor

#include <Xol/OlICursors.h>
Cursor GetOlIDuplicateCursor(
Screen Ckcreen);

GetOlDuplicateCursor() obtains the cursor ID for screen that complies
with the OPEN LOOK GUI Functional Specification description of the Duplicate
cursor.

GetOlIMoveCursor

#include <Xol/OICursors.h>
Cursor GetOIMoveCursor(
Screen Ckcreen);

GetOIMoveCursor() obtains the cursor ID for screen that complies with the
OPEN LOOK GUI Functional Specification description of the Move cursor.

GetOIlPanCursor

#include <Xol/OICursors.h>
Cursor GetOIPanCursor(
Screen Cscreen);

GetOIPanCursor() obtains the cursor ID for screen that complies with the
OPEN LOOK GUI Functional Specification description of the Pan cursor.

GetOIQuestionCursor

#include <Xol/OICursors.h>
Cursor GetOlQuestionCursor(
Screen Ckcreen);

GetOlQuestionCursor() obtains the cursor ID for screen that complies with
the OPEN LOOK GUI Functional Specification description of the Question
cursor.

GetOlStandardCursor

#include <Xol/OICursors.h>

Cursor GetOlIStandardCursor(
Screen Ckcreen);

OLIT Reference Manual—August 1994

D=

Cursor and Pixmap Functions

GetOlStandardCursor() obtains the cursor ID for screen that complies with
the OPEN LOOK GUI Functional Specification description of the Standard
cursor.

GetOlTargetCursor

#include <Xol/OICursors.h>

Cursor GetOlTargetCursor(
Screen Ckcreen);

GetOlTargetCursor() obtains the cursor ID for screen that complies with
the OPEN LOOK GUI Functional Specification description of the Target cursor.

Pixmap Functions

OlGet50PercentGrey

#include <Xol/OICursors.h>

Pixmap OlGet50PercentGrey(
Screen Ckcreen);

OlGet50PercentGrey() obtains the ID of a 50% grey Pixmap for screen.

OlGet75PercentGrey

#include <Xol/OICursors.h>

Pixmap OlGet75PercentGrey(
Screen Ckcreen);

OlGet75PercentGrey() obtains the ID of a 75% grey Pixmap for screen.

Return Values

Each cursor function returns a cursor ID. Each Pixmap function returns a
Pixmap .

See Also

“Drag and Drop Functions” on page 109.

Toolkit Functions 107

=5

Display Functions
Display Functions

See Also

108

OlUpdateDisplay

#include <Xol/OpenLook.h>

void OlUpdateDisplay(
Widget w;

OlUpdateDisplay() processes all pending exposure events so that the
appearance of a given widget can be updated immediately. Normally, an
operation is accomplished by a set of callback functions. If one of the callback
functions performs a time-consuming action, it is possible that some portion of
an application window will not be redrawn right away after an

XtSetValues() call. This is because normal exposure processing does not
occur until all callback functions have been invoked. This situation can be
resolved by calling this function before starting a time-consuming action.

Example
extern Widget status_area; /* a staticText widget */
void fooCB(

Widget w,

XtPointer client_data,
XtPointer call_data);

Arg args|[5];

/* display the status in the footer area */

/* before the actual operation */
XtSetArg(args[0], XtNstring,

"Start the operation, please wait ...");
XtSetValues(status_area, args, 1);

/* show the status in the footer area right away */
OlUpdateDisplay(status_area);

/* now we can start the actual operation */

XtSetValues() in Xt Intrinsics Reference Manual.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions

Drag and Drop Functions

Drag and Drop is a direct-manipulation data transfer operation with the
following steps:

1. The user “picks up” an object (a graphical representation of data inside a
client application) by pressing the SELECT mouse button on the object.

2. The user “drags” the object across the display with the SELECT mouse
button pressed.

3. The user “drops” the object over an eligible drop site by releasing the
SELECT mouse button over the drop site.

An example of a drag and drop operation is picking up a file from a file
manager and dropping it on a trash can icon to delete the file. The terminology
associated with the drag and drop operation is described below in detail.

Drop Rectangle

Drop Site

A drop rectangle is a rectangular area of the screen selected by some
application to be eligible for drops. It is the building block of a drop site. There
may or may not be any graphical feedback associated with a drop rectangle.

A drop site is a list of possibly overlapping drop rectangles. Drop sites need to
be registered with the toolkit before they can participate in the Drag and Drop
“protocol.” A drop site may be registered with the toolkit by calling either of
the functions OIDnDRegisterWidgetDropSite() or
OIDnDRegisterWindowDropSite()

Toolkit Functions 109

=5
Drag and Drop Functions
Drop Target

A drop target is a visible receptacle for a drop. It is marked by one of the
glyphs (empty or full versions) in the following figure:

Empt'l_urD Full %

Figure 5-1 Drop Target Glyphs

See “DropTarget Widget” on page 266 for details on creating a drop target.

Owner of Drop Site

The owner of a drop site is the window or widget that registered the drop site
with the toolkit. The owner of a drop site is notified (see Preview Message
Notify Procedure) when the user moves the pointer over one of its drop
rectangles during a drag operation. Drop sites die when the owner dies.

Do not confuse the widget owner of a drop site with the widget owner of an
X11 selection (see “Drop and Data Transfer” on page 112).

Preview Message Notify Procedure

When a drop site is registered with the toolkit, the owner of the drop site may
provide Preview Hints (see “OIDnDSitePreviewHints” on page 117) and a
Preview Message Notify Procedure (see “OIDnDPMNotifyProc” on page 119).
During the drag operation, when the user moves the pointer over a drop site,
the drop site’s Preview Message Notify Procedure may be invoked in a manner
consistent with the Preview Hints.

Trigger Message Notify Procedure

When a drop site is registered with the toolkit, the owner of the drop site may
provide a Trigger Message Notify Procedure (see “OIDnDTMNotifyProc” on
page 121). When a drop occurs on the drop site, the toolkit informs the drop
site of the drop by invoking the drop site’s Trigger Message Notify Procedure.

110 OLIT Reference Manual—August 1994

D=

Setup

Begin Drag

Drag and Drop Functions

A Dbrief description follows of the interaction between a source and destination
during a Drag and Drop operation.

Source

The source may or may not be registered with the toolkit. The source must
arrange to be notified of mouse SELECT events in whatever manner it deems
appropriate.

Destination

The destination must register its drop site(s) with the toolkit by calling
OIDnDRegisterWidgetDropSite() if the destination is a widget, or
OIDnDRegisterWindowDropSite() if the destination is a window.

Registering the drop site may involve providing the toolkit with a set of
Preview Hints (see “OIDnDSitePreviewHints” on page 117), a Preview
Message Notify Procedure (see “OIDnDPMNotifyProc” on page 119), and a
Trigger Message Notify Procedure (see “OIDnDTMNotifyProc” on page 121).

The user “picks” an object by pressing the mouse SELECT button over an
object. The owner of the object is deemed to be the source. With the mouse
SELECT button pressed, the user moves the pointer over the display,
“dragging” the picked object away from the source in search of a destination.
Source

Once the source is notified of a mouse SELECT event and the source is in an
internal state consistent with the beginning of a Drag and Drop operation, the
source should take the following steps:

1. Allocate an X11 selection atom using OIDnDAllocateTransientAtom()

2. Grab the pointer by calling OlGrabDragPointer()

Toolkit Functions 111

=5

Drag and Drop Functions

3. Begin the Drag and Drop operation by calling OIDnDDragAndDrop()
OIDnDDragAndDrop() does not return until a drop occurs or the Drag and
Drop operation is aborted. OIDnDDragAndDrop() returns TRUE if a
successful “drop” occurs. Do not confuse a successful drop with a successful
transfer of data associated with a dropped object.

Destination

The Destination does not exist at this point.

Preview And Animate

Each time the user moves the pointer over a drop site during the drag
operation, the source and the drop site under the pointer may be notified,
depending on whether they have registered suitable notify procedures.

Source

When calling OIDnDDragAndDrop() (see “Begin Drag” on page 111), the
source may provide a Preview and Animate Callback Procedure (see
“OlDnDPreviewAnimateCbP” on page 118). The toolkit calls the source’s
Preview and Animate Callback Procedure as the cursor moves over each
potential drop site, giving the source the opportunity to change the cursor
appearance as needed to provide the appropriate user feedback.

Drop Site Under The Pointer

As the cursor moves over each potential drop site, the toolkit will also call the
Preview Message Notify Procedure of the drop site under the pointer, as
appropriate for the drop site’s Preview Hints. This affords the drop site the
opportunity to change its appearance to indicate its ability (or inability) to
actually receive the drop.

Drop and Data Transfer

112

A “drop” occurs when the user releases the mouse SELECT button over a drop
site. The drop site over which the drop occurs is deemed to be the destination.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
Source

OIDnDDragAndDrop() (see page 124) returns TRUE if a successful drop
occurs. It has three arguments used to return values:

Window Cwindow ,
Position x, Oy

These arguments contain the values of the drop window ID and the x- and y-
coordinates of the drop. At this point the source may:

1. Obtain ownership of the X11 selection atom allocated during the Begin Drag
step. This is done by calling OIDnDOwnSelection() . See page 126.

2. Inform the toolkit of the ID of the X11 selection atom by calling

OIDnDDeliverTriggerMessage() . See page 123.
3. Release the pointer by calling OlUngrabDragPointer() . See page 128.
Destination
When OIDnDDeliverTriggerMessage() is called, the toolkit invokes the

Trigger Message Notify Procedure of the destination drop site, passing along
the ID of the X11 selection atom obtained from the source. If the destination is
interested in the drop, it may call XGetSelection() or
XtGetSelectionValue() to obtain the contents of the selection. Refer to
Section 10.2 of the Xt Intrinsics Reference Manual for details on obtaining the
contents of a selection.

Closing Handshake

Source

The source may provide an OIDnDTransactionStateCallback() function
as an argument to OIDnDOwnSelection() (see “Drop and Data Transfer” on
page 112). This function is invoked by the toolkit with its
OIDnDTransactionState argument set to an appropriate type, when the
destination invokes any of the following functions:

OIDnDBeginSelectionTransaction()
OIDnDENdSelectionTransaction()
OIDnDErrorDuringSelectionTransaction()
OIDnDDragNDropDone()

Toolkit Functions 113

=5

Drag and Drop Functions
Destination

If the toolkit invokes the Trigger Message Notify Procedure with the
send_done argument set to TRUE, the destination is expected to call
OIDnDBeginSelectionTransaction() at the beginning of the selection
transfer and call OIDnDEndSelectionTransaction() at the end of the
selection transfer. The destination may invoke
OIDnDErrorDuringSelectionTransaction() to indicate an error during
selection transfer.

Cleanup

Source

The source releases the selection with OIDnDDisownSelection() , and frees
the X11 selection atom it originally allocated (see “Setup” on page 111) with
OIDnDFreeTransientAtom() . This is typically done from within the source’s
Transaction State Callback when it is invoked with an

OIDnDTransactionState value of OIDnDTransactionDone

Destination

The destination calls OIDnDDragNDropDone() . If the source specified a
Transaction State Callback to OIDnDOwnSelection() , the toolkit will now
call it with an OIDnDTransactionState value of OIDnDTransactionDone

Common Arguments

The following arguments are used in most drag and drop functions. When an
argument to a specific function differs in interpretation from what is listed
here, it is noted for that individual function.

client_data Application-defined data

dropsiteid ID of the drop site over which the drop occurred

detail An XEvent type: either EnterNotify , MotionNotify , or
LeaveNotify

num_sites The number of drop rectangles defining the drop site

operation Either OIDnDTriggerCopyOp or OIDnDTriggerMoveOp

114 OLIT Reference Manual—August 1994

D=

pmnotify

preview_hints

root

rootx
rooty
selection
site_rects

timestamp

tmnotify

widget

window

Function Groups

Drag and Drop Functions

A pointer to a Preview Notify Procedure, of type
OIDnDPMNotifyProc() . The Preview Notify Procedure is
given by the destination when it registers its drop site(s). It is
called when the cursor passes over it following the start of a
drag, subject to the conditions given in the preview_hints.

An enumerated data type OIDnDSitePreviewHints ; possible
values are listed on page 117.

The root windowv.

The horizontal (x-) coordinate at which the drop occurred,
relative to the root window.

The vertical (y-) coordinate at which the drop occurred, relative
to the root window.

The X11 selection atom actually used to transfer the data.

A list of OIDnDSiteRect structures, which defines the drop
rectangles, in the coordinate system of the widget that registers
the drop site.

The current server time. Often, this argument indicates the time
of an event such as the cursor entering a drop site. In these cases
it will be explicitly noted.

A pointer to a Trigger Message Notify Procedure, of type
OIDnDTMNotifyProc()

The widget associated with the owner of a drop site.
The window associated with the owner of a drop site.

The Drag and Drop API contains the following function groups:

Drop Site Manipulation Functions

OIDnDRegisterWidgetDropSite() Register a widget-based drop site
OIDnDRegisterWindowDropSite() Register a window-based

drop site
OIDnDSetDropSitelnterest() Activate or inactivate a drop site
OIDnDSetInterestinWidgetHier() Activate or inactivate drop sites in

Toolkit Functions

a widget hierarchy

115

=5

Drag and Drop Functions

116

OIDnDUpdateDropSiteGeometry()
OIDnDChangeDropSitePreviewHints()
OIDnDDestroyDropSite()
OIDNDQueryDropSitelnfo()
OIDnDGetWindowOfDropSite()

OIDnDGetWidgetOfDropSite()

OIDnDGetDropSitesOfWidget()
OIDNDGetDropSitesOfwWindow()

Message Functions

OIDnDDeliverPreviewMessage()
OIDnDDeliverTriggerMessage()
OIDnDPreviewAndAnimate()

Handshake Functions

OIDnDBeginSelectionTransaction()
OIDnDEnNdSelectionTransaction()

OIDnDErrorDuringSelectionTransaction()

Selection Functions

OIDnDAllocTransientAtom()
OIDnDDisownSelection()
OIDnDFreeTransientAtom()
OIDnDOwnSelection()
OIDnDOwnSelectionincremental()
OIDnDGetCurrentSelectionsForWidget()

General Purpose Functions

OlGrabDragPointer()
OIDnDDragAndDrop()
OlUngrabDragPointer()
OIDnDDragNDropDone()
OIDnDWidgetConfiguredinHier()

OLIT Reference Manual—August 1994

Update a drop site’s geometry
Update a drop site’s preview hints
Delete an existing drop site
Query a drop site’s geometry

Get a window associated with a
drop site

Get a widget associated with a
drop site

Get the drop sites for a widget
Get the drop sites for a window

D=

Drag and Drop Functions

Data Structures

The following data structures are used by several Drag and Drop functions.

OIDNnDDropSitelD

#include <Xol/OIDNDVCX.h>
typedef struct oldnd_drop_site [OIDNDDropSitelD;

OIDnDDropSitelD is an opaque reference to a particular instance of a drop
site.

OIDnDSiteRect

#include <Xol/OIDNDVCX.h>
typedef XRectangle OIDnDSiteRect, COIDnDSiteRectPtr;

The OIDnDSiteRect structure describes the drop site rectangle. Drop sites can
include multiple rectangles.

OIDNnDSitePreviewHints

#include <Xol/OIDNDVCX.h>

typedef enum oldnd_site_preview_hints {
OIDnDSitePreviewNone,

OIDnDSitePreviewEnterLeave = (1<<0),
OIDnDSitePreviewMotion = (1<<1),
OIDnDSitePreviewBoth = (OIDnDSitePreviewEnterLeave |

OIDnDSitePreviewMotion),
OIDnDSitePreviewDefaultSite = (1 << 2),
OIDnDSitePreviewForwarded = (1<<3),
OIDnDSitePreviewlnsensitive = (1 << 4)
} OIDnDSitePreviewHints;

The OIDnDSitePreviewHints enumerated type specifies the conditions
under which the drop site is interested in receiving notification through its
preview callback:

OIDnDSitePreviewNone The drop site does no previewing; its
callback will not be invoked.

OIDnDSitePreviewEnterLeave The drop site Preview Message Notify
Callback will be invoked for Enter/Leave
events.

Toolkit Functions 117

=5

Drag and Drop Functions

118

OIDnDSitePreviewMotion

OIDnDSitePreviewBoth

OIDnDSitePreviewDefaultSite

OIDnDSitePreviewForwarded

OIDnDSitePreviewlnsensitive

Notify Procedure Prototypes

OIDnDPreviewAnimateChP

#include <Xol/OIDNDVCX.h>
typedef void (

Widget widget

int eventcode
Time timestamp ,
Boolean insensitive
XtPointer client_data

The drop site Preview Message Notify
Callback will be invoked for Motion events.

The drop site Preview Message Notify
Callback will be invoked for Enter/Leave
and Motion events.

The drop site is the default site for drop site
forwarding on this application shell. A
default drop site is the site nominated to
receive drops forwarded by the window
manager decorations or icons.

The drop site isacting as a “proxy” on behalf
of some other object or client.

The drop site is currently “insensitive”; this
information will be passed to the source’s
Preview Animate Callback so it can animate
the cursor appropriately as it passes over the
drop site.

COIDNDPreviewAnimateCbP)(

eventcode Event code: LeaveNotify , EnterNotify , or MotionNotify

insensitive TRUE means the drop site under the cursor is insensitive.

client_data Application-defined data passed to OIDnDDragAndDrop() when
the drag and drop operation began.

OIDnDPreviewAnimateCbP

and Animate Callback.

OLIT Reference Manual—August 1994

is the function prototype for the source’s Preview

D=

Drag and Drop Functions
OIDNnDPMNotifyProc

#include <Xol/OIDNDVCX.h>

typedef void ([OIDNDPMNotifyProc)(

Widget widget

Window window ,

Position root x ,

Position root y ,

int detail

Time timestamp ,

OIDnDDropSitelD drop_site

Boolean forwarded

XtPointer client_ data);
root_x The root-relative x-coordinate of the preview “event”
root_y The root-relative y-coordinate of the preview “event”
timestamp The time of the preview “event”
drop_site The ID of the drop site on which the preview occurred
forwarded TRUE means the drop has been forwarded to this target from

another drop site

client_data Application-defined data passed to the toolkit when the drop site
was registered.

The other arguments to this function are described in “Common Arguments”
on page 114,

OIDnDPMNotifyProc is the function prototype for the drop site Preview
Message Notify Procedure. This procedure is associated with a particular drop
site at the time of registration of the drop site with the toolkit. It may be
invoked by the toolkit during a “drag” operation when the pointer enters,
leaves, or moves across the drop site in a manner consistent with the Preview
Hints (see “OIDnDSitePreviewHints” on page 117) of the drop site.

OIDnDProtocolActionChP

#include <Xol/OIDNDVCX.h>

typedef void ([OIDnDProtocolActionCbP) (

Widget widget

Atom selection
OIDnDProtocolAction protocol_action ,
Boolean flag ,

XtPointer client data);

Toolkit Functions

119

=5

Drag and Drop Functions

120

protocol_action ~ An enumerated type indicating the protocol action that has
occurred.

success Success/failure flag; if TRUE, the protocol notification was
successfully received.

The other arguments to this function are described in “Common Arguments”
on page 114.

The OIDnDProtocolAction enumerated type is defined as:

typedef enum oldnd_protocol_action {
OIDnDSelectionTransactionBegins,
OIDnDSelectionTransactionEnds,
OIDnDSelectionTransactionError,
OIDnDDragNDropTransactionDone
} OIDnDProtocolAction;

OIDnDProtocolActionCbP the function prototype for a Protocol Action
Callback Procedure. This callback will be invoked by the toolkit to inform the
caller of the success or failure of these selection transaction handshake
functions. It is supplied by the requester of a selection as an argument to the
selection transaction handshake functions (see
“OlDnDBeginSelectionTransaction” on page 128,
“OlDnDEnNdSelectionTransaction” on page 130,
“OIDnDErrorDuringSelectionTransaction” on page 131, and
“OIDnDDragNDropDone” on page 129).

OIDnDTransactionStateCallback

#include <Xol/OIDNDVCX.h>
typedef void ([OIDnDTransactionStateCallback) (

Widget widget

Atom selection

OIDnDTransactionState state

Time timestamp ,

XtPointer client data);
widget The selection holder.

selection The selection atom
state The protocol event that has occurred
timestamp When the event occurred.

client_data Application-defined data passed to OIDnDOwnSelection() or
OIDnDOwnSelectionincremental()

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
The OIDnDTransactionState enumerated type is defined as:

typedef enum oldnd_transaction_state {
OIDnDTransactionBegins,
OIDnDTransactionEnds,
OIDnDTransactionDone,
OIDnDTransactionRequestorError,
OIDnDTransactionRequestorWindowDeath,
OIDnDTransactionTimeout,

} OIDnDTransactionState;

OIDnDOwnSelection() and OIDnDOwnSelectionincremental() have an
OIDnDTransactionStateCallback() function pointer as one of their
parameters. This function is invoked as a result of drag and drop protocol
events during the drag and drop selection transaction.

The callback is invoked with the following OIDnDTransactionState values
when the requester of the selection (the destination drop site) invokes the
following functions:

Function Invoked By Destination OlIDnDTransactionState Value
OIDnDBeginSelectionTransaction() OIDnDTransactionBegins
OIDnDENdSelectionTransaction() OIDnDTransactionEnds
OIDnDDragNDropDone() OIDnDTransactionDone

OIDnDErrorDuringSelectionTransaction() OIDnDTransactionRequestorError

If the requesting client is lost during the selection transfer because its window
dies, the state callback will be invoked with a state value of
OIDnDTransactionRequestorWindowDeath.

OIDnDTMNotifyProc

#include <Xol/OIDNDVCX.h>
typedef void (COIDNDTMNotifyProc)(

Widget widget
Window window ,
Position root x ,
Position root y ,
Atom selection
Time timestamp ,
OIDnDDropSitelD dropsite
OIDnDTriggerOperation operation

Toolkit Functions 121

=5

Drag and Drop Functions

Boolean send_done ,
Boolean forwarded
XtPointer client data);

root_x The root-relative x-coordinate at which the drop occurred
root_y The root-relative y-coordinate at which the drop occurred
timestamp The timestamp of the trigger message

dropsite The ID of the drop site on which the drop occurred

send_done If TRUE, the selection holder expects to be notified at the end of
the selection transaction that it has been completed and that no
further transactions associated with this drop will occur. This
notification is achieved by calling OIDnDDragNDropDone() when
the selection transaction is completed successfully.

forwarded If TRUE, the site rectangle dropped upon is a forwarded site
rectangle associated by a third party (such as a window manager)
with the default drop site of a top level window.

client_data Application-defined data passed to the toolkit when the drop site
was registered.

