
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

CGE PEX 5.1 Portability Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS,
and Solaris PEX are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction to Portable Programming with CGE PEX 5.1
Extensions . 1

Purpose and Scope of this Guide . 1

Motivation to Use CGE PEX 5.1 Extensions 2

Increased Portability . 2

Increased Interoperability. 3

Early Access to Some PEX 5.2 functionality 3

Higher Level of PEX 5.1 Functionality 4

Relationship of CGE PEX 5.1 to PEX 5.1 4

CGE PEX 5.1 Extensions As a Superset of PEX 5.1 4

CGE PEX 5.1 Programs in 5.1 Environments 5

Relationship of CGE PEX 5.1 to PEX 5.2 5

CGE PEX 5.1 Extension Mechanics . 7

CGE PEX 5.1 Follows PEX 5.1 Interoperability Conventions 7

Vendor ID . 7

iv CGE PEX 5.1 Portability Guide—November 1995

New Output Commands Encoded As Vendor-Specific Output
Commands . 7

New Requests Encoded As PEXEscape and
PEXEscapeWithReply . 8

Extended Renderer Attributes and Extended Pipeline Context
Attributes Accessed with New Requests 8

2. Preparing CGE PEX 5.1 Extensions Programs 9

CGE PEX 5.1 Packaging . 9

Integrated Libraries . 9

Layered Libraries . 10

Source Code Requirements . 10

Compilation . 10

Linking . 11

A Word About Makefiles and Imakefiles 11

Vendor Extensions . 11

 Design Considerations . 12

The CGE-only PEX Server Application. 13

The CGE / PEX 5.1 Application. 13

3. Initializing an Application Using the CGE PEX 5.1 Extensions 15

Getting Started . 15

Initializing PEXlib . 15

Detecting a CGE PEX 5.1 Implementation 15

Checking for Optional Features . 16

Multi-Buffering . 17

Fonts . 18

Contents v

PEX Subsets . 18

Opening a Window, Selecting a Visual, Creating a Colormap, and
Establishing Color Approximation . 18

Visual Selection . 19

Colormap Creation and Color Approximation 20

Drawable Creation. 21

Utilities . 22

4. Using Features of the CGE PEX 5.1 Extensions 25

Required CGE Features . 25

Optional CGE Features . 25

Working with the Extended Renderer Attributes 25

PEXExtChangeRenderer(). 26

PEXExtGetRendererAttributes() . 26

Working with the Extended Pipeline Context 26

PEXExtChangePipelineContext(). 27

PEXExtGetPipelineContext() . 27

Working with the New Lookup Tables . 27

Renderer Dynamics . 28

5. Programming Example. 29

The Sample Program . 29

ptorus.h - Header File for Main Program 30

ptorus.c - Main Program . 33

view.c - View Computations Example. 45

model.c - Model and Scene Generation Example 50

vi CGE PEX 5.1 Portability Guide—November 1995

Texture Mapping in this Example . 59

6. Texture Mapping: Applying Your Own Texture 63

7. Conformance Summary . 75

Minimum Conformance . 75

Enumerated Types . 75

Escapes . 77

Line Types. 78

Hatch Styles . 78

Interior Styles . 78

Extended Enumerated Types . 79

Extended Output Commands . 81

Pipeline Context Attributes . 82

Renderer Attributes . 83

Lookup Tables . 84

Implementation-Dependent Constants 85

Texture Mapping Rendering Order . 87

Texture Mapping Coordinate Source. 88

Texture Mapping Composite Method 88

Texture Mapping Texel Sample Method 89

Texture Mapping Boundary Condition 89

Texture Mapping Clamp Color Source 90

Texture Mapping Domain. 90

Texture Mapping Texel Type . 91

Texture Mapping Resource Hints . 92

Contents vii

Texture Mapping Type . 92

Texture Mapping Parameterization Method 93

Texture Mapping Perspective Correction 93

Texture Mapping Sample Frequency. 94

Primitive Anti-Aliasing Mode . 94

Primitive Anti-Aliasing Blend Operation 95

Line Cap Style . 95

Line Join Style . 96

8. Interoperability Conventions . 97

Interoperability Conventions . 97

A. Other Useful References . 101

viii CGE PEX 5.1 Portability Guide—November 1995

ix

Figures

Figure 1-1 Porting Paths . 6

x CGE PEX 5.1 Portability Guide—November 1995

xi

Tables

Table 3-1 Extended Functions for CGE PEX 5.1. 22

Table 3-2 Texture Mapping Utilities for CGE PEX 5.1 23

Table 7-1 CGE PEX 5.1 Enumerated Types Supported. 75

Table 7-2 CGE PEX 5.1 Escape Extensions . 77

Table 7-3 CGE PEX 5.1 Line Types. 78

Table 7-4 CGE PEX 5.1 Hatch Styles . 78

Table 7-5 CGE PEX 5.1 Interior Styles . 78

Table 7-6 CGE PEX 5.1 Enumerated Type Extensions 79

Table 7-7 CGE PEX 5.1 OC Extensions . 82

Table 7-8 CGE PEX 5.1 Pipeline Context Extensions. 83

Table 7-9 CGE PEX 5.1 Renderer Extensions . 83

Table 7-10 CGE PEX 5.1 Lookup Table Requirements 84

Table 7-11 CGE PEX 5.1 Lookup Table Extensions 85

Table 7-12 PEX 5.1 Constants Supported by CGE PEX 5.1. 85

Table 7-13 CGE PEX 5.1 Implementation-dependent Constants. 87

Table 7-14 CGE PEX 5.1 Texture Mapping Rendering Orders 87

xii CGE PEX 5.1 Portability Guide—November 1995

Table 7-15 CGE PEX 5.1 Texture Mapping Coordinate Sources 88

Table 7-16 CGE PEX 5.1 Texture Mapping Composite Methods 88

Table 7-17 CGE PEX 5.1 Texture Mapping Texel Sample Methods 89

Table 7-18 CGE PEX 5.1 Texture Mapping Boundary Conditions 89

Table 7-19 CGE PEX 5.1 Texture Mapping Clamp Color Sources. 90

Table 7-20 CGE PEX 5.1 Texture Mapping Domains 90

Table 7-21 CGE PEX 5.1 Texture Mapping Texel Types 91

Table 7-22 CGE PEX 5.1 Texture Mapping Resource Hints 92

Table 7-23 CGE PEX 5.1 Texture Mapping Types . 92

Table 7-24 CGE PEX 5.1 Texture Mapping Parameterization Methods . . 93

Table 7-25 CGE PEX 5.1 Texture Mapping Perspective Corrections 93

Table 7-26 CGE PEX 5.1 Texture Mapping Sample Frequencies 94

Table 7-27 CGE PEX 5.1 Primitive Anti-Aliasing Modes 94

Table 7-28 CGE PEX 5.1 Primitive Anti-Aliasing Blend Operations. 95

Table 7-29 CGE PEX 5.1 Line Cap Styles. 95

Table 7-30 CGE PEX 5.1 Line Join Styles . 96

xiii

Code Samples

Code Example 5-1 Header File for Main Program Example 30

Code Example 5-2 Main Program Example . 33

Code Example 5-3 View Computations Example . 45

Code Example 5-4 Model and Scene Generation Example 50

Code Example 6-1 Texture Data Example . 63

Code Example 6-2 Texture Preparation Example . 64

Code Example 6-3 Draw a Cube Example . 72

xiv CGE PEX 5.1 Portability Guide—November 1995

1

Introduction to Portable
Programming with CGE PEX 5.1
Extensions 1

Purpose and Scope of this Guide
The purpose of this guide is to assist you in creating highly portable 3D
graphic applications on platforms supporting the Common Open Software
Environment. The programming interface that you will use for this purpose is
known as the Common Graphics Environment PEX 5.1 Extensions (CGE PEX
5.1). Using this interface, you can create applications that are highly portable
and interoperable on platforms that support CGE PEX 5.1. By following this
guide, you should have success creating applications that meet this goal. You
will find that the graphic portions of your application will compile effortlessly
on all CGE PEX 5.1 platforms, eliminating the need for vendor specific drivers
or code paths. You will also find that the graphical results on each CGE PEX 5.1
platform will be more complete and consistent, again reducing the need for
vendor specific code paths.

This guide is written specifically for application developers who want to create
portable and interoperable applications for the CGE PEX 5.1 platforms. This
guide is not a PEX or a PEXlib tutorial. There are many other references
available that serve as better and more general tutorial material. See
Appendix A, “Other Useful References.” This guide is derived from the
Common Graphics Environment PEX 5.1 Extensions specification which you

2 CGE PEX 5.1 Portability Guide—November 1995

1

may obtain from your workstation vendor or from the X Consortium.1 Or
perhaps your vendor has integrated a version of this information with their
PEX product.

While you may find some useful techniques in this guide that apply to creating
portable vanilla PEX 5.1 applications, this guide does not specifically address
this more general goal. Also, this guide does not include a tutorial on the new
CGE PEX 5.1 functionality, specifically texture-mapping. It explains how to add
texture mapping to your application so that it will work on all CGE PEX 5.1
platforms. Please refer to product documentation and other literature listed in
Appendix A, “Other Useful References” to learn the fundamentals of features
such as texture mapping.

This guide will help you interpret the basic CGE PEX 5.1 specifications,
especially the more subtle, yet useful, information that is crucial to your
application’s success. You will also find a large number of hints and techniques
that are the result of a cumulative total of years of experience in creating
portable graphics applications in multi-vendor environments. PEX application
programming is still in its infancy stage, so many of the solutions to common
problems and difficulties have not yet disseminated through the industry. This
guide contains the solutions to many of these problems and will help you put
your PEX application well ahead of your competition’s.

Motivation to Use CGE PEX 5.1 Extensions
We hope that you have chosen to create your next application with CGE PEX
5.1 for one or many of the following reasons:

Increased Portability

The CGE PEX 5.1 vendors are committed to supplying you with a CGE PEX 5.1
programming library that is consistent across all CGE PEX 5.1 platforms. There
are no missing or conflicting function calls on any platform and all existing
functions are implemented identically. In fact, some of the same code has been

1. You can obtain the specification from the X Consortium’s FTP (File Transfer Protocol) server. The server’s
address is ftp.x.org. Login as “anonymous”, giving your Internet address as the password. The specification
can be found in: /contrib/PEXlib in the file CGE-PEX-51-Spec-V1.txt.Z.

Introduction to Portable Programming with CGE PEX 5.1 Extensions 3

1

shared by the vendors to implement the CGE PEX 5.1 library, so you might be
using products on different vendors’ platforms that were derived from the
same source code base!

This promise of portability reduces the need for you to worry about
programming graphics, an area that has historically been riddled with vendor
extensions and incompatibilities.

Increased Interoperability

Your CGE PEX 5.1 application interoperates with another vendor’s CGE PEX
5.1 server with no difficulty. This allows your application to execute on one
machine, while interacting with a user running a CGE PEX 5.1 server on
another workstation, even if the workstations come from different vendors.
Interoperability gives your customers with large heterogeneous installations
the ability to host or port applications onto fewer types of host machines, while
still making them available for use from a wide variety of workstations.

Early Access to Some PEX 5.2 functionality

One of the most exciting benefits about CGE PEX 5.1 is that it provides you
with the earliest consistent multi-vendor implementation and includes some of
the functionality slated for PEX 5.2. The early availability of these functions
will help you put more powerful applications in the hands of your customers
without you having to resort to differing vendor-specific PEX extensions or
switching to another graphics support package.

• Texture Mapping - This is the biggest and most exciting new feature in CGE
PEX 5.1. Texture Mapping allows you to project pixmap-like images onto
various PEX primitives, giving them appearances not possible with
standard PEX.

• Anti-Aliasing - This allows you to create higher quality pictures by
instructing the PEX server to draw specified primitives with a reduced
“jaggies” effect. Some PEX vendors have provided this as a vendor
extension in PEX 5.1 products. You can now count on it in CGE PEX 5.1.

• Transparency - Although this feature is a part of the PEX 5.1 specification, it
was not required. It is now a part of CGE PEX 5.1, and offers you the ability
to create objects that transmit light to varying degrees, that objects on the
other side may appear clear or sheer, gauzy or diaphanous.

4 CGE PEX 5.1 Portability Guide—November 1995

1

• Drafting Primitives - These are the common and useful circle, ellipse, and
arc primitives that many vendors have provided as PEX 5.1 vendor
extensions. They are now a common part of CGE PEX 5.1.

Note – It is impossible to guarantee that any of these functions will appear in
PEX 5.2 in exactly the same way they appear in CGE PEX 5.1, because PEX 5.2
was not in a final state at the time CGE PEX 5.1 developed. However, the
creators of CGE PEX 5.1 have done everything possible to follow PEX 5.2
directions and keep CGE PEX 5.1 as close to those directions as possible.

Higher Level of PEX 5.1 Functionality

One of the criticisms of PEX 5.1 is that too many features were left optional and
that too few vendors implemented these optional functions. CGE PEX 5.1
raises the level of required implementation, giving you a graphics support
system with a higher level of guaranteed functionality. This means that your
application will have to make fewer queries for optional function. Fewer
optional features means fewer possible configurations your application will
have to handle with separate code paths.

Relationship of CGE PEX 5.1 to PEX 5.1
So, enough of the sales pitch. You’re convinced, right? Now, what does all this
mean to you if you are currently using PEX 5.1?

CGE PEX 5.1 Extensions As a Superset of PEX 5.1

Well, the name sure says it, but what do we really mean?

CGE PEX 5.1 is a set of extensions built on top of PEX 5.1 using the X
Consortium standard rules and interoperability conventions for extending PEX
5.1. (See Chapter 8, “Interoperability Conventions”). These rules and
guidelines are engineered to allow PEX 5.1 extensions to exist without affecting
the operation of any core PEX 5.1 functions. This means that if you were to
suddenly upgrade your graphics support software to CGE PEX 5.1, your PEX
5.1 applications would still work without modification.

Introduction to Portable Programming with CGE PEX 5.1 Extensions 5

1

If you want to take advantage of new CGE PEX 5.1 function (for example,
texture mapping), you’ll need to modify your application to make use of this
function. Note that some of the PEX 5.1 optional function that is now required
in CGE PEX 5.1 (for example, transparency) might suddenly start to work in
your application.

CGE PEX 5.1 Programs in 5.1 Environments

If you add a CGE PEX 5.1 function, like texture mapping, to your application,
your application may not work with a vanilla PEX 5.1 server. This is because
the vanilla 5.1 server will not understand the CGE PEX 5.1 extensions and will
probably return errors.

You’ll need to decide if you want your application to continue to work with
vanilla PEX 5.1 servers. If so, you’ll have to add logic to your application to
avoid the CGE PEX 5.1 functions when connected to a PEX 5.1 server.

Relationship of CGE PEX 5.1 to PEX 5.2
While moving your application to CGE PEX 5.1 gives you early access to PEX
5.2 function, it does not guarantee that your CGE PEX 5.1 program will port
without effort to PEXlib 5.2. Since PEXlib 5.2 will be backwards compatible
with PEXlib 5.1, the non-CGE portions of your application should port with no
effort. However, the CGE-specific portions may need some tweaking to work
with PEXlib 5.2.

At this stage, PEXlib 5.2 is still not completely defined, so the CGE vendors
cannot predict all the changes that you will have to make. The intention is for
changes to be limited to minor syntactical changes, but CGE vendors cannot
guarantee this will be the case. You may choose to make the necessary changes
when you upgrade your application from CGE PEX 5.1 to PEXlib 5.2. You can
then make any CGE->5.2 changes as well as the changes required for your
application to take advantage of any PEX 5.2 function not found in CGE PEX
5.1. This situation is illustrated in Figure 1-1 on page 6.

6 CGE PEX 5.1 Portability Guide—November 1995

1

Figure 1-1 Porting Paths

CGE PEX 5.1

PEX 5.2PEX 5.1

End-1992 Mid-1994 Estimated

No forced changes

Port for new function

Port for new function Port for new function

Adapt for CGE/5.2 differences

PORTING PATHS

Mid-1995

Introduction to Portable Programming with CGE PEX 5.1 Extensions 7

1

CGE PEX 5.1 Extension Mechanics
This section explains how PEX 5.1 was extended to obtain CGE PEX 5.1. Skip
this section if this sort of detail does not interest you.

CGE PEX 5.1 Follows PEX 5.1 Interoperability Conventions

See Chapter 8, “Interoperability Conventions” for more information. This
information is also useful for general PEX 5.1 applications.

Vendor ID

To avoid conflicts between vendors adding extensions to PEX 5.1, the X
Consortium assigns an 8-bit vendor ID to vendors wishing to implement
extensions. The vendor ID is used in the protocol encoding of the extension to
distinguish the extension protocol from another vendor’s extensions.

The vendor ID 0x10 is IBM’s vendor ID, but is being used by all vendors
designing or implementing CGE PEX 5.1. CGE is using IBM’s vendor ID
because it has the least amount of conflict with existing IBM extensions. IBM
ensures that other IBM extensions do not conflict with the CGE PEX 5.1
extensions.

According to the PEX 5.1 Interoperability Conventions, 16-bit quantities, such
as Output Command types and Enumerated Type indices, are encoded with
values starting at 0x9000, while 32-bit quantities like Escape opcodes start at
0x80100000.

New Output Commands Encoded As Vendor-Specific Output Commands

CGE PEX 5.1 specifies new Output Commands (OCs) as vendor-specific OCs,
setting the high bit on and using the vendor ID for the next 7 bits. This is in
contrast to the current 5.2 direction of using GDPs and GSEs for extension OCs.
Besides inquiry, you should see little functional difference between the two
methods. You can query the existence of the new OCs by getting the CGE PEX
5.1 enumerated type information for CGE PEX 5.1 output commands.

8 CGE PEX 5.1 Portability Guide—November 1995

1

New Requests Encoded As PEXEscape and PEXEscapeWithReply

The new CGE PEX 5.1 requests are converted by PEXlib to PEXEscape or
PEXEscapeWithReply requests, as this is the only way to add requests to PEX
5.1.

Extended Renderer Attributes and Extended Pipeline Context Attributes
Accessed with New Requests

CGE PEX 5.1 adds several attributes to the renderer and the pipeline context.
Due to protocol restrictions, you cannot access these new attributes with the
PEX 5.1 requests. Therefore, CGE PEX 5.1 provides requests to change and get
these extended attributes.

You cannot create either of these resources with the extended attributes; you
must create them with PEX 5.1 requests and then later change them with the
new CGE PEX 5.1 requests (escapes).

9

Preparing CGE PEX 5.1 Extensions
Programs 2

CGE PEX 5.1 Packaging
Your workstation vendor provides the CGE PEX 5.1 libraries in one or both of
two ways: the integrated library in which the CGE PEX 5.1 function is built
directly into the PEXlib library and the layered library in which the source code
of CGE PEX 5.1 is provided, enabling you to build your application on any
system that has the PEX 5.1 libraries.

Integrated Libraries

The integrated library contains the CGE PEX 5.1 function built directly into the
PEXlib library that you link to your application program. In this case, the
library is provided only in object-code format and the source is generally not
available. This is the best method to use when you know that the CGE PEX 5.1
library will always be available on the system, because the integrated library
will likely be the most optimized library available.

Library files may vary across CGE vendors; but most likely each vendor will
provide the following header files:

PEXExt.h and PEXExtlib.h

and supply the integrated library code itself in the same library file as the
standard PEX 5.1 support:

libPEX5.a or libPEX5.sl (example of a shared lib)

10 CGE PEX 5.1 Portability Guide—November 1995

2

Layered Libraries

The layered library allows you to build your application on any system where
only PEXlib 5.1 libraries are available. This library consists of a set of macros
and/or functions that convert your application’s CGE PEX 5.1 function calls to
the equivalent PEX 5.1 PEXEscape or PEXEscapeWithReply function calls. The
source code for this library is provided so you can compile it on any system
that has PEXlib 5.1. With this library, you can port your application to
platforms that do not support CGE PEX 5.1 libraries in their integrated form,
with the intent of displaying your application on PEX servers running on other
platforms that do support the CGE PEX 5.1 extensions.

In addition to the files provided with the integrated library, the vendor also
provides several other C source and header files. These files are required to
build the layer portion of the layered library. In order to use the layered library,
you need to compile this layer code first to obtain object files that you include
when linking your application.

Source Code Requirements
There is only one source code change that you must make to access the CGE
PEX 5.1 functions. You need to add a preprocessor include directive to include
the CGE PEX 5.1 header file after the directive that includes the standard
PEXlib 5.1 header file.

#include <X11/PEX5/PEXlib.h>
#include <X11/PEX5/PEXExtlib.h> /* Add this line */

The PEXExtlib.h file includes PEXExt.h , so you do not have to.

Compilation
You need to make sure that your compiler can locate the include file mentioned
above. Many compilers find the X11/PEX5 directory during the searching of
system default header files. If your PEX header files are stored in a different
area, use the -I compiler directive to help the compiler locate the files.

It does not matter if you are using the integrated or layered libraries when
compiling your application source code modules because they compile in the
same way.

Preparing CGE PEX 5.1 Extensions Programs 11

2

Linking
When using the integrated library, you link the library in the same way as you
would link a standard PEXlib 5.1 application. To do this, use the
compiler/linker directive:

-lPEX5

If this library is not in your system’s default library directives, use the -L
directive to tell the linker where to look.

If you are using the layered library, include the additional object files that
contain the CGE PEX 5.1 code, as mentioned above.

A Word About Makefiles and Imakefiles
Typically it is difficult to create a Makefile that works on a large number of
different platforms. Though the various Unix1 standardization efforts reduce
this problem, vendors ship various compilers and tools that use a large variety
of options and syntax variations. Therefore, portable Makefiles currently are
not offered. However, modifying Makefiles is probably one of the smaller and
easier tasks of porting a large application from one vendor’s machine to
another. It is certainly reasonable to create and maintain a separate Makefile for
each platform.

The imake program is an X Consortium tool that generates Makefiles using
preprogrammed platform configuration data. You may find that this tool is a
possible alternative to handling multiple Makefiles.

Vendor Extensions
Yes, some vendors even provide PEX extensions other than this CGE PEX 5.1
extension. You should use these extensions carefully in order to keep your
program portable and interoperable. This probably means coding a path for
platforms that have the extension and a path for those that don’t.

1. Unix is a registered trademark licensed exclusively by X/Open Company Ltd. X/Open is a trademark of
X/Open Company Ltd.

12 CGE PEX 5.1 Portability Guide—November 1995

2

The vendor extension may be wholly contained and described in header files
that define constants and data structures that you will use in PEXEscape or
PEXEscapeWithReply function calls. (Some header files may define macros that
“hide” the PEXEscape function call from you.) To help keep source code using
these extensions consistent, use a preprocessor directive naming an extension
library to include the files:

#include <X11/PEX5/extensions/filename.h>

This will probably be the convention adopted for PEXlib 5.2, so you are ahead
of that game once again. The actual filename is constructed out of an
abbreviation of the owning vendor’s name and the function that the extension
provides.

Other types of vendor extensions may be provided via C language source code
files. However, you may have to compile such code before using the
extensions.

Finally, a vendor may choose to extend PEXlib by adding new entry points
directly to the PEXlib implementation, without supplying source code. In these
cases, you may have to code “stub” routines, so that you can compile and link
your application on other platforms. Remember, in this case, you must code
your application to avoid the vendor extension calls if the extensions are not
available on your application’s platform.

You probably will find vendor extension files only on individual vendor’s
machines. So, if you’d like your application code to compile on other vendors’
platforms, be sure to include a copy of these files with your application.

 Design Considerations
You will have to decide ahead of time how you want your application to work
in situations where the CGE might not be present. Do you want your
application to work only when there is a CGE PEX server doing the display
work for the user? Or, do you want your application to go ahead and still run,
although not as efficiently, on a vanilla PEX 5.1 server?1

1. An implementation of PEX 5.1 without any CGE extensions or any other extensions is referred to as a vanilla
PEX 5.1 server or application.

Preparing CGE PEX 5.1 Extensions Programs 13

2

The CGE-only PEX Server Application

In this case, your application requires that the PEX server support the CGE PEX
5.1 extensions before it does anything. This requires that your users have the
necessary CGE support on the system they are running the PEX server. This
makes your application more “exclusive”, but perhaps simpler, internally. All
you need to do in the application is to check for the existence of the CGE PEX
5.1 extensions. If they are there, then continue. Else, the application should
terminate, printing a polite message that the CGE extensions are not present.

The CGE / PEX 5.1 Application

In this case, your application determines at an early stage whether or not the
CGE PEX 5.1 extensions are present in the PEX server. The application
continues executing, using the extensions if they are present in the server,
ignoring them in the application if they are not. This means that when it is time
for the application to use a CGE-specific feature, it must check a flag to see if
the CGE support is there. Then, the application executes either a CGE path or
non-CGE path. The non-CGE path can be as simple as not performing the
specific function or can be as complex as an elaborate emulation of the feature.
It all depends on how important the feature is to the application.

Critical Features

These are features of CGE PEX that your application cannot do without. For
example, if the entire purpose of your application is to use texture mapping to
illustrate the stress points on a metal frame, then your application would
probably not want to continue if the CGE support were not present.

Visual-Only Features

These are features that improve the appearance of your application, but are not
critical to its usability. For example, some applications would work OK if anti-
aliasing were not available. Applications like these will likely continue in
degraded mode if CGE support is not present.

14 CGE PEX 5.1 Portability Guide—November 1995

2

15

Initializing an Application Using
the CGE PEX 5.1 Extensions 3

Getting Started
In many ways, your application begins just like any other PEXlib application.

Initializing PEXlib

You initialize PEXlib the same way you initialize any PEXlib application.

Detecting a CGE PEX 5.1 Implementation

One of the first things you will want to do in your application is to find out if
the PEX server has the CGE extensions. Then you can decide either to abort the
application or configure the application to run without the extensions. You
should query the server for the list of Escapes that the PEX extension supports
using the PEXGetEnumTypeInfo request. If the server has the CGE extensions,
then you will find the escape identifiers, starting at 0x9000
(PEXETEscapeChangePipelineContext), in the list. The following is a code
sequence that performs the query:

16 CGE PEX 5.1 Portability Guide—November 1995

3

Checking for Optional Features

One of the goals of CGE PEX 5.1 is to reduce the occurrence of optional features
that application developers could not always count on being present in the
PEX server implementation. While there is much more mandated functionality,
there are still allowable differences in the degree that some of the features
might be implemented across CGE PEX server implementations. For example,
texture mapping is a required function, but only 2D texture maps are required
to be implemented by all CGE PEX servers.

Once you have established that your application is connected to a CGE PEX
server, you can then either count on the required functionality being there
without further query, or you can issue additional PEXGetEnumTypeInfo
requests to determine what additional functionality might be available.
Continuing with the texture mapping case, you can now go ahead and use 2D

{
int status, i, found;
int enum_types[1];
unsigned long *enum_counts;
PEXEnumTypeDesc *enum_values, *p_enum;

enum_types[0] = PEXETEscape;

status = PEXGetEnumTypeInfo(dpy,
 drawable,
 1,
 enum_types,
 PEXETCounts | PEXETIndex,
 &enum_counts,
 &enum_values);

if (!status) {
/* failure */

}

p_enum = enum_values;
found = False;
for (i=0; i<enum_counts[0]; i++) {

if (((unsigned short) (p_enum++)->index) ==
((unsigned short) PEXETEscapeChangePipelineContext))
found = True;

}
}

Initializing an Application Using the CGE PEX 5.1 Extensions 17

3

textures without issuing further queries. But if you also wanted to use 1D
textures, you would have to query the PEXExtTMDomain enumerated type to
make sure that the server supported 1D textures.

Many people design applications that are flexible in a few ways, depending on
the level of this sort of optional support. The application usually queries the
features for which it can adjust once during initialization and keeps the results
around for easy access. It is usually a good idea to perform these queries only
once, because round-trips to the server can be expensive and the data does not
change during the session anyway.

Multi-Buffering

In accordance with the preferred industry-standard way of implementing
double-buffering, CGE PEX 5.1 requires that platforms supporting CGE PEX
5.1 must also provide the X Multi-Buffering Extension (MBX). This means if
you are using MBX 3.2 or later, then your applications are assured of
portability on any CGE PEX 5.1 platform. This eliminates the need for you to
invoke XListExtension or XQueryExtension functions. Use MBX in your
applications any time double-buffering is desired. To use double-buffering via
MBX, invoke:

XmbufCreateBuffers()

to create the image buffers. If the device only supports one MBX image buffer,
then you could either live with single buffering, or find out if the server
supports rendering to pixmaps. Issue PEXMatchRenderingTargets to do so. If
rendering to pixmaps is supported, copy the pixmap to the window to
simulate double-buffering.

For every window or pixmap drawable that is supported by a PEX
implementation, a corresponding MBX buffer drawable, whether single-
buffered or double-buffered, will be supported on any server supporting CGE
PEX 5.1.

18 CGE PEX 5.1 Portability Guide—November 1995

3

Fonts

All vendors who support CGE PEX 5.1 use the X-Windows Logical Font
Description (XLFD) font naming format. Loading and using a font with a
CHARACTER_REGISTRY and CHARACTER_ENCODING property of ISO8859-1

(*.*.*.*.*.*.*.*.*.*.*.*.ISO8859-1)

ensures you of at least one PEX-usable font on any CGE PEX 5.1 platform.

PEX Subsets

Do not use the workstation subset in your CGE PEX application. It is not
required for a CGE PEX implementation, so you are not guaranteed that it will
always be available. Once you are certain that the server supports CGE PEX
5.1, you also do not need to check for the renderer or structure subsets. They
are required in CGE PEX 5.1.

Opening a Window, Selecting a Visual, Creating a Colormap, and Establishing Color
Approximation

The following are the four basic steps to PEX Color support:

• Select a Visual in which to create the Window.

• Create a Colormap, or find one to share with other similar clients in that
Visual.

• Load Colors into the Colormap.

• Create a Window in the selected Visual with the correct Colormap.

To help you complete these four basic steps, CGE PEX 5.1 offers utility
extensions. These utilities are shipped as source code to give your application
control over policy decisions regarding choice of visual and colormap
organization. However, applications that support CGE PEX 5.1, should be able
to use these functions without changes on any CGE PEX 5.1 supported
platform.

As with other functions, call the PEXInitialize function prior to using these
utilities.

Initializing an Application Using the CGE PEX 5.1 Extensions 19

3

Though there are a number of Visual and Colormap utilities, the main ones
that will help you with the four steps listed above include:

• PEXUtSimpleWindowAndColormap which operates with “soft” criteria
(discussed in “Visual Selection” on page 19) and creates a Window for PEX
rendering.

• PEXUtMakeWindowAndColormap which is similar to the
PEXUtSimpleWindowAndColormap function but offers you more explicit
control over the criteria (see “Visual Selection” on page 19) and attributes
used in selecting the Visual and creating the Window.

• PEXUtSelectVisual which is a lower-level utility that offers you control over
the criteria used to select a Visual (see “Visual Selection” on page 19). You
can then use other CGE-supplied utilities, or code of your own, to handle
the Colormap and Color Approximation issues and the creation of a
Drawable. Some of the CGE PEX utilities include: PEXUtMakeColormap,
PEXUtGetStandardColormapInfo, and PEXUtCheckColorApproximation.
See the CGE reference material for more details.

Visual Selection

If you have a simple application that does not have complicated requirements
for the Visual, then you probably prefer to use the
PEXUtSimpleWindowAndColormap utility. Otherwise, use the Visual selection
criteria described in this section to provide input to the
PEXUtMakeWindowAndColormap or PEXUtSelectVisual utility extensions.

You can supply one or more criterion for selection of a Visual. Criteria can be
“hard” which indicates that if the results are not met by the Visual, then
unacceptable results are produced. The utility returns a failure code or
continues to the next criteria set if you have supplied more criteria. Criteria can
also be “soft” which indicates that the characteristics are desirable but not
required for a Visual to be acceptable.

There are two means of Visual Selection:

• Supply a single criteria set with some combination of “hard” and “soft”
criteria. If the utility does not find a Visual that meets all of your “hard”
criteria, then the utility returns an error code and your application can
either quit or try another set of criteria. Failure to meet “soft” criteria is not
considered a complete failure, though the utility informs you which ones
were not met.

20 CGE PEX 5.1 Portability Guide—November 1995

3

• Supply several sets of criteria (a “degradation” path) for Visual selection.
Failure to meet the “hard” criteria in one set causes the utility to continue to
the next set. If the utility reaches the last set that you supplied and cannot
meet the requirements, then the utility returns an error code. Failure to meet
“soft” criteria does not cause the utility to continue to the next set.
Therefore, you probably want your degradation path to list “hard” criteria
in the early sets and relax the requirements (for example, by listing “soft”
criteria) in the later sets. When the utility finds a Visual that meets a set of
criteria, the utility returns information on which set was successful.

Colormap Creation and Color Approximation

The Colormap and Color Approximation CGE utility extensions provide an
interface to applications to ease the Colormap tasks. If you want to use these
utilities in your application, then include the PEXUtCmap.h header file.

For PEX color support interoperability, use standard Colormaps. In general,
with PEX 5.1, it is recommended that you use RGB_BEST_MAP and/or
RGB_DEFAULT_MAP. You can use the PEXUtGetStandardColormapInfo
utility to obtain a Colormap initialization and Color Approximation setup that
PEX is likely to support in the specified Visual. If no interoperability property
was used to obtain the Colormap description, the utility provides an educated
guess about what color setup might be supported by PEX. The interoperable
conventions include:

• As mentioned above, use standard Colormaps. In PEX it is recommended
that you use RGB_BEST_MAP and/or RGB_DEFAULT_MAP. CGE PEX 5.1
servers are likely to define these properties and describe Colormaps that are
supported by PEX via the PEXColorSpace approximation. With CGE PEX 5.1
utilities, this interoperable property is easy to meet by including the
PEXUtStandardColormapProperty criterion as either hard or soft in each
criteria set (see “Visual Selection” on page 19 for details on hard and soft
criteria).