The other arguments to this function are described in “Common Arguments”
on page 114.

OIDnDTMNotifyProc s the function prototype for the drop operation Trigger
Message Notify Procedure. This notify procedure, associated with a particular
drop site at registration, is invoked when a drop operation occurs on its
associated drop site.

Source Functions

122

OIDnDAllocTransientAtom

#include <Xol/OIDNnDVCX.h>

Atom OIDnDAllocTransientAtom(
Widget widget);

widget The ID of the widget that will own the transient atom returned by this
call.

OIDnDAllocTransientAtom() allocates a reusable “transient” atom suitable
for use in a drag and drop selection transaction for this widget.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
OIDnDClearDragState

#include <Xol/OIDNDVCX.h>

void OIDnDClearDragState(
Widget widget);

widget The widget ID of the selection holder
OIDnDClearDragState() is called upon completion of the previewing phase
of a drag and drop gesture to clear internal state within the drag and drop

system. This function is called implicitly by OIDnDDragAndDrop() and
therefore is not ordinarily called directly by the OLIT programmer.

OIDNnDDeliverPreviewMessage

#include <Xol/OIDNDVCX.h>
Boolean OIDnDDeliverPreviewMessage(

Widget widget
Window root
Position rootx
Position rooty
Time timestamp);

widget The widget ID of the selection owner.

The other arguments to this function are described in “Common Arguments”
on page 114.

OIDnDDeliverPreviewMessage() attempts to deliver Enter, Leave, and
Motion events to any drop sites currently under the (rootx,rooty) position on the
root window specified. OIDnDDeliverPreviewMessage() returns TRUE if it
finds a drop site to deliver an event to; otherwise, it returns FALSE.

OIDNnDDeliverTriggerMessage

#include <Xol/OIDNDVCX.h>
Boolean OIDnDDeliverTriggerMessage(

Widget widget
Window root ,
Position rootx
Position rooty
Atom selection
OIDnDTriggerOperation operation
Time timestamp);

Toolkit Functions 123

=5

Drag and Drop Functions

124

widget The widget ID of the selection holder

The other arguments to this function are described in “Common Arguments”
on page 114.

OIDnDDeliverTriggerMessage() is called by the dragging client to deliver
a trigger message to a target drop site on the root window at the coordinates
specified.

The calling client is responsible for establishing a timeout period. If the drop
target doesn’t send selection conversion requests during this period, it should
take appropriate action. OIDnDDeliverTriggerMessage() returns TRUE if it
finds a drop site to dispatch a trigger message to at the root (x,y); otherwise, it
returns FALSE.

OIDnDDisownSelection

#include <Xol/OIDNDVCX.h>

void OIDnDDisownSelection(
Widget widget

Atom selection

Time timestamp);
OIDnDDisownSelection() is identical in semantics to the Xt function
XtDisownSelection() . The source widget should call this function to

relinquish ownership of the selection when the drag and drop operation has
been completed.

OIDnDDragAndDrop

#include <Xol/OIDNDVCX.h>
Boolean OIDnDDragAndDrop(

Widget widget

Window Cwindow ,

Position X,

Position Oy,

OIDnDDragDroplnfoPtr drop_info

OIDnDPreviewAnimateCbP proc ,

XtPointer client_data);
widget The ID of the source widget initiating the drag and drop operation
window Returns the ID of the window containing the cursor (pointer)
X The x-coordinate of the cursor relative to the containing window

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
y The y-coordinate of the cursor relative to the containing window

drop_info A pointer to a structure of type OIDnDDragNDroplInfo
containing information about the location of the drop, root-

relative:
typedef struct _ol_dnd_root_info {
Window root_window
Position root x ;
Position root y ;
Time drop_timestamp ;
} OIDnDDragNDroplnfo, [OIDnDDragNDroplinfoPtr;
proc The animate function that is called when the cursor enters a
drop site.

client_data Application-defined data to be passed to the animate callback.

OIDnDDragAndDrop() provides a simple interface for processing the mouse
and keyboard events during a drop and drop operation. Before calling this
function, you should call OlGrabDragPointer() or XGrabPointer() to
effectively grab pointer events.

OIDnDDragAndDrop() issues an XGrabKeyboard() to obtain keystrokes
during the drag operation. It then inserts a raw event handler on the widget
specified for the pointer and key events and initializes the drag and drop

system with OIDnDlInitializeDragState() . Then it proceeds to process the
event stream, delivering preview messages where appropriate via
OIDnDDeliverPreviewMessage() until the drag completes or is aborted.

The function returns the x, y location and the window that the pointer was in
when the operation completed. It also returns the necessary root information.

OIDNnDFreeTransientAtom

#include <Xol/OIDNDVCX.h>

void OIDnDFreeTransientAtom(
Widget widget
Atom transient);

widget The widget with which the transient atom was associated.
transient The selection atom.

OIDnDFreeTransientAtom() frees the transient atom obtained from
OIDnDAllocTransientAtom()

Toolkit Functions 125

=5

Drag and Drop Functions

126

OIDnDInitializeDragState

#include <Xol/OIDNDVCX.h>
Boolean OIDnDinitializeDragState(
Widget widget);

widget The ID of the source widget initiating the drag and drop operation

OIDnDInitializeDragState() is called prior to commencing delivery of
preview messages to cause the drag and drop system to download drop site
previewing information from the OPEN LOOK Window Manager. It returns
TRUE if the download was successful. Otherwise, it returns FALSE. This
function is called implicitly by OIDnDDragAndDrop() and therefore is not
ordinarily called directly by the OLIT programmer.

OIDNDOwnNSelection

#include <Xol/OIDNDVCX.h>
Boolean OIDnDOwnSelection(

Widget widget

Atom selection
Time timestamp ,
XtConvertSelectionProc convert_proc
XtLoseSelectionProc lose_proc
XtSelectionDoneProc done_proc
OIDnDTransactionStateCallback state cb
XtPointer client_data);

OIDnDOwnSelection() is identical in semantics to the Xt function
XtOwnSelection() except for the additional parameters state_cb and
client_data (see “OlDnDTransactionStateCallback™ on page 120).

OIDNDOwnSelectionlncremental

#include <Xol/OIDNDVCX.h>

Boolean OIDnDOwnSelectionincremental(

Widget widget

Atom selection

Time timestamp ,
XtConvertSelectionlncrProc convert_incr_proc ,
XtLoseSelectionlncrProc lose_incr_proc ,
XtSelectionDonelncrProc done_incr_proc

OLIT Reference Manual—August 1994

D=

XtCancelConvertSelectionProc
XtPointer
OIDnDTransactionStateCallback

OIDnDOwnSelectionincremental()
Xt function XtOwnSelectionincremental()

Drag and Drop Functions

cancel_proc
client_data ,
state_cb);

function is identical in semantics to the
except for the additional

parameter state_cb (see “OlDnDTransactionStateCallback™ on page 120).

OIDnDPreviewAndAnimate

#include <Xol/OIDNDVCX.h>

Boolean OIDnDPreviewAnimate(
Widget
Window
Position
Position
Time
OIDnDPreviewAnimateCbP
XtPointer

animate_proc

This function is called implicitly by OIDnDDragAndDrop()

widget

root

rootx

rooty
timestamp ,
animate_proc
client_data);

The animate callback function.

and therefore is

not ordinarily called by the OLIT programmer directly.

OlGrabDragPointer

#include <Xol/OpenLook.h>
void OlGrabDragPointer(

Widget w,
Cursor cursor
Window confine_to_window),
w The ID of the source widget initiating the drag and drop
operation.
cursor The cursor to be displayed.

confine_to_window

Specifies the window to confine the drag pointer to, or

None. None is typically what is desired for adrag and drop

operation.

OlGrabDragPointer()

effects an active grab of the mouse pointer. This

function is normally called after a mouse drag operation has begun and prior

to calling the OIDnDDragAndDrop()

drag operation.

Toolkit Functions

procedure, which is used to monitor the

127

=5

Drag and Drop Functions

OlGrabDragPointer() does not return until it has successfully grabbed the
drag pointer. If another widget in this client application has already grabbed
the pointer, calling this function overrides any such previous grab. If another
client application has already grabbed the pointer, this function blocks until the
other client ungrabs the pointer and this client subsequently grabs the pointer.

OlUngrabDragPointer

#include <Xol/OpenLook.h>
void OlUngrabDragPointer(
Widget w);

OlUngrabDragPointer() relinquishes the active pointer grab that was
initiated by the OlGrabDragPointer() procedure. It simply ungrabs the
pointer.

For OlUngrabDragPointer() to succeed, the widget passed to it must be on
the same display as the widget used to grab the pointer.

Destination Functions

128

OIDnDBeginSelectionTransaction

#include <Xol/OIDNDVCX.h>
void OIDnDBeginSelectionTransaction(

Widget widget
Atom selection
Time timestamp ,
OIDnDProtocolActionCbP proc ,
XtPointer client_data);
widget The requesting widget or the drop site owner.

selection The selection atom passed in the trigger notify function.
timestamp The server timestamp for the current time.

proc The callback to inform the requester whether the selection owner has
successfully received the begin notification. When this callback is
invoked, the protocol_action argument (see
“OlDnDProtocol ActionCbP” on page 119) is set to
OIDnDSelectionTransactionBegins

client_data Application-defined data to be passed to proc.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions

OIDnDBeginSelectionTransaction() is used in conjunction with the
OIDnDENdSelectionTransaction() function to provide a positive
handshake indicating a selection transaction. It invokes the selection holder’s
transaction state callback (specified by the OIDnDOwnSelection() and
OIDnDOwnSelectionincremental() functions) with a transaction state
parameter value of OIDnDTransactionBegins.

OIDnDChangeDropSitePreviewHints

#include <Xol/OIDNDVCX.h>

Boolean OIDnDChangeDropSitePreviewHints(
OIDnDDropSitelD dropsiteid
OIDnDSitePreviewHints preview_hints);

The arguments to this function are described in “Common Arguments” on
page 114.

OIDnDUpdateSitePreviewHints() updates a drop site’s preview hints.
During the lifetime of a drop site it may be necessary to alter the nature of its
previewing interest. Use OIDnDUpdateSitePreviewHints() to overwrite
the existing preview hints for a drop site and update the drop site interest list
appropriately.

OIDnDDestroyDropSite

#include <Xol/OIDNDVCX.h>

void OIDnDDestroyDropSite(
OIDnDDropSitelD dropsiteid);

dropsiteid The ID of the drop site
OIDnDDestroyDropSite() explicitly destroys a drop site. When a drop site’s

widget or window is destroyed, all drop sites associated with that widget or
window are automatically destroyed.

OIDnDDragNDropDone

#include <Xol/OIDNDVCX.h>

void OIDnDDragNDropDone(
Widget widget
Atom selection

Toolkit Functions 129

=5

Drag and Drop Functions

130

Time timestamp ,
OIDnDProtocolActionCbP proc ,
XtPointer client data);
proc The callback to inform the requester whether the selection owner

has successfully received the done notification. When it is
invoked, the protocol_action argument (see
“OlDnDProtocolActionCbP” on page 119) is set to
OIDnDDragNDropTransactionDone

client_data Application-defined data to be passed to proc.

The other arguments to this function are described in “Common Arguments”
on page 114.

OIDnDDragNDropDone() is called to inform the source (selection holder) of
the completion of the drag and drop operation; this is a notification to the
source that it may clean up any state associated with the selection atom, as
described in “Cleanup” on page 114. It invokes the source’s transaction

state callback (registered with OIDnDOwnSelection() or
OIDnDOwnSelectionincremental()) with a transaction state parameter
value of OIDnDTransactionDone

OIDnDENdSelectionTransaction

#include <Xol/OIDNDVCX.h>
void OIDnDENdSelectionTransaction(

Widget widget
Atom selection
Time timestamp ,
OIDnDProtocolActionCbP proc ,
XtPointer client data);
proc The callback to inform the requester whether the selection owner

has successfully received the end notification. When it is
invoked, the protocol_action (see “OIDnDProtocolActionCbP” on
page 119) argument is set to

OIDnDSelectionTransactionEnds

client_data Application-defined data to be passed to proc.

The other arguments to this function are described in “Common Arguments”
on page 114.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
OIDnDENdSelectionTransaction() provides a positive handshake
between the selection requester and holder.

It invokes the selection holder’s transaction state callback (registered with the
OIDnDOwnSelection() and OIDnDOwnSelectionincremental()

functions) with a transaction state parameter value of

OIDnDTransactionEnds

OIDnDErrorDuringSelectionTransaction
#include <Xol/OIDNDVCX.h>

void OIDnDErrorDuringSelectionTransaction(

Widget widget
Atom selection
Time timestamp ,
OIDnDProtocolActionCbP proc ,
XtPointer client_data);
proc The callback to inform the requester whether the selection owner

has successfully received the error notification. When it is
invoked, the protocol_action (see OIDnDProtocolActionCbP)
argument is set to OIDnDSelectionTransactionError

client_data Application-defined data to be passed to proc.

The other arguments to this function are described in “Common Arguments”
on page 114.

OIDnDErrorDuringSelectionTransaction() can be called at any time
during the selection transfer by the requester to inform the selection holder
that there is an error. The subsequent behavior of the holder is undefined by

this protocol. OIDnDErrorDuringSelectionTransaction() invokes the
selection holder’s transaction state callback (registered with
OIDnDOwnSelection() or OIDnDOwnSelectionincremental()) with a

transaction state parameter value of OIDnDTransactionRequestorError

OIDnDGetCurrentSelectionsForWidget

#include <Xol/OIDNDVCX.h>
Boolean OIDnDGetCurrentSelectionsForWidget(

Widget widget
Atom (Tatoms_return
Cardinal Chum_sites_return);

Toolkit Functions 131

=5

Drag and Drop Functions

132

widget The ID of the widget being investigated.

atoms_return Points to an array of atoms currently held as selections by
the widget.

num_sites_return Points to a variable containing the number of atoms
returned.

OIDnDGetCurrentSelectionsForWidget() returns a list of atoms

currently held as drag and drop selections for the specified widget. If

OIDnDGetCurrentSelectionsForWidget() finds any, it returns TRUE;

otherwise, it returns FALSE.

The caller must call XtFree() on the pointer returned in the atoms_return
parameter to free the storage allocated when it is no longer required.

OIDNnDGetDropSitesOfWidget

#include <Xol/OIDNDVCX.h>
OIDnDDropSitelD COIDNDGetDropSitesOfWidget(

Widget widget
Cardinal Chum_sites_return);
widget The widget associated with the owner of the drop site.

num_sites_return A pointer to a variable into which the function will return
the number of drop sites.

OIDnDGetDropSitesOfWidget() obtains the currently registered list of drop
sites for a particular widget instance. The function returns a pointer to an
OIDnDDropSitelD array that is an enumeration of the drop sites currently
registered for the widget. Clients should use XtFree() on this return value to
deallocate the array when it is no longer needed. If there are no drop sites
registered or the function fails, OIDnDGetDropSitesOfWidget() returns
NULL.

OIDnDGetDropSitesOfWindow

#include <Xol/OIDNDVCX.h>
OIDnDDropSitelD OIDNDGetDropSitesOfWindow(

Display Cdpy,
Window window ,
Cardinal Chum_sites_return);

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
dpy The display pointer.

window The window associated with the owner of the drop site.

num_sites_return A pointer to a variable into which the function will return
the number of drop sites.

OIDnDGetDropSitesOfWindow() obtains the currently registered list of drop
sites for a particular window. The function returns a pointer to an
OIDnDDropSitelD array that is an enumeration of the drop sites currently
registered for the window. Clients should use XtFree() on this return value
to deallocate the array when it is no longer needed. If there are no drop sites
registered or the function fails, OIDnDGetDropSitesOfwWindow() returns
NULL.

OIDnDGetWidgetOfDropSite

#include <Xol/OIDNDVCX.h>

Widget OIDnDGetWidgetOfDropSite(
OIDnDDropSitelD dropsiteid);

OIDnDGetWidgetOfDropSite() returns the ID of the widget associated with
the drop site, specified by the dropsiteid argument. If the drop site was
registered with OIDnDRegisterWindowDropSite() ,
OIDnDGetWidgetOfDropSite() returns the ID of the widget that is the most
immediate ancestor of the associated window.

OIDnDGetWindowOfDropSite

#include <Xol/OIDNDVCX.h>

Window OIDnDGetWindowOfDropSite(
OIDnDDropSitelD dropsiteid);

OIDnDGetWindowOfDropSite() returns the window ID that the drop site
specified by the dropsiteid argument is associated with. If the drop site was
registered with a gadget, then OIDnDGetWindowOfDropSite() returns the
window ID of the gadget’s windowed parent.

Toolkit Functions 133

=5

Drag and Drop Functions

134

OIDnDQueryDropSitelnfo

#include <Xol/OIDNDVCX.h>
Boolean OIDnDQueryDropSitelnfo(

OIDnDDropSitelD dropsiteid
Widget Owidget
Window Cwindow ,
OIDnDSitePreviewHints Cpreview_hints
OIDnDSiteRectPtr Ckite_rects
unsigned int Chum_rects
Boolean Cbn_interest),
widget The address of a variable of type Widget that returns the ID of
the widget that owns the drop site. Set this parameter to NULL if
no query on the widget ID is required. If the drop site was
registered with OIDnDRegisterWindowDropSite() , this is
the widget ID of the associated window’s most immediate
ancestor.
window The address of a variable of type Window that returns the 1D of

preview_hints

site_rects

num_rects

on_interest

the window that owns the drop site. Set this parameter to NULL
if no query on the window ID is required. For gadgets, this is the
window ID of its windowed ancestor.

The address of a variable of type OIDnDSitePreviewHints
that returns the current hints for the drop site. Set this parameter
to NULL if no query on the preview hints is required.

The address of a variable of type OIDnDSiteRectPtr that
returns a pointer to an array that contains the current geometry
of the drop site. This parameter may be set to NULL if no query
on the site geometry is required. Clients must use XtFree() to
deallocate the memory used by the array when they no longer
require it.

The address of an unsigned int variable that returns the
number of OIDnDSiteRect structures specified for the drop
site. Set this parameter to NULL if no query on the number of
rectangles.

The address of a Boolean variable that returns a value
indicating whether the drop site is currently active (TRUE) or
inactive (FALSE). Set this parameter to NULL if this value is not
required.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions

OIDnDQueryDropSitelnfo() retrieves information about the drop site
specified by the dropsiteid argument. The function returns TRUE if the query
was successful; otherwise, it returns FALSE.

OIDnDRegisterWidgetDropSite

#include <Xol/OIDNDVCX.h>
OIDnDDropSitelD OIDnDRegisterWidgetDropSite(

Widget widget
OIDnDSitePreviewHints preview_hints |
OIDnDSiteRectPtr site_rects ,
unsigned int num_sites ,
OIDnDTMNotifyProc tmnotify
OIDnDPMNotifyProc pmnotify
Boolean on_interest
XtPointer client_data);

client_data Application-defined data that is passed to the tmnotify and
pmnotify functions when they are called.

on_interest Specifies whether the drop site is active (i.e., “interested” in
responding to drops). TRUE means the drop site is active, FALSE
means it is inactive. An inactive drop site is ignored during a Drag
and Drop operation; its Preview Message Notify Procedure is not
called when the cursor passes over it, nor is the source’s Preview
Animate Callback. This drop site attribute may be changed at any
time during the existence of the drop site using the function
OIDnDSetDropSitelnterest()

The other arguments to this function are described in “Common Arguments”
on page 114.

OIDnDRegisterWidgetDropSite() creates a drop site associated with a
particular widget. The widget must be realized; that is, it must have a window
associated with it before you can create a drop site for it. Gadgets can support
drop sites and use their windowed ancestor’s window in association with the
registered drop site. Drop sites are automatically destroyed when their owning
widgets die.

Toolkit Functions 135

=5

Drag and Drop Functions

136

OIDnDRegisterWindowDropSite

#include <Xol/OIDNDVCX.h>

OIDnDDropSitelD OIDnDRegisterWindowDropSite(

Display Capy,

Window window ,
OIDnDSitePreviewHints preview_hints
OIDnDSiteRectPtr site_rects
unsigned int num_sites ,
OIDnDTMNotifyProc tmnotify |
OIDnDPMNotifyProc pmnotify

Boolean on_interest
XtPointer client data);
dpy The display pointer.
client_data Application-defined data that is passed to the tmnotify and

pmnotify functions when they are called.

The other arguments to this function are described in “Common Arguments
on page 114.

OIDnDRegisterWindowDropSite() registers a window-based drop site. It
creates a drop site associated with a particular X Window and is useful for
toolkit applications that mix “raw” X windows with widgets. Drop sites are
automatically destroyed when their owning windows die. The window must
be an inferior of a widget’s window.

OIDNnDSetDropSitelnterest

#include <Xol/OIDNDVCX.h>

void OIDnDSetDropSitelnterest(
OIDnDDropSitelD dropsiteid
Boolean on_interest);

on_interest TRUE means the drop site is made active, FALSE means the drop

site is made inactive.

OIDnDSetDropSitelnterest() activates or inactivates a drop site by
exporting its existence. Active drop sites respond to drops. Inactive drop sites
do not respond to drops.

OLIT Reference Manual—August 1994

D=

Drag and Drop Functions
OIDnDSetInterestinWidgetHier

#include <Xol/OIDNDVCX.h>

void OIDnDSetInterestinWidgetHier(
Widget widget
Boolean on_interest);

on_interest TRUE means the drop sites are made active, FALSE means the drop
sites are made inactive.

OIDnDSetInterestinWidgetHier() activates or inactivates all drop sites
belonging to this widget and its children.

OIDnDUpdateDropSiteGeometry

#include <Xol/OIDNDVCX.h>
Boolean OIDnDUpdateDropSiteGeometry(

OIDnDDropSitelD dropsiteid
OIDnDSiteRectPtr site_rects
unsigned int num_sites);

dropsiteid The ID of the drop site to be updated.

site_rects The new list of site rectangles for the drop site.

num_sites The number of rectangles in the new rectangle list.
OIDnDUpdateDropSiteGeometry() alters the geometry of a drop site.
Changes in the geometry of a drop site are caused by changes in the geometry
of the widget or window that owns the drop site. To reduce client-server
traffic, the toolkit does not automatically track changes in windows that own
drop sites. The creator of a drop site is responsible for maintaining the

geometry of the site to reflect any changes in the widget or window that owns
the site.

OIDnDWidgetConfiguredinHier

#include <Xol/OIDNDVCX.h>

void OIDnDWidgetConfiguredinHier(
Widget widget);

This function is primarily for use by developers of Composite widgets.

Toolkit Functions 137

=5

Drag and Drop Functions

138

Since drop sites are separate from the server window hierarchy, drop site
owners must attempt to maintain their drop sites clipped to their visible
region(s), as defined by the server window hierarchy associated with the
widget hierarchy that contains the drop sites.

In order to achieve this clipping, Composite widgets and their subclasses
must inform the Drag and Drop system that they have configured some
widgets in their subtree, as a result of a call to that Composite widget’s
ChangeManaged() or GeometryManager() methods (hence potentially
changing the visible region(s) of drop sites in that subtree). Calling this
function will cause the Drag and Drop system to recalculate the clipping
region(s) of any drop sites under the configuring widget in the widget
hierarchy.

In order to eliminate multiple recalculations of drop site clipping region(s) due
to configures propagating down a widget hierarchy, a mechanism exists to
suppress such multiple calculations; developers should take advantage of this
in order to optimize performance.

The following is an example of the usage of this function in a simple geometry
manager:

static XtGeometryResult GeometryManager(
Widget requester;
XtWidgetGeometry [fequest,
XtWidgetGeometry Creply);

CompositeWidget comp = requester->core.parent;
Widget vendor = comp;

Arg args[2];

Boolean configured_others = False;

XtSetArg(args[0], XtNconfiguringWidget, (XtPointer)requester);
XtSetArg(args[1], XtNdisableDSClipping, True);

while (!XtlsVendorShell(w))
vendor = vendor->core.parent;

XtSetValues(vendor, args, XtNumber(args));

/* Disable clipping in my subtree while | configure. */

[* Consider the geometry request received and then maybe
* configure one or more of the managed set and/or perhaps
* request that my parent reconfigure me as a result of the

* request being made by the requester widget.

*

OLIT Reference Manual—August 1994

D=

See Also

Drag and Drop Functions

* Set configured_others True if the Composite made a successful

* geometry request to its parent, or if it moved siblings of

* the requester */

if ((request->request_mode & CWX) == CWX)
requester->core.x = request->X;

if ((request->request_mode & CWY) == CWY)
requester->core.y = request->y;

if ((request->request_mode & CWWidth) == CWWidth)
requester->core.width = request->width;

if ((request->request_mode & CWHeight) == CWHeight)
requester->core.height = request->height;

XtSetArg(args[1], XtNdisableDSClipping, False);

XtSetValues(vendor, args, XtNumber(args));

/* enable clipping again */

/* Inform the drag and drop system to clip any drop sites in

* the widget hierarchy under the configuring widget. */

if (configured_others)
OIDnDWidgetConfiguredinHier((Widget)comp);
else
OIDnDWidgetConfiguredinHier(requester);

return XtGeometryYes;

}

“Cursor and Pixmap Functions” on page 99,
“DropTarget Widget” on page 266.

Toolkit Functions 139

=5

Dynamic Resource Functions
Dynamic Resource Functions

OLIT supports Dynamic Resources. This means that for selected resource
classes (those resources that include a D in the “Access” column), OLIT will
detect dynamic changes in the server’s resource database (by looking for
updates on the RESOURCE_MANAGER property of the RootWindow) and
automatically update the resource inside the widget.

The following routines allow applications to use this Dynamic Resource
functionality.

Note — The OlGetApplicationResources() and LookupOlColors()
routines previously included with the dynamic settings functions are no longer
supported.

OlCallDynamicCallbacks

#include <Xol/Dynamic.h>

void OlCallDynamicCallbacks(void)

OlCallDynamicCallbacks() triggers the calling of the functions registered
on the dynamic callback list. This procedure is called automatically whenever

the RESOURCE_MANAGER property of the RootWindow is updated. It may also
be called to force a synchronization of the dynamic settings.

OlRegisterDynamicCallback

#include <Xol/Dynamic.h>
void OlRegisterDynamicCallback(

OIDynamicCallbackProc CB

XtPointer data);
OIRegisterDynamicCallback() adds a function to the list of registered
callbacks to be called whenever the procedure OlCallDynamicCallbacks()
is invoked. OlCallDynamicCallbacks() is invoked whenever the
RESOURCE_MANAGER property of the Root Window is updated.
OlCallDynamicCallbacks() may also be called directly by either the

140 OLIT Reference Manual—August 1994

D=

Dynamic Resource Functions

application or other routines in the widget libraries. The callbacks registered are
guaranteed to be called in first-in-first-out (FIFO) order of registration and will
be called as:

(GCB)(data);

OlUnregisterDynamicCallback

#include <Xol/Dynamic.h>
int OlUnregisterDynamicCallback(

OIDynamicCallbackProc CB

XtPointer data);
OlUnregisterDynamicCallback() removes a function from the list of
registered callbacks to be called whenever OlCallDynamicCallbacks() is

invoked. It returns zero if the dynamic callback cannot be removed; otherwise,
it returns 1.

Toolkit Functions 141

=5

Error Functions
Error Functions

142

The following functions provide error and warning message services.

Most programs should not use OlError() and OlWarning() since they do
not allow for customization or internationalization.

The OpenLook.h header does not include stdarg.h or varargs.h

An application using OlSetVaDisplayErrorMsgHandler() or
OlSetVaDisplayWarningMsgHandler() should include one of these two
headers before including OpenLook.h to ensure the correct function prototype
will be used for the application’s error/warning handler.

OIError

#include <Xol/OpenLook.h>

void OIError(
String msg);

OlError() writes a string to stderr and then exits.

OlWarning

#include <Xol/OpenLook.h>

void OlWarning(
String msg);

OlWarning() writes a string to stderr and then returns.

OlVaDisplayErrorMsg

#include <Xol/OpenLook.h>
void OlVaDisplayErrorMsg(

Display Capy,

String name,

String type ,

String class

String default_msg

K
OlVaDisplayErrorMsg() writes an error message to stderr and exits. The
error message is looked up in the error database by calling
XtAppGetErrorDatabaseText() using the name, type, and class arguments.

OLIT Reference Manual—August 1994

D=

Error Functions

If no message is found in the error database, the default_msg string is used. The
application context is determined by calling

XtDisplayToApplicationContext() with the supplied Display pointer.
If the display pointer is NULL, the display created at application startup is used
to determine the application context.

OlVaDisplayWarningMsg

#include <Xol/OpenLook.h>
void OlVaDisplayWarningMsg(

Display Copy,

String name,

String type ,

String class

String default_msg

K
OlVaDisplayWarningMsg() has the same semantics as
OlVaDisplayErrorMsg() , except that it returns instead of exiting.

OlSetErrorHandler

#include <Xol/OpenLook.h>

OlErrorHandler OlSetErrorHandler(
OlErrorHandler handler);

OlSetErrorHandler() , OlSetWarningHandler() :
OlSetVaDisplayErrorMsgHandler() , and
OlSetVaDisplayWarningMsgHandler() allow an application to override

the various warning and error handlers. These routines return a pointer to the
previous handler. If NULL is supplied to any of these routines, the default
handler will be used. Application-supplied error handlers should do the same
since continuation of an application will result in undefined behavior.

OlSetWarningHandler

#include <Xol/OpenLook.h>

OlWarningHandler OlSetWarningHandler(
OlwWarningHandler handler);

See OlSetErrorHandler() above.

Toolkit Functions 143

=5

Error Functions
OlSetVaDisplayErrorMsgHandler

#include <Xol/OpenLook.h>

OlVaDisplayErrorMsgHandler OlSetVaDisplayErrorMsgHandler(
OlVaDisplayErrorMsgHandler handler ,

o s
See OlSetErrorHandler() above.

OlSetVaDisplayWarningMsgHandler

#include <Xol/OpenLook.h>

OlVaDisplayWarningMsgHandler OlSetVaDisplayWarningMsgHandler(
OlVaDisplayWarningMsgHandler handler ,

o s
See OlSetErrorHandler() above.

OlErrorHandler

#include <Xol/OpenLook.h>
typedef void ([OIErrorHandler)(

String msg);
OlWarningHandler

#include <Xol/OpenLook.h>
typedef void ([OIWarningHandler)(

String msg);
OlVaDisplayErrorMsgHandler

#include <Xol/OpenLook.h>
typedef void ([OlIVaDisplayErrorMsgHandler)(

Display Copy,

String name,

String type ,

String class

String default_msg

)

144 OLIT Reference Manual—August 1994

D=

Error Functions
OlVaDisplayWarningMsgHandler

#include <Xol/OpenLook.h>
typedef void ([DlvaDisplayWarningMsgHandler)(

Display Cdpy,

String name,

String type ,

String class

String default_msg

)

Toolkit Functions 145

=5

Help Function
Help Function

The following function is used to register help.

OlRegisterHelp

#include <Xol/OpenLook.h>
void OlRegisterHelp(

OlDefine id_type ,
XtPointer id ,
String tag ,
OlDefine source_type
XtPointer source);
OlRegisterHelp() associates help information with either a widget instance

or a widget class. The widget ID or widget class pointer is given in id, and
id_type identifies whether it is a widget or a widget class using one of the
values OL_WIDGET_HELP or OL_CLASS_HELP, respectively. Use
OL_WIDGET_HELP to register help on gadgets. The other arguments are
explained in “Format of Help” on page 147.

The tag value is shown in the title of the help window, as follows:
app-name:tag Help

where app-name is the name of the application. The tag can be null, in which
case only app-name: Help is printed.

Help for Flat Widgets

146

To set the same help message for all items in a flat widget container, use the
OlRegisterHelp() routine with id_type set to OL_WIDGET_HELP. To register
help for individual items in a flat widget container, use OIRegisterHelp()

with id_type set to OL_FLAT_HELP. Use the following structure to specify the
object that gets the help message and pass OlRegisterHelp() a pointer to it
in the id parameter:

typedef struct {
Widget widget ;
Cardinal item_index ;
} OlFlatHelpld;

OLIT Reference Manual—August 1994

D=

Help Function
Format of Help

The help message is identified in source; source_type identifies the form of the
help message as one of the following:

OL_STRING_SOURCE

The source is of type String and contains text with embedded newlines.
OlRegisterHelp() does not copy this source; the application is expected to
maintain the original as long as it is registered.

OL_DISK_SOURCE

The source is also of type String , but contains the name of a file that contains
the help text. OlIRegisterHelp() does not copy this filename; the application
is expected to maintain the original as long as it is registered. The file content
is expected to be text with embedded newlines.

OL_INDIRECT_SOURCE

The source is of type void(() and is a pointer to an application-defined
routine to be called by OLIT. This routine is called after HELP has been clicked.
The application is expected to define the type of the help source in the routine;
after it has returned, the help information will be displayed.

The routine is called as follows:
(Csource)(id_type , id, src x , srcy ,& source type ,& source),

id_type and id The values for the widget class or widget instance that
was under the pointer when HELP was pressed. These
are the same values previously registered with
OlRegisterHelp()

src_x and src_y The coordinates of the pointer when HELP was pressed.
These are relative to the upper-left corner of the window.

source_type and source Pointers to values the application’s routine should set
for the help source it wants to display. The only
source_type values accepted are OL_STRING_SOURCE and
OL_DISK_SOURCE.

Toolkit Functions 147

=5

Help Function

148

OL_TRANSPARENT_SOURCE

The source is of type void(() and is a pointer to an application-defined
routine. The routine is called after HELP has been invoked. The application is
expected to handle the HELP event completely. This might be used by an
application that does not want the standard help window (for example,
xterm (1) simply generates an escape sequence).

The routine is called as follows:

(Osource)(id_type , id, src x, srcy),

id_type and id The values for the widget class or widget instance that was
under the pointer when HELP was pressed. These are the same
values registered with OIRegisterHelp()

src_xandsrc_y The coordinates of the pointer when HELP was pressed. These
are relative to the upper-left corner of the window.

The help window is automatically popped up for the OL_STRING_SOURCE,
OL_DISK_SOURCE, and OL_INDIRECT_SOURCE help sources. (It is popped up
after the application routine returns for the OL_INDIRECT_SOURCE help
source.) The application is responsible for popping up a help window (if
needed) for the OL_TRANSPARENT_SOURCE help source.

Handling the Help Key Event

When the user clicks HELP, if the event occurs within a widget or window
registered with the OIRegisterHelp() routine, the corresponding help
message is automatically displayed (for source types OL_STRING_SOURCE and
OL_DISK_SOURCE) or the application routine is called (for source types
OL_INDIRECT_SOURCE and OL_TRANSPARENT_SOURCE). If the event occurs
elsewhere, a default help message is displayed.

If the help key is pressed on a widget, the help routine looks for help registered
on that widget of type OL_WIDGET_HELP. If no help is found, the help routine
searches up the widget tree (i.e., goes to the widget’s parents up to a widget
which is a subclass of shell) looking for the first widget that has help of type
OL_WIDGET_HELP registered. If it finds help registered on one of the ancestors
of the original widget, the help message for that widget will be used. If help is
not found, the help routine looks for help of type OL_CLASS_HELP on the
original widget. If no help is found, the default message is used.

OLIT Reference Manual—August 1994

D=

Help Function

The use of OlRegisterHelp() is considered across all applications. In other
words, even though a regular application does not register help for the root
window (the “workspace”), it does not mean that pressing HELP on the root
window causes a default message. Another application (typically the
workspace manager) may have registered the help.

Separate Help per Application

An application will have, at most, one help message displayed. However,
several applications can display their separate help messages simultaneously,
in different help windows.

Displaying the Help Message

A help source of type OL_STRING_SOURCE and OL_DISK_SOURCE is displayed
in a help window that is 50 ens wide and 10 lines tall. (An en is S/2 points,
where S is the current point size.)

Lines longer than the help window width are wrapped at the space(s) between
words, or at the nearest character boundary if there is no space at which to
wrap. Lines are also wrapped at embedded newlines, regardless of their
lengths.

Only spaces and newlines are recognized for format control; all other non-
printable characters are silently ignored.

Up to ten lines of the message are visible at once. Messages longer than ten
lines have a scrollbar control that allows scrolling non-visible lines into view.

Static Variables

The tag and source values should be statically defined (or allocated and not
freed). Using automatic variables here will almost always fail.

Toolkit Functions 149

=5

Input Focus Functions
Input Focus Functions

150

Each of these utility routines works with widgets or gadgets to manipulate
input focus.

OlCallAcceptFocus
#include <Xol/OpenLook.h>

Boolean OlCallAcceptFocus(

Widget W,

Time time);
OlCallAcceptFocus() sets the focus to a specified widget. If widget w
currently is capable of accepting input focus, OlCallAcceptFocus() assigns
focus to w and it returns TRUE; otherwise, it returns FALSE. See the
XtCallAcceptFocus() function in the Xt Intrinsics Reference Manual for

further details about the time argument.

Note — OlCallAcceptFocus() will be declared obsolete in a future version
of OLIT. You should use the XtCallAcceptFocus() for all new applications.

OlCanAcceptFocus

#include <Xol/OpenLook.h>

Boolean OlCanAcceptFocus(
Widget W,
Time time);

OlCanAcceptFocus() tests whether a widget can accept focus. If it can
accept focus, it returns TRUE; otherwise, it returns FALSE. Acceptance of focus
is determined by all of the following being true:

®* The widget is not being destroyed.

® The widget is managed.

® The widget is mapped when managed (if it is not a gadget).

®* The widget is realized, or for a gadget, the gadget’s parent are realized.

®* The widget and its ancestors are sensitive.

OLIT Reference Manual—August 1994

D=

Input Focus Functions

® A query for the widget’s Window attributes is successful and the widget’s
window is viewable (i.e., the window and all its ancestor windows are
mapped).

® The XtNmouseless resource is TRUE or the widget is a shell or text input
widget.

OlSetInputFocus

#include <Xol/OpenLook.h>
void OlSetlnputFocus(

Widget w,

int revert to

Time time);
OlSetinputFocus() sets focus to a widget. Applications should use this
routine instead of XSetlnputFocus() ; see the description of

XSetlnputFocus() in the XLib Reference Manual for further details about the
revert_to and time arguments. If XtNmouseless is FALSE,

OlSetinputFocus() is ignored unless the widget is a text input or shell
widget.

OlGetCurrentFocusWidget

#include <Xol/OpenLook.h>
Widget OlGetCurrentFocusWidget(
Widget w);

OlGetCurrentFocusWidget() returns the widget that currently has focus in
the window group of the specified widget. If no widget in the window group
has focus, OlGetCurrentFocusWidget() returns NULL.

OlHasFocus

#include <Xol/OpenLook.h>
Boolean OlHasFocus(
Widget w);

OlHasFocus() returns TRUE if the specified widget has focus. OlHasFocus()
simply calls OlGetCurrentFocusWidget() and compares its return value to
the supplied widget.

Toolkit Functions 151

=5

Input Focus Functions

152

OlMoveFocus

#include <Xol/OpenLook.h>

Widget OIMoveFocus(
Widget
OlVirtualName
Time

w,
direction
time);

OIMoveFocus() moves the input focus relative to the widget w, as indicated
by direction, and returns the new focus widget. It calls OlCallAcceptFocus()

to move the input focus. If OlCallAcceptFocus() is unable to move input
focus, OIMoveFocus() returns NULL. It will also return NULL if
XtNmouseless is set to FALSE and the widget is not a text input widget. When
moving input focus between widgets contained within an Exclusives or
Nonexclusives widget, valid values for direction are shown in the following
list. For the OL_MULTI directions below, the value of m is the value of the toolkit
resource XtNmultiObjectCount . See the description of XSetlnputFocus()

in the XLib Reference Manual for further details about the time argument.

OL_IMMEDIATE

OL_MOVERIGHT

OL_MOVELEFT

OL_MOVEUP

OL_MOVEDOWN

OL_MULTIRIGHT

Set focus to the next widget that will accept it, starting with
W.

Set focus to the widget in the next column (and same row)
that will accept it, starting with the first column after w’s
column. If w is located in the extreme right column, focus is
set to the widget in the extreme left column of the same row.

Set focus to the widget in the previous column (and same
row) that will accept it, starting with the first column before
w’s column. If w is located on the extreme left column, focus
is set to the widget in the extreme right column of the same
row.

Set focus to the widget in the previous row (and same
column) that will accept it, starting with the first row before
w’s row. If w is located in the top row, focus is set to the
widget in the bottom row of the same column.

Set focus to the widget in the next row (and same column)
that will accept it, starting with the first row after w’s row. If
w is located in the bottom row, focus is set to the widget in
the top row of the same column.

Set focus to the widget in the next column (and same row)
that will accept it, starting with the first column m columns
after w’s column. If m is greater than the number of objects

OLIT Reference Manual—August 1994

D=

Input Focus Functions

between w and the extreme right column, focus is set to the
widget in the extreme left column of the same row.

OL_MULTILEFT Set focus to the widget in the previous column (and same
row) that will accept it, starting with the first column m
columns before w’s column. If m is greater than the number
of objects between w and the extreme left column, focus is set
to the widget in the extreme right column of the same row.

OL_MULTIUP Set focus to the widget in the previous row (and same
column) that will accept it, starting with the first row m rows
before w’s row. If m is greater than the number of objects
between w and the extreme top row, focus is set to the widget
in the extreme bottom row of the same column.

OL_MULTIDOWN Set focus to the widget in the next row (and same column)
that will accept it, starting with the first row m rows after w’s
row. If mis greater than the number of objects betweenw and
the extreme bottom row, focus is set to the widget in the
extreme top row of the same column.

When moving between widgets in a base window or popup window, focus is
moved according to the order defined by the traversal list. The default traversal
order is determined by the order in which widgets are created. Valid values for
direction are:

OL_IMMEDIATE Set focus to the next object that will accept it, starting with w.

OL_NEXTFIELD, OL_MOVERIGHT, OL_MOVEDOWN
Set focus to the next object that will accept it, starting with
the first object after w.

OL_PREVFIELD, OL_MOVELEFT, OL_MOVEUP
Set focus to the next object that will accept it, starting with
the first object before w. (The list is searched in reverse
order.)

OL_MULTIRIGHT, OL_MULTIDOWN
Set focus to the next object that will accept it, starting with
the first m objects after w.

OL_MULTILEFT, OL_MULTIUP
Set focus to the next object that will accept it, starting with
the first m objects before w. (The list is searched in reverse
order.)

Toolkit Functions 153

=5

Multiple Visual Functions

Multiple Visual Functions

154

The following functions are used to work with multiple visuals.

A visual is specified by a depth (for example, 8 bits) and a visual class (for
example, PseudoColor)

A shell widget or a DrawArea widget can have a nondefault visual. Other
widgets use the visuals of their nearest shell or DrawArea ancestor. An
application in which eligible widgets have nondefault visuals is termed a
multi-visual application.

You must specify the visual class when you specify the depth, or the depth will
be ignored. Specifically, you should use the XtVaTypedArg interface with
XtVaCreateManagedWidget() , rather than XMatchVisualinfo()

(The argument list interface implicitly invokes the resource converter, while
XMatchVisualinfo() does not. Trying to set the depth without also setting
the visual class and running the resource converter can create problems.)

For example, in creating a DrawArea widget using this interface, you might
use something like:

drawarea = XtVaCreateManagedWidget("drawarea",
drawAreaWidgetClass, toplevel,
XtVaTypedArg, XtNvisual, XtRString,
VisualClassName, sizeof(VisualClassName),
XtNlayout, OL_IGNORE,
XtNheight, Height,
XtNwidth, Width,
NULL);

Each multiple visual function returns a characteristic of either a widget or
gadget.

Multiple visuals are meant to run on machines with hardware colormaps;
otherwise, serious flashing results when the mouse pointer moves between
applications or widgets with different visuals.

OlBlackPixel

#include <Xol/OpenLook.h>

Pixel OIBlackPixel(
Widget w);

OLIT Reference Manual—August 1994

D=

Multiple Visual Functions

OlBlackPixel() returns the black pixel for the colormap associated with the
given widget. Use this function instead of the macro BlackPixel() , in OLIT
applications that use multiple colormaps and/or multiple visuals.