• Use the PEX 5.1 PEXEscapeQueryColorApprox escape or the CGE PEX 5.1
PEXExtQueryColorApprox escape to verify the setups available. An
alternative setup is returned if the specified Colormap setup is not
supported for the PEX ColorApproximation and your application then can
choose either to adapt to the alternative configuration or to select another

Initializing an Application Using the CGE PEX 5.1 Extensions 21

3

Visual. The CGE PEX 5.1 utilities, PEXUtMakeWindowAndColormap and
PEXUtSimpleWindowAndColormap, enable you to use the supplied
alternative configuration.

To use the PEXUtMakeWindowAndColormap utility, for example, set one or
two hard criteria to indicate the most essential characteristics required of a
Visual or Window and any soft criteria. Ensure one of the hard or soft criteria is
PEXUtStandardColormapProperty so that such properties are accessed. If two
Visuals meet the hard criteria and an equal amount of soft criteria, the Visual
with the most color resolution is selected. If neither Visual has more color
resolution than the other, then the first Visual in the list provided by the server
is selected.

If you create a PEX Color Approximation entry (for example, by calling the
PEXUtSelectVisual or PEXUtGetStandardColormapInfo utility), you can verify
that the PEX server supports the Color Approximation entry you want by
issuing the CGE PEX 5.1 utility PEXUtCheckColorApproximation. Based on
information from the server, the utility verifies that the Color Approximation
setup is supported by PEX on the specified Visual. If the specified Color
Approximation is not supported, then the utility attempts to supply an
alternative Color Approximation.

Drawable Creation

Some of the utilities create the drawable for you and return it to you as a
parameter. Others give you a Visual and Colormap that you would use on your
own call to XCreateWindow.

22 CGE PEX 5.1 Portability Guide—November 1995

3

Utilities
In addition to the CGE PEX 5.1 utility extensions, vendors who support CGE
PEX 5.1 fully support the existing PEX 5.1 utility functions. PEX 5.1 utilities
apply to PEX 5.1 functions only. You need to invoke other CGE utilities in
order to obtain information applicable to CGE PEX 5.1 functions. For example,
PEXGetSizeOCs returns values that apply to PEX 5.1 output commands but
does not return information about CGE PEX 5.1 OCs, such as the output
command PEXExtEllipse. Extended functions are provided to support the CGE
PEX 5.1 extensions as described in the following table:

Table 3-1 Extended Functions for CGE PEX 5.1

PEX 5.1 Function CGE PEX 5.1

PEXCountOCs PEXExtCountOCs

PEXDecodeOCs PEXExtDecodeOCs

PEXEncodeOCs PEXExtEncodeOCs

PEXFreeOCData PEXExtFreeOCData

PEXGetSizeOCs PEXExtGetSizeOCs

PEXFetchElementsAndSend PEXExtFetchElementsAndSend

PEXFreePCAttributes PEXExtFreePCAttributes

PEXFreeRendererAttributes PEXExtFreeRendererAttributes

PEXFreeTableEntries PEXExtFreeTableEntries

None. Use bits to set value mask. PEXExtRendererAttributeMask

None. Use bits to set value mask. PEXExtRendererAttributeMaskAll

PEXSetPCAttributeMask PEXExtSetPCAttributeMask

PEXSetPCAttributeMaskAll PEXExtSetPCAttributeMaskAll

Initializing an Application Using the CGE PEX 5.1 Extensions 23

3

In addition to these utilities, CGE PEX 5.1 also provides Texture Mapping
utilities:

Table 3-2 Texture Mapping Utilities for CGE PEX 5.1

PEX 5.1 Function CGE PEX 5.1

None PEXExtCreateFilteredTM

None PEXExtCreateFilteredTMFromWindow

None PEXExtFreeFilteredTM

None PEXExtTMCoordFillAreaSetWithData

None PEXExtTMCoordQuadrilateralMesh

None PEXExtTMCoordSetOfFillAreaSets

None PEXExtTMCoordTriangleStrip

24 CGE PEX 5.1 Portability Guide—November 1995

3

25

Using Features of the CGE PEX 5.1
Extensions 4

Required CGE Features
Once you know you have a CGE server, you can use the features that are a
required part of CGE without querying them. See “Minimum Conformance”
on page 75.

Optional CGE Features
Some CGE features are still optional. You’ll need to invoke the
PEXGetEnumTypeInfo request to find out what is supported with your
particular implementation.

Working with the Extended Renderer Attributes
CGE PEX 5.1 defines a number of new renderer attributes:

• TMBindingTable

• TMCoordSourceTable

• TMCompositionTable

• TMSamplingTable

You cannot access these new attributes with the standard PEXlib 5.1 functions
because PEXlib 5.1 is not extensible enough to allow these functions to access
vendor-extended attributes. Instead, CGE PEX 5.1 supplies you with two new

26 CGE PEX 5.1 Portability Guide—November 1995

4

functions to manipulate these attributes. You should use the
PEXExtSetRendererAttributeMask or the PEXExtSetRendererAttributeMaskAll
macros to set up bitmasks for these new functions.

PEXExtChangeRenderer()

Use this function to alter both the standard and CGE PEX 5.1 extended
renderer attributes. The interface is slightly different from the standard 5.1
function in that you must supply an array of two long words that contain the
bitmask indicating which attributes are supplied. The longer bitmask is
required to accommodate the additional renderer attributes. In a sense, this
interface is similar to the PC functions in PEX 5.1.

You cannot create a renderer with any of the new attributes specified, because
CGE PEX 5.1 does not supply a new function to create a renderer. You must
first create a renderer with the standard PEX 5.1 function, and then use
PEXExtChangeRenderer to modify the extended attributes.

PEXExtGetRendererAttributes()

Use this function to get both the standard and CGE PEX 5.1 extended renderer
attributes. This function also has a longer bitmask to accommodate the extra
attributes as described for the PEXExtChangeRenderer function.

Working with the Extended Pipeline Context
CGE PEX 5.1 defines a number of new pipeline context attributes:

• TMPerspectiveCorrection

• TMResourceHints

• TMSampleFrequency

• ActiveTextures

• BFActiveTextures

• PrimitiveAA

• LineCapStyle

• LineJoinStyle

Using Features of the CGE PEX 5.1 Extensions 27

4

You cannot access these new attributes with the standard PEXlib 5.1 functions
because PEXlib 5.1 is not extensible enough to allow these functions to access
vendor-extended attributes. Instead, CGE PEX 5.1 supplies you with two new
functions to manipulate these attributes. You should use the
PEXExtSetPCAttributeMask or the PEXExtSetPCAttributeMaskAll macros to
set up bitmasks for these new functions.

The PEXlib 5.1 PEXCopyPipelineContext function will only copy the standard
PEX 5.1 PC attributes. There is no extended form of PEXCopyPipelineContext.

PEXExtChangePipelineContext()

Use this function to alter both the standard and CGE PEX 5.1 extended
pipeline context Attributes. The interface is the same as in the PEXlib 5.1
function, except that you can specify the extra bits and attributes.

You cannot create a pipeline context with any of the new attributes specified,
because CGE PEX 5.1 does not supply a new function to create a pipeline
context. You must first create a pipeline context with the standard function,
and then use PEXExtChangePipelineContext to modify the extended attributes.

PEXExtGetPipelineContext()

Use this function to get both the standard and CGE PEX 5.1 extended pipeline
context Attributes. This function works the same way as the standard function,
except that you can specify the extended bits in the bitmask.

Working with the New Lookup Tables
CGE PEX 5.1 defines a number of new lookup tables (LUTs):

• TMBinding

• TMCoordSource

• TMComposition

• TMSampling

You can use all standard PEXlib 5.1 functions to manipulate the new LUTs
except for the functions that get and set table entries. Use the following
functions instead:

28 CGE PEX 5.1 Portability Guide—November 1995

4

• PEXExtGetTableEntry

• PEXExtGetTableEntries

• PEXExtSetTableEntries

These functions have the same syntax as the standard PEXlib 5.1 functions.
However, you must still use the new functions to get or set entries in the new
LUTs because only the new functions understand the format of the new table
entries. You may also use these functions to get or set entries in the PEX 5.1
standard LUTs.

Also, there are no predefined entries for the new LUTs, therefore the function
PEXGetPredefinedEntries is not useful for the new LUTs.

Renderer Dynamics
As with some PEX 5.1 servers, some CGE PEX 5.1 servers cannot apply LUT,
nameset, or renderer attribute changes immediately after you change them
with a PEXlib function if the renderer is in the rendering state. The changes do
not actually take affect until the next BeginRendering call. Such renderers are
called non-dynamic. Non-dynamic renderers may force the application to call
BeginRendering and EndRendering more often than is needed for a dynamic
renderer. This can lead to different program logic for each type of renderer.

For best performance, consider the issue of renderer dynamics carefully and
consider using extra code paths, based on the renderer dynamics. Be careful
not to program for a non-dynamic renderer only, because you could lose
performance if the same code is run on a dynamic renderer.

Also, the new CGE PEX 5.1 extended renderer attributes are all considered to
be dynamic. There are no new functions to query the renderer dynamics for
these new attributes.

29

Programming Example 5

The Sample Program
This chapter contains the program listings of a simple CGE PEX 5.1 program
that displays a rotating torus, with or without texture mapping. This short
program shows you how to determine if CGE PEX 5.1 is present and how you
can avoid queries, once you know CGE PEX 5.1 is there. It also shows you how
to apply texture mapping to an object with a minimum amount of work. All
CGE vendors ship the following files with their CGE PEX 5.1 products which
provides you with the opportunity to experiment with the files:

• ptorus.h - header file for entire program. It contains definitions of
common data structures and function prototypes. (See “ptorus.h - Header
File for Main Program” on page 30.)

• ptorus.c - main program. Be sure to look at this file. (See “ptorus.c - Main
Program” on page 33.)

• view.c - code for handling viewing calculations and setting the view table
entries. Not extremely important for illustrating CGE. (See “view.c - View
Computations Example” on page 45.)

• model.c - code for creating the model. It generates a torus and stores it into
a structure for later display. A compile-time definition controls whether or
not you want the PEX server to apply a texture to the torus. The code in this
file also sets up the pipeline context and performs other model-specific
initialization. (See “model.c - Model and Scene Generation Example” on
page 50.)

30 CGE PEX 5.1 Portability Guide—November 1995

5

ptorus.h - Header File for Main Program

Code Example 5-1 Header File for Main Program Example

*/
 CGE PEX 5.1 Simple Programming Example
 Header file
 Define common function prototypes and data structures
*/

/*
 This structure is used to describe a view using a
 camera field-of-view model.
*/

typedef struct
{
 float refx,refy,refz;
 float camx,camy,camz;
 float upx,upy,upz;
 float field_of_view;
 float front,back;
 int perspective;
} camera_arg;

/*
 This procedure sets the view table entry to
 the view described by the camera argument.
*/

extern void set_view_camera(
#if NeedFunctionPrototypes
 Display *dpy,
 Window window,
 camera_arg *ca,
 PEXRenderer renderer,
 PEXRendererAttributes *rend_attr,
 int index
#endif
);

/*
 This procedure generates the geometric model with appropriate
 surface attributes.

Programming Example 31

5

*/

extern void Torus(
#if NeedFunctionPrototypes
 Display *dpy,
 XID resource_id,
 PEXOCRequestType req_type
#endif
);

/*
 This procedure creates a structure containing the geometric
 model.
*/

extern PEXStructure create_model(
#if NeedFunctionPrototypes
 Display *dpy
#endif
);

/*
 This procedure sets up viewing and lighting.
*/

extern void create_scene(
#if NeedFunctionPrototypes
 Display *dpy,
 camera_arg *camera,
 int *num_lights,
 PEXLightEntry **lights,
 PEXTableIndex **lss
#endif
);

/*
 This procedure sets up initial attributes in the Pipeline
 Context.
*/

extern void create_initial_state(
#if NeedFunctionPrototypes
 Display *dpy,
 PEXPipelineContext plc,

Code Example 5-1 Header File for Main Program Example (Continued)

32 CGE PEX 5.1 Portability Guide—November 1995

5

 int num_lights,
 PEXTableIndex *lss
#endif
);

/*
 This procedure sets up the Renderer and creates the useful
 associated resources (Lookup Tables and Pipeline Context).
*/

extern PEXRenderer create_renderer(
#if NeedFunctionPrototypes
 Display *dpy,
 Window window,
 PEXRendererAttributes *rend_attrs
#endif
);

Code Example 5-1 Header File for Main Program Example (Continued)

Programming Example 33

5

ptorus.c - Main Program

Code Example 5-2 Main Program Example

/*
 CGE PEX 5.1 Simple Programming Example

 Main program file
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <malloc.h>

#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/Xutil.h>
#include <X11/extensions/multibuf.h>

#include <X11/PEX5/PEXlib.h>
#include <X11/PEX5/PEXExtlib.h>

#include <PEXUtCmap.h>

#include “ptorus.h”

/*
 Forward declarations of utility procedures in this file.
*/

static void redraw(
#if NeedFunctionPrototypes
 Display *dpy,
 Multibuffer *drawable,
 PEXRenderer renderer,
 PEXStructure structure,
 Multibuffer *buffers
#endif
);

static void p_animate(
#if NeedFunctionPrototypes

34 CGE PEX 5.1 Portability Guide—November 1995

5

 Display *dpy,
 PEXRenderer rid,
 PEXStructure sid
#endif
);

/*
 This data structure describes the enumerated type values this
 program requires. They are checked in the main program below.
 Note that the only check we really need to make is to look for
 the CGE Escape Identifiers. If they are present, we can be
 sure that we have a CGE server and can assume that a large
 number of features are supported.
 This program requires no features beyond what CGE PEX 5.1
 requires, so we just need to check for CGE support.
*/

static struct enum_entry {
 unsigned int enum_type;
 unsigned int enum_value;
 char *message;
} enums_to_check[]={

 { PEXETEscape, PEXExtEscapeChangePipelineContext,
 “CGE PEX 5.1 Support” },

};
#define NUM_ENUMS_TO_CHECK (sizeof(enums_to_check)/sizeof(struct
 enum_entry))

/*
 The main program. Takes one possible command-line argument to
 name the X server, -display <display_name>.
*/

main (argc, argv)
 int argc;
 char **argv;
{
 char *prog_name;
 char *display_name;

 int screen;

Code Example 5-2 Main Program Example (Continued)

Programming Example 35

5

 Display *dpy;
 Window window;
 Multibuffer renderBuf;
 Multibuffer buffers[2];
 int mbx_buf_count;

 PEXExtensionInfo *ext_info;
 char err_string[PEXErrorStringLength];

 XVisualInfo vis_info;
 XStandardColormap cmap_info;
 PEXColorApproxEntry capx_info;

 XSizeHints hints;
 PEXUtVisualCriteria criteria;
 PEXUtWindowSpecification window_info;
 int crit_index;
 unsigned int unmet;
 Atom prop_atom;
 int result;
 XColor returned_background;
 XEvent event;
 Colormap cmap_id;

 Atom xa_WM_DELETE_WINDOW;
 Atom xa_MOTIF_WM_MESSAGES;
 Atom xa_WM_PROTOCOLS;
 Atom protocols[2];
 char *title;

 PEXRendererAttributes rend_attrs;
 PEXRenderer renderer;
 PEXStructure structure;

 int num_lights;
 PEXLightEntry *lights;
 PEXTableIndex *lss;

 int visible;
 camera_arg camera;

 /*
 Get the program name for error messages.
 */

Code Example 5-2 Main Program Example (Continued)

36 CGE PEX 5.1 Portability Guide—November 1995

5

 if (prog_name = strrchr(argv[0], ‘/’))
 prog_name++;
 else
 prog_name = argv[0];

 /*
 Parse the command line arguments.
 */
 if ((argc > 2)
 && argv[1]
 && !strcmp(“-display”, argv[1]))
 display_name = XDisplayName(argv[2]);
 else
 display_name = XDisplayName(NULL);

 /*
 Open the X connection.
 */
 if (!(dpy = XOpenDisplay(display_name)))
 {
 fprintf(stderr, “%s: can’t open display %s -- exiting\n”,
 prog_name, display_name);
 exit (1);
 }

 screen = DefaultScreen(dpy);

 /*
 Initialize PEXlib on the connection.
 */
 if (PEXInitialize (dpy, &ext_info, PEXErrorStringLength,
 err_string))
 {
 fprintf (stderr, “%s: PEXInitialize() failed on %s: %s\n”,
 prog_name, display_name, err_string);
 exit (1);
 }

 /*
 Select a Visual for PEX rendering and create a Window
 on the Visual.
 We’re going to hint that we want Double Buffering for
 smooth animation and to use a Standard Colormap to
 promote the sharing of Colormap resources on the server.