OlColormapOfObject

#include <Xol/OpenLook.h>
Colormap OlColormapOfObject(
Widget object);

OlColormapOfObject() obtains the colormap associated with the object.

OIDepthOfObject

#include <Xol/OpenLook.h>
int OIDepthOfObject(
Widget object);

OIDepthOfObject() obtains the depth associated with the object.

OlInternAtom

#include <Xol/RootShell.h>

Atom OlinternAtom(
Display Copy,
String atom_name);

OlinternAtom () uses the Intrinsics XtRString -to-XtRAtom resource
converter and the converter cache to store Atoms in the resource cache on a per
display basis.

You should use this function to cache Atoms across displays, especially for
applications using multiple displays.

For efficient use of the resource converter cache, the string atom_name should
be the same physical string for each invocation. For example:
OlinternAtom(dpy, "foo");
OlinternAtom(dpy, "foo");

results in two entries in the resource converter cache, while the following
results in only one cache entry:

Toolkit Functions 155

=5

Packed Widget Function

char [foo = "foo";
OlinternAtom(dpy, foo);
OlinternAtom(dpy, foo);

OIVisualOfObject

#include <Xol/OpenLook.h>
Visual [OIVisualOfObject(

Widget object);
OlVisualOfObject() obtains the visual associated with the object.
OIWhitePixel

#include <Xol/OpenLook.h>
Pixel OlWhitePixel(

Widget w);
OlWhitePixel() returns the white pixel for the colormap associated with the
given widget. Use this function instead of the macro WhitePixel() , in OLIT

applications that use multiple colormaps and/or multiple visuals.

Packed Widget Function

156

The following function creates a widget (sub)tree in one call.

OlCreatePackedWidgetList

#include <Xol/OpenLook.h>
Widget OlCreatePackedWidgetList(

OlPackedWidgetList Cow_list
Cardinal num_pw;
OlCreatePackedWidgetList() and its associated OlPackedWidget

structure allow an application to create a widget tree or subtree in one call.

pw_list A pointer to an OlPackedWidget array. It creates widgets starting
from the first element in the array.

num_pw The number of elements in the array pw_list

OlCreatePackedWidgetList() returns the widget ID of the first element in
the array pw._list.

OLIT Reference Manual—August 1994

D=

Packed Widget Function

The OlPackedWidget structure contains all the information needed to create a
new widget. It is defined as:

typedef struct {
Widget widget ;
String name
WidgetClass Cclass_ptr
Widget Cparent_ptr ;
String descendant ;
ArgList resources
Cardinal num_resources
Boolean managed,
} OlPackedWidget, [DIPackedWidgetList;
widget Contains the ID of the newly created widget.
name The name of the widget that will be created.
class_ptr A pointer to the WidgetClass pointer for the new widget. This
gives the class of widget to create. It is a pointer to the pointer
because typically the pointer itself is an external value that is not
suitable for using in an array initialization.
parent_ptr A pointer to the widget ID of the intended parent of the new
widget or the ID of an indirect widget that “knows who the
parent is” (see below). This value may point to a widget member
in another PackedWidget item; if the parent is an indirect
widget, it must appear earlier in the list.
descendant The name of a resource available in the widget identified by
parent_ptr. The value of this resource is the ID of the real parent
for the new widget. If the descendant value is not zero, parent is
expected to identify an indirect parent that is interrogated for the
ID of the real parent. If this value is zero, parent is expected to
identify the real parent.
resources The resource array to use when creating the new widget.

num_resources The number of resources in the array.

managed TRUE if the new widget should be managed when created, FALSE
otherwise.

Toolkit Functions 157

=5

Pixel Conversion Functions
Pixel Conversion Functions

The following routines convert pixel dimensions to other measurements.
#include <Xol/OpenLook.h>

Screen [OlDefaultScreen;
Display = [OlDefaultDisplay;
AXis axis;

Screen screen,;

OIMMToPixel(axis , millimeters);
Ol_MMToPixel(axis , millimeters);

OlPointToPixel(axis , points);
Ol_PointToPixel(axis , points);

OlScreenMMToPixel(axis , millimeters , screen);
Ol_ScreenMMToPixel(axis , millimeters , screen);
OlScreenPointToPixel(axis , points , screen);
Ol_ScreenPointToPixel(axis , points , screen),

OlIPixelTOMM(axis , pixels);
Ol_PixelToMM(axis , pixels);
OlPixelToPoint(axis , pixels);
Ol_PixelToPoint(axis , pixels);

OlScreenPixelToPoint(axis , pixels , screen);
Ol_ScreenPixelToPoint(axis , pixels , screen),

OlScreenPixelToMM(axis , pixels , screen);
Ol_ScreenPixelTOMM(axis , pixels , screen);

All the X-based OPEN LOOK widgets refer to pixels in coordinates and
dimensions for compatibility with other X Window System widgets.

This puts the burden on the application programmer to convert between
externally useful measures, such as points or millimeters, and pixels as applied
to the screen at hand. These routines examine the data structures that describe
the physical dimensions and the pixel resolution of a screen and convert
among millimeters, points, and pixels for that screen.

158 OLIT Reference Manual—August 1994

D=

Pixel Conversion Functions
Screen Selection

The shorter forms of these routines (the ones without the word Screen in their
names) work for the default screen. This is the screen that is active when the
X-Toolkit Intrinsics are started. The longer forms of these routines take a
Screen 0O type argument that refers to a particular screen. The macros
OlDefaultScreen and OlDefaultDisplay identify the current screen and
display being used by the Intrinsics.

Use After Toolkit Initialization

These routines make use of data structures that are initialized when the Toolkit
is initialized (see Initialization and Activation Functions on page 92).
Therefore, using them before toolkit initialization (for example, as an initial
value to a statically defined variable) will result in a run-time error.

AXxis Argument

The first argument of all the routines is the direction in which the measurement
is made. This is necessary because not all screens have equivalent resolution in
the horizontal and vertical axes. The axis argument can take one of the two
values: OL_HORIZONTAL or OL_VERTICAL. These routines are not directly
usable in computing a diagonal measure. (Find the diagonal with the
Pythagorean Theorem: a2 + b? = ¢2).

Implemented as Macros

All these routines are implemented as macros, so they can take any reasonable
type value for the millimeters, points, and pixels. The macros cast the values
into the proper type needed for the conversion. However, only a single type
value can be “returned.”

The routines without an underscore in their names produce values of type int
(the values are rounded to the nearest integer). The routines with an
underscore in their names produce values of type double (these values have
not been rounded, leaving it up to the application to round up, round down, or
truncate as needed). Given the small size of the units involved, the integer-
returning routines should be sufficient for many applications.

Because these routines are implemented as macros, there are no function
addresses available.

Toolkit Functions 159

=5

Protocol Function
Protocol Function

160

OIWMProtocol Action

OIWMProtocolAction() simulates a response to any window manager’s
protocol messages.

#include <Xol/OpenLook.h>
void OIWMProtocolAction(

Widget w,
OIWMPTrotocolVerify Okt ,
OlDefine action)

The w parameter must be a widget that is a subclass of VendorShell
Otherwise, no action will be taken.

The OIWMProtocolVerify structure is defined as follows:

typedef struct {
unsigned long msgtype ;
XEvent kevent ;

} OIWMProtocolVerify;

Its msgtype field is an integer constant indicating the type of protocol message
that invoked the callback; it will be one of the following values:

OL_WM_TAKE_FOCUS
OL_WM_SAVE_YOURSELF
OL_WM_DELETE_WINDOW

The action parameter can be:

OL_QUIT Quit the application immediately.

OL_DEFAULTACTION Perform the action that is appropriate for each subclass
of VendorShell

OL_DESTROY Destroy the shell widget.

OL_DISMISS Dismiss or unmap the shell widget.

OLIT Reference Manual—August 1994

D=

Regular Expression Functions
Regular Expression Functions

The following functions scan strings using a form of regular expressions.
Unlike the regular expressions supported by ed(1) or egrep (1), these functions
use a regular expression notation consisting of:

Table 5-2 Regular Expression Notation

Element Meaning
c Match the character ¢
[<set>] Match any character in <set> (where <set> is one or more

characters concatenated into a string; range expressions, such as
[a-z] , are not supported)

[I<set>] Match any character not in <set>
ad Match any character(s) (one or more)
n When the circumflex is the first character in the regular expression,

the match must start at curp

streexp

#include <Xol/regexp.h>
char [ktreexp(void);

The streexp() function returns the pointer of the last character in a match
found following a strexp() or strrexp() function call.

strexp

#include <Xol/regexp.h>

char [strexp(
char Cktring
char Ceurp ,
char Cexpression);

The strexp() function performs a regular expression forward scan of string
for expression starting at curp.

NULL is returned if expression cannot be found in string; otherwise, a pointer to
the first character in the substring that matches expression is returned. The
streexp() function can be used to get the pointer to the last character in the
match.

Toolkit Functions 161

=5

Regular Expression Functions
strrexp

#include <Xol/regexp.h>

char [5trrexp(
char Cktring
char Ceurp
char Cexpression);

The strrexp() function performs a regular expression backward scan of
string for expression starting at curp.

NULL is returned if expression cannot be found in string; otherwise, a pointer to
the first character in the substring that matches expression is returned. The
streexp() function can be used to get the pointer to the last character in the
match.

See Also

“Buffer Functions” on page 95,
“TextField Functions” on page 686.

162 OLIT Reference Manual—August 1994

D=

Text Buffer Functions

Text Buffer Functions

A TextBuffer is a data structure used by every single-byte TextEdit widget to
store and manipulate its data. For internationalized TextBuffers, see page 176.
The functions in this section can be used to manipulate a TextBuffer.

TextLocation Structure

A number of the functions in this section refer to a TextLocation structure. It
is defined as follows:

typedef struct _TextLocation {

TextLine line ;
TextPosition offset ;
BufferElement Cbuffer

} TextLocation;

AllocateTextBuffer

#include <Xol/textbuff.h>
TextBuffer CAllocateTextBuffer(

char (filename
TextUpdateFunction f,
XtPointer d);
AllocateTextBuffer() allocates a new TextBuffer structure, initializes the

members of the structure, does one more step described below, and returns a
pointer to the newly allocated structure.

It is possible to register one or more text update functions (of type
TextUpdateFunction) with a TextBuffer. As the name suggests, the text
update functions are invoked by the toolkit when the TextBuffer is updated. In
the course of registering a text update function, a possibly NULL client data (of
type XtPointer) must be provided with the function. The client data is
passed to the associated text update function when the function is invoked by
the toolkit. See “ReplaceBlockinTextBuffer” on page 172 for more details of the
TextUpdateFunction

The argument f above is a text update function that together with its associated
client data d is registered with the newly allocated TextBuffer, before
AllocateTextBuffer() returns. The programmer must use

Toolkit Functions 163

=5

Text Buffer Functions

164

FreeTextBuffer() function to free the TextBuffer. The filename argument is
used by the SaveTextBuffer() function (see page 174) if it is called with a
NULL filename argument.

BackwardScanTextBuffer

#include <Xol/textbuff.h>
ScanResult BackwardScanTextBuffer(

TextBuffer (text,
char Cexp,
TextLocation Oocation);
BackwardScanTextBuffer() scans towards the beginning of the buffer for a

given expression in the TextBuffer starting at location. The exp string is
interpreted as described in “Regular Expression Functions” on page 161. A
ScanResult is returned, which indicates:

SCAN_NOTFOUND The scan wrapped without finding a match.
SCAN_WRAPPED A match was found at a location after the start

location.
SCAN_FOUND A match was found at a location before the start
location.
SCAN_INVALID Either the location or the exp was invalid.
CopyTextBufferBlock
#include <Xol/textbuff.h>
int CopyTextBufferBlock(
TextBuffer (rext ,
char Cbuffer
TextPosition start_position ,
TextPosition end_position),
CopyTextBufferBlock() copies a text block from the text TextBuffer into

buffer. The block is defined as the characters between start_position and
end_position inclusive. It returns the number of bytes copied; if the parameters
are invalid, the return value is zero.

Note — The storage for the copy is allocated by the caller. It is the responsibility
of the caller to ensure that enough storage is allocated to copy end_position —
start_position + 1 bytes.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions
EndCurrentTextBufferWord

#include <Xol/textbuff.h>
TextLocation EndCurrentTextBufferWord(

TextBuffer (fextBuffer
TextLocation current);
EndCurrentTextBufferword() locates the end of a word in the TextBuffer

relative to a given current location. The function returns the location of the end
of the current word. Note: this return value will equal the given current value
if the current location is already at the end of a word.

FreeTextBuffer
#include <Xol/textbuff.h>

void FreeTextBuffer(

TextBuffer Cfext ,
TextUpdateFunction f,
XtPointer a);
FreeTextBuffer() deallocates storage associated with a given TextBuffer.

Note: the storage is not actually freed if the TextBuffer is still associated with
other update function/data pairs. See “ReplaceBlockInTextBuffer” on page 172
for more details of the TextUpdateFunction

ForwardScanTextBuffer

#include <Xol/textbuff.h>

ScanResult ForwardScanTextBuffer(TextBuffer [text,
char Cexp,
TextLocation Oocation);
ForwardScanTextBuffer() scans towards the end of the buffer for a given

expression in the TextBuffer starting at location. The exp string is interpreted as
described in “Regular Expression Functions” on page 161. A ScanResult is
returned, which indicates:

SCAN_NOTFOUND The scan wrapped without finding a match.
SCAN_WRAPPED A match was found at a location before the start

location.

SCAN_FOUND A match was found at a location after the start
location.

SCAN_INVALID Either the location or the expression was invalid.

Toolkit Functions 165

=5

Text Buffer Functions

166

GetTextBufferBlock

#include <Xol/textbuff.h>
char [GetTextBufferBlock(

TextBuffer Cfext ,
TextLocation start_location ,
TextLocation end_location);
GetTextBufferBlock() retrieves a text block from the text TextBuffer. The

block is defined as the characters between start_location and end_location
inclusive. It returns a pointer to a string containing the copy. If the parameters
are invalid, NULL is returned.

Note — The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

GetTextBufferBuffer

#include <Xol/textbuff.h>
Buffer [GetTextBufferBuffer(

TextBuffer Cfext ,
TextLine line);
GetTextBufferBuffer() retrieves a pointer to the Buffer stored in

TextBuffer text for line. This pointer is volatile; subsequent calls to any
TextBuffer routine may make it invalid. If a more permanent copy of this Buffer
is required, the CopyTextBufferBlock() function (see page 164) can be used
to create a private copy of it.

GetTextBufferChar

#include <Xol/textbuff.h>
int GetTextBufferChar(

TextBuffer Ctext
TextLocation location);
GetTextBufferChar() retrieves a character stored in the text TextBuffer at

location. It returns either the character itself or EOF if location is outside the
range of valid locations within the TextBuffer.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions
GetTextBufferLine

#include <Xol/textbuff.h>
char [GetTextBufferLine(

TextBuffer Cfext ,
TextLine lineindex);
GetTextBufferLine() retrieves the contents of string containing the copy of

the contents of the line or NULL if the lineindex is outside the range of valid
lines in text.

Note — The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

GetTextBufferLocation

#include <Xol/textbuff.h>
char [GetTextBufferLocation(

TextBuffer Cfext
TextLine line_number |
TextLocation Oocation);
GetTextBufferLocation() retrieves the contents of the given line within

the TextBuffer. It returns a pointer to the character string. If the line number is
invalid, a NULL pointer is returned. If a non-NULL TextLocation pointer is
supplied in the argument list, the contents of this structure are modified to
reflect the values corresponding to the given line.

IncrementTextBufferLocation

#include <Xol/textbuff.h>
TextLocation IncrementTextBufferLocation(

TextBuffer Cfext ,
TextLocation location
TextLine line
TextPosition offset),
IncrementTextBufferLocation() increments a location by either line lines

and/or offset characters. It returns the new location. If line or offset are negative,
the function performs a decrement operation. If the starting location or the
resulting location is invalid, the starting location is returned without
modification; otherwise, the new location is returned.

Toolkit Functions 167

=5

Text Buffer Functions

168

LastTextBufferLocation
#include <Xol/textbuff.h>

TextLocation LastTextBufferLocation(
TextBuffer rext);

LastTextBufferLocation() returns the last valid TextLocation in the
TextBuffer associated with text.

LastTextBufferPosition

#include <Xol/textbuff.h>

TextPosition LastTextBufferPosition(
TextBuffer Ceext);

LastTextBufferPosition() returns the last valid TextPosition in the
TextBuffer associated with text.

LineOfPosition

#include <Xol/textbuff.h>
int LineOfPosition(

TextBuffer Crext ,
TextPosition position);
The LineOfPosition() function returns the line number in which position

occurs. If position is invalid, it returns EOF.

LocationOfPosition

#include <Xol/textbuff.h>
TextLocation LocationOfPosition(

TextBuffer Cfext

TextPosition position);
LocationOfPosition() translates a position in the text TextBuffer to a
TextLocation (see page 163). It returns the translated TextLocation . If the

position is invalid, the buffer pointer in the TextLocation struct is set to NULL
and the line and offset members in the TextLocation struct are set the last
valid location in the TextBuffer; otherwise, buffer is set to a non-NULL (though
useless) value.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions
NextLocation
#include <Xol/textbuff.h>

TextLocation NextLocation(

TextBuffer (fextBuffer
TextLocation current);
NextLocation() returns the TextLocation that follows the given current

location in a TextBuffer. If the current location points to the end of the
TextBuffer, this function wraps to the beginning of the TextBuffer.

NextTextBufferWord

#include <Xol/textbuff.h>
TextLocation NextTextBufferWord(

TextBuffer (fextBuffer
TextLocation current);
NextTextBufferWord() locates the beginning of the next word from a given

current location in a TextBuffer. If the current location is within the last word in
the TextBuffer, the function wraps to the beginning of the TextBuffer.

PositionOfLine

#include <Xol/textbuff.h>
TextPosition PositionOfLine(

TextBuffer Crext ,
TextLine lineindex);
The PositionOfLine() function returns the TextPosition corresponding

to lineindex. If lineindex is invalid, it returns EOF.

PositionOfLocation

#include <Xol/textbuff.h>
TextPosition PositionOfLocation(

TextBuffer Cfext
TextLocation location);
The PositionOfLocation() function returns the TextPosition

corresponding to location. If location is invalid, it returns EOF.

Toolkit Functions 169

=5

Text Buffer Functions

170

PreviousLocation

#include <Xol/textbuff.h>
TextLocation PreviousLocation(

TextBuffer (fextBuffer
TextLocation current);
The PreviousLocation() function returns the TextLocation (see

page 163) that precedes the given current location in a TextBuffer. If the current
location points to the beginning of the TextBuffer, this function wraps to the
end of the TextBuffer.

PreviousTextBufferWord

#include <Xol/textbuff.h>
TextLocation PreviousTextBufferWord(

TextBuffer (fextBuffer
TextLocation current);
PreviousTextBufferword() locates the beginning of a word in a TextBuffer

relative to a given current location. It returns the location of the beginning of
the word that precedes the given current location. If the current location is
within a word, this function returns beginning of the current word.

ReadFilelntoTextBuffer

#include <Xol/textbuff.h>
TextBuffer [ReadFilelntoTextBuffer(

char filename
TextUpdateFunction f,
XtPointer a);
ReadFileIntoTextBuffer() allocates a new TextBuffer and reads the file

denoted by the given filename into it. The supplied text update function f and
the client data d are associated with the newly allocated TextBuffer. The
function returns a pointer to this TextBuffer. See “ReplaceBlockInTextBuffer”
on page 172 for more details of the TextUpdateFunction

OLIT Reference Manual—August 1994

D=

Text Buffer Functions
ReadStringIntoTextBuffer

#include <Xol/textbuff.h>
TextBuffer [ReadStringIntoTextBuffer(

char Cktring
TextUpdateFunction f,
XtPointer a);
ReadsStringIntoTextBuffer() allocates a new TextBuffer and copies the

given string into it. The supplied TextUpdateFunction and data pointer are
associated with this TextBuffer. The function returns a pointer to this
TextBuffer. See “ReplaceBlockIinTextBuffer” on page 172 for more details of the
TextUpdateFunction

RegisterTextBufferScanFunctions

#include <Xol/textbuff.h>

void RegisterTextBufferScanFunctions(
char O Oorward) () ,
char OO Dhackward) ());

RegisterTextBufferScanFunctions() provides the capability to replace
the default scan functions used by the ForwardScanTextBuffer() and
BackwardScanTextBuffer() functions. These functions are called as:

(Oforward)(string, curp, expression);

(Obackward)(string, curp, expression);

and are responsible for returning either a pointer to the beginning of a match
for the expression or NULL. Calling RegisterTextBufferScanFunctions()

with NULL function pointers reinstates the default regular expression facility,
as described in “Regular Expression Functions” on page 161.

RegisterTextBufferWordDefinition

#include <Xol/textbuff.h>
void RegisterTextBufferWordDefinition(
int (Cword_definition)(0)

RegisterTextBufferWordDefinition() provides the capability to replace
the default word definition function used by the TextBuffer functions in this
section. This function is called as:

(Cword_definition)(©);

Toolkit Functions 171

=5

Text Buffer Functions

172

The function is responsible for returning nonzero if the character c is
considered a character that can occur in a word, and zero otherwise. Calling
RegisterTextBufferwordDefinition() with NULL reinstates the default
word definition, which allows the following set of characters: a-z, A-Z, 0-9_

RegisterTextBufferUpdate

#include <Xol/textbuff.h>
void RegisterTextBufferUpdate(

TextBuffer Cfext
TextUpdateFunction f,
XtPointer d);
RegisterTextBufferUpdate() associates the TextUpdateFunction fand

data pointer d with the given TextBuffer text. This update function will be
called whenever an update operation is performed on the TextBuffer. See
“ReplaceBlockInTextBuffer” on page 172 for more details of the
TextUpdateFunction

Note — Calling RegisterTextBufferUpdate() increments a reference count
mechanism used to determine when to actually free the TextBuffer. Calling the
function with a NULL value for the function circumvents this mechanism.

ReplaceBlockInTextBuffer

#include <Xol/textbuff.h>
EditResult ReplaceBlockinTextBuffer(

TextBuffer fext ,
TextLocation [ktartloc
TextLocation Cendloc
char Cktring
TextUpdateFunction f,
XtPointer a);
ReplaceBlockinTextBuffer() updates the contents of the TextBuffer text.