Code Example 5-2 Main Program Example (Continued)

Programming Example 37

5

 If we don’t get either or both, we’ll stumble on.
 */

 hints.x = 128;
 hints.y = 128;
 hints.width = 256;
 hints.height = 256;
 hints.flags = (USSize|USPosition);

 criteria.hard_criteria_mask = 0;
 criteria.soft_criteria_mask = PEXUtDBCapability |
 PEXUtStandardColormapProperty;

 criteria.double_buffering_capability = PEXUtDBPEX;
 criteria.standard_colormap_property = True;

 window_info.attr_mask = CWEventMask;
 window_info.attrs.event_mask = (ExposureMask |
 VisibilityChangeMask |
 StructureNotifyMask);

 window_info.title = “PEX Torus”;
 window_info.size_hints = hints;
 window_info.parent = RootWindow (dpy, screen);
 window_info.border_width = 0;
 window_info.background_color_name = “black”;
 window_info.border_color_name = “white”;

 result = PEXUtMakeWindowAndColormap (dpy, screen,
 1, &criteria,
 &window_info, &window,
 &vis_info, &cmap_info,
 &capx_info,
 &crit_index, &unmet,
 &prop_atom,
 &returned_background,
 &cmap_id);

 if (result != PEXUtSuccess)
 {
 static char *PEXUtFailStrings[] =
 {
 “PEXUtBadAlloc”, /* -4 maps to 0 */
 “PEXUtPEXFailure”, /* -3 maps to 1 */

Code Example 5-2 Main Program Example (Continued)

38 CGE PEX 5.1 Portability Guide—November 1995

5

 “PEXUtXFailure”, /* -2 maps to 2 */
 “PEXUtCriteriaFailure”, /* -1 maps to 3 */
 “PEXUtSuccess”, /* 0 maps to 4 */
 “PEXUtQualifiedSuccess”, /* +1 maps to 5 */
 “PEXUtAlternativeSuccess”, /* +2 maps to 6 */
 };

 fprintf(stderr,”%s: visual selection or window creation
 failed: %s\n”, prog_name, PEXUtFailStrings
 [result + 4]);
 exit(1);
 }

 /*
 Report soft criteria failures, but don’t quit.
 */
 if (unmet & PEXUtDBCapability)
 fprintf(stderr,
 “%s: could not find Visual for double buffering\n”,
 prog_name);
 if (unmet & PEXUtStandardColormapProperty)
 fprintf(stderr,
 “%s: could not find Standard Colormap Property\n”,
 prog_name);

 /*
 Set up some window manager properties (see the ICCCM).
 */

 xa_WM_DELETE_WINDOW = XInternAtom(dpy, “WM_DELETE_WINDOW”,
 False);
 xa_MOTIF_WM_MESSAGES = XInternAtom(dpy, “_MOTIF_WM_MESSAGES”,
 False);
 xa_WM_PROTOCOLS = XInternAtom(dpy, “WM_PROTOCOLS”,
False);
 protocols[0] = xa_WM_DELETE_WINDOW ;
 protocols[1] = xa_MOTIF_WM_MESSAGES;
 XSetWMProtocols(dpy, window, protocols, 2);

 title = “PEX Torus”;
 XChangeProperty(dpy, window, XA_WM_ICON_NAME, XA_STRING,
 8, PropModeReplace, (unsigned char *) title, 8);

 /*

Code Example 5-2 Main Program Example (Continued)

Programming Example 39

5

 Configure the window for double-buffering via MBX.
 */

 mbx_buf_count = XmbufCreateBuffers(dpy, window, 2,
 MultibufferUpdateActionBackground,
 MultibufferUpdateHintFrequent,
 buffers);
 if (mbx_buf_count == 0) {
 fprintf(stderr,
 “%s: can’t create MBX buffers on display %s, visual
 %x\n”,
 prog_name, display_name, vis_info.visualid);
 exit(1);
 }

 /*
 Handle case where only one MBX buffer was created.
 This will make the swap work, even if one buffer.
 */
 if (mbx_buf_count == 1)
 buffers[1] = buffers[0];

 renderBuf = buffers[1];

 /*
 Check the Enum Types to be sure that CGE PEX is supported
 */
 {
 int status, i, j, found;
 int enum_types[NUM_ENUMS_TO_CHECK];
 unsigned long *enum_counts;
 PEXEnumTypeDesc *enum_values, *p_enum;

 for (i=0; i<NUM_ENUMS_TO_CHECK; i++)
 enum_types[i] = enums_to_check[i].enum_type;

 status = PEXGetEnumTypeInfo (dpy, renderBuf,
 NUM_ENUMS_TO_CHECK, enum_types,
 PEXETCounts|PEXETIndex,
 &enum_counts, &enum_values);
 if (!status) {
 fprintf(stderr,
 “%s: inquiry of enumerated types failed - exiting\n”,

Code Example 5-2 Main Program Example (Continued)

40 CGE PEX 5.1 Portability Guide—November 1995

5

 prog_name);
 exit(1);
 }

 p_enum = enum_values;
 for (i=0; i<NUM_ENUMS_TO_CHECK; i++) {

 found = False;

 for (j=0; j<enum_counts[i]; j++) {
 if (((unsigned short) (p_enum++)->index) ==
 ((unsigned short) enums_to_check[i].enum_value))
{
 found = True;
 }
 }

 if (!found) {
 fprintf(stderr,
 “%s: this program requires support for %s\n”,
 prog_name, enums_to_check[i].message);
 exit(1);
 }
 }

 PEXFreeEnumInfo (NUM_ENUMS_TO_CHECK, enum_counts,
 enum_values);
 }

 /*
 Create the model and scene to be animated.
 */

 structure = create_model(dpy);
 create_scene(dpy, &camera, &num_lights, &lights, &lss);

 /*
 Create a Renderer and various lookup tables.
 Set up the view, lights, and Pipeline Context.
 */

 renderer = create_renderer(dpy, window, &rend_attrs);

Code Example 5-2 Main Program Example (Continued)

Programming Example 41

5

 set_view_camera(dpy, window, &camera, renderer, &rend_attrs,
 1);
 PEXSetTableEntries(dpy, rend_attrs.light_table, lss[0],
 num_lights, PEXLUTLight, lights);
 PEXSetTableEntries(dpy, rend_attrs.color_approx_table, 0, 1,
 PEXLUTColorApprox, &capx_info);
 create_initial_state (dpy, rend_attrs.pipeline_context,
 num_lights, lss);

 /*
 Now enter the main event-processing and animation loop.
 */

 visible = False;
 while (True)
 {

 /*
 First handle any pending events.
 */

 while (XPending(dpy))
 {
 XNextEvent(dpy, &event);

 switch (event.type) {
 case ConfigureNotify:
 /*
 Adapt the view to the window configuration
 and render the image.
 */
 set_view_camera(dpy, window, &camera, renderer,
 &rend_attrs, 1);
 redraw(dpy, &renderBuf, renderer, structure,
 buffers);
 break;

 case Expose:
 /*
 Flush remaining Expose events.
 */
 while (XCheckTypedWindowEvent(dpy, window,
 Expose, &event));
 /* empty statement */

Code Example 5-2 Main Program Example (Continued)

42 CGE PEX 5.1 Portability Guide—November 1995

5

 visible = True;

 /*
 Adapt the view to the window configuration
 and render the image.
 */
 set_view_camera(dpy, window, &camera, renderer,
 &rend_attrs, 1);
 redraw(dpy, &renderBuf, renderer, structure,
 buffers);
 break;

 case ClientMessage:
 if (event.xclient.message_type == xa_WM_PROTOCOLS)
 {
 if (event.xclient.data.l[0] ==
 xa_WM_DELETE_WINDOW)
 {
 /*
 Terminate the double-buffering on the
 window.
 Close the Window and the connection.
 */

 XmbufDestroyBuffers(dpy, window);
 XDestroyWindow (dpy, window);
 XCloseDisplay(dpy);
 exit(0);
 }
 }
 break;
 }
 } /* event handling */

 /*
 After handling events, render the next frame in the
 animation.
 */

 if (visible)
 redraw(dpy, &renderBuf, renderer, structure, buffers);

 } /* main loop */

Code Example 5-2 Main Program Example (Continued)

Programming Example 43

5

} /* main */

/*
 This procedure draws one frame and swaps the buffers.
*/
static void redraw(dpy, drawable, renderer, structure, buffers)
 Display *dpy;
 Multibuffer *drawable;
 PEXRenderer renderer;
 PEXStructure structure;
 Multibuffer *buffers;
{
 PEXBeginRendering(dpy, (Drawable) *drawable, renderer);
 p_animate(dpy, renderer, structure);
 PEXEndRendering(dpy, renderer, True);

 /* Swap the buffers. */
 XmbufDisplayBuffers(dpy, 1, drawable, 0, 0);
 *drawable = ((*drawable == buffers[0]) ? buffers[1] :
buffers[0]);

 XSync(dpy, False);

} /* redraw */

/*
 This procedure generates the animation and does the rendering
 of a single frame.
*/

static float xangle = 0.01;
static float yangle = 0.1;

static void p_animate(dpy, rid, sid)
 Display *dpy;
 PEXRenderer rid;
 PEXStructure sid;
{
 PEXMatrix model_mtx, xrot_mtx, yrot_mtx;

 xangle += 0.01;
 if (xangle > 2*M_PI) xangle = 0.01;
 PEXRotate(PEXXAxis, xangle, xrot_mtx);

Code Example 5-2 Main Program Example (Continued)

44 CGE PEX 5.1 Portability Guide—November 1995

5

 yangle += 0.1;
 if (yangle > 2*M_PI) yangle = 0.1;
 PEXRotate(PEXYAxis, yangle, yrot_mtx);

 PEXMatrixMult (xrot_mtx, yrot_mtx, model_mtx);

 PEXSetLocalTransform(dpy, rid, PEXOCRender, PEXReplace,
 model_mtx);
 PEXExecuteStructure(dpy, rid, PEXOCRender, sid);

} /* p_animate */

Code Example 5-2 Main Program Example (Continued)

Programming Example 45

5

view.c - View Computations Example

Code Example 5-3 View Computations Example

/*
 CGE PEX 5.1 Simple Programming Example

 View Computations

*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include <X11/PEX5/PEXlib.h>

#include “ptorus.h”

/*
Linear algebra utilities.
*/

void vector_subtract(c, a, b)
float *c;
float *a;
float *b;
{
 *c++ = *a++ - *b++;
 *c++ = *a++ - *b++;
 *c++ = *a++ - *b++;
}

double vector_length(v)
 register float *v;
{
 register int i;
 register double s;

 for (i = 0, s = 0.0; i < 3; i++, v++)
 s += *v * *v;
 s = sqrt(s);
 return(s);
}

46 CGE PEX 5.1 Portability Guide—November 1995

5

void vector_scale(v, s)
 register float *v, s;
{
 *v++ *= s;
 *v++ *= s;
 *v++ *= s;
}

/*
 This procedure creates a view table entry and installs it.
*/

void set_view_camera(dpy, window, ca, renderer, rend_attr, index)
 Display *dpy;
 Window window;
 camera_arg *ca;
 PEXRenderer renderer;
 PEXRendererAttributes *rend_attr;
 int index;
{
 double viewDistance;

 PEXCoord viewReferencePoint;
 PEXCoord projectionReferencePoint;
 PEXVector viewUpVector, viewPlaneNormal;
 PEXCoord2D viewWindow[2];
 double viewPlane, frontPlane, backPlane;
 PEXNPCSubVolume viewPort;
 PEXViewEntry view;
 int err, perspective;
 double windowScale;
 double winAspect;
 int winWidth, winHeight;

 XWindowAttributes win_attrs;

 /*
 * Compute the ViewOrientationMatrix from viewReferencePoint,
 * viewPlaneNormal and viewUpVector. This stuff is
independent
 * of the resize method.
 */

Code Example 5-3 View Computations Example (Continued)

Programming Example 47

5

 viewReferencePoint.x = ca->refx;
 viewReferencePoint.y = ca->refy;
 viewReferencePoint.z = ca->refz;

 vector_subtract((float *) &viewPlaneNormal, &(ca->camx),
 &(ca->refx));
 viewDistance = vector_length(&viewPlaneNormal);
 vector_scale(&viewPlaneNormal, 1.0 / viewDistance);

 viewPlane = 0;
 backPlane = -10000;
 frontPlane = viewDistance - 1;

 viewUpVector.x = ca->upx;
 viewUpVector.y = ca->upy;
 viewUpVector.z = ca->upz;

 err = PEXViewOrientationMatrix(&viewReferencePoint,
 &viewPlaneNormal,
 &viewUpVector,
 view.orientation);

 /*
 Compute the size (and shape) of the viewWindow based upon
 the camera’s field of view and the aspect ratio of the
 window to which we’re about to render.
 */

 XGetWindowAttributes (dpy, window, &win_attrs);

 windowScale = atan(ca->field_of_view * M_PI / 360.0)
 * (viewDistance - viewPlane);
 winWidth = (win_attrs.width > 1) ? (win_attrs.width - 1)
 : 1;
 winHeight = (win_attrs.height > 1) ? (win_attrs.height - 1)
 : 1;
 winAspect = (double) winWidth / (double) winHeight;

 viewPort.min.x = 0; viewPort.max.x = 1;
 viewPort.min.y = 0; viewPort.max.y = 1;
 viewPort.min.z = 0; viewPort.max.z = 1;
 rend_attr->npc_subvolume = viewPort;

Code Example 5-3 View Computations Example (Continued)

48 CGE PEX 5.1 Portability Guide—November 1995

5

 viewWindow[0].y = -windowScale;
 viewWindow[1].y = windowScale;
 viewWindow[0].x = -windowScale;
 viewWindow[1].x = windowScale;

 view.clip_flags = PEXClippingAll;
 perspective = True;
 projectionReferencePoint.x = 0;
 projectionReferencePoint.y = 0;
 projectionReferencePoint.z = viewDistance;

 /*
 * Compute the aspect ratio of the viewPort so we fill the
 * window. From that the ViewMappingMatrix is computed.
 */

 /*
 * This method varies only the renderer’s npc_subvolume to
 * map the 0-1 range to the major dimension of the destination
 * drawable. The minor dimension is reduced by the aspect
 * ratio of the drawable and then centered.
 */

 if (winWidth > winHeight)
 {
 double aspect = (double) winHeight / (double) winWidth;

 rend_attr->npc_subvolume.min.y = (1 - aspect) / 2;
 rend_attr->npc_subvolume.max.y =
 rend_attr->npc_subvolume.min.y + aspect;
 }
 else if (winWidth < winHeight)
 {
 rend_attr->npc_subvolume.min.x = (1 - winAspect) / 2;
 rend_attr->npc_subvolume.max.x =
 rend_attr->npc_subvolume.min.x +
 winAspect;
 }

 view.clip_limits = viewPort;
 PEXChangeRenderer(dpy, renderer, PEXRANPCSubVolume,
 rend_attr);

Code Example 5-3 View Computations Example (Continued)

Programming Example 49

5

 err = PEXViewMappingMatrix(viewWindow, &viewPort,
 perspective,
 &projectionReferencePoint,
 viewPlane, backPlane, frontPlane,
 view.mapping);

 PEXSetTableEntries(dpy, rend_attr->view_table, index, 1,
 PEXLUTView,
 (PEXPointer) &view);

} /* set_view_camera */

Code Example 5-3 View Computations Example (Continued)

50 CGE PEX 5.1 Portability Guide—November 1995

5

model.c - Model and Scene Generation Example

Code Example 5-4 Model and Scene Generation Example

/*
 CGE PEX 5.1 Simple Programming Example

 Model and scene generation

*/
#define TEXTURE /* Remove this line to
 disable texture */
#include <stdio.h>
#include <math.h>

#include <X11/PEX5/PEXlib.h>
#include <X11/PEX5/PEXExtlib.h>

#include “ptorus.h”

/*
 This procedure normalizes a vector to a magnitude of 1.0.
*/

NormalizeVector(vector)
 PEXVector *vector;
{
 float r;

 /* Transform a vector to a unit vector. */
 r = vector->x * vector->x
 + vector->y * vector->y
 + vector->z * vector->z;

 if (r > 0) {
 r = 1.0 / sqrt(r);
 vector->x *= r;
 vector->y *= r;
 vector->z *= r;
 }
} /* NormalizeVector */

/*
 This procedure generates the output commands that constitute

Programming Example 51

5

 the model and the closely-associated surface attributes.
*/

void Torus(dpy, resource_id, req_type)
Display *dpy;
XID resource_id;
PEXOCRequestType req_type;
{
 /*
 * Torus parameters
 */
 float xaxis = 10.0,
 yaxis = 10.0,
 zaxis = 10.0,
 radius = 4.0;
 PEXCoord center = {0,0,0};
 int depth = 4; /* quality control */

 /*
 * Misc variables
 */
 int i, j; /* i/phi j/theta */
 float u, v;
 float phi, theta, step;
 float fphiSize, fthetaSize;
 int phiSize, thetaSize;
 int count;
#ifdef TEXTURE
 /* “Custom” vertex mapping with texture data */
 typedef struct _PEXExtVertexNormal {
 PEXCoord point;
 PEXVector normal;
 PEXCoord data;
 } PEXExtVertexNormal;
 PEXExtVertexNormal *torus;
 PEXExtArrayOfVertex quadmesh;
#else
 PEXVertexNormal *torus;
 PEXArrayOfVertex quadmesh;
#endif
 PEXReflectionAttributes ra;
 PEXColor color;
 PEXArrayOfFacetData facetdata;

Code Example 5-4 Model and Scene Generation Example (Continued)

52 CGE PEX 5.1 Portability Guide—November 1995

5

 /*
 * Set up a green object.
 */
 color.rgb.red = 0.1;
 color.rgb.green = 0.9;
 color.rgb.blue = 0.1;
 ra.ambient = 0.2;
 ra.diffuse = 1;
 ra.specular = 1;
 ra.specular_conc = 15;
 ra.transmission = 0;
 ra.specular_color.type = PEXColorTypeRGB;
 ra.specular_color.value.rgb.red = 0.0402;
 ra.specular_color.value.rgb.green = 0.4012;
 ra.specular_color.value.rgb.blue = 0.0402;
 PEXSetSurfaceColor(dpy, resource_id, req_type,
 PEXColorTypeRGB, &color);
 PEXSetReflectionAttributes(dpy, resource_id, req_type, &ra);
#ifdef TEXTURE
 PEXSetInteriorStyle(dpy, resource_id, req_type,
PEXExtInteriorStyleTexture);
#endif

 /*
 * Compute step size and allocate space for verticies.
 */
 step = (float)(M_PI / pow((double)2, (double)depth));
 fphiSize = (2 * M_PI / step) + 1.;
 fthetaSize = (2 * M_PI / step) + 1.;
 phiSize = (int)fphiSize;
 thetaSize = (int)fthetaSize;
#ifdef TEXTURE
 torus = (PEXExtVertexNormal *) malloc (phiSize * thetaSize *
 sizeof(PEXExtVertexNormal));
#else
 torus = (PEXVertexNormal *) malloc (phiSize * thetaSize *
 sizeof(PEXVertexNormal));
#endif

 /*
 * Sweep from -pi to pi along both u and v to generate
 verticies.
 */
 count = 0;

Code Example 5-4 Model and Scene Generation Example (Continued)

Programming Example 53

5

 u = -M_PI - step;
 for(i = 0; i < phiSize; i++) {
 u += step;
 v = -M_PI - step;
 for(j = 0; j < thetaSize; j++, count++) {
 v += step;
 /*
 * Compute vertex coordinate and normal
 */
 torus[count].point.x = xaxis *
 (radius + cos(v)) * cos(u) + center.x;
 torus[count].point.y = yaxis *
 (radius + cos(v)) * sin(u) + center.y;
 torus[count].point.z = zaxis * sin(v) + center.z;
 torus[count].normal.x = (1 / xaxis) * cos(v) * cos(u);
 torus[count].normal.y = (1 / yaxis) * cos(v) * sin(u);
 torus[count].normal.z = (1 / zaxis) * sin(v);
 NormalizeVector (&(torus[count].normal));
#ifdef TEXTURE
 torus[count].data.x = (u + M_PI) / (2 * M_PI);
 torus[count].data.y = (v + M_PI) / (2 * M_PI);
 torus[count].data.z = 0.0;
#endif
 }
 }

#ifdef TEXTURE
 quadmesh.with_fp_data = (PEXPointer)torus;
 PEXExtQuadrilateralMesh (dpy,
 resource_id,
 req_type,
 PEXShapeUnknown,
 3,
 PEXGANone,
 PEXGANormal | PEXExtGAData,
 PEXColorTypeIndexed,
 facetdata,
 thetaSize,
 phiSize,
 quadmesh);
#else
 quadmesh.normal = (PEXVertexNormal *)torus;
 PEXQuadrilateralMesh (dpy,
 resource_id,

Code Example 5-4 Model and Scene Generation Example (Continued)

54 CGE PEX 5.1 Portability Guide—November 1995

5

 req_type,
 PEXShapeUnknown,
 PEXGANone,
 PEXGANormal,
 PEXColorTypeIndexed,
 facetdata,
 thetaSize,
 phiSize,
 quadmesh);
#endif
 free(torus);
} /* Torus */

/*
 This procedure creates a structure containing the geometric
 model.
*/

PEXStructure create_model(dpy)
 Display *dpy;
{
 PEXStructure str_return;

 /*
 Create and load the structure containing the model.
 */
 str_return = PEXCreateStructure(dpy);
 Torus (dpy, str_return, PEXOCStore);

 return str_return;

} /* create_model */

/*
 This procedure creates the light table entries and activation
 list for the scene.
*/

#define NUM_LIGHTS 5
PEXLightEntry ltbl[NUM_LIGHTS];
PEXTableIndex lndx[NUM_LIGHTS];

pex_cube_lights(dpy, num_lights, lights, lss)
 Display *dpy;

Code Example 5-4 Model and Scene Generation Example (Continued)

Programming Example 55

5

 int *num_lights;
 PEXLightEntry **lights;
 PEXTableIndex **lss;
{
 ltbl[0].type = PEXLightAmbient;
 ltbl[0].color.type = PEXColorTypeRGB;
 ltbl[0].color.value.rgb.red = 0.1;
 ltbl[0].color.value.rgb.green = 0.1;
 ltbl[0].color.value.rgb.blue = 0.1;
 lndx[0] = 1;

 ltbl[1].type = PEXLightWCPoint;
 ltbl[1].color.type = PEXColorTypeRGB;
 ltbl[1].color.value.rgb.red = 0.7653;
 ltbl[1].color.value.rgb.green = 0.763499;
 ltbl[1].color.value.rgb.blue = 0.7651;
 ltbl[1].point.x = -19.0;
 ltbl[1].point.y = 0.0;
 ltbl[1].point.z = 200.0;
 ltbl[1].attenuation1 = 1;
 ltbl[1].attenuation2 = 0;
 lndx[1] = 2;

 ltbl[2] = ltbl[1];
 ltbl[2].point.x = 17.0;
 ltbl[2].point.y = 200.0;
 ltbl[2].point.z = -41.0;
 lndx[2] = 3;

 ltbl[3] = ltbl[1];
 ltbl[3].point.x = 175.0;
 ltbl[3].point.y = -83.0;
 ltbl[3].point.z = -51.0;
 lndx[3] = 4;

 ltbl[4] = ltbl[1];
 ltbl[4].point.x = -181.0;
 ltbl[4].point.y = -83.0;
 ltbl[4].point.z = 0.0;
 lndx[4] = 5;

 *num_lights = NUM_LIGHTS;
 *lights = ltbl;
 *lss = lndx;

Code Example 5-4 Model and Scene Generation Example (Continued)

56 CGE PEX 5.1 Portability Guide—November 1995

5

} /* pex_cube_lights */

/*
 This procedure creates the viewing and lighting for the scene.
*/

void create_scene(dpy, camera, num_lights, lights, lss)
 Display *dpy;
 camera_arg *camera;
 int *num_lights;
 PEXLightEntry **lights;
 PEXTableIndex **lss;
{
 /*
 Load the camera describing the view.
 */
 camera->refx = 0.0;
 camera->refy = 0.0;
 camera->refz = 496.0;
 camera->camx = 0.0;
 camera->camy = 0.0;
 camera->camz = 497.0;
 camera->upx = 0.0;
 camera->upy = 1.0;
 camera->upz = 0.0;
 camera->field_of_view = 18.4;
 camera->front = 0.0;
 camera->back = 9999.0;
 camera->perspective = True;

 /*
 Load the light table entries.
 */
 pex_cube_lights(dpy, num_lights, lights, lss);

} /* create_scene */

/*
 This procedure sets up a Pipeline Context with the initial
 attributes required for the scene and model rendering.
*/

void create_initial_state (dpy, plc, num_lights, lss)

Code Example 5-4 Model and Scene Generation Example (Continued)

Programming Example 57

5

 Display *dpy;
 PEXPipelineContext plc;
 int num_lights;
 PEXTableIndex *lss;
{
 PEXPCAttributes pc_attrs;
 unsigned long attr_mask[3];

 attr_mask[0] = 0;
 attr_mask[1] = 0;
 attr_mask[2] = 0;

 PEXSetPCAttributeMask(attr_mask, PEXPCCullingMode);
 pc_attrs.culling_mode = PEXBackFaces;

 PEXSetPCAttributeMask(attr_mask, PEXPCDistinguishFlag);
 pc_attrs.distinguish = False;

 PEXSetPCAttributeMask(attr_mask, PEXPCSurfaceEdgeFlag);
 pc_attrs.surface_edges = PEXOff;

 PEXSetPCAttributeMask(attr_mask, PEXPCInteriorStyle);
 pc_attrs.interior_style = PEXInteriorStyleSolid;

 PEXSetPCAttributeMask(attr_mask, PEXPCReflectionModel);
 pc_attrs.reflection_model = PEXReflectionSpecular;

 PEXSetPCAttributeMask(attr_mask, PEXPCSurfaceInterp);
 pc_attrs.surface_interp = PEXSurfaceInterpColor;

 PEXSetPCAttributeMask(attr_mask, PEXPCViewIndex);
 pc_attrs.view_index = 1;

 PEXSetPCAttributeMask(attr_mask, PEXPCLightState);
 pc_attrs.light_state.count = num_lights;
 pc_attrs.light_state.indices = lss;

 PEXChangePipelineContext (dpy, plc, attr_mask, &pc_attrs);

} /* create_initial_state */

/*
 This procedure sets up the Renderer and creates the useful
 associated resources (Lookup Tables and Pipeline Context).

Code Example 5-4 Model and Scene Generation Example (Continued)

58 CGE PEX 5.1 Portability Guide—November 1995

5

*/

PEXRenderer create_renderer(dpy, window, rend_attrs)
 Display *dpy;
 Window window;
 PEXRendererAttributes *rend_attrs;
{
 unsigned long itemMask = 0;
 unsigned long attr_mask[3];
 PEXRenderer renderer;

 itemMask |= PEXRAPipelineContext;
 attr_mask[0] = 0;
 attr_mask[1] = 0;
 attr_mask[2] = 0;
 rend_attrs->pipeline_context = PEXCreatePipelineContext(dpy,
 attr_mask, NULL);

 itemMask |= PEXRAViewTable;
 rend_attrs->view_table = PEXCreateLookupTable(dpy, window,
 PEXLUTView);

 itemMask |= PEXRALightTable;
 rend_attrs->light_table = PEXCreateLookupTable(dpy, window,
 PEXLUTLight);

 itemMask |= PEXRAColorApproxTable;
 rend_attrs->color_approx_table = PEXCreateLookupTable(dpy,
 window, PEXLUTColorApprox);

 itemMask |= PEXRABackgroundColor;
 rend_attrs->background_color.type = PEXColorTypeRGB;
 rend_attrs->background_color.value.rgb.red = 0.5;
 rend_attrs->background_color.value.rgb.green = 0.5;
 rend_attrs->background_color.value.rgb.blue = 0.5;

 itemMask |= PEXRAHLHSRMode;
 rend_attrs->hlhsr_mode = PEXHLHSRZBuffer;

 itemMask |= PEXRAClearImage;
 rend_attrs->clear_image = True;

 renderer = PEXCreateRenderer(dpy, window, itemMask,
 rend_attrs);

Code Example 5-4 Model and Scene Generation Example (Continued)

Programming Example 59

5

Texture Mapping in this Example

The preceding code example illustrates the technique and code for activating
texture mapping with a minimum amount of effort and code. Here is an
explanation of the changes made to model.c to enable texturing with the
default texture:

#ifdef TEXTURE

 /* “Custom” vertex mapping with texture data */

 typedef struct _PEXExtVertexNormal {

 PEXCoord point;

 PEXVector normal;

 PEXCoord data;

 } PEXExtVertexNormal;

 PEXExtVertexNormal *torus;

 PEXExtArrayOfVertex quadmesh;

#else

 PEXVertexNormal *torus;

 PEXArrayOfVertex quadmesh;

#endif

This program creates a torus with a QuadMesh primitive. When not texturing,
the only data needed for each vertex is the vertex normal to create a smooth
shading effect and so the standard PEXVertexNormal data structure is
sufficient. However, when texturing, the program also provides texture
parameterization data. This data describes to the PEX server what part of the
texture map is applied to the object at each vertex. The extra data in this case is
a PEXCoord supplied with each vertex to specify the texture coordinate to be
mapped to the object at each vertex.

Since there are a wide variety of texturing methods, there are also a variety of
parameterization methods that require different amounts and types of extra
data per vertex. Because of the large number of possibilities, PEXlib cannot
supply Vertex data structures for all possibilities. Therefore, you must create

 return renderer;

} /* create_renderer */

Code Example 5-4 Model and Scene Generation Example (Continued)

60 CGE PEX 5.1 Portability Guide—November 1995

5

your own to match the type of texturing you intend to use. Note in the code
above the new PEXExtVertexNormal data structure that allows for one texture
coordinate per vertex.

#ifdef TEXTURE

 PEXSetInteriorStyle(dpy, resource_id, req_type,
PEXExtInteriorStyleTexture);

#endif

This function call is the key to turning on texturing. It tells the PEX server to
apply a texture to the object instead of using a solid color (The interior style is
set to PEXInteriorStyleSolid in the Pipeline Context). Note that instead of
changing the interior style attribute with an OC, you could change it instead
by initializing the Pipeline Context value to PEXExtInteriorStyleTexture.

#ifdef TEXTURE

 torus = (PEXExtVertexNormal *) malloc (phiSize * thetaSize *
 sizeof(PEXExtVertexNormal));

#else

 torus = (PEXVertexNormal *) malloc (phiSize * thetaSize *
 sizeof(PEXVertexNormal));

#endif

The code above simply allocates space for the torus data. Different code is
needed to handle the differing data types since the data for each vertex is of
different size. A PEXExtVertexNormal structure is bigger than a
PEXVertexNormal by the size of the extra texture data.

#ifdef TEXTURE

 torus[count].data.x = (u + M_PI) / (2 * M_PI);

 torus[count].data.y = (v + M_PI) / (2 * M_PI);

 torus[count].data.z = 0.0;

#endif

The code above computes the texture coordinates and stores them in the extra
data for each vertex. The texture coordinates are computed so that the entire
default texture wraps around the torus exactly once. The texture coordinates
range from 0.0 to 1.0.

Imagine cutting the torus once through one of its cylindrical cross sections,
straightening the cut torus out into a cylinder, slicing the cylinder along one of
its long sides, and then unrolling the result onto a flat surface. The

Programming Example 61

5

parameterizations the program supplies above specify that the PEX server
should apply the texture to this flat surface in one complete “patch”, since the
texture coordinates at the edges of this flattened surface will be 0.0 along two
adjacent edges and 1.0 along the opposite edges. This way, you will see the
entire texture mapped exactly once around the torus, after it is conceptually
rolled back up into a torus.

The code above will generate the required texture coordinate data, since u and
v range from -PI to PI, resulting in texture values for x and y between 0.0 and
1.0.

#ifdef TEXTURE

 quadmesh.with_fp_data = (PEXPointer)torus;

 PEXExtQuadrilateralMesh (dpy,

 resource_id,

 req_type,

 PEXShapeUnknown,

 3,

 PEXGANone,

 PEXGANormal | PEXExtGAData,

 PEXColorTypeIndexed,

 facetdata,

 thetaSize,

 phiSize,

 quadmesh);

#else

 quadmesh.normal = (PEXVertexNormal *)torus;

 PEXQuadrilateralMesh (dpy,

 resource_id,

 req_type,

 PEXShapeUnknown,

 PEXGANone,

 PEXGANormal,

 PEXColorTypeIndexed,

 facetdata,

 thetaSize,

62 CGE PEX 5.1 Portability Guide—November 1995

5

 phiSize,

 quadmesh);

#endif

Finally, the program sends the QuadMesh primitive to the PEX server. The
CGE version of the function call uses an extra parameter to specify how much
texture data there is per vertex (the fifth parameter in the first function call
above) and also turns on the flag that indicates the presence of texture data.

63

Texture Mapping: Applying Your
Own Texture 6

The previous chapter illustrates a program that displays a simple object and
shows how to texture the object using the default texture with just a few extra
steps. The default texture, a checkerboard pattern, is not particularly
interesting. You probably have your own textures that you would like to map
onto an object.

The following code fragments illustrate how to create a texture from raw data
that is compiled into a program. The data itself is too large to present here, but
you should find this code useful for dealing with this sort of texture data.

This partial example defines three textures. The texture data is defined in
Code Example 6-1 as follows:

Code Example 6-1 Texture Data Example

/*
 CGE PEX 5.1 Simple Programming Example with Texture Mapping

 Texture data

*/

PEXExtTexelRGBAlpha8
mandrill[128][128] = {
/* Row 0 */
0x96,0xAC,0xAC,0xFF,0xA0,0xAB,0xA0,0xFF,0x9F,0xA7,0x9D,0xFF,0x9
E,0xA9,0x9E,0xFF,
.... /* more data */
};

64 CGE PEX 5.1 Portability Guide—November 1995

6

Most of the data has been omitted because of its size.

Code Example 6-2 illustrates how to set up the textures.

PEXExtTexelRGBAlpha8
landsat[128][128] = {
/* Row 0 */
0x11,0x22,0x74,0xFF,0x11,0x23,0x74,0xFF,0x3F,0x90,0xA7,0xFF,0x8
6,0xFF,0xF0,0xFF,
.... /* more data */
};

PEXExtTexelRGBAlpha8
stone[128][128] = {
/* Row 0 */
0xC9,0xDC,0xE7,0xFF,0xCF,0xE3,0xEF,0xFF,0xD4,0xE7,0xF3,0xFF,0xD
C,0xEF,0xFA,0xFF,
.... /* more data */
};

Code Example 6-2 Texture Preparation Example

/*
 CGE PEX 5.1 Simple Programming Example with Texture Mapping

 Texture preparation, LUT initialization, and clean up.