The characters stored between startloc (inclusive) and endloc (exclusive) are
deleted and the string is inserted after startloc. If the edit succeeds and if
TextUpdateFunction f is associated with TextBuffer text, then f is called with
the following parameters:

(OF)(XtPointer d, TextBuffer (fext , EDIT_SUCCESS)

OLIT Reference Manual—August 1994

D=

Text Buffer Functions

All the other text update functions associated with TextBuffer text are called
with the following parameters:

(XtPointer d, TextBuffer fext , EDIT_FAILURE)

ReplaceBlockinTextBuffer() stores the details of the editing operation it
performs in text-> deleted and text-> insert TextUndoltem structures. The
contents of these structures may be used for implementing an Undo
mechanism. The hints provided in text-> deleted.hint and text-> insert.hint are an
inclusive OR of:

#define TEXT_BUFFER_NOP (0)
#define TEXT_BUFFER_DELETE_START_LINE (1L<<0)
#define TEXT_BUFFER_DELETE_START_CHARS (1L<<1)
#define TEXT_BUFFER_DELETE_END_LINE (1L<<2)
#define TEXT _BUFFER_DELETE_END_CHARS (1L<<3)
#define TEXT_BUFFER_DELETE_JOIN_LINE (1L<<4)
#define TEXT_BUFFER_DELETE_SIMPLE (1L<<5)
#define TEXT_BUFFER_INSERT_SPLIT_LINE (1L<<6)
#define TEXT_BUFFER_INSERT_LINE (1L<<7)
#define TEXT_BUFFER_INSERT_CHARS (1L<<8)

The meaning of each of these values is described below:

TEXT_BUFFER_NOP No edit operation.
TEXT_BUFFER_DELETE_START_LINE The deleted block started at beginning of
some line.

TEXT_BUFFER_DELETE_START_CHARS The deleted block did not start at the
beginning of some line.

TEXT_BUFFER_DELETE_END_LINE The end of the deleted block coincided with
the end of some line.

TEXT_BUFFER_DELETE_END_CHARS Some characters were deleted from the end
of some line.

TEXT_BUFFER_DELETE_JOIN_LINE Some characters were deleted and two lines

were joined into a single line.

TEXT_BUFFER_DELETE_SIMPLE The whole of the deleted block was
confined to a single line.

Toolkit Functions 173

=5

Text Buffer Functions

TEXT_BUFFER_INSERT_SPLIT_LINE One line was split into two lines and some
characters were inserted at the split
location.

TEXT_BUFFER_INSERT_LINE A line was inserted without spliting an
existing line.

TEXT_BUFFER_INSERT_CHARS Some characters were inserted at the

beginning of some existing line.

ReplaceCharInTextBuffer

#include <Xol/textbuff.h>
EditResult ReplaceCharInTextBuffer(

TextBuffer (rext
TextLocation Oocation
int c,
TextUpdateFunction f,
XtPointer d);
ReplaceCharinTextBuffer() replaces the character in the TextBuffer text

at location with the character c. Everything described in
“ReplaceBlockinTextBuffer” on page 172 about text update functions also
applies to this function.

SaveTextBuffer

#include <Xol/textbuff.h>
SaveResult SaveTextBuffer(

TextBuffer Cfext ,

char filename);
SaveTextBuffer() writes the contents of the text TextBuffer to the file
filename. If filename is NULL, it uses the filename argument that was given to the
AllocateTextBuffer() function (see page 163).

SaveTextBuffer() returns a SaveResult , which can be SAVE_FAILURE or
SAVE_SUCCESS.

174 OLIT Reference Manual—August 1994

D=

See Also

Text Buffer Functions
StartCurrentTextBufferWord

#include <Xol/textbuff.h>
TextLocation StartCurrentTextBufferWord(

TextBuffer (fextBuffer
TextLocation current);
StartCurrentTextBufferWord() locates the beginning of a word in the

TextBuffer relative to a given current location. The function returns the location
of the beginning of the current word. Note: this return value will equal the
given current value if the current location is the beginning of a word.

UnregisterTextBufferUpdate

#include <Xol/textbuff.h>
int UnregisterTextBufferUpdate(

TextBuffer Cfext ,
TextUpdateFunction f,
XtPointer a);
The UnregisterTextBufferUpdate() function disassociates the

TextUpdateFunction f and data pointer d with the given TextBuffer text. If
the function/data pointer pair is not associated with the given TextBuffer, zero
is returned; otherwise, the association is dissolved and one is returned. See
“ReplaceBlockInTextBuffer” on page 172 for more details of the
TextUpdateFunction

TextBuffer Macros

The macros described in “Buffer Macros” on page 95 can also be used with the
text buffer functions in this section.

Buffer Functions on page 95,
Regular Expression Functions on page 161,
“Text Buffer Functions for Internationalization” on page 176.

Toolkit Functions 175

=5

Text Buffer Functions for Internationalization
Text Buffer Functions for Internationalization

176

The text buffer functions in this section provide multibyte equivalents to the
single-byte OLIT text buffer functions in the previous section.

OlAllocateTextBuffer

#include <Xol/Oltextbuff.n>
OlTextBufferPtr OlAllocate TextBuffer(

OIStrRep strrep
char (filename
TextUpdateFunction update_func
XtPointer data);
Arguments
strrep Specifies the text format
filename Specifies the filename
update_func The update function
data Client data
OlAllocateTextBuffer() allocates a new TextBuffer structure, initializes

the members of the structure, does one more step described below, and returns
a pointer to the newly allocated structure.

It is possible to register one or more text update functions (of type
TextUpdateFunction) with a TextBuffer . As the name suggests, the text
update functions are invoked by the toolkit when the TextBuffer is updated.
In the course of registering a text update function, a client data (of type
XtPointer) must be provided with the function; this client data can be NULL.
The client data is passed to the associated text update function when the
function is invoked by the toolkit (See “OlReplaceBlockInTextBuffer” on

page 197).

The argument update_func is a text update function that, together with its
associated client data data, is registered with the newly allocated TextBuffer,
before AllocateTextBuffer() returns. The programmer must use
OlFreeTextBuffer() function to free the TextBuffer.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
The strrep argument can have the following values:

Value Meaning

OL_SB_STR_REP Single-byte character representation
OL_WC_STR_REP Wide character representation
OL_MB_STR_REP Multibyte character representation
See Also

“OlFreeTextBuffer” on page 180,
“OlReadFilelntoTextBuffer” on page 193,
“OlReadStringlntoTextBuffer” on page 194.

OlIBackwardScanTextBuffer
#include <Xol/Oltextbuff.h>

ScanResult OlBackwardScanTextBuffer(

OlTextBufferPtr text ,
Olstr exp,
TextLocation O ocation);
Arguments
text The text buffer
exp The expression to scan for
location The location to start scanning at
OlBackwardScanTextBuffer() scans towards the beginning of the buffer

for a given expression in the OlTextBuffer starting at location. The
ScanResult can have the following values:

SCAN_NOTFOUND The scan wrapped without finding a match.
SCAN_WRAPPED A match was found at a location after the start location

SCAN_FOUND A match was found at a location before the start location
SCAN_INVALID Either the location or the expression was invalid
See Also

“OlForwardScanTextBuffer” on page 179.

Toolkit Functions 177

=5

Text Buffer Functions for Internationalization

178

OlCopyTextBufferBlock
#include <Xol/Oltextbuff.h>

int OlCopyTextBufferBlock(

OlTextBufferPtr text ,
Olstr outbuffer
int num_bytes ,
TextPosition start_position ,
TextPosition end_position);
Arguments
text The text buffer
outbuffer The buffer to output the text to
num_bytes Size of the text block
start_position Beginning of text block
end_position End of text block
OlCopyTextBufferBlock() retrieves a text block from the OlTextBuffer
The block is defined as the characters between start_position and end_position
inclusive. If num_bytes is not sufficient, OlCopyTextBufferBlock() returns

- 1; otherwise, it returns actual bytes used.

Note — The storage for the copy is allocated by the caller. It is the responsibility
of the caller to ensure that enough storage is allocated to copy
(end_position — start_position) + (bytes to store null character).

See Also

“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferCharAtLoc” on page 182,
“OlGetTextBufferLine” on page 183.

OIEndCurrentTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation [OIEndCurrentTextBufferWord(
OlTextBufferPtr text
TextLocation Ceurrent),

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

Arguments

text The text buffer

current Specifies current location
OIEndCurrentTextBufferWord() locates the end of a word in the

OlTextBuffer relative to a given current location. It returns the location of
the end of the current word. The return value will equal the given current
value if the current location is already at the end of a word. If the location is
not in a word, it returns the end of the “not word” region it is in.

Note — The location passed to OIEndCurrentTextBufferWord() is
modified. It contains the end of the current buffer word (or “not word”) at the
end of the call.

See Also

“OlPreviousTextBufferWord” on page 192,
“OlINextTextBufferWord” on page 189.

OlForwardScanTextBuffer
#include <Xol/Oltextbuff.h>

ScanResult OlForwardScanTextBuffer(

OlTextBufferPtr text ,
olstr exp,
TextLocation ocation);
Arguments
text The text buffer
exp Specifies the expression to scan for
location The location to start scanning at
OlForwardScanTextBuffer() scans towards the end of the buffer, for a

given expression in the OlTextBuffer starting at location . A ScanResult is
returned, which indicates the following:

SCAN_NOTFOUND The scan wrapped without finding a match.
SCAN_WRAPPED A match was found at a location before the start location.
SCAN_FOUND A match was found at a location after the start location.
SCAN_INVALID Either the location or the expression was invalid

Toolkit Functions 179

=5

Text Buffer Functions for Internationalization

180

See Also
“OlBackwardScanTextBuffer” on page 177.

OlFreeTextBuffer
#include <Xol/Oltextbuff.h>

void OlFreeTextBuffer(

OlTextBufferPtr text ,
TextUpdateFunction update_func
XtPointer data);
Arguments
text The text buffer to free
exp The update function
data Data
OlFreeTextBuffer() deallocates storage associated with a given

OlTextBuffer . See “OlReplaceBlockInTextBuffer” on page 197 for more
details of the TextUpdateFunction.

Note — The storage is not actually freed if the OlTextBuffer is still associated
with other update function/data pairs.

See Also

“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197.

OlGetTextBufferBlock

#include <Xol/Oltextbuff.h>

OIStr OlGetTextBufferBlock(

OlTextBufferPtr text
TextLocation Cstart_location ,
TextLocation Cend_location),

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

Arguments

text The text buffer to retrieve block from

start_location Start of the text block

end_location End of the text block

OlGetTextBufferBlock() retrieves a text block from the text TextBuffer. The

block is defined as the characters between start_location and end_location
inclusive. It returns a pointer to a string containing the copy. If the parameters
are invalid NULL is returned.

Note — The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

See Also

“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferCharAtLoc” on page 182,
“OlGetTextBufferLine” on page 183.

OlGetTextBufferBuffer
#include <Xol/Oltextbuff.h>

Buffer [DIGetTextBufferBuffer(

OlTextBufferPtr text ,
TextLine line);
Arguments
text The text buffer
line The line to retrieve a pointer for
OlGetTextBufferBuffer() retrieves a pointer to the Buffer stored in

OlTextBuffer text for a line. This pointer is volatile; subsequent calls to any
OlTextBuffer routine may make it invalid. If a more permanent copy of this
Buffer is required the buffer utility, CopyBuffer() can be used to create a
private copy of it.

Toolkit Functions 181

=5

Text Buffer Functions for Internationalization

182

See Also

“OlGetTextBufferBlock™ on page 180,
“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197.

OlGetTextBufferCharAtLoc
#include <Xol/Oltextbuff.h>

OIStr OlGetTextBufferCharAtLoc(

OlTextBufferPtr text
TextLocation Oocation);
Arguments
text The text buffer
location The location at which to get a character
OlGetTextBufferCharAtLoc() retrieves a character stored in the

OlTextBuffer at location. It returns either the pointer to the character itself or
NULL if location is outside the range of valid locations within the
OlTextBuffer

See Also

“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferBlock™ on page 180,
“OlGetTextBufferLine” on page 183.

OlGetTextBufferFileName
#include <Xol/Oltextbuff.h>

String OlGetTextBufferFileName(

OlTextBufferPtr text);
Arguments
text The text buffer for which to get a filename.
OlGetTextBufferFileName() returns the file name associated with the

buffer. Otherwise, it returns NULL.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
OlGetTextBufferLine
#include <Xol/Oltextbuff.h>

OIStr OlGetTextBufferLine(

OlTextBufferPtr text ,

TextLine lineindex);
Arguments
text The text buffer
lineindex Index of the line to retrieve the contents for
OlGetTextBufferLine() retrieves the contents of line from the
OlTextBuffer . It returns a pointer to a string containing the copy of the

contents of the line or NULL if the line is outside the range of valid lines in text.

Note — The storage for the copy is allocated by this routine. It is the
responsibility of the caller to free this storage when it becomes dispensable.

See Also

“OlAllocateTextBuffer” on page 176,
“OlRegisterTextBufferUpdate” on page 197,
“OlGetTextBufferCharAtLoc” on page 182,
“OlGetTextBufferBlock™ on page 180.

OlGetTextUndoDeleteltem
#include <Xol/Oltextbuff.h>

OlITextUndoltem OlGetTextUndoDeleteltem(

OlTextBufferPtr text);
Arguments
text The text buffer for which to get the undo delete item.
OlGetTextUndoDeleteltem() returns a OlTextUndoltem struct containing

the value of “deleted” undo item. A copy of the deleted string is provided in
the returned struct.

Toolkit Functions 183

=5

Text Buffer Functions for Internationalization

184

OlGetTextUndolnsertltem
#include <Xol/Oltextbuff.h>

OlTextUndoltem OlGetTextUndolnsertltem(

OlTextBufferPtr text);
Arguments
text The text buffer for which to get the undo insert item
OlGetTextUndolnsertitem() returns a OlTextUndoltem struct containing

the value of “insert” undo item. A copy of the insert string is provided in the
returned struct.

OlIncrementTextBufferLocation
#include <Xol/Oltextbuff.h>

TextLocation [OlIncrementTextBufferLocation(

OlTextBufferPtr text ,
TextLocation Oocation
TextLine line ,
TextPosition offset);
Arguments
text The text buffer
location The location to increment
line The lines to increment by
offset The character offset to increment by
OlincrementTextBufferLocation() increments a location by lines and/or

offset characters. It returns a pointer to the modified starting location. If line or
offset are negative, the function performs a decrement operation. If the starting
location is NULL, NULL is returned. If the starting location or the resulting
location is invalid the pointer to the starting location is returned without
modification; otherwise, the starting location is modified and a pointer to the
starting location is returned.

Note — Do not expect the location passed to this function to remain unchanged.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
See Also

“OINextLocation” on page 189,
“OlPreviousLocation” on page 192.

OllsTextBufferEmpty
#include <Xol/Oltextbuff.h>

Boolean OlisTextBufferEmpty(

OlTextBufferPtr text);
Arguments
text The text buffer to test
OlisTextBufferEmpty() returns TRUE if the text buffer is empty. Otherwise,

it returns FALSE.

OllsTextBufferModified
#include <Xol/Oltextbuff.h>

Boolean OlisTextBufferModified(

OlTextBufferPtr text);
Arguments
text The text buffer
OlisTextBufferModified() returns TRUE if the text buffer has been

modified since the last save. Otherwise, it returns FALSE.

OlLastCharInTextBufferLine
#include <Xol/Oltextbuff.h>

int OlLastCharinTextBufferLine(
OlTextBufferPtr text ,
TextLine line);

Toolkit Functions 185

=5

Text Buffer Functions for Internationalization

186

Arguments

text The text buffer

line The line to find the last character offset for
OlLastCharinTextBufferLine() returns the character offset of the last

character in the text buffer line.

OlLastTextBufferLine
#include <Xol/Oltextbuff.h>

TextLine OlLastTextBufferLine(

OlTextBufferPtr text);
Arguments
text The text buffer for which to find the last line number
OlLastTextBufferLine() returns the last text buffer line number.

OlLastTextBufferLocation
#include <Xol/Oltextbuff.h>

TextPosition OlLastTextBufferLocation(

OlTextBufferPtr text);
TextLocation Oast);
Arguments
text The text buffer
last Address to return the last location to
OlLastTextBufferLocation() returns the pointer to the last valid

TextLocation in the OlTextBuffer associated with text. If the last
argument is NULL, space for last TextLocation is allocated; otherwise, the
last argument contains the last valid TextLocation

See Also
“OlLastTextBufferPosition” on page 187.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

OlLastTextBufferPosition
#include <Xol/Oltextbuff.h>

TextPosition OlLastTextBufferPosition(

OlTextBufferPtr text);
Arguments
text The text buffer
OlLastTextBufferPosition() returns the last valid TextPosition in the
OlTextBuffer associated with text.
See Also
“OlLastTextBufferLocation” on page 186.
OIlLineOfPosition
#include <Xol/Oltextbuff.h>
TextLine OlLineOfPosition(
OlTextBufferPtr text
TextPosition position);
Arguments
text The text buffer
OlLineOfPosition() translates a position in the OlTextBuffer to a line

index. It returns the translated line index, or EOF if the position is invalid.

See Also

“OlLineOfPosition” on page 187,
“OlPositionOfLocation” on page 191,
“OlLocationOfPosition” on page 188.

OlLinesInTextBuffer
#include <Xol/Oltextbuff.h>

int OlLinesInTextBuffer(
OlTextBufferPtr text);

Toolkit Functions

187

=5

Text Buffer Functions for Internationalization

188

Arguments

text The text buffer to get the number of lines for
OlLinesInTextBuffer() returns the number of lines in the given
OlTextBuffer

OlLocationOfPosition
#include <Xol/Oltextbuff.h>

TextLocation [OlLocationOfPosition(

OlTextBufferPtr text ,

TextPosition position

TextLocation Oocation);
Arguments
text The text buffer
position The position to translate to a TextLocation
location The address to store the translated TextLocation
OlLocationOfPosition() translates a position in the OlTextBuffer to a
TextLocation . It expects a pointer to a TextLocation in the location
argument to deposit the translated TextLocation . If the location argument is

NULL, it allocates space. It returns a pointer to the allocated TextLocation or
the passed TextLocation , with the translated value deposited in it. If the
position is invalid, the Buffer pointer buffer is set to NULL and the line and
offset members are set to the last valid location in the OlTextBuffer
otherwise, the buffer is set to a non-NULL (though useless) value.

Note — The storage space for TextLocation , if not provided by the caller, is
allocated by this function.

See Also

“OlLineOfPosition” on page 187,
“OlPositionOfLocation” on page 191,
“OlLocationOfPosition” on page 188.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
OINextLocation
#include <Xol/Oltextbuff.h>

TextLocation [OINextLocation(

OlTextBufferPtr text ,
TextLocation Ceurrent),
Arguments
text The text buffer
current The current location
OINextLocation() returns the pointer to the TextLocation that follows
the given current location in an OlTextBuffer . If the current location points

to the end of the OlTextBuffer , this function wraps to the beginning of the
OlTextBuffer

Note — The location passed to this function is modified. It contains the next
location at the end of the call.

See Also
“OlPreviousLocation” on page 192.

OINextTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation [OINextTextBufferWord(

OlTextBufferPtr text ,
TextLocation Ckurrent);
Arguments
text The text buffer
current The current location
OINextTextBufferWord() locates the beginning of the next word from a
given current location in an OlTextBuffer . If the current location is within

the last word in the OlTextBuffer , the function wraps to the beginning of the
OlTextBuffer

Toolkit Functions 189

=5

Text Buffer Functions for Internationalization

190

Note — The location passed to this function is modified. It contains the start of
the next buffer word at the end of the call.

See Also

“OlPreviousTextBufferWord™ on page 192,
“OlStartCurrentTextBufferWord” on page 201.

OINumBytesInTextBufferLine
#include <Xol/Oltextbuff.h>

int OINumBytesInTextBufferLine(

OlTextBufferPtr text
TextLine line);
Arguments
text The text buffer
line The line to get the number of bytes for
OINumBytesInTextBufferLine() returns the number of bytes in line.

OINumCharsinTextBufferLine

#include <Xol/Oltextbuff.h>

int OINumCharsinTextBufferLine(

OlTextBufferPtr text
TextLine line);
Arguments
text The text buffer
line The line for which to get the number of chars
OINumCharsinTextBufferLine() returns the number of characters in the

specified line.

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
OINumuUnitsinTextBufferLine
#include <Xol/Oltextbuff.h>

int OINumUnitsinTextBufferLine(

OlTextBufferPtr text ,
TextLine line);
Arguments
text The text buffer
line The line for which to get the number of units
OINumCharsinTextBufferLine() returns the number of units in the

specified line.

OlPositionOfLine()
#include <Xol/Oltextbuff.h>

TextPosition OlPositionOfLine(

OlTextBufferPtr text ,

TextLine lineindex);
Arguments
text The text buffer
lineindex The line index to translate into a text position
OlPositionOfLine() translates a lineindex in the OlTextBuffer toa
TextPosition . It returns the translated TextPosition or EOF if the lineindex
is invalid.

OlPositionOfLocation
#include <Xol/Oltextbuff.h>

TextPosition OlPositionOfLocation(

OlTextBufferPtr text ,
TextLocation Oocation);
Arguments
text The text buffer
location The location to translate to a TextPosition

Toolkit Functions 191

=5

Text Buffer Functions for Internationalization

192

OlPositionOfLocation() translates a location in the OlTextBuffer toa
TextPosition . It returns the translated TextPosition or EOF if the location
is invalid.

OIPreviousLocation
#include <Xol/Oltextbuff.h>

TextLocation COIPreviousLocation(

OlTextBufferPtr text
TextLocation Ceurrent),
Arguments
text The text buffer
current The current location
OlPreviousLocation() function the pointer to the TextLocation that
precedes the given current location in a OlTextBuffer . If the current location

points to the beginning of the OlTextBuffer , this function wraps to the end
of the OlTextBuffer

Note — The current location is modified. It contains the previous location at the
end of the call.

See Also
“OINextLocation” on page 189.

OIlPreviousTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation [OIPreviousTextBufferWord(

OlTextBufferPtr text ,
TextLocation Ceurrent),
Arguments
text The text buffer
current The current location

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

OlPreviousTextBufferwWord() locates the beginning of a word in a
OlTextBuffer relative to a given current location. It returns the location of
the beginning of the word that precedes the given current location. If the
current location is within a word, this function will skip over the current word.
If the current word is the first word in the OITextBuffer , the function wraps
to the end of the OlTextBuffer

Note — The location passed to this function is modified. It contains the start of
the previous buffer word at the end of the call.