*/

#include <stdio.h>
#include <X11/PEX5/PEXlib.h>
#include <X11/PEX5/PEXExtlib.h>
#include “texture.h” /* texture data */

static PEXExtTextureMap texture_IDs[3];
static PEXExtTMDescription texture_desc_IDs[3];

/*
 This procedure initializes the textures and imports them
 into PEXlib.
*/
void init_textures(dpy,drawable)
 Display *dpy;
 Drawable drawable;

Code Example 6-1 Texture Data Example (Continued)

Texture Mapping: Applying Your Own Texture 65

6

{
 static unsigned short names[] = {
 PEXExtIDPowerOfTwoTMSizesRequired,PEXExtIDSquareTMRequired
};
 PEXImpDepConstant *constants;
 PEXExtTexelArray base_array, *texel_array;
 PEXEnumTypeIndex domain;
 PEXExtTMDomainData domain_data;
 PEXEnumTypeIndex parameterization;
 PEXExtTMParameterizationData param_data;
 PEXEnumTypeIndex tm_rendering_order;
 unsigned int power_of_two_tm_required;
 unsigned int square_tm_required;
 int i, status;
 char *map_name;

 /*
 Get texture mapping related implementation dependent
 constants
 */
 if (!PEXGetImpDepConstants(dpy, drawable, 2, names,
 &constants)) {
 fprintf(stderr,”Implementation dependent constants inquiry
 failed.\n”);
 fprintf(stderr,”Exiting\n”);
 exit(1);
 }

 power_of_two_tm_required = (unsigned long int)
 constants[0].integer;
 square_tm_required = (unsigned long int)
constants[1].integer;

 XFree(constants);

 /*
 Initialize domain data
 */

 domain = (PEXEnumTypeIndex) PEXExtTMDomainColor2D;

 domain_data.data.color.tm_type =
 (PEXEnumTypeIndex) PEXExtTMTypeMipMap;
 domain_data.data.color.texel_type =

Code Example 6-2 Texture Preparation Example (Continued)

66 CGE PEX 5.1 Portability Guide—November 1995

6

 (PEXEnumTypeIndex) PEXExtTexelRGBAlphaInt8;

 /*
 Only need one level in the MIP Map.
 */

 domain_data.data.color.num_levels = (unsigned short int) 1;

 /*
 Initialize all 3 texture resources
 */

 for (i = 0; i < 3; i++) {

 switch (i) {
 case 0 :
 base_array.dimension.t0 = (unsigned short
 int) 128;
 base_array.dimension.t1 = (unsigned short
 int) 128;
 base_array.dimension.t2 = (unsigned short
 int) 0;
 base_array.array.rgb_alpha8 =
 (PEXExtTexelRGBAlpha8 *) &mandrill[0][0];
 map_name = “MANDRILL”;
 break;
 case 1 :
 base_array.dimension.t0 =
 base_array.dimension.t1 = (unsigned short
 int) 128;
 base_array.dimension.t2 = (unsigned short
 int) 0;
 base_array.array.rgb_alpha8 =
 (PEXExtTexelRGBAlpha8 *) &landsat[0][0];
 map_name = “LANDSAT”;
 break;
 case 2 :
 base_array.dimension.t0 =
 base_array.dimension.t1 = (unsigned short
 int) 128;
 base_array.dimension.t2 = (unsigned short
 int) 0;
 base_array.array.rgb_alpha8 =
 (PEXExtTexelRGBAlpha8 *) &stone[0][0];

Code Example 6-2 Texture Preparation Example (Continued)

Texture Mapping: Applying Your Own Texture 67

6

 map_name = “STONE”;
 break;
 }

 /*
 * Create filtered texture map
 */

 status = PEXExtCreateFilteredTM(
 (int) domain,
 &domain_data,
 power_of_two_tm_required,
 square_tm_required,
 (PEXExtTexelArray *) &base_array,
 (PEXExtTexelArray **) &texel_array);

 if (status) {
 fprintf(stderr,
 “Failed to filter map [%s]...\n”, map_name);
 };

 /*
 * Give map to PEXlib now...
 */

 texture_IDs[i] = PEXExtCreateTM(
 dpy,
 domain,
 & domain_data,
 texel_array);

 if (! texture_IDs[i]) {
 fprintf(stderr, “Failed to Create TM
 [%s]...Exiting\n”,
 map_name);
 exit (-1);
 }

 /*
 * Dispose of temporary storage
 */

 PEXExtFreeFilteredTM(
 domain,

Code Example 6-2 Texture Preparation Example (Continued)

68 CGE PEX 5.1 Portability Guide—November 1995

6

 & domain_data,
 texel_array);
 }

 /*
 * Initialize parameterization data
 */

 parameterization = (PEXEnumTypeIndex) PEXExtTMParamExplicit;

 /*
 * Initialize TM rendering for maps...
 */

 tm_rendering_order =
 (PEXEnumTypeIndex)
 PEXExtTMRenderingOrderPostSpecular;

 /*
 * Initialize all 3 texture description resources
 */

 for (i = 0; i < 3; i++) {

 switch (i) {
 case 0 :
 map_name = “MANDRILL”;
 break;
 case 1 :
 map_name = “LANDSAT”;
 break;
 case 2 :
 map_name = “STONE”;
 break;
 }

 /*
 * Create map descriptions within PEXlib now...
 */

 texture_desc_IDs[i] = PEXExtCreateTMDescription(
 dpy,
 parameterization,
 & param_data,

Code Example 6-2 Texture Preparation Example (Continued)

Texture Mapping: Applying Your Own Texture 69

6

 tm_rendering_order,
 1,
 & texture_IDs[i]);

 if (! texture_desc_IDs[i]) {
 fprintf(stderr,
 “Failed to Create TM Description [%s]...\n”,
 map_name);
 exit (-1);
 }
 }
} /* init_textures */

/*
 This procedure sets up the texture mapping LUTs.
*/
set_texture_luts(dpy, ext_rend_attrs)
 Display *dpy;
 PEXExtRendererAttributes *ext_rend_attrs;
{

 PEXExtTMBindingEntry binding[3];
 PEXExtTMCoordSourceEntry coord_source[1];
 PEXExtTMCompositionEntry composition[1];
 PEXExtTMSamplingEntry sampling[1];
 int i;

 /*
 Setup coord source LUT...
 */

 coord_source[0].tm_source =
 (PEXEnumTypeIndex) PEXExtTMCoordSourceFloatData;
 coord_source[0].fp_data_index = (unsigned short int) 0;
 PEXIdentityMatrix(coord_source[0].orientation);

 PEXExtSetTableEntries(dpy,
 ext_rend_attrs->tm_coord_source_table,
 1,
 1,
 PEXExtLUTTMCoordSource,
 coord_source
);

Code Example 6-2 Texture Preparation Example (Continued)

70 CGE PEX 5.1 Portability Guide—November 1995

6

 /*
 Setup composition LUT...
 */

 composition[0].method = (PEXEnumTypeIndex)
 PEXExtTMCompositeModulate;

 PEXExtSetTableEntries(dpy,
 ext_rend_attrs->tm_composition_table,
 1,
 1,
 PEXExtLUTTMComposition,
 composition);

 /*
 Setup sampling LUT...
 */

 sampling[0].minification_method =
 (PEXEnumTypeIndex) PEXExtTMTexelSampleSingleBase;

 sampling[0].magnification_method =
 (PEXEnumTypeIndex) PEXExtTMTexelSampleSingleBase;

 sampling[0].t0_boundary_condition =
 (PEXEnumTypeIndex) PEXExtTMBoundaryCondClampAbsolute;
 sampling[0].t1_boundary_condition =
 (PEXEnumTypeIndex) PEXExtTMBoundaryCondClampAbsolute;

 sampling[0].boundary_clamp_color_source =
 (PEXEnumTypeIndex)
PEXExtTMClampColorSourceExplicit;
 sampling[0].boundary_clamp_color_source =
 (PEXEnumTypeIndex)
PEXExtTMClampColorSourceBoundary;
 sampling[0].depth_sampling_bias_hint =
 (float) 0.0;
 sampling[0].t0_frequency_hint =
 (float) 1.0;
 sampling[0].t1_frequency_hint =
 (float) 1.0;

 PEXExtSetTableEntries(dpy,
 ext_rend_attrs->tm_sampling_table,

Code Example 6-2 Texture Preparation Example (Continued)

Texture Mapping: Applying Your Own Texture 71

6

 1,
 1,
 PEXExtLUTTMSampling,
 sampling);

 /*
 Setup binding LUT...
 */

 for (i = 0; i < 3; i++) {

 binding[i].tm_description_id =
 (PEXExtTMDescription) texture_desc_IDs[i] ;
 binding[i].coord_source_index =
 (PEXTableIndex) 1;
 binding[i].composition_index =
 (PEXTableIndex) 1;
 binding[i].sampling_index =
 (PEXTableIndex) 1;
 }

 PEXExtSetTableEntries(dpy,
 ext_rend_attrs->tm_binding_table,
 1,
 3,
 PEXExtLUTTMBinding,
 binding);
} /* set_texture_luts */

/*
 This procedure releases the texture map resources.
*/

void cleanup_textures(dpy)
 Display *dpy;
{
 int i;

 /*
 Free texture descriptions...
 */

 for (i = 0; i < 3; i++)
 PEXExtFreeTMDescription(

Code Example 6-2 Texture Preparation Example (Continued)

72 CGE PEX 5.1 Portability Guide—November 1995

6

With the textures set up by Code Example 6-2, the following code,
Code Example 6-3, draws a cube with each of the three textures applied to two
opposite faces of the cube.

 dpy,
 texture_desc_IDs[i]
);

 /*
 Free texture resources...
 */

 for (i = 0; i < 3; i++)
 PEXExtFreeTM(
 dpy,
 texture_IDs[i]);
} /* cleanup_textures */

Code Example 6-3 Draw a Cube Example

 /*
 Left and Right sides of the cube
 */
 binding_lut_entry = 1;
 PEXExtSetActiveTextures(dpy, resource_id, req_type, 1,
 &binding_lut_entry);

 vertex_data.vertices.with_fp_data = (PEXPointer) cube[0];
 PEXExtFillAreaSetWithData (dpy, resource_id, req_type,
 PEXShapeUnknown, False, PEXContourDisjoint, 2,
 PEXGANone, (0 | PEXGANormal | PEXExtGAData),
 PEXColorTypeRGB, 1, (PEXFacetData *) NULL,
 &vertex_data);

 vertex_data.vertices.with_fp_data = (PEXPointer) cube[1];
 PEXExtFillAreaSetWithData (dpy, resource_id, req_type,
 PEXShapeUnknown, False, PEXContourDisjoint, 2,
 PEXGANone, (0 | PEXGANormal | PEXExtGAData),
 PEXColorTypeRGB, 1, (PEXFacetData *) NULL,
 &vertex_data);

 /*
 Back and Front sides of the cube
 */

Code Example 6-2 Texture Preparation Example (Continued)

Texture Mapping: Applying Your Own Texture 73

6

 binding_lut_entry = 2;
 PEXExtSetActiveTextures(dpy, resource_id, req_type, 1,
 &binding_lut_entry);

 vertex_data.vertices.with_fp_data = (PEXPointer) cube[2];
 PEXExtFillAreaSetWithData (dpy, resource_id, req_type,
 PEXShapeUnknown, False, PEXContourDisjoint, 2,
 PEXGANone, (0 | PEXGANormal | PEXExtGAData),
 PEXColorTypeRGB, 1, (PEXFacetData *) NULL,
 &vertex_data);

 vertex_data.vertices.with_fp_data = (PEXPointer) cube[3];
 PEXExtFillAreaSetWithData (dpy, resource_id, req_type,
 PEXShapeUnknown, False, PEXContourDisjoint, 2,
 PEXGANone, (0 | PEXGANormal | PEXExtGAData),
 PEXColorTypeRGB, 1, (PEXFacetData *) NULL,
 &vertex_data);

 /*
 Top and Bottom sides of the cube
 */
 binding_lut_entry = 3;
 PEXExtSetActiveTextures(dpy, resource_id, req_type, 1,
 &binding_lut_entry);

 vertex_data.vertices.with_fp_data = (PEXPointer) cube[4];
 PEXExtFillAreaSetWithData (dpy, resource_id, req_type,
 PEXShapeUnknown, False, PEXContourDisjoint, 2,
 PEXGANone, (0 | PEXGANormal | PEXExtGAData),
 PEXColorTypeRGB, 1, (PEXFacetData *) NULL,
 &vertex_data);

 vertex_data.vertices.with_fp_data = (PEXPointer) cube[5];
 PEXExtFillAreaSetWithData (dpy, resource_id, req_type,
 PEXShapeUnknown, False, PEXContourDisjoint, 2,
 PEXGANone, (0 | PEXGANormal | PEXExtGAData),
 PEXColorTypeRGB, 1, (PEXFacetData *) NULL,
 &vertex_data);

Code Example 6-3 Draw a Cube Example (Continued)

74 CGE PEX 5.1 Portability Guide—November 1995

6

75

Conformance Summary 7

Minimum Conformance
Vendors who conform to the specifications outlined by the Common Graphics
Environment conform to the following minimum requirements. These
requirements have been provided here as a reference, so you can code to the
maximum portability on CGE platforms.

Enumerated Types

Individual vendors may choose to support more enumerated types than the
minimum required for CGE PEX 5.1 compliance. You should invoke the
PEXGetEnumTypeInfo function to obtain the actual enumerated types
supported. Use the PEXETEnumType to obtain the complete list of CGE PEX
5.1 enumerated types supported by your vendor platform:

Table 7-1 CGE PEX 5.1 Enumerated Types Supported

PEX 5.1 Class CGE PEX 5.1 Types Supported

PEXETATextStyle PEXATextNotConnected, PEXATextConnected

PEXETColorApproxModel PEXColorApproxRGB

PEXETColorApproxType PEXColorSpace

PEXETColorType PEXColorTypeIndexed, PEXColorTypeRGB

PEXETCurveApproxMethod PEXApproxImpDep

PEXETDisplayUpdateMode Not required.

76 CGE PEX 5.1 Portability Guide—November 1995

7

PEXETEscape Not required. See Table 7-2 on page 77 for details on
extensions.

PEXETFloatFormat PEXIEEE_754_32

PEXETGDP2D Not required.

PEXETGDP Not required.

PEXETGSE Not required.

PEXETHatchStyle Not required. See Table 7-4 on page 78 for details on
extensions.

PEXETHLHSRMode PEXHLHSROff, PEXHLHSRZBuffer,

 PEXHLHSRZBufferID

PEXETInteriorStyle PEXInteriorStyleHollow, PEXInteriorStyleSolid,

PEXInteriorStyleHatch, PEXInteriorStyleEmpty.

See Table 7-5 on page 78 for details on extensions.

PEXETLightType PEXLightAmbient, PEXLightWCVector,

PEXLightWCPoint, PEXLightWCSpot.

PEXETLineType PEXLineTypeSolid, PEXLineTypeDashed,

PEXLineTypeDotted, PEXLineTypeDashDot.

See Table 7-3 on page 78 for details on extensions.

PEXETMarkerType PEXMarkerDot, PEXMarkerCross,

PEXMarkerAsterisk, PEXMarkerCircle,

PEXMarkerX

PEXETModelClipOperator PEXModelClipReplace, PEXModelClipIntersection

PEXETParaSurfCharacteristics PEXPSCNone, PEXPSCImpDep

PEXETPickAllMethod PEXPickAllAll

PEXETPickDeviceType PEXPickDeviceDCHitBox

PEXETPickOneMethod PEXPickLast

PEXETPolylineInterpMethod PEXPolylineInterpNone, PEXPolylineInterpColor

PEXETPromptEchoType Not required.

Table 7-1 CGE PEX 5.1 Enumerated Types Supported (Continued)

PEX 5.1 Class CGE PEX 5.1 Types Supported

Conformance Summary 77

7

Escapes

Some escapes are introduced with CGE PEX 5.1. The following escapes are
required to be supported by all CGE PEX 5.1 compliant servers. The
PEXETEscape enumerated type lists the escapes supported by your server:

PEXETReflectionModel PEXReflectionNone, PEXReflectionAmbient,

PEXReflectionDiffuse, PEXReflectionSpecular

PEXETRenderingColorModel PEXRenderingColorModelImpDep

PEXETSurfaceApproxMethod PEXApproxImpDep

PEXETSurfaceEdgeType PEXSurfaceEdgeSolid

PEXETSurfaceInterpMethod PEXSurfaceInterpNone, PEXSurfaceInterpColor

PEXETTrimCurveApproxMethod PEXApproxImpDep

Table 7-2 CGE PEX 5.1 Escape Extensions

CGE PEX 5.1 Escape Extensions

PEXExtEscapeChangePipelineContext, PEXExtETMEscapeChangePipelineContext

PEXExtEscapeChangeRenderer, PEXExtETMEscapeChangeRenderer

PEXExtEscapeGetRendererAttributes, PEXExtETMEscapeGetRendererAttributes

PEXExtEscapeSetTableEntries, PEXExtETMGetTableEntries

PEXExtEscapeGetTableEntry, PEXExtETMGetTableEntry

PEXExtEscapeCreateTM, PEXExtETMCreateTM

PEXExtEscapeCreateTMFromWindow, PEXExtETMCreateTMFromWindow

PEXExtEscapeCreateTMDescription, PEXExtETMCreateDescription

PEXExtEscapeFreeTM, PEXExtETMFreeTM

PEXExtEscapeFreeTMDescription, PEXExtETMEscapeFreeTMDescription

PEXExtEscapeFetchElements, PEXExtETMEscapeFetchElements

PEXExtEscapeQueryColorApprox, PEXExtETMEscapeQueryColorApprox

Table 7-1 CGE PEX 5.1 Enumerated Types Supported (Continued)

PEX 5.1 Class CGE PEX 5.1 Types Supported

78 CGE PEX 5.1 Portability Guide—November 1995

7

Line Types

Some extended line types are introduced with CGE PEX 5.1. The following line
types are required to be supported by all CGE PEX 5.1 compliant servers, in
addition to the line types defined by PEX 5.1. The PEXETLineType enumerated
type lists the line types supported by your server:

Hatch Styles

Some hatch styles are introduced with CGE PEX 5.1. The following hatch styles
are required to be supported by all CGE PEX 5.1 compliant servers. The
PEXETHatchStyle enumerated type lists the hatch styles supported by your
server:

Interior Styles

An extended interior style is introduced with CGE PEX 5.1. The following
interior style is required to be supported by all CGE PEX 5.1 compliant servers.
The PEXETInteriorStyle enumerated type lists the interior styles supported by
your server:

Table 7-3 CGE PEX 5.1 Line Types

CGE PEX 5.1 Line Types

PEXExtLineTypeCenter, PEXExtETMLineTypeCenter

PEXExtLineTypePhantom, PEXExtETMLineTypePhantom

Table 7-4 CGE PEX 5.1 Hatch Styles

CGE PEX 5.1 Hatch Styles

PEXExtHatchStyle45Degrees, PEXExtETMHatchStyle45Degrees

PEXExtHatchStyle135Degrees, PEXExtETMHatchStyle135Degrees

Table 7-5 CGE PEX 5.1 Interior Styles

CGE PEX 5.1 Interior Styles

PEXExtInteriorStyleTexture, PEXExtETMInteriorStyleTexture

Conformance Summary 79

7

Extended Enumerated Types

In addition, the following extended enumerated types are required to be
supported by all CGE PEX 5.1 servers. PEXExtETEnumType extension returns
the list of enumerated types supported by your server. The list includes
PEXExtETEnumType itself. You can use this extension to verify that CGE PEX
is supported by your server. The extended enumerated types include:

Table 7-6 CGE PEX 5.1 Enumerated Type Extensions

CGE PEX 5.1 Enum Type Extension Definition

PEXExtETEnumType Returns the list of extended enumerated types sup-
ported. This table contains the possible values.

PEXExtETOC Returns the list of extended output commands sup-
ported. See Table 7-7 on page 82 for details.

PEXExtETPC Returns the list of extended pipeline context
attributes supported. See Table 7-8 on page 83 for
details.

PEXExtETRA Returns the list of extended renderer attributes sup-
ported. See Table 7-8 for details.

PEXExtETLUT Returns the list of extended lookup tables sup-
ported. See Table 7-10 on page 84 for details.

PEXExtETID Returns the list of extended implementation-depen-
dent constants supported. See Table 7-13 on
page 87 for details.

PEXExtETTMRenderingOrder Specifies where in the rendering pipeline a texture
map is to be applied. See Table 7-14 on page 87 for
details.

PEXExtETTMCoordSource Specifies the coordinate source within a primitive’s
vertex data of a texture coordinate. See Table 7-15
on page 88 for details.

PEXExtETTMCompositeMethod Specifies how the texture map is blended with the
primitive’s existing data. See Table 7-16 on
page 88 for details.

PEXExtETTMTexelSampleMethod Specifies how texels are sampled from the texture
map and mapped to primitive pixels when the area
covered by a texel and pixel differ. See Table 7-17
on page 89 for details.

80 CGE PEX 5.1 Portability Guide—November 1995

7

PEXExtETTMBoundaryCondition Specifies the texturing to be applied to the primi-
tive when the texture coordinates select a point
beyond a boundary of the texture map. See
Table 7-18 on page 89 for details.

PEXExtETTMClampColorSource Specifies what color is to be applied if the texture
mapping boundary condition ClampColor is used.
See Table 7-19 on page 90 for details.

PEXExtETTMDomain Specifies the texture dimension and what aspect of
a primitive is to be modified by texture mapping.
See Table 7-20 on page 90 for details.

PEXExtETTexelType Defines the format of the texture map texel values.
See Table 7-21 on page 91 for details.

PEXExtETTMResourceHint Defines what type of resource optimization hints
are to be made. See Table 7-22 on page 92 for
details.

PEXExtETTMType Specifies the type of texture map. See Table 7-23
on page 92 for details.

PEXExtETTMParameterizationMethod Defines how texture map coordinates are derived.
See Table 7-24 on page 93 for details.

PEXExtETTMPerspectiveCorrection Specifies the method used to compute texture coor-
dinate values in surface interiors when rendering
textured surface primitives. See Table 7-25 on
page 93 for details.

PEXExtETTMSampleFrequency Specifies the frequency to sample texels in a tex-
ture map when texturing surface primitives. See
Table 7-26 on page 94 for details.

PEXExtETPrimitiveAAMode Specifies what modifications should be made to the
image to correct aliasing effects. See Table 7-27 on
page 94 for details.

Table 7-6 CGE PEX 5.1 Enumerated Type Extensions (Continued)

CGE PEX 5.1 Enum Type Extension Definition

Conformance Summary 81

7

Extended Output Commands

Individual vendors may choose to support more output commands than the
minimum required for CGE PEX 5.1 compliance. From the list of OCs defined
by the non-extended PEX 5.1, CGE PEX 5.1 requires that all OCs be supported
though some CGE vendors may support OCs with the following exceptions:

• Cell Arrays may be rendered as simple polyline boundaries, using the
current polyline attributes. These OCs include: PEXCellArray,
PEXCellArray2D, and PEXExtendedCellArray.

• Pattern functions must be supported but are not required to have any visual
effect. These OCs include: PEXSetPatternAttributes,
PEXSetPatternAttributes2D and PEXSetPatternSize.

• Text precision is fully supported for stroked fonts; however:

• PEXStringPrecision: height, width and expansion are evaluated as closely as
possible, but in a workstation-dependent way. Up and base vectors, path,
alignment, and spacing may not be applied. Clipping is also workstation-
dependent.

• PEXCharPrecision: spacing is evaluated exactly. Height, width, expansion,
and up and base vectors are evaluated as closely as possible, but in a
workstation-dependent way. Clipping is performed at least on a character-
by-character basis.

• PEXStrokePrecision: all attributes and clipping are applied exactly.

PEXExtETPrimitiveAABlendOp Specifies how blending is accomplished with prim-
itive anti-aliasing. See Table 7-28 on page 95 for
details.

PEXExtETLineCapStyle Specifies how the ends of a wide line are rendered.
See Table 7-29 on page 95 for details.

PEXExtETLineJoinStyle Specifies how the intersection between adjacent
segments of a wide line are rendered. See
Table 7-30 on page 96 for details.

Table 7-6 CGE PEX 5.1 Enumerated Type Extensions (Continued)

CGE PEX 5.1 Enum Type Extension Definition

82 CGE PEX 5.1 Portability Guide—November 1995

7

In addition, the following extended OCs are required to be supported by all
CGE PEX 5.1 servers:

Pipeline Context Attributes

Individual vendors may choose to support more pipeline context attributes
than the minimum required for CGE PEX 5.1 compliance. From the list of
pipeline context attributes defined by the non-extended PEX 5.1, CGE PEX 5.1
requires that all attributes be supported. In addition, the following extended
pipeline context attributes apply to extended pipeline contexts and are

Table 7-7 CGE PEX 5.1 OC Extensions

CGE PEX 5.1 OC Extension CGE PEX 5.1 Extensions Supported

PEXExtTMPerspectiveCorrection Required.

PEXExtTMSampleFrequency Required.

PEXExtSetTMResourceHints Required.

PEXExtOCActiveTextures Required.

PEXExtOCBFActiveTextures Required.

PEXExtOCFillAreaSetWithData Required.

PEXExtOCSetOfFillAreaSets Required.

PEXExtOCTriangleStrip Required.

PEXExtOCQuadrilateralMesh Required.

PEXExtOCPrimitiveAA Required.

PEXExtOCLineCapStyle Required

PEXExtOCLineJoinStyle Required.

PEXExtOCEllipse Required.

PEXExtOCEllipse2D Required.

PEXExtOCCircle2D Required.

PEXExtOCEllipticalArc Required.

PEXExtOCEllipticalArc2D Required.

PEXExtOCCircularArc2D Required.

Conformance Summary 83

7

required to be supported by all CGE PEX 5.1 compliant servers. The
PEXExtETPC enumerated type lists the extended pipeline context attributes
supported by the server:

Renderer Attributes

Individual vendors may choose to support more renderer attributes than the
minimum required for CGE PEX 5.1 compliance. From the list of renderer
attributes defined by the non-extended PEX 5.1, CGE PEX 5.1 requires that all
attributes be supported. The non-extended renderer attributes and requests
only apply to PEX 5.1, the following extended renderer attributes apply to
extended rendering and are required to be supported by all CGE PEX 5.1
compliant servers. The PEXExtETRA enumerated type lists the extended
renderer attributes supported by the server:

Table 7-8 CGE PEX 5.1 Pipeline Context Extensions

CGE PEX 5.1 Pipeline Context Extension CGE PEX 5.1 Extensions Supported

PEXExtPCTMPerspectiveCorrection Required.

PEXExtPCTMResourceHints Required.

PEXExtPCTMSampleFrequency Required.

PEXExtPCActiveTextures Required.

PEXExtPCBFActiveTextures Required.

PEXExtPCPrimitiveAA Required.

PEXExtPCLineCapStyle Required.

PEXExtPCLineJoinStyle Required.

Table 7-9 CGE PEX 5.1 Renderer Extensions

CGE PEX 5.1 Renderer Extension CGE PEX 5.1 Extensions Supported

PEXExtRATMBindingTable Required.

PEXExtRATMCoordSourceTable Required.

PEXExtRATMCompositionTable Required.

PEXExtRAMTMSamplingTable Required.

84 CGE PEX 5.1 Portability Guide—November 1995

7

Lookup Tables

Individual vendors may choose to support more lookup tables than the
minimum required for CGE PEX 5.1 compliance. From the list of lookup tables
defined by the non-extended PEX 5.1, CGE PEX 5.1 requires the following:

• Sparse indexing is supported which enables you to define noncontiguous
indices in the lookup table.

• The default table values are required (see Table 7-8)

• When either set or realized values are inquired, implementations return a
value. However, implementations may or may not distinguish between set
and realized values.

• No table is required to have predefined entries

Table 7-10 CGE PEX 5.1 Lookup Table Requirements

CGE PEX 5.1 Lookup
Table Requirements Default Index Index Value Range

Minimum Entries
Required

PEXLUTColor 1 0 .. 65534 256

PEXLUTColorApprox 0 0 .. 65534 1

PEXLUTDepthCue 0 0 .. 65534 2 (ON and OFF are
required)

PEXLUTEdgeBundle 1 1 .. 65535 20

PEXLUTInteriorBundle 1 1 .. 65535 20

PEXLUTLight 1 1 .. 65535 8

PEXLUTLineBundle 1 1 .. 65535 20

PEXLUTMarkerBundle 1 1 .. 65535 20

PEXLUTPattern 1 1 .. 65535 0 (pattern is not
required)

PEXLUTTextBundle 1 1 .. 65535 20

PEXLUTTextFont 1 1 .. 65535 1

PEXLUTView 0 0 .. 65534 64

Conformance Summary 85

7

In addition, the following extended lookup tables are required to be supported
by all CGE PEX 5.1 compliant servers. The PEXExtETLUT enumerated type
lists the extended lookup tables supported by the server:

Implementation-Dependent Constants

Individual vendors may choose to support more implementation-dependent
constants than the minimum required for CGE PEX 5.1 compliance. You should
invoke the PEXGetImpDepConstants function to obtain the actual
implementation-dependent constants supported. Use
PEXGetImpDepConstants to obtain the complete list of PEX 5.1
implementation-dependent constants supported by your vendor platform:

Table 7-11 CGE PEX 5.1 Lookup Table Extensions

CGE PEX 5.1 Lookup
Table Extension

Default
Index

Index Value
Range

Minimum
Entries Required

PEXExtLUTTMBinding 0 0 .. 65534 20

PEXExtLUTTMComposition 0 0 .. 65534 20

PEXExtLUTTMCoordSource 0 0 .. 65534 20

PEXExtLUTTMSampling 0 0 .. 65534 20

Table 7-12 PEX 5.1 Constants Supported by CGE PEX 5.1

PEX 5.1 Constants PEX 5.1 Constants Supported by CGE PEX 5.1

PEXIDBestColorApprox implementation-dependent

PEXIDDitheringSupported implementation-dependent

PEXIDDoubleBufferingSupported implementation-dependent

PEXIDMaxEdgeWidth implementation-dependent

PEXIDMaxHitsEventSupported True

PEXIDMaxLineWidth At least 4 pixels

PEXIDMaxMarkerSize At least the size of the largest screen dimension

PEXIDMaxModelClipPlanes At least 6

PEXIDMaxNameSetNames At least 1024

PEXIDMaxNonAmbientLights At least 7

86 CGE PEX 5.1 Portability Guide—November 1995

7

PEXIDMaxNURBOrder At least 6

PEXIDMaxTrimCurveOrder At least 6

PEXIDMinEdgeWidth At least 1 pixel

PEXIDMinLineWidth At least 1 pixel

PEXIDMinMarkerSize implementation-dependent

PEXIDNominalEdgeWidth 1 pixel

PEXIDNominalLineWidth 1 pixel

PEXIDNominalMarkerSize implementation-dependent

PEXIDNumSupportedEdgeWidths At least 1

PEXIDNumSupportedLineWidths 0 (continuous)

PEXIDNumSupportedMarkerSizes 0 (continuous)

PEXIDTransparencySupported True. The transmission coefficient varies from 0.0
(opaque) to 1.0 (fully transparent).

If transparency is supported through the screen door
algorithm, then a minimum of 4 screens are sup-
ported.

PEXIDChromaticityRedU implementation-dependent

PEXIDChromaticityRedV implementation-dependent

PEXIDLuminanceRed implementation-dependent

PEXIDChromaticityGreenU implementation-dependent

PEXIDChromaticityGreenV implementation-dependent

PEXIDLuminanceGreen implementation-dependent

PEXIDChromaticityBlueU implementation-dependent

PEXIDChromaticityBlueV implementation-dependent

PEXIDLuminanceBlue implementation-dependent

PEXIDChromaticityWhiteU implementation-dependent

PEXIDChromaticityWhiteV implementation-dependent

PEXIDLumianceWhite implementation-dependent

Table 7-12 PEX 5.1 Constants Supported by CGE PEX 5.1 (Continued)

PEX 5.1 Constants PEX 5.1 Constants Supported by CGE PEX 5.1

Conformance Summary 87

7

In addition, the following extended implementation-dependent constants are
required to be supported by all CGE PEX 5.1 compliant servers. The
PEXExtETID enumeration type lists the extended implementation-dependent
constants supported by your server:

Texture Mapping Rendering Order

Texture mapping rendering order is introduced with CGE PEX 5.1. The
following texture mapping rendering orders are required to be supported by
all CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETTMRenderingOrder enumerated type lists the texture mapping
rendering orders supported by your server:

Table 7-13 CGE PEX 5.1 Implementation-dependent Constants

CGE PEX 5.1 Imp. Dep. Extension CGE PEX 5.1 Imp. Dep. Supported

PEXExtIDMaxTextureMaps implementation-dependent

PEXExtIDMaxFastTMSize implementation-dependent

PEXExtIDPowerOfTwoTMSizesRequired implementation-dependent

PEXExtIDSquareTMRequired implementation-dependent

Table 7-14 CGE PEX 5.1 Texture Mapping Rendering Orders

CGE PEX 5.1 Rendering Order CGE PEX 5.1 Types Supported

PEXExtTMRenderingOrderPreSpecular Not required.

PEXExtTMRenderingOrderPostSpecular Required.

88 CGE PEX 5.1 Portability Guide—November 1995

7

Texture Mapping Coordinate Source

Texture mapping coordinate source is introduced with CGE PEX 5.1. The
following texture mapping coordinate sources are required to be supported by
all CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETTMCoordSource enumerated type lists the texture mapping
coordinate sources supported by your server:

Texture Mapping Composite Method

Texture mapping composite method is introduced with CGE PEX 5.1. The
following texture mapping composite methods are required to be supported by
all CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETTMCompositeMethod enumerated type lists the texture mapping
composite methods supported by your server:

Table 7-15 CGE PEX 5.1 Texture Mapping Coordinate Sources

CGE PEX 5.1 Coordinate Source CGE PEX 5.1 Type Supported

PEXExtTMCoordSourceVertexCoord Not required.

PEXExtTMCoordSourceVertexNormal Not required.

PEXExtTMCoordSourceFloatData Required.

Table 7-16 CGE PEX 5.1 Texture Mapping Composite Methods

CGE PEX 5.1 Composite Method CGE PEX 5.1 Types Supported

PEXExtTMCompositeReplace Required.