See Also
“OlPreviousTextBufferWord” on page 192

OIlReadFilelntoTextBuffer
#include <Xol/Oltextbuff.h>

OlITextBufferPtr OIReadFileIntoTextBuffer(

OIStrRep strrep
char filename
TextUpdateFunction update_func
XtPointer data);
Arguments
strrep The string representation (OL_SB_STR_REP, OL_WC_STR_REP, or
OL_MB_STR_REP)
filename The file to be read
update_func The update function
data Data
OIReadFileIntoTextBuffer() reads the given file into a newly allocated

OlTextBuffer . The supplied TextUpdateFunction and data pointer are
associated with this OlTextBuffer . See “OlReplaceBlockinTextBuffer” on
page 197 for more details of the TextUpdateFunction

See Also
“OlReadStringIntoTextBuffer” on page 194.

Toolkit Functions 193

=5

Text Buffer Functions for Internationalization

194

OlIReadStringlntoTextBuffer

#include <Xol/Oltextbuff.h>
OlITextBufferPtr OIReadStringIntoTextBuffer(

OlIStrRep strrep
char Cktring
TextUpdateFunction update_func
XtPointer data);
Arguments
strrep The string representation (OL_SB_STR_REP,
OL_WC_STR_REP, or OL_MB_STR_REP
string The string to be read
update_func The update function
data Data
OlIReadStringIntoTextBuffer() copies the given string into a newly

allocated OlITextBuffer . The supplied TextUpdateFunction and data
pointer are associated with this OlTextBuffer . See
“OlReplaceBlockinTextBuffer” on page 197 for more details of the
TextUpdateFunction

See Also
“OlReadFilelntoTextBuffer” on page 193.

OlRegisterAllTextBufferScanFunctions
#include <Xol/Oltextbuff.h>

void OlRegisterAllTextBufferScanFunctions(

OIStrRep strrep
OlStrScanDefFunc forward_scan_func
OlstrScanDefFunc backward_scan_func);
Arguments
strrep The string representation (OL_SB_STR_REP,
OL_WC_STR_REP, or OL_MB_STR_REP
forward_scan_func The forward scan function to be used by all OlTextBuffers
backward_scan_func The backward scan function to be used by all OlTextBuffers

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

The forward_scan_func and backward_scan_func arguments specify
OlstrScanDefFunc() functions. OIStrScanDefFunc is defined as:

typedef XtPointer ([OIStrScanDefFunc)(
Olstr string
olstr curp ,

OIStr expression);

OlIRegisterAllTextBufferWordDefinition() provides the capability to
replace the text buffer functions used by all OlITextBuffers

OlRegisterAllTextBufferWordDefinition
#include <Xol/Oltextbuff.h>

void OlIRegisterAllTextBufferWordDefinition(

OIStrRep strrep
OlIStrWordDefFunc word_definition_func);
Arguments
strrep The string representation
word_definition_func The word definition function used by all OlTextBuffers

The word_definition_func argument specifies an OIStrWordDefFunc() , which
is defined as:
typedef Boolean ([OIStrWordDefFunc)(OIStr rc);

OIRegisterAllTextBufferWordDefinition() provides the capability to
replace the word definition function used by all OlTextBuffers . These
functions are responsible for returning TRUE if the character that rc points to
can occur in a word, and FALSE otherwise. Calling this function with NULL
reinstates the default word definition function associated with the text format.

OlRegisterPerTextBufferScanFunctions
#include <Xol/Oltextbuff.n>

void OlRegisterPerTextBufferScanFunctions(

OlTextBufferPtr text
OlStrScanDefFunc forward_scan _func
OlStrScanDefFunc backward_scan_func);

Toolkit Functions 195

=5

Text Buffer Functions for Internationalization

196

Arguments

strrep The string representation (OL_SB_STR_REP,
OL_WC_STR_REP, or OL_MB_STR_REP)

forward_scan_func The forward scan function used by OlTextBuffers

backward_scan_func The backward scan function used by OlTextBuffers

The arguments forward_scan_func and backward_scan_func specify
OlstrScanDefFunc() functions. OIStrScanDefFunc is defined as:

typedef XtPointer ([OIStrScanDefFunc)(

Olstr string

Olstr curp ,

OIStr expression);
OlRegisterPerTextBufferScanFunctions() provides the capability to
replace the scan functions used by the OlForwardScanTextBuffer() and
OlBackwardScanTextBuffer() functions, as applied to the passed

OlTextBuffer only.

OlRegisterAllTextBufferScanFunctions() provides the capability to
replace the scan functions used by the OlForwardScanTextBuffer() and
OlBackwardScanTextBuffer() functions, as applied to all

OlTextBuffers . These functions are responsible for returning either a pointer
to the beginning of a match for the expression or NULL. Calling this procedure
with NULL function pointers reinstates the default regular expression facility
associated with the text format.

OlRegisterPerTextBufferWordDefinition
#include <Xol/Oltextbuff.h>

void OIRegisterPerTextBufferWordDefinition(

OlTextBufferPtr text

OlSstrWordDefFunc word_definition_func);
Arguments
text The text buffer
word_definition_func The new word definition function

The word_definition_func argument specifies an OIStrWordDefFunc() , which
is defined as:

typedef Boolean ([OIStrWordDefFunc)(OIStr rc);

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

OlRegisterPerTextBufferWordDefinition() provides the capability to
replace the word definition function used by the passed OITextBuffer

OlRegisterTextBufferUpdate
#include <Xol/Oltextbuff.h>

void OIRegisterTextBufferUpdate(

OlTextBufferPtr text
TextUpdateFunction update_func
XtPointer data);
Arguments
text The text buffer
update_func The update function
data Data
OlRegisterTextBufferUpdate() associates the TextUpdateFunction

update_func and data pointer data with the given OlTextBuffer text. This
update function will be called whenever an update operation is performed on
the OITextBuffer . See “OlReplaceBlockinTextBuffer” on page 197 for more
details of the TextUpdateFunction

Note — Calling this function increments a reference count mechanism used to
determine when to actually free the OlTextBuffer . Calling the function with
a NULL value for the function circumvents this mechanism.

See Also

“OlUnregisterTextBufferUpdate” on page 203,
“OlReadStringlntoTextBuffer” on page 194,
“OlReadFilelntoTextBuffer” on page 193.

OlReplaceBlockInTextBuffer
#include <Xol/Oltextbuff.h>

EditResult OIReplaceBlockinTextBuffer(

OlTextBufferPtr text
TextLocation Ostartloc
TextLocation Cendloc ,
Olstr string

Toolkit Functions 197

=5

Text Buffer Functions for Internationalization

198

TextUpdateFunction update_func
XtPointer data);
Arguments
text The text buffer
startloc The start location
endloc the end location
string The string to replace the block with
update_func The update function
data Data
OIReplaceBlockinTextBuffer() updates the contents of the TextBuffer

text. The characters stored between startloc (inclusive) and endloc (exclusive) are
deleted and the string is inserted after startloc. If the edit succeeds and if
TextUpdateFunction update_func is associated with TextBuffer text, then
update_func is called with the following parameters:

(Cupdate_func)(XtPointer d, TextBuffer (fext , EDIT_SUCCESS)

All the other text update functions associated with TextBuffer text are called
with the following parameters:

(XtPointer data , TextBuffer fext , EDIT_FAILURE)

OIReplaceBlockinTextBuffer() stores the details of the editing operation
it performs in text->deleted and text->insert OlTextUndoltem structures. The
contents of these structures may be used for implementing an Undo
mechanism. The hints provided in text->deleted.hint and text->insert.hint are an
inclusive OR of:

#define TEXT_BUFFER_NOP (0)
#define TEXT_BUFFER_DELETE_START_LINE (1L<<0)
#define TEXT_BUFFER_DELETE_START_CHARS (1L<<1)
#define TEXT_BUFFER_DELETE_END_LINE (1L<<2)
#define TEXT_BUFFER_DELETE_END_CHARS (1L<<3)
#define TEXT _BUFFER_DELETE_JOIN_LINE (1L<<4)
#define TEXT_BUFFER_DELETE_SIMPLE (1L<<5)
#define TEXT_BUFFER_INSERT_SPLIT_LINE (1L<<6)
#define TEXT_BUFFER_INSERT_LINE (1L<<7)
#define TEXT_BUFFER_INSERT_CHARS (1L<<8)

OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
The meaning of each of these values is described below:

TEXT_BUFFER_NOP No edit operation.

TEXT_BUFFER_DELETE_START_LINE The deleted block started at beginning of some
line.

TEXT_BUFFER_DELETE_START_CHARS The deleted block did not start at the
beginning of some line.

TEXT_BUFFER_DELETE_END_LINE The end of the deleted block coincided with
the end of some line.

TEXT_BUFFER_DELETE_END_CHARS Some characters were deleted from the end of

some line.

TEXT_BUFFER_DELETE_JOIN_LINE Some characters were deleted and two lines
were joined into a single line.

TEXT_BUFFER_DELETE_SIMPLE The whole of the deleted block was confined to
a single line.

TEXT_BUFFER_INSERT _SPLIT_LINE One line was split into two lines and some
characters were inserted at the split location.

TEXT_BUFFER_INSERT_LINE A line was inserted without spliting an
existing line.

TEXT_BUFFER_INSERT_CHARS Some characters were inserted at the beginning

of some existing line.

See Also
“OlReplaceCharinTextBuffer” on page 199.

OlIReplaceCharInTextBuffer
#include <Xol/Oltextbuff.h>

EditResult OIReplaceCharinTextBuffer(

OlTextBufferPtr text ,
TextLocation Oocation
Olstr c,
TextUpdateFunction update_func
XtPointer data);

Toolkit Functions 199

=5

Text Buffer Functions for Internationalization

Arguments

text The text buffer

location The location of text

c replacement buffer

update_func The update function

data Data

OlIReplaceCharinTextBuffer() replaces the character in the
OlTextBuffer

See Also

“OlReplaceBlockInTextBuffer” on page 197.

OlSaveTextBuffer

#include <Xol/Oltextbuff.h>

SaveResult OlSaveTextBuffer(

OlTextBufferPtr text
char (filename);
Arguments
text The text buffer
filename The filename to write the text buffer to

OlSaveTextBuffer() writes the contents of the OlTextBuffer to the file
filename. It returns a SaveResult , which can be SAVE_FAILURE or
SAVE_SUCCESS.

OlSetTextUndoDeleteltem
#include <Xol/Oltextbuff.h>

void OlSetTextUndoDeleteltem(

OlTextBufferPtr text
OITextUndoltem text_undo_deleted);
Arguments
text The text buffer
text_undo_deleted The item for which the delete was undone

200 OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization

OlSetTextUndoDeleteltem() sets the “deleted” OITextUndoltem of the
OlTextBuffer to the value of the passed OlTextUndoltem . The “deleted”
string is copied in. OlTextUndoltem is defined as:

typedef struct _OITextUndoltem {

Olstr string
TextLocation start ;
TextLocation end;

TextUndoHint hint ;

} OITextUndoltem;

OlSetTextUndolnsertltem
#include <Xol/Oltextbuff.h>

void OlSetTextUndolnsertltem(

OlTextBufferPtr text
OlTextUndoltem text_undo_insert);
Arguments
text The text buffer
text_undo_insert The item for which the insert was undone
OlSetTextUndolnsertltem() sets the “insert” OlTextUndoltem of the

OlTextBuffer to the value of the passed OlTextUndoltem . The “insert”
string is copied in.

OlStartCurrentTextBufferWord
#include <Xol/Oltextbuff.h>

TextLocation [OlStartCurrentTextBufferword(

OlTextBufferPtr text
TextLocation Ceurrent),
Arguments
text The text buffer
current The location
OlStartCurrentTextBufferWord() locates the beginning of a word in the

OlTextBuffer relative to a given current location. It returns the location of
the beginning of the current word.

Toolkit Functions 201

=5

Text Buffer Functions for Internationalization

Note — This return value will equal the given current value if the current
location is the beginning of a word. If the location is not in a word, it returns
the start of the “not word” region it is in. The location passed to this function
is modified. It contains the start of the current buffer word (or “not word”) at
the end of the call.

See Also

“OlPreviousTextBufferWord™ on page 192,
“OINextTextBufferWord” on page 189.

OlTextEditOlTextBuffer

#include <Xol/buffutil.h>
#include <Xol/Oltextbuff.h>
#include <Xol/Dynamic.h>
#include <Xol/TextEdit.h>

OlITextBufferPtr OITextEditOITextBuffer(
TextEditWidget ctx);

OITextEditOITextBuffer() retrieves the OlTextBufferPtr associated
with the TextEdit widget ctx. This buffer exists only when the value of
XtNtextFormat for the widget is not OL_SB_STR_REP. This pointer can be
used to access the facilities provided by the multibyte functions. In case
XtNtextFormat is OL_SB_STR_REP, this function returns a NULL pointer.

OlUnNitOffsetOfLocation

#include <Xol/Oltextbuff.h>

UnitPosition OlUnitOffsetOfLocation(

OlTextBufferPtr text
TextLocation Ooc);
Arguments
text The text buffer
loc The location
OlUnitOffsetOfLocation() returns the font offset corresponding to the

TextLocation offset passed to it. The units are char for single-byte and
multi-byte and wchar_t for wide character.

202 OLIT Reference Manual—August 1994

D=

Text Buffer Functions for Internationalization
OlUnregisterTextBufferUpdate
#include <Xol/Oltextbuff.h>

int OlUnregisterTextBufferUpdate(

OlTextBufferPtr text ,

TextUpdateFunction update_func

XtPointer data);
Arguments
text The text buffer
update_func The update function to disassociate
data Data
OlUnregisterTextBufferUpdate() disassociates the

TextUpdateFunction and data pointer data with the given OlTextBuffer
text. If the function/data pointer pair is not associated with the given
OlTextBuffer , zero is returned; otherwise, the association is dissolved and 1
is returned. See “OlReplaceBlockInTextBuffer” on page 197 for more details of
the TextUpdateFunction

See Also

“OlRegisterTextBufferUpdate” on page 197,
“OlFreeTextBuffer” on page 180.

Toolkit Functions 203

=5

Text Selection Operations

Text Selection Operations

The Caption, NumericField, StaticText, TextEdit, TextField, and TextLine
widgets use the following operations to copy and move text.

Setting Insert Point

Clicking SELECT sets the insert point at the boundary between two characters
or spaces nearest the pointer. This makes an inactive caret active and highlights
the header of the main window (base window or popup window) containing

the specific text widget, to show which window has the input focus. Any active
selection on the screen is deselected.

Wipethrough Selection

Pressing and dragging SELECT marks the bounds of a new selection and
highlights it, and deselects any other active selection on the screen. While
SELECT is pressed, the active or inactive caret that marks the insert point is
invisible, but when SELECT is released, the insert point is left at the position of
the release. This does not make the insert point (caret) active if it is not already
active.

The selection starts with the character where SELECT is pressed and extends to
the character where SELECT is released. If the pointer moves outside the widget
and the widget can scroll in that direction (i.e., there is a scrollbar for that
direction), the widget scrolls additional text into the widget and adds it to the
selection. The rate at which text scrolls into the widget is the same rate at
which pressing SELECT on the arrows of the Scrollbar scrolls the widget.

Deletion of the New Selection

204

If new text is entered from the keyboard or pasted from the CLIPBOARD, it
replaces the selection.

OLIT Reference Manual—August 1994

D=

Text Selection Operations
Adjusted Selection

Clicking SELECT, moving the pointer, and clicking ADJUST marks the bounds of
a selection and highlights it. A subsequent click of ADJUST changes the end
bound of the selection. The ADJUST may also follow a wipe-through selection.
The selection starts with the character where SELECT was clicked and extends
to the character where ADJUST is clicked. The insert point is moved to the
position of the ADJUST. As above, deletion of the new selection is pending.

Multiclick Selection

Double-clicking SELECT selects the word nearest the pointer. In case of a tie,
the word to the left is selected. Triple-clicking SELECT selects the entire line,
and quadruple-clicking selects the entire content. The selection is highlighted
and the insert point is left at the position of the multi-click.

® Copying Text — Using COPY copies any selected text to the CLIPBOARD and
deselects it.

® (Cutting Text — Using CUT moves any selected text to the CLIPBOARD and
deletes it from the Input Field.

® Pasting Text — After setting the insert point, using PASTE copies text from the
CLIPBOARD as though it were typed in, leaving the insert point at the end of
the pasted text. This will replace any text currently selected in the widget.
Note that the data on the CLIPBOARD may have come from outside the
input field, but it must be text. If the CLIPBOARD is empty, the system beeps.

Toolkit Functions 205

=5

Toolkit Resource Functions

Toolkit Resource Functions

206

See Also

OlGetApplicationValues

#include <Xol/OpenLook.h>
void OlGetApplicationValues(

Widget widget
ArgList args ,
Cardinal num_args);
OlGetApplicationValues() retrieves the value of any of the OLIT Toolkit

Resources listed in Table 2-1 on page 7. OLIT toolkit resources have an
application-wide scope. The widget argument is used to derive the screen and
display. The args argument is a list of name/address pairs that contain the
resource names and the addresses into which the resource values are to be
stored. The num_args argument specifies the number of name/address pairs in
args. If the resource name supplied in the args list is not recognized by the
toolkit, the corresponding supplied address is not accessed by the toolkit. An
application should query the value of an OLIT toolkit resource each time it
needs it.

OlSetApplicationValues

#include <Xol/OpenLook.h>
void OlSetApplicationValues(

Widget widget
ArgList args ,
Cardinal num_args);
OlSetApplicationValues() sets the OLIT toolkit resources values. The

widget and num_args arguments are used as in OlGetApplicationValues()

The args argument is a list of name/value pairs that contain the resource
names and the values; as with XtSetValues() , if a resource name does not fit
into an XtArgVal , the corresponding args value field contains a pointer to the
resource value.

XtGetValues() and XtSetValues() in the Xt Intrinsics Reference Manual.

OLIT Reference Manual—August 1994

D=

Virtual Event Functions

Virtual Event Functions
For all functions discussed here, the registration order determines the search

order when doing a lookup.

LookupOlInputEvent

#include <Xol/Dynamic.h>
OlinputEvent LookupOlinputEvent(

Widget W,
XEvent Cevent
KeySym Ckeysym,
char (Tbuffer
int Oength),
LookupOlinputEvent() decodes the event for widget w to an

OlinputEvent . See the table of OLIT Activation Types (Table 3-1 on page 65)
for a list of the OlinputEvent values (listed in the “Activation Type” column)
this function may return. The event passed should be a ButtonPress,
ButtonRelease, or KeyPress event. LookupOlinputEvent() attempts to
decode this event based on the settings of the OPEN LOOK defined dynamic
mouse and keyboard settings.

If the event is a KeyPress, the function may return the keysym, buffer, and/or
length of the buffer returned from a call to XLookupString() . It returns these
values if non-NULL values are provided by the caller.

OlDetermineMouseAction

#include <Xol/Dynamic.h>

ButtonAction OlDetermineMouseAction(

Widget w,
XEvent Cevent);
OlDetermineMouseAction() determines the kind of mouse gesture that is

being attempted: it will return one of the values MOUSE_CLICK,
MOUSE_MULTI_CLICK, or MOUSE_MOVE. This function is normally called
immediately upon receipt of a mouse button press event. It uses the current
settings for the XtNmouseDampingFactor and XtNmultiClickTimeout
resources to determine the kind of gesture being made.

Toolkit Functions 207

=5

Virtual Event Functions

OlDetermineMouseAction() performs an active pointer grab. This grab is
released for the CLICK type actions, but not for MOUSE_MOVE. It is the
responsibility of the caller to ungrab the pointer if the action is MOUSE_MOVE.

Example

static void ButtonConsumeCB (w, client_data, call_data)
widget W;

XtPointer client_data;

XtPointer call_data;

{

Position X, Y;

OlVirtualEvent ve;
ve = (OlVirtualEvent) call_data;

switch (ve->virtual_name) {
case OL_SELECT:
switch(OIDetermineMouseAction(widget, event)) {
case MOUSE_MOVE:
OlGrabDragPointer(widget,
OlGetMoveCursor(XtScreen(widget), None);
OIbragAndDrop(widget, &drop_window, &Xx, &y);
DropOn(widget, drop_window, X, v,);
OlungrabDragPointer(widget);
break;
case MOUSE_CLICK:
ClickSelect(widget,);
break;
case MOUSE_MULTI_CLICK:
MultiClickSelect(widget,);

break;
}
break;
default:
OlReplayBtnEvent(widget, NULL, event);
break;
}

208 OLIT Reference Manual—August 1994

D=

Virtual Event Functions
OlIReplayBtnEvent

#include <Xol/Dynamic.h>
void OlReplayBtnEvent(

Widget W,
caddr_t client data
XEvent Cevent);
OlIReplayBtnEvent() replays a button press event to the next window

(towards the root) that is interested in button events. This provides a means of
propagating events up a window tree.

OlClassSearchlIEDB

#include <Xol/OpenLook.h>

void OlIClassSearchlEDB(
WidgetClass W,
OlVirtualEventTable db);

OlClassSearchlEDB() registers a given database on a specific widget class.
The db value was returned from a call to OlCreatelnputEventDB() .Once a
database is registered with a given widget class, the OlLookuplnputEvent()
procedure (if db_flag is OL_DEFAULT_IE or OLTEXT_IE) will include this
database in the search stack if the given widget ID is a subclass of this widget
class.