PEXExtTMCompositeModulate Required.

PEXExtTMCompositeBlendEnvColor Not required.

PEXExtTMCompositeDecal Not required.

PEXExtTMCompositeDecalBackground Not required.

PEXExtTMCompositeReplaceBlendedColors Not required.

Conformance Summary 89

7

Texture Mapping Texel Sample Method

Texture mapping texel sample method is introduced with CGE PEX 5.1. The
following texture mapping sample methods are required to be supported by all
CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETTMTexelSampleMethod enumerated type lists the texture mapping
sample methods supported by your server:

Texture Mapping Boundary Condition

Texture mapping boundary condition is introduced with CGE PEX 5.1. The
following texture mapping boundary conditions are required to be supported
by all CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETTMBoundaryCondition enumerated type lists the texture mapping
boundary conditions supported by your server:

Table 7-17 CGE PEX 5.1 Texture Mapping Texel Sample Methods

CGE PEX 5.1 Texel Sample Method CGE PEX 5.1 Methods Supported

PEXExtTMTexelSampleSingleBase Required.

PEXExtTMTexelSampleLinearBase Not required.

PEXExtTMTexelSampleSingleInMipMap Not required.

PEXExtTMTexelSampleLinearInMipMap Not required.

PEXExtTMTexelSampleSingleBetweenMipMaps Not required.

PEXExtTMTexelSampleLinearBetweenMipMaps Not required.

Table 7-18 CGE PEX 5.1 Texture Mapping Boundary Conditions

CGE PEX 5.1 Boundary Condition CGE PEX 5.1 Conditions Supported

PEXExtTMBoundaryCondClampColor Required.

PEXExtTMBoundaryCondClampAbsolute Required.

PEXExtTMBoundaryCondWrap Not required.

PEXExtTMBoundaryCondMirror Not required.

90 CGE PEX 5.1 Portability Guide—November 1995

7

Texture Mapping Clamp Color Source

Texture mapping clamp color source is introduced with CGE PEX 5.1. The
following texture mapping clamp color sources are required to be supported
by all CGE PEX 5.1 compliant servers. The PEXExtETTMClampColorSource
enumerated type lists the texture mapping clamp color sources supported by
your server:

Texture Mapping Domain

Texture mapping domain is introduced with CGE PEX 5.1. The following
texture mapping domains are required to be supported by all CGE PEX 5.1
compliant servers, with the exceptions noted below. The PEXExtETTMDomain
enumerated type lists the texture mapping domains supported by your server:

Table 7-19 CGE PEX 5.1 Texture Mapping Clamp Color Sources

CGE PEX 5.1 Clamp Color Source CGE PEX 5.1 Type Supported

PEXExtTMClampColorSourceBoundary Required.

PEXExtTMClampColorSourceExplicit Required.

Table 7-20 CGE PEX 5.1 Texture Mapping Domains

CGE PEX 5.1 Domain CGE PEX 5.1 Type Supported

PEXExtTMDomainColor1D Not required.

PEXExtTMDomainColor2D Required.

PEXExtTMDomainColor3D Not required.

Conformance Summary 91

7

Texture Mapping Texel Type

Texture mapping texel type is introduced with CGE PEX 5.1. The following
texture mapping texel types are required to be supported by all CGE PEX 5.1
compliant servers, with the exceptions noted below. The
PEXExtETTMTexelType enumerated type lists the texture mapping texel types
supported by your server:

Table 7-21 CGE PEX 5.1 Texture Mapping Texel Types

CGE PEX 5.1 Texel Type CGE PEX 5.1 Types Supported

PEXExtTexelLuminanceFloat Not required.

PEXExtTexelLuminanceInt8 Not required.

PEXExtTexelLuminanceInt16 Not required.

PEXExtTexelLuminanceAlphaFloat Not required.

PEXExtTexelLuminanceAlphaInt8 Not required.

PEXExtTexelLuminanceAlphaInt16 Not required.

PEXExtTexelRGBFloat Required.

PEXExtTexelRGBInt8 Required.

PEXExtTexelRGBInt16 Not required.

PEXExtTexelRGBAlphaFloat Required.

PEXExtTexelRGBAlphaInt8 Required.

PEXExtTexelRGBAlphaInt16 Not required.

92 CGE PEX 5.1 Portability Guide—November 1995

7

Texture Mapping Resource Hints

Texture mapping resource hints is introduced with CGE PEX 5.1. The following
texture mapping resource hints are required to be supported by all CGE PEX
5.1 compliant servers. The PEXExtETTMResourceHints enumerated type lists
the texture mapping resource hints supported by your server:

Texture Mapping Type

Texture mapping type is introduced with CGE PEX 5.1. The following texture
mapping types are required to be supported by all CGE PEX 5.1 compliant
servers. The PEXExtETTMType enumerated type lists the texture mapping
types supported by your server:

Table 7-22 CGE PEX 5.1 Texture Mapping Resource Hints

CGE PEX 5.1 Resource Hints CGE PEX 5.1 Types Supported

PEXExtTMResourceHintNone Required.

PEXExtTMResourceHintSpeed Required.

PEXExtTMResourceHintSpace Required.

Table 7-23 CGE PEX 5.1 Texture Mapping Types

CGE PEX 5.1 Texture Mapping Type CGE PEX 5.1 Types Supported

PEXExtTMTypeMipMap Required.

Conformance Summary 93

7

Texture Mapping Parameterization Method

Texture mapping parameterization method is introduced with CGE PEX 5.1.
The following texture parameterization methods are required to be supported
by all CGE PEX 5.1 compliant servers, with the exceptions noted below.The
PEXExtETTMParameterizationMethod enumerated type lists the texture
mapping parameterization methods supported by your server:

Texture Mapping Perspective Correction

Texture mapping perspective correction is introduced with CGE PEX 5.1. The
following texture mapping perspective corrections are required to be
supported by all CGE PEX 5.1 compliant servers, with the exceptions noted
below. The PEXExtETTMPerspectiveCorrection enumerated type lists the
texture mapping perspective corrections supported by your server:

Table 7-24 CGE PEX 5.1 Texture Mapping Parameterization Methods

CGE PEX 5.1 Parameterization Method CGE PEX 5.1 Methods Supported

PEXExtTMParamExplicit Required.

PEXExtTMParamReflectSphereVRC Required.

PEXExtTMParamReflectSphereWC Not required.

PEXExtTMParamLinearVRC Not required.

Table 7-25 CGE PEX 5.1 Texture Mapping Perspective Corrections

CGE PEX 5.1 Perspective Correction CGE PEX 5.1 Types Supported

PEXExtTMPerspCorrectNone Required.

PEXExtTMPerspCorrectVertex Not required.

PEXExtTMPerspCorrectPixel Required.

94 CGE PEX 5.1 Portability Guide—November 1995

7

Texture Mapping Sample Frequency

Texture mapping sample frequency is introduced with CGE PEX 5.1. The
following texture mapping sample frequencies are required to be supported by
all CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETTMSampleFrequency enumerated type lists the texture mapping
sample frequencies supported by your server:

Primitive Anti-Aliasing Mode

Primitive anti-aliasing mode is introduced with CGE PEX 5.1. The following
primitive anti-aliasing modes are required to be supported by all CGE PEX 5.1
compliant servers, with the exceptions noted below. The
PEXExtETPrimitiveAAMode enumerated type lists the primitive anti-aliasing
modes supported by your server:

Table 7-26 CGE PEX 5.1 Texture Mapping Sample Frequencies

CGE PEX 5.1 Sample Frequency CGE PEX 5.1 Types Supported

PEXExtTMSampleFrequencyPixel Required.

PEXExtTMSampleFrequencyInterpDep Not required.

Table 7-27 CGE PEX 5.1 Primitive Anti-Aliasing Modes

CGE PEX 5.1 Primitive Anti-Aliasing Mode CGE PEX 5.1 Modes Supported

PEXExtPrimAANone Required.

PEXExtPrimAAPoint Not required.

PEXExtPrimAAVector Not required.

PEXExtPrimAAPointVector Not required.

PEXExtPrimAAPolygon Not required.

PEXExtPrimAAPointPolygon Not required.

PEXExtPrimAAVectorPolygon Not required.

PEXExtPrimAAPointVectorPolygon Not required.

Conformance Summary 95

7

Primitive Anti-Aliasing Blend Operation

Primitive anti-aliasing blend operation is introduced with CGE PEX 5.1. The
following primitive anti-aliasing blend operations are required to be supported
by all CGE PEX 5.1 compliant servers, with the exceptions noted below. The
PEXExtETPrimitiveAABlendOp enumerated type lists the primitive anti-
aliasing blend operations supported by your server:

Line Cap Style

Line cap style is introduced with CGE PEX 5.1. The following line cap styles
are required to be supported by all CGE PEX 5.1 compliant servers, with the
exceptions noted below. The PEXExtLineCapStyle enumerated type lists the
line cap styles supported by your server:

Table 7-28 CGE PEX 5.1 Primitive Anti-Aliasing Blend Operations

CGE PEX 5.1 Blend Operations CGE PEX 5.1 Operations Supported

PEXExtPrimAABlendOpImpDep Required.

PEXExtPrimAABlendOpSimpleAlpha Not required.

Table 7-29 CGE PEX 5.1 Line Cap Styles

CGE PEX 5.1 Line Cap Styles CGE PEX 5.1 Styles Supported

PEXExtLineCapStyleButt Required.

PEXExtLineCapStyleRound Not required.

PEXExtLineCapStyleProjecting Not required.

96 CGE PEX 5.1 Portability Guide—November 1995

7

Line Join Style

Line join style is introduced with CGE PEX 5.1. The following line join styles
are required to be supported by all CGE PEX 5.1 compliant servers, with the
exceptions noted below. The PEXExtETLineJoinStyle enumerated type lists the
line join styles supported by your server:

Table 7-30 CGE PEX 5.1 Line Join Styles

CGE PEX 5.1 Line Join Styles CGE PEX 5.1 Styles Supported

PEXExtLineJoinStyleImpDep Required.

PEXExtLineJoinStyleRound Not required.

PEXExtLineJoinStyleMiter Not required.

PEXExtLineJoinStyleBevel Not required.

97

Interoperability Conventions 8

Interoperability Conventions
CGE PEX 5.1 utilizes many of the PEX interoperability conventions in its
design to ensure interoperability across all servers. The conventions are
provided here for those interested in the interoperability rules. As its
background information, you may choose to ignore this information:

1. X Consortium vendors wishing to define their own individual extension (for
example, enumerated types (ET), enumerated type values (ETV), escapes
(ESC), output commands (OCs), table types (TTs), GDPs, or GSEs should
obtain a unique vendor id (a number) by the MIT registry.

Vendor id numbers range from 1 to 126. The numbers 0 and 127 are reserved
and are not distributed.

If all vendor id numbers are distributed, a new vendor wishing a number
needs to negotiate with an existing registered vendor and share that number
space; otherwise, the new vendor has to wait until a release of PEX that
expands vendor space.

2. A vendor-specific ET, ETV, OC, or TT has the high bit set (bit 15) and the
vendor id encoded in the high bits (bits 14 through 8) of the type or value.
• Bit 15 a one
• Bits 14..8 vendor id
• Bits 7..0 the type or value (a number in the range of 0..255)

98 CGE PEX 5.1 Portability Guide—November 1995

8

3. Vendor-specific GDP, GSE, and ESC ids have the high bit set (bit 31), and the
vendor id encoded in the high bits of the id:
• Bit 31 a one
• Bits 30..23 zeros
• Bits 22..16 vendor id
• Bits 15..8 zeros
• Bits 7..0 the id (a number in the range of 0..255)

4. All vendor-specific ETs, ETVs, GDPs, GSEs, and ESCs can be inquired via
the PEXGetEnumeratedTypeInfo request (the PEXlib function is
PEXGetEnumTypeInfo). Because the PEXGetEnumerateTypeInfo interface is
 only 16 bits, GDP, GSE, and ESC ids are packed into 16 bits only for
purposes of returning the values through PEXGetEnumeratedTypeInfo.
Therefore all ETs, ETVs and GDP, GSE and ESC ids, as returned by
PEXGetEnumeratedTypeInfo, are encoded:
• Bit 15 a one
• Bits 14..8 vendor id
• Bits 7..0 type, value, or id (a number in the range of 0..255)
• Specifically, the GDP, GSE, and ESC ids are packed as follows:
• Bit 31 packs into bit 15
• Bits 22..16 packs into bits 14..8
• Bits 7..0 packs into bits 7..0

5. The list of vendor-specific OCs can be inquired via the
PEXGetEnumeratedTypeInfo request using the PEXExtETOC enumerated
type.

6. The list of vendor-specific table types can be inquired via the
PEXGetEnumeratedTypeInfo request using the PEXExtETLUT enumerated
type. An alternative way to determine if a vendor-specific table type is
supported is to make a PEXGetTableInfo request with the table type (PEXlib
function is also named PEXGetTableInfo). If the request is successful, then
the table type is supported. If an error (either LookupTable or Value) is
generated, then the table type is not supported.

7. Defining a separate X extension is the only way to add events or errors to
PEX. XQueryExtension can be used to determine the base offsets for any
new errors or events.

Interoperability Conventions 99

8

8. New requests can be added via the PEXEscape request. See Items 1-4
regarding the encoding of escape identifiers.

9. Not all servers support Big Request Extension (BRE). If BRE is supported
by the server, large requests (greater than the maximum request size) can be
sent to the server; however, individual OCs will still be limited to 64K
words.

10. OCNil is encoded as opcode 0xFFFF. (This is the current PEX-SI OC opcode,
and would conform to the encoding specified, if PEX-SI had vendor id 127:
0xFFFF = [1,vendor 127,value 255]). OCNil is valid only for element
searching.

11. If facet normals are not given, the server should compute them as described
in the PHIGS PLUS International Standard (ISO/IEC 9592-4:1992, pp. 37-39,
clauses 4.5.5.2 - 4.5.5.4, Facet Normal, Facet Orientation, and Reflection
Normal). The server should not modify any geometric or reflectance facet
normals that the client explicitly defines.

12. The direction vector associated with the WCS_Vector and WCS_Spot light
types points in the direction the light would travel from these sources.

13. Specular exponents are used as specified in Annex C of the PHIGS PLUS
International Standard (ISO/IEC 9592-4:1992, pp 163-165).

14. Not all servers support all drawables. Use the PEXMatchRendererTargets
request to determine supported drawable types (PEXlib function is
PEXMatchRenderingTargets). The ordering of supported rendering targets
returned by servers should not be interpreted as a recommendation for
usage because the list may not necessarily be ordered.

15. Double-buffering with the PHIGS workstation resource, if supported,
requires that the resource be created with the double-buffering mode
enabled. To determine if double-buffering can be enabled, use the
PEXGetImpDepConstants request (PEXlib functions also call
PEXGetImpDepConstants).

16. Servers return their native floating point format as the first entry in the list
of supported floating point formats returned by
PEXGetEnumeratedTypeInfo.

100 CGE PEX 5.1 Portability Guide—November 1995

8

17. Implementations that do not support the pattern interior style do not
guarantee support for the pattern lookup table (a LookupTable error is
returned from PEXCreateLookupTable and PEXGetTableInfo). Regardless
of support for the pattern interior style, servers which support the PHIGS
workstation resource also support the pattern LUT.

18. Implementations return a Value error from PEXCreateLookupTable and
PEXGetTableInfo for attempted use of vendor specific lookup tables that are
not supported.

19. Double buffering via MBX might not be available across all devices. The
application should always first inquire whether MBX can create more than
one image buffer. If only one MBX image buffer can be created, then the
application could also inquire support for rendering to pixmaps which, if
supported, could be used to accomplish the same effect as double-buffering
by rendering the pixmap and copying to the window.

20. Not all servers support arbitrary color approximation settings. To address
this, these conventions should be followed.

a. A PEX server should possess either or both of the X standard colormap
properties: RGB_BEST_MAP and RGB_DEFAULT_MAP. These properties
contain entries that describe IDs of Colormaps that are supported for
PEX Color Approximation by that server. PEX clients can use these
properties to find Colormaps to share, and/or to derive PEX Color
Approximation setups that are supported. In all respects, the content and
usage of these properties under PEX should conform to the ICCCM.

b. A PEX server that does not support arbitrary valid Color Approximation
configurations should provide the QueryColorApprox escape. PEX
clients can use this escape to verify support for a specific Color
Approximation configuration, and/or to obtain a list of one or more
supported configurations.

101

Other Useful References A

For additional information about PEX and PEXlib, see:

• PEXlib Specification and C Language Binding (X Consortium, 1992)

• PEX Protocol Specification (X Consortium, 1992)

• PEX Protocol Encoding (X Consortium, 1992)

• PEXlib Programming Manual by Tom Gaskins (O’Reilly and Associates,
1993)

• PEXlib Programming Reference by Tom Gaskins (O’Reilly and Associates,
1993)

• PEXlib: A Tutorial by Paula Womack (Prentice-Hall, 1993)

• PEXlib: A Reference Manual by Mark Graff (Prentice-Hall, 1993)

• Building Applications with PEXlib by Jan Hardenbergh (Prentice-Hall, 1994)

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS
sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une
marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK
est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