Example
/* To create a client application database */

/* start with a big value to avoid */
/* the "virtual_name" collision */

#define OL_MY_BASE 1000
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3
#define XtNmyDrawLineBtn "myDrawLineBtn"
#define XtNmyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartKey "mySavePartKey"
static OIKeyOrBtnRec OIMyBtninfo[] = {

/*name default_value virtual_name */
I3

Toolkit Functions 209

=5

Virtual Event Functions

210

static OIKeyOrBtnRec = OIMyKeylnfo[] = {

[*name default_value virtual_name */
{ XtNmyRedisplayKey, "c<F5>", OL_MY_REDISPLAYKEY },
{ XtNmySavePartKey, "c<F5>" OL_MY_SAVEPARTKEY },

h
static OlVirtualEventTable OIMyDB,;

OIMyDB = OlCreatelnputEventDB(

W,
OIMyKeylnfo, XtNumber(OIMyKeyInfo),
OIMyBtnInfo, XtNumber(OIMyBtninfo)

);

/* assume: all stub widgets are interested in OIMyDB */
OlClassSearchlEDB(stubWidgetClass, OIMyDB);

/* once this step is done, all stub widget instances */

/* will receive the OIMyDB commands after a call to */

* OlLookuplnputEvent() , or in the XtNconsumeEvent */
/* callback’s OlVirtualEvent structure supplied with */
/* the call_data field. */

OlClassSearchTextDB

#include <Xol/OpenLook.h>

void OlClassSearchTextDB(
WidgetClass wo);

OlClassSearchTextDB() registers the OPEN LOOK TEXT database on a
specific widget class. Once the OPEN LOOK TEXT database is registered with a
given widget class, the OlLookuplnputEvent() procedure (if db_flag is
OL_DEFAULT_IE or OLTEXT_IE) will include this database in the search stack if
the given widget ID is a subclass of this widget class.

Example
/* assume: all stub widgets are interested in the */
[* OPEN LOOK TEXT database */

OlClassSearchTextDB(stubWidgetClass);
/* once this step is done, all stub widget instances */
/* will receive OPEN LOOK TEXT commands aftera */

OLIT Reference Manual—August 1994

D=

Virtual Event Functions

[* call to OlLookuplnputEvent() , or in the */
/* XtNconsumeEvent callback’s OlVirtualEvent */
[* structure supplied with the call_data field. */

OlCreatelnputEventDB

#include <Xol/OpenLook.h>
OlVirtualEventTable OlCreatelnputEventDB(

Widget W,
OlKeyOrBtnInfo key info
int num_key _info
OlKeyBtnInfo btn_info
int num_btn_info);
OlCreatelnputEventDB() creates a client specific Key and/or Button

database. This function returns a database pointer if the call to this function is
successful; otherwise, a NULL pointer is returned. Mapping for a new virtual
command can be composed from the mappings of a previously defined virtual
command. The returned value from this function is an opaque pointer
(OlVirtualEventTable). A client application should use this pointer when
registering and/or looking up this database.

typedef struct _OlVirtualEventinfo [(OlVirtualEventTable;

The key_info and btn_info parameters are pointers to an OlKeyOrBtnRec
structure.

typedef struct {
String name
String default_value ; I* comma-separated string */
OlVirtualName virtual_name ;

} OlKeyOrBtnRec, [OIKeyOrBtninfo;

Note — A client application can create a Key-only database by specifying a
NULL btn_info. The same applies to a Button-only database. Each virtual
command can have two different bindings because the OLIT toolkit allows the
alternate key or button sequence. The OLIT toolkit already has a set of
predefined OPEN LOOK virtual names. It is important that the virtual_name
value of a client application database starts with a big value to avoid a virtual
name collision.

Toolkit Functions 211

=5

Virtual Event Functions

212

Example

/* To create a client application database */

/* start with a big value to avoid */

[* the "virtual_name" collision */
#define OL_MY_BASE 1000
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNmyDrawLineBtn "myDrawLineBtn"
#define XtNmyDrawArcBtn ~ "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartkey "mySavePartKey"

static OIKeyOrBtnRec OIMyBtnInfo[] = {

[*name default_value virtual name */
h
static OIKeyOrBtnRec OIMyKeyInfo[] = {

[*name default_value virtual_name */

{ XtNmyRedisplayKey, "c<F5>",
{ XtNmySavePartKey, "c<F5>",
3
static OlVirtualEventTable

OL_MY_REDISPLAYKEY },
OL_MY_SAVEPARTKEY 1},

OIMyDB;

OIMyDB = OlCreatelnputEventDB(
W,
OIMyKeylnfo, XtNumber(OIMyKeyInfo),
OIMyBtnInfo, XtNumber(OIMyBtnInfo)

OlLookuplnputEvent

#include <Xol/OpenLook.h>
void OlLookuplnputEvent(

Widget w,

XEvent kevent
OlVirtualEvent virtual_event ret ,
XtPointer db_flag);

OlLookuplnputEvent() translates an X event to an OPEN LOOK virtual

event. The X event (xevent) could be a KeyPress, ButtonPress, ButtonRelease,
EnterNotify, LeaveNotify, or MotionNotify event. The procedure attempts to
translate this event based on the setting of the OPEN LOOK-defined dynamic

OLIT Reference Manual—August 1994

D=

Virtual Event Functions

databases. The virtual_event_ret parameter is a pointer to an
OlVirtualEventRec structure in which the OPEN LOOK virtual event is
returned:

typedef struct {
Boolean consumed;
XEvent xevent ;
Modifiers dont_care ;
OlVirtualName virtual_name ;
KeySym keysym;
String buffer ;
Cardinal length
Cardinal item_index ;

} OlVirtualEventRec, [OlVirtualEvent;

(This structure is also used by the XtNconsumeEvent resource’s callbacks.)

See the table of OLIT Activation Types (Table 3-1 on page 65) for a list of the
values (listed in the “Activation Type” column) that may be returned in the
virtual_name member of the virtual_event_rec. If the X event is a KeyPress, the
keysym, buffer, and length information will be included in virtual_event_ret;
OlLookuplnputEvent() obtains these values from XLookupString()

The (w, db_flag) pair determines the searching database(s). Valid values for the
db_flag parameter are OL_DEFAULT_IE, OL_CORE_IE, and OL_TEXT_IE. If the
db_flag value is not OL_DEFAULT_IE, then only the given database (for example,
OL_TEXT_IE means: search the OPEN LOOK TEXT database) will be searched;
otherwise, a search stack will be built. This stack is based on the widget
information (w) and the registering order to determine the searching
database(s). Once this stack is built, the procedure searches in a LIFO (Last In
First Out) manner.

Most OLIT widgets have an XtNconsumeEvent callback. When this callback is
called, the call_data field is a pointer to an OlVirtualEventRec structure that
is filled in with the results of calling OlLookuplnputEvent() with the db_flag
set to OL_DEFAULT _IE.

Example
OlVirtualEventRec ve;

/* To look up the OPEN LOOK CORE database */
OlLookuplnputEvent(w, xevent, &ve, OL_CORE_IE);
switch (ve.virtual_name) {

case OL_UNKNOWN_INPUT:

Toolkit Functions 213

=5

Virtual Event Functions

case OL_UNKNOWN_KEY_INPUT:

case OL_ADJUST:
printf ("pressed the adjustBtn\n");

case OL_ADJUSTKEY:
printf ("pressed the adjustKey\n");

}

OlVirtualEventRec ve;

/* To look up the OPEN LOOK TEXT database */
OlLookuplnputEvent(w, xevent, &ve, OLTEXT_IE);
switch (ve.virtual_name) {

case OL_DOCEND:
printf ("pressed the docEndKey\n");

case OL_LINEEND:
printf ("pressed the lineEndKey\n");

OlVirtualEventRec ve;

/* To look up all possible databases */

/* assume: "w" is a textfield widget */
OlLookuplnputEvent(w, xevent, &ve, OL_DEFAULT_IE);
switch (ve.virtual_name) {

case OL_ADJUST:
printf ("pressed the adjustBtn\n");

case OL_ADJUSTKEY:
printf ("pressed the adjustKey\n");

case OL_DOCEND:
printf ("pressed the docEndKey\n");

case OL_LINEEND:
printf ("pressed the lineEndKey\n");

214 OLIT Reference Manual—August 1994

D=

Virtual Event Functions
OIWidgetSearchlEDB

#include <Xol/OpenLook.h>

void OlWidgetSearchlEDB(
Widget W,
OlVirtualEventTable ab);

OlWidgetSearchlEDB() registers a given database on a specific widget
instance. The db value was returned from a call to

OlCreatelnputEventDB() . Once a database is registered with a given
widget instance, the OlLookuplnputEvent() procedure (if db_flag is
OL_DEFAULT_IE or OL_TEXT_IE) will include this database in the search stack if
the given widget ID is this widget instance.

Example
/* To create a client application database */
/* start with a big value to avoid */
/* the "virtual_name" collision */
#define OL_MY_BASE 1000

#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNmyDrawLineBtn ~ "myDrawLineBtn"
#define XtNmyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartkey "mySavePartKey"
static OIKeyOrBtnRec OIMyBtnInfo[] = {

[*name default_value virtual_name */

|3
static OIKeyOrBtnRec OIMyKeylnfo[] = {
[*name default_value virtual_name */

{ XtNmyRedisplayKey, "c<F5>", OL_MY_REDISPLAYKEY },
{ XtNmySavePartKey, "c<F5>", OL_MY_SAVEPARTKEY },
2

static OlVirtualEventTable OIMyDB,;

OIMyDB = OlCreatelnputEventDB(
w,
OIMyKeylnfo, XtNumber(OIMyKeylInfo),
OIMyBtnInfo, XtNumber(OIMyBtnInfo)

Toolkit Functions 215

=5

Virtual Event Functions
/* Assume: "w" is a stub widget that is interested in */
I* OIMyDB */
OlwidgetSearchlIEDB(w, OIMyDB);
/* Once this step is done, this widget instance will */
/* receive OIMyDB commands after a call to */
/* OlLookuplnputEvent(), or in the XtNconsumeEvent */
/* callback’s OlVirtualEvent structure supplied with */
/* the call_data field. */

OlWidgetSearchTextDB

#include <Xol/OpenLook.h>

void OlWidgetSearchTextDB(
OlVirtualEventTable w;

OlWidgetSearchTextDB() is used to register the OPEN LOOK TEXT database
on a given widget instance.

Once the OPEN LOOK TEXT database is registered with a given widget instance,
the OlLookuplnputEvent() procedure (if db_flag is OL_DEFAULT_IE or
OL_TEXT_IE) will include this database in the search stack if the given widget
ID is this widget instance.

Example
/* assume: “w” is a stub widget that is interested in */
I* the OPEN LOOK TEXT database */

OlWidgetSearchTextDB(w);

/* Once this step is done, this widget instance will */

/* receive OPEN LOOK TEXT commands after a call */
/* to OlLookuplnputEvent(), or in the XtNconsumeEvent */
/* callbacks OlVirtualEvent structure supplied with */

/* the call_data field. */

See Also

Chapter 3, “Activation Types.”

216 OLIT Reference Manual—August 1994

Widget Reference (A—C) 6

Chapters 6 to 10 describe the widgets in the OLIT widget set and functions that
augment the specific widgets. (For functions that are not specific to a widget,
see Chapter 5, “Toolkit Functions.”)

AbbrevMenuButton Widget

Class

Class Name: AbbrevMenuButton
Class Pointer: abbrevMenuButtonWidgetClass

Ancestry

Core-Primitive-AbbrevMenuButton

Required Header Files

#include <Xol/OpenLook>
#include <Xol/AbbrevMenu.h>

Description

The AbbrevMenuButton widget is used to create a popup menu that also
provides current selection viewing to the user. When the user invokes the

217

=0

AbbrevMenuButton Widget

218

MENU command on the AbbrevMenuButton, a menu pops up. Once the user
makes a selection off the menu, the selected item should be displayed next to
the AbbrevMenuButton. The AbbrevMenuButton also provides the features of
the MenuButton widget (menu default selection, menu previewing, menu
selection).

Components

The AbbrevMenuButton consists of a square button containing an arrow
(menumark) with a popup menu attached. An application should create and
identify an additional component, the Current Selection Widget, which is used
to display previewing and also to display the current selection off the menu.
Each AbbrevMenuButton also has the components of the MenuShell widget.

Abbreviated Menu Button

@ ITalic —— curent selection Widget

Figure 6-1 AbbrevMenuButton Widget

Subwidget

The AbbrevMenuButton widget automatically creates and attaches a
MenusShell widget. An application can add menu items to this menu by
obtaining the value of the XtNmenuPane resource and adding children to this
widget.

AbbrevMenuButton
MenuShell
(XtNmenuPane)

Figure 6-2 AbbrevMenuButton Subwidget

Current Selection Widget

The Current Selection Widget is created by the application. This widget should
be a StaticText, TextField, or TextLine widget. Typically, the Current Selection
Widget and the AbbrevMenuButton widget are placed together in a composite

OLIT Reference Manual—August 1994

6=

AbbrevMenuButton Widget

widget that manages their side-by-side placement. The AbbrevMenuButton
widget uses the Current Selection Widget only for previewing the default item
in the menu. The application is responsible for using it to display the current
selection, and if the Current Selection Widget is an editable field, for adding
the new item to the menu as appropriate.

Coloration

For 3D, AbbrevMenuButton coloration is defined by the OPEN LOOK GUI
Functional Specification, Chapter 9, “Color and Three-Dimensional Design.”
XtNbackground is used for BG1, and the BG2 (pressed-in), BG3 (shadow), and
Highlight colors are derived by the toolkit from BGL1.

For 2D, XtNbackground and XtNforeground are used to render the
AbbrevMenuButton as described by the OPEN LOOK GUI Functional
Specification, Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the AbbrevMenuButton will be drawn with the value of
XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as XtNbackground , then the widget
inverts XtNforeground and XtNbackground . Once the input focus leaves the
widget, the original coloration is restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE. The
AbbrevMenuButton responds to the following navigation keys:

® SELECTKEY: The response depends on the value of the toolkit resource
XtNselectDoesPreview . If XtNselectDoesPreview is TRUE, this key
activates the default item in the Menu. If XtNselectDoesPreview is
FALSE, this key pops up the Menu and transfers the keyboard focus to the
default item in the Menu.

® MENUKEY: Pops up the Menu and transfers the keyboard focus to the
default item in the Menu.

®* MOVEDOWN: Pops up the Menu and transfers the keyboard focus to the
default item in the Menu.

Widget Reference (A —C) 219

=0

AbbrevMenuButton Widget

® NEXTFIELD and MOVERIGHT move to the next traversable widget in the
shell.

® PREVFIELD, MOVEUP, and MOVELEFT move to the previous traversable
widget in the shell.

® NEXTWINDOW moves to the next window in the application.

® PREVWINDOW moves to the previous window in the application.

® NEXTAPP moves to the first window in the next application.

® PREVAPP moves to the first window in the previous application.

® The response of the Menu associated with the AbbrevMenuButton is
specified in the MenuShell widget’s description. See page 414.

Keyboard Mnemonic Display

The AbbrevMenuButton does not display the mnemonic accelerator. If the
AbbrevMenuButton is the child of a Caption widget, the Caption widget can
be used to display the mnemonic.

Keyboard Accelerator Display

The AbbrevMenuButton does not display the keyboard accelerator. If the
AbbrevMenuButton is a child of a Caption widget, the Caption widget can be
used to display the accelerator as part of the label.

Resources

Table 6-1 AbbrevMenuButton Core Resources

Name Type Default Access
XtNaccelerators AcceleratorTable NULL SGI
XtNancestorSensitive Boolean TRUE G
XtNbackground Pixel XtDefaultBackground SGID
XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderColor Pixel XtDefaultForeground SGID
XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderWidth Dimension 1 SGI
XtNcolormap Colormap (parent’s) SGI
XtNdepth int (parent’s) Gl

220 OLIT Reference Manual—August 1994

6=

AbbrevMenuButton Widget

Table 6-1 AbbrevMenuButton Core Resources (Continued)

Name Type Default Access
XtNdestroyCallback XtCallbackList NULL SGIO
XtNheight Dimension (calculated) SGI
XtNmappedWhenManaged Boolean TRUE SGI
XtNscreen Screen O (parent’s) G
XtNsensitive Boolean TRUE GIO
XtNtranslations XtTranslations NULL SGI
XtNwidth Dimension (calculated) SGI
XtNx Position 0 SGI
XtNy Position 0 SGI
Table 6-2 AbbrevMenuButton Primitive Resources

Name Type Default Access
XtNaccelerator String NULL SGI
XtNacceleratorText String NULL SGI
XtNconsumeEvent XtCallbackList NULL SGIO
XtNfont OlFont XtDefaultFont SGID
XtNfontColor Pixel XtDefaultForeground SGID
XtNforeground Pixel XtDefaultForeground SGID
XtNinputFocusColor Pixel Red SGID
XtNmnemonic unsigned char “\0’ SGI
XtNreferenceName String NULL Gl
XtNreferenceWidget Widget NULL Gl
XtNscale int 12 SGI
XtNtextFormat OlSstrRep OL_SB_STR_REP Gl
XtNtraversalOn Boolean TRUE SGI
XtNuserData XtPointer NULL SGI
Table 6-3 AbbrevMenuButton Resources

Name Type Default Access
XtNmenuPane Widget (special) G
XtNpreviewWidget Widget NULL SGI
Widget Reference (A —C) 221

=0

AbbrevMenuButton Widget

222

The following table lists the AbbrevMenuButton resources that are propagated
to the MenusShell subwidget.

Table 6-4 AbbrevMenuButton Subwidget Resources®

Name Type Default Access
XtNcenter Boolean TRUE |
XtNhPad Dimension 4 |
XtNhSpace Dimension 4 |
XtNlayoutType OlDefine OL_FIXEDROWS 12
XtNmeasure int 1 12
XtNpushpin OlDefine OL_NONE |
XtNpushpinDefault Boolean FALSE |
XtNsameSize OlDefine OL_COLUMNS |
XtNshellTitle Olstr (widget name) SGI
XtNvPad Dimension 4 |
XtNvSpace Dimension 4 |

1. These subwidget resources are described in the sections “ControlArea Widget” on page 249 and “MenusShell
Widget” on page 414.

2. These resources can only be set programmatically via XtCreateWidget, XtVaCreateWidget, etc. Application
resource file settings will not apply to these resources.

XtNmenuPane

Class Type Default Access

XtCMenuPane Widget (special) G

Synopsis: The widget where menu items can be added.

Values: ID of the menupane widget contained in the AbbrevMenuButton’s
MenusShell.

The value of this resource is available once the AbbrevMenuButton widget has
been created.

XtNpreviewWidget

Class Type Default Access

XtCPreviewWidget Widget NULL SGI

Synopsis: The Current Selection Widget that the AbbrevMenuButton can use
for previewing the Default Item.

OLIT Reference Manual—August 1994

6=

AbbrevMenuButton Widget

Values: ID of an existing widget; this should be a StaticText, TextField, or
TextLine widget.

When the user presses SELECT over the AbbrevMenuButton widget, it uses the
location and size of the Current Selection Widget to display the label of the
Default Item. The preview is constrained to be within the height and width of
the Current Selection Widget. If the Current Selection Widget is not defined or
is not mapped, previewing does not take place.

Activation Types
The following table lists the activation types used by the AbbrevMenuButton.

Table 6-5 AbbrevMenuButton Activation Types

Activation Type Semantics Resource Name
OL_CANCEL CANCEL XtNcancelKey
OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey
OL_HELP HELP XtNhelpKey
OL_MENU MENU XtNmenuBtn
OL_MENUKEY MENU XtNmenuKey
OL_MOVEDOWN MOVEDOWN XtNdownKey
OL_MOVELEFT MOVELEFT XtNleftKey
OL_MOVERIGHT MOVERIGHT XtNrightKey
OL_MOVEUP MOVEUP XtNupKey
OL_NEXTFIELD NEXTFIELD XtNnextFieldKey
OL_PREVFIELD PREVFIELD XtNprevFieldKey
OL_SELECT SELECT XtNselectBtn
OL_SELECTKEY SELECT XtNselectKey
OL_TOGGLEPUSHPIN TOGGLEPUSHPIN XtNtogglePushpinKey

Activation types not described in the following list are described in “Common
Activation Types” on page 68.

OL_MENU

The OL_MENU activation type can be used to pop up the menu in two different
modes: press-drag-release and click-move-click. These modes are described in
the OPEN LOOK GUI Functional Specification section “Using Menu Buttons” in
Chapter 15. The position of the menu depends on the space available on the

Widget Reference (A —C) 223

=0

AbbrevMenuButton Widget

screen and is described in the OPEN LOOK GUI Functional Specification section
“Menu Placement” in Chapter 15.

OL_MENUKEY

The OL_MENUKEY activation type can be used to pop up the menu according
to the OPEN LOOK Mouseless Specification section 4.2.

OL_SELECT

The activation of the AbbrevMenuButton widget with the SELECT button
depends on the value of the toolkit resources XtNselectDoesPreview . When
the resource XtNselectDoesPreview is FALSE, this activation type will
behave exactly as the OL_MENU activation type described previously. When
XtNselectDoesPreview is TRUE, the SELECT action can be used as a shortcut
to display and activate the menu default as described in the OPEN LOOK GUI
Functional Specification section “Button Controls” in Chapter 4.

OL_SELECTKEY

When the AbbrevMenuButton has keyboard focus, the OL_SELECTKEY
activation type can be used to pop up the menu according to the OPEN LOOK
Mouseless Specification section 4.2.

See Also

“ControlArea Widget” on page 249,
“MenuButton Widget” on page 403,
“MenusShell Widget” on page 414.

224 OLIT Reference Manual—August 1994

6=

BulletinBoard Widget

Class

Ancestry

BulletinBoard Widget

Class Name: BulletinBoard
Class Pointer: bulletinBoardWidgetClass

Core-Composite-Constraint-Manager-BulletinBoard

Required Header Files

Description

#include <Xol/OpenLook>
#include <Xol/BulletinBo.h>

The BulletinBoard widget is a composite widget that enforces no ordering on
its children. It is up to the application to specify the x- and y-coordinates of
each child inserted. Otherwise, it will be placed in the upper left corner of the
BulletinBoard widget. The BulletinBoard can be mapped with no children. It
displays an empty space which can be surrounded by a border.

Keyboard Traversal

The BulletinBoard widget is a Composite widget and cannot be accessed via
keyboard traversal. Input focus moves between the Primitive children of this
widget.

Widget Reference (A —C) 225

=0

BulletinBoard Widget

226

Resources

Coloration
The following diagram illustrates the resources used for BulletinBoard
coloration.
—— XtNbackground
—— XtNborderColor
(Child Widgets Colored Independently)
Figure 6-3 BulletinBoard Coloration
Table 6-6 BulletinBoard Core Resources
Name Type Default Access
XtNaccelerators AcceleratorTable NULL SGI
XtNancestorSensitive Boolean TRUE G
XtNbackground Pixel XtDefaultBackground SGID
XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderColor Pixel XtDefaultForeground SGID
XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderWidth Dimension 1 SGI
XtNcolormap Colormap (parent’s) SGI
XtNdepth int (parent’s) Gl
XtNdestroyCallback XtCallbackList NULL SGIO
XtNheight Dimension 0 SGlI
XtNmappedWhenManaged Boolean TRUE SGI
XtNscreen Screen O (parent’s) G
XtNsensitive Boolean TRUE GIO
XtNtranslations XtTranslations NULL SGI
XtNwidth Dimension 0 SGI

OLIT Reference Manual—August 1994

6=

BulletinBoard Widget

Table 6-6 BulletinBoard Core Resources (Continued)

Name Type Default Access
XtNX Position 0 SGI
XtNy Position 0 SGI

Table 6-7 BulletinBoard Composite Resources

Name Type Default Access
XtNchildren WidgetList NULL G
XtNinsertPosition XtOrderProc NULL SGI
XtNnumcChildren Cardinal 0 G

Table 6-8 BulletinBoard Manager Resources

Name Type Default Access
XtNconsumeEvent XtCallbackList NULL SGIO
XtNinputFocusColor Pixel Red n/a
XtNreferenceName String NULL Gl
XtNreferenceWidget Widget NULL Gl
XtNtraversalOn Boolean TRUE SGI
XtNunrealizeCallback XtCallbackList NULL SGIO
XtNuserData XtPointer NULL SGI

Table 6-9 BulletinBoard Resources

Name Type Default Access
XtNlayout OlDefine OL_MINIMIZE SGI
XtNlayout

Class Type Default Access
XtCLayout OlDefine OL_MINIMIZE SGI

Synopsis: The layout policy the BulletinBoard widget is to follow.

Widget Reference (A —C) 227

=0

BulletinBoard Widget

228

Values:

Activation Types

OL_MINIMIZE/'minimize” - The BulletinBoard widget will
always be just large enough to contain all its children, regardless of
any provided width and height values. Thus, the BulletinBoard
widget will grow and shrink depending on the size needs of its
children.

OL_IGNORE/"ignore” - The BulletinBoard widget will honor
its own width and height; it will not grow or shrink in response to
the addition, deletion, or alteration of its children.
OL_MAXIMIZE/"maximize” - The BulletinBoard widget will
grow as required due to new or altered children, but will not
shrink.

The following table lists the activation types used by the BulletinBoard.

Table 6-10 BulletinBoard Activation Types

Activation Type Semantics Resource Name
OL_CANCEL CANCEL XtNcancelKey
OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey
OL_HELP HELP XtNhelpKey
OL_MOVEDOWN MOVEDOWN XtNdownKey
OL_MOVELEFT MOVELEFT XtNleftKey
OL_MOVERIGHT MOVERIGHT XtNrightKey
OL_MOVEUP MOVEUP XtNupKey
OL_NEXTFIELD NEXTFIELD XtNnextFieldKey
OL_PREVFIELD PREVFIELD XtNprevFieldKey

OL_TOGGLEPUSHPIN

TOGGLEPUSHPIN XtNtogglePushpinKey

The BulletinBoard widget has no activation types besides the ones in “Common
Activation Types” on page 68.

OLIT Reference Manual—August 1994

6=

Caption Widget
Caption Widget
Class
Class Name: Caption
Class Pointer: captionWidgetClass
Ancestry

Core-Composite-Constraint-Manager-Caption

Required Header Files

#include <Xol/OpenLook>
#include <Xol/Caption.h>

Description
The Caption composite widget provides a convenient way to label an arbitrary
widget.
Components

The Caption widget has two parts: the label and the child widget.

Caption Widget
Label Child Widget

Figure 6-4 Caption Widget

Widget Reference (A —C) 229

=0

Caption Widget

230

Layout Control

The application can specify that the label goes above, below, to the left, or to
the right of the child, and how far away the label is to be placed.

Child Constraints

The Caption composite allows only one child; attempts to add more than one
are refused with a warning. If the Caption widget is mapped without a child
widget, or if the child widget is not managed, only the label is shown.

Coloration

The following diagram illustrates the resources used for Caption coloration.

Parent's XtNbackground

(XtNbackgroundPixmap)
Coloration of
XtNfontColor Child Widget

Figure 6-5 Caption Coloration

Keyboard Traversal

The Caption is a special Manager widget that can be used to display the
mnemonic for its single child. However, the label used as a caption to the child
is not accessible via keyboard traversal.

The action of a mnemonic on a Caption widget is used for traversal as well as
performing a SELECT on the Caption widget’s child widget.

OLIT Reference Manual—August 1994

6=

Resources

Keyboard Mnemonic Display

Caption Widget

The Caption widget displays its mnemonic as part of its label. If the mnemonic
character is in the label, then that character is marked according to the value of
the toolkit resource XtNshowMnemonics . If the mnemonic character is not in
the label, it is displayed to the right of the label in parentheses and marked
according to the value of XtNshowMnemonics .

If truncation is necessary, the mnemonic displayed in parentheses is truncated
as a unit.

Keyboard Accelerator Display

The Caption widget displays the keyboard accelerator for its child as part of its
label. The string in the XtNacceleratorText resource is displayed to the
right of the label (or mnemonic), right justified, and separated by at least one
space.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator
is truncated before the mnemonic or the label.

Table 6-11 Caption Core Resources

Name Type Default Access
XtNaccelerators AcceleratorTable NULL SGlI
XtNancestorSensitive Boolean TRUE G
XtNbackground Pixel XtDefaultBackground SGID
XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderColor Pixel XtDefaultForeground SGID
XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderWidth Dimension 1 SGI
XtNcolormap Colormap (parent’s) SGI
XtNdepth int (parent’s) Gl
XtNdestroyCallback XtCallbackList NULL SGIO
XtNheight Dimension 0 SGlI
XtNmappedWhenManaged Boolean TRUE SGI
XtNscreen Screen O (parent’s) G
XtNsensitive Boolean TRUE GIO
Widget Reference (A —C) 231

=0

Caption Widget
Table 6-11 Caption Core Resources (Continued)
Name Type Default Access
XtNtranslations XtTranslations NULL SGI
XtNwidth Dimension 0 SGI
XtNx Position 0 SGI
XtNy Position 0 SGI

Table 6-12 Caption Composite Resources

Name Type Default Access
XtNchildren WidgetList NULL G
XtNinsertPosition XtOrderProc NULL SGI
XtNnumcChildren Cardinal 0 G

Table 6-13 Caption Manager Resources

Name Type Default Access
XtNconsumeEvent XtCallbackList NULL SGIO
XtNinputFocusColor Pixel Red SGID
XtNreferenceName String NULL Gl
XtNreferenceWidget Widget NULL Gl
XtNtraversalOn Boolean TRUE SGI
XtNunrealizeCallback XtCallbackList NULL SGIO
XtNuserData XtPointer NULL SGlI

Table 6-14 Caption Resources

Name Type Default Access
XtNalignment OlDefine OL_CENTER SGI
XtNfont OlFont OlDefaultBoldFont SGID
XtNfontColor Pixel XtDefaultForeground SGID
XtNlabel Olstr (instance name) SGI
XtNmnemonic unsigned char “\0’ SGI
XtNposition OlDefine OL_LEFT SGI

232 OLIT Reference Manual—August 1994

6=

Caption Widget

Table 6-14 Caption Resources (Continued)
Name Type Default Access
XtNrecomputeSize Boolean TRUE SGI
XtNspace Dimension 4 SGI
XtNtextFormat OlStrRep OL_SB_STR_REP Gl
XtNalignment
Class Type Default Access
XtCAlignment OlDefine OL_CENTER SGI
Synopsis: The alignment of the label relative to the child widget.
Values: OL_BOTTOM/"bottom” - Align the bottom edge of the label with

the bottom edge of the child widget.

OL_CENTER/’center” - Align the center of the label with the

center of the child widget.

OL_LEFT/"left” - Align the left edge of the label with the left

edge of the child widget.

OL_RIGHT/right” - Align the right edge of the label with the

right edge of the child widget.

OL_TOP/"top” - Align the top edge of the label with the top

edge of the child widget.

The XtNalignment and XtNposition resources interact in the following
way. If XtNposition is OL_LEFT or OL_RIGHT, then the alignment can be
OL_TOP, OL_CENTER, or OL_BOTTOM. If XtNposition is OL_TOP or
OL_BOTTOM, then the alignment can be OL_LEFT, OL_CENTER, or OL_RIGHT.

XtNfont
Class Type Default Access
XtCFont OlFont OlDefaultBoldFont SGID

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNfont” on page 26.
XtNfontColor

Class Type Default Access
XtCFontColor Pixel XtDefaultForeground SGID

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNfontColor” on page 27.

Widget Reference (A —C) 233

=0

Caption Widget

234

XtNlabel
Class Type Default Access
XtCLabel olstr (instance name) SGI

Synopsis: The label text.
Values: Any OIStr value valid in the current locale. NULL is the same as
the empty string.

The label is displayed as given; no punctuation (such as a colon) is added.
Control characters (other than spaces) are ignored without warning. For
example, embedded newlines do not cause line breaks.

XtNmnemonic
Class Type Default Access
XtCMnemonic unsigned char \0’ SGI

The Caption widget supports this resource in the same manner as a widget that
would inherit it from the Primitive class. See “XtNmnemonic” on page 28.

XtNposition
Class Type Default Access
XtCPosition OlDefine OL_LEFT SGI
Synopsis: The placement of the label in relation to the child widget.
Values: OL_BOTTOM/"bottom” - The label is below the child widget.
OL_LEFT/"left” - The label is to the left of the child widget.
OL_RIGHT/"right” - The label is to the right of the child
widget.
OL_TOP/"top” - The label is above the child widget.

XtNrecomputeSize

Class Type Default Access

XtCRecomputeSize Boolean TRUE SGI

Synopsis: The widget resize policy.

Values: TRUE/"true” — The widget resizes itself to accommodate
changes in its children’s sizes due to changes in resources such as
fonts or labels.

FALSE/"false” — The widget does not resize itself.

OLIT Reference Manual—August 1994

6=

Caption Widget
XtNspace
Class Type Default Access
XtCSpace Dimension 4 SGI

Synopsis: The separation of the label from the child widget, in pixels.
Values: 0 < XtNspace

The separation of the label and child widget is shown in the following figure.

XtNspace Label Bounds

Figure 6-6 Label and Child Widget Spacing

XtNtextFormat
Class Type Default Access
XtCTextFormat OlSstrRep OL_SB_STR_REP Gl

The Caption widget supports this resource in the same manner as a widget that

would inherit it from the Primitive class. See “XtNtextFormat” on page 29.
Activation Types

The following table lists the activation types used by the Caption.

Table 6-15 Caption Activation Types

Activation Type Semantics Resource Name
OL_CANCEL CANCEL XtNcancelKey
OL_DEFAULTACTION DEFAULTACTION XtNdefaultActionKey
OL_HELP HELP XtNhelpKey
OL_MOVEDOWN MOVEDOWN XtNdownKey
OL_MOVELEFT MOVELEFT XtNleftKey
OL_MOVERIGHT MOVERIGHT XtNrightKey

Widget Reference (A —C) 235

=0

Caption Widget

236

Table 6-15 Caption Activation Types (Continued)

Activation Type Semantics Resource Name
OL_MOVEUP MOVEUP XtNupKey
OL_NEXTFIELD NEXTFIELD XtNnextFieldKey
OL_PREVFIELD PREVFIELD XtNprevFieldKey
OL_SELECT SELECT XtNselectBtn
OL_SELECTKEY SELECT XtNselectKey

OL_TOGGLEPUSHPIN TOGGLEPUSHPIN

XtNtogglePushpinKey

Activation types not described in the following list are described in “Common

Activation Types” on page 68.

OL_SELECT/
OL_SELECTKEY

The Caption widget does not respond to any user gestures, but a client can
activate it with OlActivateWidget() and an activation type of OL_SELECT
or OL_SELECTKEY. When so activated, the Caption widget will move focus to
its child widget and then activate the child with the OL_SELECT activation

type.

OLIT Reference Manual—August 1994

6=

CheckBox Widget

Class

Ancestry

CheckBox Widget

Class Name: CheckBox
Class Pointer: checkBoxWidgetClass

Core-Composite-Constraint-Manager-CheckBox

Required Header Files

Description

#include <Xol/OpenLook>
#include <Xol/CheckBox.h>

The CheckBox widget is similar in function to the RectButton widget. Several
CheckBoxes are typically used together to provide the user with a set of
options that can be toggled on or off.

Components

The CheckBox widget consists of a label next to a Check Box; the Check Box
will have a Check Mark, if selected.

Label Check Box
|_____I______%::/CheckMark
| Check Me ,
S +—CheckBox Widget

Figure 6-7 CheckBox Widget

Widget Reference (A —C) 237

=0

CheckBox Widget

238

The following figure shows several buttons, in unselected and selected, as well
as normal and dim states.

Value |:| Value

Current Value @ Current Value

Figure 6-8 Check Boxes in Various States

Typical Use

Check Boxes may be used alone, but are usually used in the Nonexclusives
composite widget, where they are used to implement a several-of-many
selection. Making the CheckBox widget a child of a different composite widget
will not produce an error, but proper behavior is not guaranteed.

Operations

A CheckBox widget has two states: “set” and “not set.” When set, the Check
Mark is visible. Toggling this state alternates a resource (XtNset) between
logical TRUE and FALSE and starts an action associated with the check box.
Clicking SELECT on a check box toggles the state associated with it. Pressing
SELECT, or moving the pointer into the check box while SELECT is pressed,
adds or removes the Check Mark to reflect the state the check box would be in
if SELECT was released. Releasing SELECT toggles the state. Moving the pointer
off the check box before releasing SELECT restores the original Check Box, but
does not toggle the state. Clicking or pressing MENU does not do anything in
the CheckBox widget; the event is passed up to an ancestor widget.

Bounds on SELECT

Only the Check Box and Check Mark respond to SELECT, as shown in the
following figure.

Figure 6-9 CheckBox Widget

OLIT Reference Manual—August 1994

6=

CheckBox Widget
Coloration

For both 3D and 2D, the background of the CheckBox widget is drawn in the
parent’s XtNbackground resource. The label is drawn using XtNfontColor
The checkmark is drawn using XtNforeground

For 3D, the check box component coloration is defined by the OPEN LOOK
GUI Functional Specification, Chapter 9, “Color and Three-Dimensional Design.”
The parent’s XtNbackground is used for BG1, and the BG2 (pressed-in), BG3
(shadow), and Highlight colors are derived by the toolkit from BG1.

For 2D, XtNforeground is used to render the outline of the check box
component as described by the OPEN LOOK GUI Functional Specification,
Chapter 4, “Controls.”

If the toolkit resource XtNmouseless is set to TRUE and the toolkit resource
XtNinputFocusFeedback is set to OL_INPUT_FOCUS_COLOR, then the
background of the check box component will be drawn with the value of
XtNinputFocusColor when the widget receives input focus. However, if
XtNinputFocusColor is the same as the parent’s XtNbackground , then the
widget inverts XtNforeground and the parent’s XtNbackground inside the
check box component. Once the input focus leaves the widget, the original
coloration is restored.

Keyboard Traversal

The default value of the XtNtraversalOn resource is TRUE. The CheckBox
widget responds to the following keyboard navigation keys:

NEXTFIELD moves to the next traversable widget in the window
PREVFIELD moves to the previous traversable widget in the window
MOVEUP moves to the CheckBox above the current widget in the
Nonexclusives composite

®* MOVEDOWN moves to the CheckBox below the current widget in the
Nonexclusives composite

® MOVELEFT moves to the CheckBox to the left of the current widget in the
Nonexclusives composite

® MOVERIGHT moves to the CheckBox to the right of the current widget in the

Nonexclusives composite

NEXTWINDOW moves to the next window in the application

PREVWINDOW moves to the previous window in the application

NEXTAPP moves to the first window in the next application

PREVAPP moves to the first window in the previous application

Widget Reference (A —C) 239

=0

CheckBox Widget

240

Keyboard Mnemonic Display

The CheckBox widget displays its mnemonic as part of its label. If the
mnemonic character is in the label, then that character is marked according to
the value of the toolkit resource XtNshowMnemonics . If the mnemonic
character is not in the label, it is displayed to the right of the label in
parentheses and marked according to the value of XtNshowMnemonics .

If truncation is necessary, the mnemonic displayed in parentheses is truncated
as a unit.
Keyboard Accelerator Display

The CheckBox widget displays the keyboard accelerator as part of its label. The
string in the XtNacceleratorText resource is displayed to the right of the
label (or mnemonic) separated by at least one space. The accelerator text is
right justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator
is truncated before the mnemonic or the label.

CheckBox Appearance

The XtNdim and XtNset resources can be set independently, as shown in the
following state table.

Table 6-16 CheckBox Appearance with Set/Default/Dim

XtNset XtNdim | Check Box Appearance

TRUE | TRUE Q/
TRUE | FALSE M

FALSE | TRUE

FALSE | FALSE []

OLIT Reference Manual—August 1994

6=

Resources

CheckBox Widget
Label Resource Interactions

The XtNwidth , XtNheight , XtNrecomputeSize , and XtNlabelJustify
resources interact to produce a truncated, clipped, centered, left-justified, or
right-justified Label and Check Box as shown in the table below.

Table 6-17 CheckBox Label and Check Box Appearance

XtNwidth | XtNrecomputeSize | XtNlabelJustify Result
any value TRUE any ' Just Fits M
>needed FALSE OL_LEFT LeftJustified | gmi
for label —
needed o o Y !
for label FALSE OL_RIGHT Lo R ',9*,‘? Justmed
needed N o
for label FALSE any Truncated |4

XtNheight | XtNrecomputerSize | XtNlabelJustify Result
any value TRUE any ~ Just Fits Qr
needed N i 7 ﬂ 7 '
an ! !
> for label FALSE y L,,,,(;?p,t,e,r,e,d ,,,,,,,,, |
<heeded an o S M 777 !
for label FALSE y . Clipped = & 1

When the label is left-justified, right-justified, or centered the extra space is
filled with the background color of the CheckBox widget’s parent, as
determined by the XtNbackground and XtNbackgroundPixmap resources of
the parent. See also the XtNlabelTile resource for how it affects the
appearance of a label.

Table 6-18 CheckBox Core Resources

Name Type Default Access
XtNaccelerators AcceleratorTable NULL SGI
XtNancestorSensitive Boolean TRUE G
XtNbackground Pixel XtDefaultBackground SGID
XtNbackgroundPixmap Pixmap XtUnspecifiedPixmap SGI

Widget Reference (A —C) 241

=0

CheckBox Widget

242

Table 6-18 CheckBox Core Resources (Continued)

Name Type Default Access
XtNborderColor Pixel XtDefaultForeground SGID
XtNborderPixmap Pixmap XtUnspecifiedPixmap SGI
XtNborderWidth Dimension 1 SGI
XtNcolormap Colormap (parent’s) SGI
XtNdepth int (parent’s) Gl
XtNdestroyCallback XtCallbackList NULL SGIO
XtNheight Dimension 0 SGI
XtNmappedWhenManaged Boolean TRUE SGI
XtNscreen Screen [(parent’s) G
XtNsensitive Boolean TRUE GIO
XtNtranslations XtTranslations NULL SGI
XtNwidth Dimension 0 SGlI
XtNx Position 0 SGlI
XtNy Position 0 SGI
Table 6-19 CheckBox Composite Resources

Name Type Default Access
XtNchildren WidgetList NULL G
XtNinsertPosition XtOrderProc NULL SGI
XtNnumcChildren Cardinal 0 G
Table 6-20 CheckBox Manager Resources

Name Type Default Access
XtNconsumeEvent XtCallbackList NULL SGIO
XtNinputFocusColor Pixel Red SGID
XtNreferenceName String NULL Gl
XtNreferenceWidget Widget NULL Gl
XtNtraversalOn Boolean TRUE SGl
XtNunrealizeCallback XtCallbackList NULL SGIO
XtNuserData XtPointer NULL SGI

OLIT Reference Manual—August 1994

6=

CheckBox Widget
Table 6-21 CheckBox Resources
Name Type Default Access
XtNaccelerator String NULL SGI
XtNacceleratorText String NULL SGI
XtNdim Boolean FALSE SGlI
XtNfont OlFont XtDefaultFont SGID
XtNfontColor Pixel XtDefaultForeground SGID
XtNforeground Pixel XtDefaultForeground SGID
XtNlabel Olstr (instance name) SGI
XtNlabellmage Xlmage O NULL SGI
XtNlabellustify OlDefine OL_LEFT SGI
XtNlabelTile Boolean FALSE SGI
XtNlabelType OlDefine OL_STRING SGI
XtNmnemonic unsigned char “\0’ SGI
XtNposition OlDefine OL_LEFT SGI
XtNrecomputeSize Boolean TRUE SGI
XtNscale int 12 SGI
XtNselect XtCallbackList NULL SGIO
XtNset Boolean FALSE SGI
XtNtextFormat OlSstrRep OL_SB_STR_REP Gl
XtNunselect XtCallbackList NULL SGIO
XtNaccelerator
Class Type Default Access
XtCAccelerator String NULL SGI

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNaccelerator” on page 25.

XtNacceleratorText

Class Type Default Access
XtCAcceleratorText String NULL SGI

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNacceleratorText” on
page 25.

Widget Reference (A —C) 243

=0

CheckBox Widget

244

XtNdim
Class Type Default Access
XtCDim Boolean FALSE SGID

Synopsis: The visual appearance of the CheckBox in reflecting the state of
associated objects.

Values: TRUE/"true” - The check box border is dimmed to show that
the check box represents the state of one or more of several objects
that, as a group, are in different states.

FALSE/"false” - The border does not show the state of
underlying objects.

XtNfont
Class Type Default Access
XtCFont OlFont XtDefaultFont SGID

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfont” on page 26.

XtNfontColor

Class Type Default Access
XtCFontColor Pixel XtDefaultForeground SGID

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNfontColor” on page 27.

XtNforeground
Class Type Default Access
XtCForeground Pixel XtDefaultForeground SGID

The CheckBox widget supports this resource in the same manner as a widget
that would inherit it from the Primitive class. See “XtNforeground” on page 27.

XtNlabel
Class Type Default Access
XtCLabel Olstr (instance name) SGI

Synopsis: The text for the label.
Values: Any OIStr value valid in the current locale.

OLIT Reference Manual—August 1994

6=

CheckBox Widget
The default value is the name of the widget as specified in the
XtCreateWidget() routine. This resource will b